
tabG
AN

: A Fram
ew

ork for U
tilizing Tabular G

AN
 for D

ata Synthesizing and G
eneration of Counterfactual

Arne Rustad

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Arne Rustad

tabGAN: A Framework for Utilizing
Tabular GAN for Data Synthesizing
and Generation of Counterfactual
Explanations

Master’s thesis in Applied Physics and Mathematics
Supervisor: Kjersti Aas
June 2022

M
as

te
r’s

 th
es

is





Arne Rustad

tabGAN: A Framework for Utilizing
Tabular GAN for Data Synthesizing and
Generation of Counterfactual
Explanations

Master’s thesis in Applied Physics and Mathematics
Supervisor: Kjersti Aas
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

Counterfactual explanations is an emerging method for explaining predictions from black-box mod-
els by utilizing "what-if" scenarios. In this thesis, we create a Wasserstein Generative Adversarial
Network (WGAN) based tabular data synthesizing framework, tabGAN, and later we modify this
WGAN framework to create a model-based counterfactual synthesizer framework, which we call
tabGANcf. The counterfactual framework is more a proof-of-concept, while the data synthesizing
framework is more complete, with a lot of customization available and default values based on
extensive hyperparameter tuning. During the creation of the data synthesizing framework tabGAN,
we also create a new type of transformation, which we include as a preprocessing option for the
numerical variables in a dataset. The novel transformation is a stochastic version of quantile trans-
formation, which we in this thesis name the Randomized Quantile Transformation. In addition to a
regular WGAN implementation, the data synthesizing framework tabGAN also implements a WGAN
with a conditional generator inspired by the CTGAN data synthesizer [1]. The conditional archi-
tecture and training process aim to provide more representation for rare categories in imbalanced
columns.

We compare six data synthesizing methods from the tabGAN framework against the state-of-
the-art data synthesizer methods CTGAN [1], TVAE [1], CopulaGAN [2], GaussianCopula [2], and
TabFairGAN [3]. The comparison includes an evaluation of the recreated marginal and joint distri-
butions of a real dataset, as well as a comparison of machine learning efficacy on four real data-
sets. The methods from the tabGAN framework consistently outperform the other data synthesizing
methods. Additionally, the methods from the tabGAN framework run substantially faster than the
other GAN based data synthesizers in the evaluation, around 3-4 times faster than CTGAN and Cop-
ulaGAN for the real dataset used in the training time comparison. The comparison also indicates
that the novel transformation method, the Randomized Quantile Transformation, is very beneficial
for dataset variables with many repeated values. We visually verify that methods from the tabGANcf
framework are able to generate counterfactual explanations that change the predictions of a black-
box classifier whilst not making unnecessary changes to the discrete variables. Sparsity of proposed
changes in the numerical variables is, however, still an issue. We propose a potential solution for
this that can be investigated in future research. We also provide a list of other extensions that can
be implemented in future GAN based counterfactual synthesizers.

iii





Sammendrag

Kontrafaktiske forklaringer er en metode for å forklare prediksjoner fra black-box modeller gjennom
henvising til alternative lignende virkeligheter der et annet utfall skjer. Denne eksempel-baserte
forklaringsmetoden er i ferd med å bli et populært hjelpemiddel innen forklaring av avanserte AI-
modeller. I denne avhandlingen presenterer vi et rammeverk for å syntetisere tabelldata ved hjelp
av Wasserstein Generative Adversarial Networks (WGAN) som vi navngir tabGAN. I tillegg modi-
fiserer vi dette rammeverket til også å kunne lage modell-baserte kontrafaktiske forklaringer. Det
nye rammeverket for generering av kontrafaktiske forklaringer kaller vi for tabGANcf, selv om det i
praksis er mer et pilotprosjekt for å synliggjøre at man kan lage kontrafaktiske forklaringer på denne
måten. Rammeverket for syntetisering av tabelldata, tabGAN, er imidlertid langt mer komplett. Det
tilrettelegger for stor individuell brukstilpasning, og de anbefalte standardverdiene i rammeverket
er basert på et omfattende hyperparametersøk. Gjennom arbeidet med rammeverket tabGAN fikk
vi ideen til en ny type transformasjon som kan brukes som preprosesseringsmetode for numeriske
variabler. Vi kaller den for randomisert kvantiltransformasjon (the Randomized Quantile Transform-
ation), ettersom den er en stokastisk versjon av kvantiltransformasjon. I tillegg til en mer standard
WGAN versjon implementerer vi et WGAN med betinget generator, inspirert av datasyntetiserings-
metoden CTGAN [1]. Tanken bak den betingede arkitekturen og spesialtilpassede treningsprosessen
er å være bedre i stand til å representere de sjeldne kategoriene for ubalanserte diskrete kolonner,
slik at det blir lettere for generatoren å lære seg å gjenskape de også riktig.

Vi sammenligner seks datasyntetiseringsmetoder fra rammeverket tabGAN mot de beste data-
syntetiseringsmetodene innen dette feltet, som CTGAN [1], TVAE [1], CopulaGAN [2], Gaussian-
Copula [2] og TabFairGAN [3]. I sammenligningen evaluerer vi hvor godt datasyntetisererne er i
stand til å gjenskape både marginal- og simultanfordelinger fra et reelt datasett. I tillegg evalu-
erer vi hvor godt maskinlæringsmodeller trent på syntetisk data fra hver datasyntetiserer presterer
på ett reelt testdatasett, sammenlignet med hvor godt samme modell trent på det originale tren-
ingsdatasettet gjør det. Dette gjentar vi for fire forskjellige reelle datasett. Metodene fra tabGAN-
rammeverket gjør det konsekvent bedre i disse evalueringene sammenlignet med de andre datasyn-
tetiserermetodene. I tillegg til dette er metodene fra tabGAN-rammeverket raskere å trene enn de
andre datasyntetisererne som også er basert på GAN. Resultatene indikerer videre at randomisert
kvantiltransformasjon er svært nyttig for numeriske datasettvariable med mange repeterte verdier.
For det kontrafaktiske rammeverket tabGANcf utfører vi en visuell verifisering av at metodene fra
rammeverket er i stand til å generere kontrafaktiske forklaringer som faktisk endrer prediksjonene
til en black-box klassifiseringsmodell. Vi observer at de ulike metodene fra rammeverket fint klarer
å endre prediksjonene uten å gjøre unødvendige endringer på diskrete variable, men at dette ikke
er tilfellet for de numeriske variablene. I denne avhandlingen foreslår vi en mulig løsning både
på dette problemet og andre potensielle utfordringer vi identifiserer. Grunnet tidsbegrensninger
overlater vi testing av disse forslagene til fremtidig forskning.

v





Preface

With this I complete a wonderful five-year period of my life and my Master of Science (M.Sc.) in
Applied Physics and Mathematics at the Norwegian University of Science and Technology (NTNU)
in Trondheim, where I have first specialized in Industrial Mathematics and later further specialized
in statistics. The work leading up to this thesis was conducted in the spring semester of 2022 as
part of the course TMA4900; a continuation of the initial work carried out in the the fall of 2021
during my project thesis in the course TMA4500. The initial goal of this combined one year of
work was to perform a deep-dive into an exciting new interpretable machine learning tool known
as counterfactual explanations and hopefully make a contribution to this up-and-coming field by
creating a new model-based counterfactual synthesizer. Whilst working toward this goal I created a
Generative Adversarial Network (GAN) based data synthesizing method, which I excitingly enough
found was more than competitive with current state-of-the-art data synthesizers. I therefore slightly
shifted the focus of my work into additionally creating a full framework for data synthesizing. The
process of creating this framework inspired a new numerical preprocessing transformation, which
I have named the Randomized Quantile Transformation. Working on and writing this master thesis
has been a very rewarding experience, although of course demanding at times, and I am proud to
present this as the final work of my master’s degree here at NTNU.

I would like to extend a huge thanks to my supervisor Kjersti Aas for excellent guidance during
this last year. Additionally, I would like to thank my family, friends and girlfriend for their constant
moral support. I would especially like to thank those who took time out of their busy days to help
me proofread this work.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Training Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Batch and Layer Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Wasserstein GAN (WGAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 XGBoost - An Implementation of Gradient Boosted Decision Trees . . . . . . . . . . . . 18
2.4 Metrics for Efficacy of a Classification Machine Learning Model . . . . . . . . . . . . . . 19

3 Data Synthesizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 A Brief Overview of Generating Synthetic Data from Real Data . . . . . . . . . . . . . . 23
3.2 A Wasserstein GAN Based Data Synthesizer Framework – tabGAN . . . . . . . . . . . . 25

3.2.1 Preprocessing Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.4 Synthesizing Data on Original Data Format . . . . . . . . . . . . . . . . . . . . . . 34
3.2.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 A Selection of State-of-the-art Data Synthesizers . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 CTGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 TVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 GaussianCopula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 CopulaGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.5 TabFairGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Randomized Quantile Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Quantile Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Motivation for Creation of Randomized Quantile Transformation . . . . . . . . . . . . . 41
4.3 Mathematical Definition of Randomized Quantile Transformation . . . . . . . . . . . . 42

5 Counterfactual Synthesizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1 A Brief Overview of Algorithm Based Counterfactual Methods . . . . . . . . . . . . . . 46

5.1.1 Pareto Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 A Brief Overview of Model Based Counterfactual Methods . . . . . . . . . . . . . . . . . 48
5.3 A Wasserstein GAN Based Counterfactual Synthesizer Framework – tabGANcf . . . . . 49

5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ix



Rustad@NTNU: tabGAN

5.3.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Syn2D_3cats Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.2 Adult (Census Income) Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Three Other Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Covertype Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.2 Credit Card Fraud Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.3 Online News Popularity Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Syn_Moons Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7 Experiments – Data synthesizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Model Customization and Hyperparameter Choice . . . . . . . . . . . . . . . . . . . . . . 61
7.1.1 Hyperparameter Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1.2 Architecture and Hyperparameter Choice for Models from tabGAN Framework 62
7.1.3 Architecture and Hyperparameter Choice for Baseline Data Synthesizers . . . 63

7.2 Visual Evaluation of tabGAN Methods on the Syn2D_3cats Dataset . . . . . . . . . . . . 64
7.3 Comparison of Marginal Distributions on Adult Dataset . . . . . . . . . . . . . . . . . . . 69

7.3.1 Results and Discussion of Marginal Distributions . . . . . . . . . . . . . . . . . . 69
7.4 Comparing Joint Distributions on Adult Dataset . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.1 Results and Discussion of Joint Distributions . . . . . . . . . . . . . . . . . . . . . 82
7.5 Comparing Machine Learning Efficacy on Adult Dataset . . . . . . . . . . . . . . . . . . 89

7.5.1 Results and Discussion of Machine Learning Efficacy Comparison on Adult
Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.6 Comparing Machine Learning Efficacy on Three Other Real Datasets . . . . . . . . . . 91
7.6.1 Results and Discussion of Machine Learning Efficacy Comparison . . . . . . . . 92

7.7 Comparison of Training Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8 Experiments - Counterfactual Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.1 Reweight Data Observations or Only Feed the Critic Observations of the Correct Pre-
diction Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.2 Are Unnecessary Changes Made to the Discrete Column Values for the Counterfactual
Explanations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Investigation of the Impact of the 1-norm Numerical Penalty Coefficient . . . . . . . . 103
8.4 Investigation of the Impact of Mixing Real Correct Samples with the Generator Samples103

9 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A Code Repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B Uniform order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C Additional Histograms from Comparison of Marginal Distributions on Adult Dataset . 121
D Preprocessing Steps of Adult Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
E Additional Information for Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

E.1 Covertype Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
E.2 Credit Card Fraud Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.3 Online News Popularity Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

x



Chapter 1

Introduction

Machine learning models have exploded in popularity over the last decade [4] and are being widely
adopted across industrial sectors [5]. This includes low-stake applications, such as personalized
recommendations for what you should watch next on Netflix or which country is going to win
the next football world championship, but also high-stake domains, such as medical diagnosis and
policy making [5]. As more and more decision tasks are automated by machine learning models,
often even without human input [6], it becomes increasingly crucial to have tools to scrutinize
models and ensure that they are working as we intend them to. This is especially important for
black box models such as neural networks, gradient boosting trees, random forest, etc. Even an
expert in the field will not understand much about how a neural network reasons for a specific task
by looking at the possibly millions of parameters that are fitted. This is where interpretable machine
learning (explainable AI) methods come in: a toolbox for understanding machine learning models
or specific predictions.

The interpretable machine learning field includes methods for feature attribution of a single
prediction, feature attribution of whole machine learning models, fitting surrogate models that are
easier to interpret, and visualization tools for how predictions change as input features change, to
name a few [7, 8]. An emerging interpretable machine learning method that has gained attention
in recent years is counterfactual explanations [5]. Karimi et al. [9] describe a counterfactual as
"a statement of how the world would have to be different for a desirable outcome to occur". Multiple
counterfactuals for the same situation are of course possible since there may be multiple desirable
outcomes or multiple ways to achieve each of these outcomes.

A common example used to describe how counterfactual methods can be utilized is the case
of a person applying for a loan at a bank where the bank uses a black box model to automatically
decide who gets a loan based on information about the person applying and the loan requested.
Assume the loan application was rejected. Currently, the EU General Data Protection Regulation
(GDPR) includes in the guideline the right to request "meaningful information about the logic in-
volved, as well as the significance and the envisaged consequences" [10]. Although this is not currently
a requirement [10], one way that the bank in question could satisfy this guideline would be to give
counterfactual explanations to the person getting a loan rejection. To exemplify, we here list some
possible counterfactual explanations suitable for this case. If the person had fifty thousand less in
previous debt, then the loan request would have been approved. If the person had two fewer re-
cords of non-payment, then the loan request would have been approved. If the person had applied
for a smaller loan of size two hundred thousand instead of three hundred thousand, then the loan
request would have been approved.

As seen above, counterfactuals can be used as an explanation for why a specific desired out-
come was not reached and can also be used as a guide on how to reach the desired outcome in the

1



Rustad@NTNU: tabGAN

future. They are, however, also directly useful for machine learning practitioners to evaluate the
robustness or fairness of their model [11]. A closely related method to counterfactual explanations
is adversarial perturbations. Adversarial perturbations are small changes to the input of a machine
learning model that change the predicted outcome [6]. However, adversarial pertubations are more
about fooling the predictor whilst counterfactuals focus more on interpreting the model or explain-
ing an individual prediction. Initial counterfactual methods resembled adversarial pertubations [5],
but later methods also optimize for other objectives that benefit counterfactual explanations, such
as being sparse for easy interpretation and being plausible. Counterfactual explanations are a lot
less intuitive and useful for reasoning if they are outside the data distribution [5]. Another closely
related method to counterfactual explanations is actionable recourse [12]. Actionable recourse is
very similar to counterfactuals, but for actionable recourse the focus is generating actionable ex-
amples to receive a more favourable outcome, instead of making predictions interpretable.

Counterfactual methods can be either model-specific or model-agnostic [7]. The former usu-
ally utilizes the internal structure of a specific machine learning model (for instance the trained
weights) to generate explanations, while model-agnostic methods work for arbritary machine learn-
ing methods. Model agnostic counterfactual methods often treat the model as a black box and only
utilizes the model input and output. Another way to separate counterfactual explanation methods
into categories is whether they are algorithmic-based or model-based methods [5]. Fundamentally,
these two categories have different views on how to solve the task of generating counterfactuals.
Algorithmic-based counterfactual methods treat the task as an optimization problem, while model-
based methods focus on first using a model to learn the data distribution and then use the model
to generate counterfactuals. Although algorithmic counterfactual methods can also optimize for
plausible explanations, model-based methods generally achieve plausibility automatically through
the model.

The aim of this thesis is to create a model-based counterfactual method for tabular data utilizing
generative adversarial networks (see Section 2.2). We believe an intuitive way of approaching this
task is to first either create or select a Generative Adversarial Network (GAN) based data synthesizer
to use as a base and then modify it to suit the task of generating counterfactual explanations. In
this thesis, we choose to develop a GAN-based data synthesizer, but take inspiration from a range
of papers on data synthesizing [1, 3, 13]. As the performance of a data synthesizer is perhaps more
easily measured with a single metric compared to a counterfactual method, we spend much effort on
creating a well-performing data synthesizer, hoping that the quality will at least partially carry over
to the counterfactual generator. To this end, we investigate the benefit of different preprocessing
methods, model architectures, and combinations of hyperparameters. We create a framework that
allows for a very flexible definition of GAN methods that we employ to perform fairly extensive
hyperparameter tuning. The process of creating the tabular GAN inspired a new transformation for
numerical data, which we in this thesis name the Randomized Quantile Transformation (QTR).

The creation of the tabular data synthesizer has significant value in itself. A Gartner1 ’Predict’
published July 2021 in the Wall Street Journal states that "By 2024, 60% of the data used for the
development of AI and analytics projects will be synthetically generated"2. Furthermore, according
to a recent survey by the Kaggle data science platform, tabular data is the most common type of data
encountered in business and the second most common type encountered in academia [13]. Privacy
concerns often prevent enterprises from obtaining outside help and even within companies data
sharing is not always permitted or unproblematic [2]. Privacy is also an issue in other instances.
For example, sharing of medical data is strictly regulated, and applications for access can be a very

1An American consultant firm
2Link to Wall Street Journal article behind paywall: https://www.wsj.com/articles/

fake-it-to-make-it-companies-beef-up-ai-models-with-synthetic-data-11627032601

2

https://www.wsj.com/articles/fake-it-to-make-it-companies-beef-up-ai-models-with-synthetic-data-11627032601
https://www.wsj.com/articles/fake-it-to-make-it-companies-beef-up-ai-models-with-synthetic-data-11627032601


Chapter 1: Introduction

slow process. Data synthesizers can be a useful tool for alleviating these issues, as the sharing of
synthetic data avoids many privacy concerns. If these synthetic datasets follow the original data
distribution, then they can replace the usage of the original datasets altogether or be used as a
quick start option while waiting for access to the original dataset. In a crowd-sourcing experiment,
where experienced data scientists were hired to write complex features for a dataset that were to be
applied to a machine learning model, no significant difference was found between the groups that
got synthetic datasets compared to those that got the original dataset [2], thus indicating that data
scientists can potentially be as productive with synthetic datasets as with original data. Synthetic
data can also be used as a low effort course of action for a researcher or consultant to verify that
a method has potential before applying for data access, or for a business to evaluate an outside
partner before deciding to share the original data. Sharing of synthetic data has the added benefit
of decreasing the chance of the original data being compromised in case of an accidental data breach
for outside partners. Additionally, synthetic data can be utilized for initial training of a model in the
time before the real data is accessible. When the real dataset becomes available, the model does not
have to start from scratch, but instead has a starting point. Another application of synthetic data
is to resolve critical bottlenecks for machine learning methods [13], such as missing data or class
imbalances. Here imputation methods can be used to fill in the missing values or a data synthesizer
can try to learn the underlying data distribution and then generate datasets without missing values.
For the class imbalance problem, data synthesis can be used to generate more samples of the rare
classes.

The thesis is organized as follows. In Chapter 2 we present some background theory helpful for
understanding the rest of the thesis. Next, in Chapter 3 we introduce data synthesis in a bit more
detail and give a simple overview of different methods for synthesizing a single tabular dataset.
We proceed to give a detailed description of the framework introduced in this thesis for tabular
data generation, as well as a short description of specific state-of-the-art methods we will use as a
basis for comparison when later evaluating the performance of the new data synthesis framework.
In Chapter 4 we give a quite thorough explanation of quantile transformation along with some ex-
amples, before we introduce the new modification of quantile transformation called Randomized
Quantile Transformation (QTR). We present the motivation for creating the QTR and mathemat-
ically describe a specific implementation of it. In Chapter 5 we present the counterfactual method
based on the data synthesizing framework previously introduced. As a foundation, we first give a
quite thorough explanation of counterfactual explanations with a focus on model-based counterfac-
tual methods. In the end of the chapter we explain some possible extensions to the counterfactual
framework currently implemented. In Chapter 6 we present the datasets later used in the exper-
iments in this thesis. In Chapter 7 we evaluate the performance of some of our data synthesizers
against state-of-the-art data synthesizers. Next, we investigate and perform some simple exper-
iments with our new counterfactual method in Chapter 8. Finally, in Chapter 9 we discuss the
overall results and conclude how the methods introduced in this paper perform compared to the
state-of-the-art methods. This is also where we give an outlook on what future related investiga-
tions can entail. This master thesis is a partial continuation of a project thesis [14] we wrote the fall
of 2021. Although much of the text from the project thesis is discarded or rewritten, there will be
some borrowed sentenced or paragraphs here and there, especially for Chapter 1 and Sections 2.2,
5.1, 5.2 and 7.4. In the project thesis, we created a model based counterfactual synthesizer by com-
bining a data synthesizer with Monte Carlo sampling and a post-processing step. We compared it to
the algorithmic based counterfactual method MOC [11], which utilize an evolutionary algorithm
to simultaneously optimize multiple objectives. For the master thesis we chose to concentrate on
model based counterfactual methods and data synthesizers. We spent effort on creating a more
advanced data synthesizer and later modified it to directly synthesize counterfactual explanations,

3



Rustad@NTNU: tabGAN

thus eliminating the need for Monte Carlo sampling and a post-processing step.

4



Chapter 2

Background

In this chapter, we present some theory that we believe is relevant or necessary for understanding
the rest of this thesis. It can easily be skipped if the reader is already familiar with these topics.
As we in this thesis both create a data synthesizer and a counterfactual method based on Gener-
ative Adversarial Networks (GAN), we believe it is relevant to include theory on neural networks
and GAN. In Section 2.1, we present a thorough introduction of neural networks. We begin with a
single neural network node and expand the explanation to multi-layer dense neural networks with
activation functions. Together with the explanation we also include some comments about the bio-
logical inspiration and some history notes. In Section 2.1.1, we present an informal list of possible
activation functions. Then, in Section 2.1.2, we briefly explain how neural networks are trained and
some possible choices of loss functions. Neural networks are trained using optimization algorithms.
As we in this thesis use gradient-based optimization algorithms to train the neural networks, we
give in Section 2.1.2 a list of relevant optimization algorithms. The list and the explanation is struc-
tured in such a way that they partially explain the reason why the Adam optimization algorithm
is the default choice in the tabGAN framework which we present in this thesis. One of the main
reasons we are able to train neural networks efficiently is that the backpropagation algorithm al-
lows for efficient calculation of the gradient for all the parameters in the model. In Section 2.1.2,
we present the backpropagation algorithm. Next, in Section 2.1.3, we present batch normalization
and layer normalization, both of which are optional techniques used in the tabGAN framework.
Then, in Section 2.2, we explain Generative Adversarial Networks. We also present in Section 2.2.1
a modification of GAN known as Wasserstein GAN, which is the type of GAN implemented in this
thesis.

Later in this thesis, in Chapter 7, we evaluate the data synthesizers created in this thesis against
state-of-art data synthesizers. One of the methods we use to compare the performance of a data
synthesizer is machine learning efficacy. That is, we observe how a machine learning model trained
on a synthesized dataset perform on a real test dataset never seen by the data synthesizer. In this
thesis we use the gradient boosting trees framework, XGBoost, as the machine learning model.
Therefore, we give in Section 2.3 a brief introduction to XGBoost. To evaluate the performance
of the machine learning model we need to specify some metrics. In Section 2.4 we present some
common metrics used for classification models. We only list classification metrics since classification
tasks are the only machine learning problems considered in this thesis.

2.1 Neural Networks

Neural networks are machine learning algorithms loosely inspired by how the human brain func-
tions. Similar to how the brain consists of interconnected neurons that can transmit signals between

5



Rustad@NTNU: tabGAN

them, a neural network consists of nodes that are interconnected. For each incoming connection, the
node will assign a separate weight. Then, it adds the weighted incoming signals together, thus yield-
ing a single value that is passed to other nodes through its outgoing connections. For a single node ŷ j
receiving input from a multiple of nodes x= [x1, . . . , xn]T and weight values w j = [w1, j , . . . , wn, j]T ,
this can mathematically be written written as

ŷ j =
n
∑

i=1

wi, j x i =wT
j x. (2.1)

We note that this is merely a linear transformation of x. In the human brain, the connection
equivalent known as synapses only "fire" and release a signal if the signal from the neuron with
outgoing signal is strong enough, that is, if the signal is stronger than some threshold. Inspired
by this, neural networks often employ activation functions that have a similar purpose. Activation
functions have the added benefit of introducing non-linearity to the neural network. Perhaps the
activation function most resembling to how we have described the functionality of the synapses,
would be the binary step size function, i.e. an indicator function of whether x is larger than some
threshold b.

abs(x) =

¨

1 if x ≥ b

0 if x < b.

However, the gradient of this function is 0 everywhere, except at x = b where it is not defined.
This makes gradient-based learning impossible, which a large share of neural networks use. Fur-
thermore, we note that the inclusion of the threshold b could instead be achieved by adding a bias
node b j to the weighted sum in Equation (2.1), thus making the threshold learnable. An activation
function mimicking the threshold "firing" procedure whilst still being differentiable everywhere, is
the sigmoid function

σ(x) =
1

1+ e−x
.

The sigmoid function is close to zero for large negative x values, equal to 0.5 for x = 0 and
close to one for large positive x values. Adding a sigmoid activation function and a bias node to
Equation (2.1), we get

ŷ j = σ(b j +
n
∑

i=1

wi, j x i) = σ(b j +wT
j x). (2.2)

There are many activation functions to choose from, and moving forward we will use a(·) to
denote any activation function. A selected sample of activation functions are described in Sec-
tion 2.1.1. Until now, we have merely described how a single node receives and "processes" input
from nodes connected to it. In fact, the first trainable neural network, the perceptron [15], only
consisted of a input layer, a hidden node and an output node. A hidden node refers to the fact
that the node is neither an input node nor an output node. Although the original perceptron used
a binary step size activation function for the hidden node, it can easily be replaced by any other
activation function. Many problems can be solved by simply using this structure. For instance, it
can become a linear model by using identity activation both for the hidden node and the output
node, or it can become a logistic regression model by using identity activation for the hidden node
and sigmoid activation function for the output node. However, for more complex problems, more
nodes are needed. A natural extension to the perceptron architecture is to increase the number of

6



Chapter 2: Background

hidden nodes and/or the number of hidden layers. This architecture is called feedforward neural
networks or multilayer perceptrons (MLP). More mathematically, this structure can be defined as

ŷ= a(o)
�

z(o)
�

= a(o)
�

b(o) +W(o)a(H)
�

= a(o)
�

b(o) +W(o)a(H)
�

z(H)
��

= a(o)
�

b(o) +W(o)a(H)
�

b(H) +W(H)a(H−1)
��

...
= a(o)
�

b(o) +W(o)a(H)
�

b(H) +W(H)a(H−1)
�

. . .
�

a(1)
�

b(1) +W(1)x
�����

,

(2.3)

where ŷ is the output layer after applying activation function a(o), z(o) is the output layer before
applying the activation function, x is the input layer, a(h) is the hidden layer number h after applying
activation function a(h) for h= 1, . . . , H, z(h) is the hidden layer number h before applying activation
for h = 1, . . . , H, b(o) is the bias node vector for the output layer, b(h) is the bias node for hidden
layer h for h= 1, . . . , H, W(o) is a matrix containing the weights connecting the last hidden layer to
the output layer, W(h) is a matrix containing the weights connecting hidden layer h− 1 to layer h
for h = 2, . . . , H and W(1) is a matrix containing the weights connecting the input layer to the first

hidden layer. A weight matrix W= [w1, . . . ,wi , . . .wn]
T =

�

�

wi, j

	

i=1,...,n
j=1,...,m

�

is defined such that row

i contains the weights connecting node i in the current layer to all the nodes in the previous layer.
Here n is the length of the current layer, while m is the length of the previous layer. A bias vector
b is of the same length as the layer it is connected to, and each bias node is connected to a single,
unique node in the other layer.

There are a number of more advanced types of neural networks, such as convolution neural
networks (CNN), recurrent neural networks (RNN) and transformer neural networks to name a few.
As the tabGAN framework mainly uses combinations of feedforward neural network structures, we
do not elaborate on any of these other model architectures. We end this part of the section with a
motivation for why even standard feedforward neural network structures are really interesting. The
universal approximation theorem states that under very mild conditions, any continuous function
can be uniformly approximated by a feedforward neural network with only a single hidden layer
[16]. This is, of course, mostly a theoretical result, as the hidden layer might have to be of infinite
size, but it still speaks to the universality of neural networks.

2.1.1 Activation Functions

We have already introduced the binary step size activation function and the sigmoid activation
function. However, there are a myriad of different possible activation functions. In this subsection,
we will present another really famous activation function, ReLU, along with some other activation
functions used in the work leading up to this thesis. We stress that this is far from a complete list,
but instead an informal list of activation functions considered or used by the authors in the making
of the tabGAN framework.

The rectified linear unit activation function, ReLU, [17] is defined as

ReLU(x) =max{0, x}=

¨

x if x > 0

0 if x ≤ 0.

The ReLU activation function is easily calculated and its substitution of the sigmoid activation
function in the hidden layers greatly improved the performance of feedforward neural networks. It

7



Rustad@NTNU: tabGAN

largely solved the problem with vanishing gradients in deep (multi-layered) neural networks [18].
However, ReLU still has some limitations. Perhaps most severe is the case where updates to the
node weights can result in the input to the activation function always being negative, regardless of
what is given as input to the neural network. This is called node death. "Dead" nodes might never
activate again since the gradient through them is always zero and thus gradient based optimization
algorithms will not adjust the weights of the "dead" unit. Similarly to the problem of vanishing gradi-
ents, we might expect learning to be slow when training ReLU networks with constant gradients of
zero [19]. Several extensions have been proposed to counteract this problem.

The LeakyReLU activation function [19] allows for a small gradient when the node is inactive.

Leak yReLUα(x) =max{x ,αx}=

¨

x if x ≥ 0

αx if x < 0.

Here α < 1 is some parameter that can be chosen. The exponential linear unit, ELU, [20] keeps
the linear part of the ReLU function for x > 0, but uses a parameterized exponential function that
quickly converges to −α for negative x values. The parameter α controls the smoothness of the
transition.

ELUα(x) =

¨

x if x ≥ 0

α(ex − 1) if x < 0.

A modification of ELU that attempts to incorporate batch normalization (see Section 2.1.3 for
a definition) into the activation function is the scaled exponential linear unit activation function,
SELU [21]. It is defined as

SELUα(x) =

¨

λx if x ≥ 0

λα(ex − 1) if x < 0,

where λ ≈ 1.0507 and α ≈ 1.6733. Another proposed modification of RELU is the Swish [22]
activation function proposed by the Google Brain Team. It is also known as the Sigmoid Linear Unit
activation function, SiLU. The method is kind of a compromise between ReLU and sigmoid, and it
is defined as

Swish(x) = xσ(x) =
x

1+ e−x
.

Another activation function is Mish [23], which the authors describe as a self-regularized non-
monotonic activation function. The original paper propose an intuitive explanation for why the first
derivative of the activation function may be acting as a regularizing element in the optimization of
a deep neural network. It is mathematically defined as

Mish(x) = x tanh(so f tplus(x)) = x tanh (ln (1+ ex)) .

Another modification is the Gaussian error linear unit activation function, GELU [24]. We will
present this activation function in a bit more detail because it is the default choice in the tabGAN
framework and its derivation partially explains the intention behind the activation function. The
GELU activation function combines ReLU with properties of dropout [25] and zoneout [26]. Dro-
pout is a regularization method used during training of a neural network where some nodes are
randomly ignored, whilst zoneout is a regularization method for recurrent neural networks where
a node’s activation function is randomly set to be the activation from the previous time step. The
authors of Hendrycks and Gimpel [24] seek to merge this functionality by stochastically multiply-
ing the input by zero or one (note that input here does not mean the input of the neural network,

8



Chapter 2: Background

but rather, more generally, the layer on which the GELU activation function is used). They let the
probability of this zero-one mask depend upon each input. More specifically, for each neuron input
x they multiply it by a Bernoull i(Φ(x)) distributed value m, where Φ is the cumulative distribution
function of the standard normal distribution. To arrive at a deterministic version of this, the authors
of Hendrycks and Gimpel [24] take the expectation, i.e

E[mx] = Φ(x) · 1x + (1−Φ(x)) · 0x = xΦ(x).

Thus, the GELU activation function is defined as

GELU(x) = x P(X ≤ x) = xΦ(x), if X ∼N (0,1)

= x ·
1
2

�

1+ er f (x/
p

2)
�

= x

∫ x

−∞

1
p

2π
e−

1
2 x2

.

This can, if needed, be approximated by

GELU(x)≈ 0.5x
�

1+ tanh
�Æ

2/π
�

x + 0.44715x3
�

��

.

Hitherto in this subsection, we have listed activation functions generally applied on the hidden
layer nodes. However, activation functions are sometimes also applied to the output node or layer.
For example, in the case of a binomial classification problem, the output is often a probability, and
therefore should lie in the interval between 0 and 1. The sigmoid activation function is commonly
applied to such situations, as it maps the space [−∞,∞] to the space [0,1]. For the multinomial
classification problem where classes are mutually exclusive, the output is generally a layer of prob-
abilities. The sigmoid activation function is not very appropriate for this case, as it does not ensure
that the estimated probabilities in the output layer sum up to 1. Instead, the Softmax activation
function is commonly used

So f tmax(x) =

�

�

ex i

∑n
k=1 exk

�

i=1,...,n

�T

. (2.4)

The softmax activation function can also be used as an approximation (with defined gradients) to
the argmax function.

2.1.2 Training Procedure

If we are to improve a neural network, it is essential that we have a way to measure the performance
of a neural network, otherwise, it is difficult to know how to change it for the better. This is where a
loss function comes in (or alternatively, a measurement of how well the neural network performs). A
loss function is a measurement of how poorly a neural network performs. To train a neural network,
we merely need to change the weights of the neural network so that the loss function is minimized.
There are many loss functions and no strict rules for which to use when. However, a common loss
function for the case of prediction of a continuous response variable is the mean squared error
(MSE)

MSE =
1
n

n
∑

i

(yi − ŷi)
2,

9



Rustad@NTNU: tabGAN

where yi is the response variable for observation i, ŷi is the prediction of the neural network for
observation i, and there are n observations. For the case of a binomial classification problem a
common loss function is cross entropy loss

C E =
n
∑

i=1

yi log( ŷi) + (1− yi) log(1− ŷi).

Cross entropy is also a common loss function for multinomial classification problem

C E =
n
∑

i=1

K
∑

j=1

yi,k log( ŷi,k),

where [yi,1, . . . , yi,k] are the true class probabilities for observation i, whilst [ ŷi,1, . . . , yi,k] are the
corresponding estimated class probabilities for observation i.

Optimization Algorithms

There are many optimization algorithms available for minimzing a loss function. Some are gradient-
based; others optimize the loss function without using the gradient. These are not specific optim-
ization algorithms for neural networks, but general algorithms that can be used to optimize many
functions. We will now present a selection of first-order (gradient-based) methods. We will not
present any second-order methods such as Newton’s method, as they are generally computation-
ally infeasible for neural networks with potentially millions or billions of parameters. The next
couple of paragraphs will generally be based on Ruder [27] and are structured in such a way that
they partially explain the reason why the Adam optimization algorithm is the default choice in the
tabGAN framework.

Perhaps the simplest gradient-based optimization algorithm is gradient descent. If we let θ be
the learnable parameters of a neural network and J be the loss as a function of θ measured on the
whole dataset, then the gradient descent algorithm can be written as

θ (t) = θ (t−1) −η · ∇θ (t−1)J
�

θ (t−1)|X,y
�

,

where θ (t) are the parameters at iteration t of the optimization algorithm and η is a hyperparameter
called the learning rate that controls how fast the algorithm changes the parameter estimates. Some
disadvantages of this algorithm are that it may become trapped at a local minimum and that if the
dataset is huge, it will be quite memory intensive and possibly slow to calculate the gradient on the
whole dataset.

A variant called stochastic gradient descent tries to remedy some of these disadvantages. In-
stead of calculating the loss for the whole dataset {X,Y} for each step before taking the gradient,
the stochastic gradient descent version calculates for each step only the loss based on a single ob-
servation {xi , yi}. This gives much more frequent updates and consequently it can converge in less
time. It also requires much less memory and has less chance of getting stuck at a local minima.
However, this version also has its disadvantages. It has a high variance in the estimation of the
model parameters θ and even after reaching the global minima it may continue to overshoot. A
compromise between these two methods is the mini-batch gradient descent algorithm. With this
algorithm, the dataset is divided into batches, and the parameters θ are updated after calculating
the loss function gradient for each of these batches.

Mini-batch gradient descent also has a few disadvantages, many of which it shares with the other
gradient descent algorithms mentioned above. Choosing a suitable learning rate can be difficult, as
a too small learning rate leads to very slow convergence, while a too large learning rate can both

10



Chapter 2: Background

hinder convergence and cause fluctuations around the minimum. In some cases, a too high learning
rate might also cause divergence. Additionally, the same learning rate applies to all parameter
updates, which might not be optimal. Another challenge is that the gradient descent algorithms
described above have been shown to struggle to escape from saddle points, which usually have a
plateau of the same loss function value and therefore the gradient is close to zero in all dimensions.

To overcome the problem of not escaping local minima or saddle points, a few algorithms pro-
pose to add a momentum term that helps the algorithm. The Momentum algorithm [27] helps
dampen oscillation as well as accelerate mini-batch stochastic gradient descent in the correct dir-
ection by adding a fraction γ of the previous update step to the current update step. It is given
by

v(t) = γ · v(t−1) +η · ∇θ (t−1)J(θ (t−1)|X,y)

θ (t) = θ (t−1) − v(t).

The idea behind the momentum term can be captured by a ball rolling down a hill. If the
ball encounters a small flat period or a small upward slope (a saddle point or a local minima),
the momentum it has collected will help it to not get stuck. However, if it were to reach the actual
lowest point, then this momentum term would propel it further and perhaps upwards the hill again.
Ideally, we want a "smarter" ball that has a notion of the terrain it is traveling in and, therefore,
slows a bit down when the slope straightens out. To not make this list of optimizers too long, we
will now skip ahead to the Adam optimizer algorithm. The Adam algorithm [28] takes into account
how the slope changes and also individually adapts the learning rate to each parameter. The Adam
algorithm is defined as

g(t)j =
∂

∂ θ
(t−1)
j

J(θ (t−1)|X,y)

m(t)j = β1m(t−1)
j + (1− β1)g

(t)
j

v(t)j = β2v(t−1)
j + (1− β2)(g

(t)
j )

2

m̂(t)j =
m(t)j

1− β t
1

v̂(t)j =
v(t)j

1− β t
2

θ
(t)
j = θ

(t−1)
j −

α
r

v̂(t−1)
j + ε

m̂(t)j ,

where θ (t)j is the jth parameter at time step t and g(t)j is the partial derivative of the loss function

with respect to θ (t−1)
j evaluated at θ (t−1). The parameters β1 and β2 are hyperparameters that

determine the weight decay in the estimators for respectively the first order moment (the mean),
m(t)j , and the second order moment (the uncentered variance), v(t)j , of the gradient respectively.

Since m(t)j and v(t)j are initialized as zero, they are biased towards zero. The bias-corrected estimates

are m̂(t)j and v̂(t)j . The parameter α represents the learning rate, while ε is a small number to avoid
division by zero. The authors of Kingma and Ba [28] propose default values β1 = 0.9 and β2 =
0.999. They also show empirically that the Adam algorithm performs favourably compared to other
first order gradient-based optimization algorithms.

11



Rustad@NTNU: tabGAN

Backpropagation

Until now we have not discussed how the gradients are calculated, merely how they are used in an
optimization algorithm to train the neural network. Calculating the gradient of a neural network
efficiently is, however, no small task, as there can be millions or billions of learnable parameters
to calculate the derivative for. Thankfully, a very efficient method called backpropagation [29] has
been developed for calculating the gradient of the parameters of a neural network. For a feedfor-
ward neural network, the gradient is calculated for each layer separately and the chain rule is used
to avoid excess computations. We will use the notation defined for Equation (2.3).

First, a forward pass through the neural network is performed. For simplicity, we assume a single
input observation x. A forward pass consists simply of using the current values for the connection
weights and bias nodes (the learnable parameters θ ) to calculate the values for each hidden layer
z(h), the output layer ŷ and the loss function J(θ |x, y). Next comes the backpropagation step. Note
that when calculating the derivative of J(θ |x, y) with respect to W(l) or b(l) it can be split into a
product using the chain rule.

∂ J(θ |x, y)

∂W(l)
=
∂ J(θ |x, y)
∂ z(l)

∂ z(l)

∂W(l)

=











∂ J(θ |x,y)
∂ z(l) xT if l = 1

∂ J(θ |x,y)
∂ z(l)

�

a(l−1)
�T

if l = 2, . . . , H
∂ J(θ |x,y)
∂ z(l)

�

a(l)
�T

if l = o

∂ J(θ |x, y)

∂ b(l)
=
∂ J(θ |x, y)
∂ z(l)

∂ z(l)

∂ b(l)

=
∂ J(θ |x, y)
∂ z(l)

.

Hence, all the partial derivatives of interest can be computed easily given ∂ J(θ |x,y)
∂ z(l) , l = 1, . . . , H, o.

As we shall see below, the backpropagation step gives an efficient way to calculate these derivat-
ives. The partial derivative of the loss function with respect to the output layer (before applying the
output activation function), z(o), can be calculated as

∂ J(θ |x, y)
∂ z(o)

=
∂ J(θ |x, y)
∂ ŷ

∂ ŷ
∂ z(o)

=
∂ J(θ |x, y)
∂ ŷ

∗ a′(o)
�

z(o)
�

,

where ∗ denotes elementwise multiplication. Having found an expression for the partial derivative
of the loss function with respect to the output layer z(o), the rest of the partial derivatives ∂ J(θ |x,y)

∂ z(l) ,
h= 1, . . . , H can be found recursively.

∂ J(θ |x, y)
∂ z(h)

=
∂ J(θ |x, y)
∂ z(h+1)

∂ z(h+1)

∂ a(h)
∂ a(h)

∂ z(h)
=
∂ J(θ |x, y)
∂ z(h+1)

∗W(h+1)1nh
∗ a′(h)
�

z(h)
�

=
�

W(h+1)
�T ∂ J(θ |x, y)

∂ z(h+1)
∗ a′(h)
�

z(h)
�

,

where 1n is a vector of ones and is of length n, nh is the length of the hidden layer number h and
for simplicity of notation we have used o = H +1. This constitutes the backpropagation algorithm.
The reason for lack of citations in this subsection is that these equations have been derived from
scratch by following the basic idea of backpropagation and utilizing chain and matrix derivation

12



Chapter 2: Background

rules. Additionally, while we in this thesis credit the Rumelhart et al. [29] paper from 1986 with
a formal introduction of backpropagation and a significant contribution to the popularization of
backpropagation, the idea had already been around for decades [30].

2.1.3 Batch and Layer Normalization

Batch normalization is a widely adopted technique that has been shown to enable more efficient
and stable training of deep neural networks [31]. It is usually applied to hidden layers in a neural
network either before or after applying activation function. During training the technique consists
of standardizing each node in the input vector based on the first and second moments of the cur-
rent mini-batch for the specific node [32]. Here input vector is used in the more general sense of
input to the batch normalization layer. For a batch of nbatch input vectors

�

z[i]
	

i=1,...,nbatch
to a batch

normalization layer, the input is transformed as follows

µ=
1

nbatch

∑

i

z[i]

σ =
1

nbatch

∑

i

�

z[i] −µ
�

∗
�

z[i] −µ
�

z[i]BN = γ ∗
�

z[i] −µ
�

∗
1

p
σ2 + ε

+β , for i = 1, . . . , nbatch,

where
¦

z[i]BN

©

i=1,...,nbatch
is the batch of outputs after applying batch normalization, γ and β are

two vectors of trainable parameters, ∗ denotes elementwise vector multiplication, and ε is a small
constant to avoid numerical division by zero. The vectors β and γ are used to perform a linear
transformation after standardizing the batch, where γ elementwise adjusts the standard deviation,
and β elementwise adjusts the bias. During the training phase µ and σ2 are calculated for each
batch, while β and γ are updated using the optimization function for the neural network. For
the inference phase, however, the normalization is computed in a slightly different way. For an
evaluation call to the neural network there may not be a full batch available, consequently, relying
on calculating µ and σ2 for each evaluation call is not a very stable solution for small inference
batch sizes and is even infeasible if the batch size is equal to 1. Instead during inference, µ and γ
are calculated as a moving average of the mean and standard deviations seen during training.

Despite being a very effective technique, the reasons for the effectiveness of batch normalization
is not very well understood. The original paper Ioffe and Szegedy [32] believed the effectiveness
was a result of batch normalization changing the input distributions to reduce what is referred to as
"internal covariate shift". Informally, internal covariate shift alludes to the change in the distribution
of a layer input caused by updates (during training) to the preceding layer [31]. The paper San-
turkar et al. [31] demonstrated, however, that such distribution stability of the layer inputs appear
to have little to do with the success of the batch normalization technique. Instead they found that
fundamentally batch normalization makes the optimization landscape a lot smoother. They reason
that this smoothness might induce a more stable and predictive behaviour of the gradients, thus
leading to faster training.

Batch normalization is not always feasible (as we shall later see in Section 2.2.1) or desirable.
An alternative to batch normalization is layer normalization [33]. Instead of computing the nor-
malization separately for each node and based on a batch of training cases, layer normalization
computes a single mean µl and a single variance σl for the entire layer based on a single train-
ing case. Consequently, layer normalization can be computed for all batch sizes and it performs

13



Rustad@NTNU: tabGAN

the same computation for the training and inference phase. Similar to batch normalization, layer
normalization includes learnable parameters that perform a linear transformation for each node
after the initial standardization. Mathematically, when adding layer normalization to a single input
vector z= [z1, . . . , znlayer

], the input is transformed as

µl =
1

nlayer

nlayer
∑

j=1

z j

σ2
l =

1
nlayer

nlayer
∑

j=1

�

z j −µl

�2

zLN = g ∗
z−µl
q

σ2
l + ε

+ b,

where zLN is the output after applying layer normalization to the layer of a single training case,
µl is the input layer mean, σ2

l is the input layer variance, ε is a small numerical constant to avoid
division by zero and g and b are trainable vectors that perform a linear transformation for each
node after standardization.

Xu et al. [34] argue that the effectiveness of layer normalization is mostly due to the rescaling
and recentering of the gradients (computed backwards in the neural network). They also claim that
layer normalization is prone to overfitting and suggest based on a few empirical experiments that
a simpler version without scaling and bias terms, g and b, may be just as or more effective. In the
same paper they propose a modification of layer normalization, which they denote AdaNorm [34]
for adapted normalization. It is defined as

µl =
1

nlayer

nlayer
∑

j=1

z j

σ2
l =

1
nlayer

nlayer
∑

j=1

�

z j −µl

�2

zLN,simple =
z−µl
q

σ2
l + ε

zAN = φ(zLN,simple) ∗ zLN,simple = C
�

1− kzLN,simple

�

∗ zLN,simple,

where zAN is the output, C is a hyperparameter, and k is a parameter set to 1
10 by the authors. In

implementation the term φ(zLN,simple) is regarded as an adjustable constant, thus the gradients are
not calculated using the product rule for φ(zLN,simple)∗zLN,simple, but instead calculated for zLN,simple
and elementwise multiplied by the term φ(zLN,simple), which is regarded as a vector of constants.

2.2 Generative Adversarial Networks (GANs)

Goodfellow et al. [35] introduced generative adversarial networks. The generative adversarial frame-
work consists of two neural networks: a generative model G and a discriminative model D. The gen-
erative model G tries to capture the data distribution, while the discriminative model D attempts
to distinguish which samples come from the real data distribution rather than being generated by
G. The training process of G consists of optimizing G to fool the discriminator D, while the training

14



Chapter 2: Background

Noise
(  )z

X

G(  )z
Real/Fake

Backpropagation

Figure 2.1: Illustration of a Generative Adversarial Model (GAN).

process of D consists of learning to separate between generated samples by G and real samples
from the desired data distribution. Thus G and D are in competition with each other. The neural
networks G and D are trained simultaneously. The aspiration is that the competition between the
two networks will force them both to gradually improve. If G and D both are in the space of arbit-
rary functions, then there exists a unique solution where G recovers the training data distribution
and D is equal to 0.5 everywhere since there is no difference between real samples and samples
generated by G [35].

A simile (illustrative comparison) for a generative adversarial network is the competition between
a forger trying to create counterfeit money and the police trying to determine which money is fake.
As the forger improves, it will be harder for the police to separate counterfeit money from real
money. If the police want to stay in the game, they will have to improve their detection skills. Sim-
ilarly, when the police get better at detecting counterfeit money, the forgers will have to improve
their skill at making imitations of real money if they want to continue to make money and avoid
getting caught. If there was no police or anyone else detecting false money, forgers could get away
with creating bad imitations. In the same way, the discriminator forces the generator to actually
create samples that follow the approximate data distribution wanted.

The min-max game between G and D can be written mathematically. The exact equation de-
pends on the chosen loss functions for G and D. Goodfellow et al. [35] suggest training D to max-
imize the probability of assigning correct label to both training data examples and samples from G
and simultaneously train G to minimize log(1− D(G(z))). Here z is a latent variable (noise) with
probability distribution PZ. The generator G generates samples in an attempt to approximate the
real data distribution from samples z drawn from PZ. With this loss function, the min-max game
can be written

min
G

max
D

V (D, G) = Ex∼P̂X
[log(D(x)] + Ez∼PZ

[log(1− D(G(z)))].

Here Ex∼P̂X
means taking the expectation with respect to x drawn from P̂X, where P̂X is the ob-

served data distribution (an approximation of the true data distribution PX). Likewise Ez∼PZ
means

taking the expectation with respect to z drawn from PZ. We give an illustration of a GAN model in
Figure 2.1.

Returning to the simile of the competition between a forger and the police, let us examine the
situation where the police suddenly becomes (or always was) much better at detecting false money
than the forger is at creating imitations. Then, it would be really difficult for the forger to under-
stand how to improve, since no matter what the forger did or tried, the police easily classified his

15



Rustad@NTNU: tabGAN

imitations as fake. This is also a problem for generative adversarial networks. If the discriminator
becomes much better than the generator, then the gradients provided by D will not be sufficient
to train G to improve. As a small fix to this, Goodfellow et al. [35] suggest training G to maximize
log(D(G(z)) early on, since when G performs badly, this gives stronger gradients. The paper Ar-
jovsky et al. [36] suggest a subclass of GANs called Wasserstein GAN (WGAN) where this problem
is fixed.

Another common problem with regular GAN is mode collaps. This happens when the generator
only learns a portion of real data distribution, for instance, only generates the numbers 2 and 7,
when we want it to generate all numbers between 0 and 9. Wasserstein GANs improve upon this
issue but do not solve it completely.

2.2.1 Wasserstein GAN (WGAN)

Wasserstein GANs were introduced in the paper Arjovsky et al. [36]. Most of the theory presented
in this subsection will be based on this paper. As the mathematical derivation of Wasserstein GANs
can be a little complicated to follow for a reader the first time, we will first give a more intuitive and
simpler explanation before we proceed to give a more mathematical explanation. Unlike regular
GANs as first proposed in Goodfellow et al. [35], WGANs use a different loss function called the
Earth-Mover distance. The authors give both theoretical and empirical motivations for why they
think this loss function is more beneficial than the Jensen-Shannon divergence. Optimizing the
Earth-Mover distance directly can be difficult, but thankfully there exists an equivalent version of
the distance. This distance, however, requires a supremum over 1-Lipschitz functions. To solve this,
the WGAN method uses a neural network forced to be 1-Lipschitz and trained to maximize the
expression (this acts as an approximation to the suprenum over 1-Lipschitz functions). This neural
network is referred to as the critic and replaces the discriminator.

A benefit of using the Earth-Mover distance as a loss function for G is that the derivatives are
useful even when G is underperforming. Thus, the problem of the discriminator becoming too good
too fast is avoided. Instead the better the discriminator is, the better it approximates the Earth-
Mover distance. As the discriminator is no longer trained to predict probabilities, the discriminator
in a Wasserstein GAN is called a critic. As the critic now approximates the Earth-Mover distance, we
have an actual measurement of how well the generator performs. In a standard GAN there is no way
to quantitatively measure how good the generator is, as the generator loss function is dependent
on the discriminator. A good generator can have a worse loss function value than a bad generator
if the discriminator corresponding to the bad generator is equally bad or worse. Additionally, it has
been shown empirically that WGAN decreases the probability of mode collapse. This is intuitive
since the loss function is a distance function and, with the elimination of unhelpful gradients for
bad G, the critic can be trained to optimality. At optimality, the critic will penalize mode collapse,
and the generator will receive encouragement to generate from all modes.

Now, we return to the more mathematical explanation of Wasserstein GANs. The Earth-Mover
distance or Wasserstein-1 distance measures how close the generated distribution of G is to the
desired data distribution [36]. The Earth-Mover distance between two probability distributions Pr
and Pg can be written

W (Pr ,Pg) = inf
γ∈Π(Pr ,Pg )

E(x,y)∼γ [∥x− y∥] . (2.5)

Here Π(Pr ,Pg) is the set of all joint distributions γ(x,y) whose marginal distributions are, re-
spectively, Pr and Pg . An interpretation of γ(x,y) is the amount of "mass" that must be transported
from x to y in order to transform the marginal distribution Pr into the marginal distribution Pg . Fol-

16



Chapter 2: Background

lowing this intuition, the Earth-Mover distance can be regarded as the "cost" of the optimal transport
plan [36].

The infinitum in Equation (2.5) is quite unmanageable, but using Kantorovich-Rubenstein du-
ality W (Pr ,Pg) this equation be rewritten in a more useful form [36].

W (Pr ,Pg) = sup
∥ f ∥L≤1

Ex∼Pr
[ f (x)]− Ey∼Pg

[ f (y)]. (2.6)

Here the supremum is taken over all 1-Lipschitz functions f : X
R
−→. If f instead was K-Lipschitz

for some constant K > 0, then the distance would be K ·W (Pr ,Pg) [36]. The definition of a K-
Lipschitz function f is that it satisfies

∥ f (x)− f (y)∥L ≤ K · ∥x− y∥L .

If we consider a parametric family of functions { fw}w∈W where all functions are K -Lipschitz
and that the supremum in Equation (2.6) is achieved for some w ∈W, then we could instead solve
for the optimization problem

max
w∈W

Ex∼Pr
[ fw(x)]− Ey∼Pg

[ fw(y)].

Note that the assumption of supremum in Equation (2.6) being achieved by fw for some w is
a quite strong assumption [36]. It will, however, still give us an approximation to the Earth Mover
distance times a constant K . Here, it might be motivational to remember the Universal Approxim-
ation theorem and that neural networks can in theory uniformly approximate any function to any
degree of accuracy. The idea behind Wasserstein GANs is to force the critic D to be K-Lipschitz such
that

sup
D

Ex∼PX
[D(x)]− Ez∼Pz

[D(G(z))], (2.7)

is an approximation of K times the Earth-Mover distance between the generated distribution by G
and the real data distribution PX.

The paper Arjovsky et al. [36] ensures that the critic is K-Lipschitz by forcing the weights of the
neural network w to lie in a compact space W. They do this by clipping the weights to a fixed box.
This is not an optimal method. As the authors themselves state "Weight clipping is a clearly terrible
way to enforce a Lipschitz constraint. If the clipping parameter is large, then it can take a long time
for any weights to reach their limit, thereby making it harder to train the critic til optimality. If the
clipping is small, this can easily lead to vanishing gradients when the number of layers is big, or batch
normalization is not used." [36].

Gulrajani et al. [37] show examples of WGAN with weight clipping having either exploding or
vanishing gradients, as well as failing to capture higher moments of the data distribution. As such,
they instead propose an alternative way to enforce the Lipschitz constraint by including a gradient
penalty. A differentiable function is 1-Lipshitz if and only if it has gradients with norm at most
1 everywhere [37]. Including a term penalizing the gradient for being higher than 1 enforces a
soft version of the Lipschitz constraint. For simplicity, Gulrajani et al. [37] use a two-sided penalty,
thereby encouraging the gradient norm to go towards 1, not only be below 1. Empirically they
found that this two-sided penalty did not constrain the critic too much compared to the one-sided
penalty [37].

The new objective function is

L = Ez∼PZ
[D(G(z))]− Ex∼PX

[D(x)] +λ · Ex̃∼PX̃

�

(∥∇x̃D(x̃)∥2 − 1)2
�

,

17



Rustad@NTNU: tabGAN

where they define the probability distribution PX̃ by sampling uniformly along straight lines between
the pairs of points sampled from the real data distribution, PX, and the generated data distribution
PX̂. The probability distribution PX̂ is the distribution of G(z) when z is sampled from PZ. In Al-
gorithm 1 we give the training procedure for a WGAN with gradient penalty using Adam [28] as
the optimizer.

When using Wasserstein GANs with gradient penalty (WGAN-GP) it is important to not use
batch normalization. Batch normalization changes the critic’s task of mapping a single input to
a single output to the task of mapping an entire batch of inputs to a batch of outputs, and then
the penalizing method is no longer valid [37]. Therefore, when we in Section 3.2 create our data
synthesizer framework and in Section 5.3 define our model based counterfactual framework using
WGAN-GP, we will not use batch normalization for the critic architecture.

Algorithm 1: WGAN with gradient penalty. Gulrajani et al. [37] uses the default values
λ = 10, ncri t ic = 5, α = 0.0001, β1 = 0, β2 = 0.9. The algorithm is taken from Gulrajani
et al. [37], but altered to match the notation of this thesis.

Input : λ /* Gradient penalty coefficient */
Input : m /* Batch size */
Input : α,β1,β2 /* Adam hyperparameters */
Input : w0 /* Initial critic parameters */
Input : θ 0 /* Initial generator parameters */
while θ has not converged do

for t = 1, . . . , ncri t ic do
for i = 1, . . . , m do

Sample real data x∼ PX
Sample latent variable z∼ PZ
Sample a random number ε∼ U[0, 1]
x̂← Gθ (z)
x̃← εx+ (1− ε)x̂
L(i)← Dw(x̂)− Dw(x) +λ(||∇x̃Dw(x̃)||2 − 1)2

end
w← Adam(∇w

1
m

∑m
i=1 L(i),w,α,β1,β2)

end
Sample a batch of latent variables {z(i)}mi=1 ∼ PZ

θ ← Adam(∇θ
1
m

∑m
i=1−Dw(Gθ (z)),θ ,α,β1,β2)

end

2.3 XGBoost - An Implementation of Gradient Boosted Decision Trees

XGBoost [38] is an implementation of gradient-boosted decision trees. The XGBoost framework
is designed to be highly eefficient, flexible and portable. In order to not to make this section too
long, as the XGBoost model is not very essential to the contributions of this thesis, we assume the
reader is already familiar with what a decision tree [39] is. However, a very brief explanation is a
flowchart tree structure of nodes, where each node is basically an if-else statement. The terminal
(leaf) nodes are thus the result of a series of if-else statements and hold the predicted values for
samples satisfying these series of conditions. Decision trees can be efficient and interpretable, but
such models often have high variance and do not give the best performance [39]. One solution to

18



Chapter 2: Background

Truth
Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 2.1: Confusion matrix.

this is to use a combination of many trees. Bagging [40] fits many trees to bootstrapped versions of
the training data and uses an average of predictions for each tree for regression problems as well as
usually majority vote for classification problems. Random forest is a fancier version of bagging that
reduces correlation between the trees by using a random subset of covariates as candidates for each
split [41]. Boosting trees are a method where each new tree is trained to improve upon the errors
of the previous trees [42, 43]. Boosting algorithms generally train new models to improve on the
errors of previous models by reweighting the training observations. Gradient boosting methods, on
the other hand, utilize gradient descent to minimize the loss function when adding a new model
to the ensemble of models [44, 45]. Thus, each new model is fit to predict the residuals of the
ensemble of previous models. A version of this algorithm is implemented by XGBoost. The XGBoost
version of the algorithm also include stochastic subsampling of features (similar to random forest),
regularized objective function and shrinkage of weight parameter for each new tree [38]. The ad-
dition of stochastic subsampling means that XGBoost is an implementation of stochastic gradient
boosting trees.

2.4 Metrics for Efficacy of a Classification Machine Learning Model

There are many different metrics for classification models. Let y = [y1, . . . , yn] be a vector of ob-
servations with the true classes, and let ŷ = [ ŷ1, . . . , ŷn] be the corresponding vector of predicted
classes according to some classification model. Here yi can either be binary or multiclass. The ac-
curacy metric measures the percent of correctly classified observations

Accurac y(y, ŷ) =
1
n

n
∑

i

I(yi = ŷi),

where I is the indicator function. Accuracy is a useful metric for classification problems that are
well balanced and do not contain very imbalanced classes. Let us imagine a classification problem
of predicting whether a person has a heart attack in the next day. Even a simple model that always
predicts no heart attack will likely have an accuracy score close to 100% even if it is practically
useless.

For binary classification problems, precision and recall are other useful metrics [46]. To define
these it is useful to define what a true positive, false positive, false negative and true negative is. Let
one class be the positive class and the other be the negative class. A true positive (TP) is when the
model correctly predicts the positive class, while a false positive (FP) is when the model predicts the
positive class, but in reality it is the negative class. A false negative is when the model predicts the
negative class (FN) when it actually is the positive class, while a true negative is when the model
correctly predicts the negative class (TN). See Table 2.1 for an overview using a confusion matrix.

Precision is defined as the proportion of predicted positives that are actually positive

Precision(y, ŷ) =
TP

TP+ FP
,

while recall is the proportion of actual positives that are correctly classified

19



Rustad@NTNU: tabGAN

Recal l(y, ŷ) =
TP

TP+ FN
.

Here, and for the rest of this section, we merely write TP, FP, FN and TN in the equations instead
of specifying that they are functions of y and ŷ. Returning to the classification problem of predicting
whether a person has a heart attack in the next day with the naive model of always predicting no
heart attack. If we set heart attack as the positive class, then both precision and recall are equal
to zero since we never predict the positive class. Precision is a useful evaluation metric if we want
to be very sure of our prediction (when we predict the positive class). For example if we want to
build a system for decreasing the credit limit for some customers, then we usually would want to
be very certain that we did not decrease peoples credit limit unnecessary, else we might get a lot
of dissatisfied customers. A downside to being very precise is that we might miss out on many of
the observations that actually are of the positive class. Recall is a useful evaluation metric when we
desire to catch as many of the positive class as possible. For instance if we want to predict heart
attack, it is much more unfavorable to misclassify the positive class (heart attack) compared to
the negative class (not heart attack). Be aware, however, that a naive model that always predicts
heart attack will have a recall of 1. Note that both recall and precision can be used for multiclass
classification problems. This is done by setting a single class as the positive class and all the other
classes as the negative class.

The F1 score [46] is a trade-off between precision and recall. The F1 score is a number between
0 and 1 and is defined as

F1(y, ŷ) = 2 ·
Precision(y, ŷ) · Recal l(y, ŷ)
Precision(y, ŷ) + Recal l(y, ŷ)

.

With the F1 score, both a model that always predicts the positive class as well as a model that
always predicts the negative class, will get a value of 0. A downside to the F1 score is that it weights
both prediction and recall equally. Depending on the application, it might be desirable to weight
them differently. The weighted F1 metric fixes this, but we do not include it here as it is not used
in this thesis. If desired, a F1 value can be calculated for each class. This is common in multinomial
classification problems. The F1 values can be evaluated separately or they can be combined into a
single metric. There are multiple ways to combine the F1 scores. In this thesis, we only use macro-
averaged F1 score, also known as macro F1 score. The macro F1 score is merely the unweighted
average of the F1 score for each class.

Another metric is the AUC [46], also known as AUROC. It is the area under the ROC curve.
To define ROC it is useful to first define sensitivity and specificity. Sensitivity is the proportion of
the positive class that we actually predict as positive, i.e the same as recall, while specificity is the
proportion of the negative predictions actually belonging to the negative class

Sensi t ivi t y(y, ŷ) =
TN

TN+ FP
.

The ROC curve is defined as sensitivity plotted on the y-axis against (1 − specificity) on the
x-axis for multiple probability thresholds when classifying each class. (1− specificity) is the same
as the proportion of the true negative observations falsely predicted to be of the positive class

1− Sensi t ivi t y(y, ŷ) =
TN

TN+ FP
.

If a model has no predictive ability, the ROC curve will merely be a straight line from (0,0) to
(1,1). The corresponding AUC value will then be zero. If a model correctly classifies all observations,
the ROC curve will be a straight line from (0, 0) to (0,1) in combination with a straight line from

20



Chapter 2: Background

(a) ROC curve (b) Precision-recall curve

Figure 2.2: Example of ROC and precision-recall curve for a simple example. We let p =
[p1, . . . , p81] = [0.10,0.11, 0.12, . . . , 0.49, 0.5,0.51, . . . , 0.88,0.89, 0.90] be the estimated probabilit-
ies from the model and let the supposed ground truth for this example be defined as y = [y1, . . . , y81]
where yi = I(ui < p) and u1, . . . , u81 are independent and identically distributed samples from a
Uniform(0,1) distribution. I(·) is the indicator function.

(0,1) to (1, 1). The AUC value will, therefore, be 1. Note that if a classification model classifies all
observations wrongly, it gets an AUC value of 0. An AUC value of 0.5 is considered a baseline as it
is the score of a model without predictive capabilities.

The AUC curve might not be optimal for very skewed machine learning problems (very imbal-
anced classes) [47]. An alternative to the ROC curve is the Precision-Recall curve. The Precision-
Recall curve [47] plots precision on the y-axis and recall on the x-axis. The metric AUPRC is defined
as the area under the Precision-Recall curve. The baseline for the AUPRC model is the fraction of
observations with the positive class. In Figure 2.2, we give an example of a ROC curve in Figure 2.2a
and an example of a precision-recall curve in Figure 2.2b.

21





Chapter 3

Data Synthesizing

Synthetic data is characterized by being artificially created instead of being obtained directly from
measurements of events in the real world [48]. The umbrella that is synthetic data contains both
data obtained through simulation scenarios and data generated by sampling techniques trained on
or applied to real-world data. The book Synthetic data for deep learning [49] distinguishes between
synthetic data and data augmentation; where they define data augmentation as a set of techniques
to modify real data rather than create new synthetic data. However, they state that there is a blurry
line. The book also defines three types of main usage for synthetic data [49, Chapter 1].

1. Using synthetic datasets to train machine learning models directly; usually either with inten-
tion to use them on real data or in order to train (usually generative) models to refine data,
making it more suitable for training.

2. Using synthetically generated data to extend or augment existing real datasets. For these
situations, the synthetic data samples are usually used to provide more examples for parts of
the data distribution that are not represented well enough in the real dataset.

3. Using synthetically generated data to avoid legal or privacy issues associated with using or
sharing real data. This is especially applicable for healthcare where there are strict regulations
with respect to sharing of images or health care records, but also in many other sectors and
applications.

In this thesis, we focus on creating synthetic datasets that follow the data distribution of a
real-world dataset. We give a brief overview of such methods in Section 3.1. Next, in Section 3.2
we explain in detail the GAN-based data synthesizer framework we develop in this thesis. Lastly,
we give a brief introduction for each of the state-of-the-art data synthesizers that will be used as
baselines for experiments in Chapter 7.

3.1 A Brief Overview of Generating Synthetic Data from Real Data

The book Accelerating AI with Synthetic Data [48, Chapter 1] divides methods for generating syn-
thetic data from real data into two classes. Both classes have a generative component and a discrim-
inative component. The generative component, often referred to as generator, creates an approx-
imation of the real data distribution and uses this to generate synthetic data. The discriminative
component, often referred to as the discriminator, compares the synthetic data against the real data,
and in case it is found that the synthetic data differs from the real data, the parameters of the gener-
ative component are adjusted. This process is iterated until the generator learns to synthesize data
of acceptable quality. The book uses the input data to the generator as the distinguishing element
between the classes. The two classes are:

23



Rustad@NTNU: tabGAN

Real data

Synthetic data
Generator Discriminator

Evaluation results

Figure 3.1: A general schematic for synthesizing data when the primary input to the generator during
training is real data. The figure is a redrawn version of Figure 1-2 in the book Accelerating AI with
Synthetic Data [48, Chapter 1].

1. Methods for generating synthetic data that use real data as input to the generator
2. Methods for generating synthetic data that use random data as input to the generator

We will explain the difference between the two classes in a bit more detail and give some
examples of methods that belong to each class. The first class is an umbrella of many methods, but
they all have in common that the generator has direct access to the real data during training. For an
illustration of this, see Figure 3.1. One of the simplest sets of approaches within this class is, perhaps,
to fit independent distributions to all variables in the real data and then compute the correlation
between the variables. The first step can consist of choosing and fitting a parametric distribution for
each variable or a more simple method that, for example, only uses the mean and variance statistics
of each variable. Having collected this information, a potential way to sample synthetic data is to use
Monte Carlo simulation techniques while enforcing similar correlation patterns to those observed
in the real data [48, Chapter 1]. Alternatively, or in combination with Monte Carlo sampling, a
copula can be used. A copula is a method that allows for the decomposition of a joint probability
distribution into marginal distributions and a function that models the dependence between the
variables. If the copula allows for direct sampling, then synthetic data can be sampled directly from
the marginals and correlation structure. An example of a Gaussian copula implementation that can
directly generate synthetic data is given in Section 3.3.3.

Numerous more advanced approaches exist. Algorithms based on linear models, decision trees,
stochastic vector machines (SVM), random forest, or neural networks may for example be used to
create synthesized data. One usage of these could be to decompose the joint probability distribution
of the data, PX(x), into products of conditional probability distributions PX j |X1,...,X j−1

(x j|x1, . . . , x j−1)
and then use the machine learning methods above to learn each of the conditional distributions [50,
51]. We will not go into any more detail about these methods, but Drechsler and Reiter [50] and
Dandekar et al. [51] find that decision trees appear to be especially suitable for such algorithmic
probability decomposition methods.

Deep learning synthesizing methods, such as variational autoencoders (VAE), are other good
alternatives. Autoencoders consist of an encoder and a decoder and are a way of learning a repres-

24



Chapter 3: Data Synthesizing

Real data

Synthetic data
Generator Discriminator

Evaluation results

Random data

Figure 3.2: A general schematic for synthesizing data when the primary input to the generator during
training is random noise. The figure is a redrawn version of Figure 1-3 in the book Accelerating AI
with Synthetic Data [48, Chapter 1].

entation of data (typically a lower-dimensional encoding). Variational autoencoders assume that
the input information is defined by an underlying latent distribution (encoding) and that it is pos-
sible to reconstruct the input data from the representation in the latent space (decoding) [4, 12].
VAEs also try to estimate the parameters of the latent distribution. When the underlying latent dis-
tribution is modelled and the decoder structure is sufficiently learned, then synthesized data can
easily be generated by sampling from the latent distribution and then applying the decoder.

The main set of methods belonging to the second class is Generative Adversarial Networks,
which we described in Section 2.2. In the standard GAN structure, the generator only receives a
noise vector, whilst the discriminator is the only one with access to the real data. The generator
learns to replicate the original data distribution indirectly through feedback from the discriminator.
In Figure 3.2, we plot a general scheme for the second class of generative methods. Some examples
of GAN-based data synthesizers are given in Section 3.2 and Section 3.3.

3.2 A Wasserstein GAN Based Data Synthesizer Framework – tabGAN

In this section we present our contribution to the wide range of already existing data synthesizing
methods. The framework, which we name tabGAN, is implemented with a pipeline for automatic
preprocessing and post-processing of data. The general steps performed by the framework can be
defined as follows. First, it executes a preprocessing step that transforms the data to a format that
can be given as input to a neural network. It then implements a Wasserstein GAN with gradient
penalty to model the underlying data distribution of the transformed data. We implement several
different model architecture and training process options. Finally, tabGAN generates samples from
the learned data distribution and invert the transformations done in the preprocessing step to arrive
at a dataset with the original format. The "tab" part of the name refers to the fact that the method is
intended for tabular data. The preprocessing step and the model architecture of the GAN is inspired
by state-of-the-art tabular GANs [1, 3, 13]. We implement two training procedures: one based on
regular GAN and one based on conditonal GAN (CGAN) [52]. The intention behind the conditional
GAN is to be able to get more representation for the rare categories in the dataset and therefore
help the generator with learning of data distributions with imbalanced classes. The conditional
GAN method is inspired from the CTGAN synthesizer [1] and the authors describe this as the main
intent. An added benefit, however, is that it allows for conditional sampling of synthetic data based

25



Rustad@NTNU: tabGAN

on a single column category. We explain each of the steps in more detail in the sections below.

3.2.1 Preprocessing Step

Since the data to be modeled is tabular, it can consist of a combination of continuous, integer,
binary and categorical data. A neural network requires both input and output to be numerical.
Thus, for the input to the critic to be on an acceptable format and for the generator to have an
effective data representation that can be learned as the output format, we must first perform some
data transformation. An additional reason for performing preprocessing is that standardizing or
normalizing the numerical data can make it easier for the neural networks to learn.

For binary and categorical data we perform one-hot encoding. One-hot encoding means that
one binary column is added for each category in the categorical column (an alternative form of
one-hot encoding could be to add one binary column for all categories except the last category and
let the last category be represented by 0 in all other binary columns). Currently, there is no extra
functionality for ordinal categorical data, they are merely regarded as nominal by the framework.
In the tabGAN framework, there is an option to add some uniform noise to the one-hot encoding.
This is controlled by the parameter δoh−noise. For a one-hot encoded variable d j = [d j,1, . . . , d j,l j

]
where l j is the number of categories for discrete column j, then the one-hot encoded variable after

applying noise, d[noisy]
j , is defined

d[noisy]
j = [d[noisy]

j,1 , . . . , d[noisy]
j,l j

]

d[noisy]
j,k = d j,k − u j,k · I(d j,k = 1) + u j,k · I(d j,k = 0), for k = 1, . . . , l j

u j,k ∼ Uniform(0,δoh−noise), for k = 1, . . . , N j .

With respect to integer and continuous data we implement three options. The first option is to
simply standardize integer and continuous columns. Standardization is performed by subtracting
the mean of the column and dividing by the standard deviation. The transformed column will then
have mean zero and standard deviation equal to 1. The mean and the standard deviation of each
column are stored, meaning that they can be used in the inverted transformation.

The second option that we implement for integer and continuous columns is a quantile trans-
formation. Quantile transformation is described in Section 4.1. We implement the quantile uniform
transformation and the quantile normal transformation as possible choices. The quantile transform-
ation with Gaussion (normal) output distribution is, however, the default choice and the one we
will use when we later in this thesis evaluate the second preprocessing. The third option that we
implement is the Randomized Quantile Transformation (QTR). The Randomized Quantile Trans-
formation is described in Section 4.3. It is a novel transformation that we were inspired to create
during the work leading up to this thesis, which we believe has beneficial qualities over regular
quantile transformation when a column has many repeated values (which is common for integer
columns or continuous columns with a large share of values equal to zero). If there are no repeated
values in a column, then the Randomized Quantile Transformation is no different than regular
quantile transformation. Similar to the regular quantile transformation option, we implement QTR
with both uniform and Gaussian output distribution, but Gaussian output distribution is the default
choice.

3.2.2 Model Architectures

Let there be a dataset with ND categorical columns and NC numerical columns and let a row of the
transformed data using one of the methods from Section 3.2.1 be represented as

26



Chapter 3: Data Synthesizing

r′ = c′ ⊕ d′ = c′1 ⊕ · · · ⊕ c′NC
⊕ d′1 ⊕ · · · ⊕ d′ND

l j = dim(d′j), for j = 1, . . . , ND

lD = dim(d′) =
ND
∑

j

l j

lw = dim(r′),

where c′ represents the transformed numerical columns, d′ represents the discrete columns, c′j
represent jth transformed numerical column, d′j denotes the one-hot encoded vector of the jth
categorical column, and ⊕ is the operator for concatenating vectors. The dimension of the whole
row is lw, while the jth discrete column’s one-hot encoding is denoted by l j . The dimension of the
concatenated one-hot encoded vectors of the discrete columns, d′, is lD. We use the ′ notation to
signify that it is the transformed version of the data.

Since we are providing a framework, it is difficult to define a single model architecture that
will represent the framework. On the other hand, it can potentially be a bit overwhelming for
the reader if all possible configurations and options are listed and explained at once. We aim at a
compromise between these two approaches. We postulate that the single most important user choice
in the framework is whether to use the regular WGAN implementation or the conditional WGAN
implementation. For each of these two options, we will present the default model architecture in
the tabGAN framework. We will also, where it is convenient, give brief explanations about some of
the available customization choices. To separate the two main choices, from now on we will refer
to the regular WGAN implementation of the tabGAN framework as tabGAN and the conditional
WGAN implementation of the tabGAN framework as ctabGAN. To avoid confusion with the name
of the framework, we will always include the word "framework" when referring to the tabGAN
framework.

Regular WGAN Model Architecture – tabGAN

For the regular WGAN implementation, the only input to the generator is a realization of a standard
normally distributed latent variable, z, of length lz . The input layer is fully connected to a neural
layer of size lh,g with GELU activation function (defined in Section 2.1.1) followed by a batch nor-
malization layer (defined in Section 2.1.3). Here, GELU activation is the default, but the framework
allows for replacing GELU with any of the other activation functions referenced in Section 2.1.1 that
are suitable as activation functions for a hidden layer. It is also an option to use identity activation
function, which is the same as no activation function. This option is, however, not recommended
as activation functions are what allows the neural network to learn non-linear relationships.

The first hidden layer in the generator is fully connected to a second hidden layer of size lh,g
with GELU activation followed by a batch normalization layer. Again, the activation function is
interchangeable. The second hidden layer is then connected to several layers. Firstly, it is fully
connected to a dense layer of length NC . This is the numerical output layer. Secondly, it is connected
to multiple dense layers with respective lengths l1, . . . , lND

. Each of these dense layers corresponds
to a discrete column. Letting these dense layers be the output for each discrete column would be
an acceptable solution. The neural network would, after learning, try to output layers with the one-
hot encoding format, but would have a hard time doing this since the one-hot encoding format is
difficult for a neural network to replicate without help, at least in the author’s experience. Taking
arg max of each dense output categorical layer would solve the one-hot encoding perfectly but is a

27



Rustad@NTNU: tabGAN

bad choice since it is a non-differentiable function (thus making learning through back-propagation
impossible). A better alternative would be to use a softmax activation function. Then the output
from each categorical output layer would be transformed such that all nodes lie between 0 and 1
and that all nodes in each layer sum up to 1. For a dense layer y′j = [y

′
j,1, . . . , y ′j,l j

], the softmax

activation function is defined as

d ′j,k =
e y j,k/τ

∑l j

i=1 e y j,i/τ
for k = 1, . . . , l j ,

where τ is the softmax temperature (sometimes set equal to 1 in certain softmax definitions such
as the one in Equation (2.4)). When τ→ 0 the softmax function converges to the arg max function.
The softmax function in the Tensorflow library [53] always has τ= 1, but we implement a wrapper
around it that allows for specifying the softmax temperature τ in the tabGAN framework.

Let us now analyze one categorical output layer and for simplicity we assume that the output in
the numerical layer and all other categorical output layers are given (in reality, for our neural net-
work architecture, the generator synthesize the outputs in parallel). When all other output columns
are given, what we want is for the generator to generate output in the last discrete layer that is real-
istic to observe in combination with the other numerical and categorical variables. When we use
softmax as an activation function for the output categorical layer, what we implicitly ask the gener-
ator to do in the last dense categorical layer, is to generate samples. Unless there is only one suitable
category, we want the last categorical layer to output different categories for different realizations of
the latent variable z, and we want the ratio of categories sampled to be equal to the ratio in the real
data distribution conditioned on the same numerical and categorical variable values. This is doable
for a neural network, but a challenge can be that it easily neglects (and therefore undersamples)
the categories with low but still larger than zero probabilities. What potentially might be easier for
the neural network, could be to have the dense categorical output layer estimate the conditional
probabilities (or at least ratios) for each category and then have the activation function take care of
the random sampling. This is the recommended and default approach in the tabGAN framework.
Inspired by Xu et al. [1] and Rajabi and Garibay [3], we by default use a Gumbel softmax [54]
activation function to produce one-hot encoded vector samples instead of softmax activation func-
tion. Despite Gumbel softmax being the default, regular softmax can, in the tabGAN framework,
easily be chosen instead of Gumbel softmax. During our hyperparameter tuning we found no clear
winner between Gumbel softmax and regular softmax.

The Gumbel softmax activation function for a dense layer with probabilitiesπ′j = [π
′
j,1, . . . ,π′j,l j

]
is defined

d ′j,k =
e(log(π j,k)+gk)/τ

∑l j

i=1 e(log(π j,i)+gi)/τ
for k = 1, . . . , l j ,

where g1, . . . , gl j
are Gumbel(0,1) distributed. The Gumbel(0,1) distribution can be sampled using

inverse transform sampling by generating ui ∼ Uni f orm(0,1) and computing gi = − log(− log(ui)).
For our model, we let each dense categorical output layer y′j = [y

′
j,1, . . . , y ′j,l j

] be the logit values

y ′j,k = log(π j,k/(1−π j,k)). Thus, using the Gumbel activation function we get

d ′j,k =
e(− log(1−exp{y j,k})+gk)/τ

∑l j

i=1 e(− log(1−exp{y j,k})+gi)/τ
for k = 1, . . . , l j .

As a final step in the generator architecture, the categorical output layers mapped through the
Gumbel activation function (or alternatively softmax if desired by the user) are concatenated. Thus,

28



Chapter 3: Data Synthesizing

the default model architecture can formally be described as







































Input: z (latent vector)

h1 = BN
�

GELU
�

FClz→lh,g
(z)
��

h2 = BN
�

GELU
�

FClh,g→lh,g
(h1)
��

ĉ′ = FClh,g→lNC
(h2)

d̂
′
= Gumbelτ
�

FClh,g→l1 (h2)
�

⊕ · · · ⊕ Gumbelτ
�

FClh,g→lND
(h2)
�

Output: ĉ′, d̂
′
,

where FCa→b represents a fully connected layer with input size a and output size b, GELU(y) de-
notes applying a GELU activation on y, BN(·) denotes applying a batch normalization layer and
Gumbelτ(y) denotes applying Gumbel softmax activation with temperature parameter τ on a vec-
tor y. Notationwise, we let h1 and h2 be the two hidden layers and ĉ′ and d̂

′
be the output numeric

layer and the output discrete layer, respectively. The input to the generator is the latent vector z.
The architecture of the generator for the Adult dataset treated in Section 6.2 is plotted in Figure 3.3.

Latent: InputLayer Hidden1: Dense Hidden2: Dense

workclass_output: Dense

education_output: Dense

marital.status_output: Dense

occupation_output: Dense

race_output: Dense

gender_output: Dense

native.country_output: Dense

income_output: Dense

Numeric_output: Dense

Gumbel_softmax1: Activation

Gumbel_softmax2: Activation

Gumbel_softmax3: Activation

Gumbel_softmax4: Activation

Gumbel_softmax5: Activation

Gumbel_softmax6: Activation

Gumbel_softmax7: Activation

Gumbel_softmax8: Activation

Discrete_output: Concatenate

Figure 3.3: Plot of default generator architecture for the regular GAN implementation in the tabGAN
framework for the Adult dataset treated in Section 6.2. The GELU activation function and the batch
normalization layers added to the first and second hidden layer (Hidden1 and Hidden2) are not
included in the plot. The dense layers corresponding to each categorical variable is named [variable
name]_output.

For the regular WGAN implementation, the critic receives two inputs: the numerical columns,
c′, and the categorical columns, d′. Recall that since we implement a Wasserstein GAN we use
a critic instead of a discriminator. By default these two inputs are merely concatenated, but the
separate input structure easily allows for more complicated designs. Next, the concatenated layer
is fully connected to a neural layer of size lh,d with GELU activation function as default. This first
hidden layer is, again, fully connected to a second hidden layer also of size lh,d with by default
GELU activation function. The second hidden layer is then fully connected to a single output node.
The value of the output node is the predicted logit value of the given input being an observation
from the real data distribution. Formally, the critics default architecture can be described as

29



Rustad@NTNU: tabGAN







































Input: c′,d′ (numeric and discrete output of generator or transformed real data)

hIN = c′ ⊕ d′

h1 = GELU
�

FClw→lh,d
(hIN )
�

h2 = GELU
�

FClh,d→lh,d
h1)
�

hOU T = FClh,d→1 (h2)

Output: hOU T ,

where hIN is the input layer, h1 and h2 are the two hidden layers, and hOU T is the output node.
The architecture of the discriminator for the Adult dataset described in Section 6.2 is plotted in
Figure 3.4.

Numeric_input: InputLayer

Combining_input: Concatenate

Discrete_input: InputLayer

hidden1: Dense

hidden2: Dense

output_discriminator: Dense

Figure 3.4: Plot of the default critic architecture for the regular GAN implemenation in the tabGAN
framework for the Adult dataset treated in Section 6.2. The GELU activation function added to the
first and second hidden layer (hidden1 and hidden2) is not included in the plot.

Conditional WGAN Model Architecture – ctabGAN

For the conditional WGAN implementation, the generator receives two inputs: a realization of
a standard normally distributed latent variable, z, of length lz and a conditional vector m′ =
m′1 ⊕ . . . ⊕m′ND

of length lD. Each of the conditional vectors m′j are of length l j and with binary
elements. The conditional vector m′ can be regarded as a concatenation of smaller mask vectors
associated with each of the one-hot encoded discrete columns. It is defined such that exactly a

single element of m′ is equal to 1 instead of zero, that is
∑ND

j=1

∑l j

k=1 m′j,k = 1 and d j,k ∈ {0,1} for
k = 1, . . . , l j for j = 1, . . . , ND. The single value where d j,k = 1 informs the generator that we want
to condition on the kth category of the jth column. In other words, we want the sample generated
by the generator to be of the kth category for the jth column. The reason we only implement con-
ditioning on discrete columns, is that for a category value of a single column in the dataset, there
are usually multiple observations available in the original dataset. On the other hand, for a single
numerical value there is usually only a single matching observation for continuous columns or a

30



Chapter 3: Data Synthesizing

few matching observations for integer columns. We therefore believe it is reasonable to assume that
this makes it simpler to estimate the conditional distribution of a discrete column compared to the
conditional distribution of a numerical column. It would, however, be interesting to investigate if
it can be beneficial to include conditioning on numerical columns. Perhaps the generator will be
able to learn the conditional distribution for each of the numerical columns directly, or maybe an
eligible option can be to condition on intervals of the numerical columns. Both input layers z and
m′ are concatenated into a single layer. The rest of the default ctabGAN model architecture is the
same as the default architecture for tabGAN. The ctabGAN default model architecture is formally
described as















































Input: z,m′ (latent vector and conditional vector)

hIN = z⊕m′

h1 = BN
�

GELU
�

FClz→lh,g
(hIN )
��

h2 = BN
�

GELU
�

FClh,g→lh,g
(h1)
��

ĉ′ = FClh,g→lNC
(h2)

d̂
′
= Gumbelτ
�

FClh,g→l1 (h2)
�

⊕ · · · ⊕ Gumbelτ
�

FClh,g→lND
(h2)
�

Output: ĉ′, d̂
′
.

In the default architecture for the conditional WGAN implementation the critic receives three
inputs: the numerical columns c′, the categorical columns d′, and the conditional vector m′. The
conditional vector informs the critic of which conditional distribution the pair {c′,d′} should be
drawn from. By default, these three inputs are merely concatenated and the rest of the default critic
architecture for ctabGAN is the same as for tabGAN. Consequently, the default critic architecture
for ctabGAN can formally be written as







































Input: c′,d′,m′ (transformed numeric and discrete columns and conditional vector)

hIN = c′ ⊕ d′ ⊕m′

h1 = GELU
�

FClw→lh,d
(hIN )
�

h2 = GELU
�

FClh,d→lh,d
(h1)
�

hOU T = FClh,g→1 (h2)

Output: hOU T .

Extra Customization Available for Model Architecture in tabGAN Framework

More options are implemented in the tabGAN framework than what we have described earlier in
this section. Now we try to efficiently describe some of them. For the default tabGAN architecture
and for the default ctabGAN architecture, both the generator and the critic have two hidden layers.
Additionally, the default value for generator hidden layer size is lh,g = 256 and the critic hidden
layer size is lh,d = 256. The number of generator and critic layers can be set to any positive integer
(and not necessarily the same value), and additionally, each hidden layer can easily have its own
layer size. By default, the dimension of the latent vector, z, is lz = 128. This can also be set by
user to any positive integer. Additionally, dropout layers (see Section 2.1.1) can be freely added
after the concatenated input layer or after each of the hidden layers. The dropout rate of the layers
can be set to different values for the generator and critic, if desired. For the generator, we use
batch normalization after applying activation function to each hidden layer by default. Since there

31



Rustad@NTNU: tabGAN

is debate whether batch normalization should be applied before or after the activation function,
we implement the option to include batch normalization before the activation instead. Of course,
we also implement the option to not use batch normalization. As stated in Section 2.2.1, batch
normalization can not be used in the critic architecture for Wasserstein GANs with gradient penalty,
as it changes the critic’s task of mapping a single input to a single output to the task of mapping an
entire batch of inputs to a batch of outputs, and then the penalizing method is no longer valid. Layer
normalization can, however, be used as a drop-in replacement for batch normalization, since with
layer normalization the critic still maps a single input to a single output. In the tabGAN framework,
we incorporate layer normalization as an option for the critic, either before or after the activation
function is applied to each hidden layer. However, by default we do not include layer normalization,
as it was unclear, from the limited testing we performed with layer normalization, if it on average
is beneficial or not.

The tabGAN framework also accommodates more complex layer interactions for the generator.
If desired a dense connection between the numeric output layer and each of the discrete column
output layers can be added. There is also the option of adding a hidden layer of arbitrary size and
an activation function between the numeric output layer and each of the discrete column output
layers. Then the model architecture for ctabGAN can be written as



























































Input: z,m′ (latent vector and conditional vector)

hIN = z⊕m′

h1 = BN
�

GELU
�

FClz→lh,g
(hIN )
��

h2 = BN
�

GELU
�

FClh,g→lh,g
(h1)
��

ĉ′ = FClh,g→lNC
(h2)

hc→d = a
�

FClNC→lh,c→d

�

ĉ′
�

�

d̂
′
= Gumbelτ
�

FC(lh,g+lc→d )→l1 (h2 ⊕ hc→d)
�

⊕ · · · ⊕ Gumbelτ
�

FC(lh,g+lc→d )→lND
(h2 ⊕ hc→d)
�

Output: ĉ′, d̂
′
,

where a is some arbitrary activation function, hc→d is the hidden layer of size lh,c→d between the
numeric output layer, ĉ′, and each of the discrete column output layers. Alternatively, the same
connection can be added from the discrete output layer to the numeric output layer, with an optional
hidden layer and activation function in between. Then the model architecture for ctabGAN can be
written



























































Input: z,m′ (latent vector and conditional vector)

hIN = z⊕m′

h1 = BN
�

GELU
�

FClz→lh,g
(hIN )
��

h2 = BN
�

GELU
�

FClh,g→lh,g
(h1)
��

d̂
′
= Gumbelτ
�

FClh,g→l1 (h2)
�

⊕ · · · ⊕ Gumbelτ
�

FClh,g→lND
(h2)
�

hd→c = a
�

FClD→lh,d→c

�

d̂
′��

ĉ′ = FC(lh,g+lh,d→c)→lNC
(h2 ⊕ hd→c)

Output: ĉ′, d̂
′
,

where hd→c is the hidden layer of size lh,d→c between the discrete output layer, d̂
′
, and the numeric

output layer, ĉ′. The last two options can not be chosen simultaneously. Otherwise, there would be

32



Chapter 3: Data Synthesizing

a loop from numeric output layer to discrete output layer and back to numeric output layer again. A
third option that can be used independently of the two previous is to add a dense connection from
the conditional vector, m′, directly to each of the discrete column output layers. During hyperpara-
meter tuning, we found that these extra connections were sometimes beneficial, but the trends
were not clear enough that we trusted it to generalize well to other datasets. They are, however,
options that can be tried to squeeze out some extra performance. In particular, the connection from
the discrete output layer to the numeric output layer tended to perform well. More exploration is
needed, as we do not investigate it thoroughly in this thesis.

3.2.3 Training Phase

The training phase in the tabGAN framework depends a bit upon chosen user configurations. How-
ever, for the regular WGAN implementation, tabGAN, the training phase is pretty straightforward. It
basically follows Algorithm 1 to the letter. As default choice, we use ncri t ic = 10 updates of the critic
for each update of the generator, λ= 10 as the penalty coefficient, a batch size of nbatch = 500 and
the default train length is 300 epochs. The default optimizer is Adam with β1 = 0.7 and β2 = 0.999.
However, multiple other optimizers are available. Defining the length of an epoch is actually not
straight forward when using a WGAN as ncri t ic times as many rows of observations are used to train
the critic as the generator (since the critic is updated ncri t ic times for each time the generator is up-
dated). We choose, however, to use the same definition as implemented by Xu et al. [1] and Rajabi
and Garibay [3], which we also believe to be the most reasonable one. One epoch is then defined
as max{ntrain//nbatch, 1} where // signifies integer division and ntrain is the number of observations
in the training dataset given to the synthesizer.

With the conditional GAN implementation, ctabGAN, the training phase is a bit more complic-
ated. For each row in a batch, a conditional vector m′ must be chosen. The conditional vector
should specify a category of single column to condition on. What distribution the column and cat-
egory choice should follow is up for debate, but we have chosen to implement the same two choices
as in the Xu et al. [1] paper. They divide the process of choosing the conditional vector m′ for each
row into two steps. First a column is chosen uniformly from the list of discrete columns. Having
chosen a discrete column j, the category is drawn from a distribution where category k has probab-
ility p[ j]k of being chosen. We implement two different choices for the probabilities. Let n[ j]k be the
number of observations with category k in discrete column j.

1. The first choice is to let the category probabilities be equal to the proportion of each category

in the column, that is p[ j]k = n[ j]k /
∑l j

i=1 n[ j]i . This gives the generator more chances to learn
the common categories, but as a downside it might not get enough representation of the rare
categories.

2. The second option is to let the probabilities be defined as the logarithm of the frequency
of the category. The probabilities are of course normalized such that they sum to 1. Then

the probability for category k is defined as p[ j]k = log(n[ j]k )/
∑l j

i=1 log(n[ j]i ). This gives the
generator a bit more chances to learn the rare categories whilst still sampling the common
categories more often. This is the default choice for ctabGAN in the tabGAN framework.

Having chosen category k for column j, the conditional vector for that row is created as a vector
of length lD with zeros everywhere except at the kth element of m j , where the value is 1. When
choosing a real observation to pair with a chosen m′, an observation is uniformly drawn from all
observations that are of the kth category for column j. Except for this, the training procedure is
very similar to Algorithm 1. Instead of merely giving a batch of random noise vectors, we give a
batch of random noise vectors along with a batch of conditional vectors. Instead of merely giving

33



Rustad@NTNU: tabGAN

a batch of real or fake data to the critic, we give a batch of real or fake data along with a batch of
corresponding conditional vectors. As the conditional vector z is given as input to the critic along
with the data row r (generated sample or observation), we expand the gradient loss term to force
the critic to be 1-Lipschitz for the entire input. We also add an additional term to the generator loss.
This extra term is a cross-entropy loss between m[ j

∗] and d j∗ , where j∗ is the chosen column. The
loss term is averaged across the batch. The extra loss term is proposed to enforce the generator to
produce the category of the column conditioned on. By default, ctabGAN includes this loss term as
we have observed it to be beneficial, but the tabGAN framework also allows for the option not to
include the extra generator loss term, as even without it the critic appears to implicitly impose the
constraint on the generator.

Packing Training Samples for the Critic

The paper Lin et al. [55] propose an approach to mitigate mode collapse for GAN which they call
packing. The main idea of the approach is to modify the discriminator (or in our case critic) to make
decisions based on multiple samples at once. The packing method can easily be implemented on
top of most existing GAN architectures, including Wasserstein GAN which we use in this thesis. To
implement packing, all that needs to be done is to feed the critic npac samples at once. This should
not be confused with giving the critic a batch of observations during training. Feeding the critic
a batch of nbatch samples leads to nbatch independent inputs to the critic and consequently nbatch
output values. Feeding the critic npac packed samples leads to a single pass through the critic and
a single output value. With packing, the generator in the tabGAN architecture takes as input npac
concatenated latent noise vectors and the critic takes as input npac concatenated observations. The
ctabGAN architecture takes the same, but additionally npac concatenated conditional vectors.

By getting the critic to classify npac samples jointly, the critic gets to observe samples from
product distributions. Lin et al. [55] argue that intuitively mode collapse is more clearly observed
in such product distributions. They prove theoretically a fundamental connection between packing
and mode collapse and show empirically that packing appears to reduce mode collapse. We imple-
ment packing as an option in the tabGAN framework, but as we during our hyperparameter tuning
consistently got worse performance with packing, we do not include it by default. We believe that
this might be because WGAN already reduces mode collapse and even though the paper Lin et al.
[55] found packing to be beneficial for WGAN also, they only performed the experiment on a data-
set with vast amounts of modes. We reason that packing might be useful for tabGAN if we have a
dataset where the number of modes are very high.

3.2.4 Synthesizing Data on Original Data Format

Synthesizing data with the tabGAN framework after the training phase is over is a very simple
process. To generate a dataset with nnew observations using tabGAN, the generator is first fed a batch
with n latent noise vectors. The generator then outputs two datasets, each with n rows. The first
dataset contains the numerical columns and the second dataset contains the discrete column. Then
the numerical dataset is transformed back to the original data format using the inverted numerical
transformation used for preprocessing, whether that was standardization, quantile transformation
or the Randomized Quantile Transformation. Similarly, the one-hot encoded discrete columns are
transformed back to the original data format. Then the numerical and discrete dataset, both on the
original data format, are merged.

For ctabGAN the process is very similar, but there is one more step at the beginning. As ctabGAN
generates samples for conditional distributions, we must supply a batch of conditional vectors along
with the batch of latent noise vectors. No matter which category probabilities (either proportional to

34



Chapter 3: Data Synthesizing

log of frequency or just frequency) were chosen to use during training, the probabilities used during

sampling are always the ones proportional to frequency of category, that is p[ j]k = n[ j]k /
∑l j

i=1 n[ j]i .
The reason for this is that we want the generated data to follow the original data distribution, not
the optional new data distribution where the rare categories are more common.

3.2.5 Implementation Details

The entire model is implemented as a class in Python [56]. The model is primarily implemented
using the Tensorflow library [53] as well as the Tensorflow Probability library [57]. Other signi-
ficant packages used are Pandas [58, 59] for data processing and Scikit-learn [60] for most of the
preprocessing and post-processing of the data.

Much emphasis has been placed on creating a fast implementation. Many of the processes per-
formed during training are written in such a way that Tensorflow can create a graph structure of
the process, thus leading to significant speedups. Additionally, for time-consuming processes during
training much care has been taken to ensure that Tensorflow is able to utilize just-in-time compil-
ation with Accelerated Linear Algebra for even further speed-ups. Just-in-time compilation means
that code is compiled during execution of the code, not beforehand. Additionally, the data fetching
process for tabGAN (not ctabGAN) is implemented such that the CPU can perform the fetching, and
if needed prefetch batches of the data, whilst the GPU is working. However, as tabular datasets are
usually quite small size-wise (at least compared to batches of high-resolution images and such),
the data fetching process is quite fast anyway and the performance gains are neglible. On the other
hand, for very large tabular datasets or very large batch sizes, data prefetching might be beneficial.

3.3 A Selection of State-of-the-art Data Synthesizers

In this section, we present some data synthesizers that we will later use as baselines for comparison
with our tabGAN methods in Chapter 7. We continue using the notation defined in Section 3.2.
Many of the data synthesizing methods we describe below can be found in the Synthetic Data Vault
(SDV) package [2]. SDV is an ecosystem that provides a couple of different synthetic data models
along with some tools to benchmark data synthesizers and calculate metrics.

3.3.1 CTGAN

The CTGAN model was presented in Xu et al. [1]. It is quite similar to our default ctabGAN im-
plementation explained in Section 3.2. The most significant difference is that CTGAN employs a
different preprocessing transformation for the numerical columns. For each continuous column,
the CTGAN method uses a variational Gaussian mixture model (VGM) to estimate the number of
modes and fit a Gaussian mixture. A Gaussian mixture model assumes that the data points are
generated from a finite and known number of Gaussian distributions with unknown parameters
[61]. Another difference with CTGAN compared to ctabGAN is that CTGAN concatenates each new
hidden layer in the generator with the previous layer. Additionally, for the numerical (not one-hot
encoded) output, CTGAN uses the hyperbolic tangent function, tanh, as activation function. The
generator architecture for CTGAN can mathematically be described as

35



Rustad@NTNU: tabGAN























































Input: z,m (latent vector and conditional vector similar to ctabGAN)

h0 = z⊕m

h1 = h0 ⊕ ReLU
�

BN
�

FC(|m|+|z|)→256 (h0)
��

h2 = h1 ⊕ ReLU
�

BN
�

FC(|m|+|z|+256)→256 (h1)
��

α̂ j = tanh
�

FC(|m|+|z|+512)→1 (h2)
�

, for 1≤ j ≤ NC

β̂ j = Gumbelτ=0.2

�

FC(|m|+|z|+512)→mi
(h2)
�

, for 1≤ j ≤ NC

d̂ j = Gumbelτ=0.2

�

FC(|m|+|z|+512)→|di | (h2)
�

Output:
�

α̂ j

	

j=1,...,NC
,
�

β̂ j

	

j=1,...,NC
,
�

d̂ j

	

j=1,...,ND
,

where z is the latent vector, m is the conditional vector defined for the ctabGAN architecture, BN(·)
is batch normalization, ReLU is the Rectified Linear activation function defined in Section 2.1 and
d̂ j is the generated one-hot encoding for the jth discrete column for j = 1, . . . , ND. The outputs
�

α̂ j

	

j=1,...,NC
and
�

β̂ j

	

j=1,...,NC
are representations of the numerical columns for CTGAN. For column

j the one-hot encoded vector β̂ j defines which mode in the Gaussian mixture model for column

j the generated observation belongs to. Given β̂ j , the scalar α̂ j denotes where in the mode the
current value for column j of the generated observations is located. We will not elaborate further
on the notation defined in the CTGAN paper or the preprocessing method, but refer to Xu et al. [1]
for the interested reader.

The critic architecture for the CTGAN model is very similar to the critic of ctabGAN, except that
CTGAN uses LeakyReLU instead of GELU as activation function after each hidden layer and CTGAN
also uses dropout after each LeakyReLU activation. By default, CTGAN uses packing with pac size
equal to 10 for the critic, but it can be changed. To not use packing, it is enough to set npac = 1.
Without packing the CTGAN architecture can formally be described as



































Input: r′,m (real or synthesized data row and conditional vector)

hIN = r′ ⊕m′

h1 = Dropout (Leak yReLUα=0.2 (FC256→256 (hIN )))
h2 = Dropout (Leak yReLUα=0.2 (FC256→256 (h1)))
hOU T = FC256→1 (h2)
Output: hOU T ,

where Dropout(·)means a dropout layer and Leak yReLU(·)means applying the LeakyReLU activ-
ation function defined in Section 2.1.1. The CTGAN model is available both as a standalone Python
package and as part of the Synthetic Data Vault package (SDV). The implementation in the SDV
package is merely a wrapper around the original CTGAN implementation. When we later in this
thesis evaluate the CTGAN synthesizer, we evaluate the method both with and without packing.
We refer to the CTGAN method without packing as CTGAN-pac1 and the CTGAN method with ten
packed samples to the critic as CTGAN-pac10.

3.3.2 TVAE

The TVAE model was presented in the same paper as CTGAN. It is a variational autoencoder struc-
ture specifically designed for tabular data. It uses the same preprocessing techniques as CTGAN,
that is, variational Gaussian mixture models for the numeric columns and one-hot encoding of the

36



Chapter 3: Data Synthesizing

categorical columns. We will not give a detailed description of TVAE here; instead we will merely
refer to the paper Xu et al. [1]. The default implementation of TVAE uses two hidden layers of size
128 in both the encoder and decoder neural architecture. As both the tabGAN framework and CT-
GAN by default use two hidden layers of size 256 for both the generator and critic, we will include
a implementation of TVAE where the the hidden layers are of size 256. We call the slightly modified
version of TVAE with hidden layer sizes equal to 256 for TVAE-mod, and the default version for
TVAE-orig. The TVAE method is implemented in both the standalone Python package CTGAN and
as part of the SDV package. The implementation in the SDV package is merely a wrapper around
the original TVAE implementation for the CTGAN package.

3.3.3 GaussianCopula

A multivariate distribution can be decomposed into marginal distributions, correlation parameters
and a dependency structure. This dependency structure is known as a copula and describes how
the marginal distributions interact. More mathematically, a copula is a multivariate cumulative dis-
tribution function where each of the marginal probability distributions is uniform on the interval
[0, 1] [62]. A Gaussian copula is constructed from a multivariate normal distribution by utilizing
the probability integral transform. A Gaussian copula data synthesizer, GaussianCopula, is imple-
mented in the Stochastic Data Vault package. To accommodate categorical data, one-hot encoding
is used for the discrete columns. Then marginal distributions are selected for each column (either
original numerical columns or the one-hot encoded columns). The marginal distributions can be
chosen manually by the user, but the GaussianCopula implementation also allows for automatically
detecting the appropriate marginal distribution of each column. Having selected the marginal dis-
tribution types, the parameters of the marginal distributions are fitted to the data. The next step in
the method is to fit a Gaussian copula. Having fitted the marginal distributions and the copula func-
tion, new data are easily synthesized by sampling from the multivariate Gaussian copula function
and then transforming the samples using probability integral transformation.

3.3.4 CopulaGAN

CopulaGAN is another synthesizer implemented in the SDV package. It is basically a combination
of CTGAN and the transformations from the GaussianCopula. The steps of CopulaGAN can be de-
scribed as follows

1. Transform each non-categorical column using the same transformer as GaussianCopula. That
is, if not specified, atuomatically select a suitable marginal distribution and fit it to the column
data. Then transform each column to the standard normal space by first applying the cumu-
lative distribution function of the fitted marginal distribution and then applying the inverse
cumulative distribution function for the standard normal distribution.

2. Fit a CTGAN model to the transformed dataset.

To generate a synthetic dataset with CopulaGAN, the process is as follows

1. Sample a dataset of the desired size using CTGAN
2. Reverse the transformations from the added preprocessing step. That is, for each of the numer-

ical columns, apply the cumulative distribution function of the standard normal distribution
followed by the inverted cumulative distribution function that corresponds to each numerical
column.

CopulaGAN or CTGAN might be the best performing methods of the well-known GAN-based
data synthesizers. At least they outperform other GAN based data synthesizers such as MedGAN

37



Rustad@NTNU: tabGAN

[63], TableganSynthesizer [64], and VEEGANSynthesizer [65] in the leaderboard of the Python
benchmarking framework SDGym, which is part of the Synthetic Data Vault project. In the same
ranking they also outperform Bayesian network based synthesizers such as PrivBNSynthesizer [66]
and CLBNSynthesizer [67].

3.3.5 TabFairGAN

The TabFairGan synthesizer [3] is a method for generating fair synthetic datasets (for instance by
removing racial or genderwise bias). However, in this paper, we regard it as a standard tabular
GAN and do not use the fairness functionality. The tabFairGAN synthesizer is not available in any
Python packages, but it is available as a script on the Github belonging to this paper1. The tabFair-
GAN method uses quantile uniform transformation (see Section 4.1) as preprocessing for numerical
columns and one-hot encoding for discrete columns. The generator architecture can formally be de-
scribed as







































Input: z (latent vector)

h0 = z

h1 = ReLU
�

FClw→lw (h0)
�

r̂′ = ReLU
�

FClw→lw (h1)
�

⊕ Gumbelτ=0.2

�

FClw→NC
(h1)
�

Gumbelτ=0.2

�

FClw→l1 (h1)
�

⊕ . . .⊕
Gumbelτ=0.2

�

FClw→lND
(h1)
�

Output: r̂′,

where r̂′ is a synthesized row and lw is, as we have previously defined, the dimension of a trans-
formed data row r′. The critic architecture can be described as



















Input: r′ (output of generator or transformed real data)

h1 = Leak yReLUα=0.01

�

FClw→lw

�

r′
��

h2 = Leak yReLUα=0.01

�

FClw→lw (h1)
�

Output: mean(h2).

The output from the critic is the mean of the layer h2. The paper Rajabi and Garibay [3] exper-
imentally shows that TabFairGAN achieves similar performance to CTGAN (the default method of
CTGAN which we refer to as CTGAN-pac10) for the Adult dataset.

1TabFairGAN Github link: https://github.com/amirarsalan90/TabFairGAN

38

https://github.com/amirarsalan90/TabFairGAN


Chapter 4

Randomized Quantile Transformation

One of the main contributions of this thesis is the introduction of the novel transformation method,
which we have named the Randomized Quantile Transformation (QTR). Both regular quantile
transformation and the Randomized Quantile Transformation are implemented as possible pre-
processing methods for numerical data in our data synthesizer framwork, tabGAN, and our model-
based counterfactual framework, tabGAN-cf. The QTR adds stochastic elements to what is often
referred to as quantile transformation. The definitions of a quantile transformation in the liter-
ature is not entirely consistent or complete, but in Section 4.1, we try to give a definition based
on the content of the papers Beasley et al. [68] and Bogner et al. [69] and the implementation
in the Python [56] machine learning library scikit-learn [60]. Some of the examples given in the
sections below are taken from these papers, others are natural extensions by the author. Since the
quantile transformation and Randomized Quantile Transformation used in the tabGAN framework
are built upon the quantile transformation implementation in the scikit-learn package, this specific
implementation of quantile transformation is explained in some detail in Section 4.1. We proceed
to explain the motivation for creating QTR in Section 4.2 and the mathematical defintion of QTR
in Section 4.3.

4.1 Quantile Transformation

A quantile transformation is characterized by the usage of quantiles to map one probability distri-
bution to another probability distribution. If the cumulative distribution function (CDF) is known,
it can be used as the transformation. If x is a realization of the random variable X with the cumu-
lative distribution function FX , then y = FX (x) is a realization from a Uniform(0,1) distribution
(or an approximation of it if F is left right continuous). If desired, it can be further transformed
into any other distribution by utilizing the (generalized) inverse of that distribution’s cumulative
distribution function. For instance z = Φ−1(y) = Φ−1(FX (x)) is a sample from a standard normal
distribution. Converting to the Uniform(0,1) or standard normal distribution is the common choice.

For practical applications the true cumulative distribution function is rarely known. Thus, an-
other transformation or an approximation must be used to map the original observations to the
new distribution. We make the distinction between rank-based and non-rank-based transformation
methods. Non-rank-based methods assume a particular cumulative distribution function for the
observed data, estimate the parameters of the chosen distribution and then use the fitted CDF to
transform the observed data to estimated quantiles.

Rank-based quantile transformations do not assume a parameterized distribution, but instead
use sample ranks. A rank can be the position of the sample in an ordered version of the samples. A
simple rank-based transformation is the empirical cumulative distribution function

39



Rustad@NTNU: tabGAN

F̂ E
X (x |x) =

1
n

n
∑

i=1

I(x i ≤ x),

where x = [x1, . . . , xn] is the samples and I the indicator function. After applying the empirical
cumulative distribution function, the samples can then, if desired, be mapped to the normal distri-
bution. A tiny complication is that the largest sample is mapped to 1 by the empirical CDF. Thus,
straightforward application of Φ will map the largest sample x(n) to positive infinity. An easy fix for
this would be to apply the transformation

Ĝ−1(y|x) = Φ−1
�

min
�

F̂ E
X (x |x), 1− ε
	�

,

where ε is some small value. An issue with using the empirical CDF to transform to approximately
uniform distribution, is that it is biased toward larger values (it includes a map to 1, but not 0). An
alternative option could be to use the transformation

F̂X (x |x) =
1

n+ 1

n
∑

i=1

I(x i ≤ x).

This also solves the problem with directly applying Φ−1, since 0 and 1 are never being mapped
to. It can be shown for a sample vector x of unique values, that Section 4.1 maps the sample of
rank i to the mean of the ith order statistic for a uniform distribution when drawing n samples.
See Appendix B for a derivation of the kth order statistic of the Uniform(0,1) distribution being
Beta(k, n−k+1) with mean k

n+1 . Inspired by the usage of expected uniform scores (expected value
of the kth largest observation in a sample of size n) as a mapping, an option for transformation to
the standard normal distribution is to use expected normal scores. This rank-based transformation
skips the intermediate transformation step to the uniform distribution and instead maps directly
to the normal distribution. Unfortunately, no analytical expression is available for expected normal
scores. Using numerical integration, the paper Harter [70] from 1961 provid the most complete
table of expected normal values [68]. In Blom [71] an approximation to the expected value of the
ith normal order statistic for a sample of size n is proposed as

E[z(i)] = Φ
−1
�

i − c
n− 2c + 1

�

.

The paper Blom [71] proposes to use c = 3
8 = 0.375. The paper Beasley et al. [68] proposes

to use c = 0.363 or, better yet, c(n) = 0.314195+ 0.06333 · log10(n)− 0.010895
�

log10(n)
�2

. More
advanced approximations are also proposed.

Many other rank-based transformations can be thought of. For instance to use

F̂≈scikit-learn
X (x |x) =

�∑n
i=1 I(x i ≤ x
�

− 1

n− 1
,

as an approximation to the CDF. This is basically what is implemented by the quantile_transform
function and the QuantileTransformer class in the Python [56] package scikit-learn [60]. However,
the scikit-learn package also implements linear interpolation and the option of choosing fewer (and
possibly new) quantiles to define the transformation (which increases computational speed). By
default, the scikit-learn package uses nquantiles = min{1000, n} quantiles, where n is the number
of observed values. We denote the actual approximation to the CDF implemented by scikit-learn as
F̂ scikit-learn

X . The scikit-learn package also has an option for quantile transformation to the standard
normal distribution. This is defined as

40



Chapter 4: Randomized Quantile Transformation

0 2.5 5 7.5 10
x

0

0.25

0.50

0.75

1

F(
x)

(a) Quantile uniform transformation.

0 2.5 5 7.5 10
x

3

0

3

1 (
F(

x)
)

(b) Quantile normal transformation.

Figure 4.1: Example of quantile transformation with uniform and standard normal output distri-
butions, respectively, given sample vector x = [1, 2,2, 3,4, 4,4, 4,4, 4,5, 7,8, 9]. The solid black line
represents the transformation function for a range of x-values, while the arrows represent the trans-
formation for the initial samples in x. For repeated values in x (for 2 and 4), the arrows are jittered
a bit along the x-axis for easier visualization.

�

Ĝscikit-learn
X

�−1
= Φ−1
�

max
�

min
�

F̂ scikit-learn
X (x |x), 1− 10−7

	

, 10−7
	�

.

Basically, this is just applying the inverse of the standard normal CDF to the values from the ap-
proximation to the cumulative distribution function of the samples whilst taking care of boundary
extremities to avoid mapping to negative or positive infinity. The scikit-learn package also includes
an option for inverting the quantile transformation. For the quantile normal transformation, this is
done by using the transformation (F̂ scikit-learn)−1(Φ(·)), while for the quantile uniform transforma-
tion this is done by using the transformation (F̂ scikit-learn)−1(·). Inversion of the F̂ scikit-learn function
is very quick and efficient when the chosen (possibly new) quantiles and their mappings are saved.
For repeated quantiles (which can happen when there are repeated values in the sample vector x)
the F̂ scikit-learn transformation is not unique. In the scikit-learn package, this is solved by mapping
to the middle of the range of possible values. See Figure 4.1 for an example of the quantile uniform
transformation and an example of the quantile normal transformation when using the scikit-learn
package.

4.2 Motivation for Creation of Randomized Quantile Transformation

The motivation for creating the randomized quantile transformation was that the author noticed
that for some integer variables (columns) and some continuous variables with a large share of ob-
servations equal to zero, the quantile transformation had large gaps where no values were mapped
to except exactly in the middle. Intuitively, we thought that this might be a problem due to two reas-
ons. Firstly, the discriminator (or critic) could use these large gaps in the real dataset columns to
distinguish between real and generated samples. Thus, the discriminator is given an unfair advant-
age. We reasoned that perhaps this unfair advantage might make the discriminator less effective
in giving training directions to the generator, as it did not necessarily need to learn the difference
in the generated and the desired distribution due to the presence of other indicators. This might

41



Rustad@NTNU: tabGAN

force the generator to "spend a lot of effort" learning to map exactly to the middle of these gaps,
instead of only inside the gaps. This coincides with the second issue. If the generator does not
see any observations inside these gaps, except exactly in the middle, how will it learn that it is
allowed to utilize the entire gap (as the entire gap maps to the same value when inverting the
quantile transformation)? The Randomized Quantile Transformation tries to solve this problem by
stochastically mapping to an uniform interval centered around the center of each gap. A disadvant-
age of Randomized Quantile Transformation is that it introduces noise and is stochastic. Thus, it
does not necessarily give the same result if applied twice to the same data. The introduction of
noise will make it harder for the generator, but the benefits hopefully outweigh the disadvantages.
The stochastic nature of the transformation should not be much of an issue when training a GAN
network, but we are unsure how useful the transformation will be for other purposes. We fail to
imagine how adding noise for no apparent reason for cases where there is no adversarial setup, and
therefore no discriminator that otherwise might get an unfair advantage if noise was not introduced,
will be helpful. We might, however, very well be proven wrong on this account. The quantile trans-
formation is sometimes used in regression problems (for example quantile normal transformation
has been used in many hydrological and meteorological applications [69] and gained popularity
among genetic researchers [68]), but intuitively we do not believe randomized quantile transform-
ation will be useful for this. It will make the result of the regression analysis stochastic, whilst no
clear benefit is apparent. We note that Beasley et al. [68] are aware of a single quantile transform-
ation with a stochastic element. While this approach has some theoretical advantage, Beasley et al.
[68] state that the stochastic nature of the transformation seem to be discouraging to researchers
and is rarely, if ever, used.

4.3 Mathematical Definition of Randomized Quantile Transformation

As seen in Section 4.1, quantile transformation can be implemented in a myriad of different ways.
Consequently, as the Randomized Quantile Transformation (QTR) is only a slight modification
on top of quantile transformation, a multitude of different implementations of the Randomized
Quantile Transformation also exist. In this paper, we implement QTR on top of the quantile trans-
formation from the scikit-learn package in Python.

First we define some notation. Let F̂ be an approximation of the cumulative distribution func-
tion for the sample vector x and let {ql}l=1,...,nquantiles

be the chosen quantiles (usually selected ob-
servations or interpolations from the sample vector x). Let the references {rl}l=1,...,nquantiles

be a

set where each element is defined by the relation ql = F̂−1(rl). Each reference rl only maps to
a single quantile ql , but there can be repeated values in the set {ql}l=1,...,nquantiles

, thus multiple
references can map to the same quantile value. Scikit-learn implements the set of references as
rl =

l−1
nquantiles

for l = 1, . . . , nquantiles and the set of quantiles as the corresponding percentiles of the
sample vector x. It solves the non-unique mapping problem for quantile values with multiple refer-
ences as

rlow(ql ) =min
�

rm|F̂−1(rm) = ql

	

rhigh(ql ) =max
�

rm|F̂−1(rm) = ql

	

F̂{ql}(ql) =
rlow(ql ) + rhigh(ql )

2
.

Due to interpolation, the approximate CDF for any quantile q is defined

42



Chapter 4: Randomized Quantile Transformation

qbelow(q) = arg min
ql

{q− ql |ql ≤ q}

qabove(q) = arg min
ql

{ql − q|ql ≥ q}

F̂(q) = F̂{ql}(qbelow(q)) +
q− qbelow(q)

qabove(q) − qbelow(q)
·
�

F̂{ql}(qabove(q))− F̂{ql}(qbelow(q))
�

.

Similarly, due to interpolation, the inverse of the approximate CDF for any reference r is defined

rbelow(r) = arg min
rl

{r − rl |rl ≤ r}

rabove(r) = arg min
rl

{rl − r|rl ≥ r}

F̂−1(r) = F̂−1
{rl}
(rbelow(r)) +

r − rbelow(r)

rabove(r) − rbelow(r)
·
�

F̂−1
{rl}
(rabove(r))− ˆ{rl}F−1(rbelow(r))

�

,

where F−1
{rl}
(rl) = ql . The only change introduced by the Randomized Quantile Transformation is

rhigh(q) =max
�

F̂(q),
�

rl |rl = F̂(q)
		

rlow(q) =min
�

F̂(q),
�

rl |rl = F̂(q)
		

u∼ Uniform

�

−δqtr_spread

2
,
δqtr_spread

2

�

F̂ randomized(q) = F̂(q) + u ·
�

rhigh(q) − rlow(q)
�

,

where 0 ≤ δqtr_spread ≤ 1 is a hyperparameter that can be chosen by user. The inverse cumulative
transformation, F̂−1, is unchanged in the Randomized Quantile Transformation. See Figure 4.2
for an example of the Randomized Quantile Transformation with uniform and standard normal
output distribution, respectively. The sample vector x is the same for both Figure 4.1 and Figure 4.2
for easy comparison between the original quantile transformation and the Randomized Quantile
Transformation.

43



Rustad@NTNU: tabGAN

0 2.5 5 7.5 10
x

0

0.25

0.50

0.75

1

F(
x)

(a) Quantile uniform transformation.

0 2.5 5 7.5 10
x

3

0

3
1 (

F(
x)

)

(b) Quantile normal transformation.

Figure 4.2: Example of Randomized Quantile Transformation with uniform and standard normal
output distributions, respectively, given sample vector x = [1,2, 2,3, 4,4, 4,4, 4,4, 5,7, 8,9]. The
solid black line represents the transformation function for a range of x-values, while the arrows
represent the transformation for the initial samples in x. For repeated values in x (for 2 and 4), the
arrows are jittered a bit along the x-axis for easier visualization. The hyperparameter δqtr_spread is set
equal to 1.

44



Chapter 5

Counterfactual Synthesizing

Counterfactual explanations [8] is an emerging method within the toolbox of interpretable machine
learning. A counterfactual explains a causal relationship by phrasing the argument on the form: "if
A did (or did not) happen, then B would (or would not) have happened. For instance, if you burned
your hand when you leaned on a hot stove, a counterfactual explanation could be: "if you had not
leaned on the stove, then you would not have burned your hand".

Although counterfactual explanations in the context of interpretable machine learning is a quite
new phenomena, counterfactual explanations date long back in social sciences such as philosophy
and physchology [72]. Psychologists have shown that counterfactuals evoke causual reasoning in
us humans [72] and counterfactuals are an important part of our cognitive lives [73]. The concept
of using counterfactuals for causual reasoning has also been validated by philosophers [72]. In
studies which compare counterfactual explanations to other explanation approaches, it has been
shown that humans prefer counterfactual explanations over case-based reasoning (another reason-
ing approach based on giving examples) [72]. Fernández-Loría et al. [74] construct simple examples
where counterfactual explanations perform better than feature importance methods.

The paper Verma et al. [75] list desirable properties of counterfactual explanations:

• Actionability: Counterfactual explanations should only consider changing features that are
thought of as mutable and actionable. For instance a counterfactual explanation that change
immutable features such as race or birth place might be of little value for many scenarios.
We argue, however, that counterfactual explanations that modify such features can also be
valuable with respect to detecting bias in a dataset [3] or just understanding the prediction
model better.

• Sparsity: A counterfactual explanation is more understandable and actionable if it suggests
to change only a few features, instead of many features. Verma et al. [75] argue that this
holds true even if the magnitude of the individual changes are larger when changing only a
few features.

• Adherence to the data manifold: If a counterfactual explanation is in close approximation to
the data distribution used in training the underlying machine learning model, then research
has suggested it is more likely to be actionable [75]. Intuitively, this makes sense. Imagine
an 18 year-old just out of high school who receives a counterfactual observation where the
only change is to change his job status from unemployed to retired. Even though only a
single feature is changed, we argue that this counterfactual explanation is pretty useless for
most scenarios. Most likely the 18 year old will have to wait at least 40 years before being
able to retire. Additionally, since there are very few retired 18 year-olds, the counterfactual
explanation is probably quite unrelatable to the 18 year old. Thus, it is neither very helpful
as a suggested action nor as a tool for explaining or understanding the model decision.

45



Rustad@NTNU: tabGAN

• Respect for causal relations: If a counterfactual explanation is to be coherent with real-world
relations, then a counterfactual explanation should comply with causal relations between fea-
tures. For example, for many scenarios it will be unhelpful to propose a decrease in a person’s
age or academic degree. Additionally, the causal relations between features should be taken
into account. Imagine an 18 year-old just out of high school who receives a counterfactual
observation where the only change is a change in his level of education from high school to
a PhD. If the counterfactual synthesizer should adhere to causal relations in the real-world,
then it might make sense to suggest an increase in age as well, as the time required to get a
PhD is normally multiple years.

Verma et al. [75] also list some desirable properties for the algorithm generating counterfactuals:

• Black box and model agnostic counterfactual explanations: An algorithm which is model
agnostic and also applicable to black box models, is much more flexible than an algorithm
that for instance requires access to gradients or only can be applied to a single type of models.

• Fast generation of counterfactuals: An algorithm which after a single optimization is able to
generate counterfactual explanations for multiple datapoints (from the same data distribution
and with the same prediction function), is both faster and easier to deploy [75].

Algorithm based counterfactual methods formulate the task of generating counterfactuals as an
optimization problem that can be solved using methods for numerical optimization. Model based
counterfactual methods, on the other hand, approach the task of generating counterfactuals by first
learning the underlying probability distribution of the feature space and then using that probability
distribution to generate counterfactual explanations. In Section 5.1 and Section 5.2, we give a brief
overview of algorithm based and model based counterfactual methods, respectively. Although we
mainly focus on model based counterfactual methods in this thesis, we believe algorithmic coun-
terfactual methods are a natural part of an explanation of counterfactuals and give a unique insight
into what a counterfactual explanation is and needs to be, compared to the insight provided by
model based counterfactual methods. Finally, in Section 5.3, we proceed to describe the Wasser-
stein GAN based counterfactual framework introduced in this thesis.

Throughout this chapter we will use the following notation to discuss counterfactuals. Let f̂ :
X → R be a prediction function for which we want to generate counterfactuals, where X is the
feature space and Y ∗ ∈ R is a set of desired outcomes. The desired outcome Y ∗ can for instance be
a single number, an interval or multiple intervals. The observation for which we want to generate
counterfactual explanations we denote by q∗ and a counterfactual observation we denote as x∗.

5.1 A Brief Overview of Algorithm Based Counterfactual Methods

Perhaps the simplest optimization problem to generate a counterfactual explanation x∗ correspond-
ing to an observation q∗ is

arg min
x∗,y∗

f̂ (x∗)− y∗, y∗ ∈ Y ∗.

This optimization problem, however, does not reflect the fact that we generally want the coun-
terfactual explanations to be close to the original observation. This can be incorporated into the
optimization problem as

arg min
x∗,y∗

max
λ
λ( f̂ (x∗)− y∗) + d(q∗,x∗), y∗ ∈ Y ∗, (5.1)

46



Chapter 5: Counterfactual Synthesizing

where d(·, ·) is a function that punishes for diverging from the original observation q∗ andλ balances
the two terms. Let Xobs be the observed data and consist of the observations x[1], . . . ,x[n], where
each observation is a vector of size p. Wachter et al. [10] suggest using

d(x,x∗) =
p
∑

j=1

|x j − x∗j |

MADj
,

MADj =Mediani∈{1,...,n}

�
�

�

�x [i]j −Medianl∈{1,...,n}(x
[l]
j )
�

�

�

�

,

but other functions can be used. Both of the above optimization problems are single-objective,
despite Equation (5.1) wanting to minimize two goals, both proximity to original observation q∗

and proximity to desired outcome Y ∗. The solution to this was to optimize a collapsed weighted
sum of two objectives. This process can be generalized to any number of objectives, but has the
trade-off that the objectives must be balanced a-priori, which is increasingly difficult as we include
more objectives. Other objectives that might be natural to include in the optimization is for instance
the number of features that have been changed and proximity to other observed data points [11].

Counterfactual explanations with few features changed have the benefit of being easier to un-
derstand and if wanted, act upon. Proximity to other observed data points has the benefit of in-
creasing the probability of the counterfactual explanations being plausible. This is an important
aspect since implausible explanations can be less useful for understanding and much less useful for
taking action. For instance a counterfactual explanation with a person of age 18 and ten years of
work-experience is very unlikely. Since this combination is unlikely, it normally would be of little
value even if it achieves one of the wanted outcomes. A related topic to this is actionability. Even
if a counterfactual explanation is plausible, it might not be actionable for the observation to be
explained. For instance it is impossible for a person to change race or become younger. Therefore,
if actionability is needed or appreciated a solution could be to include restrictions to the parameter
space in the optimization problem. For instance forcing race to be fixed and age to be fixed or at
least bounded from below. This is often easily incorporated in algorithmic based counterfactual
methods.

The difficult task of balancing objectives a-priori can be avoided by treating the generation
of counterfactual explanations as a multi-objective optimization problem. If the objectives in the
optimization problem are not ranked, there is a high possibility that there are cases where it is
no longer possible to increase one of the objectives without decreasing at least one of the others.
This is known as a Pareto frontier and is discussed in Section 5.1.1. For a multi-objective algorithm
based generator of counterfactuals with non-ranked objectives, a natural choice might be to return
samples attempting to represent the whole Pareto frontier.

5.1.1 Pareto Optimality

Given a set of criteria or objectives to optimize, Pareto optimality can be defined as a situation
where none of the criteria can be optimized further without making any of the other criteria worse
off [76]. A Pareto improvement is defined as a change in a situation where some objectives will
become more optimal and none will become less optimal. If a Pareto improvement to a situation
exists, then the situation is referred to as Pareto dominated. We also define that when a solution is
a Pareto improvement compared to another situation, then it Pareto dominates the other situation.
Notation-wise we define p ≺ q to be that p Pareto dominates q. The situation in which no Pareto
improvements exists is called Pareto optimal. The set of all Pareto optimal situations are known as
a Pareto frontier. In Figure 5.1 we plot an example of a Pareto frontier for the optimization problem

47



Rustad@NTNU: tabGAN

of minimizing both x1 and x2 when under the restrictions x2+ x2
1 ≥ 3, 0≤ x1 ≤ 4 and x2 ≤ 4. The

Pareto frontier for this optimization problem is {(x1, 3− x2
1)|0≤ x1 ≤ 4}.

-10

-5

0

0 1 2 3 4
x1

x 2

Figure 5.1: Example of Pareto optimality. The light grey area is the feature space of x1 and x2, while
the thick black line is the Pareto frontier. The optimization problem in the example is to minimize
both x1 and x2 when under the restrictions x2 + x2

1 ≥ 3, 0≤ x1 ≤ 4 and x2 ≤ 4.

5.2 A Brief Overview of Model Based Counterfactual Methods

The process of fitting a model to approximate the feature space or counterfactual universe tend to
be computationally intensive and time consuming. However, when the model is trained, it is usually
very fast and efficient to generate new samples or counterfactuals, even for different observations to
be explained (multiple q∗). Some model based counterfactual methods only model the underlying
distribution of the feature space X [4, 77] and use post-processing or optimization to find suitable
counterfactual explanations for the observation q∗. Other counterfactual methods model the feature
space X in combination with the relation to the predictive function f̂ [5, 12]. For this type of
methods the observation to be explained q∗ can be taken as input (along with potentially other
queries) and then the model directly outputs relevant counterfactuals. Some post-processing or
optimization can of course still be beneficial, but this is in theory not necessary.

The type of model used to capture the underlying data distribution differs. Two common ap-
proaches are, however, to use either GANs [5] or variational autoencoders (VAEs) [4, 12]. Generat-
ive adversarial networks are explained in Section 2.2, while variational autoencoders are explained
in Section 3.1. Counterfactual methods using VAEs normally use the latent distribution as search
space to generate counterfactuals. By utilizing the latent distribution as search space, the objective
of closeness to other data points is usually automatically accomplished. Redelmeier et al. [77], on
the other hand, utilize conditional inference trees to model the underlying data distribution. This
is done by decomposing the probability distribution PX(x) into products of conditional probability
distributions PX j |X1,...,X j−1

(x j|x1, . . . , x j−1) and then using a conditional inference tree to model each
conditional probability distribution. Redelmeier et al. [77] then utilize Monte Carlo sampling and
a post-processing step to generate counterfactual explanations. Compared to using GANs or VAEs
to model the data distribution, conditional inference trees are generally less computer intensive to
train [77].

48



Chapter 5: Counterfactual Synthesizing

5.3 A Wasserstein GAN Based Counterfactual Synthesizer Framework
– tabGANcf

In this section we present the author’s take on using Wasserstein GAN to synthesize counterfactual
observations. We restrict ourselves to the task of generating counterfactuals for a classification task
prediction function f̂ , where the desired set of outcomes, Y ∗, is to flip the prediction with respect
to some threshold c∗. Thus, if the observation to be explained, q∗, has a predicted value f̂ (q∗)< c∗,
then a generated counterfactual x∗ should flip the prediction function such that f̂ (x∗)> c∗ and vice
versa. We refer to the two groups of observations that satisfy either f̂ (x)< c∗ or f̂ (x)> c∗ as being of
different prediction classes. We further simplify the problem to only approximate the counterfactual
universe for queries from a single prediction class. The problem of generating counterfactuals for
queries from both prediction classes is easily solved by fitting two models. For simplicity of notation,
we will for the rest of this chapter always assume we are generating counterfactuals to explain
observations from the group f̂ (x) < c∗, i.e. we want counterfactual observations that increase f̂
above the threshold c∗.

When using tabular GAN as a counterfactual synthesizing method, we want the GAN to capture
the counterfactual universe. That is, for an observation to be explained, q∗, we want the generator
to be able to produce a counterfactual x∗ drawn from a distribution of observations that flip the
prediction class, whilst still adhering to the original data distribution. We do not want counterfactual
explanations that are very unlikely to have originated from the given data distribution (usually the
same distribution as the prediction function f̂ is trained on), because then they would, as discussed
in the introduction to this chapter, probably be less actionable or relatable. Ideally, we also want
the generated counterfactuals to be close to the original observation, q∗, and suggested changes to
be sparse.

The framework which we present in this section, attempts to capture the counterfactual uni-
verse in such a way. It builds upon the the data synthesizing framework defined in Section 3.2 and
thus have much of the same customizability as the tabGAN framework, at least with respect to
the functionality that is transferable to the counterfactual synthesizing application. We name this
framework tabGANcf, although calling it a framework might be a bit of an exaggeration. It is very
much still in the proof-of-concept phase and not all intended ideas are implemented yet. Thus, this
section functions more as a collection of different possible implementations for a counterfactual
synthesizer that the author believes have potential, instead of an overview of what is already im-
plemented in the framework, unlike what we did in Section 3.2 for the tabGAN data synthesizing
framework. We will, however, spend some time explaining what has been implemented, as we will
use it for an exploratory analysis in Chapter 8. The idea of using tabular GAN as a model for cap-
turing the counterfactual universe for a specific dataset and machine learning classifier is inspired
by the papers Yang et al. [5] and Nemirovsky et al. [78].

In Section 5.3.1, we explain how we redefine the architecture, loss function and training func-
tion of the tabGAN framework to accomodate the counterfactual synthesizing task. Next, in Sec-
tion 5.3.2 we present some possible extensions or ideas that perhaps could be benefical. Not all of
them are implemented in the tabGANcf framework yet.

5.3.1 Implementation

Similar to the tabGAN framework, we perform preprocessing such that the data observations are on
a format acceptable as both input and output to a neural network. Since the tabGANcf framework
builds upon the tabGAN framework, we automatically include the same preprocessing options as
described in Section 3.2.1. We continue with the notation from Chapter 3 where we used ′ to denote

49



Rustad@NTNU: tabGAN

a preprocessed observation. Thus, we denote a counterfactual query (observation to be explained)
in the preprocessed format as q∗′, and a counterfactual explanation in the preprocessed format as
x∗′.

For the generator to be able to produce counterfactual explanations tailored to each specific
observation to be explained, we believe a reasonable approach is to feed the generator the counter-
factual query, q∗′, in addition to the the latent noise vector, z. Then, the generator can potentially
learn to generate from the conditional distribution of each counterfactual query. To guide the gen-
erator into learning to generate counterfactuals, a natural approach is to change the loss function
used to train the GAN network. Yang et al. [5] do this by adding a counterfactual loss term, Lcf. For
a Wasserstein GAN, the loss function which the generator wants to minimize, can then be written
as

L = Ex∼PX
[D(x)]− E z∼PZ

q∗∼PQ∗

�

D(G(z|q∗′)) + Lcf(G(z|q∗′))
�

,

where we assume the queries are drawn from a distribution PQ∗ and for readability we omit the
gradient penalty term that enforces the critic to be 1-Lipschitz, as it only affects the critic. For many
applications, the counterfactual query and the data observations might be drawn from the same
distribution, i.e. PQ∗ = PX, but it can very well be drawn from a different distribution. Here, we
include the counterfactual query as input to the generator only, but the counterfactual query can
very well be given as input to the critic as well. This is done in Yang et al. [5]. However, as they do
not specify how they define the counterfactual query, it might very well be differently defined than
what we use in this thesis, where the counterfactual query q∗ is the observation to be explained.

The paper Yang et al. [5] use cross-entropy loss to force the prediction function value of the
counterfactual explanation, i.e. f̂ (x∗), to be of the correct class, as well as an unspecified regu-
larization term to force the explanation to be close to the original observation. This is an elegant
solution to the problem, but it forces the prediction function to be differentiable and the gradients
of the prediction function to be available to the counterfactual synthesizer during training, at least
if gradient-based learning is to be used. Additionally, another problem which Yang et al. [5] do not
specify how they solve, is the process of calculating derivatives when the generated counterfactual
explanation x∗′ must be transformed to the original data format, i.e. becomes x∗, before being in-
put into the prediction function f̂ . Especially for the one-hot encoded discrete columns, this is a
problem as they are transformed into a non-numerical data format and then gradients are not ap-
plicable. Additionally, any preprocessing steps done inside f̂ would also have to be differentiable.
Perhaps, Yang et al. [5] solve this by letting the prediction function take the input in the same pre-
processed format as the neural networks, such that x∗′ directly can be input into f̂ . Alternatively,
a less restrictive solution could be to only let the discrete columns that are one-hot encoded be
directly input into f̂ , while the numerical columns are transformed using a differentiable function.
However, suddenly the solution appears less elegant and it puts restrictions on the input to the
prediction function f̂ . Restrictions such as these may limit the number of suitable applications for
the counterfactual synthesizer, or they might force the creators of the prediction function to plan
ahead or make changes to the prediction function if they desire to fit a model based synthesizer to
it.

Consequently, we desire to avoid calculating gradients through the prediction function. The
paper Nemirovsky et al. [78] proposes an alternative approach for classifier prediction functions that
are either non-differentiable or black-box. Of course, the method can also be used for differentiable
classifiers. Instead of computing the gradients of the prediction function, f̂ , they propose to reweight
each real data observations according to the prediction function value when inserted into the loss
function. Nemirovsky et al. [78] do this for a residual GAN with standard loss (i.e. not Wasserstein

50



Chapter 5: Counterfactual Synthesizing

loss), but we believe this approach might be extendable to regular GAN and Wasserstein loss. For a
batch of real observations

�

x[i]
	

i=1,...,nbatch
and a batch of queries

�

q∗′[i]
	

i=1,...,nbatch
, the loss function

can be calculated as

L =

∑nbatch
i=1 f̂ (x [i]) · D
�

x[i]
�

∑nbatch
i=1 f̂
�

x [i]
� −

1
nbatch

nbatch
∑

i=1

D
�

G
�

z[i]|q∗′[i]
��

,

where
�

z[i]
	

i=1,...,nbatch
is a batch of latent noise vectors.

The reweighting gives more importance to the observations with larger prediction function.
Recall that we for simplicity defined that the counterfactual queries are from the group f̂ (x) < c∗

and that we want to generate counterfactual explanations from the group f̂ (x) > c∗. In practice,
this reweighting gives the same result as if we had drawn the real observations from the probability
distribution PC f̂

defined as

PC f̂
(x) = C · f̂ (x) · PX(x),

where C is a normalizing constant1. In fact, Nemirovsky et al. [78] prove that if the generator has
sufficient capacity and the discriminator is systematically allowed to reach its optimum, then the
output distribution of the generator converges to PC f̂

.
We struggle a bit with understanding why specifically this reweighting scheme was chosen by

Nemirovsky et al. [78], other than perhaps for its simplicity. With this reweighting choice the op-
timal output distribution will probably contain some samples with a low prediction function value.
In theory, any function g could be used to reweight the real data samples. Of course, Nemirovsky
et al. [78] did not specify that they just wanted to flip the prediction class with respect to some
threshold as we do, but we believe it is reasonable to assume that this will be a common usage of
counterfactual explanations. For instance, returning to the example from the introduction of this
thesis with a bank that uses a black box model to decide who receives a loan, a counterfactual ex-
planation would generally be desired to just flip the prediction. In the event wherein counterfactual
explanations with higher prediction function value are preferred even after flipping the prediction
class, then a potential reweighting function could be g (x) = I

�

f̂ (x)> c∗
�

· f̂ (x).
If the only preference with respect to the prediction function is to flip the prediction class, then

we believe a reasonable choice is to use g(x) = I
�

f̂ (x)> c∗
�

as the reweighting function. In prac-
tice, this would be the same as if we only fed the critic observations from the real data distribution
of the correct prediction class. It would also be more efficient, since with the reweighting function
g(x) = I
�

f̂ (x)> c∗
�

all real observations of the wrong prediction class contribute nothing to the
loss function. Along with the original reweighting option used by Nemirovsky et al. [78], we also
implement the option to only feed the critic samples from the correct prediction class.

Until now, we have only modified the loss function to influence the generator to produce samples
of the correct prediction class. However, similar to Nemirovsky et al. [78] and Yang et al. [5], we
include the option for a regularization term that will influence the generator to synthesize counter-
factual observations that are close to the counterfactual query. Nemirovsky et al. [78] use a linear
combination of the 1-norm and the squared 2-norm applied to the residual changes (difference
between counterfactual query and generated counterfactual explanation). We do something sim-
ilar, but we want to penalize the discrete variables differently. Reusing much of the same notation
as Chapter 3, we let the continuous columns of q∗′ be denoted by c∗′ and the one-hot encoded
columns by d∗′ = d∗1

′ ⊕ . . .⊕ d∗′ND
. Additionally, we let the counterfactual explanation produced by

1Explicitly, the normalizing constant C =
�∫

f̂ (x) · PX(x)d x
�−1

, but it does not need to be computed for this applica-
tion.

51



Rustad@NTNU: tabGAN

the generator as explanation for observation q∗′, be denoted G
�

z|q∗′
�

= ĉ∗′ ⊕ d̂
∗′, where ĉ∗′ is a

vector with the continuous columns and d̂
∗′ = d̂

∗
1
′,⊕ . . .⊕ d̂

′

ND
is a vector of the one-hot encoded

discrete columns. Then, the regularization term we use can for a single observation be written as

l
�

G
�

z|q∗′
�

,q∗′
�

= α∥ĉ∗′ − c∗′∥1 + β∥ĉ
∗′ − c∗′∥2

2 + γ
Nd
∑

j=1

l j
∑

j=1

d∗j,k
′ ·
�

1− d̂∗j,k
′
�

,

where α,β and γ are hyperparameters chosen by the user. We have not done enough experimenting
to recommend good default values for these. However, for the exploratory analysis in Chapter 8 we
mainly utilize α = 1, β = 0 and γ = 2. It is a bit arbitrarily chosen, but we believe perhaps α = 1
might by itself reason okay with the approximation of the Earth-Mover distance which we make the
critic approximate by being 1-Lipschitz, as the Earth-Mover distance intuitively is a measurement
of the mass that must be transported to transform one probability distribution into another. In ??
We set β = 0, as we believe sparse counterfactuals are preferable and increasing the β parameter
might be a bit counterintuitive to this, as the squared 2-norm penalizes less harshly for changes
close to the original value compared to the same change far away from the original value. We set
γ = 2 to approximately penalize the discrete variables the same as the continuous variables, but,
again, we stress that this is not based on a hyperparameter search, unlike the default values in the
tabGAN framework.

5.3.2 Extensions

In the previous section, we introduced two options for guiding the generator to produce samples
correctly classified by a black-box classifier, f̂ ; either reweighting the real data observations to be
proportional to their prediction function value, or only feeding the critic real data observations with
the correct prediction class without any reweighting. We also introduced a regularizing term to be
added to the loss function to guide the generator in producing counterfactual explanations near
the counterfactual query, q∗. The discrete nature of the discrete columns makes it easier for the
generator to produce sparse changes for the discrete variables of the observations, however, for the
continuous column values it is more difficult. The 1-norm regularization penalty might contribute
to the generator wanting to also produce sparse changes for the continuous columns, but the nature
of a neural network will practically make it impossible for it to recreate the values of q∗′ exactly,
even if it desired to do so.

As a fix to this, we propose two interconnected extensions. Firstly, we propose to change the
generator architecture to also have a stochastic nature for the numerical output layer, not only
for the subparts of the discrete output layer with their Gumbel activation functions. This change
would, for each numerical output value, consist of having a certain probability of being set to
the same value as the counterfactual query, q∗′. Each of these probabilities could be a learnable
parameter by the neural network, such as a bias node, but we believe a better option is that it is
calculated for each generated sample as a linear combination of values from the last hidden layer,
where the weights and bias in the linear combination are the learnable parameters. Potentially, the
neural network might also utilize the difference between each intended numerical output value
(without the stochastic numerical component) and the corresponding value of the counterfactual
query, when determining the probabilities. The architecture of the generator could for example be
of the form

52



Chapter 5: Counterfactual Synthesizing











































































Input: z,
�

q∗′ = c∗′ ⊕ d∗′
�

(latent vector and counterfactual query)

h1 = BN
�

GELU
�

FClz→lh,g

�

z⊕ q∗′
�

��

h2 = BN
�

GELU
�

FClh,g→lh,g
(h1)
��

ĉ∗′ = FClh,g→lNC
(h2)

hlogits = FClh,g→NC

�

h2 ⊕
�

ĉ∗′ − c∗′
��

hprobs = σ
�

hlogits

�

b= Bernoull i
�

hprobs

�

ĉ∗′R = b · ĉ∗′ + (1− b) · c∗′

d̂
∗′ = Gumbelτ
�

FClh,g→l1 (h2)
�

⊕ · · · ⊕ Gumbelτ
�

FClh,g→lND
(h2)
�

Output: ĉ∗′R, d̂
′∗

,

where hlogits is the logits (logarithmic odds) of the output numerical values not being set to the ori-
ginal value from the counterfactual query. We let Bernoull i (·) denote a function that elementwise
samples from a Bernoulli distribution with the input probability, while σ is the sigmoid function
previously defined. The sigmoid function transforms the logit values into probabilities. The new
numerical output from the generator neural network is then ĉ∗′R, where some elements may be
stochastically chosen to be set to values from the counterfactual query, q∗′. With this, we believe
the generator would stand a better chance of producing sparse changes also for the numerical val-
ues. However, to further encourage sparse changes, we believe an option is to include a term in the
loss function that penalizes for high values in the layer hlogits, i.e. the generator would be penalized
for choosing high probabilities of the numerical output values being different from those of the
counterfactual query. As of now, this is fully theoretical and has not been implemented or tested.

An extension we have implemented is the option to mix outputs from the generator in the
loss function with real observations of the correct prediction class. The idea behind this, is that
in the previously introduced approaches, we encourage the generator to replicate the distribution
of the reweighted real data distribution or alternatively the distribution of the real observations
with correct prediction class. However, we see no reason for why the counterfactuals produced
by the generator should completely follow this distribution. Even though we want the generated
counterfactuals to not be improbable, this is not the same as replicating the entire distribution.
For example, imagine a large square with a small circle inside it. Let the inside of the circle be
uniformly filled with observations from one prediction class and the outside of the circle, but still
inside the square, be uniformly filled with observations from the second class. Imagine we want to
create a counterfactual synthesizer that given a counterfactual query from inside the circle, spits
out a counterfactual observations from outside the circle. A successful counterfactual synthesizer
might then map each counterfactual query to just outside the circle. Intuitively, we see no reason
why we should desire the counterfactual synthesizer to map to the far away corners of the square
as often as it maps close to the circle boundary. By mixing the generator samples in the loss function
with real observations of the correct prediction class, we intuitively hope that this will allow the
counterfactual synthesizer to map less often to the undesirable parts of the real data distribution
(such as the far away corners of the square in the example).

Another extension, which is almost the opposite of the last optionable extension, is to mix out-
puts from the generator in the loss function with real observations of the wrong prediction class.
This is intended as an option when we only feed the critic real observations with the correct pre-
diction class. The idea is that, when we only feed the critic a subset of the real data distribution, we
potentially miss out on utilizing information that could help the critic in its guiding of the gener-

53



Rustad@NTNU: tabGAN

ator to produce realistic counterfactuals of the correct class. By showing the critic more examples
of what is not desired, we could potentially make it easier for the generator to learn. However, we
are unsure of how effective this will be in practice and especially for Wasserstein GAN.

Due to constraints of space and time, we unfortunately, perform no testing of the first and third
extension explained in this section and only very informal testing of the second extension explained
in this section. Thus, these are mostly just theoretical ideas that the author think might be interesting
to explore at a later time. For completeness, we also briefly list a few more possible extensions, such
as the ability to keep some columns unchanged. This could be decided before training the model
or more flexibly at sampling time, either way it would help keep the counterfactuals actionable.
Another extension could be to employ a different sampling technique to better approximate the
counterfactual universe for the rare queries, as done with the umbrella sampling technique in Yang
et al. [5]. Yang et al. [5] also investigate including known causal dependence between attributes
into models by changing the generator architecture.

54



Chapter 6

Datasets

In this chapter we introduce the datasets that we will use to evaluate and compare our implemented
methods against state-of-the-art methods. In total we will use two synthetic (simulated) datasets
and four real datasets. The two simulated datasets are explained in Section 6.1 and Section 6.4.
Out of the real datasets, the Adult dataset from the UCI Machine Learning Repository [79] is the
one we will use the most. Therefore, we give a quite detailed explanation of the Adult dataset in
Section 6.2. For the remaining three datasets, which we will use solely to evaluate machine learning
efficacy, we give a brief explanation in Section 6.3.

6.1 Syn2D_3cats Dataset

In this thesis, we create the Syn2D_3cats dataset, which is a simulated dataset specifically designed
for visual evaluation of the training progress of a GAN on tabular data. The dataset has two numer-
ical columns, x1 and x2, and one categorical column x3. The dataset has three variables, but since
one of them is categorical, the dataset is easily plotted in two dimensions. In total the dataset has
1000 observations.

The discrete column, x3, is uniformly sampled from the list {cat1, cat2, cat3}. Conditioned
on x3 being either cat1 or cat2, the first numerical column is sampled uniformly from the range
[0, 10], else x1 is sampled uniformly from the range [1, 3]. Mathematically this can be described as

[x1|x3]∼

¨

Uni f orm[0, 10] if x3 ∈ {cat1, cat2}
Uni f orm[1, 3] if x3 = {cat3}.

The distribution of the second numerical column is dependent upon the values of x1 and x3.
The conditional distributions of x2 given x1 and x3 are defined as

[x2|x1, x3]∼











N (x2
1 − 50x1 + 25, x2

1) if x3 = cat1

N (x3
1 − 13x2

1 + 31x1 + 45, x2
1) if x3 = cat2

Uni f orm[20, 10+ 10x1] if x3 = cat3,

where N (µ,σ2) is a normal distribution with mean µ and variance σ2. In Figure 6.1, we plot a
subset of the training observations of the Syn2D_3cats dataset. The plot visualizes clearly how the
joint distribution of (x1, x2) is dependent upon the x3 value.

55



Rustad@NTNU: tabGAN

0 2 4 6 8 10
x1

40

20

0

20

40

60

x2

cat1
cat2
cat3

Figure 6.1: Visualization of a subset of 1000 observations from the Syn2D_3cats dataset with x1 on
the horizontal axis and x2 on the vertical axis. The x3 variable value gives the color of each plotted
observation. The observations have opacity set to 0.5 to give a better visualization of the density of
observations.

6.2 Adult (Census Income) Dataset

The Adult dataset, also known as the Census Income dataset, is extracted from the 1994 Census
bureau database [79]. The column intended as variable of interest is the annual income (binarized
to > 50K and ≤ 50K US dollars). The dataset consists of 48842 observations and 15 columns. Two
thirds of the observations are pre-classified as part of the training set and one third as part of the
test set. This results in a training set of size 32561 and a test set of size 16281. Both train and
test sets do, however, contain missing values. We choose to remove all observations with at least
one missing value. The new sizes of the training and test sets are respectively 30162 and 15060,
in total 45222 observations. We refer to the training and test observations of the Adult dataset as
respectively the Adult train dataset and the Adult test dataset.

Some of the discrete columns in the Adult dataset are very imbalanced, for instance the "nat-
ive_country" column where 91% of the observations are from the United-States whilst the other
categories each account for less than a single percent. To simplify the dataset a bit we merge
some categories. This entails for instance merging all non-US countries into one category for the
"native_country" column and combining Married-AF-spouse, Married-civ-spouse and Married-spouse-
absent to a single category Married for the "marital_status" column. We also choose to delete the
"relationship" column that represents each observation’s role in the family, as its categorical defini-
tions were a bit unclear and the information was already partially contained in the "marital.status"
column and the "gender" column. For the full description of the preprocessing steps we refer to
Appendix D. In Table D.1 in Appendix D, we also give a complete list of columns and categories

56



Chapter 6: Datasets

for the unprocessed (except for removing missing values) Adult dataset. The remaining columns
after preprocessing are listed in Table 6.1. In the table we give the value range for each numerical
column as well as the categories with percentage shares for each discrete column.

Table 6.1: Overview of each column in the Adult dataset. For numerical columns the value range
is reported, while for discrete columns the categories along with percentages are reported. The per-
centages for all categories of a single discrete column sum to 1.

Column Values (numerical range or categories)
age [17, 90]
workclass Government (14%), Private (74%), Self-emp-inc (3.6%), Self-emp-not-inc

(8.4%), Without-pay (0.046%)
fnlwgt [13492, 1490400]
education <=12th (13%), Assoc-acdm (3.3%), Assoc-voc (4.3%), Bachelors (17%),

Doctorate (1.2%), HS-grad (33%), Masters (5.6%), Prof-school (1.7%),
Some-college (22%)

educational_num [1, 16]
marital_status Divorced (14%), Married (48%), Never-married (32%), Separated (3.1%),

Widowed (2.8%)
occupation Adm-clerical (12%), Armed-Forces (0.031%), Craft-repair (13%), Exec-

managerial (13%), Farming-fishing (3.3%), Handlers-cleaners (4.5%),
Machine-op-inspct (6.6%), Other-service (11%), Priv-house-serv (0.51%),
Prof-specialty (13%), Protective-serv (2.2%), Sales (12%), Tech-support
(3.1%), Transport-moving (5.1%)

race Native-American-Inuit (0.96%), Asian-Pac-Islander (2.9%), Black (9.3%),
Other (0.78%), White (86%)

gender Female (32%), Male (68%)
capital_gain [0, 99999]
capital_loss [0, 4356]
hours_per.week [1, 99]
native_country Non-US (8.7%), US (91%)
income <=50K (75%), >50K (25%)

Many of the columns in Table 6.1 are self-explanatory, but we will explain those that are not. The
column name "fnlwgt" is an abbreviation for final weight and is a continuous measurement for how
many units in the target population the observation represents. "capital_gain" and "capital_loss"
columns represent respectively capital gained and capital lost from other investment sources than
salary/wage. "hours_per_week" are the number of hours worked per week.

We observe that even after preprocessing there are still discrete columns with a lot of categories.
The Adult dataset can therefore be a challenging dataset with respect to learning the underlying
data distribution.

6.3 Three Other Real Datasets

In this section we present the three real datasets, the Covertype dataset1 found in the UCI Machine
Learning Repository [79], the Credit Card Fraud Detection dataset2 from Kaggle 3, and the Online

1Url to the Covertype dataset: https://archive.ics.uci.edu/ml/datasets/covertype
2Url to the Credit Card Fraud Detection dataset: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
3An online data science platform. Url: https://www.kaggle.com/

57

https://archive.ics.uci.edu/ml/datasets/covertype
https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
https://www.kaggle.com/


Rustad@NTNU: tabGAN

News Popularity dataset4 also found in the UCI Machine Learning Repository.

6.3.1 Covertype Dataset

The Covertype dataset is created from data originally obtained through US Geological Survey
(USGS) and US Forest Survey (USFS) data [79]. The response variable in the dataset is forest
covertype. Each observation represents a (30x30)m2 cell in four wilderness areas situated in the
Roosevelt National Forest of northern Colerado. The cover types are likely to be the result of mostly
ecological processes (not forest management practices), since the areas’ exposure to human inter-
vention is minimal. The response variable was collected from US Forest Service (USFS) Region 2
Resource Information System (RIS) data , while the other variables originate from processed ver-
sions of data from collected through US Geological Survey (USGS) and US Forest Survey (USFS)
data [79]. In addition to the response variable "Cover_Type", there are two other categorical vari-
ables. These are originally one-hot encoded as 40 binary columns for soil type and 4 binary columns
for wilderness area. To inform the data synthesizers that these columns are for a single variable, we
reverse the one-hot encoding for each of them and store the information in two columns "Soil_Type"
and "Wilderness_Area". The response variable is originally label encoded as integers from 1 to 7,
however, we convert this to seven categories CoverType1, . . . , CoverType7 to highlight for the data
synthesizers that this is a single categorical column, instead of being of continuous or integer type.
For column descriptions we refer to Table E.1 in Appendix E.1. In the same section a list of value
range for each numerical columns and categories for each discrete column can be found as well.
The dataset has 581,012 observations in it.

6.3.2 Credit Card Fraud Dataset

The Credit Card Fraud Detection dataset, or as we will refer to it from now on, the Credit Card Fraud
dataset, represents transactions from two days in September 2013 by European cardholders. The
response variable "Class" represents whether the transaction was a fraud or not. The dataset is very
imbalanced. Out of the 284, 807 transactions (observations) in the dataset, only 492 (0.172%) are
frauds. Due to privacy reasons, most of the original features are transformed using principal com-
ponent analysis, where the first 28 principal components are included. These columns are named
V1, . . . , V28. The only two features which are not transformed, is "Time" and "Amount". The feature
"Amount" contains the transaction amount for each observation, while the feature "Time" represents
the time each transaction is executed. It is measured in seconds since the first transaction in the
dataset. Originally, the response variable was on the format 1 for fraud and 0 otherwise, however,
to signify to the data synthesizers that this is a discrete column, we transform the column such that
Class1 represents fraud and Class0 represents not fraud.

6.3.3 Online News Popularity Dataset

The Online News Popularity Dataset was collected by Fernandes et al. [80] and donated to the
UCI Machine Learning Repository. The dataset contains information about articles posted on the
news and media website Mashable5 between the 7th of January 2013 and 7th of January 2014. A
small portion of the articles were discarded due to not following the standard HTML structure (and
therefore requiring specific steps to process), but most were processed and added to the dataset. In
total the dataset contains 39000 rows (articles). The authors of [80] extracted a total of 47 features.
The response variable is the number of shares on Mashable and has the column name "shares" in

4Url to the Online News Popularity dataset: https://archive.ics.uci.edu/ml/datasets/online+news+popularity
5Url to Mashable: https://mashable.com/

58

https://archive.ics.uci.edu/ml/datasets/online+news+popularity
https://mashable.com/


Chapter 6: Datasets

the dataset. In the UCI Machine Learning Repository, the dataset is associated with a classification
task of whether "shares" ≥ 1400. There are 18,490 observations with shares < 1400 and 21, 154
observations with shares≥ 1400. For a description of each column, we refer to Table 2 in Fernandes
et al. [80]. This article also gives more information of how the data are fetched and processed. In
Table E.4 in Appendix E.2, we give an overview of the value range for each numerical column and
the categories for each discrete column in the Online News Popularity dataset.

6.4 Syn_Moons Datasets

We simulate a dataset with two continuous columns, x1 and x2, that consists of two interleaving half
circles. The observations are simulated as a position on one of the half circles plus some Gaussian
noise with standard deviation equal to 0.08. In total we choose to simulate 5000 observations. A
dataset with two noisy interleaving half circles is a common dataset type used in counterfactual
syntheszing papers such as Yang et al. [5] and Nemirovsky et al. [78], and we use the function
make_moons in the scikit-learn package to simulate the dataset. In Figure 6.2 we plot a subset
of 2500 observations from the Syn_Moon dataset. As background we plot a contour plot of the
estimated probabilities of a support vector machine model trained to classify which moon each
observation belongs to (see introduction to Chapter 8).

59



Rustad@NTNU: tabGAN

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.2: Visualization of a subset of 2500 observations from the Syn_Moon dataset with x1 on the
horizontal axis and x2 on the vertical axis. The observations have opacity set to 0.7 to give a better
visualization of the density of observations. As background, a contour plot of estimated probabilities
of a support vector machine model trained to classify which moon each observation belongs to is
plotted (see introduction to Chapter 8).

60



Chapter 7

Experiments – Data synthesizers

In this chapter, we compare our data synthesizer framework, tabGAN, against the state-of-the-art
models defined in Section 3.3. We give quite detailed explanations of how the experiments will be
set up (with hyperparameters etc.), as this is an important step other comparable papers sometimes
skips. This detailed setup will hopefully make it easy to reproduce the results if necessary. We will
also briefly discuss why we choose to use these specific experiments. As we in this chapter perform
many different experiments, we find it more structured to present results and discussion for each
separate experiment together.

From the tabGAN framework we select 6 models to include in the comparison. Three of these
are of the regular WGAN implementation, tabGAN, while the remaining three are of the condi-
tional WGAN implementation, ctabGAN. Within each of these two groups, it is the preprocessing
step that is different for the three methods; either standardization, quantile transformation or the
Randomized Quantile Transformation. We name the six models tabGAN-sd, tabGAN-qt, tabGAN-
qtr, ctabGAN-sd, ctabGAN-qt and ctabGAN-qtr, where we have used the naming regime [method]-
[preprocessing step]. Here, method refers to either tabGAN or ctabGAN, while sd, qt and qtr are ab-
breviations for respectively standardization, quantile transformation and the Randomized Quantile
Transformation.

The other data synthesizer methods that we will use for comparison are CTGAN, TVAE, Gaussi-
anCopula, CopulaGAN and TabFairGAN. For the CTGAN method we include two different configur-
ations, one with packing and one without packing. We name these CTGAN-pac1 (without packing)
and CTGAN-pac10 (with ten packed samples). We also include two configurations of TVAE: TVAE-
orig and TVAE-mod, as described in Section 3.3.2. Throughout this chapter we will unless otherwise
stated, train each model for 300 epochs with a batch size of 500.

7.1 Model Customization and Hyperparameter Choice

Throughout the experiments in this chapter, we will primarily use the data synthesizer configur-
ations described in the following subsections. For the methods from the tabGAN framework this
will mostly overlap with the default choices in the framework, but since the explanation of the
default hyperparameter choice is a bit scattered across Section 3.2, we will give a compressed ex-
planation here for clarity. The default choices in the tabGAN framework are based on an iterative,
semimanual, and cautious hyperparameter search. We describe this process in Section 7.1.1 before
we define hyperparameter choices for the tabGAN models in Section 7.1.2 and hyperparameter
choices for the remaining data synthesizer models in Section 7.1.3.

61



Rustad@NTNU: tabGAN

7.1.1 Hyperparameter Search

The hyperparameter search was carried out as follows. We began with a hyperparameter combin-
ation we believed to be a reasonable choice based on gut feeling, hyperparameter choices in other
papers such as Xu et al. [1], Xu and Veeramachaneni [13], Rajabi and Garibay [3], and Yang et
al. [5], as well as trial-and-error on simple simulated datasets. Then, we began a more systematic
approach in which we used the Adult dataset and a metric known as machine learning efficacy (see
Chapter 2) in order to more formally assess the performance of the model for different combina-
tions of hyperparameters. For each hyperparameter, we ran the model for a grid of values (with
the other hyperparameters kept constant) and plotted the result. For some of the hyperparameters
we believed to be dependent, we ran the model for a multidimensional grid and plotted the result
for combinations of hyperparameters instead. As the results of such tests are not deterministic, we
ran the model multiple times for each combination of hyperparameters and averaged the results.
However, even with this procedure, we observed fluctuations due to randomness. If time was in-
finite, we could have run each grid point enough times until it stopped fluctuating. However, this
was, of course, not the case, and we usually only ran each model between 10 and 25 times only.
This was, however, enough to obtain quite stable results. Only after having run all of the hyper-
parameter grid searches of interest, we considered changing the default hyperparameters, and we
only changed one or a few of the most promising hyperparameters. We found the promising hyper-
parameter choices by looking for trends in the plotted grid searches. We did not merely choose the
best performing combination, but instead used a more catious approach, trying to avoid two types
of overfitting. Firstly, we hoped to avoid wrong choices due the randomness of the model training,
but more importantly, we wanted the hyperparameter choice to generalize well to other datasets.
Thus, we only acted upon clear trends, and if in doubt, we either ran the model more times for each
grid point or chose the conservative option.

We count the process just described as a single iteration of the iterative hyperparameter tuning
used in this thesis. In total, we did eight of these iterations before landing on the hyperparameter
choices listed as the default for the tabGAN framework presented here. This required thousands
upon thousands of computing hours and was only made possible through the usage of the Idun
computing cluster, which is a NTNU provided high-performing computational resource which also
provide storage options. In fact, the EPIC research infrastructure, which is part of the Idun cluster,
is one of Norway’s largest general-purpose graphic processing unit (GPGPU) enabled infrastructure
[81]. With the Idun cluster, we were able to run many tasks in parallel. This is not to say that a
single script was run using parallel computing on a GPU, but instead that multiple scripts were
run simultaneously, each with its own CPU and GPU. Although the Idun cluster allows multiple
CPUs and GPUs to be used for a single job, we found it more efficient to instead submit more jobs
simultaneously. We reason that this is due to the tabular data with our chosen batch sizes not being
very straining for a single GPU, and therefore little is gained from adding more GPUs. The author
also expresses gratitude for access to the Markov computational server belonging to the Department
of Mathematical Sciences at NTNU, which provided faster hyperparameter tuning before access to
the Idun cluster was granted.

7.1.2 Architecture and Hyperparameter Choice for Models from tabGAN Framework

For both the critic and the generator, we will use the Adam optimizer with initial learning rate
α = 0.0002 and exponential decay rates β1 = 0.7 and β2 = 0.999. We will use ncritic = 10 updates
of the critic for each update of the generator and set the Wasserstein gradient penalty parameter
equal to λ= 10. We will use Gumbel layers with softmax temperature τ= 0.1 for tabGAN methods
and τ = 0.5 for ctabGAN methods. For the generator, we let the latent noise input layer be of size

62



Chapter 7: Experiments – Data synthesizers

lz = 128. We give both the generator and the critic two dense hidden layers of size lh,g = lh,d = 256.
After each hidden layer, we apply the GELU activation function. Additionally, for the generator, we
use batch normalization after the activation function for each hidden layer.

For the quantile transformation in tabGAN-qt and tabGAN-qtr we use nquantiles = 1000 quantiles
to create the transformer for each column. In method tabGAN-qtr we only use the randomized ver-
sion of the quantile transformation for values that contain more than 5% of the total observations.
We set the spread parameter (see Section 4.3) of the Randomized Quantile Transformation equal to
δqt r,spread = 1, so that the randomization procedure uses all of the quantile space allocated for each
of the values to which it is applied. As we believe it is disadvantageous to apply the Randomized
Quantile Transformation to values which are only repeated a few times, we choose to only apply the
randomized part of the Randomized Quantile Transformation to column values which are assigned
more than 5% of the quantiles. For the one-hot encoding of the discrete variables, we include some
uniform noise for the tabGAN methods by setting the parameter δoh−noise, defined in Section 3.2.1,
equal to 0.01. We do not include noise in the one-hot encoding for the ctabGAN methods.

7.1.3 Architecture and Hyperparameter Choice for Baseline Data Synthesizers

To make the comparison between the models fair, we set ncritic = 10 for each of the other GAN based
methods, i.e CTGAN, CopulaGAN and TabFairGAN. Although CTGAN, CopulaGAN, and TabFairGAN
by default have a lower value for ncritic, we can safely increase it since ncritic is not a tuning parameter.
Setting the ncritic parameter to a higher value should only increase performance. Also by using a high
number of critic updates we hope to gain more stable results for the methods. The only theoretical
downside of increasing ncritic is increased training time.

By default, the CTGAN and CopulaGAN methods use two hidden layers of size 256 for both
the generator and the discriminator, as well as a latent noise layer of size 128 for input to the
generator. As this is exactly the same as for our methods from the tabGAN framework, we leave
it as default. We do this for both CTGAN methods, CTGAN-pac1 (without packing) and CTGAN-
pac10 (with packing). For TabFairGAN, the sizes of the hidden layers and the latent noise layer
are automatically set to be equal to the dimensions of the transformed and one-hot-encoded data.
As this is equal to only 50 for the Adult dataset, we created a modified version of the TabFairGAN
script where the hidden layer and latent noise layer size can be set using input arguments. We ran
the experiments which we will describe later in this chapter on modified versions of TabFairGAN,
where we sat the generator and critic to have hidden layers of size 256, latent noise layer to be of
size 128 and experimented with adding a second hidden generator layer. However, it appeared that
the TabFairGAN architecture did not scale well and as we did not want to make drastic changes to
the TabFairGAN architecture, we chose to merely use the default TabFairGAN architecture for the
experiments in this thesis even though it uses smaller layer sizes. We feel this is a fair choice, since
we let the TabFairGAN method use the best performing architecture we found from limited testing,
while still not penalizing the other methods for the TabFairGAN method’s lack of scalability. The
TVAE method uses a latent layer size of 128 and hidden layer sizes of 128 by default. To ensure a
fair comparison, we include, as described in Section 3.3.2, two versions of TVAE which we name
TVAE-orig and TVAE-mod. The TVAE-orig method uses default layer sizes, while TVAE-mod sets the
hidden layer sizes to be equal to 256 for both the encoder and decoder.

All other hyperparameters we leave as default, as we assume that they are chosen for a good
reason or through a hyperparameter search. We note that CTGAN, CopulaGAN, and tabFairGAN
use the Adam optimizer with the same learning rate as our chosen learning rate α = 0.0002, al-
though the parameter choice for β1 and β2 differs. CTGAN and CopulaGAN use (β1,β2) = (0.5,0.9),
while TabFairGAN uses (β1,β2) = (0.5,0.999). The usage of the same optimizer, Adam, with

63



Rustad@NTNU: tabGAN

similar parameter choices contributes to making the comparison of preprocessing, model archi-
tecture, and training process choices fair. Also, the two TVAE implementations described in Sec-
tion 3.3.2, TVAE-orig and TVAE-mod, use Adam optimizer. TVAE uses a learning rate of 0.001 and
(β1,β2) = (0.9,0.999).

7.2 Visual Evaluation of tabGAN Methods on the Syn2D_3cats Dataset

As a first experiment we want to visually confirm if and how our data synthesizing framework is
capable of learning a data distribution. To do this we will use the Syn2D_3cats dataset as it is easy to
visualize in two dimensions. We only include the tabGAN-sd and ctabGAN-sd methods in this exper-
iment in order to not overwhelm the reader with plots. Additionally, since Syn2D_3cats is a simple
dataset, quantile transformation might not be needed, or perhaps even beneficial to use, as the
preprocessing method for the two continuous columns. We will train tabGAN on the Syn2D_3cats
dataset using 5000 epochs and a batch size of 500. As the training dataset only has 2500 observa-
tions, this equals to 5 batches per epoch. For the 20 chosen epochs evenly distributed between and
including 0 and 5000, we plot a generated data set of the same size as the Syn2D_3cats training
dataset for tabGAN-sd and ctabGAN-sd. In this way, we can visually inspect how the generator im-
proves as the number of epochs trained increases. In addition to this, we will plot an estimate for
the EM distance averaged over each epoch for each of the two methods. The approximation for the
EM distance is calculated using Equation (2.7).

In Figure 7.1 and Figure 7.2, we plot the training progress on the Syn2D_3cats dataset for,
respectively, tabGAN-sd and ctabGAN-sd. The result is pretty good, but not perfect. From the figures,
it is clear that both methods definitely learn most of the defining features of the dataset. For instance,
they both learn to recreate category cat1 almost exactly, with the shape of its mean being a second
order polynomial and the variance increasing steadily from x1 = 0 to x1 = 10. The tabGAN-sd
method, however, appears to be somewhat superior in its approximation, since it captures that the
variance is close to zero when close to x1 = 0. Moreover, both learn the location of category cat3 and
its uniform distribution inside a triangle. Unsurprisingly, both struggle to recreate exactly the shape
and sharp lines of the triangle. The method ctabGAN-sd appears to be a bit more successful in its
recreation of the triangle shape and sharp lines; however, they both create a decent, although a bit
distorted approximation. Both methods also appear to partially capture the conditional distribution
given cat2. They have both learned that it has the shape of a third order polynomial. The tabGAN-
sd method appears to better recreate the polynomial shape, but does not adequately capture the
variance increase from x1 = 0 to x1 = 10. Meanwhile, the ctabGAN-sd method recreates the shape
slightly more distorted, especially between x1 = 0 and x1 = 2, but appears to better capture that the
variance is lower from x1 = 2 to x1 = 6 than from x1 = 6 to x1 = 10. However, it does not manage
to recreate the gradual increase in variance. Additionally, the ctabGAN-sd method has much more
noise inside the parabola part of the cat2 distribution located between x1 = 2 and x1 = 10 than
the tabGAN-sd method, and the tabGAN-sd method better generates samples between x1 = 8 and
x1 = 10 for category cat2. If we had run the training of the methods for more epochs, then the
recreated distribution might have been better and a bit less noisy for both methods, but given the
training progress seen in Figure 7.1 and Figure 7.2 and the plots of the approximated Earth-Mover
distance in Figure 7.3 and Figure 7.4, we reason that they might be close to convergence.

At epoch 0, before any training has taken place, the generated samples are merely an unsys-
tematic mix of different categories for both methods. At epoch 526 we observe that there has been
some separation between the categories and the conditional distributions given cat1 or cat3 re-
semble the true conditional distributions. We observe that ctabGAN-sd appears to learn quicker
than the tabGAN-sd method. Already at epoch 1578 the data distribution is pretty much recovered,

64



Chapter 7: Experiments – Data synthesizers

although a bit distorted version of it, while tabGAN-sd has still not learned the conditional dis-
tribution given cat2. After epoch 1578, we actually do not observe much progress made by the
ctabGAN-sd method. The fact that the ctabGAN-sd method learns the distribution so quickly might
be a possible reason why the plot of the approximate Earth-Mover distance for ctabGAN in Fig-
ure 7.4 appears a bit strange. The first peculiarity can be explained by the break-in period for the
critic where it has to learn to separate the real and fake distribution (or more accurately measure
the distance between real and fake distribution). In both Figure 7.3 and Figure 7.4, we observe that
the approximate Earth-Mover distance increases quickly for the first couple of epochs. We reason
that this increase is due to the critic learning to actually approximate the correct distance. Then, for
both tabGAN-sd and ctabGAN-sd, there is a sharp decrease in the estimated EM distance. We reason
that this is due to the generator having a steep learning curve at the beginning when it goes from
producing noise to something that actually resembles samples from the real distribution. For the
tabGAN-sd method, the rapid decrease slows down before it reaches zero and we observe a slow,
although noisy, convergence to zero from the positive numbers side. However, for the ctabGAN-sd
method the Earth-Mover distance approximation actually becomes negative, before we observe a
quick convergence back to zero from the negative numbers side. We reason that this might be due
to the generator learning more quickly than the critic is able to keep up a good approximation of
the Earth-Mover distance. Consequently, the critic might be the potentially limiting factor for the
learning of the ctabGAN-sd method for this specific dataset and this specific run. We note that for
tabGAN-sd the Earth-Mover distance approximation follows reasonably well the observed quality
for different epochs in Figure 7.1. This highlights one of the potential benefits of using Wasserstein
GAN, where the loss function actually can be a useful representation of the training progress. How-
ever, as we see in Figure 7.4, with the negative Earth-Mover approximation and convergence to
zero after around 250 epochs, the approximation can not be trusted blindly. Perhaps with an ever
higher value for ncritic we might have gotten a more accurate Earth-Mover distance approximation.
The large fluctuations we observe for both methods in the estimate of the Earth-Mover distance is
likely due to the small number of batches in each epoch which we average over.

65



Rustad@NTNU: tabGAN

0 1 2 3 4 5 6

10

0

10

20

30

40

50
Epoch 0/10000

cat1
cat2
cat3

2 0 2 4 6 8 10

40

20

0

20

40

60

80

100
Epoch 526/10000

0 2 4 6 8 10
60

40

20

0

20

40

60

80
Epoch 1052/10000

0 2 4 6 8 10

40

20

0

20

40

60

80

100
Epoch 1578/10000

2 4 6 8 10 12

40

20

0

20

40

60

80

Epoch 2105/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 2631/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 3157/10000

0 2 4 6 8 10 12
40

20

0

20

40

60

Epoch 3684/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 4210/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 4736/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 5263/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 5789/10000

0 2 4 6 8 10
60

40

20

0

20

40

60

80
Epoch 6315/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 6842/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 7368/10000

0 2 4 6 8 10

60

40

20

0

20

40

60

Epoch 7894/10000

0 2 4 6 8 10
60

40

20

0

20

40

60

80
Epoch 8421/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 8947/10000

0 2 4 6 8

40

20

0

20

40

60

Epoch 9473/10000

0 2 4 6 8 10
60

40

20

0

20

40

60

Epoch 10000/10000

Figure 7.1: Visualization of the training progress for tabGAN-sd when learning to generate samples
from the Syn2D_3cats dataset defined in Section 6.1.

66



Chapter 7: Experiments – Data synthesizers

0 2 4 6 8
20

10

0

10

20

30

40

50

Epoch 0/10000
cat1
cat2
cat3

0 2 4 6 8 10

40

20

0

20

40

60

80

100

Epoch 526/10000

0 2 4 6 8 10
60

40

20

0

20

40

60

80
Epoch 1052/10000

2 0 2 4 6 8 10

40

20

0

20

40

60

Epoch 1578/10000

2 0 2 4 6 8 10

40

20

0

20

40

60

80
Epoch 2105/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 2631/10000

2 0 2 4 6 8 10 12

40

20

0

20

40

60

Epoch 3157/10000

2 0 2 4 6 8 10

40

20

0

20

40

60

Epoch 3684/10000

0 2 4 6 8 10 12

40

20

0

20

40

60

Epoch 4210/10000

0 2 4 6 8 10 12

40

20

0

20

40

60

Epoch 4736/10000

2 0 2 4 6 8 10 12

40

20

0

20

40

60

Epoch 5263/10000

2 0 2 4 6 8 10 12

40

20

0

20

40

60

Epoch 5789/10000

2 0 2 4 6 8 10

40

20

0

20

40

60

Epoch 6315/10000

0 2 4 6 8 10 12
40

20

0

20

40

60

80
Epoch 6842/10000

0 2 4 6 8 10 12

40

20

0

20

40

60

Epoch 7368/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 7894/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 8421/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 8947/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 9473/10000

0 2 4 6 8 10

40

20

0

20

40

60

Epoch 10000/10000

Figure 7.2: Visualization of the training progress for ctabGAN-sd when learning to generate samples
from the Syn2D_3cats dataset defined in Section 6.1.

67



Rustad@NTNU: tabGAN

0 2000 4000 6000 8000 10000
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
EM distance

Figure 7.3: Estimate of the Earth-Mover distance during training for the tabGAN-sd method when
learning to generate samples from the Syn2D_3cats dataset defined in Section 6.1. The Earth-Mover
distance approximation is averaged over all batches in each epoch.

0 2000 4000 6000 8000 10000

0.5

0.0

0.5

1.0

1.5 EM distance

Figure 7.4: Estimate of the Earth-Mover distance during training for the ctabGAN-sd method when
learning to generate samples from the Syn2D_3cats dataset defined in Section 6.1. The Earth-Mover
distance approximation is averaged over all batches in each epoch.

68



Chapter 7: Experiments – Data synthesizers

7.3 Comparison of Marginal Distributions on Adult Dataset

To evaluate how well the methods capture the marginal probability distribution of each column in
the Adult dataset, we will plot for each column the histogram for a synthesized training set together
with the histogram of the observations from the true training set. If a data synthesizer method
captures the correct marginal distributions, then the histograms should overlap. We will do this for
each method. For the plots to be easily comparable between methods, we use a fixed bin size and bin
placement for each column. For a continuous column this is done in the following way. First, we plot
20 bins between the minimum value of the original dataset and the maximum value of the original
dataset. This is used to determine the bin size and bin placement. To accommodate cases where
the synthesizers generate values outside of the minimum and maximum of the original dataset, we
extrapolate the bins if needed. For discrete columns the categories are listed alphabetically. To avoid
overflowing the main part of the thesis with very similar plots, we will move the plots for ctabGAN-
sd, ctgabGAN-qt, CTGAN-pac10, CopulaGAN and TVAE-mod to Appendix C. The reason we chose
these plots, is that they are very similar to the plots for some of the other methods discussed in this
section.

7.3.1 Results and Discussion of Marginal Distributions

In Figures 7.5 to 7.7, we plot the histograms for tabGAN-sd, tabGAN-qt, and tabGAN-qtr, respect-
ively. We observe that all three methods do a very satisfactory job of recreating the marginal distri-
butions. For tabGAN-qt and tabGAN-qtr, the marginal distributions are almost perfectly recreated
for every column, with the exception of a single category Doctorate in the column "education", which
for some reason is the only one not sampled. It is not very surprising, as it is the category with the
least representation amongst the categories in the "education" column, but tabGAN-qt and tabGAN-
qtr still manage to correctly sample categories with even less representation from other columns,
such as the Priv-house-serv category from the "occupation" column and Native-American-Inuit and
Other from the "race" column. If we were to make an educated guess, we would believe a possible
explanation for why Doctorate is more difficult than the other categories just listed, could be the
strong correlation between "education" and some of the other columns. This is in contrast to the
"race" column, which hardly has any correlation with any of the other columns (see Figure 7.13 in
Section 7.4). By definition, there is a strong correlation between "education" and "education_num",
but as later seen in Figure 7.13 in Section 7.4, the column "education" is strongly correlated to other
columns as well.

We observe that tabGAN-qtr does a slightly better job of correctly sampling the marginal dis-
tributions for the continuous columns with many repeated values. This is the case for "educa-
tional_num", "capital_gain", "capital_loss", and "hours_per_week". This indicates that the Random-
ized Quantile Transformation is working as intended. It makes it easier for the generator to not
oversample the values which are repeated many times. This is, for instance, the case for the value 40
for the "hours_per_week" column and the values 9, 10, and 13 for the column "educational_num".
For the columns "capital_gain" and "capital_loss", almost all the observations have value 0. Con-
sequently, the distribution of the few samples which are not are equal to zero, are easy for the
generator to "forget" to sample from. We observe that tabGAN-qt does not recreate enough samples
with "capital_gain" > 15000 and for the small cluster of values near 2000 for the "capital_loss"
column it undersamples the values smaller than 2000. tabGAN-qtr, on the other hand, correctly
generates such samples. The only cluster from which tabGAN-qtr fails to sample is the few obser-
vations that work around 80 hours per week.

As expected, the tabGAN-sd method struggles with the opposite problem as tabGAN-qt. The
tabGAN-sd method has a hard time not slightly undersampling the values that are repeated many

69



Rustad@NTNU: tabGAN

times. This is due to the standardization transformation mapping all observations to an infinitesimal
range, unlike the quantile transformation, which maps unrepeated values to an infinitesimal range
and repeated values to a finite range proportional to the number of repeated values. This is clearly
seen for the columns "capital_gain" and "capital_loss", where we observe that a significant share
of the samples are given values slightly below zero instead of zero. Note, however, that the bin
placement makes it extra obvious and may perhaps be a bit misleading. The values are probably only
mapped to just below zero; however, as there is a bin separation at zero, they get placed in their own
bin. Just like tabGAN-qt, we observe that tabGAN-sd also struggles with the recreation part of the
distribution for both "capital_gain" and "capital_loss" which is much larger than zero. For the integer
columns "educational_num" and "hours_per_week" we also observe that tabGAN-sd struggles a bit
with the distributions that are either not continuous or very far from normally distributed. Again,
we observe that it undersamples the values which are repeated many times. Additionally, it of
course is unable to generate only integers, and therefore also generates decimal numbers lying
between each integer. This could, however, have been easily fixed with a post-processing step.
In fact, this is actually implemented for the methods in the Stochastic Data Vault package (with
CTGAN, CopulaGAN, GaussianCopula, and TVAE), where it automatically detects the appropriate
decimals to round. Although we have been a bit critical of the tabGAN-sd method, overall it makes
a pretty good job of recreating the marginal distributions. It actually perfectly recreates all of the
marginal distributions for the discrete columns, even the "Doctorate" category which the tabGAN-qt
and tabGAN-qtr methods were unable to correctly sample.

In Figure C.1, Figure C.2, and Figure 7.8, we plot the histograms for ctabGAN-sd, ctabGAN-qt
and ctabGAN-qtr, respectively. The marginal distributions for ctabGAN-sd are practically the same
as for tabGAN-sd. Not surprising, since the goal of the conditional GAN architecture and condi-
tional sampling is to better represent the rare categories. However, as tabGAN-sd already perfectly
recreated the marginal distributions of the discrete columns, no gain was possible. Adding the
conditional architecture and training process did not address the problems for tabGAN-sd that we
described above. The plot for ctabGAN-qt is also very similar to the plot for tabGAN-qt. The only
notable differences are that now the number of samples with the "Doctorate" category is notice-
able in the histogram, although it is still very much undersampled, and now it completely fails to
generate the tiny cluster of samples with "capital_loss" value around 2000. This indicates that the
conditional architecture and training process helps a bit with representing and learning to generate
rare categories. The plot for the ctabGAN-qtr method is almost equal to the plot for the tabGAN-
qtr method, with one important exception, now the "Doctorate" category is correctly sampled as
well. Consequently, we find no error with the marginal distributions produced by the ctabGAN-qtr
method.

In Figure 7.9, we plot the histogram for the GaussianCopula method. It is obvious that this
method struggles with all of the discrete columns and the numeric columns which do not resemble
any of the parametric distributions available to it. The "age" column and the "fnlwgt" columns are
pretty well reconstructed. However, the rest is very badly approximated. The "hours_per_week"
column appears to have had a normal distribution with mean around 40 fitted to it, but the normal
distribution completely fails to replicate the large number of observations with the value 40. The
same problem can be seen in the "educational_num" column. The "capital_gain" column and the
"capital_loss" column appear to have had an exponential distribution or perhaps a gamma distri-
bution fitted to it. By doing this, the GaussianCopula is partially able to capture the large number
of samples near 0, but it still undersamples. Additionally, we assume that not all samples collec-
ted in the bin near 0 are actually that close to zero, as the bin is quite wide. As a consequence of
the massive undersampling of values at zero, the GaussianCopula method massively oversamples
the larger than zero values for both "capital_gain" and "capital_loss". As expected, this method is

70



Chapter 7: Experiments – Data synthesizers

also not able to capture the tiny cluster near 2000 for the column "capital_loss". For the discrete
columns, a few categories of each class are massively oversampled, whereas many categories are
not sampled at all. Again, this is to be expected since the GaussianCopula method’s solution to
discrete variables is merely one-hot encoding and then treating each new one-hot encoded column
as a regular continuous variable. Clearly, this is not a very successful strategy for real datasets with
discrete variables.

The histograms for the CTGAN-pac1, CTGAN-pac10 and CopulaGAN methods are given in Fig-
ure 7.10, Figure C.3, and Figure C.4, respectively. The marginal histograms for CTGAN-pac1 and
CTGAN-pac10 are almost indistinguishable, although CTGAN-pac1 appears to have a slight advant-
age overall. All of the columns are recreated satisfactory. However, we observe that compared to the
methods from the tabGAN framework, category shares are not accurately recreated. This is an over-
all trend for all the discrete columns, but especially for "occupation", "race" and "native_country".
Additionally, we observe that both CTGAN-pac1 and CTGAN-pac10 fail to correctly recreate the
tiny cluster around 2000 for the column "capital_loss". We observe that they both oversample at the
middle of the cluster and undersample at the edges of the tiny cluster. It is reasonable to assume
that the preprocessing step of CTGAN, which fits a variational Gaussian Mixture Model, assumes
there is a Gaussian distribution centered in the middle of the cluster and this is the result of what the
generator was able to pick up on. The marginal histograms for the CopulaGAN method appear quite
similar to those for CTGAN-pac1 and CTGAN-pac10. The most notable difference is that the Cop-
ulaGAN method generally is more successful with recreating the correct category shares, however,
unlike the CTGAN methods, the CopulaGAN method undersamples the Doctorate category.

In Figure 7.11, we present the marginal distribution histograms for the TabFairGAN method. It
does a very successful job of recreating the marginal distributions of the discrete columns, definitely
on par with the ctabGAN-qtr method with respect to that. The marginal distribution of the numer-
ical columns are also pretty well recreated, but not as successfully as ctabGAN-qtr, CTGAN-pac1,
CTGAN-pac10 and CopulaGAN. Unsurprisingly, TabFairGAN shares some of the issues as tabGAN-
qt and ctabGAN-qt, as they all rely on regular quantile transformation. All these methods have a
tendency to oversample the column values that are repeated many times. We observe this for the
columns "hours_per_week, "educational_num", "capital_loss" and "capital_gain". Additionally, the
recreation of the "age" column is surprisingly poor. For the "age" column it is especially obvious
that TabFairGAN oversamples the edge values, but the same is apparent in all of the other nu-
merical columns as well. We believe it reasonable to assume that this is due to TabFairGAN using
uniform quantile transformation and no activation function to help guiding the numerical output
nodes from the space (−∞,∞) to the space [0, 1]. Thus, the neural network that constitutes the
generator is forced to learn the mapping to the [0,1] space, but clearly fails to not generate too
many samples larger than 1 or smaller than 0. The tabGAN framework avoids this issue by using
quantile transformation with Gaussian output distribution instead of uniform output distribution.
However, a potential solution for TabFairGAN might be to utilize a sigmoid activation function after
the numerical output layer.

In Figure 7.12 and Figure C.5, we plot the marginal distributions of TVAE-orig and TVAE-mod,
respectively. Both of the two variational autoencoder methods perform quite well, but there are a
couple of issues. First, the edge cases for "age" and "fnlwgt" are undersampled. Additionally, the
category shares are a bit off, especially for TVAE-mod and the "occupation" column. The Separated
category of the "marital_status" column is massively undersampled for both methods. On a positive
note, the marginal distributions of the remaining numerical columns are very well reconstructed,
and they even partially managed to create samples for the tiny cluster around value 2000 for the
"capital_loss" column.

To sum up, all methods except the GaussianCopula method managed to decently recreate the

71



Rustad@NTNU: tabGAN

marginal distributions. The best performing method in this comparison we would say is ctabGAN-
qtr, but with CTGAN-pac1, CTGAN-pac10, CopulaGAN, tabGAN-qt, tabGAN-qtr and ctabGAN-qt
close behind. This comparison is based on a single run and naturally there will be some randomness
involved, however, we observed much of the same patterns when rerunning multiple times.

72



Chapter 7: Experiments – Data synthesizers

20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.00 0.25 0.50 0.75 1.00 1.25 1.50
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

20 0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

0.10
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.5: Histograms of generated samples from tabGAN-sd plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult training dataset.

73



Rustad@NTNU: tabGAN

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

0.00020
capital_gain

Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30
occupation

Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.6: Histograms of generated samples from tabGAN-qt plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult training dataset.

74



Chapter 7: Experiments – Data synthesizers

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

0.00020
capital_gain

Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

hours_per_week
Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.7: Histograms of generated samples from tabGAN-qtr plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult training dataset.

75



Rustad@NTNU: tabGAN

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

0.00020
capital_gain

Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

hours_per_week
Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.8: Histograms of generated samples from ctabGAN-qtr plotted against histograms of ob-
servations from the Adult training dataset. One histogram for each column. The synthesized dataset
is of the same size as the Adult training dataset.

76



Chapter 7: Experiments – Data synthesizers

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.0

0.5

1.0

1.5

workclass
Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.2

0.4

0.6

0.8

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0

marital_status
Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.0

0.2

0.4

0.6

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

2.0
race

Real
Gen

Fe
m

al
e

Ma
le

0.0

0.5

1.0

1.5

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

2.0
native_country

Real
Gen

<=
50

K

>5
0K

0.0

0.5

1.0

1.5

2.0
income

Real
Gen

Figure 7.9: Histograms of generated samples from GaussianCopula plotted against histograms of
observations from the Adult training dataset. One histogram for each column. The synthesized data-
set is of the same size as the Adult training dataset.

77



Rustad@NTNU: tabGAN

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30
occupation

Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.10: Histograms of generated samples from CTGAN-pac1 plotted against histograms of ob-
servations from the Adult training dataset. One histogram for each column. The synthesized dataset
is of the same size as the Adult training dataset.

78



Chapter 7: Experiments – Data synthesizers

20 30 40 50 60 70 80 90
0.00

0.01

0.02

0.03

age
Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

5
1e 6 fnlwgt

Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5
educational_num

Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

0.00020
capital_gain

Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.000

0.025

0.050

0.075

0.100

0.125

hours_per_week
Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.11: Histograms of generated samples from TabFairGAN plotted against histograms of ob-
servations from the Adult training dataset. One histogram for each column. The synthesized dataset
is of the same size as the Adult training dataset.

79



Rustad@NTNU: tabGAN

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

2

4

6

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

0.00020
capital_gain

Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0

marital_status
Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure 7.12: Histograms of generated samples from TVAE-orig plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult training dataset.

80



Chapter 7: Experiments – Data synthesizers

7.4 Comparing Joint Distributions on Adult Dataset

After having evaluated the capabilities of the data synthesizer methods to replicate marginal dis-
tributions, we will proceed to determine how well they capture the correlation structures in the
training dataset. For each pair of column combinations, we want to determine whether the joint
distribution appears to be replicated. This can be done by plotting 3D histograms or correlation
matrices for each unique column combination of length two. However, this would for the Adult
dataset result in

∑14
i=1 i − 1 = 91 plots or matrices, which would be overwhelming and not very

useful for comparison, especially when taking into consideration that these 91 plots would have
to be plotted for each of the thirteen methods of interest. We could of course only plot a selected
subsection of these plots or matrices, but then we would lose information, and at the same time
the results would be difficult to interpret and compare. Thus, inspired by Xu and Veeramachaneni
[13], we choose to use mutual information as a quantitative evaluation tool for correlation between
columns. More specifically, we compute the pairwise mutual information between columns and for
ease of comparison and visualization we use a normalized version. Mutual information is a quant-
itative measurement of how dependent two variables are. More precisely, what mutual information
criteria do is quantify how much information is gained about one random variable by observing
another random variable. For ease of computation, we discretize each numerical column into 40
buckets with ideally 2.5% of the observations in each (unfortunately, as some of the numerical
columns have repeated values that represent more than 2.5% of the observations, some of the nu-
merical columns will have fewer than 40 columns and some buckets will contain more than 2.5%
of the observations). In this thesis, we choose to use the following version of normalized mutual
information

N M I(X ,Y) =
2

Entropy(X ) + Entropy(Y)

∑

x∈X

∑

y∈Y
PX ,Y(x , y) log

�

PX ,Y(x , y)

PX (x)PY(y)

�

, (7.1)

where x and y are the categories of the discretized columns X and Y. The probabilities of PX , PY
and PX ,Y(x , y) are respectively the (estimated) marginal distribution of column X , the (estimated)
marginal distribution of column Y and the (estimated) joint distribution of columns X and Y. The
entropy of X and Y are calculated as

Entropy(X ) =
∑

x∈X
PX (x) log
�

1
PX (x)

�

Entropy(Y) =
∑

y∈Y
PY(y) log

�

1
PY(y)

�

.

Note that our definition of normalized mutual information is symmetric, such that N M I(X ,Y) =
N M I(Y,X ). Direct insertion into Equation (7.1) also shows that N M I(X ,X ) = 1. If there really is
no correlation between two columns and we use the true probability densities for the estimation,
then the NMI value would be equal to zero. In Figure 7.13, we plot the NMI matrix for the training
observations of the Adult dataset. As expected, we observe that there is a very strong correlation
between the "education" and the "educational_num" column. Additionally, we see a bunch of weaker
correlations such as between "age" and "marital_status", between "income" and "marital_status",
between "occupation" and "gender". These and more are correlation structures that we want the
data synthesizers to capture.

We will for each method plot the NMI matrix of a synthesized dataset the same size as the
Adult training dataset. As a reference, we will once again plot the NMI matrix of the Adult training

81



Rustad@NTNU: tabGAN

ag
e

wo
rk

cla
ss

fn
lw

gt

ed
uc

at
io

n

ed
uc

at
io

na
l_n

um

m
ar

ita
l_s

ta
tu

s

oc
cu

pa
tio

n

ra
ce

ge
nd

er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek

na
tiv

e_
co

un
try

in
co

m
e

age

workclass

fnlwgt

education

educational_num

marital_status

occupation

race

gender

capital_gain

capital_loss

hours_per_week

native_country

income

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.13: Normalized mutual information (NMI) matrix for the training observations of the Adult
dataset introduced in Section 6.2.

dataset. For ease of comparison, we will also plot the difference between the NMI matrix of the
original Adult training dataset and synthesized test datasets (of same size as the true test Adult
dataset). As reference we plot the NMI matrix of the original Adult training dataset subtracted
from the NMI matrix of the original Adult test dataset, thus we gain an example of the difference
in NMI matrix that can be due to randomness.

7.4.1 Results and Discussion of Joint Distributions

In Figure 7.14, we plot the NMI matrices for the methods from the tabGAN framework. It is clear
that all of these methods have successfully managed to capture the joint distribution between each
column pair. The NMI matrices are almost indistinguishable from the NMI matrix of the original
Adult training dataset. The most obvious deviation is the NMI value between the "education" and
"education_num" columns. All of the methods from the tabGAN framework successfully capture that

82



Chapter 7: Experiments – Data synthesizers

there is a high correlation between the two education columns, but they fail to capture just how
strong the correlation is. We observe that the methods with quantile transformation does a slightly
better job of capturing the high correlation than the methods with standardization as preprocessing
method. The method that manages to estimate the highest correlation is tabGAN-qt. Other than the
education columns, the methods with quantile transformation appear to be extremely successful in
recreating the joint distributions. tabGAN-sd and ctabGAN-sd are also very successful, but we notice
that they introduce a correlation between "capital_loss" and the education columns that does not
exist in the original Adult training dataset. tabGAN-sd introduces extra correlation that should not
be there to a larger extent than ctabGAN-sd. This is easier to spot in Figure 7.16, where we plot
the difference between the original Adult training dataset and the synthetically generated datasets.
From Figure 7.17 we observe that there are no difference in the NMI matrix calculated for the
original Adult training dataset and the NMI matrix calculated for the original Adult test dataset.
Figure 7.16 also reveals that tabGAN-sd and ctabGAN-sd fail to capture some of the correlation
between the columns "capital_gain" and "income". This is also slightly the case for tabGAN-qtr and
ctabGAN-qtr.

We plot the NMI matrices for GaussianCopula, CTGAN-pac1, CTGAN-pac10, CopulaGAN, Tab-
FairGAN, TVAE-orig and TVAE-mod in Figure 7.15. At first sight, it is obvious that the Gaussi-
anCopula method has competely failed to learn the joint distributions. Except for the diagonal,
which by definition is equal to 1, and the single tile between "age" and "marital_status", the NMI
matrix is blank. Consequently, the GaussianCopula has failed to learn any of the joint distribu-
tions. The other synthesizers, however, are much more successful. We observe that CTGAN-pac1,
CTGAN-pac10, TVAE-orig and TVAE-mod are close to capturing the true strength of the correlation
between the education columns, with TVAE-mod being the most successful and really close to the
actual value. CopulaGAN and TabFairGAN also capture the correlation, but are less successful in
capturing its strength. We observe that CTGAN-pac1 and CTGAN-pac10 create more correlation
than there should be between the columns "race" and "native_country", while CopulaGAN does not
create enough correlation. From Figure 7.15, it is clear that the TVAE methods introduce many
correlation structures that are not present in the original Adult training dataset. This is even more
of a problem for TVAE-orig than TVAE-mod, but the issue is very much present for both methods.
Looking at Figure 7.17, where we plot the the difference between the synthesized datasets and the
original Adult training dataset, the trend is even more obvious. The plot of the differences in each
NMI matrix shows that the TabFairGAN and CopulaGAN methods do not create any extra correlation
patterns not present in the original dataset; however, they do slightly underestimate the correlation
between "income" and "capital_gain" and as mentioned earlier, they are less successful in captur-
ing the true strength of the correlation between the education columns. CopulaGAN slightly better
approximates the correlation between "education" and "education_num", but in return slightly un-
derestimates the correlation patterns between "native_country" and "race" as well as the correlation
between "gender" and the two columns "marital_status" and "occupation". CTGAN-pac1, CTGAN-
pac10, TVAE-orig and TVAE-mod also underestimate the correlation between "capital_gain" and
"income". It is obviously a difficult correlation to capture correctly, since all the methods except
for tabGAN-qt and ctabGAN-qt fail to capture the correlation successfully. We believe the difficulty
may potentially be caused by the extreme overweight of repeated 0 values for "capital_gain", which
makes it difficult to correctly estimate the cases with "capital_gain" larger than zero.

Overall, the GAN synthesizers are the best performing in joint distribution comparison. To be
fair, the TVAE-mod method was clearly the best at capturing the strong correlation between the
education columns, but for this dataset, the variational autoencoder synthesizers were too prone
to introduce correlation structures not present in the original dataset. We believe the tabGAN-qt
method overall was the best performing method for this comparison, with ctabGAN-qt, tabGAN-qtr,

83



Rustad@NTNU: tabGAN

ctabGAN-qtr, CTGAN-pac1, CTGAN-pac10, CopulaGAN and TabFairGAN not far behind.

84



Chapter 7: Experiments – Data synthesizers

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

Original dataset

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

tabGAN-sd ctabGAN-sd

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

tabGAN-qt ctabGAN-qt

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

tabGAN-qtr

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

ctabGAN-qtr
0.2

0.4

0.6

0.8

1.0

Figure 7.14: NMI matrices for the Adult training dataset and the synthesized datasets generated by
each of the methods from the tabGAN framework: tabGAN-sd, tabGAN-qt, tabGAN-qtr, ctabGAN-sd,
ctabGAN-qt and ctabGAN-qtr. The synthesized datasets were of the same size as the Adult training
dataset.

85



Rustad@NTNU: tabGAN

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

Original dataset GaussianCopula

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

CTGAN-pac1 CTGAN-pac10

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

CopulaGAN TabFairGAN

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

TVAE-orig

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

TVAE-mod

0.2

0.4

0.6

0.8

1.0

Figure 7.15: NMI matrices for the Adult training dataset and the synthesized datasets generated by
each of the methods GaussianCopula, CTGAN-pac1, CTGAN-pac10, CopulaGAN, TabFairGAN, TVAE-
orig, and TVAE-mod. The synthesized datasets were of the same size as the Adult training dataset.

86



Chapter 7: Experiments – Data synthesizers

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

Original dataset - train vs test GaussianCopula

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

CTGAN-pac1 CTGAN-pac10

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

CopulaGAN TabFairGAN

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

TVAE-orig

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

TVAE-mod

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7.16: Difference between the NMI matrix for the Adult training dataset and the NMI matrices
for the Adult test dataset and the synthesized datasets generated by each of the methods from the
tabGAN framework: tabGAN-sd, tabGAN-qt, tabGAN-qtr, ctabGAN-sd, ctabGAN-qt, and ctabGAN-
qtr.The synthesized datasets were of the same size as the Adult test dataset. With the chosen
colormap, samples close to zero are shown as white even if they are not exactly zero.

87



Rustad@NTNU: tabGAN

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

Original dataset - train vs test GaussianCopula

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

CTGAN-pac1 CTGAN-pac10

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

CopulaGAN TabFairGAN

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

age
workclass

fnlwgt
education

educational_num
marital_status

occupation
race

gender
capital_gain
capital_loss

hours_per_week
native_country

income

TVAE-orig

ag
e

wo
rk

cla
ss

fn
lw

gt
ed

uc
at

io
n

ed
uc

at
io

na
l_n

um
m

ar
ita

l_s
ta

tu
s

oc
cu

pa
tio

n
ra

ce
ge

nd
er

ca
pi

ta
l_g

ai
n

ca
pi

ta
l_l

os
s

ho
ur

s_
pe

r_
we

ek
na

tiv
e_

co
un

try
in

co
m

e

TVAE-mod

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7.17: Difference between the NMI matrix for the Adult training dataset and the NMI matrices
for the Adult test dataset and the synthesized datasets generated by each of the methods Gaussian-
Copula, CTGAN-pac1, CTGAN-pac10, CopulaGAN, TabFairGAN, TVAE-orig, and TVAE-mod. The syn-
thesized datasets were of the same size as the Adult test dataset. With the chosen colormap, samples
close to zero are shown as white even if they are not exactly zero.

88



Chapter 7: Experiments – Data synthesizers

7.5 Comparing Machine Learning Efficacy on Adult Dataset

A recognized quantitative method for evaluating data synthesizers is to compare machine learning
efficacy [1, 3, 13]. The process of evaluating machine learning efficacy can be described as follows.
First a data synthesizer is trained on a training dataset. Then, the synthesizer generates a synthetic
data set of the same size as the original training dataset. Finally, the machine learning model fitted
to the synthesized dataset is evaluated on the original test dataset. If a data synthesizer is skilled at
replicating the true data distribution, the model trained on the synthesized training dataset should
be almost as good as the model trained on the true training dataset. For the Adult dataset we
perform this process for each of the data synthesizers listed in this thesis. As response variable we
set "income", which is the intended response variable by the UCI Machine Learning Repository where
we fetched the Adult dataset. We replicate the process 50 times to obtain more stable results and
obtain an estimate of the variability of the results. In this thesis, we use XGBoost (see Section 2.3)
as the machine learning model. We choose XGBoost as it has been shown to perform very well on
a wide range of datasets with very little hyperparameter tuning [38]. It might be even better to
include an ensemble of machine learning models and average the results with each model when
comparing machine learning efficacy, but we believe that the high performance of XGBoost at least
partially makes up for it. An advanced prediction model is important because if the model does not
utilize advanced patterns in the data, then the synthesizers that actually manage to replicate these
advanced patterns do not get the appropriate credit for it. The paper [1] uses an ensemble of four
models fitted to the Adult dataset, but the ensemble is outperformed by an XGBoost model without
any hyperparameter tuning. Therefore, we are confident in the choice of XGBoost as our prediction
model when evaluating the efficacy of machine learning. Still, we acknowledge that different types
of models might potentially pick up on different types of data patterns.

We will use three classification metrics in the machine learning comparison; accuracy, AUC and
F1 score. To accommodate the random components in the fitting and sampling process of a data
synthesizer and get an overview of the variability, we will for each metric report the median and a
centered 90% interval based on the percentiles after 50 runs.

7.5.1 Results and Discussion of Machine Learning Efficacy Comparison on Adult
Dataset

In Table 7.1, we present the results of the benchmarking on the Adult dataset. The two clear win-
ners are tabGAN-qt and tabGAN-qtr. The tabGAN-qtr method appears to have a tiny edge, with a
higher median value for the accuracy and F1 score metrics, but the two methods are too close to
be sure if it is not just due to coincidence. We observe that tabGAN-qtr appears to be slightly more
stable, with the 5% percentile for tabGAN-qtr being, for each of the metrics, consistently higher
than the 5% percentile for tabGAN-qt. Thus, we reason the Randomized Quantile Transformation
might have some stabilizing properties compared to regular quantile transformation. The third best
performing synthesizer is ctabGAN-qtr, which outperforms the ctabGAN-qt method. It appears that
the randomization component was more important in combination with the conditional architec-
ture than without it. We also note that for the methods from the tabGAN framework, the condi-
tional methods in the framework, ctabGAN, consistently perform worse than the regular methods,
tabGAN. This might, however, be specific to the Adult dataset and this machine learning task. It it
interesting that the Randomized Quantile Transformation gave such a performance boost for the
ctabGAN method and not for the tabGAN methods. We hypothesize that for the Adult dataset, the
Randomized Quantile Transformation makes it easier for the generator to learn and that perhaps
the effect decreases the better the rest of the synthesizer is. This would at least be consistent with
what we have experienced throughout the hyperparameter tuning. In the beginning, the random-

89



Rustad@NTNU: tabGAN

ized version of the quantile transformation gave a significant boost to performance also for the
tabGAN methods. However, as we continued to improve the rest of the synthesizer, such as ar-
chitecture and hyperparameters, the effect decreased. If the Randomized Quantile Transformation
truly makes it easier for the generator to learn, then it could potentially be the case that tabGAN-qtr
reaches convergence faster during training than tabGAN-qt (even though the valued converged to
is similar). This would be interesting to investigate.

The method tabGAN-sd is the fourth best synthesizer. It has lower median macro F1 score than
ctabGAN-qt, but significantly outperforms ctabGAN-qt with respect to Accuracy and AUC. It is al-
most tied between the CTGAN-pac1 method and the ctabGAN-qt method, but CTGAN-pac1 appears
to be the better performing of them, as it has slightly higher accuracy and macro F1 score. All the
remaining methods perform a lot worse. It is interesting that ctabGAN-sd performs so much worse
than ctabGAN-qt and ctabGAN-qtr, but an explanation could be that the conditional WGAN archi-
tecture and training process are a bit more difficult than the regular WGAN implementation for
the Adult dataset. Consequently, the ability of the quantile transformation to transform continuous
distributions to become more normal, is more valueable when the initial task is hard.

Among the six named methods from the tabGAN framework, the methods ctabGAN-sd, ctabGAN-
qt, and ctabGAN-qtr are the ones that most closely resemble the CTGAN-pac1 method. They all use
a conditional architecture with many similarities and the same conditional sampling strategy during
training. They also use the same preprocessing method for discrete columns, i.e. one-hot encoding,
and do not use packing. Thus, for an evaluation of the preprocessing method used in CTGAN for
continuous columns, i.e. variational Gaussian mixture models (VGMM), these are the most useful
methods as frames of reference. We observe that the method with Randomized Quantile Trans-
formation (QTR), ctabGAN-qtr, outperforms CTGAN-pac1. It is, however, difficult to determine for
certain how much of this is due to the transformation itself or instead, perhaps, a better architec-
ture and hyperparameter choice. However, it is in indicator that the QTR may be more suited as
preprocessing for the numerical columns in the Adult dataset. Although, even if that is the case, we
do not know if it is more suitable for all of the numerical columns, or only some of them. Poten-
tially, it could be that a few of the columns benefit more from VGMM than QTR, but this benefit is
overshadowed by a few of the other columns that greatly benefit from the QTR as preprocessing
function. ctabGAN-qt with regular quantile transformation performed on par with the CTGAN-pac1
method, but the ctabGAN-sd method was vastly outperformed. This might indicate that using vari-
ational Gaussian mixture models is better as a preprocessing step for the Adult dataset than mere
standardization. Standardization can be linked to Gaussian mixture models by setting the number
of models in the mixture to 1.

Another interesting aspect is the massive performance drop for the CTGAN method when pack-
ing is used. Consistent with what we observed for the methods in the tabGAN framework during
hyperparameter tuning, packing is not beneficial for the Adult training dataset. Neither, does para-
metric quantile transformations appear to be beneficial as a preprocessing step before being input
into the CTGAN framework, as CopulaGAN has worse performance than CTGAN-pac10. The only
difference between CopulaGAN and CTGAN-pac10 is the parametric quantile transformation pre-
processing step. Potentially, this also indicates that rank-based quantile transformation is superior
to parametric quantile transformation for GAN structures trained on the Adult dataset.

Unsurprisingly, the GaussianCopula is the worst performer by a large margin in this category as
well. More surprisingly is the lower performance of TVAE-orig and TVAE-mod. Variational autoen-
coder have been shown to be successful data synthesizers [1, 82, 83] and in the Xu et al. [1] paper
the TVAE method outperformed CTGAN for most of the tests. It could, however, be that the Adult
dataset did not suit the TVAE implementation. We observe that TVAE-mod outperforms TVAE-orig;
apparently, the larger hidden layer sizes for both encoder and decoder are useful. The TabFairGAN

90



Chapter 7: Experiments – Data synthesizers

Table 7.1: Machine learning efficacy benchmarking for the different data synthesizers on the Adult
dataset. The performance is calculated with respect to three metrics; Accuracy, AUC and Macro F1
score. For each metric we report the median and the interval defined by the 5% and 95% percentiles
based on 50 runs for each synthesizer. Note that the interval reported is not a confidence interval
measuring the variance of the experiment itself, as is quite common, but instead a measurement of
the stability of the data synthesizing process. More accurately, the interval also includes the variability
of the XGBoost fitting process, but as seen from the Train dataset row, this variability is negligible.
For each metric and percentile we highlight the value of the best performing method in bold.

Method Accuracy AUC Macro F1

Train dataset 0.8653 (0.8653, 0.8653) 0.9229 (0.9229, 0.9229) 0.8087 (0.8087, 0.8087)
tabGAN 0.8395 (0.8167, 0.8444) 0.8941 (0.8789, 0.8980) 0.7665 (0.7290, 0.7817)
tabGAN-qt 0.8427 (0.8385, 0.8459) 0.8968 (0.8932, 0.8989) 0.7774 (0.7700, 0.7835)
tabGAN-qtr 0.8430 (0.8401, 0.8458) 0.8976 (0.8951, 0.8999) 0.7789 (0.7739, 0.7835)
ctabGAN 0.8296 (0.8090, 0.8386) 0.8838 (0.8685, 0.8924) 0.7542 (0.6817, 0.7701)
ctabGAN-qt 0.8374 (0.8323, 0.8405) 0.8897 (0.8860, 0.8920) 0.7672 (0.7589, 0.7733)
ctabGAN-qtr 0.8412 (0.8377, 0.8448) 0.8958 (0.8933, 0.8979) 0.7762 (0.7721, 0.7818)
GaussianCopula 0.7557 (0.7549, 0.7572) 0.8289 (0.7899, 0.8507) 0.4364 (0.4325, 0.4437)
CTGAN-pac1 0.8376 (0.8328, 0.8422) 0.8869 (0.8828, 0.8908) 0.7685 (0.7508, 0.7756)
CTGAN-pac10 0.8304 (0.8248, 0.8367) 0.8814 (0.8750, 0.8855) 0.7583 (0.7384, 0.7668)
CopulaGAN 0.8272 (0.8202, 0.8319) 0.8678 (0.8581, 0.8745) 0.7474 (0.7258, 0.7568)
tabFairGAN 0.8243 (0.8158, 0.8306) 0.8749 (0.8687, 0.8810) 0.7578 (0.7463, 0.7666)
TVAE 0.8177 (0.8046, 0.8290) 0.8714 (0.8617, 0.8800) 0.751 (0.7362, 0.7611)
TVAE-mod 0.8261 (0.8187, 0.8356) 0.8784 (0.8706, 0.8877) 0.7596 (0.7436, 0.772)

method performs on par with or perhaps a little bit better than CopulaGAN; however, when com-
paring it to tabGAN-qt, which is the method most resembling it, there is clear indication that the
TabFairGAN method could easily have been improved upon. During hyperparameter tuning we ex-
plored using quantile transformation with uniform output distribution instead of Gaussian output
distribution, but found that it reduced performance by a bit. However, we still observed much better
performance than that of TabFairGAN. When combining this with the scalability issues discussed in
Section 7.1.3, we believe that the TabFairGAN method could be improved by either switching to a
Gaussian output distribution for the quantile transformation, or changing its architecture to better
match that of tabGAN in the tabGAN framework (or better yet both).

The methods tabGAN-qt, tabGAN-qtr and ctabGAN-qtr appear to be the best performing by a
large margin. However, until now we have only based the comparison on a single dataset, and we
are interested in whether the results generalize well to other datasets. Additionally, the methods
from the tabGAN framework might have an unfair advantage since their hyperparameter tuning
was performed on the Adult dataset.

7.6 Comparing Machine Learning Efficacy on Three Other Real Data-
sets

In this section, we investigate whether the results from the previous section generalize to new
datasets. We will compare machine learning efficacy for three new datasets, in a similar manner to
that described in Section 7.5. However, unlike for the Adult dataset, the training and test portions
are not predetermined. As some methods potentially could prefer certain subsets of the data, we

91



Rustad@NTNU: tabGAN

redraw the training and test selection for each run. To ensure fairness, the data synthesizers are
given the same training and test split for a specific run. We repeat this 25 times for each data
synthesizer. The three datasets are the Covertype dataset, the Credit Card Fraud dataset, and the
Online News Popularity dataset, all described in Section 6.3. As machine learning task for each
dataset, we will use the ones intended by UCI Machine Learning Repository for the Covertype and
Online News Popularity dataset and the one listed on Kaggle for the Credit Card Fraud dataset. For
the Covertype dataset this results in predicting the "Cover_Type" column, which is a classification
problem with seven classes. As machine learning task for the Credit Card Fraud we attempt to
predict the column "Class", i.e whether the transaction was a fraud or not. For the Online News
Popularity dataset the task is to predict whether an article is popular or not. Popular is determined
as those articles with more than 1400 shares on Mashable. When we train a data synthesizer on
the Online News Popularity dataset, we will train it with the continuous column "shares" and only
later on when we fit the XGBoost model to the synthesized dataset will we transform the "shares"
column to be a discrete column with the two categories >1400 and <=1400.

For the Covertype machine learning task, we will utilize accuracy and macro F1 score as metrics,
as it is a multiclass classification problem with imbalanced classes. As the Credit Card Fraud dataset
is extremely imbalanced with 284315 cases of not fraud and only 492 cases of fraud, we will use the
metric area under the Precision-Recall curve (AUPRC) with fraud as the positive class. For the Online
News Popularity dataset we will use accuracy and AUC as metrics, as it is a binary classification
problem with balanced classes. When calculating the AUC for the Online News Popularity dataset
we set >1400 to be the positive class.

We choose to use these three datasets specifically due to their inclusion in the machine learn-
ing efficacy comparison in the CTGAN paper [1]. Though great datasets for a diverse evaluation
of data synthesizers, unfortunately these datasets are not very suited for evaluating the Random-
ized Quantile Transformation method. Neither the Credit Card Fraud dataset nor the Online News
Popularity dataset have any continuous columns with as much as a single repeated value. Thus,
the tabGAN-qtr and ctabGAN-qtr implementations will be exactly the same as the tabGAN-qt and
ctabGAN-qt implementations, respectively. The Covertype dataset has a single column with eight
repeated values that each constitute a bit more than 5% of the observations and two other columns,
each with a single repeated value that constitutes just above 5% of the observations. Here the Ran-
domized Quantile Transformation will be applied, but the end result for the whole dataset will be
pretty similar to the regular quantile transformation. Additionally, we believe that the Randomized
Quantile Transformation is most beneficial for columns with disproportionately many repeated ob-
servations for a few values, such as in the Adult dataset. Thus, even though we will report the
benchmarking scores for the tabGAN-qtr and the ctabGAN-qtr methods for all three datasets, the
Randomized Quantile Transformation will barely be tested in this section.

7.6.1 Results and Discussion of Machine Learning Efficacy Comparison

In Table 7.2 we present the results of the benchmarking on the three datasets. The tabGAN frame-
work continues to perform very well. All the best performing methods for each dataset and metric
combination are from the tabGAN framework. For the Covertype dataset the six methods from the
tabGAN framework all perform very similar, but they outperform all the other data synthesizers.
ctabGAN-sd is the best performing method, and ctabGAN-qtr the second best. Although the results
for the tabGAN framework methods are so similar that we can not rule out that the ranking order
amongst themselves could change if the experient was rerun, the small percentile intervals indicate
that the ranking order can be trusted to at least some degree. We note that the ctabGAN-qtr method
outperforms ctabGAN-qt. The difference is quite small, but we observe that the 5% percentile of the
ctabGAN-qtr method is the same as the median of the ctabGAN-qt method for both the accuracy

92



Chapter 7: Experiments – Data synthesizers

metric and the macro F1 score metric. This indicates that for the only dataset in this comparison
for which the Randomized Quantile Transformation is applied, it leads to a slight increase in per-
formance for the ctabGAN architecture. Similar to the comparison of machine learning efficacy for
the Adult dataset in Table 7.1, we do not observe the same increase for the tabGAN architecture.
As the methods from the tabGAN framework outperform all the other data synthesizer methods
irrespective of preprocessing choice, it is an indication that it is the tabGAN framework architec-
ture or hyperparameter choices that are superior to the other GAN based synthesizers. As one of
the main differences between the ctabGAN implementation and the CTGAN implementation is the
choice of GELU as activation function, this could potentially be an influencing factor for the better
performance seen by the tabGAN framework methods.

Amongst the data synthesizers not belonging to the tabGAN framework, TVAE-mod is the best
performer. Thereafter comes the the TVAE-orig method, closely followed by the tabFairGAN method.
We observe that CopulaGAN performs slightly better than the CTGAN models, while CTGAN-pac1
has a tiny edge compared to CTGAN-pac10. Again, the model that performs the worst is Gaussi-
anCopula by a large margin. However, this is to be expected, as the Covertype dataset is a dataset
with many discrete categories, and GaussianCopula does not have a good approach to tackle dis-
crete columns. It should also be mentioned that the GaussianCopula method, for more than half of
the runs fails to produce a dataset where all the categories of the "Cover_Type" column are repres-
ented. As the median and percentiles are calculated only from the runs in which it is possible to fit
an XGBoost model, those runs were not used in the estimation of the median and percentiles. In
Table 7.3 we give for each dataset an overview of the fraction of times each method fail to generate
samples from all categories in the response variable. We observe that GaussianCopula is the only
method that sometimes fails for the Covertype dataset.

For the Credit Card Fraud dataset, we see a drastic reorganization of the ranking. Most notably,
is the fact that all of the GAN synthesizers without a conditional architecture and training process,
struggle immensely. This is not surprising, as doing well in this machine learning task, requires
the synthesizer to capture the distribution of the fraud observations in the dataset and they are an
extreme minority. The regular GAN methods clearly fail to recreate the distribution of the fraud
variables. This can be due to the synthesizers almost ignoring the fraud category or not managing
to capture the distinguishing features of these fraud observations, or perhaps a combination of
both. The tabGAN-sd method fails completely and receives a median AUPRC value close to zero.
We observe, however, that the 95% percentile for the method is a decent value, thus for a few
runs, the method must have managed to capture the data distribution better. Also the tabGAN-
qt method receives a median AUPRC value close to zero, while the tabGAN-qtr method receives a
better median AUPRC value. It would be easy to make the mistake of concluding that the tabGAN-qtr
method performs better than the tabGAN-qt method on the Credit Card Fraud dataset. However, as
we mentioned in the introduction to this section, the QTR method is identical to the regular quantile
transformation for the Credit Card Fraud dataset since there are no repeated values for any of the
numerical columns. Thus, this difference in AUPRC value must be due to chance. The CopulaGAN
also performs very poorly for this dataset. The next three methods with a tied median AUPRC
value are TabFairGAN, TVAE-orig, and TVAE-mod. Neither of them have a very impressive score,
but looking at the percentile intervals, the TabFairGAN method is definitively the worst performing
of them. Moving on to the first methods that perform decently, we have ctabGAN-sd, CTGAN-pac1
and CTGAN-pac10. Perhaps a bit suprisingly, GaussianCopula is one of the best-performing models
for this dataset. This is probably due to the Credit Card Fraud dataset having mostly numerical
columns. The only discrete column is the "Class" column and it only has two categories. However,
from Table 7.3 we observe that for more than half of the runs, the GaussianCopula method did not
produce samples from both categories of the "Class" column, thus making the performance a bit

93



Rustad@NTNU: tabGAN

less impressive. The best performing methods, however, are ctabGAN-qt and ctabGAN-qtr, which
for this dataset are identical methods.

The most successful methods for the Online News Popularity dataset are tabGAN-qt, tabGAN-
qtr, ctabGAN-qt, and ctabGAN-qtr. To avoid confusion, we repeat that tabGAN-qtr and ctabGAN-qtr
are identical to tabGAN-qt and ctabGAN-qt for this dataset. The data synthesizers are much more
evenly matched for this dataset, and the remaining methods are all relatively close in measured
performance. A potential reason for why we see such little difference in machine learning efficacy
for this dataset, is that the associated machine learning problem is pretty hard. It can very well be
that the first gain in classification performance is quite easy to get, but that the remaining gap in
performance up to the true training dataset is out of reach for all of the data synthesizers. However,
this is merely speculation.

94



Chapter 7: Experiments – Data synthesizers

Table 7.2: Machine learning efficacy benchmarking for the different data synthesizers on the three
real datasets described in Section 6.3. The performance is calculated with respect to different metrics
suitable to each specific machine learning task. For each metric we report the median and the interval
defined by the 5% and 95% percentiles based on 25 runs for each synthesizer. Note that the interval
reported is not a confidence interval measuring the variance of the experiment itself, as is quite
common, but instead a measurement of the stability of the data synthesizing process and the impact
of the split into training and test sets. More accurately, the interval also includes the variability of
the XGBoost fitting process, but this variability is negligible. For readability, we refer to the Credit
Card Fraud dataset merely as Credit Card in the header. For each metric and percentile we highlight
the value of the best performing method in bold.

Covertype Credit Card Online News Popularity
Model Accuracy Macro F1 AUPRC Accuracy AUC

Train dataset 0.870 (0.868,
0.872)

0.866 (0.864,
0.869)

0.867 (0.842,
0.890)

0.657 (0.650,
0.661)

0.715 (0.709,
0.722)

tabGAN 0.791 (0.788,
0.793)

0.802 (0.798,
0.804)

0.129 (0.001,
0.686)

0.594 (0.545,
0.615)

0.650 (0.602,
0.663)

tabGAN-qt 0.788 (0.785,
0.790)

0.798 (0.795,
0.800)

0.076 (0.001,
0.563)

0.629 (0.622,
0.636)

0.677 (0.668,
0.684)

tabGAN-qtr 0.788 (0.786,
0.790)

0.798 (0.796,
0.800)

0.501 (0.001,
0.697)

0.625 (0.619,
0.635)

0.672 (0.666,
0.685)

ctabGAN 0.795 (0.792,
0.798)

0.800 (0.797,
0.804)

0.753 (0.681,
0.806)

0.589 (0.531,
0.619)

0.644 (0.597,
0.668)

ctabGAN-qt 0.790 (0.788,
0.794)

0.795 (0.793,
0.798)

0.794 (0.746,
0.836)

0.623 (0.617,
0.633)

0.673 (0.663,
0.680)

ctabGAN-qtr 0.790 (0.789,
0.793)

0.795 (0.794,
0.798)

0.792 (0.754,
0.836)

0.625 (0.617,
0.635)

0.673 (0.661,
0.683)

GaussianCopula 0.578 (0.509,
0.646)

0.509 (0.336,
0.681)

0.787 (0.783,
0.791)

0.585 (0.572,
0.601)

0.619 (0.602,
0.634)

CTGAN-pac1 0.668 (0.653,
0.682)

0.702 (0.694,
0.716)

0.745 (0.701,
0.796)

0.602 (0.579,
0.617)

0.651 (0.637,
0.665)

CTGAN-
pac10

0.635 (0.623,
0.640)

0.683 (0.664,
0.690)

0.740 (0.689,
0.786)

0.603 (0.572,
0.616)

0.645 (0.632,
0.653)

CopulaGAN 0.693 (0.685,
0.697)

0.720 (0.715,
0.724)

0.344 (0.119,
0.543)

0.605 (0.592,
0.618)

0.646 (0.632,
0.663)

tabFairGAN 0.717 (0.709,
0.724)

0.737 (0.728,
0.742)

0.501 (0.001,
0.501)

0.592 (0.581,
0.613)

0.630 (0.613,
0.650)

TVAE 0.718 (0.708,
0.731)

0.741 (0.730,
0.749)

0.501 (0.487,
0.761)

0.576 (0.550,
0.596)

0.639 (0.610,
0.658)

TVAE-mod 0.736 (0.720,
0.742)

0.753 (0.744,
0.760)

0.501 (0.380,
0.684)

0.575 (0.557,
0.598)

0.645 (0.631,
0.662)

95



Rustad@NTNU: tabGAN

Table 7.3: Overview of the fraction of times each method failed to synthesize a dataset that contained
all of the categories in the response variable. The fractions of failures are reported separately for each
dataset.

Methods Covtype Credit Card Fraud Online News Popularity

tabGAN-sd 0.00 0.00 0.0
tabGAN-qt 0.00 0.00 0.0
tabGAN-qtr 0.00 0.00 0.0
ctabGAN-sd 0.00 0.00 0.0
ctabGAN-qt 0.00 0.00 0.0
ctabGAN-qtr 0.00 0.00 0.0
GaussianCopula 0.56 0.64 0.0
CTGAN-pac1 0.00 0.00 0.0
CTGAN-pac10 0.00 0.00 0.0
CopulaGAN 0.00 0.00 0.0
TabFairGAN 0.00 0.04 0.0
TVAE 0.00 0.20 0.0
TVAE-mod 0.00 0.20 0.0

96



Chapter 7: Experiments – Data synthesizers

7.7 Comparison of Training Speed

As an additional analysis we investigate how much time is required to train each data synthesizer
method for 300 epochs with batch size set to 500 on the Adult training dataset. In the measured
time, we also include the time required to synthesize a fake dataset of the same size. As hardware for
this test we will use a Dell XPS 15 9570 with Intel Core i7-8750H processor, 16GB RAM and Nvidia
GeForce GTX 1050 Ti with 4 GB RAM. The results are given in Figure 7.18. The first thing we notice
is that the methods based on the CTGAN implementation, that is CTGAN-pac1, CTGAN-pac10 and
CopulaGAN, are by far the most time-consuming methods to train. They each take around an hour
to train for the Adult training dataset, which compared to the Covertype dataset and the Credit
Card Fraud dataset is a quite small dataset. From Figure 7.18 we observe that the synthesizers
which are not GAN based, are the fastest to train. This is not surprising as GAN based methods
are generally computationally intensive to train and even more so Wasserstein GANs. For each up-
date to the generator, we perform ncritic updates to the critic. For all the WGAN based methods in
this thesis, that is TabFairGAN, CTGAN-pac1, CTGAN-pac10, CopulaGAN and all of the methods
from the tabGAN framework, we set ncritic = 10. Thus, we perform a lot of training steps for the
critic for each of the generator updates. This probably explains why the variational autoencoder
methods, which are also regarded as quite computationally intensive to train, use less than half the
time of the tabGAN methods, a quarter of the time of the ctabGAN methods and less than a tenth
of the time used by CTGAN-pac1, CTGAN-pac10 and CopulaGAN. The fastest method, however, is
the GaussianCopula method. This is unsurprising as the process of fitting marginal distributions,
transforming each column to be Gaussian distributed and calculating the covariance matrix, is a
lot less computationally heavy than training two neural networks, as done by both the GAN and
the variational autoencoder based methods. Training the GaussianCopula took around 170 seconds
compared to a bit less than 250 seconds for the TVAE methods. The three tabGAN methods, that is
tabGAN-sd, tabGAN-qt, and tabGAN-qt, each take between 550-610 seconds to train. The TabFair-
GAN method, however, takes around 800 seconds to train. It is quite impressive that the tabGAN
methods are faster than the TabFairGAN method, as the TabFairGAN implemenation uses a less
advanced architecture for the neural networks and, more importantly, much smaller layer sizes.

We observe that the training time almost doubles when using ctabGAN instead of tabGAN.
We believe this increase is almost entirely caused by the process which fetches observations from
the real training dataset that matches the conditional queries, i.e the the specific category for a
single column which is conditioned on (as described in Section 3.2.3). This process is quite time
consuming as for each conditional vector m′, the matching observations in the training dataset
must be identified and then uniformally sampled from. This quickly adds up to a lot of extra time
when it must be done for each real observation input to the critic. We did put effort into optimizing
this process and ended up with a solution where we give all of the possible mask vectors a unique
identifier id, which we use as key in a dictionary that stores the indices of the matching observations
in the train dataset. The indices of the matching observations can then be easily identified through
a single dictionary lookup, instead of each time having to search an entire dataset column for
matching observations. As we receive a batch of conditional vectors at a time during the training
phase, we vectorize the dictionary lookup and sampling process using numpy such that we avoid
the slowness of "for loops" in Python. We believe this method is quite effective as we observe that
the ctabGAN methods are around four times faster than the CTGAN methods, which employ the
same conditional sampling process. Still, we believe there may be room for improvement. For the
tabGAN methods, i.e not ctabGAN methods, we employ the whole data fetching process entirely in
Tensorflow and we allow for the CPU to prefetch batches while the GPU is working. Since the data
fetching process for ctabGAN involves a dictionary lookup, we were not able to do the same for

97



Rustad@NTNU: tabGAN

ctabGAN. However, perhaps there exists a workaround or another method altogether that will give
an even larger performance boost. The fetching of real observations from conditional vectors does at
least appear to be the current performance bottleneck, and it is where we believe any optimization
attempt should be focused.

CT
GA

N-
pa

c1

CT
GA

N-
pa

c1
0

Co
pu

la
GA

N

Ga
us

sia
nC

op
ul

a

TV
AE

-m
od

TV
AE

-o
rig

Ta
bF

ai
rG

AN

ct
ab

GA
N-

qt

ct
ab

GA
N-

qt
r

ct
ab

GA
N-

sd

ta
bG

AN
-q

t

ta
bG

AN
-q

tr

ta
bG

AN
-s

d

Method

0

1000

2000

3000

4000

Ti
m

e 
[s

ec
on

ds
]

3802
3930

2861

170 239 249

829
956 912 942

549 604 561

Figure 7.18: Total time used by each data synthesizing method when training for 300 epochs on
the Adult train dataset with batch size set to 500 on a Dell XPS 15 9570 with Intel Core i7-8750H
processor, 16GB RAM and Nvidia GeForce GTX 1050 Ti with 4 GB RAM. Each method was only timed
for a single run and therefore a bit subject to random fluctuations.

98



Chapter 8

Experiments - Counterfactual
Synthesizer

In this chapter, we perform some very simple experiments with the counterfactual framework de-
scribed in Section 5.3. The experiments are very informal and constitute more of an exploratory ana-
lysis or proof-of-concept verification. We will use the dataset Syn_Moons described in Section 6.4.
To further challenge the counterfactual synthesizers, we include a discrete dummy variable with
two categories to the dataset (for each observation the category is randomly chosen with equal
probability for each category). As prediction function, f̂ , we will use a support vector machine
(SVM) model [84] trained to classify which of the moons (half circles) an observation belongs to.
SVM is a supervised machine learning algorithm that is based on the idea of finding a hyperplane
that best separates two classes. It has later been extended to regression tasks. A SVM uses a ker-
nel to map the observations into high-dimensional feature spaces where a separating hyperplane
can be found, thus facilitating non-linear decision boundaries. The choice of kernel varies. For this
application we use a radial basis function kernel [85].

Throughout this chapter we will use a simple setup for the counterfactual methods. We will use
quantile transformation as preprocessing method for the numerical variables in the dataset. For both
generator and critic we will use two hidden layers of size 256 with the GELU activation function. As
input to the generator we will use a latent noise layer of size 128 in addition to the counterfactual
query (observation to be explained). We will use the Adam optimizer with parameters β1 = 0
and β2 = 0.999. The reason we choose to use β1 = 0 instead of the default value of 0.7 used in
the data synthesing framework tabGAN, is that β1 = 0 appears to give more stable results for the
counterfactual methods on this simple toy dataset for some reason. We will train each counterfactual
method for 1000 epochs with a batch size of 500. As the Syn_Moons dataset has 5000 observations,
this equals to 10 batches per epoch. As regularization coefficients we will mainly use α= 1 for the
numerical 1-norm penalty, β = 0 for the numerical squared 2-norm penalty, and γ = 2 for the
discrete regularization penalty. Throughout this chapter we will use the same 10 counterfactual
queries to evaluate the counterfactual methods.

8.1 Reweight Data Observations or Only Feed the Critic Observations
of the Correct Prediction Class

In Section 5.3.1, we introduced two options for guiding the generator to produce samples correctly
classified by a black-box classifier, f̂ ; either reweighting the real data observations to be propor-
tional to their prediction function value, or only feeding the critic real data observations with the

99



Rustad@NTNU: tabGAN

correct prediction class without any reweighting. In this section we will informally compare these
two approaches. We denote the two approaches tabGANcf-reweight and tabGANcf-onlyFeed, re-
spectively. After training the two methods on the Syn_Moons dataset, we generate counterfactual
explanations for the ten counterfactual queries of interest, two times for each method. The coun-
terfactual explanations are plotted in Figure 8.1.

In Figure 8.1a and Figure 8.1b, we plot two different tabGAN-reweight synthesized versions of
counterfactual explanations for the ten counterfactual queries of interest. The tabGANcf-reweight
method appears to perform decently. In Figure 8.1a, all the counterfactual observations manage to
flip the prediction function to the correct prediction class and they are plausible, as they are located
in densely packed regions of the original data distribution. Additionally, they are actually relatively
close to their corresponding counterfactual queries. In Figure 8.1b, the generated counterfactuals
are a bit less successful. All of them still manage to flip to the correct prediction class (although just
barely for one of them), but two of the generated counterfactuals are located way outside the data
manifold. Still, 18 out of 20 decent counterfactuals are pretty good. We also observe some variety in
the counterfactual explanations produced from the same query. The two different tabGAN-onlyFeed
synthesized versions of counterfactual explanations for the same ten counterfactual queries of in-
terest, are given in Figure 8.1c and Figure 8.1d. The tabGAN-onlyFeed method also appears to
perform very decently. All of the twenty counterfactual explanations are of the correct prediction
class and they adhere to the data manifold. Actually, compared to the tabGAN-reweight method,
the counterfactuals from the tabGAN-onlyFeed method adhere better to the original data distribu-
tion. The explanations from tabGAN-reweight are more often located in the outskirts of the densely
located regions, while the explanations from tabGAN-onlyFeed are generally more often located
towards the middle of the densely packed regions. Additionally, we observe a bit more variety in
the explanations from tabGAN-onlyFeed, but not necessarily all in a good way. We observe that the
counterfactuals from the tabGAN-onlyFeed method generally are further from the corresponding
counterfactual queries than from the tabGAN-reweight method.

A trend we observe in the plots for both methods, is that the counterfactual observation arrows
tend to all move in a rightward direction. While this is natural for the counterfactual queries situated
at the left part of the blue half moon, for the counterfactual queries located in the right half of the
blue moon, it would make just as much sense for the counterfactual explanation to move leftwards.
The reason we observe this pulling to the right, is that we force the counterfactual explanations to
recreate the original data distribution of the red moon. Consequently, the generator finds that the
easiest compromise is to generally produce counterfactual observations that are located downwards
and to the right of the counterfactual queries. This is the problem we discussed in the second
extension in Section 5.3.2.

We are currently a bit unsure why the counterfactual observations from the tabGAN-reweight
method are further away from the densely packed regions and closer to the counterfactual observa-
tions than those from the tabGAN-onlyFeed method. In practice, with this prediction function that is
practically equal to either 0 or 1 for all input, the optimal generator distribution should be very sim-
ilar for both tabGAN-reweight and tabGAN-onlyFeed. The current hypothesis of the author, is that
the large share of real observations (approximately half) that have their weight set to zero in the
loss function, although the weight of the remaining real observations are doubled, somehow makes
it harder for the critic to learn the correct output distribution. With the critic being less certain of
the correct output distribution, the generator gets less correct feedback and the regularizing loss
term thus has greater influence on the learning of the generator. This is, however, mere speculation
and more investigation is needed.

100



Chapter 8: Experiments - Counterfactual Synthesizer

(a) tabGANcf-reweight – Example 1. (b) tabGANcf-reweight – Example 2.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(c) tabGANcf-onlyFeed – Example 1.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(d) tabGANcf-onlyFeed – Example 2.

Figure 8.1: Example of generated counterfactuals from the two methods tabGAN-reweight and
tabGAN-onlyFeed. For each method we give two examples of a synthesized set of counterfactual
explanations. For comparability, we use the same ten counterfactual queries for each method and
example. Each counterfactual is denoted by an arrow that stretches from the counterfactual query
to the corresponding counterfactual observation. The arrows are color coded as yellow if the coun-
terfactual explanation correctly flips the prediction class and color coded as magenta if it does not.

101



Rustad@NTNU: tabGAN

Nr. x1 x2 dummy

0 0.936726 0.450238 dummy0
1 -0.655622 0.850763 dummy1
2 -0.071853 0.940222 dummy1
3 0.871999 0.369955 dummy0
4 -0.201285 0.914596 dummy0
5 -0.856179 0.423720 dummy0
6 0.863761 0.541687 dummy1
7 0.389646 1.012091 dummy1
8 0.203196 1.042454 dummy0
9 -0.969989 0.418297 dummy0

Table 8.1: The ten counterfactual queries repreatedly used in this chapter.

Nr. x1 x2 dummy

0 0.936726 0.450238 dummy0
1 -0.655622 0.850763 dummy1
2 -0.071853 0.940222 dummy1
3 0.871999 0.369955 dummy0
4 -0.201285 0.914596 dummy0
5 -0.856179 0.423720 dummy0
6 0.863761 0.541687 dummy1
7 0.389646 1.012091 dummy1
8 0.203196 1.042454 dummy0
9 -0.969989 0.418297 dummy0

Table 8.2: Ten counterfactual explanations generated by tabGAN-onlyFeed from the counterfactual
queries listed in Table 8.1.

8.2 Are Unnecessary Changes Made to the Discrete Column Values for
the Counterfactual Explanations?

In this section we explore if the tabGAN-onlyFeed method manages to understand that the dis-
crete dummy column added to the Syn_Moons dataset, has no effect on the prediction function
f̂ and therefore definitely should not be changed in the generated counterfactual explanations.
In Table 8.1 we list the values for the ten counterfactual queries repeatedly used in this chapter,
and in Table 8.2 we list the ten corresponding counterfactual explanations generated by tabGAN-
onlyFeed. We observe that none of the counterfactual explanations suggest to change the value in
the "dummy" column, thus indicating that the counterfactual method is able to not make unneces-
sary changes for discrete columns. To make it a bit more formal, we repeat this for 5000 queries
and 5000 corresponding counterfactual explanations, none of them which suggest to change the
discrete column value.

102



Chapter 8: Experiments - Counterfactual Synthesizer

8.3 Investigation of the Impact of the 1-norm Numerical Penalty Coef-
ficient

We want to better understand how the coefficient value of the numerical 1-norm regularization, α,
affects the counterfactual observations. In Figure 8.2 we plot ten counterfactuals for the tabGAN-
onlyFeed method for four different α values: 0, 0.5, 1 and 1.5. As expected, we observe from Fig-
ure 8.2a that without the 1-norm regularization (and also with no squared 2-norm regularization),
the counterfactual synthesizer very well manages to flip the prediction class, but do not care how
close the counterfactual explanation is to the counterfactual query. We assume the generator merely
disregards the counterfactual query and instead generates samples from the red moon data distri-
bution. Coincidentally, this is also the reason why we see the first counterfactual explanations that
are directed leftwards. With α= 0.5, the rightwards pattern in the counterfactuals is back and the
counterfactuals explanations tend to be closer to the counterfactual queries. Still, we observe that
many of the counterfactual explanations are quite far from the corresponding counterfactual quer-
ies. The counterfactuals for α = 0.5 and α = 1 appear to be quite similar. However, we observe as
expected that the counterfactuals from the method with α= 1 tend to be a bit closer to the queries
than those for the method with α= 0.5. For the counterfactuals from the method with α= 1.5 plot-
ted in Figure 8.2d, we observe a drastic change compared to the method with α = 1. Now, two of
the counterfactual explanations fail to flip the prediction class and out of the remaining eight, most
are located in the less densely packed regions. Although none of the α values give methods with
very good counterfactuals, we feel α = 1 appears to strike the best compromise between adhering
to the data distribution and synthesizing counterfactual explanations close to the data distribution.

8.4 Investigation of the Impact of Mixing Real Correct Samples with
the Generator Samples

In this section we informally explore if the second extension mentioned in Section 5.3.2 can be
beneficial, that is to mix samples from the generator in the loss function with real observations of
the correct prediction class. We plot the result of a single run with and without this extension in
Figure 8.3. For the extended method we add another 500 real observation of correct class mixed
in between the generator samples in the loss function. To compensate for doubling the number
of "samples from the generator", we give each of them half the weight they normally would have
in the loss function. From the figure we observe that the extension does not appear to provide
the desired difference. We still observe counterfactual observations mapped unnecessarily far away
from the counterfactual queries. Additionally, there might be a small indication that the method
with extension actually maps more to less densely packed regions. If this is actually the case, it
could be due to the extra noise introduced by mixed-in samples, but it is hard to tell from this plot
alone if this actually is the case. When we rerun the experiment, we continue to observe a slight
indication of less mapping to the center of the densely packed regions. Nevertheless, the extension
does not appear to provide the intended change. It might, however, be a bit too quick to dismiss
the extension after a tiny single experiment. The number of added samples can be considered a
hyperparameter that can be tuned, therefore further investiations might want to investigate other
proportions of added observations. Additionally, it could potentially be better to keep the total
number of generated and added samples constant, instead of just adding more samples as we did
in this experiment.

103



Rustad@NTNU: tabGAN

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(a) tabGANcf-onlyFeed with α= 0.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(b) tabGANcf-onlyFeed with α= 0.5.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(c) tabGANcf-onlyFeed with α= 1.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(d) tabGANcf-onlyFeed with α= 1.5.

Figure 8.2: Example of generated counterfactuals from the tabGAN-onlyFeed method with four dif-
ferent values for the coefficient of the numerical 1-norm regularization term: 0, 0.5, 1 and 1.5.
Each counterfactual is denoted by an arrow that stretches from the counterfactual query to the cor-
responding counterfactual observation. The arrows are color coded as yellow if the counterfactual
explanation correctly flips the prediction class and color coded as magenta if it does not.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(a) tabGANcf-onlyFeed without extension.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

x 2

0.0

0.2

0.4

0.6

0.8

1.0

(b) tabGANcf-onlyFeed with extension.

Figure 8.3: Example of generated counterfactuals from the tabGAN-onlyFeed method with and
without an extension where real observations of the correct prediction class is mixed with the gener-
ator samples in the loss function. Each counterfactual is denoted by an arrow that stretches from the
counterfactual query to the corresponding counterfactual observation. The arrows are color coded
as yellow if the counterfactual explanation correctly flips the prediction class and color coded as
magenta if it does not.

104



Chapter 8: Experiments - Counterfactual Synthesizer

Despite this, the author feel less convinced that this extension has merit. Perhaps, it is a bit
flawed to hope that adding samples matching the original data distribution will help. Maybe it
would have been better to create an algorithm that only mixes in samples located in the high-
density areas where it is undesirable for the synthesizer to map counterfactuals. However, this
leaves the difficult task of deciding where such high-density areas are. An idea that comes to mind,
is to automate this process of generating samples for the undesirable parts of the data distribution
with correct prediction class, by adding a second generator. This generator could have the simple
architecture with only a latent noise vector as input. The second generator would also have no reg-
ularization loss terms. The two generators might then collaborate to reproduce the entire real data
distribution of the correct prediction class. Since the second generator do not have a regularization
term, it would be more beneficial for it to map to the parts of the real data distribution not suited
for counterfactual explanations, than it would be for the first and original generator with the reg-
ularization term that penalizes for mapping away from the counterfactual queries. The proportion
of samples produced by each generator would be a hyperparameter.

105





Chapter 9

Discussion and Conclusion

In this thesis, we introduce a data synthesizing framework known as tabGAN and later modify it
to create a model-based counterfactual synthesizer framework, which we call tabGANcf. The coun-
terfactual framework is more a proof-of-concept, while the data synthesizing framework is more
complete, with a lot of customization available and default values based on extensive hyperpara-
meter tuning. From the results of the experiments performed in Chapter 7 we find that various
diverse methods from the tabGAN framework are all very capable data synthesizers across multiple
datasets. We verify this visually, with respect to marginal and joint distributions, and with respect
to machine learning efficacy.

The three numerical preprocessing methods (standardization, quantile transformation and the
Randomized Quantile Transformation) and the two main architectures (tabGAN and ctabGAN) ap-
pear to have different advantages. The default combination of tabGAN and standardization is a
simple well-performing method that might even outperform the other more advanced methods for
datasets with numerical column distributions that are approximately Gaussian. As indicated by the
results, we believe that quantile transformation is more beneficial for numerical columns that are
not approximately normally distributed, for instance due to having a different shape or not being
continuous. Quantile transformation also appears to be a superior choice as it outperforms stand-
ardization on three out of four datasets, and whilst on the remaining dataset it is slightly beaten, it
basically performs on par with standardization. We believe this is due to quantile transformation for
columns with Gaussian distributions in practice being a very similar transformation to standardiza-
tion, thus also being a good option for columns with already approximately Gaussian distribution.
Building on this, we believe the Randomized Quantile Transformation (QTR) is the best-performing
preprocessing method in this analysis and the superior choice. If there are no repeated values (or
less repeated values than some user determined percentage), the QTR is identical to quantile trans-
formation. However, when there are columns with many repeated values, we believe, as indicated
by our result, that the QTR will usually outperform the regular quantile transformation. At least this
was very much true for the Adult dataset. This should, however, be verified on more datasets with
repeated values, as unfortunately the three additional datasets we used in the machine learning
efficacy comparison barely had any repeated values. Additionally, it would be interesting to invest-
igate whether QTR leads to faster convergence than regular quantile transformation. With the QTR
the generator does not need to be as exact in its mapping to the repeated values, and the critic is
not given an unfair advantage where gaps in the original data distribution might be easy to detect
for the critic but hard for the generator to replicate.

Of the two main architectures, ctabGAN appears to be the safest choice and what we recommend
by default. Although tabGAN actually performed slightly better on three out of the four datasets,
it completely failed for the Credit Card Fraud dataset. The reason it failed is that the Credit Card

107



Rustad@NTNU: tabGAN

Fraud dataset has extremely imbalanced classes for the response variable, and the tabGAN meth-
ods are not as good for learning the distribution of rare categories as the ctabGAN methods. We
also observed this while plotting the marginal distributions of the original Adult dataset against
synthesized versions. This also highlights the limitations of using machine learning efficacy as the
sole measurement of the performance of a data synthesizer. If a column or category is not an im-
portant variable in the prediction of the response variable in the chosen machine learning problem,
a synthesizer might not be appropriately penalized for recreating it incorrectly or not being able to
recreate the advanced patterns associated with this column or category. We believe it is important
that a good synthesizer recreates all of the marginal distributions correctly and does not forget to
sample from some of the rare cases. Thus, we do not use machine learning efficacy as the sole
determinant of synthesizing skill, and we conclude that overall ctabGAN is a better choice than
tabGAN. As we observe in this thesis, with a diverse choice of machine learning tasks, we are none
the less able to uncover such limitations. A benefit of using tabGAN methods over ctabGAN meth-
ods is, as we see in Section 7.7, a faster training speed. The sampling of real observations from
the original dataset conditioned on a specific column category is the reason for the slower training
speed. Perhaps, with further optimization, this difference in training speed could be reduced.

When we compare the data synthesizers from the tabGAN framework with other state-of-the-art
data synthesizers, we find that the methods from the tabGAN framework generally outperform all
the other data synthesizers. This is very promising as the CTGAN and CopulaGAN are, excluding
the methods introduced in this thesis, the best performing GAN based synthesizers the author is
aware of. Even more, as we show in Section 7.7, the tabGAN framework implementation is actually
a lot faster than both CTGAN and CopulaGAN. This, despite the fact that CTGAN and CopulaGAN
have a similar model architecture and use the same conditional training process as the ctabGAN
methods. It would be interesting to further investigate the underlying reasons for the better per-
formance of the tabGAN framework. The current hypothesis of the author is that the usage of GELU
as an activation function instead of LeakyReLU and ReLU is very beneficial. Additionally, we believe
that for the Adult datset with repeated values, quantile transformation and QTR are more benefi-
cial than variational Gaussian mixture model as preprocessing transformation. This might also be
the case for the other datasets, but since both tabGAN and ctabGAN with standardization as nu-
merical preprocessing also outperform CTGAN, we believe that GELU activation is a much more
beneficial choice for the activation function of the hidden layers. Of course, there could potentially
be other parts of the CTGAN (and thus also CopulaGAN) architecture that are less beneficial than
the default architectures in the tabGAN framework. For instance, CTGAN uses batch normaliza-
tion before applying the activation function, while we use batch normalization after applying the
activation function to the hidden layers. Perhaps the most likely contributors to the difference in
performance, except for the choice of the activation function for hidden layers, are the use of tanh
by CTGAN as an activation function for the numerical output and the concatenation of each new
dense hidden layer with the previous layer given as input to the new dense layer.

Another interesting conclusion that we can draw from the experiments in this thesis is that the
default choice of using packing in the CTGAN method is not very beneficial. This is supported by
the hyperparameter tuning we performed on the tabGAN framework. Consequently, the tabGAN
framework by default do not use packing even though it is implemented. It would be interesting
to investigate both for the CTGAN method and for the tabGAN framework methods if packing can
be useful for datasets with extremely many modes such as for instance the MNIST3 dataset men-
tioned in Tolstikhin et al. [86], where each observation is obtained by concatenating three randomly
chosen MNIST images [87] to form a three-digit number in the range between 0 and 999. It would
also be interesting to investigate how the tabGAN framework performs on high-dimensional bin-
ary datasets such as for instance the binarized MNIST dataset used by Xu et al. [1]. Although the

108



Chapter 9: Discussion and Conclusion

methods from the tabGAN framework consistently outperform the CTGAN methods, we believe
that the variational Gaussian mixture model used by CTGAN would be beneficial to include as a
preprocessing option in the tabGAN framework. It could very well be that the variational Gaussian
mixture model is a more beneficial preprocessing method for some datasets. Additionally, with the
inclusion of the variational Gaussian mixture model preprocessing in the tabGAN framework, we
could give a more clean comparison of it to the preprocessing options already implemented in CT-
GAN. It is difficult to draw a fair conclusion about the best preprocessing option, as CTGAN uses
another model architecture, and therefore more than one thing is changed at once. Additionally, it
would be useful to investigate the combination of different preprocessing options. For example, it
might be beneficial to use QTR for numerical columns with many repeated values or not continuous
distributions and use variational Gaussian mixture models for the remaining numerical columns.
The author encourages future investigations into this.

The experiments in Chapter 8 provide a proof of concept for using GAN as a counterfactual
explanation synthesizer. Although Yang et al. [5] and Nemirovsky et al. [78] already have provided
a proof-of-concept, this is the first proof-of-concept we are aware of with public code available.
Additionally, unlike Yang et al. [5], this implementation can be used by black-box classifiers. The
implementation is quite a bit different from that described in Nemirovsky et al. [78], the most ob-
vious difference being the usage of a Wasserstein GAN instead of a residual GAN. However, one of
the options we implement in the tabGANcf framework is a modified version of the counterfactual
loss function of Nemirovsky et al. [78] intended for black-box classifiers. For a toy dataset we show
that two different methods from the tabGANcf framework are consistently able to generate coun-
terfactual observations that adhere to the original data manifold and successfully flip the predicted
class of a prediction function. Out of the two methods, we believe the method of only feeding the
critic real data observations that are of the correct prediction class is both more efficient and be-
neficial than reweighting the real data observations in the loss function. However, more thorough
investigation is needed.

An issue we observe for all methods of the tabGANcf framework is the lack of sparse changes for
the continuous columns. We believe this is a inherent problem due to the chosen model architecture.
In Section 5.3.2 we propose an extension consisting of two modifications that might enable sparse
changes for the continuous columns. This is, however, not implemented due to constraints of time
and space. We encourage future investigations into this and the other extensions proposed in the
same subsection. We informally investigated one of the mentioned extensions, which was to mix
real observations of the correct prediction class with the generator samples; however, the results
were not very promising. A much more promising idea, we think, is to instead include a second
generator without the regularization term and query input, such that the second generator can
produce samples for the parts of the data distribution to where it is not beneficial for the main
generator to map counterfactual explanations.

The counterfactual synthesizing framework tabGANcf is built on top of the data synthesizing
framework tabGAN (as a Python class that inherits). While this was a very efficient option during
the work leading up to this thesis, in which we could avoid to make the same code change two
places, we believe the tabGANcf framework would benefit from being built from scratch. The code
would be much more readable and simple if it could be rewritten to facilitate only the counter-
factual synthesizing. This would definitely also make it easier to include future extensions, since
the task of synthesizing counterfactuals is quite different from the task of synthesizing a dataset.
Therefore, including new extensions usually requires rewriting the code even more generally, a task
which becomes increasingly complex the more generalization is required. This would also hold true
for the tabGAN framework. Additionally, we believe that if the tabGAN framework is to be useful
as a package for others, it might actually benefit from fewer customization options than what is

109



Rustad@NTNU: tabGAN

implemented today. Besides the numerous customization options which we have described in this
thesis, which we believe are beneficial, we also include many other customization options mainly
for use during the hyperparameter tuning phase. It might also be advantageous to change some
variable and helper function names and include some more user-friendly helper functions. If these
things are fixed and it is published as a Python package, we believe it would be a good, and perhaps
even preferable alternative, to the CTGAN Python package. An even better idea would be to, in the
same way as CTGAN, include the tabGAN framework as a synthesizer method in the Synthetic Data
Vault (SDV) package. Then it would automatically benefit from the other functionalities of the SDV
package, such as handling of primary key columns (which must be unique for each observations)
and tools for anonymizing personally identifiable information such as address [2].

Additionally, steps can be taken to further improve the tabGAN data synthesizing framework.
The paper Tolstikhin et al. [86] proposes a boosting approach for GAN models, where a new com-
ponent is added iteratively to a mixture GAN model. Each new component is added by running
a GAN model on a reweighted dataset that emphasizes samples not already well covered by the
mixture model. This mixture method can be implemented on top of all the GAN-based data syn-
thesizers described in this thesis. Thus, it could be implemented as a separate framework on top of
the tabGAN framework. Another promising possible improvement, could be to include a gradient
layer in the generator architecture as described in Nitanda and Suzuki [88]. The gradient layer
attempts to overcome the restrictions of a specific finite-dimensional model structure by seeking a
descent direction in an infinite-dimensional space. Currently, the tabGAN framework is only capable
of performing synthesis for a single dataset. In the future, it would be worth investigating if it can
be extended to multiple related datasets or time-series datasets.

110



Bibliography

[1] L. Xu, M. Skoularidou, A. Cuesta-Infante and K. Veeramachaneni, Modeling tabular data using
conditional gan, 2019. arXiv: 1907.00503 [cs.LG].

[2] N. Patki, R. Wedge and K. Veeramachaneni, ‘The synthetic data vault,’ in 2016 IEEE Interna-
tional Conference on Data Science and Advanced Analytics (DSAA), 2016, pp. 399–410. DOI:
10.1109/DSAA.2016.49.

[3] A. Rajabi and O. O. Garibay, Tabfairgan: Fair tabular data generation with generative ad-
versarial networks, 2021. arXiv: 2109.00666 [cs.LG].

[4] M. Pawelczyk, K. Broelemann and G. Kasneci, ‘Learning model-agnostic counterfactual ex-
planations for tabular data,’ Proceedings of The Web Conference 2020, Apr. 2020. DOI: 10.
1145/3366423.3380087. [Online]. Available: http://dx.doi.org/10.1145/3366423.
3380087.

[5] F. Yang, S. S. Alva, J. Chen and X. Hu, ‘Model-based counterfactual synthesizer for inter-
pretation,’ Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, Aug. 2021. DOI: 10.1145/3447548.3467333. [Online]. Available: http://dx.doi.
org/10.1145/3447548.3467333.

[6] J. Moore, N. Hammerla and C. Watkins, Explaining deep learning models with constrained
adversarial examples, 2019. arXiv: 1906.10671 [cs.LG].

[7] C. Molnar, Interpretable Machine Learning, A Guide for Making Black Box Models Explainable.
2019.

[8] C. Molnar, G. Casalicchio and B. Bischl, Interpretable machine learning – a brief history, state-
of-the-art and challenges, 2020. arXiv: 2010.09337 [stat.ML].

[9] A.-H. Karimi, B. Schölkopf and I. Valera, ‘Algorithmic recourse: From counterfactual explana-
tions to interventions,’ in Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, 2021, pp. 353–362.

[10] S. Wachter, B. Mittelstadt and C. Russell, Counterfactual explanations without opening the
black box: Automated decisions and the gdpr, 2018. arXiv: 1711.00399 [cs.AI].

[11] S. Dandl, C. Molnar, M. Binder and B. Bischl, ‘Multi-objective counterfactual explanations,’
Lecture Notes in Computer Science, pp. 448–469, 2020, ISSN: 1611-3349. DOI: 10.1007/978-
3-030-58112-1_31. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-58112-
1_31.

[12] J. L. C. Michael Downs, Y. Yacoby, F. Doshi-Velez and W. Pan, ‘Cruds: Counterfactual recourse
using disentangled subspaces,’ ICML Workshop on Human Interpretability in Machine Learn-
ing, pp. 1–23, 2020. [Online]. Available: https://finale.seas.harvard.edu/files/
finale/files/cruds-_counterfactual_recourse_using_disentangled_subspaces.pdf.

111

https://arxiv.org/abs/1907.00503
https://doi.org/10.1109/DSAA.2016.49
https://arxiv.org/abs/2109.00666
https://doi.org/10.1145/3366423.3380087
https://doi.org/10.1145/3366423.3380087
http://dx.doi.org/10.1145/3366423.3380087
http://dx.doi.org/10.1145/3366423.3380087
https://doi.org/10.1145/3447548.3467333
http://dx.doi.org/10.1145/3447548.3467333
http://dx.doi.org/10.1145/3447548.3467333
https://arxiv.org/abs/1906.10671
https://arxiv.org/abs/2010.09337
https://arxiv.org/abs/1711.00399
https://doi.org/10.1007/978-3-030-58112-1_31
https://doi.org/10.1007/978-3-030-58112-1_31
http://dx.doi.org/10.1007/978-3-030-58112-1_31
http://dx.doi.org/10.1007/978-3-030-58112-1_31
https://finale.seas.harvard.edu/files/finale/files/cruds-_counterfactual_recourse_using_disentangled_subspaces.pdf
https://finale.seas.harvard.edu/files/finale/files/cruds-_counterfactual_recourse_using_disentangled_subspaces.pdf


Rustad@NTNU: tabGAN

[13] L. Xu and K. Veeramachaneni, Synthesizing tabular data using generative adversarial networks,
2018. arXiv: 1811.11264 [cs.LG].

[14] A. Rustad, ‘Model-based counterfacual synthesizer using tabular gan and a comparison to
algorithmic based counterfactuals,’ unpublished, 2021.

[15] F. Rosenblatt, ‘The perceptron: A probabilistic model for information storage and organiza-
tion in the brain.,’ Psychological review, vol. 65, no. 6, p. 386, 1958.

[16] C. Ma, S. Wojtowytsch, L. Wu et al., ‘Towards a mathematical understanding of neural
network-based machine learning: What we know and what we don’t,’ arXiv preprint arXiv:2009.10713,
2020.

[17] V. Nair and G. E. Hinton, ‘Rectified linear units improve restricted boltzmann machines,’
in Proceedings of the 27th International Conference on International Conference on Machine
Learning, ser. ICML’10, Haifa, Israel: Omnipress, 2010, pp. 807–814, ISBN: 9781605589077.

[18] I. Goodfellow, Y. Bengio and A. Courville, Deep learning (Adaptive Computation and Machine
Learning series). MIT press, 2016.

[19] A. L. Maas, A. Y. Hannun, A. Y. Ng et al., ‘Rectifier nonlinearities improve neural network
acoustic models,’ in Proc. icml, Citeseer, vol. 30, 2013, p. 3.

[20] D.-A. Clevert, T. Unterthiner and S. Hochreiter, Fast and accurate deep network learning by
exponential linear units (elus), 2015. DOI: 10.48550/ARXIV.1511.07289. [Online]. Available:
https://arxiv.org/abs/1511.07289.

[21] G. Klambauer, T. Unterthiner, A. Mayr and S. Hochreiter, ‘Self-normalizing neural networks,’
2017. DOI: 10.48550/ARXIV.1706.02515. [Online]. Available: https://arxiv.org/abs/
1706.02515.

[22] P. Ramachandran, B. Zoph and Q. V. Le, Searching for activation functions, 2017. DOI: 10.
48550/ARXIV.1710.05941. [Online]. Available: https://arxiv.org/abs/1710.05941.

[23] D. Misra, Mish: A self regularized non-monotonic activation function, 2019. DOI: 10.48550/
ARXIV.1908.08681. [Online]. Available: https://arxiv.org/abs/1908.08681.

[24] D. Hendrycks and K. Gimpel, Gaussian error linear units (gelus), 2016. DOI: 10.48550/ARXIV.
1606.08415. [Online]. Available: https://arxiv.org/abs/1606.08415.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, ‘Dropout: A simple
way to prevent neural networks from overfitting,’ The journal of machine learning research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[26] D. Krueger, T. Maharaj, J. Kramár, M. Pezeshki, N. Ballas, N. R. Ke, A. Goyal, Y. Bengio, A.
Courville and C. Pal, Zoneout: Regularizing rnns by randomly preserving hidden activations,
2016. DOI: 10.48550/ARXIV.1606.01305. [Online]. Available: https://arxiv.org/abs/
1606.01305.

[27] S. Ruder, ‘An overview of gradient descent optimization algorithms,’ arXiv preprint arXiv:1609.04747,
2016.

[28] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.6980
[cs.LG].

[29] D. E. Rumelhart, G. E. Hinton and R. J. Williams, ‘Learning representations by back-propagating
errors,’ nature, vol. 323, no. 6088, pp. 533–536, 1986.

[30] J. Schmidhuber, ‘Deep learning in neural networks: An overview,’ Neural Networks, vol. 61,
pp. 85–117, 2015, Published online 2014; based on TR arXiv:1404.7828 [cs.NE]. DOI: 10.
1016/j.neunet.2014.09.003.

112

https://arxiv.org/abs/1811.11264
https://doi.org/10.48550/ARXIV.1511.07289
https://arxiv.org/abs/1511.07289
https://doi.org/10.48550/ARXIV.1706.02515
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/1706.02515
https://doi.org/10.48550/ARXIV.1710.05941
https://doi.org/10.48550/ARXIV.1710.05941
https://arxiv.org/abs/1710.05941
https://doi.org/10.48550/ARXIV.1908.08681
https://doi.org/10.48550/ARXIV.1908.08681
https://arxiv.org/abs/1908.08681
https://doi.org/10.48550/ARXIV.1606.08415
https://doi.org/10.48550/ARXIV.1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.48550/ARXIV.1606.01305
https://arxiv.org/abs/1606.01305
https://arxiv.org/abs/1606.01305
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003


Bibliography

[31] S. Santurkar, D. Tsipras, A. Ilyas and A. Madry, How does batch normalization help optimiz-
ation? 2018. DOI: 10.48550/ARXIV.1805.11604. [Online]. Available: https://arxiv.org/
abs/1805.11604.

[32] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training by reducing
internal covariate shift, 2015. DOI: 10.48550/ARXIV.1502.03167. [Online]. Available: https:
//arxiv.org/abs/1502.03167.

[33] J. L. Ba, J. R. Kiros and G. E. Hinton, Layer normalization, 2016. DOI: 10.48550/ARXIV.
1607.06450. [Online]. Available: https://arxiv.org/abs/1607.06450.

[34] J. Xu, X. Sun, Z. Zhang, G. Zhao and J. Lin, Understanding and improving layer normalization,
2019. DOI: 10.48550/ARXIV.1911.07013. [Online]. Available: https://arxiv.org/abs/
1911.07013.

[35] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville
and Y. Bengio, Generative adversarial networks, 2014. arXiv: 1406.2661 [stat.ML].

[36] M. Arjovsky, S. Chintala and L. Bottou, Wasserstein gan, 2017. arXiv: 1701.07875 [stat.ML].

[37] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. Courville, Improved training of wasser-
stein gans, 2017. arXiv: 1704.00028 [cs.LG].

[38] T. Chen and C. Guestrin, ‘Xgboost,’ Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 785–794, Aug. 2016. DOI: 10.1145/
2939672.2939785. [Online]. Available: http://dx.doi.org/10.1145/2939672.2939785.

[39] L. Rokach and O. Maimon, ‘Decision trees,’ in Jan. 2005, vol. 6, pp. 165–192. DOI: 10.1007/
0-387-25465-X_9.

[40] L. Breiman, ‘Bagging predictors,’ Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[41] L. Breiman, ‘Random forests,’ Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[42] Y. Freund and R. E. Schapire, ‘A decision-theoretic generalization of on-line learning and an
application to boosting,’ Journal of computer and system sciences, vol. 55, no. 1, pp. 119–139,
1997.

[43] R. E. Schapire, ‘A brief introduction to boosting,’ in Ijcai, Citeseer, vol. 99, 1999, pp. 1401–
1406.

[44] J. H. Friedman, ‘Greedy function approximation: A gradient boosting machine,’ Annals of
statistics, pp. 1189–1232, 2001.

[45] J. H. Friedman, ‘Stochastic gradient boosting,’ Computational statistics & data analysis, vol. 38,
no. 4, pp. 367–378, 2002.

[46] M. Hossin and M. N. Sulaiman, ‘A review on evaluation metrics for data classification evalu-
ations,’ International journal of data mining & knowledge management process, vol. 5, no. 2,
p. 1, 2015.

[47] J. Davis and M. Goadrich, ‘The relationship between precision-recall and roc curves,’ in
Proceedings of the 23rd International Conference on Machine Learning, ser. ICML ’06, Pitts-
burgh, Pennsylvania, USA: Association for Computing Machinery, 2006, pp. 233–240, ISBN:
1595933832. DOI: 10.1145/1143844.1143874. [Online]. Available: https://doi.org/10.
1145/1143844.1143874.

[48] K. E. Emam, Accelerating ai with synthetic data. [Online]. Available: https://www.nvidia.
com/en-us/deep-learning-ai/resources/accelerating-ai-with-synthetic-data-
ebook/.

113

https://doi.org/10.48550/ARXIV.1805.11604
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1805.11604
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.48550/ARXIV.1607.06450
https://doi.org/10.48550/ARXIV.1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.48550/ARXIV.1911.07013
https://arxiv.org/abs/1911.07013
https://arxiv.org/abs/1911.07013
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1145/1143844.1143874
https://www.nvidia.com/en-us/deep-learning-ai/resources/accelerating-ai-with-synthetic-data-ebook/
https://www.nvidia.com/en-us/deep-learning-ai/resources/accelerating-ai-with-synthetic-data-ebook/
https://www.nvidia.com/en-us/deep-learning-ai/resources/accelerating-ai-with-synthetic-data-ebook/


Rustad@NTNU: tabGAN

[49] S. I. Nikolenko et al., Synthetic data for deep learning. Springer, 2021.

[50] J. Drechsler and J. P. Reiter, ‘An empirical evaluation of easily implemented, nonparametric
methods for generating synthetic datasets,’ Computational Statistics & Data Analysis, vol. 55,
no. 12, pp. 3232–3243, 2011.

[51] A. Dandekar, R. A. Zen and S. Bressan, ‘A comparative study of synthetic dataset genera-
tion techniques,’ in International Conference on Database and Expert Systems Applications,
Springer, 2018, pp. 387–395.

[52] M. Mirza and S. Osindero, Conditional generative adversarial nets, 2014. arXiv: 1411.1784
[cs.LG].

[53] A. Martın, A. Ashish, B. Paul, B. Eugene, C. Zhifeng, C. Craig, C. Greg S., D. Andy, D. Jeffrey,
D. Matthieu, G. Sanjay, G. Ian, H. Andrew, I. Geoffrey, I. Michael, J. Yangqing, J. Rafal,
K. Lukasz, K. Manjunath, L. Josh, M. Dandelion, M. Rajat, M. Sherry, M. Derek, O. Chris,
S. Mike, S. Jonathon, S. Benoit, S. Ilya, T. Kunal, T. Paul, V. Vincent, V. Vijay, V. Fernanda,
V. Oriol, W. Pete, W. Martin, W. Martin, Y. Yuan and Z. Xiaoqiang, TensorFlow: Large-scale
machine learning on heterogeneous systems, Software available from tensorflow.org, 2015.
[Online]. Available: https://www.tensorflow.org/.

[54] E. Jang, S. Gu and B. Poole, Categorical reparameterization with gumbel-softmax, 2017. arXiv:
1611.01144 [stat.ML].

[55] Z. Lin, A. Khetan, G. Fanti and S. Oh, Pacgan: The power of two samples in generative ad-
versarial networks. DOI: 10.48550/ARXIV.1712.04086. [Online]. Available: https://arxiv.
org/abs/1712.04086.

[56] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009, ISBN: 1441412697.

[57] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi,
M. Hoffman and R. A. Saurous, Tensorflow distributions, 2017. arXiv: 1711.10604 [cs.LG].

[58] The pandas development team, Pandas-dev/pandas: Pandas, version latest, Feb. 2020. DOI:
10.5281/zenodo.3509134. [Online]. Available: https://doi.org/10.5281/zenodo.
3509134.

[59] W. McKinney, ‘Data Structures for Statistical Computing in Python,’ in Proceedings of the 9th
Python in Science Conference, S. van der Walt and J. Millman, Eds., 2010, pp. 56–61. DOI:
10.25080/Majora-92bf1922-00a.

[60] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot and E. Duchesnay, ‘Scikit-learn: Machine learning in Python,’ Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[61] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, 4. Springer,
2006, vol. 4.

[62] B. Schweizer and E. F. Wolff, ‘On nonparametric measures of dependence for random vari-
ables,’ The annals of statistics, vol. 9, no. 4, pp. 879–885, 1981.

[63] K. Armanious, C. Jiang, M. Fischer, T. Küstner, T. Hepp, K. Nikolaou, S. Gatidis and B. Yang,
‘MedGAN: Medical image translation using GANs,’ Computerized Medical Imaging and Graph-
ics, vol. 79, p. 101 684, Jan. 2020. DOI: 10.1016/j.compmedimag.2019.101684. [Online].
Available: https://doi.org/10.1016%2Fj.compmedimag.2019.101684.

114

https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://www.tensorflow.org/
https://arxiv.org/abs/1611.01144
https://doi.org/10.48550/ARXIV.1712.04086
https://arxiv.org/abs/1712.04086
https://arxiv.org/abs/1712.04086
https://arxiv.org/abs/1711.10604
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/j.compmedimag.2019.101684
https://doi.org/10.1016%2Fj.compmedimag.2019.101684


Bibliography

[64] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park and Y. Kim, ‘Data synthesis based
on generative adversarial networks,’ Proceedings of the VLDB Endowment, vol. 11, no. 10,
pp. 1071–1083, Jun. 2018. DOI: 10.14778/3231751.3231757. [Online]. Available: https:
//doi.org/10.14778%2F3231751.3231757.

[65] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann and C. Sutton, Veegan: Reducing mode
collapse in gans using implicit variational learning, 2017. DOI: 10.48550/ARXIV.1705.07761.
[Online]. Available: https://arxiv.org/abs/1705.07761.

[66] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava and X. Xiao, ‘Privbayes: Private data
release via bayesian networks,’ ACM Transactions on Database Systems (TODS), vol. 42, no. 4,
pp. 1–41, 2017.

[67] C. J. Quinn, T. P. Coleman and N. Kiyavash, ‘Approximating discrete probability distributions
with causal dependence trees,’ in 2010 International Symposium On Information Theory Its
Applications, 2010, pp. 100–105. DOI: 10.1109/ISITA.2010.5649470.

[68] T. M. Beasley, S. Erickson and D. B. Allison, ‘Rank-based inverse normal transformations are
increasingly used, but are they merited?’ Behavior genetics, vol. 39, no. 5, pp. 580–595, Sep.
2009.

[69] K. Bogner, F. Pappenberger and H. Cloke, ‘The normal quantile transformation and its ap-
plication in a flood forecasting system,’ Hydrology and Earth System Sciences, vol. 16, no. 4,
pp. 1085–1094, 2012.

[70] H. L. Harter, ‘Expected values of normal order statistics,’ Biometrika, vol. 48, no. 1/2, pp. 151–
165, 1961, ISSN: 00063444. [Online]. Available: http://www.jstor.org/stable/2333139
(visited on 20/05/2022).

[71] G. Blom, ‘Statistical estimates and transformed beta-variables,’ Ph.D. dissertation, Almqvist
& Wiksell, 1958.

[72] S. Verma, J. Dickerson and K. Hines, Counterfactual explanations for machine learning: A
review, 2020. DOI: 10.48550/ARXIV.2010.10596. [Online]. Available: https://arxiv.org/
abs/2010.10596.

[73] B. Kment, ‘Counterfactuals and causal reasoning,’ Perspectives on Causation, pp. 463–482,
2020.

[74] C. Fernández-Loría, F. Provost and X. Han, Explaining data-driven decisions made by ai sys-
tems: The counterfactual approach, 2020. DOI: 10.48550/ARXIV.2001.07417. [Online]. Avail-
able: https://arxiv.org/abs/2001.07417.

[75] S. Verma, J. Dickerson and K. Hines, Counterfactual explanations for machine learning: Chal-
lenges revisited, 2021. DOI: 10.48550/ARXIV.2106.07756. [Online]. Available: https://
arxiv.org/abs/2106.07756.

[76] Y. Censor, ‘Pareto optimality in multiobjective problems,’ Applied Mathematics and Optimiza-
tion, vol. 4, no. 1, pp. 41–59, 1977.

[77] A. Redelmeier, M. Jullum, K. Aas and A. Løland, Mcce: Monte carlo sampling of realistic coun-
terfactual explanations, 2021. arXiv: 2111.09790 [stat.ML].

[78] D. Nemirovsky, N. Thiebaut, Y. Xu and A. Gupta, ‘Countergan: Generating realistic counter-
factuals with residual generative adversarial nets,’ arXiv preprint arXiv:2009.05199, 2020.

[79] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available: http://
archive.ics.uci.edu/ml.

115

https://doi.org/10.14778/3231751.3231757
https://doi.org/10.14778%2F3231751.3231757
https://doi.org/10.14778%2F3231751.3231757
https://doi.org/10.48550/ARXIV.1705.07761
https://arxiv.org/abs/1705.07761
https://doi.org/10.1109/ISITA.2010.5649470
http://www.jstor.org/stable/2333139
https://doi.org/10.48550/ARXIV.2010.10596
https://arxiv.org/abs/2010.10596
https://arxiv.org/abs/2010.10596
https://doi.org/10.48550/ARXIV.2001.07417
https://arxiv.org/abs/2001.07417
https://doi.org/10.48550/ARXIV.2106.07756
https://arxiv.org/abs/2106.07756
https://arxiv.org/abs/2106.07756
https://arxiv.org/abs/2111.09790
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Rustad@NTNU: tabGAN

[80] K. Fernandes, P. Vinagre and P. Cortez, ‘A proactive intelligent decision support system for
predicting the popularity of online news,’ in Portuguese conference on artificial intelligence,
Springer, 2015, pp. 535–546.

[81] M. Själander, M. Jahre, G. Tufte and N. Reissmann, EPIC: An energy-efficient, high-performance
GPGPU computing research infrastructure, 2019. arXiv: 1912.05848 [cs.DC].

[82] T. S. Sheikh, A. Khan, M. Fahim and M. Ahmad, ‘Synthesizing data using variational autoen-
coders for handling class imbalanced deep learning,’ in International Conference on Analysis
of Images, Social Networks and Texts, Springer, 2019, pp. 270–281.

[83] M. N. Garofalakis, ‘Differentially private data synthesis using variational autoencoders,’ 2021.

[84] N. Cristianini and E. Ricci, ‘Support vector machines,’ in Encyclopedia of Algorithms, M.-Y.
Kao, Ed. Boston, MA: Springer US, 2008, pp. 928–932, ISBN: 978-0-387-30162-4. DOI: 10.
1007/978-0-387-30162-4_415. [Online]. Available: https://doi.org/10.1007/978-0-
387-30162-4_415.

[85] B. Scholkopf, K.-K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio and V. Vapnik, ‘Comparing
support vector machines with gaussian kernels to radial basis function classifiers,’ IEEE Trans-
actions on Signal Processing, vol. 45, no. 11, pp. 2758–2765, 1997. DOI: 10.1109/78.650102.

[86] I. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel and B. Schölkopf, Adagan: Boosting
generative models, 2017. DOI: 10.48550/ARXIV.1701.02386. [Online]. Available: https:
//arxiv.org/abs/1701.02386.

[87] L. Deng, ‘The mnist database of handwritten digit images for machine learning research,’
IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[88] A. Nitanda and T. Suzuki, ‘Gradient layer: Enhancing the convergence of adversarial train-
ing for generative models,’ in International Conference on Artificial Intelligence and Statistics,
PMLR, 2018, pp. 1008–1016.

116

https://arxiv.org/abs/1912.05848
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1007/978-0-387-30162-4_415
https://doi.org/10.1109/78.650102
https://doi.org/10.48550/ARXIV.1701.02386
https://arxiv.org/abs/1701.02386
https://arxiv.org/abs/1701.02386


Appendix A

Code Repository

For the interested reader the code used in this thesis can be found in the Github repository: https:
//github.com/ArneRustad/Master-thesis-cf.

117

https://github.com/ArneRustad/Master-thesis-cf
https://github.com/ArneRustad/Master-thesis-cf




Appendix B

Uniform order statistics

For n independent, identically distributed random variables X1, . . . , Xn with probability distribution
function fX and cumulative distribution function FX , the cumulative distribution of the kth order
statistic, X(k), is

FX(k)(x) =
n
∑

j=k

�

n
k

�

[FX (x)]
j [1− FX (x)]

n− j .

From this, the corresponding probability density function can be derived as

fX(k)(x) =
n!

(k− 1)!(n− k)!
fX (x) [FX (x)]

k−1 [1− FX (x)]
n−k .

Inserting for the Uniform(0,1) distribution we get

fX(k)(x) =
n!

(k− 1)!(n− k)!
· 1 · xk−1(1− x)n−k

=
Γ (n+ 1)

Γ (k)Γ (n− k+ 1)
xk−1(1− x)n−k

=
1

B(k, n− k+ 1)
xk−1(1− x)n−k, for 0≤ x ≤ 1.

We recognize this as the probability distribution function of a Beta(k, n − k + 1) distribution.
Thus, the expected value of the kth order statistic for the uniform distribution given n samples is

E[X(k)] =
k

n+ 1
.

119





Appendix C

Additional Histograms from Comparison
of Marginal Distributions on Adult
Dataset

To not overwhelm the reader, we decided to move some of the plots referenced in the comparison
in Section 7.3 to this appendix chapter.

121



Rustad@NTNU: tabGAN

20 40 60 80 100
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

20 0 20 40 60 80 100 120
0.00

0.02

0.04

0.06

0.08

0.10
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure C.1: Histograms of generated samples from ctabGAN-sd plotted against histograms of ob-
servations from the Adult training dataset. One histogram for each column. The synthesized dataset
is of the same size as the Adult train dataset.

122



Chapter C: Additional Histograms from Comparison of Marginal Distributions on Adult Dataset

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

0.5
educational_num

Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure C.2: Histograms of generated samples from ctabGAN-qt plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult train dataset.

123



Rustad@NTNU: tabGAN

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030

age
Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

hours_per_week
Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.0

0.1

0.2

0.3

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure C.3: Histograms of generated samples from CTGAN-pac10 plotted against histograms of ob-
servations from the Adult training dataset. One histogram for each column. The synthesized dataset
is of the same size as the Adult train dataset.

124



Chapter C: Additional Histograms from Comparison of Marginal Distributions on Adult Dataset

20 30 40 50 60 70 80 90
0.000

0.005

0.010

0.015

0.020

0.025

0.030
age

Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

hours_per_week
Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0
marital_status

Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30
occupation

Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure C.4: Histograms of generated samples from CopulaGAN plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult train dataset.

125



Rustad@NTNU: tabGAN

20 30 40 50 60 70 80 90
0.00

0.01

0.02

0.03

age
Real
Gen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e6

0

1

2

3

4

5

1e 6 fnlwgt
Real
Gen

2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

0.4

educational_num
Real
Gen

0 20000 40000 60000 80000 100000
0.00000

0.00005

0.00010

0.00015

capital_gain
Real
Gen

0 1000 2000 3000 4000
0.000

0.001

0.002

0.003

0.004

capital_loss
Real
Gen

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10
hours_per_week

Real
Gen

Go
ve

rn
m

en
t

Pr
iva

te

Se
lf-

em
p-

in
c

Se
lf-

em
p-

no
t-i

nc

W
ith

ou
t-p

ay

0.00

0.25

0.50

0.75

1.00

1.25

1.50
workclass

Real
Gen

<=
12

th
As

so
c-

ac
dm

As
so

c-
vo

c
Ba

ch
el

or
s

Do
ct

or
at

e

HS
-g

ra
d

Ma
st

er
s

Pr
of

-s
ch

oo
l

So
m

e-
co

lle
ge

0.0

0.1

0.2

0.3

0.4

0.5

0.6

education
Real
Gen

Di
vo

rc
ed

Ma
rri

ed

Ne
ve

r-m
ar

rie
d

Se
pa

ra
te

d

W
id

ow
ed

0.0

0.2

0.4

0.6

0.8

1.0

marital_status
Real
Gen

Ad
m

-c
le

ric
al

Ar
m

ed
-F

or
ce

s
Cr

af
t-r

ep
ai

r
Ex

ec
-m

an
ag

er
ia

l
Fa

rm
in

g-
fis

hi
ng

Ha
nd

le
rs

-c
le

an
er

s
Ma

ch
in

e-
op

-in
sp

ct
Ot

he
r-s

er
vic

e
Pr

iv-
ho

us
e-

se
rv

Pr
of

-s
pe

cia
lty

Pr
ot

ec
tiv

e-
se

rv
Sa

le
s

Te
ch

-s
up

po
rt

Tra
ns

po
rt-

m
ov

in
g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

occupation
Real
Gen

As
ia

n-
Pa

c-
Isl

an
de

r

Bl
ac

k

Na
tiv

e-
Am

er
ica

n-
In

ui
t

Ot
he

r

W
hi

te

0.0

0.5

1.0

1.5

race
Real
Gen

Fe
m

al
e

Ma
le

0.00

0.25

0.50

0.75

1.00

1.25

gender
Real
Gen

No
n-

US US

0.0

0.5

1.0

1.5

native_country
Real
Gen

<=
50

K

>5
0K

0.00

0.25

0.50

0.75

1.00

1.25

1.50
income

Real
Gen

Figure C.5: Histograms of generated samples from TVAE-mod plotted against histograms of obser-
vations from the Adult training dataset. One histogram for each column. The synthesized dataset is
of the same size as the Adult train dataset.

126



Appendix D

Preprocessing Steps of Adult Dataset

After removing observations with missing values from the unedited Adult dataset, the numerical
ranges or categories in addition to percentages are given in Table D.1. Each of the following pre-
processing steps were performed on the Adult dataset discussed in Section 6.2.

1. The column "relationship" was deleted.
2. For the column "native_country" all countries except for the US was merged to one single

category called Non-US.
3. For the column "marital_status" the categories Married-AF-spouse, Married-civ-spouse, Married-

spouse-absent were all merged to a single category Married.
4. For the column "workclass" the categories Local-gov, State-gov and Federal-gov were merged

to a single category Government.
5. For the column "education" the categories 10th, 11th, 12th, 1st-4th, 5th-6th, 7th-8th, 9th,

Preschool were all merged to the single category <=12th.
6. Change the name of the category Amer-Indian-Eskimo of the "race" column to Native-American-

Inuit

127



Rustad@NTNU: tabGAN

Column Values
age [17, 90]
workclass Federal-gov (3.1%), Local-gov (6.9%), Private (74%), Self-emp-inc (3.6%),

Self-emp-not-inc (8.4%), State-gov (4.3%), Without-pay (0.046%)
fnlwgt [13492, 1490400]
education 10th (2.7%), 11th (3.6%), 12th (1.3%), 1st-4th (0.49%), 5th-6th (0.99%),

7th-8th (1.8%), 9th (1.5%), Assoc-acdm (3.3%), Assoc-voc (4.3%), Bach-
elors (17%), Doctorate (1.2%), HS-grad (33%), Masters (5.6%), Preschool
(0.16%), Prof-school (1.7%), Some-college (22%)

educational_num [1, 16]
marital_status Divorced (14%), Married-AF-spouse (0.071%), Married-civ-spouse (47%),

Married-spouse-absent (1.2%), Never-married (32%), Separated (3.1%),
Widowed (2.8%)

occupation Adm-clerical (12%), Armed-Forces (0.031%), Craft-repair (13%), Exec-
managerial (13%), Farming-fishing (3.3%), Handlers-cleaners (4.5%),
Machine-op-inspct (6.6%), Other-service (11%), Priv-house-serv (0.51%),
Prof-specialty (13%), Protective-serv (2.2%), Sales (12%), Tech-support
(3.1%), Transport-moving (5.1%)

relationship Husband (41%), Not-in-family (26%), Other-relative (3%), Own-child
(15%), Unmarried (11%), Wife (4.6%)

race Amer-Indian-Eskimo (0.96%), Asian-Pac-Islander (2.9%), Black (9.3%),
Other (0.78%), White (86%)

gender Female (32%), Male (68%)
capital_gain [0, 99999]
capital_loss [0, 4356]
hours_per_week [1, 99]
native_country Cambodia (0.057%), Canada (0.36%), China (0.25%), Columbia (0.18%),

Cuba (0.29%), Dominican-Republic (0.21%), Ecuador (0.095%), El-
Salvador (0.33%), England (0.26%), France (0.08%), Germany (0.43%),
Greece (0.11%), Guatemala (0.19%), Haiti (0.15%), Holand-Netherlands
(0.0022%), Honduras (0.042%), Hong (0.062%), Hungary (0.04%), India
(0.33%), Iran (0.12%), Ireland (0.08%), Italy (0.22%), Jamaica (0.23%),
Japan (0.2%), Laos (0.046%), Mexico (2%), Nicaragua (0.11%), Outlying-
US(Guam-USVI-etc) (0.049%), Peru (0.1%), Philippines (0.63%), Poland
(0.18%), Portugal (0.14%), Puerto-Rico (0.39%), Scotland (0.044%), South
(0.22%), Taiwan (0.12%), Thailand (0.064%), Trinadad&Tobago (0.057%),
United-States (91%), Vietnam (0.18%), Yugoslavia (0.051%)

income <=50K (75%), >50K (25%)

Table D.1: Overview of the numerical range or different categories for each column in the Adult
dataset introduced in Section 6.2.

128



Appendix E

Additional Information for Datasets

In Section 6.3 we briefly present three real world dataset. In this chapter in the appendix we present
some tables with additional column information for each dataset.

E.1 Covertype Dataset

We include here two tables that provide additional information to the description of the Covertype
dataset given in Section 6.3.1. Table E.1 gives a short description of each column, while Table E.2
gives a short overview of column categories or numerical ranges.

129



Rustad@NTNU: tabGAN

Table E.1: Description of each column in the Covertype dataset after the preprocessing described in
Section 6.3.1. The information is taken from the Covertype dataset page in the UCI Machine Learning
Repository[79].

Column Data Type Description

Elevation Quantitative Elevation in meters
Aspect Quantitative Aspect in degrees azimuth
Slope Quantitative Slope in degrees
Horizontal_Distance_To_Hydrology Quantitative Horizontal distance to nearest surface wa-

ter features
Vertical_Distance_To_Hydrology Quantitative Vertical distance to nearest surface water

features
Horizontal_Distance_To_Roadways Quantitative Horizontal distance to nearest roadway
Hillshade_9am Quantitative Hillshade index at 9am (summer solstice)
Hillshade_Noon Quantitative Hillshade index at noon (summer soltice)
Hillshade_3pm Quantitative Hillshade index at 3pm (summer solstice)
Horizontal_Distance_To_Fire_Points Quantitative Horizontal distance to nearest wildfire ig-

nition points
Wilderness_Area Qualitative Wilderness area designation
Soil_Type Qualitative Designated soil type
Cover_Type Qualitative Designated forest cover type

130



Chapter E: Additional Information for Datasets

Table E.2: Overview of each column in the Covertype dataset. For numerical columns the value
range is reported, while for discrete columns the categories along with percentages are reported.
The percentages for all categories of a single discrete column sum to 1.

Column Values (numerical range or categories)

Aspect [0,360]
Cover_Type CoverType1 (40.0%), CoverType2 (50.0%), CoverType3

(6.0%), CoverType4 (0.5%), CoverType5 (2.0%), Cover-
Type6 (3.0%), CoverType7 (4.0%)

Elevation [1859,3858]
Hillshade_3pm [0,254]
Hillshade_9am [0,254]
Hillshade_Noon [0, 254]
Horizontal_Distance_To_Fire_Points [0, 7173]
Horizontal_Distance_To_Hydrology [0, 1397]
Horizontal_Distance_To_Roadways [0, 7117]
Slope [0, 66]
Soil_Type Soil_Type1 (0.5%), Soil_Type10 (6.0%), Soil_Type11

(2.0%), Soil_Type12 (5.0%), Soil_Type13 (3.0%),
Soil_Type14 (0.1%), Soil_Type15 (0.0005%),
Soil_Type16 (0.5%), Soil_Type17 (0.6%), Soil_Type18
(0.3%), Soil_Type19 (0.7%), Soil_Type2 (1.0%),
Soil_Type20 (2.0%), Soil_Type21 (0.1%), Soil_Type22
(6.0%), Soil_Type23 (10.0%), Soil_Type24 (4.0%),
Soil_Type25 (0.08%), Soil_Type26 (0.4%), Soil_Type27
(0.2%), Soil_Type28 (0.2%), Soil_Type29 (20.0%),
Soil_Type3 (0.8%), Soil_Type30 (5.0%), Soil_Type31
(4.0%), Soil_Type32 (9.0%), Soil_Type33 (8.0%),
Soil_Type34 (0.3%), Soil_Type35 (0.3%), Soil_Type36
(0.02%), Soil_Type37 (0.05%), Soil_Type38 (3.0%),
Soil_Type39 (2.0%), Soil_Type4 (2.0%), Soil_Type40
(2.0%), Soil_Type5 (0.3%), Soil_Type6 (1.0%),
Soil_Type7 (0.02%), Soil_Type8 (0.03%), Soil_Type9
(0.2%)

Vertical_Distance_To_Hydrology [−173,601]
Wilderness_Area Wilderness_Area1 (40%), Wilderness_Area2 (5%), Wil-

derness_Area3 (40%), Wilderness_Area4 (6%)

131



Rustad@NTNU: tabGAN

E.2 Credit Card Fraud Dataset

We include here a table that provides additional information to the description of the Credit Card
Fraud dataset given in Section 6.3.1. Table E.2 gives a short overview of categories or numerical
range for each column in the dataset.

132



Chapter E: Additional Information for Datasets

Table E.3: Overview of each column in the Creditcard dataset. For numerical columns the value
range is reported, while for discrete columns the categories along with percentages are reported.
The percentages for all categories of a single discrete column sum to 1.

Column Values (numerical range or categories)

Amount [0.0, 25691.16]
Class Class0 (99.83%), Class1 (0.17%)
Time [0.0, 172792.0]
V1 [-56.41, 2.45]
V10 [-24.59, 23.75]
V11 [-4.8, 12.02]
V12 [-18.68, 7.85]
V13 [-5.79, 7.13]
V14 [-19.21, 10.53]
V15 [-4.5, 8.88]
V16 [-14.13, 17.32]
V17 [-25.16, 9.25]
V18 [-9.5, 5.04]
V19 [-7.21, 5.59]
V2 [-72.72, 22.06]
V20 [-54.5, 39.42]
V21 [-34.83, 27.2]
V22 [-10.93, 10.5]
V23 [-44.81, 22.53]
V24 [-2.84, 4.58]
V25 [-10.3, 7.52]
V26 [-2.6, 3.52]
V27 [-22.57, 31.61]
V28 [-15.43, 33.85]
V3 [-48.33, 9.38]
V4 [-5.68, 16.88]
V5 [-113.74, 34.8]
V6 [-26.16, 73.3]
V7 [-43.56, 120.59]
V8 [-73.22, 20.01]
V9 [-13.43, 15.59]

133



Rustad@NTNU: tabGAN

E.3 Online News Popularity Dataset

We include here a table that provides additional information to the description of the Online News
Popularity dataset given in Section 6.3.3. Table E.4 gives a short overview of categories or numerical
range for each column in the dataset.

134



Chapter E: Additional Information for Datasets

Table E.4: Overview of each column in the Online News Popularity dataset. For numerical columns
the value range is reported, while for discrete columns the categories along with percentages are
reported. The percentages for all categories of a single discrete column sum to 1.

Column Values (numerical range or categories)

abs_title_sentiment_polarity [0.0, 1.0]
abs_title_subjectivity [0.0, 0.5]
average_token_length [0.0, 8.04]
avg_negative_polarity [-1.0, 0.0]
avg_positive_polarity [0.0, 1.0]
data_channel bus (20%), entertainment (20%), lifestyle (20%), socmed (6%),

tech (20%), world (20%)
global_rate_negative_words [0.0, 0.18]
global_rate_positive_words [0.0, 0.16]
global_sentiment_polarity [-0.39, 0.73]
global_subjectivity [0.0, 1.0]
is_weekend no (90%), yes (10%)
kw_avg_avg [0.0, 43567.66]
kw_avg_max [0.0, 843300.0]
kw_avg_min [-1.0, 42827.86]
kw_max_avg [0.0, 298400.0]
kw_max_max [0.0, 843300.0]
kw_max_min [0.0, 298400.0]
kw_min_avg [-1.0, 3613.04]
kw_min_max [0.0, 843300.0]
kw_min_min [-1.0, 377.0]
LDA_00 [0.0, 0.93]
LDA_01 [0.0, 0.93]
LDA_02 [0.0, 0.92]
LDA_03 [0.0, 0.93]
LDA_04 [0.0, 0.93]
max_negative_polarity [-1.0, 0.0]
max_positive_polarity [0.0, 1.0]
min_negative_polarity [-1.0, 0.0]
min_positive_polarity [0.0, 1.0]
n_non_stop_unique_tokens [0.0, 650.0]
n_non_stop_words [0.0, 1042.0]
n_tokens_content [0.0, 8474.0]
n_tokens_title [2.0, 23.0]
n_unique_tokens [0.0, 701.0]
num_hrefs [0.0, 304.0]
num_imgs [0.0, 128.0]
num_keywords [1.0, 10.0]
num_self_hrefs [0.0, 116.0]
num_videos [0.0, 91.0]
rate_negative_words [0.0, 1.0]
rate_positive_words [0.0, 1.0]
self_reference_avg_sharess [0.0, 843300.0]
self_reference_max_shares [0.0, 843300.0]
self_reference_min_shares [0.0, 843300.0]
shares [1, 843300]
timedelta [8.0, 731.0]
title_sentiment_polarity [-1.0, 1.0]
title_subjectivity [0.0, 1.0]
weekday Friday (10%), Monday (20%), Saturday (6%), Sunday (7%),

Thursday (20%), Tuesday (20%), Wednesday (20%)

135



tabG
AN

: A Fram
ew

ork for U
tilizing Tabular G

AN
 for D

ata Synthesizing and G
eneration of Counterfactual

Arne Rustad

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Arne Rustad

tabGAN: A Framework for Utilizing
Tabular GAN for Data Synthesizing
and Generation of Counterfactual
Explanations

Master’s thesis in Applied Physics and Mathematics
Supervisor: Kjersti Aas
June 2022

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Preface
	Contents
	Introduction
	Background
	Neural Networks
	Activation Functions
	Training Procedure
	Batch and Layer Normalization

	Generative Adversarial Networks (GANs)
	Wasserstein GAN (WGAN)

	XGBoost - An Implementation of Gradient Boosted Decision Trees
	Metrics for Efficacy of a Classification Machine Learning Model

	Data Synthesizing
	A Brief Overview of Generating Synthetic Data from Real Data
	A Wasserstein GAN Based Data Synthesizer Framework – tabGAN
	Preprocessing Step
	Model Architectures
	Training Phase
	Synthesizing Data on Original Data Format
	Implementation Details

	A Selection of State-of-the-art Data Synthesizers
	CTGAN
	TVAE
	GaussianCopula
	CopulaGAN
	TabFairGAN


	Randomized Quantile Transformation
	Quantile Transformation
	Motivation for Creation of Randomized Quantile Transformation
	Mathematical Definition of Randomized Quantile Transformation

	Counterfactual Synthesizing
	A Brief Overview of Algorithm Based Counterfactual Methods
	Pareto Optimality

	A Brief Overview of Model Based Counterfactual Methods
	A Wasserstein GAN Based Counterfactual Synthesizer Framework – tabGANcf
	Implementation
	Extensions


	Datasets
	Syn2D_3cats Dataset
	Adult (Census Income) Dataset
	Three Other Real Datasets
	Covertype Dataset
	Credit Card Fraud Dataset
	Online News Popularity Dataset

	Syn_Moons Datasets

	Experiments – Data synthesizers
	Model Customization and Hyperparameter Choice
	Hyperparameter Search
	Architecture and Hyperparameter Choice for Models from tabGAN Framework
	Architecture and Hyperparameter Choice for Baseline Data Synthesizers

	Visual Evaluation of tabGAN Methods on the Syn2D_3cats Dataset
	Comparison of Marginal Distributions on Adult Dataset
	Results and Discussion of Marginal Distributions

	Comparing Joint Distributions on Adult Dataset
	Results and Discussion of Joint Distributions

	Comparing Machine Learning Efficacy on Adult Dataset
	Results and Discussion of Machine Learning Efficacy Comparison on Adult Dataset

	Comparing Machine Learning Efficacy on Three Other Real Datasets
	Results and Discussion of Machine Learning Efficacy Comparison

	Comparison of Training Speed

	Experiments - Counterfactual Synthesizer
	Reweight Data Observations or Only Feed the Critic Observations of the Correct Prediction Class
	Are Unnecessary Changes Made to the Discrete Column Values for the Counterfactual Explanations?
	Investigation of the Impact of the 1-norm Numerical Penalty Coefficient
	Investigation of the Impact of Mixing Real Correct Samples with the Generator Samples

	Discussion and Conclusion
	Bibliography
	Code Repository
	Uniform order statistics
	Additional Histograms from Comparison of Marginal Distributions on Adult Dataset
	Preprocessing Steps of Adult Dataset
	Additional Information for Datasets
	Covertype Dataset
	Credit Card Fraud Dataset
	Online News Popularity Dataset


