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Abstract: Background: Dual-level stochastic programming is a technique that allows modelling
uncertainty at two different levels, even when the time granularity differs vastly between the levels.
In this paper we study the problem of determining the optimal fleet size and mix of vessels performing
maintenance operations at offshore wind farms. In this problem the strategic planning spans decades,
while operational planning is performed on a day-to-day basis. Since the operational planning level
must somehow be taken into account when making strategic plans, and since uncertainty is present
at both levels, dual-level stochastic programming is suitable. Methods: We present a heuristic solution
method for the problem based on the greedy randomized adaptive search procedure (GRASP). To
evaluate the operational costs of a given fleet, a novel fleet deployment heuristic (FDH) is embedded
into the GRASP. Results: Computational experiments show that the FDH produces near optimal
solutions to the operational day-to-day fleet deployment problem. Comparing the GRASP to exact
methods, it produces near optimal solutions for small instances, while significantly improving the
primal solutions for larger instances, where the exact methods do not converge. Conclusions: The
proposed heuristic is suitable for solving realistic instances, and produces near optimal solution in
less than 2 h.

Keywords: heuristic; fleet size and mix; offshore wind; uncertainty; multi-horizon

1. Introduction

This work is motivated by solving a maritime fleet size and mix problem (MFSMP)
arising when planning the maintenance of turbines in offshore wind farms. Maintenance
tasks must be performed both to reduce the risk of turbine failures and to repair turbines
following a breakdown. The particular MFSMP studied was presented by Stålhane et al. [1],
who referred to it as the dual-level fleet size and mix problem for conducting maintenance
at offshore wind farms (DLPOW). The problem involves strategic decisions regarding
the fleet size and mix, spanning the lifetime of a wind farm. However, to evaluate fleet
composition decisions, one must also consider operational decisions, which are made on a
day-to-day basis, regarding which maintenance tasks to perform, and which vessels to use
to support each maintenance task.

As both strategic and operational decisions are influenced by uncertainty, the DLPOW
was modelled as a dual-level stochastic problem. In particular, there is long-term uncer-
tainty influencing the future electricity prices and the completion of different parts of the
wind farm, which is captured in a multi-stage scenario tree. At the same time, there is
short-term uncertainty in the number of maintenance tasks required, and the weather
conditions at the wind farms that affects a vessel’s ability to operate, which is captured in
additional operational scenarios connected to each node of the strategic scenario tree.
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Stålhane et al. [1] solved the DLPOW using a commercial mixed-integer programming
(MIP) solver and an ad hoc solution method based on the integer L-shaped method [2].
Only small instances could be tackled by the direct formulation, while the integer L-shaped
could solve slightly larger instances. The authors therefore suggested the design of efficient
heuristic solution methods as future work. However, there is little past research on how to
design heuristics for similar problems.

Until the paper of Stålhane et al. [1], the only paper published on MFSMPs for support-
ing maintenance activities at offshore wind farms that included long-term uncertainty is
that of Gundegjerde et al. [3]. They proposed a three-stage stochastic program that consid-
ered uncertainty in vessel spot rates, electricity prices, weather conditions, and the failure
rates of wind turbines. However, only short-term uncertainty was considered during the
operational life of the wind farm, while the sources of long-term uncertainty (electricity
prices and vessel charter rates) were only considered between the time of commissioning
and the start of operation of the wind farm. Other studies have all presented two-stage
stochastic programs where only short-term uncertainty was considered [4–7].

Gundegjerde et al. [3] and Stålhane et al. [4] solved the deterministic equivalent of
their stochastic programs using commercial solvers, while Stålhane et al. [6] and Gutierrez-
Alcoba et al. [7] presented matheuristics for the problem. Both matheuristics rely on a
Dantzig-Wolfe reformulation of the deterministic equivalent, where potential daily work
schedules for the vessel types are generated heuristically, and a master problem is used
to select a subset of these work schedules for each day in each scenario, for a given
fleet. Halvorsen-Weare et al. [5] presented a greedy randomized adaptive search procedure
(GRASP) where the fleet is built by successively adding vessels, and each fleet is evaluated
using a simulation model. However, they considered only one decision stage where vessels
can be chartered in and out, and thus did not consider different charter lengths, nor changes
to the wind farm over time.

Pantuso et al. [8] pointed out that little research has been published on MFSMPs
dealing with uncertainty. In relation to this, most work on fleet composition for offshore
supply vessels in the oil industry consider deterministic problems, with a recent example
from Vieira et al. [9]. However, Pantuso et al. [10] considered a dual-level stochastic
MFSMP and presented a heuristic solution method. They distinguished between two types
of decisions: aggregate-level decisions and detailed-level decisions, both of which are
subject to uncertainty. The resulting stochastic program had block-separable recourse [11].
This property was exploited to decompose the problem into a master problem and many
independent linear programming subproblems. The master problem was solved by a tabu
search heuristic, while the subproblems were solved to optimality. Results indicated that
the heuristic solution procedure was less efficient than directly using a commercial solver
for small instances, but significantly better for larger problem instances.

For the DLPOW, however, the subproblems are not simple LPs. Furthermore, the
master problem still has a scenario tree structure, which is likely to be unfavorable for local
search-based metaheuristics, such as tabu search: making small adjustments to the fleet
composition at any node of the scenario tree potentially influences the decisions at all other
nodes of the tree.

Hvattum et al. [12] applied a GRASP to a scenario-tree-based formulation of a stochas-
tic inventory-routing problem. Only the construction phase of GRASP was included,
while the local search phase was omitted. In a computational study, the performance
of the GRASP was benchmarked against an exact solution method and several simple
matheuristics. The results were favorable for the GRASP.

In summary, the scientific literature has not thoroughly presented and evaluated the
application of metaheuristics to deal with dual-level stochastic optimization problems. In
this paper, a reactive GRASP [13] is implemented for the DLPOW, exploiting ideas from
Hvattum et al. [12] and Pantuso et al. [10]. This appears to be only the second application
of a GRASP to any stochastic programming problem [12,14,15]. At the same time, it may
be the first time that GRASP has been used to solve any MFSMP [1,8], and only the second



Logistics 2022, 6, 6 3 of 22

application of any metaheuristic to a dual-level stochastic problem [10,16]. The surveys of
metaheuristics for stochastic problems by Bianchi et al. [17], Gutjahr [18], and Hvattum
and Esbensen [19] provide further evidence that GRASP has very rarely been used to solve
problems with uncertainty. On the other hand, other metaheuristics have been tested in
settings with uncertainty recently, such as genetic algorithms, particle swarm optimization,
and bee colony algorithms [20]; tabu search [21]; differential evolution [22]; and invasive
weed optimization [23].

The remainder of this paper is structured as follows. Section 2 describes the DLPOW.
The GRASP implemented to solve the DLPOW is explained in Section 3. An extensive
computational study is summarized in Section 4, followed by concluding remarks in
Section 5.

2. Problem Description and Mathematical Model

The problem studied in this paper is designed to capture the situation of future large-
scale wind farm projects, which are developed in several steps. One example is the Dogger
Bank project outside of the UK, which will be developed in three steps referred to as
Dogger Bank A, B, and C, each with an installed capacity of 1.2 GW [24]. Other examples
are the Empire Wind and the Beacon Wind projects off the US East Coast, which will each
be developed in two steps [25]. Most new tenders for offshore wind farms are now won
without subsidies, with 2.5 GW of zero-subsidy capacity already bid into the European
offshore markets [26]. A lack of subsidies leads to more uncertainty related to the future
value of the electricity generated at the wind farms, making it more important for the
operators to consider long-term changes in the electricity price in the maintenance planning
as well.

In the following, we first give a short description of the problem in Section 2.1, before
explaining the structure of a dual-level scenario tree in the context of the DLPOW in
Section 2.2. Finally, we present a mathematical model of the DLPOW in Section 2.3.

2.1. Problem Description

The DLPOW consists in determining the optimal fleet size and mix of vessels to
support maintenance activities at one or more offshore wind farms. Given that these wind
farms are relatively close to each other, it is likely that substantial savings can be made by
having a common vessel fleet supporting their joint maintenance needs. Since the wind
farms may have a step-wise development, it is important to look at the total life-span of
the farms, as the number of maintenance operations are expected to vary over time.

We consider a wind farm operator employing a maintenance strategy combining
periodic and condition-based maintenance. This entails that each turbine is subject to a
major overhaul at regular time intervals, while additional maintenance is performed to
replace components that have broken down. Once a component is broken, the turbine is
shut down, and the operator loses revenue until the turbine is operational again. This loss
of revenue is commonly referred to as downtime cost, and depends on the longevity of the
shutdown, the electricity price, and the wind conditions during the shut down. Downtime
costs also occur during the periodic maintenance activities, since the turbine has to be shut
down during the maintenance.

Each maintenance task requires a number of technicians for a given number of hours,
and it is assumed that the maintenance can be conducted over several days. The technicians
are transported to and from the wind farms using special-purpose vessels. The vessels
are restricted with respect to how many technicians they may carry and what weather
conditions they can operate in, and the vessels may be chartered on long-term or short-term
contracts. The short-term charter contracts have durations varying from a month up to one
year, while long-term charter contracts may last a number of years, potentially spanning
the entire lifetime of the vessel. It is typically less expensive to charter a vessel for a longer
period, but short-term charters may be convenient to cover peaks in the maintenance
demands, for example in periods where major overhauls of the turbines are planned.
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The vessels operate from a maintenance base, which traditionally has been located at
a harbour along the coast, close to the wind farms. However, as the wind farms are moving
further offshore, several advanced concepts, such as maintenance platforms and artificial
maintenance islands, have also been proposed. Given that the choice of maintenance base
has a huge influence on the operations, it must also be considered when choosing a vessel
fleet at a strategic level.

The problem is subject to uncertainty both at a strategic and an operational level.
On the strategic level, there is uncertainty regarding when, and if, the planned wind
farm projects are developed. Often these projects are developed in steps, and delays may
occur in this development. In addition, long-term changes in the electricity price, for
example caused by changes to the subsidy schemes, will affect the downtime costs. On
the operational level, there is uncertainty in the number of condition-based maintenance
tasks to perform and in the weather conditions in which the vessels must support the
maintenance tasks.

2.2. Dual-Level Scenario Trees Applied to the DLPOW

Since decisions must be made at both the strategic and operational levels, the time
horizon is divided into stages, and in each stage strategic decisions must be made regarding
the fleet composition. Once the fleet size and mix has been decided for a given stage, the
vessels are used to support maintenance tasks in the time period until the next stage. Once
the next stage is reached, some of the uncertain strategic parameters are revealed.

Figure 1 shows a scenario tree where there is uncertainty in the step-wise wind farm
development. The wind farm initially consists of 200 turbines, as indicated by the root node
of the tree. The plan is that 100 additional turbines are realized in year 10, corresponding to
the second level of the tree (stage 2). However, the installation of these turbines is uncertain,
and the numbers given inside the large circles representing each strategic node indicate the
total number of turbines actually installed at the wind farm at the respective nodes. The
percentage next to each strategic node gives the percentage of the 100 planned turbines
that has been installed at that strategic node.

Figure 1. Scenario tree for instance F2, with uncertainty in the step-wise development of wind farms.

Below each strategic node, there are two smaller nodes, corresponding to the winter
season and summer season, respectively. While the period between successive strategic
stages may last several years, it is assumed that the characteristics of each winter season
and each summer season are the same. Thus, these are all joined under the two different
season types. One reason for including different seasons is that different vessel fleets may
be suitable for different seasons, partly because weather conditions may influence which
vessels can be used, and partly because the demand for maintenance may differ. Thus,
short-term charters are allowed to vary based on season types. While the season type is not
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the outcome of a random event, there is a specific portion of the total time during a year
which falls into each season, and the costs pertaining to each season type can be weighted
accordingly to determine an expected cost overall.

For each strategic node, and each season type associated to that node, there is then
a set of operational scenarios reflecting the maintenance needs that may appear in the
corresponding season. These scenarios are short, spanning only a modest number of days,
but are essential to estimate the cost of using the obtained fleet to support the required
maintenance tasks. Given that the important output of the model is the strategic decisions,
the operational scenarios are not themselves modelled as multi-stage problems, but rather
as a scenario cluster.

2.3. Mathematical Model

First, a node-based formulation for the deterministic equivalent of the multi-stage
stochastic programming problem representing the strategic decisions is given. This formu-
lation encapsulates the corresponding two-stage problems representing the operational
decisions within each strategic node by defining a subproblem for each operational scenario
that is a function of the available vessel fleet. Second, the subproblem for the operational
planning is provided.

2.3.1. Strategic Model

For a strategic node n, the quantity xvnl identifies the number of vessels of type v that
are chartered on a contract with expiration time l. Additional vessels can be obtained on
short-term charter. For strategic node n in season type q, yIN

nqv is the number of vessels of
type v that is chartered in for season type q. There is also the possibility of chartering out
vessels for a given season type, and yOUT

nqv denotes the number of vessels of type v chartered
out for season type q at node n.

Each operational scenario s from season type q at node n contains a number of
periods p. In each period, each vessel in the fleet is deployed to a given wind farm f ,
where it transports technicians to, from, and between wind turbines, so that they can
perform maintenance tasks. It is assumed that the operational costs of the vessels are
directly proportional to the number of hours they are used in a given time period, and that
this number varies between vessel types.

For the strategic level of the model, we need the following notation. The set of potential
bases from where the O&M operations are staged (harbors and offshore stations) is denoted
by D. The total cost of building and operating base d is CD

d , and it has a maximum capacity
of MD

d vessels. The set of vessel types is V, and a vessel of type v is considered to take up a
capacity of Gvd when located at base d. The choice of which bases to operate is made at the
first decision stage.

Let N represent the set of strategic nodes, let An be the set of all ancestor nodes for
node n, and let a(n) be the direct parent node of n. The number of years between each
stage can vary, but all strategic nodes appearing at the same stage of the scenario tree
correspond to the same year. Let t(n) denote the year of node n. The number of years
separating the strategic nodes a and b is hence t(b)− t(a). Each leaf node of the scenario
tree has a duration of one year. The probability of node n occurring is BS

n , and the node has
a discount factor of Zn.

There is a fixed cost CF
nv for operating a vessel of type v in node n, and a charter cost

CTC
nvl of chartering a vessel of type v on a long-term charter in node n with lease expiration l.

The set of possible lease expiration times for a vessel of type v being chartered in node n is
Lnv. Lease expiration times represent the year of the planning horizon where the vessel
lease expires, and a chartered vessel will be removed from the fleet at the beginning of
this year.

The set of season types Q contains two seasons q, representing summer and winter,
respectively. The cost of chartering in an additional vessel of type v for a single season type
q in node n is CST

nqv, while the revenue for chartering out a corresponding vessel is Rnqv. To
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capture the short-term operational uncertainty of a given season type q in strategic node n,
we use a set of scenarios Snq with corresponding probabilities BT

nqs.
In addition to the decision variables already mentioned, we define the binary variable

δd to equal one if base d is used and zero otherwise. Auxiliary variables wnv represent
the number of long-term chartered vessels of type v in node n, and znqv represents the
number of vessels of type v available in season type q at node n. Finally, the recourse
function Ωnqs(znq) represents the operational costs and downtime costs of using fleet
znq = {znqv}v∈V in scenario s in season type q at node n. This gives the following model:

min z = ∑
n∈N

∑
v∈V

BS
n

Zn

(
∑

l∈Lnv

CTC
nvl xnvl + CF

nvwnv + ∑
q∈Q

(CST
nqvyIN

nqv − RnqvyOUT
nqv )

)

+ ∑
d∈D

CD
d δd + ∑

n∈N
∑

q∈Q
∑

s∈Snq

BT
nqs

Zn
Ωnqs(znq),

(1)

∑
l∈Lnv

xnvl + wa(n)v − ∑
n′∈An

xn′ vt(n) = wnv, n ∈ N\{1}, v ∈ V, (2)

∑
l∈Lnv

xnvl = wnv, n = 1, v ∈ V, (3)

yOUT
nqv ≤ wnv, n ∈ N, q ∈ Q, v ∈ V, (4)

∑
v∈Vd

Gvd(wnv + yIN
nqv) ≤ MD

d δd, n ∈ N, q ∈ Q, d ∈ D, (5)

wvn + yIN
nqv − yOUT

nqv = znqv, n ∈ N, q ∈ Q, v ∈ V, (6)

xnvl ≥ 0 and integer, n ∈ N, v ∈ V, l ∈ Lnv, (7)

wnv ≥ 0 and integer, n ∈ N, v ∈ V, (8)

znqv ≥ 0 and integer, n ∈ N, q ∈ Q, v ∈ V, (9)

yIN
nqv ≥ 0 and integer, n ∈ N, q ∈ Q, v ∈ V|Lnv 6= ∅, (10)

yOUT
nqv ≥ 0 and integer, n ∈ N, q ∈ Q, v ∈ V, (11)

δd ∈ {0, 1}, d ∈ D. (12)

The objective function (1) minimizes the total costs. The first part adds up the total
charter cost of all long-term chartered vessels, the fixed cost of all vessels, the short-term
charter costs of the vessels chartered in, and the short-term charter revenue of the vessels
chartered out in each season. The second part adds the total cost of bases, while the final
part adds the total expected cost from the operational scenarios as a function of the selected
vessel fleet.

Constraints (2) and (3) keep track of the number of long-term chartered vessels in the
fleet at node n. Next, constraints (4) prevent the number of vessels chartered out from
exceeding the number of vessels available in the fleet. The capacity of bases is controlled
by constraints (5). The auxiliary variable for the number of vessels available in each
season type is set by constraints (6), while constraints (7)–(12) simply define the domains
of the variables.

2.3.2. Operational Model

The model above describes the strategic scenario tree, but it remains to provide the
details of the operational costs, Ωnqs(znq). For each strategic node n, season type q, and
operational scenario s, we need to determine the value of Ωnqs for the vessel fleet z∗nq.

Let Fn be the set of wind farms, and let Mnqs f be the set of maintenance tasks at wind
farm f in the operational scenario. The maintenance tasks are split into preventive tasks
MPREV

nq f and corrective tasks MCORR
nqs f . Preventive maintenance tasks are predetermined for a

given node and season and do not differ based on the scenario. The number of man-hours



Logistics 2022, 6, 6 7 of 22

required to complete task m is TM
m . For a corrective maintenance task, the turbine is shut

down from the time at which the failure occurs and until it is fixed, while for preventive
tasks, the turbines are only shut down while maintenance is performed. Let CDTP

nqsp f m and

CDTC
nqsp f m be the hourly downtime cost and total downtime cost of task m at wind farm f . A

vessel of type v has an hourly operating cost of CV
v , and a penalty cost CP

m is applied if task
m is not performed within the planning horizon of the operational scenario. This planning
horizon consists of a number of periods Pnqs corresponding to days.

For maintenance task m ∈ Mnqs f , the first time period where maintenance can be
performed is denoted by Pm ∈ Pnqs. Weather may prevent a vessel type from being
operational. Let K be the number of weather conditions considered, such as wind speed or
wave height, and let Unqspk be the status of weather condition k in time period p.

A vessel type v has a number of important attributes. The maximum crew size
is MCREW

v , the maximum number of hours to operate per time period is TMAX
v , and a

parameter MK
vk is specified for each weather condition. A utilization ratio Ev captures the

fact that technicians cannot work 100% of the time. The transit time from base d to wind
farm f is TT

d f v.
Decision variables in the operational scenarios are as follows. Let up f v be the number

of vessels of type v supporting maintenance at wind farm f in period p. Next, γp f m
indicates whether maintenance task m at wind farm f is supported in time period p, and
tp f mv is the number of man-hours contributed to maintenance task m by vessels of type v.
The binary variable β f m is equal to one if the corresponding task is not completed during
the planning horizon. The model for the operational subproblem now becomes:

Ωnqs(z∗nq) = ∑
p∈Pnqs

∑
f∈Fn

 ∑
m∈Mnqs f

∑
v∈Vm

CV
v tp f mv + ∑

v∈V
CV

v up f vTT
f v

+ ∑
m∈MPREV

nq f

∑
v∈Vm

CDTP
nqsp f tp f mv + ∑

m∈MCORR
nqs f

CDTC
nqsp f mγp f m

 (13)

+ ∑
f∈Fn

∑
m∈Mnqs f

CP
mβ f m,

∑
p∈Pnqs

∑
v∈Vm

tp f mv ≥ TM
m (1− β f m), f ∈ Fn, m ∈ Mnqs f , (14)

∑
m∈Mnqs f

tp f mv ≤ Ev MCREW
v (TMAX

v − TT
f v)up f v, p ∈ Pnqs, f ∈ Fn, v ∈ Vm, (15)

∑
f∈Fn

up f v ≤ z∗nqv, p ∈ Pnqs, v ∈ V, (16)

(MK
vk −Unqspk) ∑

m∈Mnqs f

∑
f∈Fn

tp f mv ≥ 0, p ∈ Pnqs, v ∈ Vm, k ∈ K, (17)

∑
p′∈{(p+1),...,|Pnqs |}

∑
v∈Vm

tp′ f mv ≤ TM
m (1− γp f m), p ∈ Pnqs, f ∈ Fn, m ∈ MCORR

nqs f , (18)

∑
p∈Pnqs

γp f m + β f m = 1, f ∈ Fn, m ∈ MCORR
nqs f , (19)

up f v ≥ 0 and integer, p ∈ Pnqs, v ∈ V, f ∈ Fn ∪ {0}, (20)

tp f mv ≥ 0, p ∈ Pnqs, v ∈ Vm, f ∈ Fn, m ∈ Mnqs f , (21)

γp f m ∈ {0, 1}, p ∈ Pnqs, f ∈ Fn, m ∈ MCORR
nqs f , (22)

β f m ∈ {0, 1}, p ∈ Pnqs, f ∈ Fn, m ∈ Mnqs f . (23)

The objective function (13) has five terms. The first term is the variable cost of
conducting maintenance tasks; the second term is the transit cost between wind farms and
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vessel origins; the third term is the downtime cost for preventive tasks; the fourth term is
the downtime cost for corrective tasks; the fifth term is the penalty cost for skipped tasks.

Constraints (14) ensure that a sufficient number of man-hours is used when completing
a task. The number of man-hours available at wind farm f is controlled by constraints (15),
while constraints (16) limit the number of vessels located at each wind farm by the to-
tal number of vessels available. Restrictions regarding weather conditions are enforced
through constraints (17). The time of completing a task is found by applying constraints (18)
and constraints (19). Finally, the domains of the variables are given by constraints (20)–(23).

3. Solution Method

The heuristic solution method for DLPOW that is presented in this section mainly
draws upon the previous work of Pantuso et al. [10], Resende and Ribeiro [15],
Hvattum et al. [12], and Prais and Ribeiro [13]. The overall heuristic is discussed in
Section 3.1, before the construction of the restricted candidate list is described in Section 3.2.
The evaluation of a given candidate is outlined in Section 3.3, and finally, in Section 3.4,
strategies that increase the computational efficiency of the heuristic are given.

3.1. Overview of the GRASP

As can be seen in Section 2, the DLPOW can be decomposed into a problem including
only strategic decisions (henceforth referred to as the master problem) and one independent
subproblem for each node, season type, and scenario combination. Each subproblem
evaluates the operational costs of a given set of strategic decisions (Ωnqs(znq)), where znq
depends on the fleet composition decisions (xvnl , yIN

nqv, yOUT
nqv ) made in the master problem.

The heuristic presented in this paper takes advantage of this structure, with a GRASP
designed to build solutions of the master problem, while an independent fleet deployment
heuristic is built into the GRASP in order to solve the given subproblems. Hence, a solution
x in the following sections is defined as one specific value for each xvnl , yIN

nqv, and yOUT
nqv

variable in the problem.
Algorithm 1 shows the main design of the reactive GRASP developed for solving

the DLPOW. The heuristic is executed for a number of iterations (IMax), starting each
construction from an initial empty solution (xInit). The best solution found during the
search is denoted by xBest, and is initialized as the empty solution. Furthermore, a set of
α-values (A = {α1, . . . αm}) and a probability P(αi) for each α-value are introduced. The
performance of GRASP is sensitive to the α-values and their probabilities, as they control
the trade-off between greediness and randomness in the metaheuristic [15].

The main for-loop from line 4 to 19 generates IMAX solutions by selecting an α-value
per iteration and then iteratively constructing a fleet of vessels from scratch. Each fleet is
built by iteratively expanding a partial solution x1 based on selecting randomly from a list
of promising candidate solutions. This list is usually referred to as a restricted candidate list
(RCL) and is built based on x1 and a particular α-value by the procedure FIND_RCL. The RCL
parameter, α, controls the size of the RCL, and is further described below. Once no further
promising candidates can be identified, the RCL becomes empty, and the constructed
solution x1 is compared to xBest (line 14), and if it has a lower objective value, it is set as the
best found solution on line 15. Finally, on lines 16–18 the probabilities P(αi) are updated
every IB iterations to favor α-values that have lead to good solutions in previous iterations,
using the strategy proposed by Prais and Ribeiro [13]. Once IMax iterations of the algorithm
have been completed, the best solution is returned by the algorithm on line 20.

3.2. Building the Restricted Candidate List

An important decision in the reactive GRASP heuristic is how to build the RCL.
This procedure consists of three main steps: (1) determining valid candidate solutions,
(2) evaluating the valid candidate solutions, and (3) selecting the subset of candidate
solutions to add to the RCL.
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Algorithm 1: Overall description of the reactive GRASP heuristic

1 procedure Reactive_GRASP(IMAX , xInit, A = {α1, . . . , αm}, IB)
2 xBest ← xInit

3 P(αi)← 1
m , i = 1, . . . , m

4 for k = 1, . . . , IMAX do
5 x1 ← xInit

6 αi ∈ A selected randomly based on P(αi)

7 RCL← Find_RCL(x1, αi)
8 while RCL 6= ∅ do
9 xc ∈ RCL selected randomly

10 x1 ← xc

11 RCL← Find_RCL(x1, αi)
12 end
13 if f (x1 ) < f (xBest ) then
14 xBest ← x1

15 end
16 if ( k mod IB ) = 0 then
17 Update_Probabilities(P(αi), i = 1, . . . , m)
18 end
19 end
20 return xBest

Valid candidate solutions are determined by applying a rule delineating the allowed
changes in the partial solution during a single iteration of the construction. A specialized
decision rule has been developed for the DLPOW where valid candidates are determined
through the following:

Rule 1 (Valid Candidates). Considering the current partial solution, increase one of the strategic
decision variables (xnvl , yIN

nqv or yOUT
nqv ) by 1 unit.

Rule 1 makes the candidate list bounded. Only feasible solutions that satisfy con-
straints (2)–(11) are accepted, and it is not allowed to charter in and out the same vessel
type in the same node and season type (∀n ∈ N, q ∈ Q, v ∈ V, yIN

nqv × yOUT
nqv = 0).

Each candidate solution xc is evaluated by its objective function value (1). The strategic
cost components of the objective function is calculated based on the values of xnvl , yIN

nqv, and
yOUT

nqv . However, the operational costs of each node, season type, and scenario (Ωnqs(znq))
must also be estimated for each candidate. This is done by Algorithm 2, which is explained
in detail in Section 3.3.

When all valid candidates have been evaluated, a subset of them must be selected for
the RCL. The size of the RCL is regulated by the parameter αi, and the selection can be
made either based on the number of candidates (rank) or by the quality of the candidates
(value) [12]. In a rank-based selection, the RCL contains αi% of the candidates that have
the lowest objective function value, while in a value-based selection, the RCL includes all
candidates with an objective value within αi% of the best candidate. Only candidates with
a strictly lower objective value than the current solution are accepted.

3.3. Evaluate Candidate Solution

Algorithm 2 evaluates the objective function value of a given candidate solution xc. It
first calculates the value of the first-stage decisions by using all but the last term of objective
function (1) (EvaluateFirstStage(xc)). These terms only include the variables xnvl , yIN

nqv,
and yOUT

nqv , which are stored in xc, and δb, which is directly deduced from the xnvl variables.
To evaluate the last term of the objective function, we need to solve the second-stage
problem for each node, season type, and scenario to get a value for Ωnqs(z∗nq). This is done
in lines 3–16, where the algorithm loops through each node, season type, and scenario.
For each combination, it creates vectors, t, u, γ, and β, holding values for each variable
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presented in the second stage model (14)–(23). To assign values to these variables, two
greedy heuristics, Corrective_Maintenance (Algorithm 3) and Preventive_Maintenance
(Algorithm 4) are used. The first heuristic tries to complete as many corrective maintenance
tasks as possible, since these are usually more costly to delay, while the second uses the
remaining capacity of the fleet to perform preventive maintenance at the wind farms.
Afterwards, EvaluateOmega(t, u, γ, beta) calculates the objective function value (13) based
on the assigned values to the variables and updates z(xc) with this value. When all nodes,
seasons, and scenarios have been considered, the value of z(xc) is returned. Below, we
explain Algorithms 3 and 4 in detail.

Algorithm 2: Fleet deployment heuristic
1 procedure Evaluate_Candidate_Solution(xc)
2 z(xc)← EvaluateFirstStage(xc)
3 for n ∈ N do
4 for q ∈ Q do
5 Create ∀v ∈ V, z∗nqv from xc using constraints (2)–(6)
6 for s ∈ Snq do
7 t = {tp f mv}p∈Pnqs ,v∈Vm , f∈Fn ,m∈Mnqs f

8 u = {up f v}p∈Pnqs ,v∈V, f∈Fn

9 γ = {γp f m}p∈Pnqs , f∈Fn ,m∈MCORR
nqs f

10 β = {β f m}p∈Pnqs , f∈Fn ,m∈Mnqs f

11 Corrective_Maintenance(z∗nqv, t, u, γ, β)
12 Preventive_Maintenance(z∗nqv, t, u, γ, β)

13 z(xc)← z(xc) +
BT

nqs
Zn

EvaluateOmega(t, u, γ, β)
14 end
15 end
16 end
17 return z(xc);
18 end Evaluate_Candidate_Solution

Algorithm 3 assigns vessels in the fleet to support corrective maintenance tasks. First,
the variables t f m and tp f v are created to store the number of man-hours left on maintenance
task m at wind farm f , and on vessel type v in period p at wind farm f , respectively
(lines 2 and 3). Then the algorithm loops through the set of periods (lines 4–28) and assigns
the available man-hours to maintenance tasks. Lines 5 and 6 initialize a set (Vp) of vessel
types available to operate, and a set of maintenance tasks (Mp f ) that may be supported
at wind farm f in period p. While not all vessel types and maintenance tasks possible
to perform for the current time period have been considered, a wind farm f is selected,
together with a vessel type v (lines 7–9). The wind farm with the highest total penalty
costs of the unfinished maintenance tasks and the vessel type that minimizes the hourly
operating cost are chosen. If there are unassigned vessels left of this vessel type (line 10), one
such vessel is assigned to the wind farm by increasing the value of up f v by one (line 11), and
the available man-hours of this vessel type tp f v at the wind farm is updated (line 12). While
there are man-hours left (tp f v > 0) and there are maintenance tasks available (line 13), the
maintenance task with the highest cost per man-hour left is selected, the vessel is assigned
to this task, and the number of man-hours left both for the maintenance task and vessel
type is updated (lines 14–17). If t f m = 0, then maintenance task m is completed, removed
from the set Mp f , and the variable γp f m is set to 1 (lines 18–20). If all vessels of type v are
assigned in the current period, it is removed from the set Vp (lines 24–26). Once all periods
have been considered, we set the variable β f m to 1 for all maintenance tasks that have not
been completed.
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Algorithm 3: Corrective Maintenance
1 procedure Corrective_Maintenance(z∗nqv, t, u, γ, beta)
2 t f m ← TM

m , f ∈ Fn, m ∈ MCORR
nqs f

3 tp f v ← 0, p ∈ Pnqs, f ∈ Fn, v ∈ V
4 for p ∈ Pnqs do
5 Vp ← {v ∈ V : ∀k ∈ K, Mvk ≥ Unqspk ∧ z∗nqv > 0}
6 Mp f ← {m ∈ MCORR

nqs f : p ≥ Pm ∧∑p∈Pnqs
γp f m = 0}, f ∈ Fn

7 while Vp 6= ∅ ∧ ∃ f ∈ Fn, Mp f 6= ∅ do
8 f ← arg max f∈Fn ∑m∈Mp f

CDTC
nqsp f m

9 v← arg minv∈Vp
CV

v ×TMax
v

(TMax
v −TT

f v)

10 if ∑ f∈Fn
up f v < z∗nqv then

11 up f v ← up f v + 1
12 tp f v ← tp f v + Ev MCREW

v (TMAX
v − TT

f v)

13 while tp f v > 0∧Mp f 6= ∅ do

14 m← arg maxm∈Mp f

CDTC
nqsp f m
t f m

15 tp f mv ← min{t f m, tp f v}
16 t f m ← t f m − tp f mv
17 tp f v ← tp f v − tp f mv
18 if t f m = 0 then
19 γp f m ← 1
20 Mp f ← Mp f \ {m}
21 end
22 end
23 end
24 if ∑ f∈Fn

up f v = z∗nqv then
25 Vp ← Vp \ {v}
26 end
27 end
28 end
29 for f ∈ Fn do
30 for m ∈ MCORR

nqs f do
31 if ∑p∈Pnqs

γp f m = 0 then
32 β f m ← 1
33 end
34 end
35 end
36 end Corrective_Maintenance

Algorithm 4 assigns vessels in the fleet to support preventive maintenance tasks. First,
the variables t f m and tp f v are created, as in Algorithm 3 (lines 2 and 3). However, when
initializing the number of man-hours available for a given vessel type, this is done by
taking the total number of man-hours of vessels already assigned to the wind farm in the
period, and subtracting the man-hours already assigned to corrective tasks. In addition, we
introduce the set M f of preventive maintenance tasks at wind farm f , the set Pf containing
the set of time periods p not yet considered for wind farm f , and the set Vp f of vessel types
that may be assigned to maintenance tasks at wind farm f in period p (lines 4–6). While
there are wind farms where not all periods have been considered (line 7), the algorithm
chooses the wind farm with the most man-hours of maintenance left, the remaining period
with the lowest downtime cost, and the vessel type that minimizes the hourly operating
cost (lines 8–10). If tp f v = 0, we check if there are any vessels of this type at the base, and
assign one additional vessel to the wind farm in this period (lines 11–14). While there are
man-hours left and maintenance tasks available (line 15), the maintenance task with the
fewest man-hours left is selected, the vessel is assigned to this task, and the number of
man-hours left both for the maintenance task and vessel type is updated (lines 16–19). If
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there are no man-hours left on the maintenance task, it is removed from the set M f . If all
maintenance tasks at a wind farm are completed, all time periods are removed from Pf ,
and if there are no more vessels of type v available in the current time period, it is removed
from Vf p. If there are no vessel types available for the wind farm in the current period, the
period is removed from Pf (lines 23–31). Once all periods have been considered for all wind
farms, we set the variable β f m to 1 for all maintenance tasks that have not been completed.

Algorithm 4: Preventive Maintenance
1 procedure Preventive_Maintenance(z∗nqv, t, u, γ, beta)
2 t f m ← TM

m , f ∈ Fn, m ∈ MPrev
nqs f

3 tp f v ← Ev MCREW
v (TMAX

v − TT
f v)up f v −∑m∈MCORR

nqs f
t∗p f mv, p ∈ Pnqs, f ∈ Fn, v ∈ V

4 M f ← MPrev
nq f , f ∈ Fn,

5 Pf ← Pnqs, f ∈ Fn

6 Vf p ← {v ∈ V : ∀k ∈ K, Mvk ≥ Unqspk ∧ (u f pv > 0∨∑ f∈Fn
u f pv < z∗nqv)}, p ∈ Pnqs, f ∈

Fn
7 while ∃ f ∈ Fn : Pf 6= ∅ do
8 f ← arg max f∈Fn{∑m∈M f

t f m : Pf 6= ∅}
9 p← arg minp∈Pf CDTP

nqsp f

10 v← arg minv∈Vf p
CV

v ×TMax
v

(TMax
v −TT

f v)

11 if tp f v = 0∧∑ f∈Fn
u f pv < z∗nqv then

12 u f pv ← u f pv + 1
13 tp f v ← tp f v + Ev MCREW

v (TMAX
v − TT

f v)

14 end
15 while tp f v > 0∧M f 6= ∅ do
16 m← arg minm∈M f t f m

17 tp f mv ← min{t f m, t f pv}
18 t f m ← t f m − tp f mv
19 tp f v ← tp f v − tp f mv
20 if t f m ← 0 then
21 M f ← M f \ {m}
22 end
23 end
24 if M f = ∅ then
25 Pf ← ∅
26 end
27 if ∑ f∈Fn

up f v = z∗nqv then
28 Vf p ← Vf p \ {v}
29 if Vf p = ∅ then
30 Pf ← Pf \ {p}
31 end
32 end
33 end
34 for f ∈ Fn do
35 for m ∈ M f do
36 β f m ← 1
37 end
38 end

3.4. Strategies for Improving Efficiency

To improve the computational time used by the GRASP, two types of strategies have
been followed: (1) reducing the number of valid candidate insertions, and (2) using memory
structures to avoid recalculations. Furthermore, the local search phase of GRASP is omitted
entirely. This is because a small neighborhood local search is unlikely to find interesting
improvements. Consider a multi-stage scenario tree, such as in Figure 1: if we consider
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a move such as changing the number of vessels of a given type with a given lease length
and season type, the best moves are likely to belong to the lower level nodes, far from the
root node. This is because moves involving the higher nodes, such as the root node, are
likely to disrupt the solution structure and require additional changes in the child nodes
to be effective. Adding local search therefore may improve the solution by modifying the
decisions to be made far into the future, but is likely to leave the here-and-now decisions
unchanged. This is not productive, since the most important part of the solutions is exactly
the decisions in the root node.

Evaluating a candidate insertion requires solving all operational subproblems for the
current fleet size and mix. The number of possible candidate insertions in each iteration is
potentially large, as with |N| nodes, |V| vessel types, |L| possible lease lengths, and |Q| types
of seasons, the number of candidates insertions is |N| × |V| × |L|+ 2× |N| × |Q| × |V|.

The original Rule 1 allows increasing one strategic decision variable by 1 unit in each
iteration. This rule avoids over-committing to specific vessel alternatives early in the
construction. Compared to rules allowing each variable to increase by an arbitrary number
of units, this rule has a positive effect on the computational effort, as it reduces the number
of potential insertions.

The problem structure can be further exploited to reduce the number of valid candidate
insertions. Hvattum et al. [12] suggested exploring insertions in a top-down fashion to
reduce the number of candidates, thus exploiting the scenario tree structure of their problem.
All the decisions at the root node were considered first, before recursively continuing the
construction node by node in the sub-trees that appear when the root node is fixed and
thus removed from consideration. This has a significant effect on the computational time
required by the GRASP, as it reduces the number of valid candidates with a factor of |N|.
The trade-off is that a top-down GRASP places additional limitations on the heuristic
exploration, which may lead to myopic solutions. Thus, in the following, we consider both
a top-down GRASP (TDG) and an any-node GRASP (ANG), wherein the latter, insertions
can be made in any strategic node at any time during the construction.

Changing a strategic decision in a given node of the scenario tree does not necessarily
affect the fleet size and mix for all the operational nodes of the scenario tree. For instance,
when the change in the current partial solution corresponds to an increase of a short-term
charter in the summer season at node n, only the costs of scenarios during the summer
season at node n differ in the potential new partial solution compared to the current partial
solution. When a decision affects a long-term charter at node n, only node n and its children
are affected.

Figure 2 illustrates a current partial solution and a candidate solution for an instance
that has seven nodes and two vessel types. The current partial solution and the resulting
fleet size and mix for each node is shown to the left in the figure. To the right in the
figure, we consider an increase of the decision variable x2,1,15, meaning that at node 2, the
number of vessels of type 1 and with a lease length expiring in year 15 is increased by one.
Only nodes 2, 4, and 5 are influenced by this change, and thus only operational scenarios
connected to these nodes must be re-solved to evaluate the resulting candidate solution.

Considering similarities in strategic solutions can also allow avoiding unnecessary
calculations. The deployment of a fleet in operational scenarios does not depend on how
the fleet was acquired. That is, the costs of an operational scenario only depend on the
total number of vessels of each type available. Strategic decisions that result in the same
fleet size and mix, but differ in how vessels are acquired, are therefore equivalent when
considering operational costs.
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Figure 2. Candidate insertion into a current partial solution.

Data structures based on hashing are therefore used to avoid resolving operational
scenarios where the cost of deploying a given fleet has already been calculated. That is,
we store the operational cost of deploying a given fleet in all scenarios belonging to a
given node and season type combination. When executing the fleet deployment heuristic
to evaluate a given candidate solution, the hashing-based data structure is queried to
check whether the operational scenarios have already been solved with the same fleet. The
execution of the fleet deployment heuristic can thereby be skipped both for the strategic
nodes that are unaffected by the considered insertion and for the strategic nodes where the
same fleet has already been evaluated from an operational perspective.

4. Computational Study

The tests reported in the computational study have been performed on a computer
with two 2.4 GHz Intel CPUs, 10 cores, and 96 Gb RAM. The GRASP heuristic was im-
plemented in the Java programming language. The performance of the fleet deployment
heuristic used to solve operational subproblems is analyzed in Section 4.1. Section 4.2
reports on the calibration of the parameters of the reactive GRASP. The main results for
evaluating the effectiveness of the proposed GRASP are shown in Section 4.3.

4.1. Performance of the Fleet Deployment Heuristic

The performance of the fleet deployment heuristic is vital for the overall performance
of the GRASP, since it heavily affects the evaluation of candidate insertions when construct-
ing solutions. In this section, the results of the fleet deployment heuristic are compared to
the optimal solutions of operational scenarios given by solving a mathematical model [1]
using a commercial MIP solver.

We do not expect that a simple greedy heuristic can find the exact same decisions as
when solving a model with perfect look-ahead to optimality. However, we may hope that
applying the heuristic to different fleet size and mix combinations will result in a similar
ranking of the fleets as when applying the MIP solver.

To identify and analyze any differences between the optimal operational decisions
and the results of the fleet deployment heuristic, we solve a set of test instances where the
strategic decisions have been fixed. The operational decisions made by the two solution
methods are then inspected and compared.

For the evaluation, we consider four test cases, each including ten different test
instances. Each test case has a single strategic node and 120 operational scenarios. The test
instances in the each test case differ only in the number of periods for each operational
scenario. Besides comparing the operational costs, the test cases are also utilized to evaluate
how the number of periods influences the differences in cost. In each test instance, the
chosen fleet consists of six vessels during the summer season and four vessels during the
winter season. The difference between the operational cost found by the fleet deployment
heuristic and the optimal operational cost found by the MIP solver is given by:
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Difference =
Operational Cost [Heuristic]−Operational Cost [Solver]

Operational Cost [Solver]
(24)

A positive value represents that the fleet deployment heuristic has a higher operational
cost than the MIP solver. Figure 3 reports the average differences over the 10 test instances in
each test case. The average operational cost found for a given fleet is between 1.5% and 3.0%
higher for the fleet deployment heuristic than for the MIP solver. The average difference
is higher during the winter season than during the summer season, independently of the
number of periods. Furthermore, Figure 3 also shows that the differences in operational
costs are higher when the operational scenarios have only three periods.

Figure 3. Average differences in operational costs.

The results imply that the fleet deployment heuristic is unable to utilize the given fleet
quite as well as the MIP solver, in particular during winter. In the winter season, weather
conditions are harsher and less time is available for performing maintenance operations.
This makes it more beneficial to obtain an optimal fleet deployment, and the consequences
of deviating from this optimal deployment are more severe. However, the decisions made
by the heuristic are arguably more realistic than the decisions made by the solver, in the
sense that the mathematical model used by the MIP solver has perfect knowledge about
maintenance tasks that appear late in the operational planning horizon, and thus is likely
to suggest decisions that could not have been realistically implemented in practice, due to
actual information about maintenance tasks arriving too late for perfect plans to be formed.

As there is a slight difference in both decisions and operational costs reported by
the heuristic and the MIP solver, further analysis is undertaken to check whether these
differences influence what is considered to be the best fleets in the given situations. The
following testing aims to evaluate whether both solution methods lead to the same conclu-
sions regarding which fleet size and mix decisions are better or worse. We would like to
see that a solution which is considered to be good (low objective value) by the MIP solver
is also considered good by the fleet deployment heuristic, and vice versa.

To this end, we consider ten different fleet size and mix solutions (fleets) for a single
test instance with one strategic node and 120 operational scenarios spanning ten periods
each. Both solution methods are applied to find operational decisions for each fixed fleet.
Table 1 shows the objective function values obtained and the solution methods for each
of the different fleets. The table also indicates how the different fleets are ranked by each
solution method. The rightmost column provides the differences in the operational costs
using Equation (24).
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Table 1. Ranking of fleets according to objective function value.

MIP Solver Fleet Deployment Heuristic

Fleet Objective Rank Objective Rank Difference
[me] [-] [me] [-] [%]

1 73.77 1 74.32 1 1.70
2 74.02 2 74.37 2 1.13
3 74.11 3 74.54 3 1.36
4 75.60 4 76.86 5 3.65
5 75.64 5 76.90 6 3.57
6 76.43 6 76.84 4 1.33
7 82.10 7 83.56 7 3.55
8 114.89 8 117.78 8 3.76
9 201.22 9 207.26 9 3.65

10 1550.64 10 1550.64 10 0.00

Table 1 shows that the MIP solver and the greedy heuristic both rank the best and the
worst fleet size and mix solutions equally, with seven of the ten fleets having the same rank
according to both solution methods. In particular, the three best fleets and the four worst
fleets all have identical ranks. There is only one fleet that leads to any differences in ranks:
the sixth best fleet according to optimal costs is ranked as number four when applying the
heuristic, whereas all other fleets are ranked in the same order as with optimal costs. Since
fleets 4 to 6 are all very similar in terms of their objective function values, this an acceptable
result and the fleet deployment heuristic’s performance is considered sufficiently good for
its intended use within the GRASP.

4.2. Calibration of the Reactive GRASP

When solving the DLPOW using the reactive GRASP, the performance of the heuristic
is affected by several parameters. As presented in Section 3.1, this includes Max_Iterations,
Top_Down, Rank_Based, δ, A = {α1, . . . , αm}, and IB. Both the quality of the solutions and
the computational time of running the GRASP are affected by these parameters. Calibra-
tion testing is used to evaluate combinations of parameter values and determine the best
performing combination. Such testing has been executed by considering the parameters in
a sequential manner, changing one parameter at a time while keeping the other parameters
fixed at reasonable values.

Ten test instances were used to calibrate the GRASP. These instances have between one
and thirteen strategic nodes which form strategic scenario trees with varying shapes. Differ-
ent types of strategic uncertainty are considered in these instances, either without strategic
uncertainty (Deterministic), with uncertainty in the price of electricity (Electricity Price),
or with uncertainty in the step-wise development of wind farms (Farms). The instances
have either four or six vessel types, and either two or three wind farms. Stålhane et al. [1]
found that 120 operational scenarios with ten periods each is appropriate, and all the test
instances used for calibration adhere to this setting. The test instances used for parameter
calibration are summarized in Table 2.

Two variants of the reactive GRASP are considered: an any-node reactive GRASP
(ANG) and a top-down reactive GRASP (TDG). These variants are different in how can-
didate insertions are defined and solutions are built, and the best values of the differ-
ent parameters are likely to be different as well. Therefore, the parameters are tuned
separately for ANG and TDG. Systematic testing was conducted for the parameters
Rank_Based, A = {α1, . . . , αm}, and Max_Iterations, while δ is set to 10 as proposed
by Prais and Ribeiro [13] and IB = 10 based on preliminary tests. The parameter tuning
took place in three phases, with different parameters being calibrated in each phase.
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Table 2. Test instances used in the calibration testing of the GRASP. The strategic scenario trees for
instances marked with an asterisk are unbalaned. Their structure is explained in [1].

Instance Strategic # Nodes at # Strategic # Vessel Types # Farms
Name Uncertainty Each Stage Nodes (# Stations) (# Turbines)

T1 Deterministic (1, 1, 1) 3 4 (2) 2 (200)
T2 Deterministic (1, 1, 1, 1, 1) 5 4 (2) 2 (200)
T3 Farms (1, 2, 3) ∗ 6 4 (2) 3 (300)
T4 Farms (1, 3, 6) ∗ 10 4 (2) 3 (300)
T5 Electricity Price (1, 2) 3 4 (2) 2 (200)
T6 Electricity Price (1, 2, 4) 7 6 (3) 2 (200)
T7 Deterministic (1, 1, 1) 3 6 (3) 2 (200)
T8 Farms (1, 3, 6) ∗ 10 6 (3) 3 (300)
T9 Electricity Price (1, 3) 4 6 (3) 2 (200)

T10 Electricity Price (1, 3, 9) 13 6 (3) 2 (200)

In the first phase, the effect of rank-based and value-based selection of the RCL
influenced the performance of the GRASP. Each of the ten test instances was considered
twice for both the TDG and the ANG, using rank-based selection and value-based selection
one time each. For this phase, the GRASP used Max_Iterations = 1000, and α-values were
drawn from the set A = {0.00, 0.10, 0.20, . . . , 1.00}. The value-based selection outperforms
the rank-based selection both in terms of total computational time and the time to reach
the best solution found. All following tests therefore applied a value-based RCL selection.

The second phase considered the parameters related to the reactive aspect of the
GRASP, aiming to determine an appropriate set of α-values. This entailed determining an
appropriate maximum value for α, and a suitable number of equidistant values from which
to select. Again using both TGD and ANG, the maximum value for α and the distance
between the values were varied, while simultaneously keeping the minimum value of α
at zero. In the tests conducted for the first phase, we noticed that the best solutions were
always found for α-values in the range 0.00–0.20. Based on this, both TGD and ANG were
tested with a maximum α-value of 0.20, and two alternative sets of alphas were tested:
A1 = {0.00, 0.10, 0.20} and A2 = {0.00, 0.05, 0.10, 0.15, 0.20}.

The results revealed that adjusting the maximum of α from 1.00 to 0.20 did not harm
the quality of solutions found by the GRASP variants. The same solutions were identified
with both A1, A2, and the original range, A = {0.00, 0.10, . . . , 1.00}. However, the new and
smaller sets, A1 and A2, led to a significant decrease in the computational time required to
find these solutions. It was observed that the same solutions were sometimes found for
different α-values, which implies that the GRASP is relatively robust with respect to this
parameter. For further testing, the set A2 was selected, as it provided a slight increase in
the flexibility and potential diversification of the search, while not causing any additional
increase in the computational time.

The third phase of the parameter tuning focused on setting the maximum number
of iterations, Max_Iterations. Given that test instances differ significantly in terms of
size and complexity, the number of iterations required to identify high-quality solutions
may vary from instance to instance. The number of vessel types and strategic nodes in
an instance are both expected to affect the number of iterations required, as both directly
influence the number of valid candidate insertions to evaluate per iteration. Instead of
deciding on one specific value of the maximum iterations to use for all of the test instances,
the number of iterations was set as a function of the problem size, thereby allowing the
GRASP to spend a higher number of iterations when solving larger test instances. The
number of iterations is then a function: Max_Iterations = strategic nodes × vessel types
× β, where β is a parameter whose value must be determined.

The outcome of the third phase reveals that all β-values above 0.5 led to good solutions
with a relatively low number of maximum iterations. Thus, for all further testing, a
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value of β = 0.75 was selected, providing a good trade-off between solution quality and
computational time.

4.3. Performance of GRASP

To evaluate the performance of the GRASP for DLPOW, it is compared to the best
solutions obtained by exact methods in [1]. The exact methods, including using a MIP
solver on a direct formulation of the problem, as well as an ad hoc integer L-shaped
method, were each run for a maximum of 43,200 s on the same hardware as used for
running the GRASP. The comparison is made on 33 different test instances. All instances
have 120 operational scenarios with ten periods in each strategic node, but the size of the
test instances vary greatly. The number of strategic nodes vary from 1 to 63, structured
in strategic scenario trees of different shapes. Different sources of strategic uncertainty
are taken into account within the test instances, while varying the number of wind farms,
stations, and vessel types. The set of instances generated contains both instances that are
intended to be fairly easy to solve, as well as instances that are created to test the limitations
of the solution methods examined. Table 3 summarizes the test instances’ characteristics.

Table 3. Test instances used in the performance testing. The strategic scenario trees for instances
marked with an asterisk are unbalanced. Their structure is explained in [1].

Instance Strategic # Nodes at # Strategic # Vessel Types # Farms
Name Uncertainty Each Stage Nodes (# Stations) (# Turbines)

D1 Deterministic (1) 1 4 (2) 2 (200)
D3 Deterministic (1, 1, 1) 3 4 (2) 2 (200)
D5 Deterministic (1, 1, 1, 1, 1) 5 4 (2) 2 (200)

D10 Deterministic (1, 1, 1, . . . , 1) 10 4 (2) 2 (200)
D25 Deterministic (1, 1, 1, . . . , 1) 25 4 (2) 2 (200)
F6 Farms (1, 2, 3) ∗ 6 4 (2) 3 (300)

F10 Farms (1, 3, 6) ∗ 10 4 (2) 3 (300)
F35 Farms (1, 3, 6, 10, 15) ∗ 35 4 (2) 3 (300)
F56 Farms (1, 5, 15, 35) ∗ 56 4 (2) 3 (300)
F56′ Farms (1, 3, 6, 10, 15, 21) ∗ 56 4 (2) 3 (300)
EP3 Electricity Price (1, 2) 3 4 (2) 2 (200)
EP4 Electricity Price (1, 3) 4 4 (2) 2 (200)
EP7 Electricity Price (1, 2, 4) 7 4 (2) 2 (200)
EP13 Electricity Price (1, 3, 9) 13 4 (2) 2 (200)
EP21 Electricity Price (1, 4, 16) 21 4 (2) 2 (200)
EP40 Electricity Price (1, 3, 9, 27) 40 4 (2) 2 (200)
EP63 Electricity Price (1, 2, 4, 8, 16, 32) 63 4 (2) 2 (200)
D1.2 Deterministic (1) 1 6 (3) 2 (200)
D3.2 Deterministic (1, 1, 1) 3 6 (3) 2 (200)
D5.2 Deterministic (1, 1, 1, 1, 1) 5 6 (3) 2 (200)

D10.2 Deterministic (1, 1, 1, . . . , 1) 10 6 (3) 2 (200)
D25.2 Deterministic (1, 1, 1, . . . , 1) 25 6 (3) 2 (200)
F6.2 Farms (1, 2, 3) ∗ 6 6 (3) 3 (300)

F10.2 Farms (1, 3, 6) ∗ 10 6 (3) 3 (300)
F35.2 Farms (1, 3, 6, 10, 15) ∗ 35 6 (3) 3 (300)
F56.2 Farms (1, 5, 15, 35) ∗ 56 6 (3) 3 (300)
F56’.2 Farms (1, 3, 6, 10, 15, 21) ∗ 56 6 (3) 3 (300)
EP3.2 Electricity Price (1, 2) 3 6 (3) 2 (200)
EP4.2 Electricity Price (1, 3) 4 6 (3) 2 (200)
EP7.2 Electricity Price (1, 2, 4) 7 6 (3) 2 (200)
EP13.2 Electricity Price (1, 3, 9) 13 6 (3) 2 (200)
EP40.2 Electricity Price (1, 3, 9, 27) 40 6 (3) 2 (200)
EP63.2 Electricity Price (1, 2, 4, 8, 16, 32) 63 6 (3) 2 (200)
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Both the TDG and the ANG were given a time limit of 2 h (7200 s), significantly less
than the 12 h given to the exact methods, in addition to the limit on the maximum number
of iterations. Table 4 shows the main results from running the TDG and ANG versions
of GRASP on the instances listed in Table 3. For each of TDG and ANG, we report the
total time used in seconds, and the difference between the best solution found by the
heuristic and the best known primal and dual bounds obtained by the exact methods by
Stålhane et al. [1]. The rightmost column compares the objective function values of the best
solutions found by ANG and TDG, with negative values indicating that ANG has found a
better solution.

Table 4. Solution values found by the GRASP.

TDG ANG ANG
Test Total Difference Difference Total Difference Difference vs.

Instance Time to Primal to Dual Time to Primal to Dual TDG
(s) (%) (%) (s) (%) (%) (%)

D1 2 0.8 0.8 2 0.8 0.8 0.0
D3 6 1.3 1.4 6 1.3 1.4 0.0
D5 11 3.2 3.5 11 2.2 2.5 −0.9
D10 21 2.1 2.7 27 1.1 1.7 −1.0
D25 102 −3.6 15.9 144 −4.5 14.8 −1.0
F6 27 1.7 2.3 28 1.3 2.0 −0.3
F10 35 −10.6 2.5 42 −10.6 2.5 0.0
F35 204 −91.9 13.9 786 −92.0 12.2 −1.4
F56 305 NA NA 6848 NA NA 0.0
F56’ 401 NA NA 5221 NA NA −1.3
EP3 6 1.1 1.6 7 1.1 1.6 0.0
EP4 7 1.2 1.5 9 1.2 1.5 0.0
EP7 13 1.1 1.5 15 1.1 1.5 0.0

EP13 24 1.4 2.2 42 1.4 2.2 0.0
EP21 46 −4.7 13.3 94 −4.7 13.3 0.0
EP40 101 −90.9 11.6 851 −90.9 11.6 0.0
EP63 236 NA NA 7200 NA NA −0.9
D1.2 3 0.7 0.9 4 0.7 0.9 0.0
D3.2 11 0.7 1.0 17 0.7 1.0 0.0
D5.2 26 2.1 2.5 29 1.2 1.6 −0.9

D10.2 45 1.4 2.2 68 0.9 1.7 −0.5
D25.2 326 −15.4 15.4 407 −16.9 13.3 −1.8
F6.2 46 0.0 3.1 48 −0.8 2.2 −0.8
F10.2 84 −16.7 11.0 107 −16.7 11.0 0.0
F35.2 626 −95.3 14.1 1990 −95.4 12.5 −1.4
F56.2 745 NA NA 7200 NA NA 0.0
F56’.2 1032 NA NA 7200 NA NA −1.5
EP3.2 12 0.8 1.7 10 0.8 1.7 0.0
EP4.2 18 0.7 1.0 17 0.7 1.0 0.0
EP7.2 27 0.6 1.4 35 0.6 1.4 0.0

EP13.2 60 0.9 2.4 91 0.9 2.4 0.0
EP40.2 295 −26.4 14.5 1968 −26.4 14.5 0.0
EP63.2 866 NA NA 7200 NA NA −0.9

Table 4 shows that the TDG and the ANG are both able to find feasible solutions to all
of the instances tested, within the two-hour time limit. Hence, they enable solving much
larger instances than the exact methods can handle, with a much smaller computational
budget. Out of the 27 instances for which the exact methods find a feasible solution, GRASP
identifies better solutions for the ten largest test instances, improving the objective function
values by between 0.8% and 95.4%. However, for the 17 smallest instances, applying the
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GRASP leads to slightly worse solutions, with up to 2.2% increased cost compared to the
exact methods.

For the test instances where the exact methods provide a lower bound, making it
possible to calculate an optimality gap, the solutions found by the GRASP are within 15.9%
of optimality. This is a large gap, but the dual bounds found by the exact methods are
likely to be poor for the larger instances. Hence, a large difference to the lower bound for
the GRASP solution does not imply that the solution found is necessarily much worse than
an optimal solution.

The ANG finds better solutions than the TDG for 14 of 33 instance, whereas the TDG
does not find better solutions than the ANG for any instance. However, the differences
in the objective function values found by the two solution methods are relatively small,
ranging from 0.0 to 1.8%. The difference in computational time is insignificant for instances
with few strategic nodes. However, TDG is much faster than the ANG for some of the
larger instances.

To conclude, the GRASP outperforms the exact methods both in terms of solution
quality and solution time when solving the DLPOW. That is, for all but the smallest
instances, which are the least realistic instances in terms of size, the solutions found by
the GRASP are better than those of the exact solution methods. The two GRASP variants
have similar performances, but while ANG finds slightly better solutions than TDG for
some instances, the computational effort required by the ANG is larger than for TDG when
considering large instances. Both GRASP versions are thus considered as providing a
promising performance.

5. Concluding Remarks

This work studied a strategic fleet size and mix problem for conducting maintenance at
offshore wind farms. The dual-level fleet size and mix problem for conducting maintenance
at offshore wind farms (DLPOW) was defined by Stålhane et al. [1], and accounts for both
short-term operational uncertainty and long-term strategic uncertainty by combining
decisions with two different timescales in a dual-level stochastic optimization model.
Solving the DLPOW can support wind farm owners when making strategic decisions
regarding vessels to charter in the long-term and short-term, in order to meet the demands
for maintenance throughout a wind farm’s lifetime. The DLPOW also takes into account the
cost of deploying the fleet to perform maintenance activities in light of uncertain demand
for maintenance and uncertain weather conditions.

Previous work used a standard MIP solver directly on a mathematical formulation of
the DLPOW, as well as an ad hoc integer L-shaped method [1]. Extensive tests showed that
the exact methods are impractical to use except when solving small problem instances.

Therefore, we developed a heuristic solution method based on GRASP to provide
approximate solutions of the DLPOW. Our reactive GRASP heuristic is designed to exploit
the block-separable structure of the problem at hand, which then decomposes into a
master problem and a set of independent subproblems. The heuristic constructs strategic
fleet size and mix solutions to solve the master problem, and a simple embedded fleet
deployment heuristic is used to solve the subproblems of operational fleet deployment,
thereby providing an objective function value for a given fleet size and mix solution. Two
versions of the reactive GRASP were developed, with a top-down version being more
restricted in terms of constructing solutions than an any-node version.

Extensive testing was conducted. Independent testing of the embedded fleet deploy-
ment heuristic showed that the heuristic performs well for its use, being able to rank
different fleet size and mix solutions in approximately the same order as when using an
MIP solver and finding deployment decisions that are close to optimal in terms of cost.

Parameter tuning for the reactive GRASP showed that the method is robust with
respect to parameter values. The performance of the GRASP was compared to the best
solutions obtained by two exact methods that were given a higher computational budget.
Test results indicated that the GRASP consistently produces high-quality solutions for the
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DLPOW. The GRASP, compared to the exact methods, identifies much better fleet size and
mix solutions for all but the smallest test instances.

While the proposed solution method is based exclusively on GRASP, with no local
search component, there could be ways to exploit local search to improve the overall search
when solving problems based on a scenario tree structure. The important decisions are
the here-and-now decisions, while the other decisions at other nodes than the root node
are mainly important for evaluating the quality of the here-and-now decisions. Therefore,
we propose a local search that examines small changes in the decisions in the root node
only. Since these changes are disruptive, to evaluate a neighboring solution, GRASP could
be used to construct the solution below the root node in the scenario tree. This could be
more effective than simply using GRASP from scratch each time. However, we leave this
as future research.
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