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Abstract
The Barker Hypothesis posits that adverse intrauterine environments result in fetal growth restriction and increased risk 
of cardiometabolic disease through developmental compensations. Here we introduce a new statistical model using the 
genomic SEM software that is capable of simultaneously partitioning the genetic covariation between birthweight and 
cardiometabolic traits into maternally mediated and offspring mediated contributions. We model the covariance between 
birthweight and later life outcomes, such as blood pressure, non-fasting glucose, blood lipids and body mass index in the 
Norwegian HUNT study, consisting of 15,261 mother-eldest offspring pairs with genetic and phenotypic data. Application 
of this model showed some evidence for maternally mediated effects of systolic blood pressure on offspring birthweight, 
and pleiotropy between birthweight and non-fasting glucose mediated through the offspring genome. This underscores 
the importance of genetic links between birthweight and cardiometabolic phenotypes and offer alternative explanations to 
environmentally based hypotheses for the phenotypic correlation between these variables.

Keywords  Birthweight · Maternal genetic effect · Offspring genetic effect · Genomic SEM · Developmental Origin of 
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Introduction

There is a robust and well-documented relationship between 
lower birthweight and higher risk of cardiometabolic dis-
eases like type 2 diabetes (T2D) and cardiovascular disease 
in later life. The Barker Hypothesis posits that adverse intra-
uterine environments result in fetal growth restriction and 
increased future risk of cardiometabolic disease through 
developmental compensations [1]. Evidence in favour of 
this theory has primarily come from observational epidemi-
ological studies (which are susceptible to confounding, bias 
and reverse causality) [2–8]. However, because randomized 
controlled trials (RCTs) cannot realistically be performed 
in this context, definitive proof of the hypothesis in humans 
has been lacking.

In late 2016, the Early Growth Genetics (EGG) Consor-
tium published a GWAS of birthweight using the UK Bio-
bank (UKBB) and several birth cohorts from around the 
world [9]. This study increased the number of known loci 
for birthweight from 7 to 60 and provided important insights 
into the aetiology of the trait including the involvement of 
several type 2 diabetes and blood pressure associated vari-
ants. However, one of the most striking findings from the 
study was the demonstration that the well-known negative 
phenotypic correlation between birthweight and future risk 
of cardiometabolic disease [1] was in fact primarily medi-
ated by genetic factors [9]. This finding is important because 
many theories concerning the origin of this relationship, like 
the Barker Hypothesis, have primarily focused on the role 
of environmental factors (i.e. growth restriction in utero as 
a consequence of nutritional deficiency causes long term 
developmental compensations that result in increased risk 
of cardiometabolic disease in later life), whereas the EGG 
study confirmed a major role for genetics in the genesis of 
this relationship.

Despite these surprising findings, the Horokoshi et al. 
(2016) [9] results are not necessarily inconsistent with envi-
ronmental based hypotheses like Barker, since genetic cor-
relations between birthweight and cardiometabolic disease 
could also arise through the maternal genome (i.e. which in 
turn influences the in utero environment). Indeed, in order 
to properly understand the meaning of the Horokoshi et 
al. (2016) [9] results, it is necessary to devise methods to 
partition genetic effects on birthweight (and cardiometa-
bolic phenotypes) into maternal and offspring sources of 
variation.

Two years later, Warrington et al. published one such 
method based on structural equation modelling (SEM) [10] 
and applied this method to the analysis of own birthweight 
and offspring birthweight from > 320,000 individuals and 
> 230,000 mothers from the UK Biobank and EGG Consor-
tium [11]. The authors then used these partitioned estimates 

of maternal and offspring genetic effects on birthweight in 
an LD score regression analysis [12, 13] to estimate the 
genetic correlation between own/offspring birthweight and 
cardiometabolic traits and diseases. Interestingly, the authors 
found evidence for a positive genetic correlation between 
many glucose-related parameters (e.g. fasting glucose, fast-
ing insulin etc.) and maternal effects on birthweight, and a 
negative genetic correlation between glycemic parameters 
and offspring effects on birthweight [11]. These results are 
more consistent with a Fetal Insulin Hypothesis model of 
the relationship between birthweight and cardiometabolic 
disease, which posits that the same genetic factors that alter 
intrauterine growth also affect future risk of disease [14] 
(i.e. diabetes risk alleles in the mother result in higher levels 
of circulating glucose tending to increase offspring birth-
weight, whereas many of the same loci in the fetus decrease 
sensitivity to insulin, tending to decrease offspring birth-
weight, and predisposing the child to T2D in later life), than 
a Barker type model.

Nevertheless, whilst these results are interesting, they are 
not definitive. Although the authors were able to partition 
genetic effects on birthweight into maternal and offspring 
genetic effects, they did not do the same for cardiometa-
bolic traits [11], whose GWAS summary results statistics 
may reflect a complicated mixture of maternal and offspring 
mediated components. In this manuscript, we introduce 
a new statistical model using the genomic SEM software 
[15], which is capable of simultaneously partitioning the 
genetic covariation between birthweight and cardiometa-
bolic traits into maternally mediated and offspring mediated 
contributions (Fig. 1). We subsequently model the covari-
ance between birthweight and later life outcomes, such as 
blood pressure, non-fasting glucose, blood lipids and body 
mass index (BMI) in the Trøndelag Health Study (HUNT), 
Norway [16]. The HUNT Study may be informative for 
investigating these relationships as it has a large number of 
mother-offspring pairs with genetic and phenotypic data and 
has offspring who are now are at an age where adverse val-
ues on cardiometabolic risk factors are beginning to become 
clinically apparent.

Methods

HUNT Study

The HUNT is a large population-based health study of the 
inhabitants of Trøndelag County in central Norway which 
commenced in 1984. A comprehensive description of the 
study population has been previously reported [16]. Approx-
imately every 10 years the entire adult population of north-
ern Trøndelag (~ 90,000 adults in 1995) is invited to attend a 

1 3



Behavior Genetics

health survey which includes comprehensive questionnaires, 
an interview, clinical examination, and detailed phenotypic 
measurements (HUNT1 (1984 to 1986); HUNT2 (1995 to 
1997); HUNT3 (2006 to 2008) and HUNT4 (2017 to 2019)). 
These surveys have high participation, with 89%, 69%, 54% 
and 54% of invited adults participating in HUNT1, 2, 3 and 
4, respectively [16, 17]. Additional phenotypic information 
is collected by integrating national registers. Approximately 
90% of participants from HUNT2 and HUNT3 were geno-
typed in 2015 [18], 2202 HUNT individuals had low-pass 
sequencing performed to improve imputation, and the geno-
type and phenotype data used in the subsequent analyses are 
exclusively from the HUNT2 and HUNT3 surveys.

Genotyping, Quality Control and Imputation

Genotyping, quality control and imputation in the HUNT 
study have been described in detail elsewhere [19]. In short, 
DNA from 71,860 HUNT samples were genotyped using 
one of three different Illumina HumanCoreExome arrays 
(HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 
and UM HUNT Biobank v1.0). Genomic position, strand 
orientation and the reference allele of genotyped vari-
ants were determined by aligning their probe sequences 
against the human genome (Genome Reference Consortium 

Human genome build 37 and revised Cambridge Refer-
ence Sequence of the human mitochondrial DNA; http://
genome.ucsc.edu) using BLAT [20]. Ancestry of all samples 
was inferred by projecting all genotyped samples into the 
space of the principal components of the Human Genome 
Diversity Project (HGDP) reference panel (938 unrelated 
individuals; downloaded from http://csg.sph.umich.edu/
chaolong/LASER/) [21, 22], using PLINK v1.90 [23]. The 
resulting genotype data were phased using Eagle2 v2.3 [24]. 
Imputation was performed on the 69,716 samples of recent 
European ancestry using Minimac3 (v2.0.1, http://genome.
sph.umich.edu/wiki/Minimac3) [25] with default settings 
(2.5 Mb reference based chunking with 500 kb windows) 
and a customized Haplotype Reference consortium release 
1.1 (HRC v1.1) for autosomal variants, including 2202 
HUNT low-pass genomes, and HRC v1.1 for chromosome 
X variants [26].

Identifying Genotyped Mother-Offspring Pairs

Identification of genotyped mother-offspring pairs has previ-
ously been described in detail [27]. In short, plink files with 
genotyped SNPs underwent a second stage of cleaning. Any 
individuals whose inferred sex contradicted their reported 
gender (N = 348) as well as individuals showing high or 

Fig. 1  Genomic SEM model. Summary results statistics from two 
birthweight GWAS (BW) and two later-life trait GWAS (squares), in 
this case systolic blood pressure (SBP), are modelled in terms of latent 
variables representing the fetal genome and the maternal genome (cir-
cles). The lower part of this model reflects simple biometrical genet-
ics principles (i.e. the fact that offspring and maternal genome are 
correlated 0.5) and consists of path coefficients fixed to the value of 
one or one half. The top half of the model consists of free parameters 

requiring estimation- four SNP heritabilities (one for each trait), and 
six genetic covariances between the different variables, representing 
commonalities in gene action across the maternal and fetal genomes. It 
is these covariance terms (particularly the covariances involving birth-
weight – cardiometabolic terms) that are of most interest for dissect-
ing the negative correlation between birthweight and cardiometabolic 
risk factors. For example, a significant genetic covariance between the 
latent maternal BW and maternal SBP variables would be consistent 
with Barker Hypothesis type mechanisms
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N = 2,138 birth who were induced or performed by Cesar-
ean-section). Additionally, the birthweight phenotypes 
were cleaned so that any birthweights under 1000 g were 
removed, as were any offspring born before 258 days of ges-
tation or after 301 days of gestation. Lastly, birthweight was 
transformed to a Z-score before analysis.

Later Life Cardiometabolic Traits

During the four health surveys (HUNT1-4) [16] clinical 
examination, and detailed phenotypic measurements were 
performed on all participants. For all cardiometabolic risk 
factors in the offspring (BMI, systolic blood pressure (SBP), 
diastolic blood pressure (DBP), non-fasting glucose (Glu-
cose), total cholesterol, high density lipoprotein (HDL) 
cholesterol, low density lipoprotein (LDL) cholesterol, and 
triglycerides), the values measured in HUNT3 were used 
if available. If the individuals were not a part of HUNT3, 
measurements from HUNT2 were used. Age at measure-
ment was calculated to correspond with the age at the health 
survey chosen. Details regarding the phenotype measure-
ment have been described in-depth previously [27]. In short, 
blood pressure was taken three times during the clinical 
examination, and SBP and DBP measurements were calcu-
lated as the average of the second and third measurements 
(second measurement was used if third not available). For 
the blood measurements, samples were taken from non-fast-
ing participants. In HUNT3, participants’ total cholesterol 
was measured by enzymatic cholesterol esterase methodol-
ogy; HDL cholesterol was measured by accelerator selec-
tive detergent methodology; triglycerides were measured by 
glycerol phosphate oxidase methodology; and glucose was 
measured by Hexokinase/G-6-PDH methodology (Abbott, 
Clinical Chemistry, USA). In HUNT2, participants’ total 
and HDL cholesterol and triglycerides were measured by 
applying enzymatic colorimetric cholesterol esterase meth-
ods (Boeheringer Mannheim, Mannheim, Germany) and 
glucose was measured by an enzymatic hexokinase method. 
Weight and height were measured in light clothes and BMI 
was calculated as weight (kilograms) divided by the squared 
value of height (in metres).

We adjusted the blood pressure measurements of indi-
viduals who self-reported using blood pressure lowering 
medication by adding 15 mmHg to their SBP and 10 mmHg 
to their DBP [31]. LDL cholesterol was calculated using the 
Friedewald formula [32]. All values more than 4 standard 
deviations from the mean were removed. If the variable 
was not normally distributed (HDL, triglycerides, BMI, 
and non-fasting glucose) the values were natural log trans-
formed before removing outlying values.

low heterozygosity (+/- 5SD from the mean) (N = 412) were 
removed (760 individuals in total). In addition, variants with 
minor allele frequency < 0.005 or more than 5% missing rate 
were removed. Mother-offspring pairs were identified by 
kinship analysis using the KING software [28]. Only geno-
typed SNPs shared across the arrays on autosomal chromo-
somes were used for the analysis – a total of 257,488 SNPs. 
From the kinship analysis, 46,428 parent-offspring relation-
ships were identified based on the recommended thresholds 
for relatedness implemented as part of this package [28]. 
Parent-offspring pairs and sibling pairs were distinguished 
according to their estimated probability of sharing zero 
alleles identical by decent (π̂0). This quantity was esti-
mated using the KING software [28] which uses an infer-
ence threshold of π̂0 < 0.1 to distinguish parent-offspring 
pairs from full sibling pairs who are expected to have 0.1 
≤ π̂0 ≤  0.365. Sex of the older individual was used to iden-
tify mother-offspring pairs, and any mother-offspring pair 
whose birth years were 15 years or less apart was removed 
from further analyses. A total of 26,057 mother-offspring 
pairs of European ancestry with genotype information pass-
ing QC were identified. There were several mothers with 
multiple offspring, so we selected the eldest offspring for the 
following analyses to ensure independence between obser-
vations (N = 15,261 pairs).

Phenotypes

Birthweight

Individuals’ own birthweight and mothers reporting off-
spring birthweight were available for individuals in HUNT 
after linking with the Medical Birth Registry of Norway 
(MBRN) [29]. The registry commenced in 1967, when 
health authorities began reporting pregnancy-related data; 
therefore, birthweight measurements were only available 
for HUNT participants born in 1967 or later. The validity of 
birthweight information in the MBRN has previously been 
assessed as very good. One study reported high agreement 
between birthweight recorded in the MBRN and a selec-
tion of 786 HUNT women with matched hospital records, 
including 100% concordance between births classified as 
low (< 2500 g) or high birthweight (> 4500 g) [30]. Individu-
als in HUNT with own birthweight who reported in the reg-
istry to be a part of a multiple birth (210 twins and 4 triplets) 
were excluded from analyses. Additionally, we excluded 
individuals with congenital malformations (N = 317) and 
individuals where the birth was induced or performed by 
Cesarian-section (N = 2,488). The same exclusion criteria 
were applied to mothers (in the 26,057 mother-offspring 
pairs) with offspring birthweight recorded (N = 1,585 multi-
ple births, N = 1,959 offspring with congenital malformation, 
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Scores from a European population provided by the original 
developers of LD score regression [36], using HapMap 3 
SNPs with the MHC region excluded. It is important to real-
ize that in contrast to the phenotypic correlations, estimates 
of the genetic correlation between birthweight and the later 
life traits effectively use data from all individuals with either 
birthweight or cardiometabolic information (or both mea-
sures). Thus, estimates of the genetic correlation/covariance 
between birthweight and later life traits will include many 
more individuals of advanced age than represented in the 
HUNT phenotypic correlation analyses.

Genomic SEM

The Genomic SEM method [15] involves two stages. In 
the first stage, LD score regression methods using pre-
computed LD Scores from a European population provided 
by the original developers of LD score regression [36] are 
applied to GWAS summary results statistics to estimate the 
genetic variance of each trait, and the genetic covariance 
between traits. In LD score regression, chi-square results for 
each SNP are regressed on their corresponding LD score (a 
measure of how many SNPs are in LD with the index SNP). 
The genetic variance of the trait is related to the slope from 
this regression [12]. Likewise, genetic covariances between 
traits can be estimated using bivariate LD score regression 
[36], where the product of chi-square terms for each SNP is 
regressed on the LD score for each SNP. In the second stage 
of genomic SEM, a user defined SEM is fit to the genetic 
covariance matrix and parameters and their standard errors 
are estimated.

The genomic structural equation model we used to 
partition genetic covariances into maternal and offspring 
components is displayed in Fig.  1 (using birthweight and 
systolic blood pressure as an exemplar). Results from two 
birthweight GWAS and two later-life trait GWAS (squares) 
were modelled in terms of latent maternal and offspring 
genetic variables (circles). The lower part of this model 
reflects simple biometrical genetics principles (i.e. the fact 
that offspring and maternal genome are correlated 0.5) 
and consists of path coefficients fixed to the value one or 
one half. The top half of the model consists of free param-
eters requiring estimation- four SNP heritabilities (one for 
each trait), and six genetic covariances between the vari-
ables, representing commonalities in genetic action across 
the maternal and offspring genomes. It is these covariance 
terms (particularly the covariances involving birthweight 
– cardiometabolic traits) that are of most interest for dis-
secting the purported negative correlation between birth-
weight and cardiometabolic risk factors. For example, a 
substantial negative genetic covariance between the latent 
genetic factor proxying “own birthweight” and the latent 

Phenotypic Correlations

Phenotypic correlations between individuals’ own birth-
weight and their eight later life traits were estimated using 
Pearson correlation coefficients. Individuals who had both 
birthweight and the later life trait available contributed to 
these analyses (N = 10,066). However, because the birth 
registry commenced in 1967, when health authorities began 
reporting pregnancy-related data, most of the individuals for 
whom both measures were available were young. We there-
fore also specifically calculated correlations in a subgroup 
of individuals who were 40 years or older (N = 512) on the 
basis that they were more likely to exhibit signs of cardio-
metabolic disease and therefore the magnitude of the nega-
tive correlation with birthweight might be larger.

Genome-Wide Association Analysis

In the HUNT study, 16 GWAS were performed across eight 
cardiometabolic phenotypes (either individual’s own geno-
type and phenotype, or GWAS of maternal genotype and 
offspring phenotype; phenotypes included SBP, DBP, Glu-
cose, BMI, LDL, HDL, triglycerides and total cholesterol) 
in addition to a GWAS of own birthweight and a GWAS of 
offspring birthweight. Linear mixed models were fit using 
BOLT-LMM [33] to account for the considerable cryptic 
relatedness within the HUNT population. Offspring sex and 
genotype batch were used as covariates, in addition to age at 
measurement for the later life phenotypes.

GWAS Meta-Analysis of Birthweight

Because of the limited number of individuals in the HUNT 
study with birthweight information, we meta-analysed the 
HUNT GWAS of own birthweight (N = 10,066) and off-
spring birthweight (N = 23,688) with previously published 
GWAS summary results statistics from the Early Growth 
Genetics (EGG) Consortium (own birthweight N = 298,142, 
offspring birthweight N = 210,267) [11]. We combined the 
summary results statistics from the EGG meta-analysis with 
the HUNT summary results statistics using a fixed-effects 
meta-analysis using METAL [34] and performed the sub-
sequent LD score regression analysis and genomic SEM 
analysis with these combined summary results statistics.

LD Score Regression

To estimate the SNP-heritability and genetic correlation of 
the traits we used the CTG-VL platform [35]. All summary 
results statistics from the above mentioned GWAS were 
uploaded to the server and SNP-heritability and genetic cor-
relations were calculated. CTG-VL uses pre-computed LD 
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proxy of offspring genotype to estimate direct fetal (indi-
rect maternal) genetic effects- otherwise estimates of SNP 
heritability may be biased downwards (see de la Fuente et 
al. 2022 [37] and Supplementary Note 1 for a more detailed 
discussion of this point). In contrast, our model fitted using 
genomicSEM accounts for this concern and should produce 
asymptotically unbiased estimates of SNP heritability and 
genetic correlations arising from maternal and fetal genetic 
sources of variation. It is important to note that this partition-
ing of the estimated genetic covariance matrix into mater-
nal and fetal components is a prerequisite to examining the 
potential existence of Barker hypothesis consistent mecha-
nisms (i.e. which posit the existence of maternal effects on 
offspring birthweight and offspring cardiometabolic physi-
ology) using genetic correlations and covariances.

Summary results statistics files from the GWASs 
described above were combined using genomic SEM [15]. 
The software was set to not exclude INDELs. Code for the 
model specified in the analysis is available in Supplemen-
tary Note 2.

Results

Both the full HUNT cohort and offspring in the mother-off-
spring pairs consisted of 47.3% males (Table 2). Our GWAS 
analysis consisted of either the full HUNT study (N = 68,856 
after genotype cleaning) for the own phenotype analysis or 
N = 15,261 mothers (genotype) with offspring phenotype for 
the offspring phenotype analysis. The exact sample size for 
each GWAS is shown in Table 2. Manhattan plots, and QQ 
plots for each of the 18 GWAS are shown in Supplementary 
Note 3, and genomic inflation factors along with univariate 
LD score regression intercepts are listed in Supplementary 
Table 1. To ensure that our GWAS results were consistent 
with previous GWAS in larger samples, we identified (up 
to) the top 10 genome-wide significant hits (after clumping 
r2 < 0.05, using a European reference panel [35]) for each 
trait and confirmed association in previous GWAS (Supple-
mentary Table 2). Across all traits, SNPs that were known to 
be robustly associated with the trait of interest met the crite-
ria for genome-wide significance in HUNT, consistent with 
the phenotyping and genotyping/imputation of the HUNT 
study being of high quality.

The magnitude of the phenotypic correlation between 
individuals’ own birthweight and own later life traits 
(N = 10,066, average age of 30.54 years) was low (although 
p < 0.05 for all traits except SBP and triglycerides, Table 3). 
However, it is important to realise that these correlations 
primarily reflect the association between birthweight and 
cardiometabolic phenotypes in younger individuals, as 
information on birthweight was only available for HUNT 

genetic factor proxying “own cardiometabolic trait” (σBW, 

SBP) would emphasize the importance of genetic pleiotropy 
through an individual’s genome in the genesis of the cor-
relation between birthweight and cardiometabolic risk fac-
tors. In contrast, a substantial genetic covariance between 
the latent genetic factor proxying “offspring birthweight” 
and the latent genetic factor proxying “offspring cardio-
metabolic risk factors” (σBW_M, SBP_M), would point to the 
importance of maternal intrauterine influences and would be 
consistent with Barker Hypothesis type mechanisms. These 
different possibilities are described more in Table 1.

It is important to realise that fitting a complicated SEM 
like the one in Fig. 1 is necessary to obtain asymptotically 
unbiased estimates of SNP heritabilities and genetic correla-
tions. The reason is that GWAS of perinatal (and potentially 
cardiometabolic) traits represent a complicated mixture of 
maternal and offspring genetic effects. Our SEM disentan-
gles these effects from each contributing GWAS. In con-
trast, the model underlying LD Score regression makes no 
allowance for this complication, and so naïve use will lead 
to biased estimates of SNP heritability and genetic correla-
tions containing an unknown mixture of maternal and fetal 
effects. Additionally, maternal (fetal) GWAS need to be cor-
rected (either implicitly or explicitly) for the decrement in 
power that arises from using maternal (fetal) genotype as a 

Table 1  Explanation of genetic covariances in the genomic SEM
Latent factors contributing 
to genetic covariance

Putative Explanation

Fetal Genome (BW) – 
Maternal Genome (BW_M) 
(σBW,BW_M)

Genetic variants that directly affect 
one’s own BW, when present in moth-
ers, also affect their offspring’s BW.

Fetal Genome (SBP) 
– Maternal Genome 
(SBP_M) (σSBP,SBP_M)

Genetic variants that directly affect 
one’s own SBP, when present in 
mothers, also affect their offspring’s 
SBP.

Fetal Genome (BW) – Fetal 
Genome (SBP) (σBW,SBP)

Genetic pleiotropy (through the 
fetal genome). Genetic variants that 
directly affect one’s own BW also 
directly affect one’s own SBP.

Maternal Genome (BW_M) 
– Maternal Genome 
(SBP_M) (σBW_M,SBP_M)

Genetic pleiotropy through the 
maternal genome. Genetic variants in 
the maternal genome affect both their 
offspring’s BW and their offspring’s 
SBP. A significant component is con-
sistent with the Barker Hypothesis.

Fetal Genome (BW) 
– Maternal Genome 
(SBP_M) (σBW,SBP_M)

Genetic variants that directly affect 
one’s own BW, when present in moth-
ers, also affect their offspring’s SBP.

Fetal Genome (SBP)-
Maternal Genome (BW_M) 
(σSBP,BW_M)

Genetic variants that directly affect 
one’s own SBP, when present in moth-
ers, also affect their offspring’s BW. 
Consistent with a causal effect of mater-
nal SBP on offspring BW.

*We have chosen SBP as a model trait to make the explanations more 
concrete. BW: birthweight; BW_M offspring birthweight; SBP: Sys-
tolic Blood Pressure; SBP_M Offspring systolic blood pressure
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SNP heritability for the “offspring” phenotypes. This result 
is surprising- given that maternal and offspring genotypes 
are correlated approximately 0.5, we would expect a priori 
that the maternal signal would proxy the offspring signal 
(even in the absence of genuine maternal effects) as we 
are not estimating maternal genetic effects conditional on 
offspring genetic effects in this analysis (in Supplementary 
Note 1 we show that approximately four times the sample 
size is required to detect a locus that acts directly through 
an individual’s own genome on their own phenotype by 
regressing offspring phenotype on maternal genotype with 
equivalent statistical power to regressing own phenotype on 
own genotype). Although some offspring phenotypes (BMI, 
total cholesterol and triglycerides) had significant evidence 
of heritability (p < 0.05), the Z scores for the test of herita-
bility did not exceed Z > 4. The authors of LD score regres-
sion suggest that a Z score of 4 for SNP-heritability is a 
minimum threshold to obtain reliable estimates of genetic 
correlations, and consequently suggests that our sample of 

participants born in 1967 or later. As adverse cardiometa-
bolic changes typically clinically manifest in middle and 
old age, we were concerned that this ascertainment might 
have artificially depressed the magnitude of the phenotypic 
correlations presented in Table 3. We therefore stratified the 
HUNT sample on age and recalculated the phenotypic corre-
lations in a subset of older individuals (N = 512; Age range: 
40 to 41.1; Mean: 40.5 years). As expected, the magnitude 
of many of the correlations increased accordingly, with the 
data showing the expected negative correlations between 
birthweight and many cardiometabolic traits and a positive 
correlation with BMI, even though the correlations did not 
meet the criterion for statistical significance (p < 0.05) in the 
smaller sample (Table 3).

There was strong evidence of heritability, estimated by 
LD score regression, for “own” phenotype, with SNP heri-
tability estimates ranging between 3% (non-fasting glu-
cose) and 20% (HDL, BMI) (Table 4). However, except for 
offspring birthweight, there was only limited evidence of 

Table 2  Descriptive statistics of subset of study participants in the HUNT study used in the analyses
Own phenotype Offspring phenotype

Trait Unit N Range Mean (SD) N Range Mean (SD)
Birthweight* grams 10,066 1390–5900 3554 (486) 23,688 1370–5900 3670 (491)
SBP mmHg 68,781 60–238 137.5 (23.37) 15,186 70–218 128.4 

(17.61)
DBP mmHg 68,793 36–138 77.93 (13.54) 15,183 36–128 73.57 

(12.00)
Glucose mmol/La 67,378 2.29–12.81 5.42 (1.21) 14,873 2.29–12.81 5.21 (1.19)
BMI kg/m2a 68,595 14.89–50.40 26.58 (1.17) 15,192 15.80–49.40 26.31 

(1.18)
LDL mmol/L 67,909 0.65–9.38 3.95 (1.11) 14,926 0.82–9.38 3.63 (1.00)
HDL mmol/La 68,007 0.50–2.90 1.34 (0.35) 14,941 0.50–2.80 1.33 (0.33)
Triglycerides mmol/La 68,806 0.18–12.81 1.46 (1.70) 15,175 0.20–11.70 1.35 (1.72)
Total cholesterol mmol/L 68,096 1.30–10.90 5.64 (1.19) 14,954 2.00-10.90 5.28 (1.08)
Age Years 68,856 19.1-101.1 53.62 (17.41) 15,261 30.4–83.2 41.53 (13.38)
HUNT: Trøndelag Health Study; mmHg: millimeters of mercury; mmol/L: millimoles per litre; N: number of individuals; SD: standard devia-
tion; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; Glucose: Non-fasting Glucose; BMI: Body Mass Index; LDL: Low Density 
Lipoprotein; HDL: High Density Lipoprotein. aPhenotype (natural) logarithm transformed in analyses but presented in untransformed units 
here. *Genome-wide association study of birthweight was performed on Z-score

Table 3  Phenotypic correlation between birthweight and later life traits
Individuals over 40 years old All HUNT individuals

Trait N Correlation 
coefficient

p-value N Correlation 
coefficient

p-value

SBP 511 -0.076 0.085 10,024 0.003 0.763
DBP 511 -0.031 0.480 10,024 -0.027 0.008
Glucose 495 -0.062 0.165 9,852 -0.032 0.002
BMI 511 0.053 0.227 10,032 0.051 3.43 × 10− 7

LDL 498 -0.026 0.562 9,872 -0.018 0.071
HDL 498 -0.039 0.380 9,882 -0.034 0.001
Triglycerides 510 -0.044 0.317 10,021 -0.002 0.849
Total Cholesterol 498 -0.048 0.288 9,885 -0.03 0.003
HUNT: Trøndelag Health Study; N: number of individuals; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; Glucose: Non-fasting 
Glucose; BMI: Body Mass Index; LDL: Low Density Lipoprotein; HDL High Density Lipoprotein
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Nevertheless, Table  5 presents estimates of the genetic 
correlation between own/offspring birthweight and own 
and offspring cardiometabolic traits. There was evidence 
of a negative genetic correlation between own/offspring 

HUNT mothers may not be large enough to effectively parti-
tion the genetic variance/covariance in the data between the 
different possible sources of variation.

Table 4  SNP based heritability for each of the traits included in the Genomic SEM models
Own Offspring

Trait h2 SE Z p-value h2 SE Z p-value
BW 0.089 0.005 19.261 0 0.093 0.005 18.980 < 2 × 10− 16

SBP 0.125 0.012 10.767 0 0.030 0.028 1.060 0.145
DBP 0.127 0.012 10.754 0 0.016 0.028 0.587 0.279
Glucose 0.037 0.008 4.357 6.59 × 10− 6 0.017 0.030 0.583 0.280
BMI 0.204 0.013 15.669 0 0.073 0.032 2.299 0.011
LDL 0.117 0.015 7.634 1.14 × 10− 14 0.044 0.030 1.490 0.068
HDL 0.204 0.032 6.448 5.67 × 10− 11 0.017 0.030 0.565 0.286
Triglycerides 0.152 0.024 6.409 7.31 × 10− 11 0.086 0.035 2.487 0.006
Total Cholesterol 0.114 0.014 8.246 0 0.057 0.030 1.929 0.027
* Note that these estimates of SNP heritability are likely to be biased because (in particular peri-natal) traits represent a complicated mixture of 
direct fetal and indirect maternal genetic effects. In addition, maternal (fetal) GWAS need to be corrected (either implicitly or explicitly) for the 
decrement in power that arises from using maternal (fetal) genotype as a proxy of offspring genotype to estimate direct fetal (indirect maternal) 
genetic effects- otherwise estimates of SNP heritability will be biased downwards (see de la Fuente et al. 2022 [37] and Supplementary Note 
1). Naïve LD score regression analyses do not take into account either of these issues when estimating SNP heritability. In contrast, our model 
fitted in genomicSEM accounts for both these concerns and should produce asymptotically unbiased estimates of SNP heritability due to both 
maternal and fetal sources of variation. SNP: Single Nucleotide Polymorphism; BW: Birthweight; SBP: Systolic Blood Pressure; DBP: Diastolic 
Blood Pressure; Glucose: Non-fasting Glucose; BMI: Body Mass Index; LDL: Low Density Lipoprotein; HDL: High Density Lipoprotein; h2: 
SNP based heritability; SE: Standard Error; Z: Z statistic

Table 5  Bivariate LD score regression estimates of the genetic correlation between own birthweight and own and offspring later life cardiometa-
bolic traits

Own Cardiometabolic Trait Offspring Cardiometabolic Trait
(a) Own BW
Trait rG SE Z p-value rG SE Z p-value
SBP -0.138 0.039 -3.580 3.00 × 10− 4 -0.109 0.146 -0.750 0.453
DBP -0.120 0.035 -3.442 0.001 -0.169 0.216 -0.783 0.434
Glucose -0.103 0.068 -1.513 0.130 0.045 0.186 0.244 0.808
BMI 0.140 0.026 5.303 1.14 × 10− 7 0.185 0.083 2.237 0.025
LDL 0.057 0.051 1.123 0.262 0.068 0.131 0.519 0.604
HDL -0.001 0.040 -0.025 0.980 -0.359 0.645 -0.557 0.578
Triglycerides -0.064 0.034 -1.878 0.060 0.032 0.074 0.435 0.664
Total cholesterol 0.027 0.043 0.613 0.540 0.009 0.102 0.093 0.926
(b) Offspring BW
Trait rG SE Z p-value rG SE Z p-value
SBP -0.243 0.041 -5.916 3.30 × 10− 9 -0.416 0.239 -1.738 0.082
DBP -0.151 0.044 -3.463 0.001 -0.341 0.332 -1.026 0.305
Glucose 0.077 0.078 0.987 0.324 0.008 0.168 0.046 0.964
BMI 0.123 0.033 3.785 2.00 × 10− 4 0.175 0.087 2.010 0.045
LDL 0.021 0.051 0.408 0.683 -0.034 0.127 -0.264 0.792
HDL 0.012 0.038 0.307 0.759 -0.597 1.094 -0.546 0.585
Triglycerides -0.055 0.038 -1.448 0.148 0.023 0.085 0.267 0.789
Total cholesterol 0.016 0.049 0.331 0.741 -0.088 0.104 -0.849 0.396
LD: Linkage Disequilibrium; BW: Birthweight; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; Glucose: Non-fasting Glucose; 
BMI: Body Mass Index; LDL: Low Density Lipoprotein; HDL: High Density Lipoprotein; rG: genetic correlation; SE: Standard Error; Z: Z 
statistic
LDL: Low Density Lipoprotein; HDL: High Density Lipoprotein
*95% confidence intervals on the genetic correlations were derived using the delta method. As genetic correlations are computed as functions 
of genetic covariances and variances, estimates of the sampling variance of the genetic correlation will include additional uncertainty from 
both genetic covariance and variances
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(Supplementary Table  4), and an unexpected negative 
covariance between the latent genetic factors indexing off-
spring birthweight and offspring HDL (Table 7). We have 
also included estimates of genetic correlations in these 
tables which may be easier to interpret than the raw genetic 
covariances.

Discussion

In this manuscript we introduce a new statistical model that 
is capable in theory of partitioning the genetic covariation 
between traits into maternal and offspring contributions. 
Our model builds upon previous work by our group and 
others that has demonstrated how the genetic variance in 
a trait can be informatively decomposed into maternal and 
offspring components [38–40]. These previous approaches 
used structural equation modeling of individual level 
genome-wide genotype data from mother-offspring pairs 
[39, 41]) or parent-child trios [40] to estimate maternal 
and offspring genetic variance components. In contrast, the 
present method uses genomic SEM [15] applied to sum-
mary results GWAS data to decompose genetic variation 

birthweight and own blood pressure, and evidence for a pos-
itive genetic correlation between own/offspring birthweight 
and both own and offspring BMI. The large standard errors 
of the genetic correlations involving the offspring cardio-
metabolic phenotypes underscore the difficulty in obtaining 
precise estimates of the (maternally mediated) genetic cova-
riance between birthweight and these later life phenotypes.

Genomic SEM Model

In principle, the Genomic SEM model allows us to parti-
tion the genetic covariance between traits into offspring and 
maternally mediated components. However, for most phe-
notype pairs, this partitioning was uninformative as shown 
by the wide 95% confidence intervals on the point estimates 
(Supplementary Tables 3–6). The exceptions were the nega-
tive genetic covariance between glucose and birthweight, 
which appeared to be at least partly mediated through the 
offspring genome (Table  6), the negative genetic covari-
ance between own systolic blood pressure and offspring 
birthweight, which was suggestive of a causal effect of 
maternal systolic blood pressure on offspring birthweight 

Table 6  Estimated genetic covariance between own birthweight and own cardiometabolic traits
Genetic Covariances Genetic Correlations*
Effect estimate Lower 95% CI Upper 95% CI Effect estimate Lower 95% CI Upper 95% CI

SBP -0.005 -0.018 0.009 -0.050 -0.283 0.184
DBP -0.007 -0.019 0.006 -0.071 -0.282 0.140
Glucose -0.014 -0.028 -0.001 -0.238 -0.608 0.131
BMI 0.013 -0.001 0.027 0.119 -0.059 0.298
HDL 0.001 -0.013 0.016 0.013 -0.178 0.205
LDL 0.002 -0.010 0.015 0.031 -0.251 0.314
Triglycerides -0.009 -0.021 0.004 -0.099 -0.334 0.137
Total cholesterol -0.002 -0.014 0.011 -0.024 -0.317 0.268
CI: Confidence interval; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; Glucose: Non-fasting Glucose; BMI: Body Mass Index;

Table 7  Estimated genetic covariance between offspring birthweight and offspring cardiometabolic traits
Genetic Covariances Genetic Correlations*
Effect 
estimate

Lower 
95% 
CI

Upper 
95% 
CI

Effect 
estimate

Lower 
95% 
CI

Upper 
95% 
CI

Offspring SBP -0.012 -0.032 0.007 -0.883 -1# 1#

Offspring DBP -0.005 -0.027 0.016 -0.547 -1# 1#

Offspring Glucose -0.007 -0.028 0.014 -0.132 -0.716 0.451
Offspring BMI 0.006 -0.017 0.029 0.184 -0.972 1#

Offspring HDL -0.024 -0.044 -0.003 -0.726 -1# 1#

Offspring LDL -0.006 -0.027 0.014 -0.276 -1# 1#

Offspring Triglycerides 0.002 -0.020 0.025 0.035 -0.396 0.465
Offspring Total cholesterol -0.013 -0.033 0.007 -0.390 -1# 1#

CI: Confidence interval; SBP: Systolic Blood Pressure; DBP: Diastolic Blood Pressure; Glucose: Non-fasting Glucose; BMI: Body Mass Index; 
LDL: Low Density Lipoprotein; HDL High Density Lipoprotein
*95% confidence intervals on the genetic correlations were derived using the delta method. As genetic correlations are computed as functions 
of genetic covariances and variances, estimates of the sampling variance of the genetic correlation will include additional uncertainty from both 
genetic covariance and variances. #The estimated confidence interval was out of bounds
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cardiometabolic changes develop over a long period time, 
with only minor variation in early adulthood and cumula-
tively more distinct patterns in later life. For example, in 
the UK Biobank study, genetic correlations between birth-
weight and cardiometabolic risk factors (where individuals 
are older on average than HUNT) appear to be much larger 
than in the present study (|r| > 0.2) [9, 11]. In this regard, 
there is an ongoing challenge of obtaining cohorts that 
include large numbers of maternal genotypes and offspring 
phenotypes (i.e. which are necessary to partition effects into 
maternal and offspring components) where the offspring are 
old enough to have developed cardiometabolic disease [41]. 
Statistical approaches where maternal/parental genotypes 
are imputed from (elderly) relative pairs provide a potential 
way to assuage this problem [47, 48].

It is noteworthy that the authors of LD score regression 
suggest that only traits that have strong evidence of SNP 
heritability (i.e. Z scores > 4) are likely to yield reliable esti-
mates of genetic correlations [36]. Whilst birthweight (i.e. 
own birthweight and offspring birthweight) and one’s own 
cardiometabolic phenotypes all exhibited strong evidence of 
SNP heritability, this was not the case for offspring cardio-
metabolic traits. Table 4 shows that the estimated SNP heri-
tability for the offspring cardiometabolic phenotypes was 
low (and the Z scores < 4), despite the expectation that these 
GWAS results should contain a signal for own genotype (i.e. 
since maternal genotype and offspring genotype are corre-
lated 0.5) regardless of whether there exists any genuine 
maternal genetic effects on offspring phenotype. The lack of 
strong genetic signals here suggests that our GWAS of off-
spring cardiometabolic traits may be underpowered and that 
we should be circumspect with respect to any conclusions 
drawn from our study.

These caveats aside, we did observe some weak evidence 
for a negative maternally mediated genetic covariance 
between offspring birthweight and offspring HDL, between 
SBP and offspring birthweight, and between glucose and 
own birthweight. A significant (negative) genetic covariance 
between SBP and offspring birthweight is consistent with 
a causal relationship between maternal SBP and offspring 
birthweight, which has been reported using Mendelian ran-
domization in several studies [11, 49]. Likewise, genetic 
pleiotropy through an individual’s own genome could fea-
sibly explain the negative genetic correlation between glu-
cose and own birthweight (i.e. alleles which predispose to 
higher circulating glucose also predispose to poorer glucose 
utilization and lower birthweight), and is consistent with the 
results of genetic correlations and Mendelian randomiza-
tion studies in the UK Biobank and Fetal Insulin Hypothesis 
models of birthweight more generally [14]. The negative 
maternally mediated genetic covariance between offspring 
birthweight and offspring HDL is a novel observation 

and covariation between traits into maternal and offspring 
components. It has an advantage over previous approaches 
in that it neither requires complete mother-offspring pairs, 
nor individual level genotype data. In addition, any cryp-
tic relatedness that may exist between different mother-
offspring dyads is automatically taken into account by LD 
score regression estimates of the total genetic variance and 
covariance. In contrast, how best to handle inter-pair relat-
edness can present a thorny problem for individual level 
G-REML approaches like M-GCTA and trio-GCTA in that 
such pairs can bias estimates of SNP heritability / variance 
components, whilst their removal can often result in sub-
stantial decrements to sample size and statistical power [38, 
42].

We applied our genomic SEM to summary results GWAS 
data from the HUNT Study in order to partition the genetic 
covariance between birthweight and later life cardiometa-
bolic outcomes into maternal and offspring mediated com-
ponents. Our motivation was that partitioning might be 
informative with respect to the genesis of the well-known 
correlation between birthweight and cardiometabolic dis-
ease [1, 4, 7, 43]. Furthermore, the creation and application 
of genetic approaches like the one espoused in this manu-
script could provide a useful complement to traditional 
observational epidemiological approaches in investigating 
the validity of the Barker and the Developmental Origin of 
Health and Disease Hypotheses. For example, the existence 
of a significant (negative) maternally mediated genetic 
covariance between birthweight and cardiometabolic phe-
notypes would strongly imply the existence of intrauterine 
mechanisms consistent with the Barker Hypothesis.

Overall, although the LD score regression analyses pro-
duced evidence for a significant genetic correlation between 
own/offspring birthweight and several later life traits in the 
HUNT Study (e.g. blood pressure, BMI), in most cases our 
genomic SEM did not have the statistical power to informa-
tively resolve most covariances into maternal and offspring 
components (despite the large sample size of HUNT). This 
was likely due to the high negative correlation between 
competing maternal and fetal parameter estimates that are 
typical of these sorts of models [44], as well as the low 
magnitude of the observed genetic covariance between the 
variables (although in theory significant maternal and off-
spring components can still be resolved if they act in oppo-
site directions [14]). Previous epidemiological studies have 
reported statistically significant albeit low magnitude cor-
relations between birth weight and future cardiometabolic 
traits (e.g. |r| < 0.15) [45, 46]. The phenotypic correlations 
reported in the HUNT cohort were even lower than these. 
Part of the reason for the low observed covariances may be 
because the present study includes many young individuals 
in the GWAS of cardiometabolic variables. It may be that 
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links between birthweight and cardiometabolic phenotypes 
in later life.

Supplementary Information  The online version contains 
supplementary material available at https://doi.org/10.1007/s10519-
022-10116-9.
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suggestive of Barker Hypothesis type mechanisms, but the 
p-value is marginal and requires replication in other cohorts.

Our genomic SEM involves a number of simplifica-
tions. First, we do not include a latent genetic variable for 
paternal effects. In theory, it would be possible to add latent 
variables indexing paternal genetics [50] and the relevant 
paternal GWAS to the genomic SEM, however, we chose 
not to do this because (a) there is little evidence that paternal 
genetic effects contribute meaningfully to variation in birth-
weight or cardiometabolic disease, and (b) the inclusion of 
paternal terms would have further decreased power to detect 
variance components involving offspring mediated effects. 
That being said, modelling father-offspring pairs separately 
(in a similar genomic SEM) could provide a useful control 
comparison where intrauterine mechanisms are suspected as 
being important. Second our model does not allow for the 
influence of assortative mating. (Positive) assortment exerts 
a myriad of complicated effects on the genome including 
increasing the genetic variance and inducing correlations 
between trait relevant loci across the genome [51]. However, 
there is little evidence to suggest that phenotypic assortment 
is an important component influencing variation in birth-
weight or cardiometabolic traits. Recent work by Keller and 
colleagues have illustrated [52, 53] how assortment can be 
incorporated into a structural equation modeling framework 
involving individual level data and polygenic risk scores. 
How to model assortment and its effects on offspring phe-
notypes in a genomic SEM framework is an active area 
of research for our and other groups. Finally, we note that 
whilst in principle our model could be extended to simulta-
neously investigate maternal and offspring GWAS of more 
than two variables, we have chosen not to do so here, as 
the number of parameters and their interpretation quickly 
becomes cumbersome/complicated.

Conclusion

In conclusion, we have developed a new method using 
genomic SEM that can decompose genetic variances and 
covariances into maternal and offspring components using 
summary results data from GWAS of mothers and their 
offspring. Application of this model to investigate the rela-
tionship between birthweight and later life cardiometabolic 
phenotypes in the HUNT study mostly yielded inconclu-
sive findings due to lack of statistical power. However, we 
did find some evidence for maternally mediated effects of 
systolic blood pressure on offspring birthweight, and plei-
otropy between birthweight and non-fasting glucose medi-
ated through the offspring genome which is consistent with 
previous investigations. Our results underscore the genetic 
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