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a b s t r a c t 

We study an operational planning problem arising in the offshore oil and gas industry, in which we deter- 

mine routes, as well as sailing speeds along these routes, for a set of platform supply vessels (PSVs) ser- 

vicing a given set of delivery and pickup orders such that costs are minimized. The sailing costs, mainly 

induced by fuel consumption for the PSVs, heavily depend on the chosen sailing speeds. Furthermore, the 

fuel consumption and the feasible speed ranges for the PSVs are largely affected by weather conditions 

that may vary over time, resulting in a weather- or Time-Dependent Vessel Routing Problem with Speed Op- 

timization (TDVRP-SO). Optional decisions include the postponement of certain orders and the chartering 

of spot vessels, both associated with additional costs. We present a time-discrete mixed integer program- 

ming (MIP) model for the TDVRP-SO. To overcome the challenges of solving large-scale instances of the 

TDVRP-SO with a commercial MIP solver, we propose an Adaptive Large Neighborhood Search (ALNS) 

heuristic extended with a local search and a set partitioning model. The ALNS heuristic also includes 

solving the sub-problem of determining the optimal sailing speeds along each PSV route. Computational 

tests on instances based on a real planning case from the Norwegian continental shelf show that the 

ALNS heuristic efficiently provides high-quality solutions. It is also demonstrated that, in contrast to cur- 

rent planning practice, accounting for speed optimization and weather conditions significantly improves 

the solutions. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Since the first successful exploration drilling in the southern 

arts of the North Sea late in the 1960s, the Norwegian petroleum 

ndustry has grown and developed into one of the major drivers 

f Norway’s technological and economic growth. Norway’s produc- 

ion of oil and gas takes place with platforms at offshore locations 

n the Norwegian continental shelf, which covers the North Sea, 

he Norwegian Sea and the Barents Sea. As of 2021, 90 manned 

latforms or offshore installations (both fixed and floating units) 

re in operation and contribute to the largest share of the produc- 

ion volumes from the industry ( Norwegian Petroleum Directorate, 

021 ). Each offshore installation can have several hundreds of em- 

loyees, which naturally leads to large demands for consumable 

argoes such as food and beverages and the return of produced 

aste. Further demand for cargoes is related to maintenance of the 

nstallation and the extraction and processing of oil and gas. These 
∗ Corresponding author. 

E-mail address: andreas.ormevik@ntnu.no (A.B. Ormevik). 
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argoes vary greatly in size and form, from small machine parts to 

arge volumes of specialized chemicals. 

Supplies to and from the offshore installations are distributed 

rom onshore supply bases along the Norwegian coast by fleets of 

latform Supply Vessels (PSVs). The PSVs can be extremely costly in 

peration, with daily charter costs as high as USD 25 0 0 0 in some

ases ( Kisialiou, Gribkovskaia, & Laporte, 2018b ). As a result, mea- 

ures for reducing the operational costs from the offshore logistics 

s of great importance for the operators in the Norwegian oil and 

as industry. At the same time, the environmental performance of 

perating the PSV fleet has become another field of strong interest 

o reach the industry’s goals of reducing greenhouse gas emissions. 

indstad, Eskeland, & Rialland (2017) report that a single PSV can 

mit approximately 10 0 0 0 tons of CO 2 equivalents per year, de- 

ending on the operational profile for the vessel. Detailed opera- 

ional decision making, e.g., routing and selection of sailing speeds, 

an play an important role in reducing both costs and emissions 

rom PSV operations. 

In this context, we consider a real-life operational planning 

roblem faced on a daily basis by logistics planners involved in 

he distribution of supplies to and from offshore installations on 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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he Norwegian continental shelf. The main task is to determine 

he routes and schedules for a fleet of PSVs such that total costs 

re minimized. Each route should start and end at a given onshore 

upply base (depot), servicing a number of delivery and pickup or- 

ers at the platforms in between. In some cases, it might not be 

ossible to service all orders during the planning horizon using 

nly the PSVs in the contracted fleet. The planners then have the 

ption to either postpone the orders or to charter additional PSVs 

rom the spot market on a short-term basis. The total cost to be 

inimized consists of the sailing costs for the PSVs, in addition to 

he costs for chartering additional PSVs and the penalty costs for 

ostponing orders. The sailing costs, which mainly amounts to fuel 

osts for the PSVs, heavily depend on the chosen sailing speeds. 

urthermore, the fuel consumption and the feasible speed ranges 

or the PSVs are largely affected by weather conditions that may 

ary over time. The time spent on servicing orders at the plat- 

orms is also affected by the weather conditions, with longer ser- 

ice times in rough weather conditions. In other words, both ser- 

ice times as well as fuel consumption functions and speed ranges 

or the PSVs are time-dependent parameters. 

We consider the planning problem taking all these practical is- 

ues into account in order to determine the following: 1) routes 

or the PSVs, 2) sailing speeds along these routes, 3) which orders 

o postpone, and 4) whether to charter in additional PSVs from the 

pot market, and if so, the routes and sailing speeds also for these. 

or a time span of 2–3 days, corresponding to the typical duration 

f the PSV routes and hence the planning horizon, the weather 

orecast for the areas of operation is usually quite accurate and 

an be handled as deterministic input to the planning. We name 

his problem the Time-Dependent Vessel Routing Problem with Speed 

ptimization (TDVRP-SO) . 

Problems similar to the TDVRP-SO have received increasing at- 

ention in the operations research community in recent years. Early 

rticles focused mostly on the strategic or tactical planning level of 

ffshore logistics, aiming to determine the optimal size for a PSV 

eet together with a set of weekly routes and schedules for se- 

ected routes between platforms. This problem was first addressed 

y Fagerholt & Lindstad (20 0 0) under the term Supply Vessel Plan- 

ing Problem (SVPP). Different extended versions of the SVPP were 

ater studied and solved with various solution methods, e.g., by 

alvorsen-Weare, Fagerholt, Nonås, & Asbjørnslett (2012) , Norlund, 

ribkovskaia, & Laporte (2015) , Kisialiou et al. (2018b) , Kisialiou, 

ribkovskaia, & Laporte (2018a) and Borthen, Loennechen, Fager- 

olt, Wang, & Vidal (2019) . 

At a more operational planning level, offshore logistics plan- 

ing must consider both the delivery of cargo to offshore instal- 

ations and the pickup of ”return cargo” to the onshore base. This 

akes the TDVRP-SO related to the well-known group of vehicle 

outing problems with pickups and deliveries (VRPPDs). Berbeglia, 

ordeau, Gribkovskaia, & Laporte (2007) introduce a threefold 

lassification of such problems based on the servicing pattern 

resent in distribution, namely one-to-one, many-to-many, and 

ne-to-many-to-one problems. The TDVRP-SO is a typical exam- 

le of the latter as PSVs start their routes from a single onshore 

upply base and finally return to this base. Similar pickup-and- 

elivery problems have been studied within offshore logistics by 

as, Gribkovskaia, Halskau, & Shlopak (2007) , Gribkovskaia, La- 

orte, & Shlopak (2008) and Sopot & Gribkovskaia (2014) . These 

rticles all consider the problem for a single PSV, whereas the 

DVRP-SO creates schedules for a fleet of PSVs. 

If available PSV capacity is scarce, situations might occur where 

nly a selection of the requested orders can be serviced on 

he scheduled voyages. This problem variant was investigated by 

uesta, Andersson, Fagerholt, & Laporte (2017) as the Vessel Rout- 

ng Problem with Selective Pickups and Deliveries (VRPSPD). The for- 

ulated arc-flow model was used to determine the most cost- 
892 
fficient voyage for a single vessel where a penalty cost is charged 

or those orders that are postponed and hence not serviced on the 

cheduled voyages. An Adaptive Large Neighborhood Search (ALNS) 

euristic was proposed for providing high-quality solutions to large 

roblem instances. Order selection is well-studied in many mar- 

time applications, often through another approach of considering 

he profit-collecting VRPs (PCVRPs), of which Archetti, Speranza, & 

igo (2014) provide a classification of different variants and asso- 

iated models and solution approaches. 

A further issue in offshore logistics are harsh weather condi- 

ions that greatly affect the operations. Halvorsen-Weare & Fager- 

olt (2011) identify wave height as the most influential weather 

arameter and provide values for forced speed reduction and in- 

reased service time of PSVs for different weather states. In an 

ptimization-simulation framework, they add slack to voyages and 

chedules to obtain solutions that are robust with regards to limit 

he amount of unserviced demand. A related study is performed 

y Kisialiou et al. (2018b) , investigating the trade-off between min- 

mizing costs and obtaining a certain service level to the installa- 

ions. Weather conditions can in some cases also force the PSVs to 

eturn to the supply base, hence failing to service all requested or- 

ers. This can also happen in cases where sudden and more urgent 

rders occurs, mainly due to equipment failure at an installation 

hat requires a quick response. The problem of managing such dis- 

uptions (i.e., recovering to the initial weekly schedules by rerout- 

ng the PSVs in the fleet), was first addressed by Albjerk, Danielsen, 

rey, Stålhane, & Fagerholt (2016) proposing an exact model for- 

ulation, and later extended by Stålhane, Albjerk, Danielsen, Krey, 

 Fagerholt (2019) with a variable neighborhood heuristic for solv- 

ng larger case instances. 

As weather conditions offshore usually will vary over a plan- 

ing horizon, the routing problem for PSVs becomes a highly 

ime-dependent (TD) planning problem. Weather conditions im- 

act servicing times at installations as well as sailing times due 

o forced speed reductions, which in turn affect fuel consump- 

ion and, hence, emissions and costs. Time-dependent variants of 

ehicle routing problems have been investigated for long, with 

alandraki & Daskin (1992) as one prominent pioneering study. 

hey provide a definition of the time-dependent vehicle routing 

roblem (TDVRP) and discuss various formulations and solution 

euristics for it. Several solution methods have been proposed 

or TDVRPs in recent years, e.g., branch-and-price ( Dabia, Ropke, 

an Woensel, & De Kok (2013) ), ALNS ( Franceschetti et al. (2017) )

nd hybrid ant colony and local search algorithms ( Ma, Wu, & Dai 

2017) ). For many maritime applications, time-dependency have 

een handled by linking spatial and temporal positions of PSVs 

n a time-space node network formulation. Christiansen, Fagerholt, 

achaniotis, & Stålhane (2017) propose such solution approach for 

he operations planning of bunkering vessels. In a problem arising 

n the aquaculture industry described by Lianes, Noreng, Fagerholt, 

lette, & Meisel (2021) , where designated service vessels performs 

everal tasks at sea-based fish farms, both sailing and service times 

re time-dependent due to varying weather conditions. 

Scheduling the PSVs in the TDVRP-SO involves determining the 

peed for all sailing legs during a voyage. Norlund & Gribkovskaia 

2013) consider speed optimization for supply vessels in the off- 

hore logistics through a set of speed selection strategies used 

or the construction of periodic vessel schedules. In the arc-flow 

odel proposed by Andersson, Fagerholt, & Hobbesland (2015) for 

 case in roll-on roll-off (RORO) shipping, speed decisions are 

ound as a linear combination of speed alternatives. Modeling voy- 

ges in a time-space network allows for handling the usually non- 

inear speed optimization problem implicitly either in a mathe- 

atical model or a heuristic approach. Such features have been 

xplored previously for instance by Fagerholt, Laporte, & Norstad 

2010) and Norstad, Fagerholt, & Laporte (2011) when including 
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peed optimization in the planning of various applications within 

eep sea shipping. 

The literature review illustrates the great complexity of off- 

hore logistics where many real-life aspects need to be considered 

o plan PSV operations in a reasonable way. Both order selection 

nd speed optimization must be performed while considering the 

ime-dependency of the decisions due to various weather condi- 

ions. The TDVRP-SO that we present in the following, takes these 

eatures comprehensibly into account when finding schedules for 

 fleet of PSVs. The main contributions of this article are listed 

elow: 

1. A time-discrete mixed integer programming model for the 

Time-Dependent Vessel Routing Problem with Speed Optimization 

(TDVRP-SO) that involves relevant features such as speed opti- 

mization, accounting for weather conditions, and the option of 

postponing a selection of orders. 

2. The development of a specialized Adaptive Large Neighborhood 

Search (ALNS) heuristic, where both problem-specific destroy 

and repair heuristics and local search operators are introduced 

to improve the performance. Furthermore, the ALNS heuristic is 

integrated with a set partitioning model, recombining promis- 

ing candidate solutions generated by the heuristic in order to 

find better solutions in shorter solution time. The ALNS heuris- 

tic also includes solving the sub-problem of determining the 

optimal sailing speeds along each PSV route. 

3. We perform various computational experiments based on re- 

alistic case data inspired by the current offshore logistics op- 

erations on the Norwegian continental shelf. Through this, we 

show that the proposed ALNS heuristic and its extensions effi- 

ciently provides high-quality solutions. It is also demonstrated 

that, in contrast to current planning practice, accounting for 

speed optimization and weather conditions significantly im- 

proves the solutions. 

The further paper is organized as follows: Section 2 provides 

 detailed description of the TDVRP-SO, illustrated by an example 

ighlighting key features of the problem. Section 3 presents the 

athematical formulation of the problem, while the ALNS heuris- 

ic developed to solve larger test instances is detailed in Section 4 . 

he test instances generated to represent a real application of the 

DVRP-SO are presented in Section 5 , along with the required 

roblem specific input data used for computational studies. The 

urther parts of this section summarize and discuss the obtained 

esults. Section 6 concludes the paper, and details on the parame- 

er tuning process needed to run the ALNS heuristic efficiently can 

e found in Appendix A . 

. Problem description 

Solving the TDVRP-SO involves determining routes and sched- 

les for a fleet of platform supply vessels (PSVs) that must ser- 

ice a given set of offshore installations from an onshore supply 

ase (depot). Each offshore installation has an individual demand 

or pickup and delivery of various cargo, usually stored in deck 

ontainers or as bulk cargo (liquids) in designated tanks below 

eck. An order refers to the aggregated quantity of cargoes with 

imilar characteristics requested by each offshore installation. We 

istinguish between mandatory orders that must be serviced by 

ne of currently planned voyages and optional orders that can be 

ostponed to a later voyage, which, however is associated with a 

enalty cost. It is assumed that all return cargo (the pickup orders) 

s optional as it can be stored temporarily at the installations for 

 short period of time. This leads to three types of orders: Manda- 

ory delivery (MD), optional delivery (OD) and optional pickup (OP) 

rders. Since some of the offshore installations do not operate their 
893 
ranes during nights, these have restricted opening hours for when 

ervice of the orders (i.e., loading or unloading) can be performed. 

The problem is solved on a daily basis, where a plan is made 

or all PSVs being available for departure from the depot at the 

ext day. The planning period is adapted to the duration of a typ- 

cal PSV route, which should be at most three days (72 hours). A 

oute or a voyage is here defined as a sequence of sailing legs start- 

ng at the supply depot, visiting a subset of the offshore instal- 

ations in the area, and returning to the supply depot before the 

nd of the planning horizon. There is no upper limit on the num- 

er of installations visited on a voyage, but each installation can 

nly be visited once by one of the scheduled PSV voyages. A PSV 

erforms the following activities on a voyage: (1) Voyage prepa- 

ations at the supply depot before departure, which takes place 

uring fixed opening hours at the depot and includes tasks such 

s unloading return cargo (i.e., pickup cargoes) from the previous 

oyage, bunkering, and loading of the delivery cargoes, (2) sail- 

ng between installations and to and from the supply depot, (3) 

dling at the installations waiting for the commencement of ser- 

ice (only when needed due to rough weather conditions or re- 

tricted opening hours at the installations), and (4) handling oper- 

tions for servicing the orders at an installation (i.e., loading and 

nloading). 

The set of PSVs consists of both a contracted fleet having the 

epot as home port (the ”fleet vessels”), and a limited number of 

vailable charter vessels from a spot market (the ”spot vessels”). 

he latter can only be chartered in cases where the contracted ves- 

els are not able to meet all mandatory demand. The PSV fleet is 

eterogeneous, with individual sailing speeds (both design speed 

nd maximum speed) and machinery layout. Hence, fuel consump- 

ion rates and costs of operation also differ between the vessels. 

sually, a convex non-linear relationship exists between fuel con- 

umption and sailing speed for vessels, and a speed interval can 

hus be defined such that lower speed always yields lower fuel 

onsumption within this interval. The PSVs may also have different 

argo capacities for different deck and bulk cargoes. In this paper, 

e consider the deck area to be the limiting resource with regards 

o vessel capacity. In other words, we assume that bulk capacity 

onstraints will not be violated and, hence, we can express all or- 

er sizes in terms of deck cargo units (containers) when generating 

he test instances later in Section 5.1 . 

We use a forecast of significant wave heights in the operations 

rea to take weather conditions into account in the planning. High 

aves reduce the speed of PSVs sailing with the same machinery 

ower, and will also increase the servicing time at installations. 

his increases the fuel consumption as illustrated in Fig. 1 , where 

ome forced speed reduction �v induced by the weather horizon- 

ally shifts the fuel consumption curve. This way, fuel consumption 

n a certain weather state is found by ”translating” the fuel con- 

umption curve known for the vessel operating in calm weather. 

dditionally, due to safety regulations, wave heights surpassing a 

ertain limit can prohibit service at an installation, forcing the PSVs 

o idle nearby. As weather conditions can be different for different 

eriods of the planning horizon, speed decisions and, thus, operat- 

ng costs for performing a PSV voyage depend on the time a leg is 

ailed. 

The objective of the TDVRP-SO is to minimize the sum of 

onetary costs and penalty costs associated with performing the 

lanned PSV voyages. The monetary costs consist of operating costs 

or all PSVs, including both variable sailing costs for all vessels 

sed and fixed chartering costs (at a daily rate) for any spot vessels 

sed, and penalty costs are induced by the postponement of op- 

ional delivery and pickup orders. The variable sailing costs are as- 

umed to be proportional to the total energy consumption for the 

SVs performing the scheduled voyages. This includes mainly the 

uel consumption, but can also take into account the use of bat- 
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Fig. 1. Illustration of time-dependent fuel consumption (FC). Here, a fixed speed offset �v induced by weather conditions is assumed for all sailing speeds, shifting the fuel 

consumption curve horizontally such that maintaining the desired speed v ∗ becomes considerably more fuel consuming. v min denotes the starting point of the speed interval 

in which the fuel consumption is a convex function of sailing speed. 

Fig. 2. Workflow of solving the TDVRP-SO. 
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Table 1 

Orders placed by the five installations in the example problem. 

Each order is either a mandatory delivery (MD), an optional de- 

livery (OD) or an optional pickup (OP). Order sizes are given in 

deck cargo units (containers). 

Installation Opening hours Order types Order size 

1 10–22 MD 15 

OD 7 

2 00–24 MD 25 

OP 30 

3 00–24 MD 7 

OD 9 

4 00–24 MD 18 

OP 12 

5 00–24 MD 20 

OD 7 

s

w

s

w

w

t

p

i

eries in diesel-electric hybrid machinery configurations becoming 

ore and more frequent for PSVs. 

The TDVRP-SO determines cost-optimal voyages (routes) for the 

SVs being used, including a complete schedule indicating sailing 

peeds and required idling or servicing time on all sailing legs. 

hich orders to deliver and pickup, and which to postpone, is also 

ecided along with the decision of whether or not to charter spot 

essels for fulfilling all mandatory delivery orders. Fig. 2 summa- 

izes the solution process for the TDVRP-SO, listing the required in- 

ut and obtained output and how these can be categorized based 

n their characteristics. 

For a better understanding of the main features of the TDVRP- 

O, a small-size example problem and its optimal solution are pre- 

ented next. In this example, a supply depot services a total of 

3 offshore installations. For the next planning period, schedul- 

ng the voyages departing on the following day, five installations 

ave placed orders for pickup and delivery of cargo, see Table 1 . 

nstallation 1 has limited opening hours, meaning that the PSVs 

an only service the installation during a ”day shift” (hour 10 to 

our 22 of the day) whereas all other installations are open 24 

ours a day. Two contracted vessels, named PSV1 and PSV2 , are 

vailable at the depot, with a cargo capacity of 110 and 85 cargo 

nits, respectively. For both vessels, an allowable speed range from 

0 knots to 14 knots (maximum sailing speed in fair weather) is 
894 
pecified. A weather forecast is provided, predicting the significant 

ave heights in the area for the 72 hour planning horizon. We as- 

ume the forecast to be deterministic and static , meaning that it 

ill not be updated as the PSV voyages last and that the same 

eather prediction is made for the entire operational area. Nei- 

her our definition of the TDVRP-SO nor the solution approaches 

resented in this paper is restricted by such an assumption, but it 

s made to simplify the example. 
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Fig. 3. Weather forecast in the example problem. The horizontal line marks the 

wave height limit for safe cargo handling at the installations. 
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The wave height forecast is illustrated in Fig. 3 , where the hor- 

zontal lines indicate the maximum allowed wave height (4.5m) 

eyond which the orders cannot be handled at the offshore instal- 

ations for safety reasons. 

A potential solution to the problem is shown in Fig. 4 . All or-

ers, both mandatory and optional pickup and delivery cargoes, 

re serviced. The figure indicates the corresponding voyages of the 

wo vessels and shows the chosen sailing speed for each leg. Note 

hat PSV1 sails at maximum speed in order to reach installation 1 

efore it closes at hour 22. Furthermore, the sailing speed is kept 

elatively high until the last installation (i.e., number 4) has been 

erviced. This happens to complete all cargo handling activities be- 

ore the weather conditions worsen at day 2 such that servicing is 

rohibited, see Fig. 3 . On the final sailing leg that leads back to

he supply depot, speed is reduced to a cost-efficient minimum as 

here is no risk of violating the allowed voyage duration of three 

ays. 

. Modeling the TDVRP-SO 

The mathematical model for the TDVRP-SO is formulated as a 

ixed integer programming (MIP) model on a time-space network. 
ig. 4. Two feasible voyages for the example problem. The northernmost voyage is perfo

-) represent deliveries of cargo. 

895 
e next describe the procedure for generating this network, fol- 

owed by the presentation of the MIP model. 

.1. Generation of the time-space network 

The TDVRP-SO is formulated on a time-space network of nodes 

nd arcs, where a node is characterized by a pair (i, t) with i be-

ng an order and t being a completion time of that order. From 

his, if node (i, t) is part of a PSV’s route, it means that the PSV

ervices order i and completes it at time t . Additionally, the model 

as origin nodes (o, t) and destination nodes (d, t) , where o and d

oth refer to the depot in order to enable that PSVs start and end 

heir routes at the supply base. Two nodes (i, t) and ( j, t ′ ) can be

onnected by an arc 
(
(i, t) , ( j, t ′ ) 

)
, meaning that a PSV completes

rder i at time t (and departs the associated installation immedi- 

tely) and then completes its next scheduled order j at time t ′ . 
uch an arc is feasible and included in the arc set, only if the time

pan t to t ′ is sufficiently long to let the PSV travel from the instal- 

ation of order i to the installation of order j (sailing at a chosen 

peed in the weather conditions present at that time) and perform 

he service of j. 

In other words, the time span includes the duration of both 

ailing and servicing, and might also include idling time of a PSV, 

f the installation of order j is not yet opened at the arrival of 

he vessel or if weather conditions are too harsh. Therefore, an 

rc 
(
(i, t) , ( j, t ′ ) 

)
represents a feasible option for conducting or- 

er j right after order i with respect to constraints on weather 

onditions, speed choice, and opening hours. By taking up all fea- 

ible arcs into a model, we ensure that the optimal solution can 

e found from the TDVRP-SO model. The systematic generation of 

he arcs is described next, and the arc generation procedure is also 

ummarized in a pseudocode format in Appendix B . 

The first steps in the arc generation procedure finds feasible 

ombinations of orders i and j. As an offshore installation might 

lace up to three different orders (resulting in three different 

odes), several symmetric solutions can occur. These solutions all 

esult in a PSV arriving and departing the installation at the same 

oint in time and hence, with the same operating cost associated 

ith the visit. To avoid these symmetries, the arc generation pro- 

edure ensures a fixed servicing sequence of orders belonging to 
rmed by PSV1 . Positive numbers (+) represent pickup quantities, negative numbers 
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 same installation. We have defined the following hierarchy for 

ervices: A mandatory delivery (MD) order is serviced before an 

ptional delivery (OD) order, which in turn is serviced before an 

ptional pickup (OP) order. Thus, the following servicing patterns 

an occur in cases of multiple orders being placed by a same in- 

tallation: MD → OD, MD → OP, OD → OP, or MD → OD → OP.

ote that delivery orders (if any) are always handled before pickup 

rders at an offshore installation, which makes sense with regard 

o satisfying vessel capacity constraints. 

Next, a set of feasible start times is determined for the arcs con- 

ecting two orders i and j. Initially, simple feasibility checks are 

erformed to limit these start times: If i is the first order to be per-

ormed by a PSV, the time it takes to sail directly from the supply 

epot to the corresponding installation at maximum speed con- 

titutes a lower bound on the earliest possible service start time. 

imilarly, an upper bound is defined by the minimum sailing du- 

ation from i back to the supply depot (at maximum sailing speed) 

uch that the vessel arrives at the supply depot before the end of 

he planning period. Furthermore, we disregard all start times that 

re in conflict with the closing of the installation of order i (due 

o weather conditions or opening hours). To incorporate speed de- 

isions, the arc generation procedure potentially generates multi- 

le arcs for each possible start time, each indicating a possible 

peed for going from i to j. The resulting possible starting times 

or servicing order j are found by considering any opening hours 

r weather restrictions (the installation must be open for service 

t the time) and the duration of the service. For the final sailing 

eg of a voyage where a vessel returns to the supply depot after 

erving the last order, only the most cost-efficient arc (usually cor- 

esponding to sailing at the lowest speed, see Fig. 1 ) that does not

iolate the maximum duration constraint for a voyage is generated. 

Note that both the sailing and servicing time being involved in 

n arc might be set to zero for some cases. For example, if both 

rders i and j are located at the same offshore installation, no sail- 

ng time is needed to approach order j. Also, if an arc ends at the

upply depot, no servicing takes place there and, thus, the service 

ime is zero. Furthermore, we require all PSVs to return to the sup- 

ly depot before its next voyage is planned to start, i.e., normally 

ither after 48 or 72 hours. 

Each feasible arc is associated with a cost that includes the cost 

f energy (fuel) consumption during sailing, idling and servicing 

taking into account the weather conditions at the actual time), 

s well as any potential chartering costs if the selected vessel is 

n additional spot vessel used to meet the total demand. The arc 

eneration procedure is repeated for all available PSVs, including 

he available spot vessel(s). However, some vessels might remain 

nused in an optimal solution. A zero-cost arc is therefore gen- 

rated for each vessel, connecting the origin and the destination 

ode representing the supply depot. 

As previously discussed, the generation of the time-space net- 

ork ensures that several problem-specific constraints are re- 

pected and hence, can be omitted from the formulation of the 

athematical model. Specifically, these constraints relates to the 

umber of visits to an installation and the opening hours of these, 

he maximum allowed duration of a voyage and the feasible sailing 

peeds for each leg on a voyage. 

.2. Mathematical formulation 

In the following, we present the mathematical notation needed 

o formulate the TDVRP-SO on the time-space network defined as 

escribed in Section 3.1 . A set V of PSVs is available for depar- 

ures on the forthcoming day (including both contracted and ad- 

itional spot market vessels), each with a given capacity Q v . The 

rders placed by the different offshore installations constitute the 

et N , which consists of three disjoint subsets N 

MD , N 

OD and N 

OP ,
896 
epresenting the mandatory and optional delivery orders as well 

s the optional pickup orders, respectively. The arcs generated, as 

escribed in Section 3.1 , are members of the arc pool A v for each

vailable vessel v ∈ V . The duration of the planning period is dis- 

retized into a set of time points T that need further refining into 

ubsets in order to present the arc-flow model: 

• T S 
i jv is the set of start times of all those arcs that connect orders 

i (or the origin node o) and j (or the destination node d) for 

vessel v , 
• T SS 

i jtv ⊆ T S 
i jv contains the start times of those arcs that start at 

order i and end at order j at time t , 
• T SE 

it jv holds the end times of those arcs that start at order i at 

time t and connect to order j (or the destination node d). 

In the following, we use Fig. 5 as an example to show the gen-

ration of these subsets of time periods. It shows for two orders i 

nd j the potential connections (arcs) at various times. The shaded 

orizontal bars represent periods in which servicing is prohibited 

t the installations, due to either restricted opening hours or rough 

eather conditions. In this example T S 
i jv = { 1 , 2 , 3 , 6 , 7 , 8 } as these

re points in time at which arcs from i to j have their start times. 

urthermore, T SS 
i j9 v = { 6 , 7 , 8 } is the set of start times that end at

ode j at time t = 9 . Finally, T SE 
i 2 jv = { 3 , 4 } are end times of arcs

hat originate at order i at time 2. In general, the different arcs 

epresent different speed options for sailing between the installa- 

ions where shorter arcs refer to higher chosen speed. 

Furthermore, we introduce the following parameters: Each or- 

er i is specified by its size S i , and optional orders i ∈ N 

OD ∪ N 

OP 

re also associated with a penalty cost C P 
i 

if being postponed. The 

rc cost, containing both fuel costs and a potential charter cost (an 

ourly rate for using spot vessels) is denoted C A 
it jt ′ v . Finally, time 

 

∗ is the starting point of all voyages, i.e., immediately after vessel 

reparation at the supply depot has ended on the first day of the 

lanning period. 

The binary decision variables x it jt ′ v are used to indicate whether 

r not arc 
(
(i, t) , ( j, t ′ ) 

)
is selected. Binary variable u i v takes value

 if order i is serviced by vessel v , 0 otherwise. Continuous vari- 

bles l D 
i v and l P 

i v are introduced to keep track of the onboard cargo 

uantities of delivery and pickup loads for vessel v after servicing 

n order i . 

We can now formulate the complete model for the TDVRP-SO. 

or a summary of the notation introduced and used in the mathe- 

atical model, see Appendix C . 

bjective Function 

in 

∑ 

v ∈V 

∑ 

( (i,t) , ( j,t ′ ) ) ∈A v 
C A it jt ′ v x it jt ′ v + 

∑ 

i ∈N OD ∪N OP 

C P i 

(
1 −

∑ 

v ∈V 
u i v 

)
(1) 

onstraints 
 

j∈N 

∑ 

t ′ ∈T SS 
jitv 

x jt ′ itv −
∑ 

j∈N 

∑ 

t ′ ∈T SE 
it jv 

x it jt ′ v = 0 , i ∈ N , t ∈ T , v ∈ V (2)

∑ 

j ∈N∪{ d } 

∑ 

t ′ ∈T SE 
ot jv 

x ot ∗ jt ′ v = 1 , v ∈ V (3) 

∑ 

 ∈N∪{ d} 

∑ 

t∈T S 
i jv 

∑ 

t ′ ∈T SE 
itdv 

x it dt ′ v = 1 , v ∈ V (4) 

 

v ∈V 
u i v = 1 , i ∈ N 

MD (5) 

 

v ∈V 
u i v ≤ 1 , i ∈ N 

OD ∪ N 

OP (6) 
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Fig. 5. An example for illustrating sets T S 
i jv , T 

SS 
i jtv , and T SE 

it jv . 
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i

a

h

d

l

c

a

c

∑ 

 ∈N∪{ o} 

∑ 

t∈T S 
i jv 

∑ 

t ′ ∈T SE 
it jv 

x it jt ′ v = u jv , j ∈ N , v ∈ V (7) 

 

D 
ov = 

∑ 

i ∈N MD ∪N OD 

S i u i v , v ∈ V (8) 

 

D 
i v + l P i v ≤ Q v u i v , i ∈ N , v ∈ V (9)

 

D 
jv ≤ l D i v − S j u jv + Q v 

(
1 −

∑ 

t∈T S 
i jv 

∑ 

t ′ ∈T SE 
it jv 

x it jt ′ v 

)
, 

i ∈ N , j ∈ N 

MD ∪ N 

OD , v ∈ V (10) 

 

D 
jv ≤ l D i v + Q v 

(
1 −

∑ 

t∈T S 
i jv 

∑ 

t ′ ∈T SE 
it jv 

x it jt ′ v 

)
, i ∈ N , j ∈ N 

OP , v ∈ V (11)

 

P 
jv ≥ l P i v + S j u jv − Q v 

(
1 −

∑ 

t∈T S 
i jv 

∑ 

t ′ ∈T SE 
it jv 

x it jt ′ v 

)
, i ∈ N , j ∈ N 

OP , v ∈ V

(12) 

 

P 
jv ≥ l P i v − Q v 

(
1 −

∑ 

t∈T S 
i jv 

∑ 

t ′ ∈T SE 
it jv 

x it jt ′ v 

)
, i ∈ N , j ∈ N 

MD ∪ N 

OD , v ∈ V

(13) 

 

P 
dv = 

∑ 

i ∈N OP 

S i u i v , v ∈ V (14) 

 it jt ′ v ∈ { 0 , 1 } , (
(i, t) , ( j, t ′ ) 

)
∈ A v , v ∈ V (15) 

 i v ∈ { 0 , 1 } , i ∈ N ∪ { o, d} , v ∈ V (16)

 

D 
i v ≥ 0 , i ∈ N ∪ { o, d} , v ∈ V (17)

 

P 
i v ≥ 0 , i ∈ N ∪ { o, d} , v ∈ V (18)

The objective function (1) minimizes the sum of monetary costs 

fuel and potentially chartering) for the selected arcs and penalty 

osts associated with the postponed orders. Constraints (2) pre- 

erve the vessel flow for all order nodes, while Constraints (3) and 

4) ensure that each vessel departs from and arrives at the supply 

epot exactly once. All mandatory orders are serviced due to Con- 

traints (5) . Optional orders (both pickup and delivery) might be 
897 
erviced according to Constraints (6) . Constraints (7) synchronize 

he number of visits to an order node and the number of services 

or the same order through ensuring that an order is serviced by 

ts assigned vessel. Load and capacity considerations are handled 

y Constraints (8) – (14) . The total cargo quantity loaded on board 

 vessel v must equal the sum of orders serviced by the same ves- 

el, see Constraints (8) . From (9) , the cargo capacity constraints 

or the vessels are respected at all points during a voyage. Con- 

traints (10) and (11) control the load continuity of delivery loads 

etween installations i and j for all vessels. Constraints (12) and 

13) do the same for pickup loads. Constraints (14) ensure that the 

otal cargo unloaded at the depot after a voyage equals the sum 

f all demands being picked up on the voyage. Constraints (15) –

18) specify the domains of the decision variables. 

. Adaptive large neighborhood search heuristic 

Preliminary studies of solving the TDVRP-SO model by the com- 

ercial mixed-integer programming solver Gurobi showed that 

nly small instances with up to 12 orders can be solved with good 

ccuracy within a limited runtime of one hour. Therefore, for being 

ble to solve full-scale problem instances based on real data in rea- 

onable time, we have developed an Adaptive Large Neighborhood 

earch (ALNS) heuristic. The first application of ALNS was pre- 

ented by Ropke & Pisinger (2006) , who use the heuristic to solve 

 pickup and delivery problem with time windows. Other relevant 

pplications include Cuesta et al. (2017) and Kisialiou et al. (2018b) , 

here ALNS is applied to solve other planning problems related 

ithin offshore logistics, which motivates our choice of employing 

his method here. The key concepts of the heuristic are presented 

n the next subsections. These include additional destroy and re- 

air heuristics dedicated to the TDVRP-SO, a local search heuristic 

or improving solutions, solving a speed optimization sub-problem, 

s well as an integration with a set partitioning model for recom- 

ining solutions. 

.1. Overview of the ALNS 

The ALNS procedure is presented in Algorithm 1 . The algorithm 

nitializes the current solution x by constructing a feasible solution 

s is later described in Section 4.2 . Successively, destroy and repair 

euristics (presented in Section 4.4 ) are used to generate a candi- 

ate solution x ′ from x . If the candidate solution is promising, a 

ocal search is performed, attempting to find improving solutions 

lose to the candidate solution, see Section 4.5 . Provided that x ′ is 

ccepted when applying a simulated annealing-based acceptance 

riterion that is described in Section 4.3 , the current solution x is 
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Algorithm 1: ALNS. 

Input : Total number of ALNS iterations ( I ALNS ) , number of 

segment iterations ( I S ), number of iterations after 

which the VCP is solved ( I VCP ) 

Output : Global best solution, x ∗

1 set current solution x by constructing a feasible solution 

2 set the global best solution, x ∗ ← x 

3 set the current segment, m ← 1 

4 for iteration = 1 to I ALNS do 

5 select a destroy heuristic and a repair heuristic using the 

adaptive weights w dm 

in the current segment m 

6 generate a candidate solution x ′ from the current solution 

x using the selected destroy and repair heuristics 

7 apply local search for improving candidate solution x ′ if 

possible 

8 if x ′ is accepted by the simulated annealing criterion then 

9 x ← x ′ 
10 end 

11 if I VCP iterations have passed since the VCP was solved 

then 

12 solve VCP and generate a new candidate solution x ′′ 
13 if x ′′ is accepted by the simulated annealing criterion 

then 

14 x ← x ′′ 
15 end 

16 end 

17 if f (x ) < f (x ∗) then 

18 x ∗ ← x 

19 end 

20 update scores πd of the destroy and repair heuristics 

21 if I S iterations have passed since last weight update then 

22 update weight w d,m +1 for method d to be used in 

segment m + 1 based on the scores πd obtained for 

each method in segment m . 

23 calculate new selection probabilities P (d, m + 1) for 

the weights 

24 update the simulated annealing temperature, T . 

25 update current segment, m ← m + 1 

26 end 

27 end 
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et to be x ′ . Moreover, a set partitioning model termed the Voyage 

ombination Problem (VCP) is presented in Section 4.6 , which is 

olved every I VCP iterations to use a pool of voyages for generating 

 new candidate solution x ′′ . This solution is also tested for ac- 

eptance by the simulated annealing-based criterion. If the current 

olution x is better than the so-far best found solution x ∗, x ∗ is up-

ated to this new best solution. Furthermore, the total number of 

LNS iterations is divided into segments of I S iterations. Each time 

 

S iterations have been completed, the weights of the destroy and 

epair heuristics as well as the cooling temperature used in the 

imulated annealing-based acceptance criterion are updated. The 

LNS terminates after a maximum of I ALNS iterations, returning the 

est solution found. 

.2. Constructing a feasible initial solution 

Constructing an initial solution starts with all orders being un- 

cheduled, which is expressed by a set U = N . Orders are then in-

erted sequentially in initially empty voyages until all orders are 

ither assigned to a voyage or placed in a set P of orders post- 

oned for a later service. The order insertion is performed using a 
898 
reedy insertion heuristic, which evaluates the marginal increase of 

he objective function due to additional sailing and servicing time 

nd hence, additional fuel consumption, which is induced by the 

nsertion of an order i into the considered voyage. This evaluation 

s performed for the set of all feasible insertion positions , including 

he insertion into the set P of postponed orders (and hence, in- 

ucing the penalty cost associated with the order). The least costly 

nsertion is then selected, and the procedure is repeated for all re- 

aining orders in the set of unscheduled orders U . 

For each possible insertion of orders into a partial solution, a 

easibility check needs to be performed. First, the total duration 

f a voyage after inserting a new order is not allowed to exceed 

he maximum route duration. This feasibility check requires only 

ne possible sailing speed option for the voyage to remain feasi- 

le. Thus, the maximum possible speed (adjusted for any limita- 

ions due to weather conditions or opening hours) is applied to all 

ailing legs in order to check if the newly inserted order can be 

erviced without violating the maximum duration. Next, the voy- 

ge must be feasible with respect to vessel capacity after inserting 

he order. Inserting a delivery order into a voyage increases the 

nitial onboard load of the PSV, whereas insertion of a pickup or- 

er increases the onboard load for the return leg back to the sup- 

ly depot. Eventually, the insertion of an order must comply to the 

ervicing sequence hierarchy at each installation. This means that 

nserting an optional pickup or delivery order can never take place 

ithout first inserting the mandatory delivery to the same instal- 

ation in cases where such order exists. 

Furthermore, each modification of a voyage results in a new 

cheduling sub-problem that aims to find the most cost-efficient 

ailing speeds along the voyage. This needs to be solved for ev- 

ry insertion of orders during the construction heuristic as well 

s for each iteration of the ALNS after selecting a pair of repair 

nd destroy heuristics in order to compute the cost of a solution. 

his so-called Supply Vessel Speed Optimization Problem (SVSOP) is 

olved by discretizing arrival times to form a time-space node net- 

ork, with feasible arcs connecting the nodes in a Directed Acyclic 

raph . We refer the interested reader to Fagerholt et al. (2010) for a

etailed description of this graph based modeling approach. Find- 

ng the least costly path through the network resembles a shortest 

ath problem, which we solve simply by applying Dijkstra’s algo- 

ithm. It is important to note that the SVSOP needs to be solved for 

ach voyage in each cost evaluation step during the ALNS heuristic 

nd, hence, an efficient solution method for the speed-optimizing 

ubproblem is an important factor affecting the overall ALNS per- 

ormance. 

.3. Large neighborhood search 

In each iteration of the ALNS heuristic, the current solution is 

artially modified and then reconstructed using one pair of de- 

troy and repair heuristics from the set of available heuristics. This 

ection presents the heuristics implemented in our ALNS heuristic, 

ncluding a set of additional problem-specific heuristics added to 

xploit the structure of the TDVRP-SO. 

Destroy heuristics: We introduce in total six destroy heuristics, 

he first four (random removal, related removal, worst removal, 

luster removal) are inspired by Shaw (1998) , Ropke & Pisinger 

2006) , and Pisinger & Ropke (2007) . The latter two heuristics, 

amed spread removal and spot vessel removal, are problem- 

pecific. 

Random removal : Specifying an upper limit of q ALNS orders, this 

estroy heuristic removes orders randomly from both the existing 

oyages and the set of postponed orders obtained in the previous 

olution. In other words, this heuristic extends the set of unsched- 

led orders until a limit |U| = q ALNS is reached. 
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Related removal : First proposed by Shaw (1998) , the idea of this 

euristic is to remove q ALNS related orders from the solution. After 

electing one order randomly, remaining orders i / ∈ U are sorted ac- 

ording to their relatedness to the selected order. Here, we define 

elatedness as the great-circle distance between the orders (instal- 

ations). We then remove from this list the order at position R . This

osition is computed by 

 = y P × |{ RemainingOrders / ∈ U}| , 
here y is a continuous value drawn from the interval [0,1] and 

 > 1 is a parameter determining the degree of randomness in the 

election. Here, larger values for P mean less randomness such that 

 tends to the first members of the sorted list (i.e., the orders most 

elated to the already selected order) whereas values of P close to 

 lead to a more uniform selection probability for the orders in the 

ist. Furthermore, recall the servicing hierarchy defined for instal- 

ations with multiple orders, from which removing a mandatory 

elivery order of an installation means that any optional orders to 

he same installation automatically must be removed too if such 

rders have been scheduled to the particular voyage already. This 

urther reduces the size of remaining orders in the sorted list of 

elated orders. 

Worst removal : This heuristic aims at finding the single order 

ontributing most to the objective function value. For an order as- 

igned to a voyage, this cost increase is found by solving the SVSOP 

s described in Section 4.2 and comparing the voyage cost with 

nd without the specific order being included. For a postponed or- 

er in set P , the cost increase is set to the penalty cost C P 
i 

. 

Cluster removal : Similar to the related removal , the cluster re- 

oval searches for orders related to each other due to their ge- 

graphical proximity. However, this heuristic removes entire clus- 

ers rather than selecting isolated orders from the relatedness list. 

isinger & Ropke (2007) propose cluster removal to reduce the 

robability of removing orders here and there at some voyages that 

ould then be likely re-inserted into the exact same positions of 

hese voyages. Removing whole clusters of orders reduces this risk. 

n this regard, many of the offshore installations in the North Sea 

an be considered as clusters, as they often are located less than 

0 km apart from each other. This makes cluster removal suited 

or the TDVRP-SO. Clustering is performed for the orders on one of 

he scheduled voyages using a k-means algorithm with k = 2 . Thus, 

wo orders are selected randomly as centroids, and the remaining 

rders are split into two clusters based on their closeness to these 

entroids. Afterwards, the location of two new centroids (the geo- 

raphical center among the clustered orders) are calculated, and 

rders are reclustered based on these new centroids. This pro- 

ess is repeated until the location of the two centroids remain 

nchanged in an iteration. One of the clusters is then selected 

andomly and removed from the solution. If less than q ALNS or- 

ers have been removed, the cluster removal heuristic is repeated 

or another voyage. If there are no more voyages to evaluate, the 

euristic terminates even if less than q ALNS orders have been re- 

oved. 

Spread removal : Some offshore installations can be far away 

rom each other. Servicing their orders on a same voyage will lead 

o rather long sailing times and high fuel costs. Hence, a reasonable 

ay to finding more efficient voyages can be to avoid these com- 

inations of orders in a solution. The spread removal sequentially 

emoves those orders that are associated with installations being 

arthest away from the others (i.e., with the longest minimum dis- 

ance to the nearest neighbor installation) until q ALNS orders are re- 

oved. Fig. 6 illustrates the heuristic, where orders (installations) 

 and 5 are removed sequentially from the scheduled voyage as 

hey are located farthest away from their nearest neighboring or- 

ers. 
899 
Spot Vessel Removal : This is a simple, problem-specific destroy 

euristic that removes all orders serviced by a spot vessel in the 

olution. If there are multiple spot vessels used in a solution, the 

essel is chosen randomly. Clearly, this heuristic is only applied if 

he current solution actually uses spot vessels. 

Repair heuristics : After destroying parts of a solution, the 

hole set of the unscheduled orders U is subject to a repair pro- 

ess, which attempts to reinsert these orders into the scheduled 

oyages or, otherwise, postpone them by adding them to set P . We 

se here four repair heuristics, where the first two are inspired by 

opke & Pisinger (2006) and the other two are designed specificly 

or the TDVRP-SO. 

Basic greedy insertion: For each order, the cost of inserting it at 

ach possible feasible insertion points is evaluated. This is done 

y solving subproblem SVSOP-subproblem for each such insertion 

ption. If an order is postponed due to a lack of feasible insertion 

ptions, it gets assigned the penalty cost again. The order to insert 

s then found based on the least-cost contribution to the objective 

unction. More formally, if the feasible insertion points of order i 

re denoted by s ∈ S i (i.e., the positions along a voyage or in the

et of postponed orders where the order can be inserted), the basic 

reedy selects the order to insert through formula 

rgmin 

i ∈U , s ∈S i 
�Cost (i (s )) . 

However, if the best order to insert is optional and associated 

ith an installation where a mandatory order is yet to be placed, 

he heuristic instead selects the next best order to insert. This is 

one to avoid postponing optional orders that might be serviced 

fter servicing the mandatory order to the same installation yet to 

e inserted. 

Regret insertion : Regret- k insertion compares the k best inser- 

ions of an order as the sum of cost differences between the best 

nsertion point for the order and the k − 1 next best insertion po- 

itions. As for the basic greedy insertion, the SVSOP-subproblem 

ust be solved for each evaluation of additional costs induced by 

n insertion. If the order with the largest regret- k value is an op- 

ional order, the next best order to insert is selected, and the pro- 

ess continues until the set of unscheduled orders U is emptied. 

ith i (s 1 ) denoting the best insertion, and i (s k ′ ) the k ′ -th best

nsertion for order i , the next order to select is found from the 

egret- k insertion heuristic as 

rgmin 

i ∈U 

k ∑ 

k ′ =2 

(
�Cost (i (s 1 )) − �Cost (i (s k ′ )) 

)
. 

Maximum penalty cost insertion : This heuristic aims to prevent 

ostponing orders i associated with high penalty costs C P 
i 

. For this, 

wo lists are created from the set of unscheduled orders: The 

andatory orders are first assigned to the voyages, before a list 

f optional orders sorted by descending penalty costs is created. 

nsertion of orders is done in a greedy manner, as described for 

he basic greedy insertion , where orders are inserted at their cheap- 

st feasible insertion point. As opposed to the basic greedy inser- 

ion, this heuristic does not select the best feasible insertion point 

mong all unscheduled orders as the next order to evaluate is al- 

eady given from the sorted list. 

Maximum order size insertion : Insertion of orders takes place in 

 similar manner as by the maximum penalty cost insertion . In this 

euristic, however, the orders are inserted into two sorted lists, 

ne for mandatory orders and one for optional orders, based on 

he size of the orders. Mandatory orders are evaluated then before 

he optional orders, and all orders are inserted in a greedy manner 

ased on the best possible insertion point along a voyage. 

Applying noise in the insertion methods : Ropke & Pisinger 

2006) find the proposed insertion heuristics to be quite myopic, 
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Fig. 6. Two iterations of the spread removal heuristic, removing the order on a voyage placed at an installation with the longest minimum distance to the nearest neighboring 

installation, indicated by the thicker, dashed arrows (disregarding sailing from and to the supply depot, S ). In the next iteration, order 4 would have been removed from the 

voyage. 
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lways searching for local improvements of solutions. To avoid get- 

ing stuck in local optima, a ’noise term’ can be used to force 

he heuristics to also explore moves that are not the most ef- 

ective ones according to the selected repair operator. For each 

dditional cost, C, induced by an insertion of an order (due to 

onger servicing and sailing times and hence, a larger fuel con- 

umption), a noise value is sampled randomly from the interval 

 −max N, max N] . We define max N = η × max { d i j } , i.e., as a certain

ortion of the maximum distance between two offshore installa- 

ions ( η is a tunable parameter). We then proceed with the mod- 

fied cost C ′ = max { 0 , C + noise } when evaluating the performance

f a given insertion heuristic. 

Acceptance and stopping criteria : We use a simulated 

nnealing-based approach similar to what Ropke & Pisinger 

2006) present for accepting candidate solutions even in the case 

here the objective function value of the candidate solution f (x ′ ) 
s worse than the currently best known solution’s objective func- 

ion value f (x ) . This happens with a probability of e −( f (x ′ ) − f (x )) /T , 

here T > 0 is referred to as the temperature . T is decreased from

n initial value T start by scaling the current temperature by a fixed 

ooling rate ξ ∈ [0 , 1] every I S iteration. In other words, the prob-

bility of accepting a non-improving candidate solution is largest 

uring the early phases of the search, allowing for more explo- 

ation of the solution space. 

.4. Adaptive selection of destroy and repair heuristics 

The selection of a pair of destroy and repair heuristics is con- 

rolled by a roulette wheel selection where weights associated 

ith each heuristic are adjusted based on their success rate in 

revious iterations. All weights are assigned an identical non-zero 

alue at the start of the ALNS algorithm. The adaptivity in the ALNS 

euristic then relates to the repeated update of these weights, 

aking the selection of effective heuristics more frequent. For this, 

he search process is divided into segments m , each containing I S 

terations. The weights are updated at the start of a new segment, 

nd for each heuristic d the weights are adjusted according to the 

elationship 

 d,m 

= (1 − r) w d,m −1 + r 
πd 

θd 

, 

here the new value is a weighted average of the previous weight 

 d,m −1 and a reaction term consisting of the tunable reaction pa- 

ameter r, the heuristic score πd , and the number of times θd that 

he heuristic d has been selected in segment m − 1 . The score πd 

s reset to zero at the start of each new segment and might then

ncrease throughout the iterations of the current segment by so- 

alled rewards in three different ways. These rewards are given 1.) 

f a candidate solution results in global improvement (giving re- 

ard σ1 ), 2.) if a candidate solution is better than the current so- 

ution and has not been accepted before (reward σ2 ), or 3.) if a 

andidate solution has not been accepted before and is worse than 
900 
he current solution, but is still accepted by the simulated anneal- 

ng process (reward σ3 ). The heuristic score is aggregated through- 

ut the segment based on the sum of obtained rewards. Finally, by 

ntroducing I as the set of all destroy and repair heuristics, we set 

he probability for choosing heuristic d ∈ I in the roulette wheel 

election process of a segment m as 

 (d, m ) = 

w dm ∑ 

ˆ d ∈ I w ˆ d m 

. 

.5. Extending the ALNS with a local search 

In addition to the regular destroy-and-repair procedure re- 

eated in each iteration of the ALNS, we want to further investi- 

ate the neighboring solution space to the current solution at reg- 

lar intervals. Thus, we introduce a local search (LS) with specific 

ocal search operators (LSOs) that perform small alterations of the 

urrent solution in a given ALNS iteration. Feasibility must still be 

btained for all conducted changes, which we ensure by perform- 

ng the feasibility checks described in Section 4.2 . 

Local Search Operators : We propose the following LSOs, which 

re inspired by the work of Gendreau, Hertz, & Laporte (1992) and 

orsvik, Fagerholt, & Laporte (2011) : 

Relocation operators : Relocating of a single order can take place 

ither within a voyage (defined as intra -voyage relocate) or be- 

ween two different voyages ( inter -voyage relocate). Sequential re- 

ocation of several orders can be done within the same iteration 

ut only in case that the installation associated with the selected 

rder has placed several orders that all have been scheduled on 

he current voyage. This way, feasibility with regards to the limit 

f at most one visit to each installation is ensured. 

Exchange operators : This operator exchanges the positions of or- 

ers that might either be currently scheduled in the same voyage 

 intra -voyage exchange) or in two different voyages ( inter -voyage 

xchange). Note, if an installation has placed several orders, all or- 

ers must be exchanged in the same move to ensure feasibility. 

his is achieved by a so-called voyage exchange operator that sim- 

ly swaps the voyages sailed by the two involved vessels among 

ach other. 

Postponement operators : Finally, we have two simple local 

earch operators that either insert so-far postponed orders into a 

oyage, or postpone currently scheduled orders by performing the 

pposite move. 

Search strategy for the local search : The local search sup- 

orts the ALNS heuristic in producing high-quality solutions. As 

he search strategy for the local search can be quite tideous, a se- 

uence of LSOs is performed only when the ALNS has produced 

romising solutions, defined as solutions with less than β% higher 

bjective function value than the current best solution. Each time 

he local search is performed, the search strategy follows a se- 

uential procedure: First, one local search operator (LSO) is ap- 

lied at the time. For each LSO, all possible moves for all orders 

re found and evaluated based on the same (initial) candidate so- 
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ution. Second, the most improved solution produced by the first 

perator is then passed on as input for the next search opera- 

or and this process is repeated until all operators have been ap- 

lied. Third, if no moves leads to improvement for a LSO, the eval- 

ated candidate solution is used as input also for the next LSO. 

inally, when the search from the last LSO is completed, the out- 

ut solution is returned for use in the following iterations of the 

LNS. 

.6. Extending the ALNS with a set partitioning model 

A full solution created by the ALNS heuristic for a moderately 

arge test instance will usually involve the use of several vessels 

i.e., with several voyages created). As a result, a relatively poor 

olution might contain scheduled voyages for some of the ves- 

els that are more cost-effective than the overall objective func- 

ion value for the full solution suggests. Inspired by Homsi, Mar- 

inelli, Vidal, & Fagerholt (2020) , we introduce a set partitioning 

odel where voyages generated in ALNS solutions can be recom- 

ined into new and perhaps more cost-effective solutions within 

hort solution time. The problem is solved at every I VCP iterations 

f the ALNS heuristic. We name this extension of the ALNS the 

oyage Combination Problem (VCP). For the VCP we introduce the 

ollowing additional notation: We define the set K for all offshore 

nstallations containing two optional orders (i.e., both OD and OP) 

ut no mandatory orders. Furthermore, R v and 

˜ R k v ⊆ R v are the 

et of available voyages for vessel v , and the subset of voyages for 

essel v visiting installation k while only servicing one of the two 

ptional orders, respectively. Two new parameters are C rv as the 

ost of performing voyage r for vessel v and the binary parame- 

er A irv equal to one if order i is serviced on voyage r by vessel

 . The new binary decision variables are defined as y rv indicating 

hether a voyage r is sailed by vessel v or not, and z i equal to one

f optional order i is not serviced by any vessel sailing any voyage, 

ero otherwise. 

The VCP can then be formulated as follows: 

in 

∑ 

v ∈V 

∑ 

r∈R v 

C rv y rv + 

∑ 

i ∈N 
C P i z i (19) 

∑ 

∈R v 

y rv ≤ 1 , v ∈ V (20) 

 

v ∈V 

∑ 

r∈ ̃  R k v 

y rv ≤ 1 , k ∈ K (21) 

 

v ∈V 

∑ 

r∈R v 

A irv y rv + z i = 1 , i ∈ N (22) 

 i = 0 , i ∈ N 

MD (23) 

 rv ∈ { 0 , 1 } , r ∈ R v , v ∈ V (24) 

 i ∈ { 0 , 1 } , i ∈ N (25) 

As for the mathematical formulation of the TDVRP-SO, the ob- 

ective function in (19) minimizes the monetary costs of voyage 

osts and penalty costs for postponing optional orders. Constraints 

20) sets the upper limit on voyages assigned to each vessel, and 

onstraints (21) ensure that at most one visit to installation k ∈ K
s performed. Without these constraints, two voyages both visiting 

he same installation and servicing different optional orders might 

ake place, violating the requirement of a maximum of one visit to 

n installation. From Constraints (22) , all orders must be serviced 

n at most one voyage (or be postponed), while all mandatory or- 

ers must be serviced in accordance with Constraints (23) . The bi- 

ary domains for the decision variables are specified in (24) and 

25) . 
901 
. Computational experiments: A case from the North Sea 

This section presents the results obtained from computational 

tudies on the TDVRP-SO. We start by giving details on the im- 

lementation of our heuristic and the generation of test instances, 

hich are based on real offshore logistics operations in the North 

ea, see Section 5.1 . This is followed by an analysis of ALNS exten- 

ions and its competitiveness to a commercial solver ( Sections 5.2 

nd 5.3 ), as well as the value of speed optimization and of consid- 

ring weather forecasts ( Sections 5.4 and 5.5 ), providing valuable 

anagerial insights. 

.1. Test instances and implementation details 

Our experiments consider Norway’s offshore production of oil 

nd gas in the North Sea. For generating test instances, we con- 

ider the offshore logistics network related to the Mongstad supply 

ase, situated at the west coast of Norway. Mongstad is one of the 

argest harbors related to oil-and-gas activities in Europe in terms 

f cargo throughput, and 27 offshore installations are being ser- 

iced by PSVs from this supply base. For each installation, an iden- 

ification code, the geographical location in terms of latitude and 

ongitude, opening hours and a standard order size used to generate 

arious test instances, are given in Table 2 . The locations refer to 

eographical coordinates, opening hours are indicated by the hours 

ach installation can be serviced by the PSVs, and standard order 

ize is the size of a typical order from the installation. Although 

rders for deck cargo can vary greatly both in shape and dimen- 

ion, the size of an order is normally expressed at an aggregated 

evel. Demands are specified using square meters of required deck 

rea as unit, but for simplicity, these demands have been converted 

o a corresponding number of offshore containers in Table 2 and in 

he model implementation. This conversion eases the estimation of 

he required service time needed, which is estimated based on the 

umber of containers to be loaded/unloaded, while maintaining a 

ufficient level of detail in planning the cargo distribution. 

The standard order size applies to all three types of orders con- 

idered for an installation, namely MD, OD and OP. The relative 

rder sizes between the installations are estimates based on the 

ctivity level of these installations (a function of both production 

olumes and number of employees), where we have set the largest 

rder size for mandatory deliveries equal to 20% of the deck ca- 

acity on the contracted fleet vessels. We consider a fleet of five 

ontracted PSVs with cargo capacities of 125–131 cargo units (con- 

ainers) and specific fuel consumption rates ranging from 540 to 

08 kg/hour. The computational study also involves the possibil- 

ty of chartering a spot vessel, with a similar cargo capacity and 

 slightly higher fuel consumption due to higher age. 

Test instances are generated in the following way: First, we 

ample from the set of 27 installations a subset of installations 

 

orders that have placed orders in the particular test instance. The 

umber of orders of each type, i.e., MD, OD or OP, is uniformly 

ampled from intervals representing 50–70%, 20–40% and 20–40% 

f I orders , respectively. Thus, more orders than installations can be 

ampled, and the orders are distributed randomly to the sampled 

ubset of installations. Furthermore, the size of each order is deter- 

ined from a uniform distribution spanning 50–150% of the stan- 

ard order sizes given in Table 2 for each installation and order 

ype. Finally, the generation process includes the allocation of a 

ufficient number of available vessels to each test instance (includ- 

ng the spot vessel), large enough to cover the total order size. We 

enerate a total of 60 test instances divided into 12 instance groups 

ased on the number of installations I orders as sampled by the in- 

tance generation procedure. We denote the test instances based 

n the number of offshore installations (I), number of orders (O), 

nd number of vessels (V). To distinguish the five instances that 



K.P. Ulsrud, A.H. Vandvik, A.B. Ormevik et al. European Journal of Operational Research 303 (2022) 891–907 

Table 2 

Data associated with the installations in the Mongstad case. Standard order sizes are given for MD, OD and OP orders, respectively. 

# Code Latitude/ Longitude Opening hours Standard order sizes # Code Latitude/ Longitude Opening hours Standard order sizes 

1 TRO 60.64/3.72 07–19 27-14-28 15 KVB 61.07/2.50 00–24 27-14-28 

2 TRB 60.77/3.50 07–19 20-10-21 16 VMO 61.04/2.34 00–24 20-10-21 

3 TRC 60.88/3.60 07–19 14-7-14 17 WEL 61.04/2.34 00–24 22-11-23 

4 CPR 60.74/3.61 00–24 22-11-23 18 VFB 60.78/2.89 00–24 27-14-28 

5 SEN 60.95/3.58 00–24 23-12-24 19 WEP 60.85/2.65 00–24 22-11-23 

6 SDO 60.85/3.62 00–24 18-9-19 20 HUL 60.85/2.65 00–24 20-10-21 

7 SEQ 60.89/3.67 00–24 23-12-24 21 STA 61.25/1.85 07–19 20-10-21 

8 OSE 60.48/2.82 00–24 27-14-28 22 STB 61.20/1.82 00–24 20-10-21 

9 OSB 60.48/2.82 00–24 14-7-14 23 STC 61.29/1.90 00–24 27-14-28 

10 OSC 60.60/2.77 00–24 14-7-14 24 GFA 61.17/2.18 00–24 20-10-21 

11 OSO 60.70/2.93 00–24 20-10-21 25 GFB 61.20/2.20 00–24 20-10-21 

12 SSC 60.70/2.93 00–24 17-9-18 26 GFC 61.20/2.27 00–24 27-14-28 

13 OSS 60.38/2.79 00–24 20-10-21 27 SOD 60.90/3.81 00–24 22-11-23 

14 DSD 60.08/2.63 00–24 15-8-16 

Table 3 

Test instances used for the computational study, grouped by the number of installations in each instance. There are five test instances within each group. The number of 

orders might vary, as shown, but the number of available fleet vessels remains equal. Chartering the spot vessel is also possible for all instances in all instance groups. 

Installations Orders MD OD OP Fleet vessels Notation 

5 5–7 3 1–2 1–2 1 5-(5–7)-1-X 

7 8–9 4–5 2 2 1 7-(8–9)-1-X 

9 9–11 5–6 2–3 2–3 1 9-(9–11)-1-X 

11 12–15 6–7 3–4 3–4 2 11-(12–15)-2-X 

13 14–18 7–9 3–5 3–5 2 13-(14–18)-2-X 

15 15–21 8–10 3–6 3–6 2 15-(15–21)-2-X 

17 18–23 9–11 4–6 4–6 3 17-(18–23)-3-X 

19 19–25 10–13 4–7 4–7 3 19-(19–25)-3-X 

21 23–28 11–14 5–8 5–8 3 21-(23–28)-3-X 

23 24–31 12–16 5–9 5–9 4 23-(24-21)-4-X 

25 26–33 13–17 5–10 5–10 4 25-(26–33)-4-X 

27 28–37 14–18 6–10 6–10 5 27-(28–37)-5-X 

Table 4 

Four weather states (WS) based on significant wave heights (SWH) and the impact 

on the PSVs in terms of enforced reduction of speed ( �v ), as well as relative in- 

creases of service times ( �T SERV ) and fuel consumption ( � f S,I ) for both servicing 

and idling. 

WS SWH (m) �v �T SERV � f S,I 

0 ≤ 2 . 5 0 0 0 

1 (2 . 5 , 3 . 5] 0 20% 20% 

2 (3 . 5 , 4 . 5] -2 knots 30% 30% 

3 > 4 . 5 -3 knots Forced idling 100% 
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elong to a group, we append a fourth index X. Thus, we present 

he test instances as I-O-V-X. Table 3 displays the characteristics 

f the different instance groups, and how the number of orders of 

ifferent types might vary for instances involving the same num- 

er of installations. All instances in the same instance group have 

he same number of vessels available for operation. 

A key question of the further data generation is how to cap- 

ure the impact of various weather conditions on vessel speed, fuel 

onsumption, and service times of the PSVs. We use here the ap- 

roach proposed by Halvorsen-Weare & Fagerholt (2011) , who de- 

ned four discretized weather states (wave height intervals). Key 

nformation of these weather states is provided in Table 4 . We see 

hat rough weather states WS 2 and WS 3 enforce that vessels have 

o reduce their speed by 2 and 3 knots, respectively. Furthermore, 

ervice times are increased by 20% to 30% in WS 1 and 2, whereas

ervice operations cannot take place under WS 3 at all. The rela- 

ive increase in fuel consumption from more harsh weather is also 

iven from the table. Furthermore, fuel consumption at a given 

peed in a given weather condition is computed using the cu- 

ic fuel-speed relationship presented by Norlund & Gribkovskaia 

2017) . From this, if the wave conditions lead to a speed offset of 

 knots, the specific fuel consumption (in kg/hour) for sailing e.g., 

n 12 knots is assumed to be equal to the consumption for sailing 

n 14 knots in fair weather. 
902 
We construct from these weather states three weather scenarios 

pecifying how weather changes throughout the planning period, 

ee Fig. 7 . The Fair weather scenario involves small wave heights 

WS 0) throughout the entire planning period, such that vessels 

re not affected by weather at any time. In the Mixed weather sce- 

ario, the wave heights are steadily increasing during the first half 

f the planning horizon before they decrease in the second half. 

he period of roughest weather (WS 3) lasts for approximately 

 hours. The Rough weather scenario is characterized by moder- 

te wave heights (WS 1) in the beginning, which then drastically 

orsens in the next days such that, finally, weather state WS 3 

s reached, where installations cannot be serviced any more. Since 

he geographical operating area is not very large, we assume for all 

cenarios that weather is spatially static, meaning that all parts of 

he geographical region experience the same weather conditions at 

he same time. 

Furthermore, a set of vessel-specific parameters is required as 

nput to the TDVRP-SO. The speed interval (low-high) in which the 

uel consumption relationship proposed by Norlund & Gribkovskaia 

2017) is valid, is set to 10–14 knots. Based on current values at the 

ime the computational studies were conducted, fuel costs are set 

o 276 USD/ton, and the spot vessel might be chartered for 608 

SD/hour. Servicing time at an installation is determined by the 

argo handling rate (lifting of container units), which we set to 10 

inutes per unit. We apply these values identically for all vessels. 

Lastly, the penalty cost associated with postponing optional or- 

ers must be given. Here, a trade-off must be obtained between 

 frequent use of spot vessels on one hand, and congestion of or- 

ers to service at later voyages on the other. Therefore, we set the 

enalty cost of an optional order as the sum of servicing costs and 

ailing from the supply base to the installation and back (at the de- 

ign speed of the PSV), i.e., the fuel cost associated to a voyage that 

xclusively services this particular order. Setting the penalty cost 

or postponing an optional order this way satisfies two criteria: 1) 
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Fig. 7. Visualization of the applied weather scenarios, detailing which weather states are experienced at what times during the planning horizon. 
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n optional order should be serviced by a PSV on a voyage given 

hat capacity and voyage duration constraints can be respected. 2) 

 spot vessel should never be chartered solely to service an op- 

ional order. 

With regard to implementation, the ALNS heuristic, with its lo- 

al search and solving of the Supply Vessel Speed Optimization 

sub-)Problem (SVSOP), is implemented in Java 11.0.2. The time- 

pace network generation is implemented in Python 3.8.5. The 

athematical formulation from Section 3 and the voyage combi- 

ation problem in Section 4.6 are implemented in Gurobi 9.1.1. We 

erform all tests on a Lenovo ThinkSystem SD530 computer run- 

ing on Linux CentOS 7, with two 3.6 GHz Intel Xeon Gold 6244 

rocessors with 8 cores and 384GB RAM. The maximum solution 

ime for the ALNS heuristic is set to 600 seconds per instance, 

s this is considered to be the maximum solution for this prob- 

em in practice. Gurobi is allowed to run for 3600 seconds (one 

our) when solving the mathematical model in order to increase 

he number of obtained solutions for benchmarking. As the ALNS 

euristic involves randomized components, we solve each test in- 

tance five times and report the average objective values and so- 

ution times when discussing the ALNS performance. We identify 

he SVSOP-subproblem of Section 4.2 as being computationally ex- 

ensive, which is why we utilize parallel computations to increase 

he efficiency of the heuristic. This is done by evaluating pairs of 

estroy and repair heuristics in parallel. By storing all solutions of 

he subproblem in a cache, we ensure that each specific subprob- 

em (with given vessels and voyages) is solved only once. A de- 

ailed discussion of the tuning of all parameters that are involved 

n the ALNS is provided in Appendix A . 

.2. Assessment of the ALNS extensions 

To compare the basic ALNS heuristic with the extended variants 

ncluding either the local search described in Section 4.5 , or the 

oyage Combination Problem (VCP) (i.e., the set partitioning model 

resented in Section 4.6 ), or both, we experiment with four differ- 

nt configurations of the ALNS for all test instance groups. Three 

erformance measures are reported, namely the coefficient of vari- 

tion (which is a measure of the consistency in the solution quality 

rovided), the solution time per instance, and a gap indicating the 

uality of the obtained solutions. We define this gap as the relative 

ifference between the objective value achieved by a considered 

LNS configuration compared to the best objective value obtained 

y any configuration. We report this gap as an average over the 

ve runs per instance and the five instances per group. 

The comparison of the ALNS configurations is summarized in 

able 5 . We observe that all extension configurations on average 

educe both the gap and the coefficient of variation compared to 

he basic ALNS heuristic. The increase in solution time is deemed 

cceptable, as all instances are solved within the specified time 

imit of 600 seconds. 
903 
The impact of introducing each of the two extensions in isola- 

ion is evaluated by considering the results of configurations ’ALNS 

 LS’ and ’ALNS + VCP’ in Table 5 . When the local search is in-

luded in the ALNS heuristic, we find that more than 90% of the 

pdates of the current best solution are found by the local search, 

ith voyage exchange as the best performing operator. Also the 

ntra-voyage relocate and exchange operators contribute to finding 

etter solutions. Furthermore, we observe that the best solution to 

n instance is found through the local search in 70%, through the 

estroy and repair heuristics in 25%, and through the construction 

euristic in 5% of the instances. 

The set partitioning extension to the ALNS heuristic (i.e., the 

CP) is also found effective in providing solutions of good qual- 

ty in relatively short time. The VCP is solved at predefined in- 

ervals during the search, controlling the number of iterations be- 

ween each run of the VCP. Test instance groups 5–11 are solved 

o best quality within 200 iterations of the pure ALNS, and, thus, 

he VCP does not contribute to finding new and better solutions 

or these instances. However, the VCP provides 18% of the best so- 

ution updates during the full search for the larger instances from 

roups 13–27, which indicates that this approach is well suited for 

he ALNS when solving larger problem instances. 

Furthermore, we observe that the full extension (ALNS + LS 

 VCP) provides the best and most consistent solutions for all 

est instances with up to 19 installations. For the larger instances, 

aps are at most 0.31% and consistently below the gap of any 

ther ALNS-configuration, which shows that applying both exten- 

ion leads to the best solution quality on average. The increase of 

olution times by approximately 15% for the full extension com- 

ared to the configuration including only local search is considered 

cceptable. In the remainder of this paper, we thus refer to the 

ully extended configuration ’ALNS + LS + VCP’ as the ALNS heuris- 

ic, and all further computational results presented in this paper 

re obtained using this ALNS-configuration. 

.3. Comparing the ALNS heuristic with a commercial solver 

We now compare the ALNS to the solutions provided by the 

olver Gurobi 9.1.1 based on several performance indicators. For 

ach instance group, we report the average objective value ( Obj. ) 

alue across the five instances within an instance group. Note that 

his might refer to the optimal solution, if found for an instance 

ithin the runtime limit of 3600 seconds, or, otherwise, to the 

est integer feasible solution found up to that time. We also report 

he average lower bound ( LB ) provided by Gurobi for each test in- 

tance group and the average runtime measured in seconds. For 

he ALNS heuristic, we also observe the objective function value, 

ext to the coefficient of variation of these values for the five so- 

ution runs per instance, and the solution time. Furthermore, we 

eport a gap ( Gap 

Obj. ) that measures the relative difference in the 

bjective function values achieved by Gurobi and the ALNS heuris- 
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Table 5 

Comparison of results from running the ALNS and its extensions local search (LS) and Voyage Combination Problem (VCP). CV is the coefficient of variation averaged for 

all runs in each instance group. Gap is defined as the relative difference between the best solution from any configuration for each test instance in an instance group, and 

the averaged value from five runs of the same instance using a particular ALNS configuration. Average solution times for each instance are given in seconds. 

Instance ALNS ALNS + LS ALNS + VCP ALNS + LS + VCP 

Group CV Gap Time CV Gap Time CV Gap Time CV Gap Time 

5 0.00% 0.00% 0.9 0.00% 0.00% 1.4 0.00% 0.00% 1.0 0.00% 0.00% 1.6 

7 0.00% 0.00% 2.5 0.00% 0.00% 4.1 0.00% 0.00% 1.1 0.00% 0.00% 4.5 

9 0.00% 0.00% 4.5 0.00% 0.00% 7.5 0.00% 0.00% 5.5 0.00% 0.00% 8.3 

11 0.00% 0.00% 18.9 0.00% 0.00% 42.0 0.00% 0.00% 23.2 0.00% 0.00% 50.3 

13 0.15% 0.07% 32.3 0.00% 0.00% 72.2 0.15% 0.07% 47.1 0.00% 0.00% 84.0 

15 0.16% 0.34% 37.2 0.02% 0.02% 76.1 0.10% 0.13% 56.7 0.00% 0.00% 91.1 

17 0.21% 0.17% 56.7 0.03% 0.01% 149.5 0.19% 0.12% 95.5 0.00% 0.00% 167.7 

19 0.20% 0.21% 70.9 0.04% 0.03% 189.6 0.15% 0.11% 132.0 0.00% 0.00% 224.3 

21 0.29% 0.80% 84.8 0.20% 0.48% 174.2 0.21% 0.21% 161.2 0.13% 0.19% 195.2 

23 0.45% 0.69% 131.7 0.17% 0.16% 333.0 0.28% 0.28% 225.7 0.02% 0.05% 363.9 

25 0.26% 0.35% 141.8 0.04% 0.10% 391.5 0.20% 0.19% 273.6 0.03% 0.07% 442.0 

27 0.80% 1.81% 141.8 0.58% 0.92% 304.0 0.36% 0.36% 223.8 0.23% 0.31% 387.8 

Avg. 0.23% 0.51% 61.1 0.09% 0.20% 145.4 0.14% 0.17% 104.0 0.03% 0.07% 168.4 

Table 6 

Comparison of Gurobi (run for 3600 seconds per instance) and ALNS. Obj. represents average objective values, and Gap Obj. shows the relative change of the objective value 

between Gurobi and ALNS. The averaged lower bounds provided by Gurobi are shown by LB . CV is the coefficient of variation (relative standard deviation) and Time is the 

average solution time (in seconds) for each instance. All numerical values represent the average across all test instances in an instance group. 

Instance group Gurobi ALNS heuristic 

Obj. LB Time Obj. CV Gap Obj. Time 

5 2217.6 2217.6 5.9 2217.6 0.00% 0.00% 1.6 

7 2095.0 2095.0 32.9 2095.0 0.00% 0.00% 4.5 

9 5627.5 5627.6 48.5 5627.5 0.00% 0.00% 8.3 

11 3517.5 3420.3 2417.2 3517.5 0.00% 0.00% 50.3 

13 3994.7 3682.9 3567.7 3970.5 0.00% -0.60% 84.0 

15 12477.9 7296.0 3600.0 8375.5 0.00% -32.88% 91.1 

17 8567.2 3749.6 3600.0 4966.1 0.00% -42.03% 167.7 

19 8988.4 3994.8 3600.0 5153.5 0.00% -42.66% 224.3 

21 13325.4 7069.2 3600.0 9265.8 0.13% -30.47% 195.2 

23 - 4092.2 3600.0 5962.1 0.02% - 363.9 

25 - 4342.4 3600.0 6630.5 0.03% - 442.0 

27 - 4648.8 3600.0 8389.9 0.23% - 387.8 
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Table 7 

The reductions in costs by performing speed optimization on five of the largest test 

instances, evaluated for each of the three weather scenarios. 

Weather scenario 

Instance Fair Mixed Rough 

19-21-3-2 24.01% 20.90% 18.52% 

21-24-3-1 22.52% 19.18% 16.28% 

23-27-4-1 22.87% 19.07% 16.32% 

25-29-4-1 23.63% 19.95% 17.06% 

27-32-5-1 22.41% 18.90% 16.78% 

Average 23.09% 19.60% 16.99% 
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ic, where a negative value means that the solution from the ALNS 

euristic yields the lowest objective function value. 

The results are summarized in Table 6 . It can be seen that 

urobi can solve some instances with up to 13 installations to op- 

imality within a runtime of one hour. Furthermore, feasible so- 

utions are produced within the same time limit for all instances 

p to group 21, although the objective function values are poten- 

ially weak as is indicated by the large differences compared to 

he lower bounds. For larger instances, Gurobi cannot find feasi- 

le solutions within one hour (indicated by ’-’ in the table), ex- 

ept for one instance in the group with 23 installations. With 

egard to ALNS heuristic, we see that the heuristic clearly out- 

erforms Gurobi. It achieves the same optimal solutions for the 

maller instances and provides solutions of much better quality for 

he medium-sized instances with up to 21 installations. Savings in 

ost are as high as 30% to 42% per instance group. For the largest

nstances, the ALNS heuristic finds solutions within just a few min- 

tes per instance. The corresponding lower bounds and the fact 

hat the total cost of these solutions are comparable to those of 

he medium sized instances indicates that these are high-quality 

olutions. The coefficient of variation is very small in all cases, in- 

icating that the performance of the ALNS heuristic is consistent. 

.4. Value of allowing speed optimization 

The cost effects of allowing speed optimization can be evalu- 

ted by solving selected instances once with speed being fixed and 

dentical for all vessels and once with the full flexibility of mak- 

ng speed decisions as in the previous experiments. For the fixed 
904 
peed, we let vessels travel at their design speed of 12 knots for 

ll legs of their routes, as this is consistent with the current prac- 

ice in many real applications. We admit that lowering this fixed 

peed down to 10 knots, which is the lowest allowed speed, would 

ead to a further fuel reduction. At the same time, less serviced or- 

ers (more postponement of orders) would be observed, resulting 

n higher penalty cost. The design speed of 12 knots usually repre- 

ents a reasonable trade-off between fuel efficiency and achieved 

rder service level. 

We randomly select five test instances among the largest in- 

tance groups, and solve these for each of the three weather sce- 

arios presented in Section 5.1 both with speed optimization and 

ithout (i.e., using the service speed of 12 knots), and the corre- 

ponding results are presented in Table 7 . For each instance and 

ach weather scenario, the table gives the relative reduction of cost 

chieved by including speed decisions compared to using a fixed 

ailing speed on all sailing legs. 
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Table 8 

The realized costs ( Costs ) and number of missed orders (# MO ) of solutions to five large test instances when planning with and without weather forecasts. The impact of 

weather planning is evaluated for both the Mixed and the Rough weather scenario. 

Weather scenario Mixed Weather scenario Rough 

Assuming Fair Weather planning Assuming Fair Weather planning 

Instance Costs # MO Costs # MO Costs # MO Costs # MO 

19-21-3-2 10602.7 5 6062.9 0 15896.3 5 7035.5 0 

21-24-3-1 12740.6 6 6595.7 0 18238.3 6 7648.2 0 

23-27-4-1 9951.8 4 7052.7 0 11799.0 4 8100.5 0 

25-29-4-1 11599.3 3 8277.9 0 9504.6 1 9445.6 0 

27-32-5-1 18084.4 8 10807.5 0 20991.8 5 12308.5 0 

Average 12595.7 5.2 7759.4 0 15286.0 4.2 8907.7 0 
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From the results in Table 7 , significant reductions in overall 

osts are observed when speed optimization is allowed across all 

nstances and weather scenarios. No clear correlation between the 

ize of an instance and the cost reductions are found, however, it 

eems like the value of speed optimization decreases with wors- 

ned weather conditions. The speed-optimized voyages last longer 

ue to lower average sailing speed, and by reviewing Fig. 7 , we see

hat a later return time to the supply depot means longer periods 

f sailing in larger wave heights for the scenarios Mixed and Rough . 

his relative increase of the fuel consumption limits the benefits of 

he speed optimization given the particular weather input used for 

ur study. 

Although not presented here, we have also observed similar re- 

uctions in the relative CO 2 emissions for all test instances, as this 

an be easily calculated from the amount of fuel consumed, which 

s the largest contributor to the objective function value for all in- 

tances. 

.5. Value of considering weather forecasts 

In addition to the large potential for cost reductions pro- 

ided by speed optimization, the realized costs of scheduled voy- 

ges strongly depend on the experienced weather conditions and 

hether these are taken into account when planning the PSV op- 

rations. 

To quantify the importance of what we term weather planning , 

he best solutions from the selected five large test instances for 

oth the Mixed and the Rough weather scenario are compared to 

he performance of the schedules made by assuming Fair weather 

hroughout the planning period. If fair weather is assumed but 

arsher weather conditions in fact are experienced, the actual 

uel costs are underestimated as maintaining the scheduled speed 

ill require more machinery power when sailing in higher waves. 

urthermore, the highest sailing speeds might not be possible to 

aintain due to rough weather, causing delays to the schedules. If 

 vessel then arrives at an installation outside its opening hours, 

he order penalty cost applies to the objective function as prohib- 

ted service results in a missed order (MO). 

Table 8 shows the results obtained from ignoring or consider- 

ng weather conditions in the routing and scheduling of PSVs. We 

bserve that for both weather scenarios considered, i.e., for Mixed 

nd Rough weather, all occurrences of missed orders are avoided 

hen the real weather conditions are taken into account in the 

lanning. When the weather is mistakenly assumed to be without 

mpact on the vessel’s performance ( Fair weather), several orders 

re not serviced due to delays in the realization of the scheduled 

oyages (i.e., when applying the schedule to the same test instance 

hile considering the actual weather conditions). Eventually, when 

eather planning is applied, the average cost for the five instances 

re reduced by 38% and 45% for the Mixed and Rough weather 

cenarios, respectively. Put differently, to not account for weather 

hen scheduling voyages can have costly consequences. 
905 
. Concluding remarks 

In this paper we have studied an operational planning prob- 

em arising in the offshore oil and gas industry, in which we de- 

ermine routes, as well as sailing speeds along these routes, for a 

et of platform supply vessels (PSVs) servicing a given set of deliv- 

ry and pickup orders at offshore installations such that costs are 

inimized. The sailing costs, mainly induced by fuel consumption 

or the PSVs, heavily depend on the chosen sailing speeds. Further- 

ore, the fuel consumption and the feasible speed ranges for the 

SVs are largely affected by weather conditions that may vary over 

ime. This results in a weather- or Time-Dependent Vessel Routing 

roblem with Speed Optimization (TDVRP-SO). Optional decisions 

nclude the postponement of certain orders and the chartering of 

pot vessels, both associated with additional costs. 

A mixed integer programming (MIP) model for the TDVRP-SO 

as been formulated, defined on a time-space network. As the MIP 

olver is limited to solving instances with at most 16 orders for 13 

ffshore installations within a reasonable time limit of one hour, 

e have proposed an Adaptive Large Neighborhood Search (ALNS) 

euristic for the TDVRP-SO. To improve initially constructed solu- 

ions, the ALNS heuristic applies an adaptive selection of destroy 

nd repair heuristics where some are problem-specific heuristics 

ased on the characteristics of offshore logistics planning. Addi- 

ionally, two extensions are introduced to further improve the per- 

ormance of the ALNS heuristic, namely local search and a set par- 

itioning model that selects useful combinations of voyages from 

revious ALNS iterations. The ALNS heuristic also includes solving 

he sub-problem of determining the optimal sailing speeds along 

ach route. 

Our experiments on 60 test instances generated based on real 

ata from the Norwegian continental shelf show that the ALNS 

euristic is able to find optimal solutions in short computational 

imes to all instances that could be solved to optimality by the 

IP solver. The experiments also show that including speed opti- 

ization results in significant cost savings and CO 2 emission re- 

uctions of approximately 20%, compared to the more common 

pproach of applying a fixed design speed for each voyage. Fur- 

hermore, three scenarios for forecasted wave heights were used 

o examine the impact of considering weather conditions to the 

lanning. Our results highlight the importance of considering the 

orrect weather conditions when scheduling voyages as, otherwise, 

he solutions may substantially underestimate the true cost of con- 

ucting the planned voyages under actual weather conditions. Ig- 

oring weather conditions in the planning might even result in 

ome orders not being serviceable, due to weather-induced delays 

n the actual schedule execution. 
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Algorithm 2: Arc-Generation Procedure. 

Input : Set of available vessels, set of orders, start depot, 

end depot, vessel preparation end time, vessel return 

time 

Output : Set of arcs 

1 initialize the set of arcs as an empty set 

2 for v in the set of all available vessels do 

3 for i in the set of all orders and the depot do 

4 for j in the set of all orders and the depot do 

5 if moving from i to j is not allowed then 

6 skip to next j 

7 end 

8 for t s in the set of time points from preparation 

end to return time do 

9 if i is not the depot and t s < earliest arrival 

time at i from depot then 

10 skip to next t s 

11 else if t s + min sailing duration from j to depot 

> return time then 

12 skip to next t s 

13 else if installation with order i is closed at t s 

then 

14 skip to next t s 

15 end 

16 calculate the set of possible arrival times t arr at 

order or depot j 

17 if j is an order then 

18 calculate the servicing duration required for 

j 

19 calculate the servicing start times with no 

idling before start 

20 if servicing of order j cannot be performed 

without idling then 

21 calculate the first possible servicing start 

time 

22 add the time point to the set of servicing 

start times 

23 end 

24 for t ss in the set of service start times do 

25 calculate end time t ′ by adding service 

duration to t ss 

26 calculate the arc cost given the start, 

arrival, servicing, and end times 

27 add the arc 
(
(i, t) , ( j, t ′ ) 

)
and its arc cost 

to the set of arcs 

28 end 

29 else // applies to the final sailing leg 
back to depot 

30 calculate the arc costs for all arrival times 

31 set the end time t ′ equal to the arrival time 

with the cheapest cost 

32 add the arc 
(
(i, t) , ( j, t ′ ) 

)
and its arc cost to 

the set of arcs 

33 end 

34 end 

35 end 

36 end 

37 end 
ppendix A. Parameter tuning for ALNS 

The developed ALNS heuristic requires a proper setting of its 

arameters to deliver best-possible solutions. For this, we apply a 

ystematic tuning approach for the key parameters to obtain ap- 

ropriate values for them. To avoid overfitting, we generated an 

xtra set of ten test instances, used solely for the parameter tun- 

ng, with 9 to 27 installations. Those parameters that were tuned 

re listed in Table 9 . We started by solving the ten generated test 

able 9 

ystematically tuned ALNS-parameters in the order they were tuned. Initial values 

nspired by Ropke & Pisinger (2006) and Liu, Tao, & Xie (2019) . 

Parameter 

Initial 

Value 

Final Value Description 

ˆ q [5% , 15%] [15% , 50%] Percentage of orders to remove, 

picked uniformly at random in the 

interval 

σ1 33 33 ALNS score for finding new globally 

optimal solution 

σ2 9 9 ALNS score for finding new locally 

optimal solution 

σ3 13 1 ALNS score for finding new solution 

r 0.1 0.1 ALNS reaction parameter 

η 0.250 0.025 ALNS noise control parameter 

P 5 7 Determinism parameter 

nstances using the initial values of the parameters. We then re- 

un while varying one parameter at a time, testing five different 

ettings for each parameter. Having identified the best performing 

alue of a parameter, this value was fixed and the process contin- 

ed for the next parameter. 

All further ALNS-parameters have been set through a trial-and- 

rror process, which lead to the values shown in Table 10 . 

ppendix B. Arc generation procedure for the time-space 

etwork 

See Algorithm 2 

ppendix C. Notation used to mathematically formulate the 

DVRP-SO 

ets and Indices 

V - set of available vessels v 
N - set of orders i 

N 

MD - subset of N consisting of mandatory delivery orders 

N 

OD - subset of N consisting of optional delivery orders 

N 

OP - subset of N consisting of optional pickup orders 

A v - set of arcs 
(
(i, t) , ( j, t ′ ) 

)
for vessel v 

T - set of all discrete time points, t , in the planning horizon 

T S 
i jv - subset of T with start times for arcs between i and j

for vessel v 
T SS 

i jtv - subset of T with specific start times for arcs between i 

and j with end 

time t for vessel v 
T SE 

it jv - subset of T with specific end times for arcs between i 

and j with start time t for vessel v 

arameters 

S i - size of order i 

Q v - maximum load capacity of vessel v 
C A 

it jt ′ v - fuel consumption and potential chartering cost for 

vessel v on arc 
(
(i, t) , ( j, t ′ ) 

)
C P 

i 
- penalty cost of not servicing optional order i 

o - supply depot at the beginning of a voyage, modeled as 

an origin node 

d - supply depot at the end of a voyage, modeled as a 

destination node 

t ∗ - time at which vessel preparation ends 
906 
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Table 10 

Overview of further ALNS-parameter values. 

Parameter Value Description 

k 3 Regret parameter set for the regret insertion heuristic. 

κ 0.2 Lower threshold for the adaptive weights. 

ξ 0 . 2% × T start Simulated annealing cooling rate. 

T start - Simulated annealing temperature, set such that the probability of accepting a candidate solution is 50% if the 

candidate solution is less than 5% worse than the current solution. 

I ALNS 5000 Number of iterations for the ALNS heuristic throughout the conducted computational studies. 

I S 100 Number of iterations in one ALNS segment. 

I VCP - Number of iterations between each time the Voyage Combination Problem (VCP) is solved. The parameter is set to 

200 for the first five completions, 500 for the next two, and finally set to 1000. Hence, the VCP is solved ten times 

within 5000 ALNS iterations. 

β 20% Maximum objective value gap between the current best solution, x , and the candidate solution x ′ in order to 

initiate the local search extension of the ALNS. In other words, we require x ′ ≤ (1 + β) x for the local search in 

Section 4.5 to be applied. 

γ 4 Number of discrete time points per hour. Time intervals of 15 minutes is shorter than the sailing time in 97.5% of 

the voyage legs when sailing in 14 knots, meaning that departure and arrival takes place at different points in 

time, inducing a sailing cost also for the shortest sailing legs. 
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ecision Variables 

x it jt ′ v - 

{
1 , if arc 

(
(i, t) , ( j, t ′ ) 

)
is used by vessel v 

0 , otherwise 

u i v - 

{
1 , if order i is serviced by vessel v 
0 , otherwise 

l D 
i v - delivery load on board vessel v after servicing order i 

l P 
i v - pickup load on board vessel v after servicing order i 
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