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Abstract

In this master’s thesis we prove the well-posedness of the Master Equation, which is a second order
partial differential equation on the space of probability measures. The proofs utilise a ”method
of characteristics”, where we employ well-posed solutions of the closely related Mean Field Game
systems as the characteristics. Furthermore, we sketch and discuss the proof of the convergence of
the Nash system, which is a system of N strongly coupled Hamilton-Jacobi-Bellman equations, as
N tends to infinity. For both well-posedness and convergence, we derive our results on the domain
Rd, which diverges from the primary source material, where analysis is performed on Td.

Sammendrag

I denne masteroppgaven beviser vi velstiltheten til Master Equation, som er en annenordens parti-
ell differensiallikning definert for sannsynlighetsm̊al. Bevisene benytter en ”karakteristikkmetode”,
der vi bruker velstilte løsninger av de nært beslektede Mean Field Game-systemene som karakter-
istikker. Videre skisserer og diskuterer vi beviset for konvergensen til Nash-systemet, som er et
system av N sterkt koblede Hamilton-Jacobi-Bellman-likninger, n̊ar N g̊ar mot uendelig. For b̊ade
velstilthet og konvergens utleder vi v̊are resultater p̊a domenet Rd, som avviker fra det primære
kildematerialet, hvor analysen utføres p̊a Td.
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1 Introduction

Game theory has since its introduction by John von Neumann and Oskar Morgenstern in 1944
[25] been a large and active branch of mathematics. Being the study of mathematical models of
strategic interaction, the field has been especially fruitful for a wide array of applications, but has
been particularly successful in social science and economics, where game theorists have won the
Nobel Memorial Prize in Economic Sciences 15 times. Further development in the field was done
by John Forbes Nash Jr., who introduced the equilibrium solutions that now bear his name as the
natural concept of solution for non-cooperative games [24]. Indeed, we say that a set of strategies
in a game is in Nash equilibrium if none of the players have anything to gain from changing their
strategy.

A modern branch of game theory is the study of Mean Field Game systems, where strategic
interaction in very large populations of rational agents are modelled. Each of the modelled agents
has negligible impact upon the total system, which gives rise to the key idea of the Mean Field
theory, namely that instead of viewing each agent of the system seperately, we view the system as
an averaged statistical distribution of agents. Mean Field Game theory was introduced using tools
from stochastic control theory by Jean-Michel Lasry and Pierre-Louis Lions in 2006 [20]. The same
concept, under a different name and using a stochastic approach, was discovered independently at
about the same time by M. Huang, P. Caines, and R. Malhamé. Since its introduction, Mean Field
Game theory has been applied to a wide range of fields, some examples being crowd dynamics,
trading of financial securities and power grid planning.

From the control theoretic interpretation of Lasry and Lions arises the Mean Field Game system
−∂tu− ε∆u+H(x,Du) = F (x,m(t)) in [t0, T )× Rd,
u(T ) = G(x,m(T )) in Rd,
∂tm− ε∆m− div(mDpH(x,Du)) = 0 in (t0, T ]× Rd,
m(0) = m0 in Rd,

(1)

which is a coupled system of a Hamilton-Jacobi-Bellman equation, governing the control problem,
and a Fokker-Planck equation, governing how the agents in the system move. Under sufficiently
regularising coupling terms F,G, (1) has unique classical solutions, as has been proven for an
explicit choice of H(x, p) = 1

2 |p|
2 in the present authors project thesis [14], and on the simplified

domain Td for a general H in [1].

A core topic of study in Mean Field Game theory is how differential game systems with a finite
number of players N converge to a mean field formulation as N → ∞. As with other non-
cooperative games, the concept of solution for the N -player game is the Nash equilibrium, which
can be shown [7] is equivalent to the value functions vN,i of the corresponding control problem
satisfying the following strongly coupled system of Hamilton-Jacobi-Bellman equations that we
will call the Nash system

−∂tvN,i(t,x)− ε
N∑
j=1

∆xjv
N,i(t,x) +H(xi, Dxiv

N,i(t,x))

+
∑
j 6=i

DpH(xj , Dxjv
N,j(t,x)) ·Dxjv

N,i(t,x)

= FN,i(x) in [0, T ]×
(
Rd
)N
,

vN,i(T,x) = GN,i(x) in
(
Rd
)N
,

Our hope is that this system simplifies as N → ∞. However, passing the Nash system to the
limit using standard PDE techniques is very difficult as the strongly coupled nature of the systems
makes it seemingly impossible to establish the compactness results necessary for convergence. To
solve this problem we introduce the main object of study in this thesis, the Master Equation, which

1



is a non-local PDE, closely related to (1), taking the following form

−∂tU(t, x,m)− ε∆xU(t, x,m) +H(x,DxU(x, t,m))

−ε
∫
Rd

divy[DmU ](t, x,m, y)m(dy)

+

∫
Rd
DmU(t, x,m, y) ·DpH(y,DxU(t, y,m))m(dy)

= F (x,m) in [0, T ]× Rd × P1(Rd),
U(T, x,m) = G(x,m) in Rd × P1(Rd).

(2)

To the unfamiliar eye, this equation might look fierce and formidable, as it takes in probability
measures m ∈ P1(Rd) as variables, and contains a new type of derivative, namely the Lions
derivative DmU . The Lions derivative is taken in the space of measures and related to the measure
equivalent of a Frechet derivative.

The Master Equation bridges the gap of understanding between the finite dimensional systems and
the Mean Field formulation, and is indeed what is needed for establishing some sort of convergence
for the N -player Nash system. Indeed, given an empirical measure mN,i

x := 1
N−1

∑
j 6=i we have

that

sup
i∈{1,...,N}

∣∣vN,i(t0,x)− U(t0, xi,m
N,i
x )

∣∣ ≤ C

N
,

which shows that the solution U to the Master Equation (2) is to some extent the natural limit to
the Nash systems. This convergence result has been proven on the compact domain Td := Rd/Zd
with periodic boundaries in [7], while the full result on Rd has been conjectured by Lasry and
Lions in the original paper from 2006 [20].

The main topic and core of this thesis is proving existence and uniqueness of classical solutions of the
Master Equation on Rd. To this end we will follow an approach set out in the monograph [7] where
a similar proof is performed for the simpler case Td. The existence proof is based on a ”method of
characteristics”, using the Mean Field Game system (1) as the characteristics. Let (u,m) be the
unique solution of (1) with respect to the initial time and measure (t0,m0) ∈ [0, T ]×P1(Rd), and
define the following ansatz

U(t0, x,m0) := u(t0, x).

With this choice of ansatz, much of the analysis boils down to estimates upon the Mean Field
Game system (1) and how its solution changes as the initial distibution m0 changes, all in order
to show that the ”characteristic” defined above satisfies (2). By performing the analysis on the
whole space Rd as opposed to the torus Td as is done in the source material, the proofs often get
quite a bit more technical and difficult. This is due to many compactness and boundedness results
that are almost immediate for Td are either elusive or impossible for Rd. For example continuous
functions on Td are always bounded by the extreme value theorem. However, the price we pay
with difficult analysis is payed back by the fact that the Master Equation for domain Rd is more
useful for applications.

The theory of Mean Field Games is at the meeting point between several large fields of mathematics,
including, but not limited to PDE analysis, stochastic processes, measure theory, and optimal
control theory. A consequence of this is that the amount of preliminaries needed to rigorously
study these systems is quite large. If this text was to be self contained, it would have been way
too long for an enjoyable read. We therefore presuppose the readers familiarity with measure and
integration theory, as well as some PDE theory and stochastic analysis.

The thesis is structured as follows. Chapter 2 introduces the relevant background material needed
to perform the analysis. Particular focus is placed upon derivatives in the space of measures and
the relation between differential games and optimal control theory. Chapter 3 Contains a treatment
of the Mean Field Game system (1), and contains some well-posedness and regularity estimates
employed in the proofs for the Master Equation. Chapter 4 is dedicated in its entirety to the
well-posedness of the Master Equation, and most of the exposition is in establishing theory and
technical results leading up to the well-posedness proof. Finally, chapter 5 covers the Nash system
and the manner of which it converges to the Master Equation.

2



2 Background Material

Before we head into the analysis and tackle the main topics of this thesis, we will perform a
brief survey of the required background material. We will keep the introduction to a minimum,
focusing the exposition on the theory that will be directly applied in the sequel, while giving precise
references and recommendations to the sources where further explanation and exposition can be
found.

2.1 Spaces and Notation

We start by defining the key spaces, norms, and metrics in which our analysis will be performed.
Our primary domain of analysis will be the standard d-dimensional Euclidian space Rd equipped
with the Euclidian norm |·|. Another important domain, that we will not use ourselves, but is quite
popular in the analysis on Mean Field Games due to its simplifying nature is the d-dimensional
torus Td := Rd/Zd. This domain is compact and has a periodic boundary.

Another very central space is P(Rd), the set of Borel probability measures on Rd. We note that
P(Rd) is a subset of rba(Rd), the space of all regular bounded finitely additive Borel measures on
Rd. Next, we introduce one of the core concepts of establishing compactness, and hence convergence
in these spaces, namely tightness.

Definition 2.1. We say that a subset K ⊆ rba(X) is tight, if for any ε > 0 there exists a compact
subset K ⊆ X such that

sup
m∈K

m(X\K) ≤ ε.

An important theorem that we will not use directly, but is the basis for many of the results we will
employ is the famous Prokhorov’s theorem, which equates tightness with compactness.

Theorem 2.2. (Prokhorov) A subset K ⊆ rba(Rd) is sequentially precompact in weak-* if and
only if it is tight.

Proof. The original proof is given in [27]

Here the weak-* convergence is defined in the usual way given that rba(Rd) is the dual of the space
of bounded continuous functions Cb(Rd) (Theorem IV.6.2 in [10]).

As it turns out, P(Rd) is too general for the approach taken in the analysis in this thesis, and a
more natural choice is the space of measures with finite first moment P1(Rd). We define P1(Rd)
as the subset of P(Rd) where all measures m satisfy∫

Rd
|x|m(dx) <∞.

Simply speaking, this is the set of probability distributions with a well defined statistical mean.
As a metric, we choose the Monge-Kantorovich distance which is defined in the following way, for
m,m′ ∈ P1(Rd)

d1(m,m′) := supφ ∈ 1− Lip

∫
Rd
φ(x)(m′ −m)(dx),

where 1-Lip is the space of the Lipschitz functions φ with Lipschitz constant 1, that is, functions
satisfying |φ(x)− φ(y)| ≤ |x− y|. Furthermore, we have from [1] that P1(Rd) is a complete metric
space with d1(·, ·).

We will also need to introduce the notation C([t0, T ],P1(Rd)) m, which is the space of continuously
time indexed families of probability measures. The function m solving the Mean Field Game system
(1) will typically be a function of this space.
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Having finished the exposition on probability measures, we move on to the function spaces. We
define the spaces of bounded continuously differentiable functions Cnb (Rd) for each n ∈ N as the
linear space of maps φ : Rd → R such that ‖φ‖n+α <∞ where

‖φ‖Cnb :=
∑
|`|≤n

sup
x∈Rd

|D`φ(x)|, (3)

where ` denotes a multiindex of differentiation with respect to x ∈ Rd.

Another, and an in many ways more refined, notion of continously differentiable functions comes
though the theory of Hölder continuity. For some α ∈ (0, 1), we define the Hölder spaces Cn+α(Rd)
as the space of functions φ ∈ Cnb (Rd) that are in addition bounded in the following norm

‖φ‖n+α := ‖φ‖Cnb +
∑
|`|=n

sup
x 6=x′

|D`(x)−D`(x′)|
|x− x′|α

. (4)

Furthermore, as a key part of the analysis of coupled linear systems in the sequel, we have to
introduce the dual spaces of the aformentioned Hölder spaces Cn+α(Rd), which we denote by
C−(n+α)(Rd) with norm defined in the usual way for functionals

‖ρ‖−(n+α) := sup
‖φ‖n+α≤1

〈ρ, φ〉n+α, (5)

where 〈·, ·〉n+α denotes the action of a functional in the left hand slot upon a Cn+α-function in the
right hand slot. We also have the following lemma regarding inclusion in the relevant spaces.

Lemma 2.3. For natural numbers n ≤ m, α ∈ (0, 1), and considering fuctions spaces over Rd, we
have that Cm+α ⊆ Cmb ⊆ Cn+α ⊆ Cnb . Furthermore, for the corresponding dual spaces, we have
C−nb ⊆ C−(n+α) ⊆ C−mb ⊆ C−(m+α).

Proof. By induction, we can choose m = n + 1 without loss of generality. The first chain of
inclusions follows from observing that, by the definition of the norms (3) and (4), ‖φ‖Cnb ≤ ‖φ‖n+α
and ‖φ‖Cmb ≤ ‖φ‖m+α, as well as noting that if φ ∈ Cmb we have by the Mean Value Theorem∑

|`|=n

sup
x6=x′

|D`φ(x)−D`φ(x′)|
|x− x′|

≤
∑
|`|=n+1

sup
x∈Rd

|D`φ(x)| ≤ ‖φ‖Cmb .

Now, if |x− x′| ≤ 1 we have

|D`φ(x)−D`φ(x′)|
|x− x′|α

≤ |D
`φ(x)−D`φ(x′)|
|x− x′|

|x− x′|1−α ≤ ‖φ‖Cmb |x− x
′|1−α ≤ ‖φ‖Cmb ,

and equivalently if |x− x′| > 1 then by the triangle inequality

|D`φ(x)−D`φ(x′)|
|x− x′|α

≤ |D
`φ(x)|+ |D`φ(x′)|
|x− x′|α

≤ 2‖φ‖Cmb .

Consequently, ‖φ‖n+α ≤ ‖φ‖Cmb and the inclusion chain holds.

For the inclusion chain in the dual spaces, we note that since ‖φ‖n+α ≤ ‖φ‖Cmb
‖ρ‖−m = sup

‖φ‖Cm
b
≤1
〈ρ, φ〉n+α ≤ sup

‖φ‖n+α≤1
〈ρ, φ〉n+α = ‖ρ‖−(n+α),

since we are taking the supremum over a larger class of functions. Thus C−(n+α) ⊆ C−mb . The
same argument holds for the other two inclusions.

We will also need to work with functions of two space variables in Rd, often denoted x and y, and
to control derivatives with respect to the two variables simultaneously. To this end we introduce
notation for a paired Hölder norm, for φ = φ(x, y) we set

‖φ‖m,n :=
∑

|`|≤m,|`′|≤n

‖D`
xD

`′

y φ‖∞,

4



and

‖φ‖m+α,n+α := ‖φ‖m,n +
∑

|`|=m,|`′|=n

sup
(x,y 6=(x′,y′))

|D`
xD

`′

y φ(x, y)−D`
xD

`′

y φ(x′, y′)|
|x− x′|α + |y − y′|α

.

Finally, we have the parabolic Hölder spaces, which are spaces of functions u : [0, T ] × Rd → R
with Hölder-type regularity in time and space. For compactness of notation, we will sometimes
denote QT := [0, T ]× Rd. Let

[u]α/2,α;QT := sup
(t1,x1)6=(t2,x2)

(ti,xi)∈QT

|u(t1, x1)− u(t2, x2)|
|x1 − x2|α + |t1 − t2|

α
2

[u]1+α/2,2+α;QT := [ut]α/2,α;QT +

d∑
i,j=1

[uxixj ]α/2,α;QT .

We define the parabolic Hölder spaces Cα/2,α(QT ), C1+α/2,2+α(QT ) where inclusion is decided by
boundedness in the following norms

‖u‖Cα/2,α(QT ) = ‖u‖∞;QT + [u]α/2,α;QT ,

‖u‖C1+α/2,2+α(QT ) = ‖u‖∞;QT + ‖Du‖∞;QT + ‖ut‖∞;QT +

d∑
i,j=1

‖ ∂2u

∂xi∂xj
‖∞;QT + [u]1+α/2,2+α;QT .

The concept of Hölder spaces and their relation to parabolic PDE is treated in a thorough manner
in [17] and [21].

An important type of continuous function which we will apply numerous times in our analysis is
the mollifiers.

Definition 2.4. We define the standard mollifier η ∈ C∞c (Rd) in the following way

η :=

{
Cd exp

(
− 1

1−|x|2

)
if |x| < 1,

0 if |x| ≥ 1,

where Cd is a dimensionally dependent constant chosen so that
∫
Rd η dx = 1. Furthermore, for

each ε > 0 we denote

ηε(x) :=
1

εd
η(
x

ε
).

The concept of mollification will be used quite heavily in the sequel, primary in order to build
smooth approximations to given functions. For a locally integrable function f : Rd → R we define
the mollification of f as the convolution against a scaled standard mollifier

f ε := ηε ∗ f.

We state some important properties of mollification in the following proposition taken from [12]

Proposition 2.5. Let η be the standard mollifier, and let f ∈ L1
loc(Rd). Then the following

statements hold

(i)
∫
Rd η dx = 1 and supp(ηε) ⊂ B(0, ε).

(ii) f ε ∈ C∞(Rd).

(iii) f ε → f a.e as ε→ 0.

(iv) If f is continuous, then f ε → f uniformly on compacts.

5



As the last topic in this subsection, we have to mention the Dirac distribution. For our purposes
the Dirac delta function δx0 is a generalised function in the dual of Cb(Rd) defined by the following
action: For x0 ∈ Rd and any φ ∈ Cb(Rd)

〈δx0 , φ〉 := φ(x0).

Simply spoken, this is expressing the concept of point evaluation as a functional. We are further-
more able to define derivatives. For |`| ≤ n we define the distributional derivative of the Dirac
distribution D`δx0

∈ C−nb (Rd) as the following action upon the function φ ∈ Cnb (Rd)

〈D`δx0
, φ〉 := (−1)|`|〈δx0

, D`φ〉 = (−1)|`|D`φ(x0),

where we have, analogously to weak derivatives, moved the derivatives over to a test function φ.

The Dirac delta function is an example of what are called distributions, a huge and fascinating
topic in and of itself that we cannot go into here. The curious reader is recommended to look up
the nice and comprehensive presentation of distributions theory given in [13].

2.2 Derivatives in a Measure Variable

In order to study the Master Equation, we have to make sense of the calculus of how changes
in initial distribution m0 ∈ P1(Rd) influences the Mean Field Game system. We formalise this
properly by defining the notion of a derivative with respect to a measure.

The following definition is taken from [7], and adjusted to the case in the whole space Rd.

Definition 2.6. A function U : P(Rd)→ R is said to be C1 if there exists a continuous mapping
δU
δm : P(Rd)× Rd → R such that for all m,m′ ∈ P(Rd)

lim
h→0+

U((1− h)m+ hm′)− U(m)

h
=

∫
Rd

δU

δm
(m, y)(m′ −m)(dy)

Furthermore, in order to ensure uniqueness, we set the following normalisation convention.∫
Rd

δU

δm
(m, y)m(dy) := 0

This way of defining a derivative in a function space is similar to the Gateaux derivative, a treatment
of which can be found in Chapter 2.6 of [28]. However, since P1(Rd) is not a vector space, we
define the measure derivative using a convex combination.

We continue by introducing a property mirroring the fundamental theorem of calculus

Lemma 2.7. Let U be C1, then for all m,m′ ∈ P(Rd), we have

U(m′)− U(m) =

∫ 1

0

∫
Rd

δU

δm
((1− s)m+ sm′, y)(m′ −m)(dy)ds.

Proof. We consider U((1−s)m+sm′) as a function of s ∈ R and attempt to compute the derivative
with respect to this variable.

d

ds
(U((1− s)m+ sm′))

= lim
h→0+

U((1− (s+ h))m+ (s+ h)m′)− U((1− s)m+ sm′)

h

= lim
h→0+

U(((1− s)m+ sm′)(1− h) + h((1 + s)m′ − sm))− U((1− s)m+ sm′)

h
.

6



Assuming that s ∈ [0, 1], we can apply definition 2.6 for the measure derivative, and we get

d

ds
(U((1− s)m+ sm′)) =

∫
Rd

δU

δm
((1− s)m+ sm′, y)(((1− s)m+ sm′)− (1− s)m+ sm′)(dy)

=

∫
Rd

δU

δm
((1− s)m+ sm′, y)(m′ −m)(dy)

Now, applying the fundamental theorem of calculus, we get

U(m′)− U(m) =

∫ 1

0

d

ds
(U((1− s)m+ sm′)) ds =

∫ 1

0

∫
Rd

δU

δm
((1− s)m+ sm′, y)(m′ −m)(dy)ds

With this property, we can perform what we in the sequel will call the Lipschitz in y trick. If
supm∈P1(Rd) ‖Dy

δU
δm (m, ·)‖∞ = L < ∞, then we know that δU

δm (m, ·) is Lipschitz continuous in
y with Lipschitz constant smaller or equal to L. By the definition of d1, we then have for any
m,m′ ∈ P(Rd)

|U(m′)− U(m)| =
∣∣∣∣∫ 1

0

∫
Rd

δU

δm
((1− s)m+ sm′, y)(m′ −m)(dy)ds

∣∣∣∣ ≤ ‖Dy
δU

δm
(m, ·)‖∞d1(m′,m).

This cross derivative in y and m is quite important to the study of the Master Equation, so
important in fact that we give it its own name and notation. We call the following derivative the
Lions derivative, named after the Fields medallist Pierre-Louis Lions who co-introduced the field
of Mean Field Games

DmU(m, y) := Dy
δU

δm
(m, y).

We also need to introduce the concept of a pushforward measure

φ#m(φ−1(A)),

for any Borel set A ⊆ Rd. This is in some ways the generalisation of the change of variables method
from integration theory. We also include a final useful result.

Proposition 2.8. Assume U to be C1, with δU
δm being continuously differentiable in y and DmU

is continuous in m and y. Furthermore, let φ ∈ L1(m,Rd) . Then,

lim
h→0

U((id + hφ)#m)− U(m)

h
=

∫
Rd
DmU(m, y) · φ(y)m(dy).

Proof. We follow the proof for Proposition 2.2.3. in [7]. By the fundamental theorem of calculus
for measures from Lemma 2.7, setting mh,s := s(id + hφ)#m+ (1− s)m,

U((id + hφ)#m)− U(m) =

∫ 1

0

∫
Rd

δU

δm
(mh,s, y)((id + hφ)#m−m)(dy)ds (6)

=

∫ 1

0

∫
Rd

( δU
δm

(mh,s, y + hφ(y))− δU

δm
(mh,s, y)

)
m(dy)ds

= h

∫ 1

0

∫
Rd

∫ 1

0

DmU(mh,s, y + thφ(y)) · φ(y)dtm(dy)ds.

From the definition of the d1-metric, we check

d1((id + hφ)#m,m) ≤
∫
Rd
|y + hφ− y|m(dy) = h‖φ‖L1(m),

and hence mh,s tends to m as h → 0. We divide both sides of (6) by h and let h → 0. By the
continuity of Dm we are left with the desired result.
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This introduction to measure valued derivatives has been kept at a bare minimum of what is
necessary for the analysis of the Master Equation. For a more thorough introduction, see the
probabilistic introduction of Carmona and Delarue [8] or the embedding strategy from the lectures
of Lions [22].

2.3 Short Introduction in Game Theory

Game theory is the mathematical study of models of strategic interaction, and has since its intro-
duction in the 1950s by Morgenstern and von Neumann evolved into a vast field with countless
applications in fields like social science, biology, and economics. In this thesis, we consider the
subfield of noncooperative games, where two or more players choose strategies to optimise for
individual success.

The concept of the equilibrium as the solution to a non-cooperative game was introduced by John
Forbes Nash Jr. in [24]. In a Nash equilibrium, none of the agents in the non-cooperative game
has anything to gain from changing only ones own strategy. We phrase this more mathematically
by considering a non cooperative game of two agents, agent A and agent B. They both choose
a strategy, αA and αB respectively, from a set of admissible strategies A. Each agent want to
minimise a given cost function Ji : A × A → R for i ∈ {A,B} by choosing the best strategy
in response to the admissible strategies of the other. We can then state the Nash equilibrium
mathematically by noting that if (α∗A, α

∗
B) is the equilibrium strategies, the following inequalities

hold

JA(α∗A, α
∗
B) ≤ JA(αA, α

∗
B), ∀αA ∈ A,

JB(α∗A, α
∗
B) ≤ JA(α∗A, αB), ∀αB ∈ A.

A famous example of a Nash equilibrium is the prisoners’ dilemma: Two people, person A and
person B, are charged with a crime and are given the option to either confess or stay silent. If
both stay silent, they both go to prison for 1 year. If one confesses and the other stays silent, the
one who confesses goes free while the other gets 20 years. Lastly, if both confess, both get 5 years.
The crux of this scenario is that, with no cooperation, you are always better off by confessing, even
though both confessing will lead to a worse result for both people.

Game theory problems with continuous time and space variables are called differential games, and
their dynamic and optimality are governed by differential equations. We introduce the N -player
differential game, which indeed can be cast as an optimal control problem, each player i ∈ {1, ..., N}
controls their own state {Xi,t}t∈[0,T ] using their control function {αi,t}t∈[0,T ] which is governed by
the following dynamic {

dXi,t = αi,tdt+
√

2εdBit, t ∈ (t0, T ]

Xi,t0 = xi,0,
(7)

where {Bit}t∈[0,T ] is the standard d-dimensional Brownian motion as described in [26], and x0 =

(x1,0, ..., xN,0) ∈
(
Rd
)N

is the initial condition of the whole system at time t0. To complete the
control problem formulation, we need a cost functional, and define

JNi (t0,x0, {αj,·}j∈{1,...,N}) = E

[∫ T

t0

(
L
(
Xi,s, αi,s

)
+ FN,i

(
Xs

))
ds+GN,i

(
XT

)]
, (8)

where Xt = (X1,t, ..., XN,t), and L : Rd × Rd → R, FN,i : RNd → R, and GN,i : RNd → R are
Borel measurable functions. Here, L corresponds to the running cost of the agents own position
and strategy, FN,i is the running cost given by the position of the other N−1 agents in the system,
and GN,i is a terminal cost associated with the position of all the agents at time T . Note that the
cost functional includes an expectation, as the dynamic is stochastic.

We now seek an optimal solution, which in the realm of non-cooperative games is the Nash equilib-
rium. For an optimal set of strategies {α∗i,·}i∈{1,...,N} we define the value functions {vN,i}i∈{1,...,N}
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as the cost functionals evaluated at equilibrium,

vN,i(t0,x0) := JNi (t0,x0, {α∗i,·}i∈{1,...,N}),

which by definition satisfies the inequality of the Nash equilibrium

vN,i(t0,x0) ≤ JNi (t0,x0, αi,·, {α∗i,·}i 6=j),

for each admissible strategy {αi,t}t∈[0,T ]. If all interaction between the agents of the comes through
the cost function due to the changing of strategies, it can be shown that the set of value functions
satisfy the following parabolic partial differential equation.

−∂tvN,i(t,x)− ε
N∑
j=1

∆xjv
N,i(t,x) +H(xi, Dxiv

N,i(t,x))

+
∑
j 6=i

DpH(xj , Dxjv
N,j(t,x)) ·Dxjv

N,i(t,x)

= FN,i(x) in [0, T ]×
(
Rd
)N
,

vN,i(T,x) = GN,i(x) in
(
Rd
)N
,

where the function H(x, p) = supα∈Rd {−α · p− Lx, α} is called the Hamitonian. We call this
system the N -dimensional Nash system, and part of the analysis of this paper is concerned with
its behaviour as N →∞. Furthermore, we also have that the optimal strategies can be expressed
using solutions of the Nash system in the following manner:

α∗i (t,x) := −DpH
(
xi, Dxiv

N,i(t,x)
)
, i ∈ {1, ..., N},

which we can combine with the dynamic (7) to express the set of so called optimal trajectories of
the problem {

dXi,t = −DpH
(
xi, Dxiv

N,i(t,Xt)
)
dt+

√
2εdBit, t ∈ (t0, T ]

Xi,t0 = xi,0.

Solving the Nash system for finite N is quite difficult, as the PDE system is strongly coupled,
however there is a simplification to be made for large N in going to a Mean Field formulation.
Neumann and Morgenstern remarked that [25], in borrowing intuition from physics and statistics,
system of very large size where each agent is negligible are often easier to handle than small
or medium sized ones. Further development was made by Aumann, who introduced the idea of
simplification to infinitesimal actors [2] to systems of game theory in financial applications. Finally,
the jump to a Mean Field formulation was done, in the PDE sense, by Lasry and Lions in 2006
[20]. They proved that, roughly speaking, for a system of infinitely many agents following the
same dynamic (7) and the same cost functional (8), where the cost terms for each agent is only
dependent upon its own position and the cumulative distribution of the other agents, and not upon
the exact position of every other agent, the distribution of agents and their cost is governed by
the Mean Field Game system (1). Thus we only have to compute the solution of a single system
of parabolic PDE in stead of having to deal with a N -dimensional strongly coupled system. For
a more rigorous and thorough description of the origin of the Mean Field Game system, see [1] or
[14].

However, even though an approximation by letting N → ∞ is convenient, this is easier said than
done for the Nash system. Due to the strongly coupled nature it is very difficult to establish
compactness estimates upon the system in and of itself, and thus many tools and techniques for
convergence fall short. The solution is to look to the Master Equation (2), a PDE closely related
to (1). If the Master Equation is well-posed, we can use it to approximate Nash systems under
certain symmetry assumptions, and use the approximation to obtain a notion of convergence. The
well-posedness of the Master Equation will be treated in Section 3 and the approximation and
convergence in Section 4.

A more detailed introduction of differential games this context can be found in [7], from which the
approach in this subsection was inspired.
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3 The Mean Field Game System

Before we can undertake the main problem and purpose of this thesis, the well-posedness of the
Master Equation, we first need to pay the topic of Mean Field Game systems a mathematical
visit. Indeed, as mentioned in the introduction, the core idea for proving existence of the Master
Equation is to represent its solution using solutions of its corresponding Mean Field Game system,
which in a general setting takes the following form


−∂tu− ε∆u+H(x,Du) = F (x,m(t)) in [t0, T )× Rd,
u(T ) = G(x,m(T )) in Rd,
∂tm− ε∆m− div(mDpH(x,Du)) = 0 in (t0, T ]× Rd,
m(0) = m0 in Rd.

(9)

Remark 3.1. The ε in the system is a viscosity parameter in (0,∞), related to the stochastic
term

√
2εdBt in the optimal control problem from which the Mean Field Game arises. Some texts,

as [7], prefer to set ε = 1, while others like [1] prefer to keep it as a parameter. The two approaches
are qualitatively equivalent as one can scale the spatial domain, and the terms F,G,H, by a factor√
ε, setting x∗ =

√
εx ∈ Rd, and the parameter cancels. This approach is described, in a somewhat

applied manner, in [19]. One of the advantages of keeping the parameter ε in the equation is that
one can keep track of what estimates on (9) depend on ε so one can later pass ε → 0 through a
vanishing viscosity argument, a method described clearly in Chapter 10.1 of [12]. This allows us
to establish solutions of the so called First Order Mean Field Game System.

−∂tu+H(x,Du) = F (x,m(t)) in [t0, T )× Rd,
u(T ) = G(x,m(T )) in Rd,
∂tm− div(mDpH(x,Du)) = 0 in (t0, T ]× Rd,
m(0) = m0 in Rd.

Vanishing viscosity arguments for proving existence of solution for the first order system have been
performed in [5] and in the present author’s project thesis [14]. We will not give the first order
system, nor the method of vanishing viscosity, any further treatment in the sequel.

To simplify the analysis, and to make the presentation of the concepts in this thesis less repetitive
and proof-technical, we will work with a specific choice of Hamiltonian H(x, p), namely a quadratic
one H(x, p) = 1

2 |p|
2. This simplification results in the following Mean Field Game system, to which

we will devote our attention


−∂tu− ε∆u+ 1

2 |Du|
2 = F (x,m(t)) in [t0, T )× Rd,

u(T ) = G(x,m(T )) in Rd,
∂tm− ε∆m− div(mDu) = 0 in (t0, T ]× Rd,
m(0) = m0 in Rd.

(10)

In this section we will recall, reproduce and enhance some existence and uniqueness results of this
system. Furthermore, we will introduce the core sufficient assumptions upon the coupling terms
F,G that will underpin the analysis of both Master, and Mean Field Game equation. Before we
can state well-posedness, we have to define precisely the concept of solution we are working with.

Definition 3.2. A pair (u,m) is a classical solution of the system (10) if

(i) m ∈ C([0, T ],P1(Rd)) and m(t0) = m0; u ∈ C([t0, T ]×Rd) and u(T, x) = G(x,m(T )), ∀x ∈
Rd

(ii) u is a continuous function in (0, T ) × Rd, of class C2 in space and C1 in time, and the first
equation of (10) is satisfied pointwise for x ∈ Rd and t ∈ (0, T ). Furthermore, m is a solution
of the distributional formulation of the second equation.
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The notion of a distributional formulation of the system’s second equation will be introduced in
the subsection on the Fokker-Planck equation. We continue by treating each of the constituent
equations of the system in their own subsections.

3.1 The Hamilton-Jacobi-Bellman Equation

The first equation in the Mean Field game system is called the Hamilton-Jacobi-Bellman equation,
and will be introduced in a very brief manner below. This equation in full generality takes the
following form

{
−∂tu+ H̃(t, x,Du,D2u) = 0 in Rd × (0, T ),

u(T ) = g in Rd.

The function H̃ : [t0, T ] × Rd × Rd × Rd×d → Rd is called the Hamiltonian and is deeply tied to
the theory of optimal control. Indeed, considering a control problem with a dynamic{

dx(s) = b(x(τ), ατ )dτ, s ∈ (t, T ],

x(t) = x,

and cost function

J(t, x, α) =

∫ T

t

L(s,x(s), αs)ds+G(x(T )),

the Hamiltonian arises through the so called Legendre transformation of the problem

H̃(t, x, p,M) := sup
a∈A

[−L(t, x, a,m)− p · b(x, a,m)− εTr(M)] .

Furthermore, the solution of the Hamilton-Jacobi-Bellman equation itself serves as the so called
value function

u(t, x) := inf
α∈A

J(t, x, α),

of the optimal control problem.

In this thesis, we consider Hamiltonians of the form H̃(x, p,M,m) = −εTrM + 1
2 |p|

2 − F (t, x),
resulting in the following parabolic PDE{

−∂tu− ε∆u+ 1
2 |Du|

2 = F (t, x) in [t0, T )× Rd,
u(T ) = G(x) in Rd.

(11)

For producing smooth classical solutions for this equation, we rely on the regularity of the coupling
terms F (t, x) and G(x), and utilise existence theory for parabolic PDE.

Proposition 3.3. Let F (t, x) ∈ Cα/2,α([0, T ] × Rd) and G(x) ∈ C2+α([0, T ] × Rd) Then the
Hamilton-Jacobi-Bellman equation (11) has a unique solution u ∈ C1+α/2,2+α([0, T ]× Rd).

Proof. In order to apply parabolic existence results, we first transform (11) to a linear equation
using the Cole-Hopf transform, a method described in Chapter 4.4 of [12]. In line with the trans-
formation, we define w := exp(u/2ε), which yields the linear parabolic PDE{

−∂tw − ε∆w = 1
2εwF (t, x) in [0, T )× Rd,

w(x, T ) = eG(x)/2ε in Rd.

We can now use the global parabolic existence result Theorem 5.1 in [18], which states that since
w(x, T ) ∈ C2+α([0, T ]×Rd)) and F (x,m(t)) ∈ Cα/2,α([0, T ]×Rd), then the transformed equation
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has a unique solution w ∈ C1+α/2,2+α([0, T ] × Rd). It is readily shown using the comparison
principle that w(t, x) > 0 for all (t, x) ∈ ([0, T ] × Rd) implying that the inverse transformation
u = 2ε ln(w) is well defined, and hence that u ∈ C1+α/2,2+α([0, T ]× Rd) is the unique solution of
(11).

After this surface-level treatment, we remark that the Hamilton-Jacobi-Bellman equation is in-
troduced in a thorough and eloquent manner in chapter 10.3 of [12], while a compact summary
written with Mean Field Games in mind can be found in the present author’s project thesis [14].

3.2 The Fokker-Planck Equation

The second equation in our Mean Field Game system is called the Fokker-Planck equation, which
for our use cases takes the following form{

∂tm− ε∆m− div(mb(t, x)) = 0 in (t0, T ]× Rd,
m(t0) = m0 in Rd.

(12)

where b : [t0, T ]× Rd → Rd is continuous in time and uniformly Lipschitz continuous in space.

Due to the regularising term ε∆m we also consider this equation to have a parabolic nature.
Indeed, if m0 and b are sufficiently smooth, say C2+α and Cα/2,1+α respectively, we can obtain
classical solutions in C1+α/2,2+α using the same strategy as in Proposition 3.3, that is, applying ex-
istence results from [18]. However, while the parabolic smoothness of the Hamilton-Jacobi-Bellman
equation (11) is always assured through the smoothness inducing coupling terms F (x,m(t)) and
G(x,m(T )), the ability of m0 to be any measure in P1(Rd) makes such a parabolic approach
impossible, and we have to consider entirely different techniques.

It turns out that, since we are dealing with general functions of probability measures, a specific
type of weakened formulation of the Fokker-Planck equations suits our purpose rather nicely. We
define what is called a distributional, or very-weak, solution of (12).

Definition 3.4. We say that m ∈ C([0, T ],P1(Rd)) is a distribution solution of the equation (12)
if for any test function ϕ ∈ C∞c ([t0, T ]× Rd) we have∫

Rd
ϕ(t, x)m(t, dx) =

∫
Rd
ϕ(t0, x)m0(dx) (13)

+

∫ t

t0

∫
Rd

[ϕt(s, x) +Dϕ(s, x) · b(s, x) + ε∆ϕ(s, x)]m(s, dx)ds

We collect the necessary information considering well-posedness of these equations in the following
proposition.

Proposition 3.5. Assume that m0 ∈ P1(Rd) and b ∈ C2
b ((t0, T ) × Rd). Then the Fokker-Planck

equation (12) has a unique distributional solution m ∈ C([0, T ],P1(Rd)).

Furthermore, if additionally m0 ∈ C2+α(Rd), then (12) has a unique classical solution where we
can consider m(t, ·) as a probability density function with

sup
t∈[t0,T ]

(
‖m(t, ·)‖∞ + ‖Dm(t, ·)‖∞ + ‖D2m(t, ·)‖∞ + ‖∂tm(t, ·)‖∞

)
≤ C,

and C is a constant dependent upon T, d, ‖b‖∞, ‖Db‖∞, and ‖D2b‖∞.

Remark 3.6. A rigorous proof of the first part of this proposition uses quite a bit of advanced
probability theory and outside the scope of, and not of primary concern of this thesis. A compre-
hensive article on the subject of weak elliptic and parabolic equations for measures is [3], a paper
which [7] claims is sufficient to cite to obtain the existence and uniqueness of m ∈ C([0, T ],P1(Rd))
above. The article performs the analysis on the whole space Rd, and not just Td, and is hence
applicable in our case.
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The classical existence is treated and proven using heat kernel estimates in Proposition 6.8 of [11]
for fractional diffusion operators L in the place of our Laplacian term ε∆m. These operators are
of the form

Lu(x) =

∫
Rd
u(x+ z)− u(x)−Du(x) · z1|z|<1µ(dz),

for some nonnegative Borel measure satisfying the Lévy-condition
∫
Rd 1∧ |z|2µ(dz) <∞, and lead

to a non-local formulation of the Fokker-Planck and hence the Mean Field Game system. However,
and fortunately, the proof performed in [11] works for the Laplacian as well.

Another important property of the distribution solution of the Fokker-Planck is its deep relation
to the solution of an SDE {

dXt = b(Xt, t)dt+
√

2εdBt t ∈ (t0, T ],

X0 = Z0.

where {Bt}t∈[0,T ] denotes standard Brownian motion given some probability space (Ω,F ,P), and
Z0 ∈ L1(Ω) is a random variable independent of {Bt}t∈[0,T ].

Their relation, and an important technical tool for the temporal continuity of the solutions, de-
scribed in the following lemma.

Lemma 3.7. If L(Z0) = m0, then m(t) := L(Xt) is a distribution solution of (12). Furthermore,
the solution satisfies

d1(m(t),m(s)) ≤ ‖b‖∞|t− s|+
√

2ε|t− s| ∀s, t ∈ [0, T ]

Proof. A full proof of this statement is found in the present author’s project thesis [14], which in
turn is an adaption and enhancement of a proof performed in [1].

Now, having established some exposition for the constituent equations of the Mean Field Game
system, we are able to undertake the problem of establishing, and expanding upon, well-posedness
results for the system itself.

3.3 Assumptions

In this subsection, we will present the assumptions needed in order to perform the proof for the
well-posedness of the Master Equation. We note that the following assumptions are sufficient
but strictly stronger than necessary. As this is a masters thesis, we would rather overshoot our
assumptions in order to gain clarity of presentation instead of obtaining optimal results. Several
of the assumptions can be significantly weakened, however, some come at the cost of having to
perform technical estimates beyond the scope of this paper.

To start off, we define the coupling terms F,G. Let the maps F,G : Rd×P1(Rd)→ Rd be globally
Lipschitz in both variables, that is, for any (x1,m1), (x2,m2) ∈ Rd × P1(Rd) we have, for some
constant L

|F (x1,m1)− F (x2,m2)| ≤ L (|x1 − x2|+ d1(m1,m2)) ,

|G(x1,m1)−G(x2,m2)| ≤ L (|x1 − x2|+ d1(m1,m2)) .

Furthermore, for a function U : Rd × P(Rd) which is C1 in the measure variable, we define the
following Lipschitz-type criterion

Lipn(
δU

δm
) := sup

m1 6=m2

(d1(m1,m2))−1
∥∥∥∥δU(·,m1, ·)

δm
− δU(·,m2, ·)

δm

∥∥∥∥
(n+α,n+α)
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We are now able to define the main assumptions of this paper.

sup
m∈P1(Rd)

(
‖F (·,m)‖3+α +

∥∥∥∥δF (·,m, ·)
δm

∥∥∥∥
(3+α,3+α)

+ Lip3(
δF

δm
)

)
<∞, (F)

sup
m∈P1(Rd)

(
‖G(·,m)‖4+α +

∥∥∥∥δG(·,m, ·)
δm

∥∥∥∥
(4+α,4+α)

+ Lip4(
δG

δm
)

)
<∞. (G)

We again remark that the aforementioned assumptions are not optimal. For instance, one does

not in general need the same order of regularity in the x and y variable for δF (·,m,·)
δm . However,

since the bounds (F), (G) will be applied in the majority of results in the analysis of the Master
Equation, we choose the same order to increase the legibility of the text. When these bounds are
invoked, we will also assume that F,G have the two following monotonicity properties.

The first monotonicity property is called The Lasry-Lions monotonicity condition, and states that
for any m,m′ ∈ P1(Rd)

{∫
Rd(F (x,m)− F (x,m′))(m−m′)(dx) ≥ 0,∫
Rd(G(x,m)−G(x,m′))(m−m′)(dx) ≥ 0.

(14)

This condition is precisely what is necessary in order to gain uniqueness of solutions to the Mean
Field Game system (10). The second criterion is of a functional kind, and is the following: for
every ρ ∈ C−(3+α)(Rd) and m ∈ P1(Rd)〈

〈δF (·,m, ·)
δm

, ρ〉x, ρ
〉
y

≥ 0,〈
〈δG(·,m, ·)

δm
, ρ〉x, ρ

〉
y

≥ 0,

where the functional actions 〈·, ·〉x, 〈·, ·〉y are applied in the x and y variable respectively. The
second monotonicity criterion is of a more technical nature, and will not be applied directly, but
rather serve as an important assumptions for the application for the upcoming technical Lemma
4.8, whose proof is beyond the scope of this text.

Remark 3.8. If we are not satisfied with choosing the specific Hamiltonian H(x, p) = 1
2 |p

2|, and
want to treat the system in more generality, we would need to introduce some further assumptions
upon H in order to get well-posedness for the more general Mean Field Game system (9). Sufficient
restrictions on H(x, p), as stated in [1] and [7], are global Lipschitz continuity in both variables,
and that there exists a constant C such that

1

C
Id ≤ D2

ppH(x, p) ≤ CId for (x, p) ∈ Rd × Rd

3.4 Existence and Uniqueness - Removing Moment Assumptions

As mentioned in the introduction, in the project thesis [14], a proof for the existence and unique-
ness of the Mean Field Game system (10) was performed under some regularity and moment
assumptions on the initial data. The core assumption for these results was assuming m0 ∈
P1(Rd) ∩ C2+α(Rd), as well as requiring that∫

Rd
ψ(x)m0(dx) <∞ (15)

for some radially increasing superlinear function ψ. This is done to induce tightness, and hence
compactness in the existence proof. In the project thesis [14], the explicit choice of ψ(x) =√

1 + |x|2 log
√

1 + |x|2 was made to satisfy this particular assumption, as it was a simple example
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of a smooth superlinear function. However, using methods from [9], we can infer the existence of
a ψ for any m0 ∈ P1(Rd), and hence that (15) actually comes for free. Moment assumptions are
only an issue in Mean Field Game systems defined upon Rd, and not for the Td-cases, as presented
in [1] and [7]. This is due to (15) always being satisfied on the torus for any ψ ∈ C(Td) since Td
is compact, and hence the extreme value theorem holds yielding ‖ψ‖∞ <∞.

Before developing this argument further, we give introduce the restricted form of the existence
theorem. By observing that the assumptions (F) and (G) upon F,G are strictly stronger than in
the project thesis, we can combine the existence and uniqueness Theorems 4.2 and 4.3 from [14]
into the following result.

Theorem 3.9. Let the assumptions (F) and (G) be satisfied. Furthermore, let m0 ∈ P1(Rd) ∩
C2+α(Rd) and assume that

∫
Rd ψ(x)m0(dx) < ∞, where ψ(x) =

√
1 + |x|2 log

√
1 + |x|2. Then

there exists a unique classical solution (u,m) of the MFG-system (10). Moreover, we additionally
have that u,m ∈ C1+α/2,2+α([t0, T ]× Rd).

However, in order to use the ”method of characteristics” U(t0, x,m0) := u(t0, x) mentioned in
the introduction to derive solutions for the Master Equation, we need to be able to obtain unique
solutions for the Mean Field Game system (10) for anym0 ∈ P1(Rd). The purpose of this subsection
is thus to provide and prove the necessary results in this generality.

The first step towards this easing of assumptions is removing the integrability condition with
respect to ψ, for which we employ the following lemma:

Lemma 3.10. If m0 ∈ P1(Rd), then there exists a radial function ψ ∈ C2(Rd), with |Dψ(x)‖, |D2ψ(x)| ≤
C(1 + |x|), for some constant C > 0, such that∫

Rd
ψ(x)m0(dx) ≤ 1

and

lim
|x|→∞

ψ(x)

|x|
=∞

Proof. We use Lemma 4.9 from [9], which equates tightness of a set of measures K with the
existence of an increasing radial function V ∈ C2(Rd), where ‖DV |∞, ‖D2V ‖∞ ≤ 1 and

sup
m∈K

∫
Rd
V (x)m(dx) ≤ 1

To utilise this result, we first show that the singleton set of any m ∈ P(Rd), {m}, is tight. In other
words, for each ε > 0, we need to be able to find a compact set Kε ⊂ Rd such that

m(Rd\Kε) < ε. (16)

We define for each n ∈ N the closed balls Bn = {x ∈ Rd : |x| ≤ n}. By the rules of complements

Rd =

∞⋃
n=1

Bn =⇒ ∅ =
(
Rd
)c

=

( ∞⋃
n=1

Bn

)c
=

∞⋂
n=1

Bcn

Thus, by observing that Bcn+1 ⊂ Bcn and m(Bcn) ≤ 1 for all n ∈ N, we can use the continuity
property of measures of intersections

lim
n→∞

m(Bcn) = m(

∞⋂
n=1

Bcn) = m(∅) = 0

By the definition of convergence of sequences in Rd, we have that for any ε > 0, there exists an
N ∈ N such that m(Rd\Bn) = m(Bcn) < ε for all n ≥ N . This means that we can choose Kε = BN ,
which satisfies (16), proving that {m} is tight.
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For the next step, we first observe that since m0 ∈ P1(Rd),∫
Rd

√
1 + |x|2m0(dx) ≤

∫
Rd

(
1 + |x|

)
m0(dx) <∞

We can thus define a probability measure in the following way for any Borel set A ∈ Rd

ν0(A) :=
1

C0

∫
A

√
1 + |x|2m0(dx),

where, for the sake of normalisation

C0 =

∫
Rd

√
1 + |x|2m0(dx).

Since ν0 ∈ P(Rd), {ν0} is tight, and by Lemma 4.9 in [9], we have the existence of a radially
non-decreasing function V ∈ C2(Rd) on the form with ‖DV ‖∞, ‖D2V ‖∞ ≤ 1 where

lim
|x|→∞

V (x) =∞

and ∫
Rd
V (x)ν0(dx) ≤ 1

Rewriting this integral with respect to m0, we have∫
Rd
V (x)

1

C0

√
1 + |x|2m0(dx) ≤ 1,

from which we can define the desired function ψ(x) := 1
C0

√
1 + |x|2V (x). We see that

ψ(x)

|x|
=

1

C0

√
1 + |x|2V (x)

|x|
≤ 1

C0
V (x)

|x|→∞−−−−→∞,

as desired. What remains of the proof is to establish the properties of ψ. ψ is obviously of class
C2(Rd), as it is a product of a C2 and a C∞ function. Furthermore,

Dψ(x) =
1

C0

(√
1 + |x|2DV (x) + V (x)

x√
1 + |x|2

)
,

D2ψ(x) =
1

C0

(
V (x)D2(

√
1 + |x|2) +

xT√
1 + |x|2

DV +DV T
x√

1 + |x|2
+
√

1 + |x|2D2V

)
,

When combining with the estimates ‖DV ‖∞, ‖D2V ‖∞ ≤ 1, we get for some C > 0

|Dψ(x)| ≤ C(1 + |x|),
|D2ψ(x)| ≤ C(1 + |x|),

which completes the proof.

Having shown existence of such a ”tightness inducing function” ψ for each initial condition m0 ∈
P1(Rd), we can show that a similar integral bound also holds for the solution of the Fokker-Planck
equation with m0 as initial distribution.

Lemma 3.11. Let m(t) = L(Xt) be the solution to the Fokker-Planck equation (13) with m0 ∈
P1(Rd) and ‖b‖∞ < ∞. Furthermore, let ψ ∈ C2(Rd) be a non-negative function such that
|Dψ(x)|, |D2ψ(x)| ≤ C0(1 + ψ(x)), for some constant C0 > 0. Then∫

Rd
ψ(x)m(t)(dx) ≤

(∫
Rd
ψ(x)m0(dx) + CT (ε+ ‖b‖∞)

)
eCT (ε+‖b‖∞)
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Proof. In order to circumvent the need for integrability of the function ψ with respect to the family
of measures {m(t)}t∈[0,T ] we introduce a smooth cutoff function by convolving with a mollifier

η ∈ C∞c (Rd) as defined in Definition 2.4.

χBk,1 := 1Bk ∗ η(x) =

∫
Rd

1Bk(x− y)η(y)dy

We then define ψk(x) := ψ(x)χBk,1, which is twice continuously differentiable in space and constant
in time, and we can apply Itô’s lemma:

ψk(Xt) = ψk(Z0) +

∫ t

0

[Dψ(Xs) · b(Xs) + ε∆ψk(Xs)]ds+

∫ t

0

Dψk(Xs) · dBs

Furthermore, since χBk,1 ∈ C∞c (Rd), the bounds on the derivatives of ψ yields the following
estimates

Dψk(x) · b(x) ≤ C‖b‖∞(ψ(x) + 1)

ε∆ψk(x) ≤ εC(ψ(x) + 1)

ψk(x) ≤ ψ(x)

for some common constant C. This yields

ψk(Xt) ≤ ψ(Z0) +

∫ t

0

C(ε+ ‖b‖∞)(ψk(Xs) + 1)ds+

∫ t

0

Dψk(Xs) · dBs

Taking the expectation of the inequality, where the integral with respect to the Brownian motion
will vanish, and using Tonelli’s theorem to swap the order of the integrals, we get∫

Rd
ψk(x)m(t, dx) ≤

∫
Rd
ψ(x)m0(dx) + C(ε+ ‖b‖∞)

∫ t

0

(
1 +

∫
Rd
ψk(x)m(s, dx)

)
ds

Grönwall’s inequality applied to the map t→
∫
Rd ψk(x)m(t)(dx), which is bounded for each k ∈ N,

yields ∫
Rd
ψk(x)m(t, dx) ≤

(∫
Rd
ψ(x)m0(dx) + CT (ε+ ‖b‖∞)

)
eCT (ε+‖b‖∞)

Finally, we apply Fatou’s Lemma (Lemma 4.1 in [4]), noting that ψ(x) = limk→∞ ψk(x)∫
Rd
ψ(x)m(t, dx) ≤ lim inf

k

∫
Rd
ψk(x)m(t, dx) ≤

(∫
Rd
ψ(x)m0(dx) + CT (ε+ ‖b‖∞)

)
eCT (ε+‖b‖∞)

which is the estimate we wanted.

An immediate consequence of Lemma 3.11 is that solutions of the Fokker-Planck equation with a
bounded drift term have a first moment.

Corollary 3.12. Let m(t) = L(Xt) be the solution to the Fokker-Planck equation (13) with m0 ∈
P1(Rd) and ‖b‖∞ <∞. Then m(t) ∈ P1(Rd) for all t ∈ [0, T ].

Proof. Choose ψ(x) =
√

1 + |x|2 in Lemma 3.11.

∫
Rd
|x|m(t)(dx) ≤

∫
Rd
ψ(x)m(t)(dx) ≤

(∫
Rd

√
1 + |x|2m0(dx) + CT (ε+ ‖b‖∞)

)
eCT (ε+‖b‖∞)

≤
(∫

Rd
(1 + |x|)m0(dx) + CT (ε+ ‖b‖∞)

)
eCT (ε+‖b‖∞) <∞

where the last inequality follows from m0 ∈ P1(Rd).
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Having established boundedness of the integrals of the Fokker-Planck solutions against a tightness
inducing function ψ in Lemma 3.11, we set out to convert this into compactness in C([0, T ],P1(Rd))
for a family of solutions, which is exactly what is needed to amend the moment assumption (15).
To that end, we need the following technical lemma, which is proven in Lemma 2.5 in the project
thesis [14].

Lemma 3.13. Let K ⊆ P1(Rd). If there exists a positive continuous function ψ : Rd → R where
lim|x|→∞ ψ(x)/|x| =∞ and

sup
m∈K

∫
Rd
ψ(x)m(dx) = C <∞

for some constant C, then K is precompact in P1(Rd) with respect to the d1 metric.

Combining Lemmas 3.10, 3.11, and 3.13, we can finally construct the required compactness result.

Lemma 3.14. Let {mi}i∈I ⊂ C([0, T ],P1(Rd)) be a set of solutions to the Fokker-Planck equation
(13) with respect to {bi}i∈I , all sharing initial condition m0 ∈ P1(Rd). Assume there exists a K > 0
such that supi∈I ‖bi‖∞ ≤ K. Then {mi}i∈I is precompact in C([0, T ],P1(Rd))

Proof. We proceed by applying the version of the Arzelà-Ascoli Theorem found in [23] and [16],
which requires the precompactness of {mi(t)}i∈I for each t ∈ [0, T ], as well as for every mi to be
equicontinous in t. For the precompactness for each t ∈ [0, T ] we note, using Lemma 3.10 and
Lemma 3.11, that there exists a radially increasing function ψ ∈ C2(Rd) with

lim
|x|→∞

ψ(x)

|x|
=∞

such that

sup
i∈I

∫
Rd
ψ(x)mi(t)(dx) ≤

(∫
Rd
ψ(x)m0(dx) + CT (ε+K)

)
eCT (ε+K) <∞

By Lemma 3.13, the set {mi(t)}i∈I is precompact in P1(Rd) for each t ∈ [0, T ]. Furthermore, for
the equicontinuity, we invoke Lemma 3.7 and get

d1(mi(t),mi(s)) ≤ K|t− s|+
√

2ε|t− s| ∀s, t ∈ [0, T ]

Applying the Arzelà-Ascoli theorem, we conclude that {mi}i∈I is precompact in C([0, T ],P1(Rd)).

Remark 3.15. Lemma 3.14 might not seem significant at first glance. However, when one inspects
the proof of existence in Theorem 3.9, one can observe that the set stated as compact can serve
as an ”upgrade” in a central part in the proof. The core idea in establishing existence of solutions
is an application of the Schauder fixed point theorem, which can be found in Chapter 9.2 of [12].
This theorem states that if X is a real Banach space, K ⊂ X is nonempty, compact, and convex,
and a map A : K → K is continuous, then A has a fixed point. To utilise this method, we recast
the system (10) as a fixed point iteration in the following way. For some µ ∈ K ⊂ C([0, T ],P1(Rd))
we denote by uµ the solution of

{
−∂tuµ − ε∆uµ + 1

2 |Duµ|
2 = F (x, µ(t)) in [t0, T ]× Rd,

uµ(T ) = G(x, µ(T )) in Rd.

Then we set m := A(µ) as the solution to{
∂tm− ε∆m− div(mDuµ) = 0 in [t0, T ]× Rd,
m(0) = m0 in Rd.

Note that the existence of a fixed point m = A(µ) = µ implies the existence of a solution to the
system (10). By choosing K as the set {mi}i∈I ⊂ C([0, T ],P1(Rd)) from Lemma 3.14, instead of
the ψ(x) =

√
1 + |x|2 log

√
1 + |x|2 dependent set from the proof in [14], we rid ourselves of the

moment assumption (15). The rest of the proof is identical.
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Next, we have to remove the assumption m0 ∈ C2+α(Rd). To this end, for any m0 ∈ P1(Rd) we
construct a family of regularisers mδ

0 ∈ C∞b (Rd) converging to m0. We solve the MFG system for
each mδ and pass the solutions to the limit using compactness.

Theorem 3.16. Assume that (F) and (G) holds. Then there exists a unique classical solution
(u,m) of the MFG-system (10) for any initial condition (t0,m0) ∈ [0, T ) × P1(Rd). Moreover,
(u,m) ∈ C1+α/2,2+α([t0, T ] × Rd)) × C([t0, T ],P1(Rd)). Furthermore, if m0 ∈ C2+α(Rd), then
u,m ∈ C1+α/2,2+α([t0, T ]× Rd).

Proof. We introduce the following δ-indexed family of mollifiers {ηδ} in accordance with Definition
2.4, and construct a family of mollified measures

mδ
0(x) := m0 ∗ ηδ =

∫
Rd
ηδ(x− y)m0(dy).

We can readily check that mδ
0 ∈ P1(Rd)∩C∞b (Rd). By interpreting m0 as a measure and applying

Tonelli’s theorem (Theorem 4.4 in [4])

mδ
0(Rd) =

∫
Rd

(∫
Rd
ηδ(x− y)m0(dy)

)
dx =

∫
Rd

(∫
Rd
ηδ(x− y)dx

)
m0(dy) =

∫
Rd
m0(dy) = 1,

and for any n ∈ N and any multi index ` such that |`| = n we have

sup
x∈Rd

|D`mδ
0(x)| ≤

∫
Rd
‖D`ηδ‖∞m0(dy) <∞.

Since mδ
0 ∈ P1(Rd) ∩ C2+α(Rd), we have by Theorem 3.9 and Remark 3.15 a unique solution

(uδ,mδ) ∈ C1+α
2 ,2+α([t0, T ]× Rd)× C1+α

2 ,2+α([t0, T ]× Rd) ∩ C([0, T ],P1(Rd)) to the system
−∂tuδ − ε∆uδ + 1

2 |Du
δ|2 = F (x,mδ(t)),

uδ(T ) = G(x,mδ(T )),

∂tm
δ − ε∆mδ − div(mδDuδ) = 0,

mδ(0) = mδ
0.

(17)

Sincem0 ∈ P1(Rd) we have by Lemma 3.10 a radial function ψ ∈ C2(Rd), with |Dψ(x)|, |D2ψ(x)| ≤
C(1 + |x|), for some constant C > 0, such that∫

Rd
ψ(x)m0(dx) ≤ 1. (18)

Furthermore, by Lemma 3.11 we get∫
Rd
ψ(x)mδ(t)(dx) ≤

(∫
Rd
ψ(x)mδ

0(dx) + CT (ε+ ‖Duδ‖∞)

)
eCT (ε+‖Duδ‖∞). (19)

By (F) and (G), we have for some constant C0

sup
m∈P1(Rd)

(‖F (·,m)‖3+α + ‖G(·,m)‖4+α) = C0 <∞,

which states that the Hölder norms of the coupling terms of (17), and hence also the bounding
constant C0, are mδ-independent. We can fix an arbitrary h ∈ Rd and introduce the spatial shift
uδh(x) := uδ(x− h), which satisfies the equation{

−∂tuδh − ε∆uδh + 1
2 |Du

δ
h|2 = F (x− h,mδ(t)),

uδh(T ) = G(x− h,mδ(T )).
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We can then choose super/subsolutions w±(t, x) := uδh(t, x) ± C0(T − t + 1)|h| for uδ, which we
can verify using the shifted equation above. Thus the comparison principle yields

‖uδ(t, x)− uδ(t, x− h)‖∞ ≤ C0(1 + T )|h|,

and by dividing both sides by |h| and passing |h| → 0 we can conclude that

sup
δ
‖Duδ‖∞ ≤ C0(1 + T ). (20)

Moreover, again using Tonelli’s theorem (Theorem 4.4 in [4])∫
Rd
ψ(x)mδ

0(dx) =

∫
Rd
ψ(x)

∫
Rd
ηδ(x− y)m0(dy)dx =

∫
Rd

(∫
Rd
ψ(x)ηδ(x− y)dx

)
m0(dy)

=

∫
Rd

(ψ ∗ ηδ)m0(dy).

By noting the support of the mollifier ηδ, we have

sup
x∈Br(0)

ψ ∗ ηδ(x) = sup
x∈Br(0)

∫
Br+δ(0)

ψ(y) ∗ ηδ(x− y)dy ≤ sup
x∈Br+δ(0)

ψ(x).

Since ψ is radial and increasing, we can use the interpretation ψ(x) = ψ(|x|), where ψ ∈ C2(R)
and d

dtψ(t) ≤ C(1 + t), which yields that

ψ ∗ ηδ(x) ≤ ψ(|x|+ δ).

This makes us able to bound the convolution product using the growth condition on the derivative
of ψ ∫

Rd
(ψ ∗ ηδ)m0(dy) ≤

∫
Rd
ψ(|y|+ δ)m0(dy) =

∫
Rd

(
ψ(|y|) +

∫ |y|+δ
|y|

d

dt
ψ(s)ds

)
m0(dy)

≤
∫
Rd

(
ψ(y) +

∫ |y|+δ
|y|

C(1 + s)ds

)
m0(dy)

=

∫
Rd

(
ψ(y) + C(δ + |y|δ +

1

2
δ2)

)
m0(dy) ≤ C1(1 + δ + δ2),

where the last inequality employs (18) and that m0 ∈ P1(Rd), and C1 > 0 is a suitably chosen
common constant. We desire to pass δ to 0 later in the proof, so we can consequently assume δ ≤ 1
without lack of generality. We combine the estimate with (19), and get

sup
δ

∫
Rd
ψ(x)mδ(t)(dx) ≤ (3C1 + CT (ε+K)) eCT (ε+K).

Thus, the set {mδ(t)}δ∈(0,1) is precompact by Lemma 3.13. Moreover, from Lemma 3.7

d1(mδ(t),mδ(s)) ≤ ‖Duδ‖∞|t− s|+
√

2ε|t− s| ∀s, t ∈ [0, T ].

Thus, by (20), the set {mδ} is equicontinous in [0, T ]. By the Arzelà-Ascoli theorem [16, 23],
{mδ}δ∈(0,1) is precompact in C([0, T ],P1(Rd)).

Choose a decreasing sequence δn → 0, then by the definition of the metric d1(·, ·)

d1(mδn
0 ,m0) = sup

φ∈1−Lip

∫
Rd
φ(x)(mδn

0 −m0)(dx) = sup
φ∈1−Lip

∫
Rd

(φ ∗ ηδn(x)− φ(x))m0(dx)
δn→0−−−−→ 0.

By compactness, there exist a subsequence {mδn′} which converges in C([0, T ],P1(Rd)) to some
m̄ ∈ C([0, T ],P1(Rd)). Let ū be the solution to the Hamilton-Jacobi-Bellman equation in (17)
with respect to m̄ {

−∂tū− ε∆ū+ 1
2 |Dū|

2 = F (x, m̄(t)),

ū(T ) = G(x, m̄(T )).
(21)
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Since F,G only requires m̄ to be of class C([0, T ],P1(Rd)), and the equicontinuity estimate above
also holds form̄, ū is of class C1+α/2,2+α(Rd).

Next, in order to show that the sequence{uδn′} converges to ū, we construct super/subsolutions
for (21). Let w± = uδ±

(
‖F (·, m̄(t))− F (·,mδ(t))‖∞(T − t) + ‖G(·, m̄(T ))−G(·,mδ(T ))‖∞

)
. By

the comparison principle, we have

‖ū(t)− uδ(t)‖∞ ≤ ‖F (·, m̄(t))− F (·,mδ(t))‖∞(T − t) + ‖G(·, m̄(T ))−G(·,mδ(T ))‖∞,

which by the Lipschitz continuity of F,G in d1(·, ·) implies

sup
t∈[0,T ]

‖ū(t)− uδ(t)‖∞ ≤ C sup
t∈[0,T ]

d1(m̄(t),mδ(t)).

Consequently, {uδn′} converges uniformly to ū. Furthermore, since uδn′ ∈ C2+α,1+α
2 (Rd) with

Hölder-norm independent of δn′ , we have

|Duδn′ (t1, x1)−Duδn′ (t2, x2)| ≤ C(|t1 − t2|
α
2 + |x1 − x2|α).

Along with the bound (20), this implies through a version of the Arzelà-Ascoli theorem found in
Appendix C.8 of [12] , which implies that there exists a further subsequence {Duδn′′} ⊆ {Duδn′}
such that {Duδn′′ } converges uniformly towards some object D̃u ∈ C(QT ). We can identify

D̃u with Dū by fixing an arbitrary box B :=
∏d
i=1[ai, bi] ⊂ Rd containing the points x0 =

(x01, ..., x0d)and x = (x01, ..., xi, ..., x0d), with x0i < xi, and considering the sequence of difference
quotients

uδn′′ (t, x)− uδn′′ (t, x0)

xi − x0i
= ∂xiu

δn′′ (t, z).

For the equality, we have applied the mean value theorem with z := (x01, ..., zi, ..., x0d) where
zi ∈ (xi, x0i). By the uniform convergence of the right hand side, the difference quotient converges

to D̃u(t, x0) as xi → x0i, so the convergence of {uδn′′ } implies that

∂xi ū(t, x0) = lim
xi→x0i

ū(t, x)− ū(t, x0)

xi − x0i
= (D̃u)i(t, x0),

which shows that {Duδn′′} does indeed converge locally uniformly to Dū.

We complete the proof by showing that m̄ ∈ C([0, T ],P1(Rd)) is a distribution solution of the
Fokker-Planck equation by passing to the limit in the equation (13)∫

Rd
ϕ(t, x)mδn′′ (t)(dx) =

∫
Rd
ϕ(0, x)m

δn′′
0 (dx)

+

∫ t

0

∫
Rd

[ϕt(s, x) +Dϕ(s, x) ·Duδn′′ (s, x) + ε∆ϕ(s, x)]mδn′′ (s, dx)ds.

For the terms involving only mδn′′ and any derivative of the test function ϕ ∈ C∞c (QT ) this is
quite straightforward∣∣∣∣∫

Rd
ϕ(t, x)mδn′′ (t)(dx)−

∫
Rd
ϕ(t, x)m̄(t)(dx)

∣∣∣∣ ≤ ‖Dϕ(t, ·)‖∞d1(mδn′′ (t), m̄(t))
δn′′→0−−−−→ 0.

This procedure is the same for every term, except for the one containing Duδn′′ , which requires a
splitting∣∣∣∣∫ t

0

∫
Rd
Dϕ(s, x) ·Duδn′′ (s, x)mδn′′ (s, dx)ds−

∫ t

0

∫
Rd
Dϕ(s, x) ·Dū(s, x)m̄(s, dx)ds

∣∣∣∣
≤
∣∣∣∣∫ t

0

∫
Rd
Dϕ(s, x) ·Duδn′′ (s, x)(mδn′′ (s, dx)− m̄(s, dx))ds

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Rd
Dϕ(s, x) · (Duδn′′ (s, x)−Dū(s, x))m̄(s, dx)ds

∣∣∣∣ .
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For the second term on the left hand side we utilise that Dϕ has compact support to employ the
locally compact convergence of {Duδn′′ }∣∣∣∣∫ t

0

∫
Rd
Dϕ(s, x) · (Duδn′′ (s, x)−Dū(s, x))m̄(s, dx)ds

∣∣∣∣
≤‖Dϕ‖∞

∫ t

0

∫
Rd
m̄(s, dx)ds sup

(t,x)∈supp{Dϕ}
‖Duδn′′ −Dū‖∞

δn′′→0−−−−→ 0.

For the other term we use that the spatial derivative of Dϕ ·Duδn′′ is bounded independently of
δn′′ , and again bound by the definition of d1(·, ·) and the Lipschitz constant of Dϕ ·Duδn′′∣∣∣∣∫ t

0

∫
Rd
Dϕ(s, x) ·Duδn′′ (s, x)(mδn′′ (s, dx)− m̄(s, dx))ds

∣∣∣∣
≤‖D(Dϕ ·Duδn′′ )‖∞d1(mδn′′ (t), m̄(t))

δn′′→0−−−−→ 0.

Thus we can conclude that m̄ is a distribution solution to the Fokker-Planck equation, and that
(ū, m̄) is a classical solution to the Mean Field Game system.

The uniqueness of the solution is an immediate consequence of the Lasry-Lions monotonicity
argument, which is treated in the next subsection.

3.5 Monotonicity

A key discovery of Lasry and Lions, made while developing the early theory of Mean Field Games,
is the monotonicity argument. This technique is a source to many properties of the solutions of
mean field games, among others uniqueness, and is precisely what necessitates the monotonicity
assumptions (14) upon the coupling terms F and G. Our version of the monotonicity argument,
featured in the following lemma, is tailored for our choice of specific Hamiltonian H(x,Du) =
1
2 |Du|

2.

Lemma 3.17 (The Lasry-Lions monotonicity argument). Let (u1,m1) and (u2,m2) be solutions
of (10) with initial conditions m1

0,m
2
0 ∈ P1(Rd). Then∫ T

t0

∫
Rd
|Du1 −Du2|2(m1 +m2)(t, dx)dt ≤ −2

∫
Rd

(u1(t0, x)− u2(t0, x))(m1
0(dx)−m2

0(dx)).(22)

Proof. The general version of this proof has become quite standard in MFG literature and can be
found in [1],[5], and [7], all of which prove the more general statement

∫ T

t0

∫
Rd

(
H(x,Du2)−H(x,Du1)−DpH(x,Du1) · (Du2 −Du1)

)
m1(t, dx)dt (23)

+

∫ T

t0

∫
Rd

(
H(x,Du1)−H(x,Du2)−DpH(x,Du2) · (Du1 −Du2)

)
m2(t, dx)dt

≤ −
∫
Rd

(u1(t0, x)− u2(t0, x))(m1
0(dx)−m2

0(dx)).

By inserting our specific Hamiltonian, and performing elementary computations we get that(
H(x,Du2)−H(x,Du1)−DpH(x,Du1) · (Du2 −Du1)

)
m1

+
(
H(x,Du1)−H(x,Du2)−DpH(x,Du2) · (Du1 −Du2)

)
m2

=
m1 −m2

2

(
|Du2|2 − |Du1|2

)
+
(
Du1 −Du2

)
(m1Du1 −m2Du2)

=
m1 +m2

2

∣∣Du1 −Du2∣∣2,
which by insertion into (23) precisely yields the desired inequality.
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An immediate result of this inequality is the uniqueness of the solution of (10).

Proof of Theorem 3.16, uniqueness. Let (u1,m1) and (u2,m2) be solutions of (10) with the same
initial condition m0 ∈ P1(Rd). Then by Lemma 3.17, we have∫ T

t0

∫
Rd
|Du1 −Du2|2(m1 +m2)(t, dx)dt ≤ 0.

Withm1,m2 being elements of P1(Rd), and hence nonnegative everywhere, this requires |Du1(t, x)−
Du2(t, x)|2 = 0 for m1 +m2- almost all (t, x) ∈ [t0, T ]×Rd. Recalling the distribution formulation
of the Fokker-Planck (13), given some ϕ ∈ C∞c ([t0, T ]× Rd) we have∣∣∣∣∫ t

t0

∫
Rd
Dϕ(s, x) ·Du1(s, x)m1(s, dx)ds−

∫ t

t0

∫
Rd
Dϕ(s, x) ·Du2(s, x)m1(s, dx)ds

∣∣∣∣
≤ ‖Dϕ‖∞

∫ T

t0

∫
Rd
|Du1 −Du2|m1(t, dx)dt = 0.

This in turn implies that m1 and m2 solve the same Fokker-Planck equation, and are hence
equal by the uniqueness of the equation. Similarly, since m1 = m2, u1 and u2 solve the same
Hamilton-Jacobi-Bellman equation, and by uniqueness of that equation, we can conclude that
(u1,m1) = (u2,m2), and hence that the solution of (10) is unique.

3.6 Higher Order Regularity of u

As a final subsection in our treatment of the Mean Field Game system, we demonstrate how to
obtain higher order regularity for the solution u of (10) utilising the generous assumptions upon the
coupling terms F,G. The technique employed will be differentiating the Hamilton-Jacobi-Bellman
equation, and applying existence results for parabolic PDE to the resulting linear equation.

Lemma 3.18. Let (u,m) ∈ C1+α
2 ,2+α([t0, T ] × Rd)) × C([t0, T ],P1(Rd)) be classical solutions

of the system (10) with F,G obeying assumptions (F) and (G) respectively. Then there exists a
(t0,m0)-independent constant C1 > 0 such that∑

|`|≤2

‖D`u‖1+α/2,2+α ≤ C1

Proof. To prove this statement, we adapt a proof for a part of Proposition 3.1.1. in [7]. For brevity,
we skip some details, and the curious reader can consult how this methodology is implemented in
[7] and in Theorem 1.7 in [1]. Let v := Du · e where e ∈ Rd is an arbitrary vector with |e| = 1. We
compute the temporal derivative of v, and we use the equation to get

∂tv = D
(
− ε∆u+

1

2
|Du|2 − F (x,m(t)

)
· e

= −ε∆v +Du ·Dv −DxF (x,m(t)) · e.

For the terminal condition, we have

v(T, x) = Dxu(T, x) · e = DxG(x,m(T )) · e,

and hence, v satisfies the following parabolic partial differential equation{
−∂tv − ε∆v +Du ·Dv = DxF (x,m(t)) · e in Rd × (0, T ),

v(T ) = DxG(x,m(T )) · e in Rd.

By the strong assumptions (F) and (G), and that by Theorem we have 3.16 u ∈ C1+α/2,2+α([t0, T ]×
Rd), the coefficients of the PDE are sufficiently Hölder continuous, so we can conclude by Theorem
5.1 in [18] that v = Du · e ∈ C1+α/2,2+α([t0, T ] × Rd). We can bootstrap this regularity once
more, now using v := D2ue · e, and by the precise same estimation method, we can conclude that
D2ue · e ∈ C1+α/2,2+α([t0, T ] × Rd), and since e was chosen arbitrarily, the bound in the Lemma
statement holds.
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This finalises out technical treatment of the Mean Field Game system, and we can continue to the
primary focus of this paper, the well-posedness of the Master Equation.

4 The Master Equation

In this section we will perform analysis for existence and uniqueness of the Master Equation, which
in our case for our explicit quadratic Hamiltonian H(x, p) = 1

2 |p|
2 takes the following form

−∂tU(t, x,m)− ε∆xU(t, x,m) + 1
2 |DxU(x, t,m)|2

−ε
∫
Rd

divy[DmU ](t, x,m, y)m(dy)

+

∫
Rd
DmU(t, x,m, y) ·DxU(t, y,m)m(dy)

= F (x,m) in [0, T ]× Rd × P1(Rd),
U(T, x,m) = G(x,m) in Rd × P1(Rd).

(24)

Here, as before, DmU := δU
δm denotes the Lions derivative.

Before we start with the analysis, let us familiarise ourselves with the equation. We observe
that, except for the integral terms containing the measure derivative Dm, the equation shares all
terms with the Hamilton-Jacobi-Bellman equation from the Mean Field Game System (10). As the
DmU -terms correspond to a change in measure, one can intuitively think that the Master Equation
correspond to a ”nudging” of sorts of the Hamilton-Jacobi-Bellman in the measure variable.

If we assume that a solution U(t, x,m) of (24) is constant with respect to the measure variable,
we get by Definition 2.6 of the measure derivative that for any m′,m ∈ P1(Rd)

0 = lim
h→0+

U(t, x, (1− h)m+ hm′)− U(t, x,m)

h
=

∫
Rd

δU

δm
(t, x,m, y)(m′ −m)(dy),

which by the normalisation of the measure derivative yields∫
Rd

δU

δm
(t, x,m, y)m′(dy) =

∫
Rd

δU

δm
(t, x,m, y)m(dy) = 0,

which can only be the case if δUδm (t, x,m, y) = 0, ∀m ∈ P1(Rd), and hence that DmU(t, x,m, u) = 0.
In this case, the system reduces to the following form{
−∂tU(t, x,m)− ε∆xU(t, x,m) + 1

2 |DxU(x, t,m)|2 = F (x,m) in [0, T ]× Rd × P1(Rd),
U(T, x,m) = G(x,m) in Rd × P1(Rd).

(25)
This equation is really close to the Hamilton-Jacobi-Bellman equation, and if we let (u,m) be the
solution to (10) with initial data (t0,m0) ∈ [0, T ]×P1(Rd), then U(t0, x,m0) = u(t0, x) solves the
equation (25) in the point (t0, x,m0).

This heuristic computation motivates the following definition for an ansatz solution inspired by a
method of characteristics.

Definition 4.1. Let t0 ∈ [0, T ], m0 ∈ P1(Rd), and denote by (u,m) the solution to the Mean
Field Game System (10) with initial condition (t0,m0). We define the Master Characteristic as
the function U : [0, T ]× Rd × P1(Rd) such that for all x ∈ Rd

U(t0, x,m0) := u(t0, x) (26)

We will prove in this chapter that the solutions springing from Master Characteristic are the
classical solutions for the Master Equation. However, before we can start proving existence and
uniqueness of classical solutions, we need to define them precisely.
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Definition 4.2. A map U : [0, T ]×Rd×P1(Rd)→ R is a classical solution to the Master Equation
if

• U is bounded and continuous in all arguments, specifically in the d1-metric on P1(Rd)→ R,
and so is ∂tU, DxU , D2

xU , and D3
xU .

• U is C1 in m as described in Definition 2.6, and δU
δm (t, x,m, y), DyDx

δU
δm (t, x,m, y), and

D2
y
δU
δm (t, x,m, y) are bounded and continuous in all arguments in every (t, x,m, y) ∈ [0, T ]×

Rd × P1(Rd)× Rd.

• U satisfies the Master Equation (24).

Remark 4.3. Some might find the D3
xU in the classical solution somewhat strange as the third

derivative does not appear in the Master Equation. However, it is required in order to establish
uniqueness of solutions, as the proof for uniqueness relies on the uniqueness of solutions of the
Fokker-Planck equation. In order to apply Proposition 3.5, which supplies the uniqueness of the
Fokker-Planck equation (12), we need the existence of D3

xU . If uniqueness for the Fokker-Planck
with weaker assumptions are found, we are able to weaken Definition 4.2

With the classical solution well defined, we can finally state the main theorem of this thesis,
namely the well-posedness of the Master Equation. The rest of this chapter will be dedicated to
establishing the results leading up to its proof.

Theorem 4.4 (Well-posedness of the Master Equation). Assume that the boundedness and mono-
tonicity assumptions (F) and (G) upon F and G hold for some α ∈ (0, 1) and β ∈ (0, α). Then
the Master Characteristic defined in (26) is the unique classical solution to the Master Equation
(24). Moreover, we have that for any (t,m) ∈ [0, T ] × P1(Rd), U(t, ·,m) is bounded in C4+α(Rd)
and δU

δm (t, ·,m, ·) is bounded in C4+α(Rd)× C2+α−β(Rd), both independently of (t,m).

Furthermore, for m1,m2 ∈ P1(Rd) and a constant C independent of m1,m2,

‖U(t, ·,m1)− U(t, ·,m2)‖4+α ≤ Cd1(m1,m2). (27)

For the increased legibility of the following results, we fix an arbitrary α ∈ (0, 1) for the remainder
of this chapter.

4.1 Lipschitz continuity in m0

One of the main goals of this chapter is to be able to apply a method of characteristics with respect
to the initial time t0 and the initial measure variable m0 in order to prove existence of solution
of the Master Equation. In order to achieve this, we need to make sure that the characteristic
solutions U(t0, x,m0) change in a well behaved manner when the initial measure m0 changes.

To this end we establish that the solution of the Mean Field Game system (10) depends Lipschitz
continuously upon the initial measure m0 ∈ Rd. To help us establishing such a result, we turn to
the following technical lemma.

Lemma 4.5. Assume V (t, x) ∈ C([0, T ], Ck−1b (Rd)), f ∈ C([0, T ], Ck−1b (Rd)), and g ∈ Ck+αb (Rd)
for some natural number k ≥ 2. Then{

−∂tz − ε∆z + V (t, x) ·Dz = f(t, x) in (0,T)× Rd,

z(T, x) = g(x) in Rd.

has a unique classical solution z, where

sup
t∈[0,T ]

‖z(t, ·)‖Ck+α ≤ C(‖g‖Ck+α + sup
t∈[0,T ]

‖f(t, ·)‖Ck−1)
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Remark 4.6. This Lemma is part of Lemma 3.2.2. in [7], where the domain of the torus Td has
been swapped for our domain of the whole space Rd. The result comes from the classical theory
of linear PDE, and is well known according to [7], who cites a theorem from [18] for existence and
uniqueness. The proof relies on a heat kernel argument, and can be proven for the whole space using
the Duhamel formula combined with the Banach fixed point theorem. Treating these techniques
properly is outside the scope of this thesis. A full proof for Rd and operators more general than
the Laplacian is given in an upcoming paper by Espen R. Jakobsen and Artur Rutkowski at.

With this technical lemma in hand, we can establish that the solution of the Mean Field Game
system is Lipschitz continuous with respect to its initial measure. We structure this insight in
a lemma, which will be applied in the proofs of many of the upcoming results required for the
well-posedness of the Master Equation.

Lemma 4.7. Assume that (F) and (G) hold. Furthermore, let (u1,m1), (u2,m2) be solutions of
the system (10) with respect to initial conditions (t0,m

1
0), (t0,m

2
0), where t0 ∈ [0, T ] and m1

0,m
2
0 ∈

P1(Rd). Then

sup
t∈[0,T ]

{
d1(m1(t),m2(t)) + ‖u1(t, ·)− u2(t, ·)‖4+α

}
≤ Cd1(m1

0,m
2
0),

where C is a constant independent of t0,m
1
0, and m2

0. By Definition 4.1, we also get

‖U(t0, ·,m1
0)− U(t0, ·,m2

0)‖4+α ≤ Cd1(m1
0,m

2
0).

Proof. Using the monotone stability (22) and the definition of the metric d1, we get

∫ T

t0

∫
Rd
|Du2 −Du1|2(m1 +m2)(t, dx)dt ≤ 2

∫
Rd

(u1(t0, x)− u2(t0, x))(m1
0(dx)−m2

0(dx))

≤ 2‖(Du1 −Du2)(t0, ·)‖∞d1(m1
0,m

2
0). (28)

Let (Ω,F ,P) be a standard probability space and let X1
0 , X

2
0 be random variables with law m1

0,m
2
0

respectively, such that E[|X1
0 −X2

0 |] = d1(m1
0,m

2
0). We also define the stochastic processes X1

t , X
2
t

as the solution to the SDEs{
dXi

t = −Dui(t,Xi
t)dt+

√
2εdBt t ∈ (t0, T ],

Xi
t = Xi

0 t = t0,

where i = 1, 2 and {Bt}t∈[t0,T ] is a standard d-dimensional Brownian motion. By the properties
of the Fokker-Planck equation established earlier in Lemma 3.7, we have that mi

t is the law of the
process Xi

t for all t ∈ [t0, T ].

Integrating the SDEs and taking the difference yields

|X1
t −X2

t | =
∣∣∣∣(X1

0 −X2
0 ) +

∫ t

t0

(Du2(t,X2
s )−Du1(t,X1

s ))ds

∣∣∣∣ .
Next, we take the expectation of the difference and apply the triangle inequality.

E
[
|X1

t −X2
t |
]
≤ E

[
|X1

0 −X2
0 |
]

+ E

[∫ t

t0

(|Du1(t,X1
s )−Du1(t,X2

s ))|+ |Du1(t,X2
s )−Du2(t,X2

s ))|)ds
]
.

Since u1, u2 ∈ C1+α/2,2+α([t0, T ] × Rd), with Hölder norm independent mi
0, we have by Tonelli’s

theorem (Theorem 4.4 in [4])
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E
[
|X1

t −X2
t |
]
≤ E

[
|X1

0 −X2
0 |
]

+ ‖D2u1‖∞
∫ t

t0

E[|X1
s −X2

s |]ds

+

∫ t

t0

∫
Rd
|Du1(s, x)−Du2(s, x)|m2(s, dx)ds

≤ d1(m1
0,m

2
0) + ‖D2u1‖∞

∫ t

t0

(E[|X1
s −X2

s |]ds

+ T

(∫ t

t0

∫
Rd
|Du1(s, x)−Du2(s, x)|2m2(s, dx)ds

) 1
2

,

where the last inequality is given by Jensen’s inequality and the fact that since the map x 7→ x is
trivially 1-Lipschitz, we have by the definition of d1

E
[
X1

0 −X2
0

]
=

∫
Rd
x(m1

0 −m2
0)(dx) ≤ sup

φ∈1−Lip

∫
Rd
φ(x)(m1

0 −m2
0)(dx) = d1(m1

0,m
2
0),

E
[
X2

0 −X1
0

]
=

∫
Rd
x(m2

0 −m1
0)(dx) ≤ sup

φ∈1−Lip

∫
Rd
φ(x)(m2

0 −m1
0)(dx) = d1(m1

0,m
2
0).

We combine this estimate with (28) and apply Grönwall’s inequality.

E
[
|X1

t −X2
t |
]
≤ C

[
d1(m1

0,m
2
0) + ‖(Du1 −Du2)(0, ·)‖

1
2∞d1(m1

0,m
2
0)

1
2

]
.

Additionally, since d1 is defined as a supremum with respect to 1−Lipschitz functions φ

d1(m1(t),m2(t)) = sup
φ

(

∫
Rd
φ(x)(m1 −m2)(t, dx) = sup

φ
E[φ(X1

t )− φ(X2
t )] ≤ E

[
|X1

t −X2
t |
]
.

so we can conclude

sup
t∈[t0,T ]

d1(m1(t),m2(t)) ≤ C
[
d1(m1

0,m
2
0) + ‖(Du1 −Du2)(0, ·)‖

1
2∞d1(m1

0,m
2
0)

1
2

]
. (29)

Finally, we produce a bound on of the norm of the difference u1 − u2. We introduce z := u1 − u2
and observe that it satisfies a linear PDE of the form

{
−∂tz − ε∆z + V (t, x) ·Dz = f(t, x) in (0, T )× Rd,
z(T, x) = g(x) in Rd,

where V (t, x) = 1
2 (Du1 +Du2) and by the measure version of the fundamental theorem of calculus

from Lemma 2.7

f(t, x) =

∫ 1

0

∫
Rd

δF

δm
(x, sm1(t) + (1− s)m2(t), y)(m1(t, dy)−m2(t, dy))ds,

g(x) =

∫ 1

0

∫
Rd

δG

δm
(x, sm1(T ) + (1− s)m2(T ), y)(m1(T, dy)−m2(T, dy))ds.

We have for |`| ≤ 3

D`f(t, x) =

∫ 1

0

∫
Rd
D`
x

δF

δm
(x, sm1(t) + (1− s)m2(t), y)(m1(t, dy)−m2(t, dy))ds

≤
∫ 1

0

∥∥∥∥ δFδm (·, sm1(t) + (1− s)m2(t), ·)
∥∥∥∥
(3+α,1)

d1(m1(t, dy),m2(t, dy))ds,
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and thus

‖f(t, ·)‖3 ≤ Cd1(m1(t),m2(t)),

where the constant C is independent of the choice of m1,m2 by the assumption (F). By the same
argument, we also have

‖g(·)‖4+α ≤ Cd1(m1(T ),m2(T )).

Consequently, by Lemma 4.5 with k = 4, we have

sup
t∈[t0,T ]

‖(u1 − u2)(t, ·)‖4+α ≤ C(‖g‖4+α + sup
t∈[t0,T ]

‖f(t, ·)‖3) ≤ C sup
t∈[t0,T ]

d1(m1(t),m2(t)),

which we combine with (29) and rearrange to get

sup
t∈[t0,T ]

‖(u1 − u2)(t, ·)‖3+α ≤ Cd1(m1
0,m

2
0).

Finally, we insert this back into (29), which yields

sup
t∈[t0,T ]

d1(m1(t),m2(t)) ≤ C
[
d1(m1

0,m
2
0) + ‖(Du1 −Du2)(0, ·)‖

1
2∞d1(m1

0,m
2
0)

1
2

]

≤ C

d1(m1
0,m

2
0) +

(
sup

t∈[t0,T ]

‖(u1 − u2)(t, ·)‖3+α

) 1
2

d1(m1
0,m

2
0)

1
2


≤ C

[
d1(m1

0,m
2
0) +

(
d1(m1

0,m
2
0)
) 1

2 d1(m1
0,m

2
0)

1
2

]
≤ Cd1(m1

0,m
2
0),

which is the estimate we sought to prove.

With Lipschitz continuity in hand, we next set out to establish existence of the measure derivative
of the Master Characteristic.

4.2 A Linearised System

The first step on the way to constructing the measure derivative δU
δm is the introduction of the

main technical tool of this chapter, the well-posedness of a quite general forward-backward system
of linear equations. It takes the following form


−∂tz − ε∆z + V (t, x) ·Dz = 〈 δFδm (x,m(t)), ρ(t)〉+ b(t, x) in [t0, T ]× Rd,
z(T, x) = 〈 δGδm (x,m(T )), ρ(T )〉+ zT (x) in Rd,
∂tρ− ε∆ρ− div(ρV )− div(mDz + c) = 0 in [t0, T ]× Rd,
ρ(t0) = ρ0 in Rd.

(30)

Here, V : [t0, T ] × Rd → Rd is a vector field and c : [t0, T ] × Rd → Rd is a map. Furthermore,
assume that m ∈ C([t0, T ],P1(Rd)) where

d1(m(t),m(s)) ≤ C|t− s| 12 , ∀t, s ∈ [t0, T ]. (31)

This system might seem a bit unruly at first glance. However, what it lacks in clarity, it makes up
for in applicability, and will be at the core of every proof from now up until we can prove Theorem
4.4. For the well-posedness of this system we have the following comprehensive and complicated
result
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Lemma 4.8. First, let k ∈ {1, 2}, σ ∈ [0, 1) and β ∈ (0, σ). Let b ∈ C([t0, T ], Ck+1+σ(Rd)),
zT ∈ Ck+2+σ(Rd), and ρ0 ∈ C−(k+1+σ−β)(Rd). Furthermore, assume that (31) holds, let V ∈
C([t0, T ], Ck+1

b (Rd)), c ∈ C([t0, T ], C−(k+σ−β)(Rd))d, and assume that the family {c(t) ∗ ηγ : t ∈
[t0, T ]} is tight for any γ > 0. Lastly, assume that F,G obeys (F) and (G). Then the system (30)
has a unique solution (z, ρ) ∈ C([t0, T ], Ck+2+σ−β(Rd)× C−(k+1+σ+β)(Rd)) where

sup
t∈[t0,T ]

(
‖z(t, ·)‖k+2+σ + ‖ρ(t)‖−(k+1+σ)

)
≤ CkM,

where Ck depends on k, T, β, supt∈[0,T ] ‖V (t, ·)‖k+1+σ and M is defined by

M := ‖zT ‖k+2+σ + ‖ρ0‖−(k+1+σ) + sup
t∈[t0,T ]

‖b(t, ·)‖k+1+σ + sup
t∈[t0,T ]

‖c(t, ·)‖−(k+σ).

The solution of the second equation has to be interpreted in the distributional sense, that is, for
each function φ : [t0, T ] × Rd → R such that for every t ∈ [t0, T ] φ(t0), φ(t) ∈ Ck+1+σ(Rd) and
∂tφ+ ε∆φ+ V ·Dφ ∈ C([t0, t], C

k+1+σ(Rd)) then

〈ρ(t), φ(t)〉 − 〈ρ0, φ(t0)〉 =

∫ t

t0

〈ρ(s), (∂tφ+ ε∆φ+ V ·Dφ)(s)〉ds (32)

−
∫ t

t0

∫
Rd
DφDz(s, x)m(s, dx)ds−

∫ t

t0

〈c(s), Dφ(s)〉ds.

Remark 4.9. This workhorse of a Lemma is the Rd equivalent of Lemma 3.3.1. from [7]. However,
since we lose the luxury of a compact domain, Lemma 4.8 is quite a bit more complicated, both
in statement and in proof, than its Td-based sibling. The proof of the lemma is dependent on
approximation of functionals by smooth functions, which is the reason for the pathological-looking
losses of arbirtrarily small orders of regularity β ∈ (0, σ). The proof of this Lemma is outside
of scope for this thesis, but the core of the proof relies on an application of the Leray–Schauder
theorem in order to get simultaneous solutions for both equations. A full proof of the result is
given in an upcoming paper by Espen R. Jakobsen and Artur Rutkowski.

4.3 Differentiability of U With Respect to m

In this subsection, we derive all necessary results for the establishment of existence, and construc-
tion of, the measure derivative δU

δm . Having established the technical Lemma 4.8, we straight away
apply it to a system that in many ways can be considered to be the linearisation of the Mean Field
Game system (10) with respect to the measure variable.

−∂tv − ε∆v +Du ·Dv = 〈 δFδm (x,m(t)), µ(t)〉 in [t0, T ]× Rd,
v(T, x) = 〈 δGδm (x,m(T )), µ(T )〉 in Rd,
∂tµ− ε∆µ− div(µDu)− div(mDv) = 0 in [t0, T ]× Rd,
µ(t0) = µ0 in Rd.

(33)

We fix an arbitrary β ∈ (0, α) which, as can be seen in the statement of Lemma 4.8, encodes the
infinitesimal loss of regularity associated with the application of the technical result. The first step
on the way to finding the measure derivative is by solving, and establishing the desired regularity
of the solutions of, system (33). We structure this in the following result, where we bootstrap
regularity in the v and µ variable by applying Lemma 4.8 twice.

Proposition 4.10. Let assumption (F) and (G) hold. If m0 ∈ P1(Rd) and µ0 ∈ C−(3+α−β) for
some β ∈ (0, α/2), we have a unique solution (v, µ) ∈ C([t0, T ], C4+α−β(Rd)×C−(3+α+β)(Rd)) of
(33) and

sup
t∈[t0,T ]

(
‖v(t, ·)‖4+α + ‖µ(t)‖−(3+α)

)
≤ C‖µ0‖−(3+α).
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Furthermore, if µ0 ∈ C−(2+α−2β), we have (v, µ) ∈ C([t0, T ], C4+α−β(Rd)× C−(2+α)(Rd)), where

sup
t∈[t0,T ]

(
‖v(t, ·)‖4+α + ‖µ(t)‖−(2+α−β)

)
≤ C‖µ0‖−(2+α−β).

The constant C > 0 is independent of (t0,m0).

Proof. For the proof we apply Lemma 4.8 twice in a straightforward manner, using the same
ρ0 = µ0 ∈ C−(2+α−2β). Firstly, we choose k = 1 and σ = α − β and set zT = b = c = 0.
We note that V = Du ∈ C1+α/2,2+α(Rd) ⊂ C([0, T ], C2

b (Rd)) by Lemma 3.18. {c(t) ∗ ηγ : t ∈
[t0, T ]} = {0} is a singleton set, and is thus trivially tight. This results in a unique solution
(v, µ) ∈ C([t0, T ], C3+α−2β(Rd)× C−(2+α)(Rd)) with

sup
t∈[t0,T ]

(
‖v(t, ·)‖3+α−β + ‖µ(t)‖−(2+α−β)

)
≤ C‖µ0‖−(2+α−β).

Next we apply the same Lemma 4.8 again, now with k = 2 and σ = α with the same coefficients
zT , b, c, ρ0, noting that ρ0 = µ0 ∈ C−(2+α−2β) ⊂ C−(3+α−β) by Lemma 2.3. zT = b = c = 0.
Again, V = Du ∈ C1+α/2,3+α(Rd) ⊂ C([0, T ], C3

b (Rd)) by Lemma 3.18. This once more results in
a unique solution v, µ ∈ C([t0, T ], C4+α−β(Rd)× C−(3+α)(Rd)) with

sup
t∈[t0,T ]

(
‖v(t, ·)‖4+α + ‖µ(t)‖−(3+α)

)
≤ C‖µ0‖−(3+α) ≤ C‖µ0‖−(2+α−β).

By the linearity of the equation (33), and the uniqueness from Lemma 4.8 we conclude that the
pair (v, µ) obtained by the application of the lemma with k = 2 is the same as the pair obtained
with k = 1.

If (33) indeed is the linearisation with respect to the measure variable, we would expect the
following relation to hold in some sense

v(t0, x) =

∫
Rd

δU

δm
(t0, x,m0, y)µ0(y)dy,

for some suitable choice of µ0. Having established existence and regularity of the linearised
system in Proposition 4.10, we can utilise the flexibility brought by being able to choose any
µ0 ∈ C−(2+α−β) to construct a candidate function K(t0, x,m0, y) that should satisfy the proper-
ties required of it from Definitions 2.6 and 4.2 of the measure derivative and the classical solution
of the Master Equation respectively. We formalise this choice of candidate in the following pro-
position.

Proposition 4.11. With the same assumptions as Proposition 4.10, for each (t0,m0) we have a
C4+α−β×C2+α−β map (x, y) 7→ K(t0, x,m0, y) such that if µ0 ∈ C−(2+α−2β)(Rd) is a finite signed
measure, the v-component of the solution of (33) is given by

v(t0, x) = 〈µ0,K(t0, x,m0, ·)〉.

Furthermore K satisfies

‖K(t0, ·,m0, ·)‖(4+α,3+α) ≤ C,

with constant C > 0 independent of (t0,m0), and has derivatives in (x, y) of order 4 + α − β and
2 + α− β which are continuous on [0, T ]× Rd × P1(R)× Rd, and Lipschitz on P1(R).

Proof. Let ` ∈ Nd be a multi index such that |`| ≤ 3 and y ∈ Rd. We denote by (v(`)(·, ·, y), µ(`)(·, ·, y))
the solution of (33) with respect to initial condition µ0 = D`δy, the `-th distributional derivative
of the Dirac distribution. We can readily check that µ0 ∈ C−(3+α−β), by applying the definition
of the dual norm (5). Let φ be an arbitrary function in C3+α−β(Rd) with ‖φ‖3+α−β ≤ 1 then

|〈D`δy, φ〉| = |(−1)|`|〈δy, D`φ〉| = |D`φ(y)| ≤ ‖φ‖3+α−β ≤ 1.
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Next, let K(t0, x,m0, y) := v(0)(t0, x, y). We will check that ∂yiK(t0, x,m0, y) = −v(ei), where
ei = (0, ..., 0, 1, 0, ..., 0) is the i-th unit vector in Rd. We first note that since

‖1

ε
(δy+εei − δy) +D(ei)δy‖−(3+α−β) = sup

φ∈C3+α−β ,‖φ‖≤1
|〈1
ε

(δy+εei − δy) +D(ei)δy, φ〉|

= sup
φ∈C3+α−β ,‖φ‖≤1

|1
ε

(φ(y + εei)− φ(y))−D(ei)φ| ε→0−−−→ 0,

1
ε (δy+εei − δy) converges to −D(ei) in C−(3+α−β)(Rd). By the bound given in Proposition 4.10,
and the linearity of the system (33) in v, µ, we can conclude that the map µ0 7→ (v, µ) is linear
and continuous from C−(2+α−β) to C([0, T ], C4+α−β × C−(3+α+β)). Thus, by the linearity in the
v-term of the map, we have

1

ε
(δy+εei − δy) 7→ 1

ε
(K(·, ·,m0, y + εei)−K(·, ·,m0, y)).

Due to the map being continuous, we can pass to the limit and conclude that

−v(ei) = ∂yiK(·, ·,m0, y).

Repeating this process for derivatives up to |`| ≤ 3 yields that

D`
yK(t0, x,m0, y) = (−1)|`|v(`)(t0, x, y). (34)

This implies through the bound in Proposition 4.10 that for each y ∈ Rd

‖D`
yK(t0, ·,m0, y)‖4+α−β = ‖v(`)(t0, ·, y)‖4+α−β ≤ C.

Next, we check the Hölder continuity in y by applying the linearity of the system

‖D`
yK(t0, ·,m0, y)−D`

yK(t0, ·,m0, y
′)‖4+α

≤ C‖D`δy −D`δy′‖−(3+α) = C

(
sup

‖φ‖3+α≤1
|〈δy − δy′ , D`φ〉|

)

≤ C

(
sup

‖φ‖3+α≤1
|D`φ(y)−D`φ(y′)|

)
≤ C|y − y′|α.

Consequently, we can conclude that K(t0, ·,m0, ·) ∈ C4+α−β × C3+α. This immediately implies
the continuity of K and its derivatives in x and y.

For the continuity of the derivatives in (x, y) on [0, T ] × P1(R) we let m1
0,m

2
0 be two different

initial measures in P1(Rd). Let (u1,m1), (u2,m2) be solutions to the Mean Field Game system
(10), with initial conditions (t0,m

1
0) and (t0,m

2
0) respectively, and let (v1, µ1), (v2, µ2) be the

respective solutions of the linear system (33), both with µ0 = D`δy. Here, we only have |`| ≤ 2,
since we need to have µ0 ∈ C−(2+α−2β)to apply both inequalities in Proposition 4.10. In order to
estimate the difference, we let (z, ρ) := (v1 − v2, µ1 − µ2), which gives rise to another linearised
system


−∂tz − ε∆z +Du1 ·Dz = 〈 δFδm (x,m1(t)), ρ(t)〉+ b(t, x) in [t0, T ]× Rd,
z(T, x) = 〈 δGδm (x,m1(T )), ρ(T )〉+ zT in Rd,
∂tρ− ε∆ρ− div(ρDu1)− div(m1Dz + c) = 0 in [t0, T ]× Rd,
ρ(t0) = 0 in Rd.

where

b(t, x) = 〈 δF
δm

(x,m1(t))− δF

δm
(x,m2(t)), µ2(t)〉+ (Du2 −Du1)Dv2, (35)

zT (x) = 〈 δG
δm

(x,m1(T ))− δG

δm
(x,m2(T )), µ2(T )〉,

c(t, x) = (Du1 −Du2)µ2 + (m1 −m2)Dv2.
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Again we want to use Lemma 4.8 with k = 2 and σ := α. We proceed to check the regularity of the
various terms. Again V = Du1 ∈ C1+α/2,3+α(Rd) ⊂ C([0, T ], C3

b (Rd)) by Lemma 3.18. For b, we
apply the linearity and continuity of the duality brackets, as well as the definition of the operator
norm, to get

sup
t∈[t0,T ]

‖b(t, ·)‖3+α ≤ sup
t∈[t0,T ]

(
‖ δF
δm

(·,m1(t), ·)− δF

δm
(·,m2(t), ·)‖(3+α,3+α)‖µ2‖−(3+α)

+ C‖Du2 −Du1‖3+α‖Dv2‖3+α
)

≤ C‖µ0‖−(2+α−β) sup
t∈[t0,T ]

(
d1(m1(t),m2(t)) + ‖u1(t, ·)− u2(t, ·)‖4+α

)
≤ Cd1(m1

0,m
2
0)‖µ0‖−(2+α−β).

Here, the second inequality used the Lipschitz continuity in P(Rd) from assumption (F) as well
as the regularity on v2, µ2 from Proposition 4.10, while the last inequality utilised the Lipschitz
continuity from Lemma 4.7. Furthermore, applying the triangle inequality and the second term of
(F), we get that supt∈[t0,T ] ‖b(t, ·)‖3+α <∞.

By the exact same estimation, instead using (G), we also get

‖zT ‖4+α ≤ Cd1(m1
0,m

2
0)‖µ0‖−(2+α−β).

Finally, we check c(t):

sup
t∈[t0,T ]

‖c(t, ·)‖−(2+α−β) = sup
t∈[t0,T ]

(
sup

‖φ‖2+α−β≤1
〈(Du1 −Du2)µ2, φ〉+ 〈(m1(t)−m2(t))Dv2, φ〉

)
,

where again from the estimates of Proposition 4.10 and Lemma 4.7

sup
t∈[t0,T ]

(
sup

‖φ‖2+α−β≤1
〈(Du1 −Du2)µ2, φ〉

)
≤ sup
t∈[t0,T ]

(
sup

‖φ‖2+α−β≤1
‖µ2(t)‖−(2+α−β)‖Du1 −Du2‖2+α

)

≤ Cd1(m1
0,m

2
0)‖µ0‖−(2+α−β),

and, using the definition of the d1-norm

sup
t∈[t0,T ]

(
sup

‖φ‖2+α−β≤1
〈(m1(t)−m2(t))Dv2, φ〉

)
≤ sup
t∈[t0,T ]

(
sup

‖φ‖2+α−β≤1

∫
Rd
Dv2φ(m1(t)−m2(t))(dx)

)

≤ C‖v2‖2+α sup
t∈[t0,T ]

d1(m1(t),m2(t))

≤ Cd1(m1
0,m

2
0)‖µ0‖−(2+α−β).

We can thus conclude that

sup
t∈[t0,T ]

‖c(t, ·)‖−(2+α−β) ≤ Cd1(m1
0,m

2
0)‖µ0‖−(2+α−β).

By noting that {c(t) ∗ ηγ : t ∈ [t0, T ]} is tight for any γ > 0, we have by application of Lemma 4.8
that

sup
t∈[t0,T ]

‖z(t, ·)‖(4+α) ≤ Cd1(m1
0,m

2
0)‖µ0‖−(2+α−β).

Combining this with the fact that

‖µ0‖−(2+α−β) = sup
‖φ‖2+α−β≤1

|〈D`δy, φ〉| ≤ sup
‖φ‖2+α−β≤1

‖φ‖2+α−β ≤ 1,

we have through (34) that for every |`| ≤ 2

‖D`
yK(t0, ·,m1

0, y)−D`
yK(t0, ·,m2

0, y)‖(4+α) ≤ Cd1(m1
0,m

2
0).
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Lastly, in order to show the Hölder continuity, we redefine µ0 = D`δy − D`δy′ , a change which
alters none of the estimates above, and compute

‖µ0‖−(2+α−β) = sup
‖φ‖2+α−β≤1

|〈D`δy −D`δy′ , φ〉| ≤ |y − y′|2+α−β ,

which by the linearity of (33) implies

‖
(
D`
yK(t0, ·,m1

0, y)−D`
yK(t0, ·,m1

0, y
′)
)
−
(
D`
yK(t0, ·,m2

0, y)−D`
yK(t0, ·,m2

0, y
′)
)
‖(4+α)

≤ Cd1(m1
0,m

2
0)|y − y′|2+α−β .

And we have proven the Lipschitz continuity of K and its derivatives in P1(Rd).

For the temporal variable, we apply a similar trick. We fix initial times 0 ≤ t10 < t20 ≤ T let
(u1,m1), (u2,m2) be solutions to the Mean Field Game system (10), with initial conditions (t10,m0)

and (t20,m0) respectively, and let (v
(`)
1 , µ

(`)
1 ), (v

(`)
2 , µ

(`)
2 ) be the respective solutions of the linear

system (33), both with µ0 = D`δy. In order to establish continuity, we have to circumvent the fact

that v
(`)
2 is undefined for t ∈ [0, t10). We do this by rewriting in the following way

D`
yK(t10, x,m0, y)−D`

yK(t20, x,m0, y) = v
(`)
1 (t10, x, y)− v(`)2 (t20, x, y)

= v
(`)
1 (t10, x, y)− v(`)1 (t20, x, y) + v

(`)
1 (t20, x, y)− v(`)2 (t20, x, y).

The continuity of the first term, v
(`)
1 (t10, x, y) − v(`)1 (t20, x, y) is evident from the fact that v

(`)
1 ∈

C([t10, T ], C4+α−β(Rd)). For the other term we perform the same technique as in the continuity in

measure: We let (z, ρ) := (v
(`)
1 − v

(`)
2 , µ

(`)
1 − µ

(`)
2 ), which yields the similar linear system


−∂tz − ε∆z +Du1 ·Dz = 〈 δFδm (x,m1(t)), ρ(t)〉+ b(t, x) in [t20, T ]× Rd,
z(T, x) = 〈 δGδm (x,m1(T )), ρ(T )〉+ zT in Rd,
∂tρ− ε∆ρ− div(ρDu1)− div(m1Dz + c) = 0 in [t20, T ]× Rd,
ρ(t0) = µ

(`)
1 (t20)−D`δy in Rd,

with coefficients b, zT , c same as in (35). We estimate using Proposition 4.10 and assumptions (F),
(G)

sup
t∈[t20,T ]

‖b(t, ·)‖3+α ≤ C
(

sup
t∈[t20,T ]

‖u1 − u2‖4+α + sup
t∈[t20,T ]

d1(m1(t),m2(t))
)
,

sup
t∈[t20,T ]

‖c(t)‖−(2+α−β) ≤ C
(

sup
t∈[t20,T ]

‖u1 − u2‖3+α + sup
t∈[t20,T ]

d1(m1(t),m2(t))
)
,

‖zT ‖4+α ≤ Cd1(m1(T ),m2(T )),

‖ρ0‖−(2+α−β) = ‖µ(`)
1 (t20)− µ(`)

1 (t10)‖−(2+α−β).

next, let (u,m) solve the Mean Field Game System (10) with initial condition (t20,m
1(t20)). Thus, by

the uniqueness of the MFG system (u1(t, x),m1(t, x)) = (u(t, x),m(t, x)) for all (t, x) ∈ [t20, T ]×Rd.
Since u2 and u have the same initial time, we can use Lemma 4.7 to estimate their difference

sup
t∈[t20,T ]

‖u1 − u2‖4+α ≤ sup
t∈[t20,T ]

(
‖u1(t, ·)− u(t, ·)‖4+α + ‖u(t, ·)− u2(t, ·)‖4+α

)
≤ sup
t∈[t20,T ]

(
0 + Cd1(m1(t20),m0)

)
,
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and similarly

sup
t∈[t20,T ]

d1(m1(t),m2(t)) ≤ sup
t∈[t20,T ]

(
d1(m1(t),m(t)) + d1(m(t),m2(t))

)
≤ sup
t∈[t20,T ]

(
0 + Cd1(m1(t20),m0)

)
.

We apply Lemma 4.8 with k = 2 and σ := α, and get

sup
t∈[t20,T ]

‖v(`)1 (t, ·)− v(`)2 (t, ·)‖4+α ≤ C
(
d1(m1(t20),m0) + ‖µ(`)

1 (t20)− µ(`)
1 (t10)‖−(2+α−β)

)
.

Since m1 ∈ C([t10, T ],P1(Rd)) and µ
(`)
1 ∈ C([t10, T ], C−(2+α)(Rd)), we can conclude by passing

t20 → t10 that v
(`)
1 (t20, x, y) − v(`)2 (t20, x, y) and its derivatives tend to zero, and consequently that

D`
yK(t0, x,m0, y) is continuous on [0, T ].

Finally, we have to verify that if µ0 ∈ M(Rd) then v(t0, x) = 〈µ0,K(t0, x,m0, ·)〉 solves (33).
Recall that we denote by (v(0)(t, x, y), µ(0)(t, y)) the solution to (33) with initial condition δy and
that K(t0, x,m0, ·) := v(0)(t0, x, y). We define for some φ ∈ C2+α−β(Rd)

v(t, x) := 〈µ0, v
(0)(t, x)〉 =

∫
Rd
v(0)(t, x, y)µ0(dy),

〈µ(t), φ〉 := 〈µ0, 〈µ(0)(t, y), φ〉〉 =

∫
Rd
〈µ(0)(t, y), φ〉µ0(dy).

We will show that (v, µ) satisfies the first equation of (33) pointwise, and the second in the distri-
butional sense as in (32).

−∂tv(t, x) = − lim
h→0

v(t+ h, x)− v(t, x)

h

= − lim
h→0

∫
Rd

v(0)(t+ h, x, y)− v(0)(t, x, y)

h
µ0(dy)

= −
∫
Rd

lim
h→0

v(0)(t+ h, x, y)− v(0)(t, x, y)

h
µ0(dy)

=

∫
Rd
−∂tv(0)(t, x, y)µ0(dy)

=

∫
Rd
ε∆v(0)(t, x, y)−Du ·Dv(0)(t, x, y) + 〈 δF

δm
(x,m(t)), µ(0)(t)〉µ0(dy)

= ε∆v(t, x)−Du ·Dv(t, x) +

∫
Rd
〈 δF
δm

(x,m(t)), µ(0)(t)〉µ0(dy)

= ε∆v(t, x)−Du ·Dv(t, x) + 〈µ(t),
δF

δm
(x,m(t))〉.

For the third equality above we applied the Dominated Convergence Theorem, which is applicable
here since supt∈[t0,T ] ‖v(0)(t, ·)‖4+α < ∞ and µ0 is a bounded measure on Rd. The application
of the convergence theorem is repeated for the derivative terms ε∆v and Du · Dv in the sixth
equality. In the last equality we apply the definition of 〈µ(t), φ〉 noting that by assumption (F)
δF
δm (x,m) ∈ C2+α−β(Rd) for any P(Rd).

Likewise, we check the terminal condition

v(T, x) =

∫
Rd
v(0)(T, x, y)µ0(dy) =

∫
Rd
〈 δG
δm

(x,m(T )), µ(0)(T )〉µ0(dy) = 〈 δG
δm

(x,m(T )), µ(T )〉,

and conclude that v satisfies the first equation of (33) pointwise. For the distributional equa-
tion we choose a function φ such that φ(t0), φ(t) ∈ Ck+1+σ(Rd) and ∂tφ + ε∆φ + V · Dφ ∈
C([t0, t], C

k+1+σ(Rd)), and compute
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〈µ(t), φ(t)〉 − 〈µ0, φ(t0)〉 =

∫
Rd
〈µ(0)(t, y), φ(t)〉µ0(dy)− 〈µ0, φ(t0)〉

=

∫
Rd

(
〈δy, φ(t0)〉+

∫ t

t0

〈µ(0)(s), (∂tφ+ ε∆φ+Du ·Dφ)(s)〉ds

−
∫ t

t0

∫
Rd
Dφ ·Dv(0)(s, x, y)m(s, dx)ds

)
µ0(dy)− 〈µ0, φ(t0)〉

= 〈µ0, φ(t0)〉+

∫ t

t0

∫
Rd
〈µ(0)(s), (∂tφ+ ε∆φ+Du ·Dφ)(s)〉µ0(dy)ds

−
∫ t

t0

∫
Rd

∫
Rd
Dφ ·Dv(0)(s, x, y)µ0(dy)m(s, dx)ds− 〈µ0, φ(t0)〉

=

∫ t

t0

〈µ(s), (∂tφ+ ε∆φ+Du ·Dφ)(s)〉ds

−
∫ t

t0

∫
Rd
Dφ ·Dv(s, x)m(s, dx)ds.

For the second equality, we used Fubini’s Theorem (Theorem 4.5 in [4]) to swap the order of
integration since all terms are bounded and the measure µ0 is finite. And for the final equality, we
used the same Dominated Convergence Theorem trick as in the pointwise equation to handle the
term Dv. Finally, we check the initial condition

〈µ(t0), φ〉 =

∫
Rd
〈δy, φ〉µ0(dy) =

∫
Rd
φ(y)µ0(dy) = 〈µ0, φ〉,

which shows that µ is a distibution solution to the second equation of (33).

Remark 4.12. Recall that it was mentioned in the subsection on assumptions that the choice of
(F) and (G) was sufficient, but not optimal. The proof of Proposition 4.11 is the primary reason we
overshoot assumptions. This is due to the proof requiring Lemma 4.8 to be applied several times
over the course of establishing the properties of K(t0, x,m0, y), each relying on the assumptions
(F) and (G) in different ways for different estimates. As this proof is the major bottleneck of the
chapter when it comes to regularity, immediate improvement with respect to assuming less of (F)
and (G) can be easily achieved by observing precisely what is required of the coupling terms in
order to complete this proof.

Having established K(t0, x,m0, y) as the clear candidate for our measure derivative, we prove one
last technical proposition which will enable us to apply Definition 2.6. The proof of this result also
has Lemma 4.8 at its core.

Proposition 4.13. Let assumption (F) and (G) hold. Assume t0 ∈ [0, T ] and m0, m̂0 ∈ P1(Rd)
to be fixed. Let (u,m) and (û, m̂) be solutions of (10) with respect to initial conditions (t0,m0)
and (t0, m̂0), and let (v, µ) solve (33) with initial value (t0, m̂0−m0). Then the following estimate
holds

sup
t∈[t0,T ]

(
‖û(t, ·)− u(t, ·)− v(t, ·)‖4+α + ‖m̂(t, ·)−m(t, ·)− µ(t, ·)‖−(3+α)

)
≤ Cd21(m0, m̂0) (36)

Proof. We yet again want to apply Lemma 4.8 to obtain an estimate for a linearised system. Let
z := û− u− v and ρ := m̂−m− µ. After summing the systems and applying the measure version
of the fundamental theory of analysis from Lemma 2.7 we are left with the following linearised
system.
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
−∂tz − ε∆z +Du ·Dz = 〈 δFδm (x,m(t)), ρ(t)〉+ b(t, x) in [t0, T ]× Rd,
z(T, x) = 〈 δGδm (x,m(t)), ρ(t)〉+ zT in Rd,
∂tρ− ε∆ρ− div(ρDu)− div(mDz + c) = 0 in [t0, T ]× Rd,
ρ(t0) = 0 in Rd.

where

b(t, x) =

∫ 1

0

∫
Rd

(
δF

δm
(x, (1− s)m+ sm̂, y)− δF

δm
(x,m, y)

)
(m̂−m)(dy)ds− 1

2
|Dû−Du|2,

zT (x) =

∫ 1

0

∫
Rd

(
δG

δm
(x, (1− s)m(T ) + sm̂(T ), y)− δG

δm
(x,m(T ), y)

)
(m̂(T )−m(T ))(dy)ds,

c(t, x) = (m̂−m)(Dû−Du).

From Lemma 4.7, we get that

sup
t∈[t0,T ]

‖1

2
|Dû−Du|2‖3+α ≤ C sup

t∈[t0,T ]

‖û(t, ·)− u(t, ·)‖24+α ≤ Cd21(m̂0,m0).

Furthermore, for any |`| ≤ 3∣∣∣D`
x

∫ 1

0

∫
Rd

(
δF

δm
(x, (1− s)m+ sm̂, y)− δF

δm
(x,m, y)

)
(m̂−m)(dy)ds

∣∣∣
=
∣∣∣ ∫ 1

0

∫
Rd
D`
x

( δF
δm

(x, (1− s)m+ sm̂, y)− δF

δm
(x,m, y)

)
(m̂−m)(dy)ds

∣∣∣
≤
∫ 1

0

‖ δF
δm

(·, (1− s)m+ sm̂, ·)− δF

δm
(·,m, ·)‖(3+α,1)d1(m̂0,m0)ds

≤ C
∫ 1

0

d1((1− s)m+ sm̂,m)d1(m̂0,m0)ds = C

∫ 1

0

sd1(m̂(t),m(t))d1(m̂0,m0)ds

≤ Cd1(m̂(t),m(t))d1(m̂0,m0).

Where we have applied the usual Lipschitz in y trick for the first inequality, the assumption (F)
for the second, and the definition of d1 for the last equality. By applying the same steps for the
Hölder quotient of the derivatives with |`| = 3, we can conclude that

∥∥∥∥∫ 1

0

∫
Rd

(
δF

δm
(·, (1− s)m+ sm̂, y)− δF

δm
(·,m, y)

)
(m̂−m)(dy)ds

∥∥∥∥
3+α

≤ Cd1(m̂(t),m(t))d1(m̂0,m0).

Through another application of Lemma 4.7 we can conclude that

sup
t∈[t0,T ]

‖b(t, ·)‖3+α ≤ Cd21(m̂0,m0).

For the estimate on c we observe that it can be interpreted as a signed measure, and consequently
its functional action takes the form of integration with respect to the measure
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sup
t∈[t0,T ]

‖c(t)‖−(2+α−β) = sup
t∈[t0,T ]

sup
‖φ‖2+α−β≤1

|〈(m̂−m)(Dû−Du), φ〉|

= sup
t∈[t0,T ]

sup
‖φ‖2+α−β≤1

∣∣∣ ∫
Rd

(Dû−Du)φ(x)(m̂(t)−m(t))(dx)
∣∣∣

≤ sup
t∈[t0,T ]

sup
‖φ‖2+α−β≤1

‖D((Dû−Du)φ)‖∞d1(m̂(t),m(t))

≤ sup
t∈[t0,T ]

sup
‖φ‖2+α−β≤1

‖û(t, ·)− u(t, ·)‖3+α‖φ‖2+α−βd1(m̂(t),m(t))

≤ Cd21(m̂0,m0).

In estimating zT using the same method as with b, and applying Lemma 4.8, we are left with

sup
t∈[t0,T ]

(
‖z(t, ·)‖4+α + ‖ρ‖−(3+α)

)
≤ sup
t∈[t0,T ]

(
‖b(t, ·)‖3+α + ‖c(t)‖−(2+α−β)

)
+ ‖zT ‖4+α

≤ Cd21(m̂0,m0).

which is precisely the estimate we sought to prove.

This result immediately implies that the Master Characteristic U(t0, x,m0) := u(t0, x) from Defin-
ition 4.1 is C1 in the measure variable in the sense of Definition 2.6.

Corollary 4.14. With the same assumptions as Proposition 4.13, and with K(t0, x,m0, y) as given
in Proposition 4.11, then U is C1 in measure and

δU

δm
(t0, x,m0, y) = K(t0, x,m0, y).

Hence,

‖ δU
δm

(t0, ·,m0, ·)‖(4+α,3+α) ≤ C,

with constant C > 0 independent of (t0,m0), and δU
δm has derivatives in (x, y) of order 4 + α − β

and 2 + α− β which are continuous on [0, T ]× Rd × P1(R)× Rd.

Furthermore,

‖U(t0, ·, m̂0)− U(t0, ·,m0)−
∫
Rd

δU

δm
(t0, ·,m0, y)(m̂0 −m0)(dy)‖4+α ≤ Cd21(m0, m̂0).

Proof. We will demonstrate that K(t0, x,m0, y) satisfies the definition of a derivative in the space
of measures. As Proposition 4.11 states that v(t0, x) = 〈m̂0,K(t0, x,m0, ·)〉 we have through (36)
that

|U(t0, ·, m̂0)− U(t0, ·,m0)−
∫
Rd
K(t0, x,m0, y)(m̂0 −m0)(dy)| ≤ Cd21(m0, m̂0)

Let m,m′ be arbitrary measures in P1(Rd). We choose m̂0 = (1 − h)m + hm′ and m0 = m for
some h ∈ [0, 1], then dividing both sides of the inequality with h and rearranging yields∣∣∣∣U(t0, ·, (1− h)m+ hm′)− U(t0, ·,m)

h
−
∫
Rd
K(t0, x,m, y)(m′ −m)(dy)

∣∣∣∣ ≤ C 1

h
d21(m0, m̂0)

≤ h2

h
d1(m,m′),
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which tends to zero for any choice of m,m ∈ P1(Rd)as h→ 0.

Next we check the normalisation, that is∫
Rd

δU

δm
(t0, x,m0, y)m0(dy) = 0.

To confirm this we observe that this integral corresponds to v(t0, x) = 〈m0,K(t0, x,m0, ·)〉, which
implies that v(t, x) is a solution to the linear system (33) with µ0 = m0. Since F,G are by
assumption C1 in measure, normalisation of the measure derivative yields that

〈 δF
δm

(t,m(t)),m(t)〉 = 〈 δG
δm

(t,m(T )),m(T )〉 = 0.

This in turn means that (0,m) is a solution, which by Proposition 4.10 is a unique solution, to
(33), and we can conclude ∫

Rd
K(t0, x,m0, y)m0(dy) = v(t0, x) = 0.

U is then C1 in measure, and the inequality in the corollary statement follows immediately from
(36).

4.4 Existence and Uniqueness of The Master Equation

We are finally ready to perform the proofs for Theorem 4.4, establishing existence and uniqueness
for the Master Equation. For the existence proof there are some different approaches one can
take. In this text we will do an approximation argument, where we first assume a smooth initial
measure m0 ∈ C∞b (Rd), show existence, and then pass to the limit using mollifiers as was done
in the proof for Theorem 3.16. This approach is performed in the existence proofs in [7] and [6].
Another approach uses the distributional formulation of the Fokker-Planck directly, cleverly using
δU
δm as a test function, which circumvents the need to use integration by parts. This second idea
will feature in the uniqueness proof.

Proof of Theorem 4.4 (existence). We proceed by an approximation argument, first showing the
result for m0 ∈ C∞b (Rd) before passing to any m0 ∈ P1(Rd) using Lemma 4.7

Step 1: Solution for a smooth measure. First let m0 ∈ C∞b (Rd) ∩ P1(Rd) let (u,m) be the corres-
ponding solution of the Mean Field Game system (10). By Theorem 3.16 (u,m) ∈ C1+α

2 ,2+α([t0, T ]×
Rd)× C1+α/2,2+α([t0, T ]× Rd) ∩ C([0, T ],P1(Rd)), which implies that m ∈ L1(Rd). We will show
that the Master Characteristic U solves the Master Equation 24 for the case of a smooth initial
measure.

Firstly, consider ∂tU by applying the definition of the derivative. Fix an arbitrary t0 ∈ [0, T ]
and let h > 0. Instead of tackling the difference quotient directly, we split it up into two more
manageable pieces

U(t0 + h, x,m0)− U(t0, x,m0)

h
=
U(t0 + h, x,m0)− U(t0 + h, x,m(t0 + h))

h
(37)

+
U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
.

For the first quotient we use that U is C1 in measure from Corollary 4.14, and apply the measure
version of the fundamental theorem of calculus from Lemma 2.7, denoting ms = (1 − s)m0 +
sm(t0 + h)
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U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m0) =

∫ 1

0

∫
Rd

δU

δm
(t0 + h, x,ms, y)(m(t0 + h)−m0)(dy)ds

=

∫ 1

0

∫
Rd

∫ t0+h

t0

δU

δm
(t0 + h, x,ms, y)∂tm(t, y)dtdyds.

Since m ∈ C1+α
2 ,2+α([t0, T ] × Rd) we can use the strong solution of the PDE (10) to swap out

∂tm, and since m ∈ L1(Rd) and ‖ δUδm (t0 + h, x,ms, y)‖ ≤ C from Corollary 4.14 we can integrate
by parts yielding

∫ 1

0

∫
Rd

∫ t0+h

t0

δU

δm
(t0 + h, x,ms, y)

(
ε∆ym(t, y) + div

(
m(t, y)Du(t, y)

))
dtdyds

=

∫ 1

0

∫
Rd

∫ t0+h

t0

(
ε∆y

δU

δm
(t0 + h, x,ms, y)−Dy

δU

δm
(t0 + h, x,ms, y) ·Du(t, y)

)
m(t, y)dtdyds.

By appealing to the continuity of ∆y
δU
δm and Dy

δU
δm in all the variables, and by using the dominated

convergence theorem, we can divide by h and pass to the limit, getting

lim
h→0

U(t0 + h, x,m(t0 + h))− U(t0 + h, x,m0)

h

=

∫ 1

0

∫
Rd

(
ε∆y

δU

δm
(t0, x,m0, y)−Dy

δU

δm
(t0, x,m0, y) ·Du(t0, y)

)
m(t0, y)dyds

=

∫
Rd

(
εdivy[DmU ](t0, x,m0, y)−DmU(t0, x,m0, y) ·Du(t0, y)

)
m(t0, y)dy,

where we have inserted the definition of the Lions derivative Dm := Dy
δU
δm .

For the second difference quotient, we use the definition of the Master Characteristic U . U(t0 +
h, x,m(t0 + h)) is defined as the initial value of the solution of the Hamilton-Jacobi-Bellman
equation of (10) started at time t0 +h with the initial measure m(t0 +h). This is equivalent to the
function u, which is the solution of (10) started in (t0,m0), evaluated at time t0 +h, since they are
governed uniquely by the same Mean Field Game system with solutions agreeing at time t0 + h.
From the regularity of u we then have

lim
h→0

U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
= lim
h→0

u(t0 + h, x)− u(t0, x)

h
= ∂tu(t0, x)

= −ε∆u(t0, x) +
1

2
|Du(t0, x)|2 − F (x,m(t0))

= −ε∆xU(t0, x,m0) +
1

2
|DxU(t0, x,m0)|2 − F (x,m(t0)).

Combining the two difference quotients from (37), we get

∂tU(t0, x,m0) = lim
h→0

U(t0 + h, x,m(t0 + h))− U(t0, x,m0)

h
(38)

= −ε∆xU(t0, x,m0) +
1

2
|DxU(t0, x,m0)|2 − F (x,m0)

−
∫
Rd

(
εdivy[DmU ](t0, x,m0, y)−DmU(t0, x,m0, y) ·DxU(t0, y,m0)

)
m0(y)dy,

which is precisely the Master Equation (24). Furthermore, from the convergence of the right hand
side above, we get that U is C1 in time for any (t0, x,m0) ∈ [0, T ) × Rd × P1(Rd) ∩ C∞b (Rd). To
check the terminal value for the equation we observe that starting the MFG system in (T,m0)
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yields a somewhat degenerate solution for the simultaneous initial and terminal point (T, x) where
(u(T, ·),m(T, ·)) = (G(·,m0),m0), and the terminal value of the master equation is thus

U(T, x,m0) = u(T, x) = G(x,m0),

which is exactly what was desired.

Step 2: Approximation of a general measure. For this approximation part we follow a similar
approach as was done in the proof of Theorem 3.16 and regularise an arbitrary m0 ∈ P1(Rd) using
a δ-indexed family of standard mollifiers, as introduced in Definition 2.4, and pass to the limit in
the master equation in a controlled manner. For δ > 0 let

mδ
0(x) := m0 ∗ ηδ =

∫
Rd
ηδ(x− y)m0(dy).

As was shown in the proof of Theorem 3.16, we have that mδ
0 ∈ P1(Rd) ∩ C∞b (Rd), and that for

any decreasing sequence {δn} tending to zero

lim
n→∞

d1(mδn
0 ,m0) = 0. (39)

Now, let (uδ,mδ) be the solutions of the Mean Field game system (10) starting in (t0,m
δ
0), and

let (u,m) be the solution starting in (t0,m0). Again, by applying the definition of the Master
Characteristic, we have U(t, x,mδn

0 ) = uδn(t0, x) and U(t, ·,m0) = u(t0, x), and we want to show
by passing {δn} to zero that the latter solves the Master Equation.

Next, we argue that the right hand side of (38) is continuous, and hence that we are able to pass
to the limit. For the terms containing U we apply Lemma 4.7 and the limit (39) and get

‖U(t, ·,mδn
0 )− U(t, ·,m0)‖4+α ≤ Cd1(mδn

0 ,m0)
n→∞−−−−→ 0. (40)

Likewise, for the terms involving DmU we appeal to the continuity of the derivatives from Corollary
4.14

lim
n→∞

‖ δU
δm

(t0, ·,m0, ·)−
δU

δm
(t0, ·,mδn

0 , ·)‖(4+α−β,2+α−β) = 0.

Lastly, from the assumptions (F),(G) on F and G

‖F (·,mδn
0 )− F (·,m0)‖∞ + ‖G(·,mδn

0 )−G(·,m0)‖∞ ≤ Cd1(mδn
0 ,m0)

n→∞−−−−→ 0, (41)

and we can finally begin to estimate the terms of (38). The convergence of the non-integral part
−ε∆xU(t0, x,m0) + 1

2 |DxU(t0, x,m0)|2−F (x,m0) is immediate from the limits (40) and (41). For
the two terms containing integrals we can estimate∣∣∣ ∫

Rd

(
εdivy[DmU ](t0, x,m

δn
0 , y)

)
mδn

0 (dy)−
∫
Rd

(
εdivy[DmU ](t0, x,m0, y)

)
m0(dy)

∣∣∣
≤ ε
∣∣∣ ∫

Rd

(
divy[DmU ](t0, x,m

δn
0 , y)

)
(mδn

0 −m0)(dy)
∣∣∣

+ ε
∣∣∣ ∫

Rd

(
divy[DmU ](t0, x,m

δn
0 , y)− divy[DmU ](t0, x,m0, y)

)
m0(dy)

∣∣∣
≤ ε‖ δU

δm
(t0, ·,mδn

0 , ·)‖(4+α,3+α)d1(mδn
0 ,m0) + ε‖ δU

δm
(t0, ·,m0, ·)−

δU

δm
(t0, ·,mδn

0 , ·)‖(4+α−β,2+α−β),

where we have used Lipschitz in y trick for the first term, and the regularity and boundedness of
δU
δm and that m0 is a finite measure, for the second. By (39) and (40), the integral estimate above
converges to zero, implying the convergence of the integrals.

The estimate on, and convergence of, the integral containing DmU(t0, x,m0, y) · DxU(t0, y,m0)
follows using the same techniques and bounds in the same way, and we can thus conclude that the
right hand side of (38) converges to the right hand side of the Master Equation with respect to a
general m0 ∈ P1(Rd). Furthermore, with the right hand side being continuous, we can conclude
that ∂tU(t0, x,m0) exists, and is continuous, for any m0 ∈ P1(Rd).
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Remark 4.15. Note that the previous proof only computed the right derivative. The proof for
the left derivative uses similar techniques, but is quite a bit more technical and is often ignored in
the literature, like in [7] and [6]. The system is not as well-behaved backwards in time. The proof
for the left derivative gets full treatment in an upcoming publication by Jakobsen and Rutkowski.

As with many uniqueness proofs the core consists of assuming existence of another solution to the
Master Equation, and demonstrating that it has to coincide with the solution constructed from
the Master Characteristic U . We apply some ideas from the uniqueness proof of Theorem 2.4.2 in
[7], but instead of using smooth approximation and integration by parts for a classical solution of
the Fokker-Planck, we use the distributional formulation directly.

Proof of Theorem 4.4 (uniqueness). Let U be the classical solution to the Master Equation derived
using the Master Characteristic, and let V be any other classical solution. By Definition 4.2 of
a classical solution, DxDyV is globally bounded in [0, T ] × Rd × P1(Rd) × Rd, and hence by our
standard Lipschitz in y trick we have that Dx is globally Lipschitz continuous in the m-variable.

Let m0 ∈ P1(Rd) and fix a t0 ∈ [0, T ]. We introduce the following Fokker-Planck equation{
∂tm̃− ε∆m̃− div

(
m̃DxV (t, x, m̃)

)
= 0 in [t0, T ]× Rd,

m̃(t0) = m0 in Rd.

By Proposition 3.5 (which utilises results from [3]), since DxV,D
2
xV,D

3
xV ∈ Cb

(
[0, T ] × Rd

)
this

Fokker-Planck equation has a unique distributional solution. Thus for any ϕ ∈ C∞c ([t0, T ] × Rd)
we have∫

Rd
ϕ(t, x)m̃(t, dx) =

∫
Rd
ϕ(t0, x)m0(dx) (42)

+

∫ t

t0

∫
Rd

[ϕt(s, x)−Dϕ(s, x) ·DxV (s, x, m̃) + ε∆ϕ(s, x)]m̃(s, dx)ds.

Actually the above formulation holds for any function ϕ ∈ C1,2
b ([t0, T ]× Rd), as can be shown by

regularising and truncating ϕ by cutoff functions, as described in [5].

As an ansatz, we set ũ(t, x) = V (t, x, m̃(t)) and use the regularity of V and the measure version of
the fundamental theorem of calculus from Lemma 2.7 to get the time derivative at the initial time
t0

∂tũ(t0, x) = lim
h→0

V (t0 + h, x, m̃(t0 + h))− V (t0, x, m̃(t0))

h
(43)

= lim
h→0

(V (t0 + h, x, m̃(t0 + h))− V (t0, x, m̃(t0 + h))

h
+
V (t0, x, m̃(t0 + h))− V (t0, x, m̃(t0))

h

)

= ∂tV (t0, x,m0) + lim
h→0

1

h

∫ 1

0

∫
Rd

δV

δm
(t0, x, m̃s, y)(m̃(t0 + h, dy)− m̃(t0, dy))ds,

where m̃s = sm̃(t0 + h) + (1 − s)m̃(t0), which tends to m̃(t0) as h → 0. We can then utilise our
distributional formulation, choosing ϕ(t, y) = δV

δm (t0, x, m̃s(t0), y). Note that ϕ ∈ C1,2
b ([t0, T ]×Rd),

ϕ(t0 + h, y) = ϕ(t0, y) and hence ∂tϕ(t, y) = 0. We can then use the distributional formulation
(42) in (43) to get

∂tũ(t0, x) = ∂tV (t0, x,m0) + lim
h→0

1

h

∫ 1

0

∫ t0+h

t0

∫
Rd

(
ε∆y

δV

δm
(t0, x, m̃s, y)

−DxV (t, x, m̃(t)) ·Dy
δV

δm
(t0, x, m̃s, y)

)
m̃(t, dy)dtds

= ∂tV (t0, x,m0) +

∫
Rd

(
εdivy[DmV ](t0, x,m0, y)−DxV ·DmV (t0, x,m0, y)

)
m0(dy),
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where the second equality utilises Fubini’s Theorem (Theorem 4.5 in [4]), and that by Definition 4.2
of the classical solution, Dx

δV
δm , Dy

δV
δm and D2

y
δV
δm are continuous in all variables. We furthermore

use that V by assumption solves the Master Equation, and after comparing terms get

∂tũ(t0, x) = −ε∆V (t0, x,m0) +
1

2
|DV (t, x,m0)|2 − F (x,m0) (44)

= −ε∆ũ(t0, x) +
1

2
|Dũ(t0, x)|2 − F (x,m0).

We recognise this as the Hamilton-Jacobi-Bellman equation from the Mean Field Game system
(10) started in point (t0,m0), evaluated at time t0. By Theorem 3.16, (44) has a unique solution
ũ, and by the definition of the Master Characteristic

U(t0, x,m0) = ũ(t0, x) = V (t0, x,m0), ∀x ∈ Rd.

Since the initial time and inital measure (t0,m0) ∈ [0, T ] × P1(Rd) were chosen arbitrarily, we
conclude that U and V agree everywhere on [0, T ]×Rd×P1(Rd)×Rd, and hence that the classical
solution to the Master Equation is unique.

For the later convergence of the master equation to the N -dimensional Nash system, we will need
the Lipschitz continuity of δU

δm with respect to m. This result follows immediately from properties
previously established.

Proposition 4.16. Assume that (F) and (G) holds. Then

sup
t∈[0,T ]

sup
m1 6=m2∈P1(Rd)

(
d1(m1,m2)

)−1∥∥∥ δU
δm

(t, ·,m1, ·)−
δU

δm
(t, ·,m2, ·)

∥∥∥
(4+α,2+α−β)

≤ C,

where C is dependent upon F, G, and T .

Proof. From the Lipschitz continuity in measure in Proposition 4.11, we have

‖K(t0, ·,m1
0, ·)−K(t0, ·,m2

0, ·)‖(4+α,2+α−β) ≤ Cd1(m1
0,m

2
0),

where C > 0 is independent of t0, m
1
0, and m2

0. By the identification between K and δU
δm made in

Corollary 4.14, we get

‖ δU
δm

(t0, ·,m1
0, ·)−

δU

δm
(t0, ·,m2

0, ·)‖(4+α,2+α−β) ≤ Cd1(m1
0,m

2
0),

which holds for any t0 ∈ [0, T ], and the proposition is proven.

5 The Convergence Problem

We wrap up this thesis with a final section on the convergence problem. First we describe the
necessary further assumptions to be made upon the Nash system, then we approximate the system
using the well-posed Master Equation, and finally we sketch the convergence properties of the
systems.
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5.1 The N-dimensional Nash system

As we discussed in the background section of game theory, a N -player differential game has a Nash
equilibrium taking the form of the following system.

−∂tvN,i(t,x)− ε
N∑
j=1

∆xjv
N,i(t,x) +

1

2
|Dxiv

N,i(t,x)|2

+
∑
j 6=i

Dxjv
N,j(t,x) ·Dxjv

N,i(t,x)

= FN,i(x) in [0, T ]×
(
Rd
)N
,

vN,i(T,x) = GN,i(x) in
(
Rd
)N
,

where x = (x1, ..., xn) ∈
(
Rd
)N

, and we have inserted our explicit choice of Hamiltonian H(x, p) =
1
2 |p|

2. This system is still to general to apply Mean Field Game techniques, and we need to make
some slight assumptions upon the cost terms F,G. Two core ideas of the Mean Field formulation
are 1. That each agent is identical and 2. That each agent chooses strategies based on the
distribution of the other agents, and not every other agents exact position. We satisfy these two
requirements by making the following assumptions

FN,i(x) = F (xi,m
N,i
x ),

GN,i(x) = G(xi,m
N,i
x ),

where F,G obeys the assumptions (F),(G), and

mN,i
x :=

1

N − 1

N∑
j 6=i

δxj

is called the empirical measure. For any finite N , mN,i
x ∈ P1(Rd), and integration with respect to

the empirical measure takes the form.∫
Rd
f(y)mN,i

x (dy) =
1

N − 1

∑
j 6=i

f(xj).

Inserting these coupling terms into the Nash system yields

−∂tvN,i(t,x)− ε
N∑
j=1

∆xjv
N,i(t,x) +

1

2
|Dxiv

N,i(t,x)|2

+
∑
j 6=i

Dxjv
N,j(t,x) ·Dxjv

N,i(t,x)

= F (xi,m
N,i
x ) in [0, T ]×

(
Rd
)N
,

vN,i(T,x) = G(xi,m
N,i
x ) in

(
Rd
)N
.

(45)

We observe that under our new assumptions, the system is quite symmetric, and the solutions
vN,i(t,x) are identical, save for the starting point x. This is sufficient for an approximation using
the Master Equation.

5.2 Approximation Using the Master Equation

Having described the properties of the N -dimensional Nash system, we seek to demonstrate how
the well-posedness of the master equation provides us with the means to describe the asymptotic
behaviour of the equilibrium system (45) as N →∞.

The key idea for proving convergence is to evaluate the solution of the Master Equation U in the
empirical measure mN,i

x , and to show that this yields a system approximately equal to (45). We
again follow an approach set out in [7], which as before is performed on Td, and the proofs will
have to be amended in order to reflect our non-compact domain of Rd. To implement this idea,
we introduce what in the literature are called the finite dimensional projections of U .
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Definition 5.1. Let U be the solutions of the Master Equation (24), and let x = (x1, ..., xN ) ∈(
Rd
)N

. We then define the set of finite dimensional projections {uN,i(t,x)}i∈{1,...,N} as

uN,i(t,x) := U(t, xi,m
N,i
x ). (46)

Remark 5.2. For the definition of the projections to be well defined, we need that mN,i
x ∈ P1(Rd)

in order for the solution of the Master Equation to be well defined. This is satisfied as the measures
mN,i

x are finite sums of Dirac measures

sup
i∈{1,...,N}

∫
Rd
|y|mN,i

x (dy) = sup
i∈{1,...,N}

 1

N − 1

N∑
j 6=i

|xj |

 <∞.

We also remark that the stronger condition supN∈{2,3,...} supi∈{1,...,N}
∫
Rd |y|m

N,i
x (dy) satisfied if

{x1, ..., xn}i∈{1,...,N} are independent and identically distributed (i.i.d.) samples of some distribu-

tion m ∈ P1(Rd) by the Strong Law of Large Numbers (Theorem 20.1 in [15]). This might be a
key assumption in applications using a P1(Rd)-based Mean Field Game approach in order to show
stronger forms of convergence.

The next step in establishing that uN,i(t,x) almost solves (45) is computing the relevant derivatives.
The regularity of these projections is, perhaps as expected, directly tied to the regularity of the
classical solution of the Master Equation as given in Theorem 4.4. Consequently, we immediately
get the existence of

Dxiu
N,i(t,x) = DxU(t, xi,m

N,i
x ),

as the variable xi only appears in the x-slot of U . For Dxju
N,i(t,x) with j 6= i, computation is

a bit more intricate due to the dependence of xj through the measure mN,i
x . To handle this, we

introduce the following technical proposition.

Proposition 5.3. Assume that U : Rd × P1(Rd) is C1 measure, that for each m,m′ ∈ P1(Rd),
U(·,m) ∈ C2+α(Rd) and U(·,m, ·) ∈ C2+α(Rd)× C2

b (Rd) and∥∥∥U(·,m′)− U(·,m)−
∫
Rd

δU

δm
(·,m, y)(m′ −m)(dy)

∥∥∥
2+α
≤ Cd21(m,m′).

Then for a fixed m ∈ P1(Rd) and a vector field φ ∈ L2(m,Rd)∥∥∥U(·, (id + φ)#m)− U(·,m)−
∫
Rd
DmU(·,m, y) · φ(y)m(dy)

∥∥∥
2+α
≤ C ′‖φ‖2L2(m).

where C ′ only depends on the constant C.

Proof. This result is a quantitative version of Proposition 2.8, and is stated and proven for the
torus in Proposition A.2.1 in the appendix of 4.4. The proof in Rd is identical.

With this technical estimate in hand, we can construct a proposition restating the derivatives of
the projection uN,i as the derivatives of the solution of the Master Equation.

Lemma 5.4. Assume (F) and (G) holds. Then for any N ≥ 2, i ∈ {1, ..., N}, uN,i ∈ C2
b

(
(Rd)N

)
and for j 6= i

Dxju
N,i(t,x) =

1

N − 1
DmU(t, xi,m

N,i
x , xj),

D2
xi,xju

N,i(t,x) =
1

N − 1
DxDmU(t, xi,m

N,i
x , xj),∣∣D2

xj ,xju
N,i(t,x)− 1

N − 1
Dy[DmU ](t, xi,m

N,i
x , xj)

∣∣ ≤ C

N
,

where C depends on the Lipschitz constant from Proposition 4.16.
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Remark 5.5. This lemma is an adaption of Remark 6.1.2. in [7], and an analogue to Proposition
6.1.2. for the case for the Master Equation with common noise.

Proof. Assume without lack of generality that x = {xj}j∈{1,...,N} where xj 6= xk for j 6= k and

let ε = minj 6=k |xj − xk|. For the tuple v = {vj}j∈{1,...,N} ∈
(
Rd
)N

where vi = 0 for a fixed i, we
define a smooth function φ such that

φ(x) = vj if x ∈ Bε/4(xj),

and decaying quickly and smoothly to zero otherwise.

By the definition for the pushforward measure, we get

(id + φ)#mN,i
x =

1

N − 1

∑
j 6=i

δxj+φ(xj) =
1

N − 1

∑
j 6=i

δxj+vj = mN,i
x+v

Inserting this into our projected solution yields

uN,i(t,x + v)− uN,i(t,x) = U(t, xi,m
N,i
x+v)− U(t, xi,m

N,i
x )

= U(t, xi, (id + φ)#mN,i
x ))− U(t, xi,m

N,i
x ).

By the regularity of the solution of the Master Equation as given by Theorem 4.4, and the estimate
from Corollary 4.14, we satisfy the requirements for Proposition 5.3∥∥∥U(·, (id + φ)#mN,i

x )− U(·,mN,i
x )−

∫
Rd
DmU(·,mN,i

x , y) · φ(y)mN,i
x (dy)

∥∥∥
2+α
≤ C ′‖φ‖2

L2(mN,ix )
,

where

‖φ‖2
L2(mN,ix )

=
1

N − 1

N∑
j 6=i

|φ(xj)|2 =
1

N − 1

N∑
j 6=i

|vj |2 =
1

N − 1
|v|2.

By this bound, we get that

uN,i(t,x + v)− uN,i(t,x) =

∫
Rd
DmU(xi,m

N,i
x , y) · φ(y)mN,i

x (dy) +
1

N − 1
O(|v|2)

=
1

N − 1

N∑
j 6=i

DmU(xi,m
N,i
x , xj) · φ(xj) +

1

N − 1
O(|v|2)

=
1

N − 1

N∑
j 6=i

DmU(xi,m
N,i
x , xj) · vj +

1

N − 1
O(|v|2).

Now, denote by xj,k the k-th component of xj , and define the standard basis vector ej,k =

(0, ..., 0, 1, 0, ..., 0) ∈
(
Rd
)N

as the vector with 1 in the xj,k-slot, and zero otherwise. Likewise,
denote by ek = (0, ..., 0, 1, 0, ..., 0) ∈ Rd the vector with 1 in the k-th slot. Choosing v = hej,k and
applying the definition of the derivative in Rd yields

∂xj,ku
N,i(t,x) = lim

h→0+

uN,i(t,x + hej,k)− uN,i(t,x)

h

= lim
h→0+

1

h

1

N − 1

N∑
j 6=i

DmU(xi,m
N,i
x , xj) · (hej,k)j +

1

h

1

N − 1
O(h2)

=
1

N − 1
DmU(·,mN,i

x , xj) · ek,
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which implies that

Dxju
N,i(t,x) =

1

N − 1
DmU(t, xi,m

N,i
x , xj).

For the second equality in this lemma, we observe that Dm only depends on xi through the x-
variable, and hence the derivative follows directly from the regularity of the Master Equation.

For the inequality we perform the same technique, now with a second order difference quotient
with k, l ∈ {1, ..., d}

∂xj,l∂xj,ku
N,i(t,x)

= lim
h→0+

uN,i(t,x + hej,k + hej,l)− uN,i(t,x + hej,l)− uN,i(t,x + hej,k) + uN,i(t,x)

h2

= lim
h→0+

1

h2

( N∑
j 6=i

DmU(xi,m
N,i
x+hej,l

, xj + hel) · (hej,k)j −DmU(xi,m
N,i
x , xj) · (hej,k)j

+
1

N − 1
O(h2)

)
=

1

N − 1
∂ylDmU(xi,m

N,i
x , xj) · ek +O(

1

N
),

where we have used that due to Proposition 4.16∣∣DmU(xi,m
N,i
x+hej,l

, xj)−DmU(xi,m
N,i
x , xj)

∣∣ ≤ Cd1(mN,i
x+hej,l

,mN,i
x ) ≤ C

N − 1
|hel| = C

h

N − 1
.

Since this holds for all choices of k, l ∈ {1, ..., d}, the inequality in the lemma statement holds.

With these estimates in hand, we can show that the projection
(
uN,i

)
i∈{1,...,N} is an approximate

solution to the Nash system (45).

Proposition 5.6. Assume the coupling term assumptions (F),(G) hold. Then one has, for any
i ∈ {1, ..., N}, 

−∂tuN,i(t,x)− ε
N∑
j=1

∆xju
N,i(t,x) +

1

2
|Dxiu

N,i(t,x)|2

+
∑
j 6=i

Dxju
N,j(t,x) ·Dxju

N,i(t,x)

= F (xi,m
N,i
x ) + rN,i(t,x) in [0, T ]×

(
Rd
)N

uN,i(T,x) = G(xi,m
N,i
x ) in

(
Rd
)N

where rN,i ∈ L∞
(

[0, T ]×
(
Rd
)N)

with

‖rN,i‖∞ ≤ C

 1

N
+

1

N2

N∑
j 6=i

|xj − xi|


Proof. By the definition of the projection (46), uN,i(t,x) corresponds to the solution of the Master
Equation evaluated at a point (t, xi,m

N,i
x ). We insert the point into the Master Equation (24),

and get

−∂tU(t, xi,m
N,i
x )− ε∆xU(t, xi,m

N,i
x ) +

1

2
|DxU(xi, t,m

N,i
x )|2

− ε
∫
Rd

divy[DmU ](t, xi,m
N,i
x , y)mN,i

x (dy)

+

∫
Rd
DmU(t, xi,m

N,i
x , y) ·DxU(t, y,mN,i

x )mN,i
x (dy),

= F (xi,m
N,i
x )
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which after applying the definition for integration with respect to mN,i
x yields

−∂tuN,i(t,x)− ε∆xiu
N,i(t,x) +

1

2
|Dxiu

N,i(t,x)|2 (47)

− ε 1

N − 1

N∑
j 6=i

divy[DmU ](t, xi,m
N,i
x , xj)

+
1

N − 1

N∑
j 6=i

DmU(t, xi,m
N,i
x , xj) ·DxU(t, xj ,m

N,i
x )

= F (xi,m
N,i
x ).

We first consider the term containing the sum of the dot products. From (27) in Theorem 4.4∣∣DxU(t, xi,m
N,i
x )−DxU(t, xi,m

N,j
x ))

∣∣ ≤ Cd1(mN,i
x ,mN,j

x ) = C sup
ψ∈1-Lip

∫
Rd
ψ(y)(mN,i

x −mN,j
x )(dy)

=
C

N − 1
sup

ψ∈1-Lip
(ψ(xj)− ψ(xk)) ≤ C

N − 1
|xj − xi|,

and thus∣∣DxU(t, xj ,m
N,i
x )−Dxju

N,j(t,x)
∣∣ =

∣∣DxU(t, xj ,m
N,i
x )−DxU(t, xj ,m

N,j
x )

∣∣ ≤ C

N − 1
|xj − xi|.

In combination with the first equality from Lemma 5.4, this yields

1

N − 1

N∑
j 6=i

DmU(t, xi,m
N,i
x , xj) ·DxU(t, xj ,m

N,i
x )

=
1

N − 1

N∑
j 6=i

DmU(t, xi,m
N,i
x , xj) ·

(
Dxju

N,j(t,x) +O

(
|xj − xi|
N − 1

))

=

N∑
j 6=i

Dxju
N,i(t,x) ·Dxju

N,j(t,x) +
1

(N − 1)2

N∑
j 6=i

O(|xi − xj |)

For the next term in the system, we compute using the inequality from Lemma 5.4

N∑
j=1

∆xju
N,i(t,x) = ∆xiu

N,i(t,x) +

N∑
j 6=i

∆xju
N,i(t,x)

= ∆xiu
N,i(t,x) +

1

N − 1

N∑
j 6=i

divy[DmU ](t, xi,m
N,i
x , xj) +O

( 1

N

)
.

Inserting these identities into (47) leaves us with

−∂tuN,i(t,x)− ε
N∑
j=1

∆xju
N,i(t,x) +

1

2
|Dxiu

N,i(t,x)|2 +

N∑
j 6=i

Dxju
N,i(t,x) ·Dxju

N,j(t,x)

= F (xi,m
N,i
x ) +O(

1

N
+

1

N2

N∑
j 6=i

|xj − xi|),

and we collect the O( 1
N + 1

(N−1)2
∑N
j 6=i |xj − xi| as the term rN,i ∈ L∞

(
[0, T ]×

(
Rd
)N)

, finalising

the proof.
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Remark 5.7. The bound upon the error term

‖rN,i‖∞ ≤ C

 1

N
+

1

N2

N∑
j 6=i

|xj − xi|

 ,

might seem a bit pathological at first glance. Indeed its form is due to Proposition 5.6 mirroring

a proof performed on the torus in [7]. For the case on the torus, we have x ∈
(
Td
)N

and hence
1
N2

∑N
j 6=i |xj − xi| ≤

1
N . Furthermore we observe that if the condition

sup
N∈N

(
1

N

N∑
i=1

|xi|

)
<∞,

is satisfied, then we have that ‖rN,i‖∞ ≤ C
N → 0 as N →∞. As was noted in Remark 5.2, this is

achieved if {x1, ..., xN} are the i.i.d. samples of a distribution in P1(Rd).

5.3 Convergence and Further Work

In this final section, we will cover the convergence of the N -dimensional Nash system to the Master
Equation. The suitable form of convergence in this case will be the following.

sup
i∈{1,...,N}

∣∣vN,i(t0,x)− U(t0, xi,m
N,i
x )

∣∣ ≤ C

N
(48)

This ”convergence” is a bit strange and subtle, which according to [7], is due to the qualitative
difference between the agents in the Nash system having to observe each other, while in the
limit system given by the Master Equation, the agents only need to observe a distribution of the
populations, and hence do not need to ”react” to players specific behaviour.

We will not perform any proofs for the convergence, as the stochastic analysis for the system on Rd
is outside the scope of this thesis, and will instead perform a brief revue of the method [7] employs
in order to prove convergence for the system on the torus Td.

The proof of convergence starts off by of comparing the ”optimal trajectories” generated by the
projected Master Equation and the Nash system, a pair of two similar SDEs{

dXi,t = −Dxiu
N,i(t,Xt)dt+

√
2εdBit, t ∈ (t0, T ],

Xi,t0 = Zi,

and {
dYi,t = −Dxiv

N,i(t,Yt)dt+
√

2εdBit, t ∈ (t0, T ],

Yi,t0 = Zi,

which generate the systems of stochastic processes {Xt = {Xi,t}i∈{1,...,N}}t∈[t0,T ] and {Yt =
{Yi,t}i∈{1,...,N}}t∈[t0,T ] respectively. Z = {Zi}i∈{1,...,N} is a family i.i.d. random variables of law
m0 independent of the i.i.d. family of Brownian motions {{Bit}t∈[0,T ]}i∈{1,...,N} Cardaliaguet et
al. [7] then use standard arguments from Itô calculus as well as Grönwall estimates in order to
produce the estimates

E

[
sup

t∈[t0,T ]

∣∣Yi,t −Xi,t

∣∣] ≤ C

N
, ∀t ∈ [t0, T ],

and almost surely, ∣∣uN,i(t0,Z)− vN,i(t0,Z)
∣∣ ≤ C

N
, (49)
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for all i ∈ {1, ..., N} with constant C deterministic and independent of t0,m0, and N . They then
continue by choosing Z as uniformly distributed random variables, and invoke continuity of U and
{vN,i}i∈{1,...,N} to obtain the desired result (48).

As a final remark upon the convergence of the Nash system, we discuss three points that need to
be accounted for in order to translate this proof to the domain Rd. Firstly, as discussed in Remark
5.7 of the error term rN,i of Proposition 5.6 we need to make sure that the estimate

‖rN,i‖∞ ≤ C

 1

N
+

1

N2

N∑
j 6=i

|xj − xi|

 ≤ C

N
,

for some N -independent constant C in order for the constant in (49) to be N -independent. This
is obtained by the sampling assumption remarked earlier, however, this might be too strong of an
assumption to be practical. It might also be possible to supply some sort of boundedness from a
tightness estimate, since tightness is central to convergence in measure.

Secondly, on the proof on the torus the compactness of the domain means that one is able to choose
Z to have an uniform distribution. This approach is not possible for Rd, as a uniform probability
distributions cannot exist on the entire space, since Rd has infinite Lebesgue measure. A possible
way to fix this might be to try to perform the proof with a deterministic initial value Z, or attempt
to perform some sort of approximation by Gaussian distributions.

Lastly, we have to make sure that the Itô calculus and Grönwall estimates employed are well defined.
A lot of Itô theory, for example the treatment in [26], is primarily L2-based, that is, concerning
random variables with second moments. As previously mentioned, probability measures defined
on Td have every moment, and are problem free in this regard. However, for our analysis on Rd
some care needs to be taken.

49



Bibliography

[1] Yves Achdou et al. Mean Field Games. Springer, 2019.

[2] Robert J. Aumann. ‘Markets with a Continuum of Traders’. In: Econometrica 32.1/2 (1964),
pp. 39–50. issn: 00129682, 14680262. url: http://www.jstor.org/stable/1913732 (visited on
22nd July 2022).

[3] Vladimir Bogachev, N. V. Krylov and Michael Röckner. ‘Elliptic and parabolic equations for
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