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A B S T R A C T

Vehicle assisted monitoring has shown promising potential for the condition assessment of existing bridges in
a road network, by removing practical complications faced in traditional Structural health monitoring (SHM)
methods such as traffic interruption and dense deployment of sensors. However, the combination of different
measurement sources during vehicle assisted monitoring has not yet been fully explored. This paper aims to
evaluate the potential benefit of considering multiple measured responses from various sources, including fixed
sensors on the bridge and on-board vehicle sensors. To this end, this paper proposes a Probabilistic Deep Neural
Network, a stochastic data-driven framework for damage assessment. This framework enables the combination
of vehicle and bridge responses to extract damage sensitive features for the classification of different damage
states. In addition, the proposed method estimates the uncertainty of its predictions, providing an indication
of the reliability of the result. The proposed method is validated using two numerical based case studies
while considering realistic operational conditions, which include temperature oscillations, additional traffic,
and measurement noise. The results from this study indicate that combining multiple sensor information results
in lower uncertainties in damage detection and localisation. The results also suggest that the proposed method
is robust in handling measurement noise and varying environmental conditions.
. Introduction

The growing stock of bridges is continuously subjected to deterio-
ation caused by different factors, such as excessive loading, fatigue,
orrosion, and environmental impact [1]. A failure to identify these
amages at an early stage can lead to catastrophic outcomes in terms of
uman life and the economy. Currently, for safe and reliable operation
f bridges, visual inspection based methods are in practice, which are
enerally expensive and prone to errors [2]. With recent advancements
n sensing technologies and data acquisition systems, vibration-based
ealth monitoring solutions are promising alternatives for effective
nd accurate tracking of the structural deterioration processes [3].
hese methods mainly rely on the detection of damage and potential
nomalies by analysing the dynamic response of bridges.

Vibration-based Structural Health Monitoring (SHM) systems can
e categorised into fixed or mobile sensing frameworks. In a fixed
ensing framework, the sensors are directly installed at a fixed location
f the target bridge. There are three main challenges associated to
his framework. First, the extensive deployment requirements in terms
f cost and labour, that is generally prohibitive for the inspection of
hort to medium span bridges. Second, the spatial information obtained
ith a fixed sensing system is mainly confined to certain discrete loca-

ions, which adversely affects the outcome of the bridge’s assessment.
he third main challenge is that often the collected vibration data is
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obtained during ambient and forced vibration. However, the bridge
response induced by ambient vibrations and random traffic loading
may not be sufficiently big to excite the stiff bridge properly and the
measured responses are often corrupted by measurement noise [4].
While forced vibration responses can be obtained using impact load
testing, human-induced loads or by applying hydraulic actuators, which
in practice significantly affect the serviceability of the bridge and
increase maintenance costs. In recent years Vehicle assisted monitoring
is an active research topic. In vehicle assisted monitoring, traversing
vehicles are used as the source of excitation. The forced response of
the bridge is measured using installed sensors on the bridge or sensors
installed inside the moving vehicles. With this framework the process
of the bridge’s excitation becomes relevantly economical and bridge
vibration data is only acquired when the vehicle is on the bridge.
Moreover, when vehicles are acting as mobile sensors, the measured
responses contain all the spatial information of the target bridge, which
significantly improves the condition assessment of bridges [5].

In recent years, many researchers have explored vehicle assisted
monitoring systems to perform damage assessment. Shokravi et al. [6]
conducted a comprehensive review on conventional vehicle assisted
bridge damage assessment techniques. These techniques can be cat-
egorised into direct (fixed sensing) or indirect (mobile sensing). Us-
ing direct sensing, [5,7] applied Moving Force Identification (MFI)
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Fig. 1. Main overview of proposed framework.
method for bridge damage assessment. Furthermore, in [8,9] the au-
thors utilised the measured rotational response of a bridge under the
influence of moving loads for damage assessment. On the other hand,
indirect techniques (or drive-by) have also been studied for bridge
damage assessment, of which Wang et al. [10] provide a detailed
overview of their application. The reported methods mainly rely on
advanced signal processing techniques and machine learning methods
for damage detection. For instance, [11,12] used data driven tech-
niques and statistical analysis for damage detection and quantification.
While [13,14] estimate the contact point response between vehicle and
bridge for damage detection and localisation.

Therefore, it can be concluded that vehicle assisted monitoring
systems have great potential to be used for damage assessment. The
reported methods have limitations and face unaddressed challenges,
which include the influence of vehicle speed, the effect of road pro-
file and additional random traffic, and the requirement of specialised
vehicles, among others. However, considering the merits of direct and
indirect methods, it is possible that the combination of both strategies
could be advantageous and complement each other. The combination
of recent advancements in wireless sensing systems to instrument the
infrastructure together with the increasing trend of equipping vehicles
with multiple sensors, opens the possibility for Vehicle to Infrastructure
(V2I) connectivity. This integration has shown potential benefits to
improve traffic and resources management [15,16]. However, to the
author’s best knowledge this interconnectivity between vehicle and
bridge sensors has not been fully explored in the context of damage
assessment and bridge maintenance.

Traditionally, free and ambient vibration responses have been used
for SHM relying on the assumption that the acquired structural re-
sponses are linear and stationary. However, this assumption does not
hold when the bridge is exited by a moving vehicle, when the structural
dynamic properties are time-varying making the response nonstation-
ary. Then, combining multi-variant data (fixed sensors and moving
sensors) and extracting damage sensitive features is a challenging task.
Recently, Deep Learning (DL) models are getting significant attention
in SHM applications. Deep learning models are tools that can be used
to find complex non-linear correlations within the datasets. These
models have the ability to combine multi-sensor data and perform
various tasks, including non-linear feature extraction, classification and
regression. For damage assessment, Ni et al. [17] and Zhang et al. [18]
2

used a 1-D Convolutional Neural Network (CNN) to extract damage
sensitive features from acceleration responses. Zhang et al. [19] used
phase motion estimation and CNN for damage detection application.
In [20,21] applied the CNN based method for condition assessment of
engine valve and rolling bearings. Similarly, for bridge health moni-
toring Ma et al. [22] applied a convolutional variational autoencoder
to compress the high-dimensional data to a low-dimensional feature
space, which was then used to establish a damage index, and validated
experimentally. In [23], the authors proposed the idea of the natural
excitation technique for data normalisation and then applied 1-D CNN
for automated damage detection. Nevertheless, the practical implemen-
tation of DL models for SHM is hindered because the collected training
data does not contain all operational and loading conditions, which
would facilitate the quantification of the uncertainty in decision output
of the model. For reliable decision making, the SHM system must be
able to handle uncertainty in its predictions.

Therefore, the goal of this study is to develop a damage assessment
method for bridges by combining forced response data obtained from
fixed and moving sensors, capable of quantifying the uncertainties
of the output. This study presents a data-driven method for damage
assessment using vehicle assisted monitoring data. The main overview
of the proposed framework is shown in Fig. 1, where data from mul-
tiple sources is collected. The gathered data is further analysed using
advanced data-driven methods for damage assessment. A probabilistic
Deep Neural Network (PDNN) based framework is developed in order
to extract damage sensitive features and account for uncertainty in
predictions. The framework leverages the usage of probabilistic neural
layers, which can represent the problem’s uncertainties. Monte Carlo
analysis is used to sample the weights from trained models to predict
different damage states. To evaluate the performance of the proposed
approach, ten different information scenarios (signal source combina-
tions) are considered for training each PDNN. The idea is validated
numerically for two types of bridges traversed by 5-axle trucks. The
study considers a range of vehicle dynamic properties and the presence
of road profile and evaluates the effect ambient temperature variations,
additional traffic, and measurement noise.

The remainder of the paper is organised as follows. Section 2
provides an overview of the proposed deep learning strategy, includ-
ing architecture of the model and implementation details. Section 3
presents the details of the vehicle-bridge interaction model used to gen-

erate the datasets. Section 4 evaluates the performance of the proposed
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Fig. 2. Basic ANN model; (a) with deterministic weights; (b) with probabilistic weights.
method for two case studies, a simply supported bridge and a multi-
span continuous bride. Section 5 provide the discussion on overall
finding of the proposed studies. Section 6 summarises the findings of
this study.

2. Deep learning model

2.1. Research significance

Deep Learning (DL) based models are widely used in SHM applica-
tions, including damage assessment. In that case, these models provide
solutions to tackle the problem of differentiating among large number
of damage classes [1]. However, DL models are prone to underfitting or
overfitting, which affect their generalisation capabilities for the given
data [24]. What is more, these models also tend to be overconfident in
their predictions and do not account for the inherent uncertainties [25]
of the problem. To overcome these issues, probabilistic deep learning
based models have been proposed. These models provide the frame-
work to account for the uncertainty in their predictions. Probabilistic
Deep Neural Networks (PDNN) are stochastic artificial neural networks
that are trained by using a Bayesian approach [26].

2.2. Probabilistic deep neural network

Standard Deep Neural Network (DNN) are built using an input layer
𝒍𝟎, multiple hidden layers 𝒍𝑖 (for 𝑖 = 1, 2,… , 𝑛 − 1) with non-linear
operations, and a final output layer 𝒍𝑜. For a simple feedforward net-
work, each layer 𝒍 is composed of linear transformation and activation
function denoted as 𝛼. The goal in a simple DNN is to approximate an
arbitrary function 𝒀 = 𝛷(𝑿), based on the input 𝑿. Their architecture
can be summarised as follows:
𝒍𝟎 = 𝑿,

𝒍𝒊 = 𝛼(𝑾 𝑖𝒍𝑖−1 + 𝒃𝑖) 𝑖 ∈ [1, 𝑛],

𝒀 = 𝒍𝑛

(1)

Here, 𝑛 is the number of hidden layers while 𝑾 and 𝒃 are the
weights and biases of the network. These learning parameters 𝜽 =
(𝑾 , 𝒃) are optimised as single deterministic estimates for a given data
set (Fig. 2a) using backpropagation algorithm.

On the other hand, stochastic neural networks or PDNN are built by
introducing stochastic components into the network [27]. The stochas-
tic neural networks are mainly built to account for two types of
uncertainties: either the randomness in the input data or the uncer-
tainties in the estimated parameters of the deep learning model. The
first one can be handled by using probability distributions in the
loss function as discussed in thoroughly in [28]. While the latter can
be accounted for by considering weights as stochastic (Fig. 2b) to
simulate multiple possible model parameters 𝜽 with their associated
3

probability distribution 𝑝(𝜽). For this study the main goal of PDNN is
to capture the associated uncertainty of the underlying processes. This
can be achieved by evaluating predictions of multiple parameterised
𝜽 sampled models. If the outputs of multiple models agree, then the
uncertainty is considered to be low. While in the case of extended
disagreement in predictions, then the uncertainty is considered as high.
The process at a high level can be expressed as:

𝜽 ∼ 𝑝(𝜽),

𝒀 = 𝑃𝐷𝑁𝑁𝜃(𝑿) + 𝜀
(2)

where 𝜀 represents a noise to account for the fact that 𝑃𝐷𝑁𝑁𝜃 is only
a probabilistic approximation of a function.

In order to design the PDNN, the first step is to select the archi-
tecture of the neural network, namely a fully connected network or
a convolutional neural network. Then the second step is to include
the selection of prior distributions over the possible model parameters
𝑝(𝜽) and their prior confidence over the predictive power of the model
𝑝(𝒀 |𝑿,𝜽). For supervised learning, Bayesian posteriors can be com-
puted as shown in Eq. (3) by applying Bayes’s theorem and considering
independence between the input data 𝐷 and the model parameters 𝜽.

𝑝(𝜽|𝐷) =
𝑝(𝐷𝑦|𝐷𝑥,𝜽) 𝑝(𝜽)

∫ 𝑝(𝐷𝑦|𝐷𝑥,𝜽∗) 𝑝(𝜽∗) 𝑑𝜽∗
(3)

where 𝐷𝑥 and 𝐷𝑦 are training inputs and training labels for the dataset
𝐷. In complex models such as deep neural networks, Bayesian pos-
teriors become high dimensional probability distributions. This issue
makes computing and sampling using the standard method an in-
tractable problem, especially computing the evidence (denominator)
in Eq. (3). To mitigate this problem and for practical implementation,
variational inference is applied, which learns a variational distribution
to approximate the exact posterior. The main idea behind variational
inference is to have a prior variational distribution 𝑞𝜙(𝐻) parameterised
by a set of parameters 𝜙 and then learn those parameters such that it is
close to the exact posterior. More details about variational inference
can be found in [25]. Therefore, the probabilistic prediction with
known posterior can be expressed as:

𝑝(𝒀 |𝑿, 𝐷) = ∫ 𝑝(𝑌 |𝑋,𝜽∗) 𝑝(𝜽∗|𝑫) 𝑑𝜽∗ (4)

Eq. (4) can be interpreted as the predictive distribution of an infi-
nite ensemble of networks. In practice 𝑝(𝒀 |𝑿, 𝐷) is sampled indirectly
from Eq. (2). The final prediction can be computed via a Monte Carlo
analysis [29] by using a finite number of randomly sampled weight pa-
rameters from the posterior to compute the series of possible outputs as
shown in Fig. 3. In order to measure the uncertainty in the classification
problem the average model prediction will give the probability of each
class, which can be computed as follows:

𝒑̂ = 1
𝑁

∑

𝑃𝐷𝑁𝑁𝜽𝒊 (𝑿) (5)

𝜽𝒊∈𝑵
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Fig. 3. Illustration to compute final prediction for single input using probabilistic deep neural network.
where 𝑁 is the number of total samples used for the Monte Carlo
analysis. To get the final prediction as shown in Fig. 3, the most likely
class can be taken as:

𝒀̂ = argmax
𝑖

𝑝𝑖 ∈ 𝒑̂ (6)

2.3. Network architecture of probabilistic deep neural network

In recent years, Fully Convolutional Neural networks (FCN) have
shown the state of the art performance in classifying time series
datasets for a wide range of fields, including SHM [1,30]. FCN has
been mainly developed to avoid the demanding pre-processing and
feature extraction task on raw data in classification problems. How-
ever, they are mainly limited to univariate time series [31]. Karim
et al. [32] proposed the augmentation of FCN with Long Short-Term
Memory (LSTM) recurrent neural network. This significantly enhances
the performance of FCN with a nominal increase in computational cost
and has also shown satisfactory performance on various multivariate
time series datasets [33]. The network architecture proposed in this
paper is mainly inspired by [33] with some modifications according to
the problem at hand.

For vehicle assisted damage assessment, the input dataset would
include information from multiple sensors (vehicle speed, axle loads,
acceleration responses and temperature). The proposed neural network
is designed to utilise all (or parts) of this information. The proposed
model is mainly divided into two modules, as shown in Fig. 4. The
first module takes the time series measurements as input. The archi-
tecture of this module is similar to what is proposed in [33]. This
module includes three temporal convolutional blocks used as a feature
extractor. Each convolutional block includes convolutional layers with
filter sizes 128, 256 and 128, strides value as 2 and a kernel size of 7,
5 and 3 respectively. Each convolutional layer is followed by a non-
linear activation function (ReLU). In addition to that, it is assumed
that the bias and kernel in the convolutional layers are drawn from
distributions. Finally, the extracted features are fed into global average
pooling layers, which substantially reduces the number of weights
of the model, as opposed to feeding the dataset directly to a fully
connected layer.

In parallel, the time series input is passed through the dimension
shuffle layer. The transformed input is then passed to the LSTM block
4

followed by the activation function and dropout layer. The main goal of
this block is to learn the global temporal information of each variable at
each time step. The multivariate time series has 𝑇 time steps (length of
signal) and 𝐾 variables (number of different sensors). Each variable 𝐾
is defined as a channel of the FCN block. However, if the same data
is passed through the LSTM block, then the LSTM would require 𝑇
time steps to process 𝐾 variables per time step, which significantly
increases the computational cost and adversely affects the efficiency
of the model. Instead, the dimension shuffle layer is applied, which
effectively transposes the temporal dimension of the input data. After
this operation, the input of LSTM now receives the entire time history
𝑇 of each variable 𝐾 at each time step. As a result, the LSTM block has
global temporal information of each variable at the same time, which
significantly helps in improving the overall performance of the model
and also reduces the time of training.

In addition, the input data can also have some discrete valued
information. In the case of vehicle assisted monitoring, vehicle speed,
axle weights and temperature information can be combined to see the
overall effect of these features in damage assessment. In order to add
these features, the second module is designed using 4 fully connected
layers, with layer sizes (32, 64, 64 and 32), followed by the ReLU
activation function. Here it is assumed that the bias and kernel in the
fully connected layers are also drawn from distributions, as done in
the convolutional layers. The output of the last fully connected layer,
the global average pooling layer of FCN, and the LSTM block are
concatenated and fed into a fully connected layer with Softmax as an
activation function for the classification task.

2.4. Implementation

The proposed model is implemented using TensorFlow’s probability
module and Keras [34]. The FCN convolutional layers are implemented
using the convolutional1DFlipout, while DenseFlipout layer is used for
the fully connected layers. These layers implement the Bayesian infer-
ence by assuming that the bias and kernel are drawn from distributions,
which are approximated with the Flipout Monte Carlo estimator [35].
The implementation of each layer assumes the prior for weight 𝑾 as
Gaussian distribution with zero mean 𝜇 and unit variance 𝜎2. For the
approximation of the posterior distribution and the classification task,
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Fig. 4. Architecture of probabilistic deep neural network (PDNN).
Flipout gradient estimator is used to minimise the loss function, called
as negative Evidence Lower Bound (ELBO) which is expressed as:

𝑳(𝑾 (𝜇,𝜎2)) = argmin
𝜇,𝜎2

∑

(𝑿,𝒀 )∈𝑫
𝑙𝑜𝑔[𝑝(𝐷𝑦|𝐷𝑥,𝜽)] +𝐷KL(𝑞𝜙 ||𝑃 ) (7)

The loss term shown in Eq. (7) is the sum of the negative log-
likelihood and the approximated Kullback–Leibler (KL) divergence,
which measures the distance between variational and posterior dis-
tributions. The KL term here acts as a regularisation term to prevent
overfitting on the training dataset.

3. Numerical modelling

This section presents the vehicle-bridge interaction model used to
simulate the vehicle responses while traversing a bridge. Fig. 5 shows
the schematic representation of the vehicle-bridge coupled system.
This numerical model can simulate multiple vehicle crossing events at
different speeds, while including the effect of road irregularities. The
generated vehicle responses constitute the signals used to evaluate the
performance of the proposed PDNN model for damage detection and
quantification.

The vehicle model used in this study represents an articulated 5-axle
truck with a tractor-trailer configuration. The tractor has two axles and
the trailer has three axles at the back. The main bodies of tractor and
trailer are modelled as rigid bodies, while the axles are represented
as lumped masses. The main bodies are connected to the axle masses
by spring and dashpot systems, while the axle masses are connected
to the road profile using single springs representing the tyres. The
vehicle model has a total of 8 independent Degrees Of Freedom (DOFs)
and 1 dependent DOF because of the articulation between tractor and
trailer [36,37]. The generic equation of motion of such a vehicle model
can be represented as:

𝑴 𝑢̈ + 𝑪 𝑢̇ +𝑲 𝑢 = 𝑭 (8)
5

𝒗 𝑣 𝒗 𝑣 𝒗 𝑣 𝒗
In Eq. (8), 𝑴𝒗, 𝑪𝒗, and 𝑲𝒗 are the mass, damping and stiffness
matrices, while 𝑢𝑣 contains the displacements of all DOFs of the ve-
hicle model. The vehicle parameters and their variability are taken
from [12], for the realisation of Monte Carlo simulations. The values
of the vehicle parameters are mainly based on European 5-axles trucks
and adopted from [38,39]. This study utilises the 5-axle truck model be-
cause it is arguably the most frequent heavy vehicle found on European
roads.

The bridge is simulated using a Finite Element Model (FEM) rep-
resentation, consisting of beam elements with 2 nodes and 2 DOFs per
node. The bridge has length 𝐿, second moment of area 𝐼 , mass per unit
length 𝜌, and modulus of elasticity 𝐸. Eq. (9) represents the equation
of motion of the bridge model:

𝑴𝒃𝑢̈𝑏𝑟 + 𝑪𝒃𝑢̇𝑏𝑟 +𝑲𝒃𝑢𝑏𝑟 = 𝑭 𝒃𝒓 (9)

where 𝑴𝒃, 𝑪𝒃, and 𝑲𝒃 are the mass, damping and stiffness matrices,
while 𝑢̈𝑏𝑟, 𝑢̇𝑏𝑟 and 𝑢𝑏𝑟 are the vectors of accelerations, velocities and
displacements for each node. To consider the effect of pavement ir-
regularities on the vehicle and bridge responses, the road profile is
represented as ISO class A [40]. Fig. 6 shows the road profile generated
for the two bridges studied in Section 4. In each figure, the black lines
indicate the span of the bridges. In addition, the road profiles have
a 100 m approach distance to allow the traversing vehicle to achieve
dynamic equilibrium before entering the bridge. In order to represent
the contact surface of the truck tyres, a moving average filter of 0.24 m
is applied to the profile as suggested in [41].

Finally, to simulate the vehicle-bridge interaction, the equations of
motion of the vehicle and bridge models are coupled together into the
system of second order differential equations shown in Eq. (10).

𝑴𝒄 𝑢̈𝑐 + 𝑪𝒄 𝑢̇𝑐 +𝑲𝒗𝑢𝑣 = 𝑭 (10)

where in 𝑴𝒄 , 𝑪𝒄 , and 𝑲𝒄 are the time varying mass, damping and
stiffness matrices respectively. The vectors 𝑢̈ , 𝑢̇ , and 𝑢 contain the
𝑐 𝑐 𝑐
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Fig. 5. Vehicle-bridge interaction model for a 5-axle truck traversing a simply supported bridge.
Fig. 6. Road profile of class A and location of bridges (black lines); (a) for study with 15 m simply supported bridge; (b) for study with multi-span continuous bridge.
responses (accelerations, velocities and displacements) of all DOFs of
vehicle and bridge. The VBI analysis is carried out by integrating the
equations of motion using Newmark-𝛽 scheme and implemented in
MATLAB [42]. For more details about the coupling procedure and the
solution method, the reader is referred to [43].

4. Validation of proposed method

This section applies the proposed damage detection method to 2
separate case studies. Each case study is investigated for a range of
damage cases, information scenarios and simulation modes. Fig. 7
provides a schematic overview of all the possibilities considered in this
study. The case study A is based on a relatively short simply supported
reinforced concrete bridge. It is used to investigate the performance
of the proposed method for different damage cases and information
scenarios for simulation mode 1 only. At the same time, this case
study is used as an example to explain in detail several aspects of the
proposed method. In case study B, the method is applied to a multi-
span continuous bridge to evaluate the influence of environmental
(temperature) and operational effects (additional traffic) by considering
different simulation modes (Fig. 7). For both case studies, the crossing
vehicles are modelled as fleet of similar vehicles. To model the fleet
of the vehicle the variation in vehicles properties is applied to account
for normal fluctuations in payload and the inherent uncertainties of the
mechanical properties of each vehicle.

4.1. Case study A: Simply supported bridge

4.1.1. Data generation
In this case study, 5-axle trucks travelling over a class A road profile

traversing a simply supported bridge, as shown in Fig. 5, are simulated
6

with the vehicle-bridge interaction model presented in Section 3. The
FEM of the bridge consists of 30 elements for a total span length 𝐿 of
15 m. The corresponding section and material properties are: second
moment of area 𝐼 = 0.5273 m4, mass per unit length 𝜌 = 28 125 kg∕m,
modulus of elasticity 𝐸 = 3.5×1010 N∕m2, and 2% damping. To simulate
bridge damage, a localised stiffness reduction in a beam element is
considered. In particular, 5 different locations along the beam length
are studied with 3 different damage magnitude levels (15%, 30%, 45%)
for each location. Therefore, the list of all different damage cases is:

– Healthy case
– Section 𝐿∕4 and stiffness reductions of: 15%, 30%, 45%
– Section 3𝐿∕8 and stiffness reductions of: 15%, 30%, 45%
– Section 𝐿∕2 and stiffness reductions of: 15%, 30%, 45%
– Section 5𝐿∕8 and stiffness reductions of: 15%, 30%, 45%
– Section 3𝐿∕4 and stiffness reductions of: 15%, 30%, 45%

The dataset is generated considering the variation in vehicle prop-
erties in such a way that it mimics a fleet of similar vehicles crossing
the bridge. The vehicle properties are randomly sampled considering
the statistical variability presented in Table A.1. For each of the 16
damage cases, 1000 vehicle passages are simulated, which results a
in total 16 000 crossing events. Each event in the dataset contains
the information from both, vehicle and bridge. For the 5-axle truck,
acceleration measurements from all five axles 𝑢̈𝑎𝑖 is available with a
sampling rate of 1000 Hz, as well as, the vehicle speed 𝑣, the static
axle loads and the ambient temperature. As for the bridge, acceleration
readings 𝑎̈𝑏𝑟𝑖 are available from 3 assumed sensors installed on the
bridge, as indicated in Fig. 8.

The length of the acceleration signals is not the same for all events
because the vehicle speed 𝑣 was randomly sampled for each vehicle



Measurement 206 (2023) 112216M.Z. Sarwar and D. Cantero
Fig. 7. Overview the possibilities considered in the numerical studies to evaluate the proposed damage detection method.
passage. For the PDNN input, equal length accelerations signals are
obtained by zero padding the signals. The length of the required signals
depends on the minimum vehicle speed 𝑣 in the dataset. For this study,
the input to the time series module is fixed to 𝑇 = 3072. Therefore, the
input size for the time series module of dataset 𝑋 is (𝑁, 3072, 𝐾), for
𝑁 number of events and 𝐾 number of variables (number of sensors).
On the other hand, the size of the input dataset for the discrete feature
module is (𝑁,𝑀), where 𝑀 is number of input features and 𝑀 is equal
to 3. The dataset has a total 16 output labels, namely the healthy case
and 15 different damage scenarios.

4.1.2. Pre-processing
It is well known that the road profile has significant impact on vehi-

cle vibrations. Any measured acceleration within a vehicle is dominated
by the excitation produced by the road profile. These road induced
vibrations generally mask the component directly related to the bridge
response. In previous studies, researchers have applied different tech-
niques to remove the effect of the road profile in vehicle accelerations
signals. For instance, in [44], the authors compute the residual response
of two connected vehicles, which poses the practical limitation of
requiring 2 identical vehicles. Then [45] applied a narrow band pass
filter to remove the dynamic effect of the road profile. However, this
approach requires to have prior knowledge of the bridge’s fundamental
frequency. It is safe to say that there is a need for a reliable method that
can be used to automatically extract the bridge dynamic response from
sensors in passing vehicles.

To address this challenge, in the present study the authors employed
the Maximal Overlap Discrete Wavelet Packet Transforms (MODWPT)
proposed in [46]. A filter bank based on MODWPT is used here to
suppress the road profile component from the vehicle’s vertical ac-
celeration signals. MODWPT decomposes the signal 𝑥(𝑡) into wavelet
components of narrow band frequencies using a wavelet filter [46].
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The main advantage of MODWPT over the traditional Discrete Wavelet
Transform (DWT) is that it can decompose the signal in both low-
frequency and high-frequency signals at each level, whereas DWT can
only decompose the signal in low frequency signals [47]. For a given
signal 𝑥(𝑡), MODWPT produces 2𝑛 equivalent wavelet components 𝑊𝑗 ,
where each has a passband range of 𝐹𝑠∕2𝑛+1, for a sampling frequency
𝐹𝑠 and level number 𝑛. Then, the sum of all wavelet components is
equal to the approximation of the original signal, as shown in Eq. (11).
Similarly, the MODWPT partition of the energy at each wavelet com-
ponent and the sum of the energy over all the wavelet components is
equals the total energy of the input signal [48].

𝑥(𝑡) =
𝑛
∑

𝑗=1
𝑊𝑗 (𝑡) (11)

In the case of a single vehicle passage, when the truck enters
the bridge, the response of the first axle 𝑢̈𝑎1 measures the transient
response of the bridge as well as the excitation from the road profile.
Then, subsequent axles also cross the same locations on the bridge
exposed to the same road profile. Therefore, the dynamic response of
all axles should contain the same (or similar) contributions from the
road profile. Thus, if the component containing the frequency content
of the road profile can be identified in the measured dynamic response,
then the contribution of the road profile can be eliminated.

To remove the effect of the road profile from the responses of a
vehicle travelling with speed 𝑣, the MODWPT with 𝑛 = 8 levels is
applied to the axle accelerations 𝑢̈𝑎𝑖 . Fig. 9(a) shows the energy level
of the first 25 wavelet components (out of 256) for axles 1 and 2. The
wavelet components 2 and 3 for axle 1 show significant high energy in
comparison to the other components. The additional energy in axle 1 at
those particular components can be attributed to the transient response
of the bridge. Therefore, it is possible to argue that the sum of certain
wavelet components (2 and 3 in this case) from all axle signals 𝑢̈𝑎𝑖
contains predominantly the dynamic response of the bridge.
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Fig. 8. Samples of signals for case study A.
Fig. 9. Pre-processing example; (a) Energy of the wavelet components for axles 1 and 2; (b) Power spectral density of axle responses before applying MODWPT; (c) Power spectral
density of axle responses after applying MODWPT.
Fig. 9(b) and (c) show the Power Spectral Density (PSD) of the 5 axle
acceleration signals before and after applying MODWPT. The PSD of
the raw signals (Fig. 9(b)) shows that the peaks for the first two bridge
modes are not distinguishable. However, when the PSD is computed
for the sum of the 2nd and 3rd wavelet components, the peaks of
8

first two modes of the bridge are clearly distinguishable (Fig. 9(c)).
The advantage of applying MODWPT is clear because it isolates, to
a large extent, the contribution of the bridge response in the vehicle
acceleration signals. Therefore, the use of filtered vehicle responses via
MODWPT is advantageous for structural condition assessment using
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drive-by measurements. In this study all vehicle acceleration signals are
pre-processed following the procedure discussed in this section.

4.1.3. Evaluation method
In order to demonstrate the performance of the proposed damage

detection method, this study considers a range of different information
scenarios. Each scenario is defined in terms of the available information
for each vehicle crossing event. In some scenarios, the bridge might
be instrumented with one or more accelerometers at different sections.
In other scenarios, the vehicle might provide no information, discrete
values about the event (speed, static axle loads, and temperature),
or continuous axle acceleration signals. Thus, several possible sce-
nario exist, which are defined by the amount of information available
from both, the vehicle and the bridge. To clearly characterise a given
scenario, the following notation has been used:

– B0: No measurement available of the bridge
– B1: Bridge acceleration measurement at section 𝐿∕2
– B2: Bridge acceleration measurement at sections 𝐿∕4 and 3𝐿∕4
– B3: Bridge acceleration measurement at sections 𝐿∕4, 𝐿∕2, and

3𝐿∕4
– V0: No information or measurement available from the vehicle
– V1: Vehicle speed, static axle loads and ambient temperature
– V2: As V1 plus measured axle accelerations

For example, the scenario B1/V2 corresponds to the situation where
mid-span bridge accelerations are measured (B1), and the vertical
accelerations of all axles of the 5-axle truck are also recorded (V2).
Therefore, there exist 10 possible valid scenarios to consider for struc-
tural assessment, (since scenarios B0/V0 and B0/V1 do not provide any
information about the structure).

The proposed method is applied to these 10 different scenarios, to-
gether with a comparative study of the method’s performance. Separate
PDNN models are created for every information scenario. Fig. 10 shows
the flow diagram for training and validation of the PDNN models. More
in particular, the datasets are divided into 70–30 splits, for training
and validation respectively. For training of the PDNN, a batch size
of 128 events is considered, while learning and decay rates are set
to 1 ⋅ 10−4 and 1 ⋅ 10−6 respectively, and adaptive moment estimation
(Adam) is used as an optimiser. All models are trained using Intel Core
i9–10 900 K CPUs with 64 GB RAM and NVIDIA GTX 2080Ti graphic
card. Once the model is trained, the single input dataset is evaluated by
Monte Carlo based weight sampling from the trained model. The mean
value of each prediction by Monte Carlo simulation is computed using
Eq. (5). The outcome of the model is the label with the maximum mean
probability, and computed using equation Eq. (6).

4.1.4. Results
For the case study A (simply supported beam), the 10 different

information scenarios discussed in previous section are studied sepa-
rately. For each scenario a separate model is trained. The performance
of the proposed method for each scenario is evaluated on the basis
of overall accuracy of the trained model. The overall accuracy for
damage assessment for different combinations of bridge/vehicle infor-
mation sources is shown in Table 1. It shows that the accuracy of
the trained model for scenario B0/V2 (where only vehicle information
is available) is equal to 84.2%, which is significantly less compared
to the other scenarios. On the other hand, the accuracy of proposed
method raises to 91.0% when only using the measurement from a
single sensor on the bridge (B1/V0). Then again, the performance of
the trained model improves by 4.5 percentage point when including
also vehicle axle responses (B1/V2). In addition, the results show that
there is no significant performance improvement, in terms of accuracy
for damage assessment, when discrete valued vehicle information (V1)
is combined with bridge sensors. This can be attributed to the fact that
the bridge signals indirectly contain the information (speed and axle
9

Fig. 10. Flow diagram of probabilistic deep learning model (PDNN).

Table 1
Performance comparison for case study A.

Scenario V0 V1 V2

B0 NA NA 84.2%
B1 91.0% 91.2% 95.7%
B2 98.7% 98.9% 99.1%
B3 99.6% 99.2% 99.5%

loads) of the passing vehicle. Furthermore, accuracy improvements are
only marginal in scenarios with multiple bridge signals (B2 and B3)
combined with full vehicle information availability (V2). Therefore, the
results indicate that a PDNN model can differentiate multiple damage
cases with sufficient accuracy solely by extracting damage sensitive
features from the bridge signals.

The performance comparison of the trained models on the vali-
dation data provides an indication of the potential use of different
information scenarios for damage assessment. But in addition, the use
of the PDNN architecture allows us to quantify the uncertainty in
the predictions. This is best illustrated with an example. Consider the
analysis of a single randomly chosen event crossing a bridge with a
15% damage at section 𝐿∕2. Fig. 11 shows the outputs obtained for
different information scenarios in terms of the mean probability of
detection of the trained models for different damage labels, computed
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Fig. 11. Damage localisation and quantification, for a single vehicle crossing event in case study A with a 15% damage at L/2 section, for different information scenarios.
𝑢

using Eq. (6). From the results it can be observed that some scenarios
show large uncertainties in damage detection. This is evident, espe-
cially in Fig. 11(b), where only vehicle signals are available (B0/V2).
The analysis assigns similar mean probabilities to a series of damage
cases. There is no clear predominant label. Similarly, when only signals
from a single bridge sensor are considered (as in scenarios B1/V0 and
B1/V1) the models have difficulties differentiating the exact location
and magnitude of the damage, as shown in Fig. 11(c) and (d). However,
when the measurement information from the bridge is combined with
vehicle sensors (B1/V2), the uncertainty in the decision decreases.
Then, the correct label is more prominent (Fig. 11(e)), which indicates
that the model in such scenario would be able to locate and quantify
the damage. The remaining information scenarios show high and very
high certainties providing the correct damage case label.

It is important to stress that the final output decision is solely based
on the maximum of the mean probability of detection. Therefore, based
on the results in Fig. 11, all the models are able to detect the correct
label. From these results, it can be concluded that the PDNN has some
difficulty in differentiating damage location and magnitude when only
vehicle information is considered. However, by combining sources of
information, the damage assessment reliability increases drastically.

4.1.5. Effect of measurement noise
Measurement noise is arguably the most important factor that can

affect the performance of the proposed damage assessment procedure.
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In order to study the effect of noise, white Gaussian noise is added to
the acceleration signals by using Eq. (12).

̈𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 = 𝑢̈ + 𝜎  (0, 1) (12)

where 𝑢̈𝑝𝑜𝑙𝑙𝑢𝑡𝑒𝑑 is the noise polluted signal, ü is the clean signal, and
 (0, 1) is a noise vector with zero mean and unit standard deviation.
The standard deviation of the noise component 𝜎 is computed using the
definition of Signal to Noise Ratio (SNR) as follows:

𝑆𝑁𝑅 =
𝑃𝑢̈

𝜎2
(13)

where 𝑃𝑢̈ is the power of the noise-free signal. By using predefined SNR
values, the corresponding standard deviation 𝜎 of the noise signal can
be computed. Often, SNR is given in decibels (𝑑𝐵) and so Eq. (13) can
be rewritten as follows:

𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10

(

𝑃𝑢̈

𝜎2

)

(14)

To evaluate the performance of the proposed damage assessment
method in the presence of measurement noise, a single random vehicle
crossing is studied in detail. The randomly chosen event corresponds
to a B0/V2 scenario, i.e., only vehicle information and signals are
available. Four different levels of signal to noise ratios (20 dB, 15 dB,
10 dB, and 5 dB) are added to the axle acceleration signals using
Eq. (12).
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Fig. 12. Effect of measurement noise on damage localisation and quantification for a single crossing event in a B0/V2 scenario.
Fig. 12 shows the results of the sensitivity analysis of measurement
noise for damage assessment. The input label shows that the considered
event has damage at section 3𝐿∕8 with a 15% stiffness reduction.
Fig. 12(b), (c), and (d), show the output prediction of the PDNN models
with no noise, 20 dB and 15 dB respectively. For these cases, the trained
models are able to localise and quantify the damage with similar levels
of uncertainty in the output. However, for larger levels of noise, the
performance reduces. For the case of 10 dB SNR (Fig. 12(e)), the output
of the model is not able to identify the correct label of damage and in-
stead shows almost equal probabilities for three different damage cases.
In the case of very high noise (5 dB SNR), as reported in Fig. 12(f), the
PDNN mode failed to quantify and localise the damage case completely.
The results from this analysis highlight that the proposed PDNN-based
procedure is capable of compensating for normal operational levels of
noise, but ceases to work for large noise levels.

4.2. Case study B: Multi-span continuous bridge

4.2.1. Data generation
This section evaluates the proposed damage detection method ap-

plied to the case of an existing multi-span continuous bridge. The Voigt
Drive I-5 bridge, shown in Fig. 13, is a reinforced concrete box girder
bridge with 4 spans and a total length of 89 m [49]. The bridge is
simulated as an updated FEM with 0.5 m long beam elements. The
section properties have been computed using the actual material prop-
erties and cross section dimensions shown in Fig. 13(b). The column
supports of the continuous beam model are represented using vertical
and rotational springs, of stiffness 𝐾𝑣 and 𝐾𝑟 respectively. The values
for these stiffness have been tuned to match the first three measured
frequencies of the original bridge [49]. The final list of the updated
bridge properties is presented in Table 2. In addition, and similar to
case study A, a road profile of class A is considered with a 100 m
approach distance shown in Fig. 6(b).

In line with case study A, damage is modelled as local stiffness
reductions also in case study B. But because it is a different bridge,
different damage cases have been defined to evaluate the performance
the PDNN-based procedure. The Damage Cases (DC) considered in case
study B are:

– DC0: Healthy case
– DC1-DC2: Damage at mid-span of span 2 with stiffness reductions

of: 30%, 45%
– DC3-DC4: Damage at mid-span of span 3 with stiffness reductions

of: 30%, 45%
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Table 2
Multi-span bridge model properties.

Description Symbol Value

Total span length (m) 𝐿 89
Young’s modulus (N∕m2) 𝐸 3.5 ⋅ 1010

Second moment of area (m4) 𝐼 1.3427
Cross-section area (m2) 𝐴 5.6180
Mass per unit length (kg∕m) 𝜌 2500
Rotational stiffness (N m∕rad) 𝐾𝑟,(1,2,3) 4.5 ⋅ 109

Vertical stiffness (N∕m) 𝐾𝑣,(1,2,3) 3.5 ⋅ 1010

First three modal frequencies (Hz) 𝑓(1,2,3) [4.91, 6.54, 13.45]

– DC5-DC6: Stiffness reduction of 30% at supports 1 and 2

The dataset for this case study is generated by solving the vehicle-
bridge interaction model presented in Section 3. To examine the sen-
sitivity of the PDNN method in realistic situations, three simulation
modes are examined. Mode 1 considers events with individual 5-axle
trucks crossing the multi-span bridge. In addition, simulation mode 2
includes the environmental effect of daily and seasonal temperature
variations. Finally, in mode 3, the simulation includes random traffic
on the bridge, in addition to the individual 5-axle trucks and tem-
perature oscillations. The dataset for all these three simulation modes
is generated considering the statistical variability of the 5-axle truck
parameters, by means of Monte Carlo analysis. For Modes 2 and 3, the
environmental effect is included by modelling the temperature depen-
dency of concrete’s elastic modulus, which is discussed in greater detail
in the following subsection. The additional random traffic in mode 3,
is modelled including 2-axle vehicles with randomly sampled entry
times, speeds, travelling directions and mechanical properties. Addi-
tional information about the 2-axle vehicle model and its corresponding
parameter values are included in Appendix.

For each simulation mode, separate datasets are generated for dif-
ferent information scenarios. As in the analysis for case study A, these
scenarios are defined in terms of the available information from the
bridge and the passing vehicles. For the latter, the same definitions
for V0, V1 and V2 are used as in Section 4.1.3. However, because the
modelled bridge is different now, the information scenarios regarding
the available bridge information is different. Case study B defines
the possible bridge instrumentation with four accelerometers 𝑎̈𝑏𝑖 as
shown in Fig. 13(a). The corresponding bridge information scenarios
considered now are listed below.

– B0: No measurement available of the bridge
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Fig. 13. Voigt Drive/I-5 Bridge; (a) Multi-span bridge model; (b) Cross-section.
– B1: Bridge acceleration measurements at mid-span of spans 1 and
4

– B2: Bridge acceleration measurements at mid-span of spans 2 and
3

– B3: Bridge acceleration measurements at mid-span of all spans

Therefore, this section considers 7 different bridge conditions for
each of the 10 valid information scenarios, for each of the 3 simulation
modes. Each of the 21 datasets consist of batches of 1000 vehicle
crossing events with randomly sampled configurations and properties.
These datasets are pre-processed as in Section 4.1.2 to remove the
contribution of the road profile from the vehicle signals. The PDNN
models are trained using the same hyperparameters, and the datasets
are divided in 70–30 splits for training and validation respectively.

4.2.2. Modelling the effect of temperature
In long-term bridge monitoring, variation in temperature plays an

important role because it directly influences the material properties of
the bridge. As a result the structure experiences changes of its modal
properties, that ultimately lead to different dynamic behaviour for
the same load. Temperature dependent material properties have been
included in the VBI model in order to evaluate the performance of the
proposed PDNN model in the presence of oscillating temperatures. This
subsection explains how the effect of temperature variation has been
modelled.

Concrete’s elastic modulus depends on the material’s temperature,
and this relationship can be linearised for typical ambient temperature
ranges [50,51]. It is also known that this linear relationship is different
for temperatures below the freezing point [52]. Such bi-linear rela-
tionships have been reported, for instance, at the Dowling Hall Foot
bridge [53]. Nevertheless, modelling the relationship between temper-
ature and elastic modulus is not a straightforward task and depends
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on structure’s type, location, and environmental conditions. To solve
this, empirical models from bridge measurements can be leveraged to
establish the relationship between temperature and changes in bridge
properties. One such model was developed in [53], where the authors
proposed the bi-linear equation for bridge elastic modulus as given
in Eq. (15).

𝐸𝑇 = 𝐸0

[

𝑄 + 𝑆 𝑇 + 𝑅
(

1 − 𝑒𝑟𝑓
(𝑇 − 𝜅

𝜏

))]

(15)

In Eq. (15), 𝐸𝑇 is the temperature dependent elastic modulus
and 𝐸0 is its value for a reference temperature. The linear relation-
ship is defined in terms of the parameters 𝑄 and 𝑆, while the term
𝑅
(

1 − 𝑒𝑟𝑓
(

𝑇−𝜅
𝜏

))

modifies the relationship for temperatures below
zero. In Eq. (15), 𝑇 is the temperature in degrees Celsius, while 𝜅 and 𝜏
are the parameters that govern the transition around the freezing point.
More details about the temperature dependency of concrete and the
model parameters can be found in [54].

In the present study, the influence of temperature has been simu-
lated considering a 2 year temperature record obtained from a weather
station in Trondheim (Norway), shown in Fig. 14. For simulation modes
2 and 3, temperature for each crossing event was randomly sampled
from these records. Then, the elastic modulus of the concrete was
adjusted accordingly using Eq. (15). The parameters in this relationship
are also sampled randomly to account for possible uncertainties, as
suggested in [54], based on the mean and standard deviation values
given in Table 3.

4.2.3. Results
This section reports the results of the proposed damage detection

method applied to the case of the multi-span bridge considering the
damage cases discussed in Section 4.2.1. The results are presented in
a similar format as for case study A. The performance test results for
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Fig. 14. Daily average temperature record of Trondheim (Norway), and corresponding damage case considered on the bridge.
Table 3
Mean and standard deviation of parameters modelling the effect of temperature on
concrete’s elastic modulus.

𝑄 𝑆 𝜅 𝜏 𝑅

𝜇 1.0129 −0.0048 0.1977 3.1466 0.1977
𝜎 0.003 0.0001 0.0027 0.0861 0.0027

Table 4
Performance comparison for multi-span bridge case and simulation mode 1.

Scenario V0 V1 V2

B0 NA NA 96.1%
B1 97.2% 97.4% 97.4%
B2 98.1% 98.3% 99.0%
B3 98.2% 98.7% 99.2%

each information scenario, are presented in a table format, indicating
the overall accuracy of the trained models. However, in case study
B, the analysis is repeated for 3 simulation modes, namely mode 1
(single 5-axle events), mode 2 (with additional temperature variations)
and mode 3 (with additional random 2-axle traffic), as discussed in
Section 4.2.1.

The results for mode 1 are reported in Table 4. It shows that
the PDNN-based approach exhibits comparatively high accuracy in
damage assessment for all scenarios. This is even the case for the B0/V2
scenario, where only vehicle sensor information is used. The overall
accuracy in this scenario is good (96.1%), and much better that the
corresponding result in case study A (see Table 1), which was 84.2%.
This improvement is attributed to the duration of the crossing event.
Vehicles traversing a longer bridge, spend more time interacting with
the structure, which results in longer signals for the proposed method.
In addition, the vehicle to mass ratio decreases drastically, ensuring
that there is practically no variation of the bridge’s modal properties
during the crossing event. It is also worth noting that the damage
cases considered in case study B are more distinct, as opposed to those
considered in case study A. This makes each label (damage case) more
distinctive, which facilitates the classification task. The combination of
these reasons allow the PDNN model to generalise more precisely the
damage sensitive features, leading to the improved accuracy observed
in case study B for simulation mode 1.

Table 5 presents the overall performance results for simulation
mode 2. In this mode the temperature variations have been included
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Table 5
Performance comparison for multi-span bridge case and simulation mode 2.

Scenario V0 V1 V2

B0 NA NA 74.6%
B1 89.2% 90.4% 81.4%
B2 93.9% 94.3% 92.8%
B3 94.2% 94.7% 95.6%

in the simulation, affecting directly the elastic modulus of the bridge
model, as discussed in Section 4.2.2. In the simulated information
scenarios the temperature is provided by the passing vehicles, and
therefore only available in scenarios with V1 and V2. In this setup, it
is possible to study what is the effect of that additional information on
the performance of the PDNN-based models. By direct comparison of
the results between V0 and V1 scenarios, it can be seen that adding
the temperature information as input has little impact on the overall
accuracy of the models. In addition, the accuracy improvements are of
similar magnitude as those reported for mode 1 (where no temperature
variations were considered). However, there is an overall decrease in
accuracy compared to mode 1 results. This is because the varying
temperature creates fluctuations in bridge modal properties (especially
first and second mode), which mask the variations associated to small
damage cases. This temperature effect is particularly relevant in sce-
narios using vehicle information (V2). The pre-processing of the vehicle
signals effectively isolates the first and second frequencies of the bridge,
as shown in Fig. 9(c). As a result of this pre-processing, the PDNN model
is not able to properly classify the less severe damage cases, which
contributes to the decrease in overall accuracy for scenario B0/V2
reported in Table 5. Compared to bridge only scenarios, where the
signals contain the full spectrum, the proposed model can successfully
generalise the feature space and thus classify different damage cases
more accurately. Furthermore, the results show that when V2 informa-
tion is combined with B1 and B2 the accuracy of the model decreases.
This decrease in accuracy is attributed to the relative weight given by
the model to the actual input signals. In B1/V2 and B2/V2 the inputs
to the model are 5 vehicle signals and 2 bridge responses. The model
gives more weight to the vehicle signals, which are affected more by
the effect of temperature variations, resulting in a decrease in accuracy.

Simulation mode 3 imitates the actual operational conditions found
in a real case. The bridge vibrations captured by the passing 5-axle
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Fig. 15. Effect of measurement information scenario on the accuracy for damage localisation and quantification, for case study B and simulation mode 3.
trucks are affected by the continuous oscillations in ambient temper-
ature and the disturbances induced by additional traffic. The perfor-
mance results for mode 3 (see Table 6) indicate overall performance
reduction but similar trends as those reported for mode 2. Vehicle
responses are highly influenced by temperature and by the presence
of random traffic compared to bridge response. This is clearly seen in
overall decrease of accuracy for all scenarios when V2 information is
combined with bridge sensors as discussed in previous section for mode
2.

However, when compared to the other simulation modes, the per-
formances for mode 3 are significantly lower for all scenarios. This is
expected because of the additional random traffic, which is unknown to
the models. The PDNN models do not get any information about this
extra traffic, because these vehicles are not instrumented. The added
mass of these additional vehicles affect the bridge dynamic response.
The PDNN-based models achieve a suboptimal generalisation of the
feature space, and thus have more difficulties classifying the event
among the different damage case labels. This is then reflected in overall
poorer accuracy, as reported in Table 6.

Taking advantage of the PDNN architecture, it is possible to explore
the uncertainty in the model prediction. The analysis of one single
crossing event can be presented in terms of mean probability of detec-
tion, as explained in Section 2.2. Here, the analysis is repeated for all
information scenarios considering one random event under simulation
mode 3, and presented in Fig. 15. In particular, in this event the bridge
had a damage at the mid-span section of the second span with a severity
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Table 6
Performance comparison for multi-span bridge case and simulation mode 3.

Scenario V0 V1 V2

B0 NA NA 44.1%
B1 79.2% 82.0% 60.1%
B2 81.1% 82.3% 76.8%
B3 82.4% 84.1% 82.1%

of 30% stiffness reduction. The analysis shows that in scenario B0/V2,
when only vehicle measurements are available, the PDNN-based model
is not able to correctly identify the damage label. The model distributes
the probability among 3 different labels, including the correct one (see
Fig. 15(b)). The final outcome of the model is selected as the label
with greatest mean probability, which in this case is the wrong answer.
However, for the rest of information scenarios, the PDNN models are
able to correctly identify the damage with very low uncertainty in the
output.

Therefore, from these results it can be concluded that random traffic
on the bridge adversely effects the damage detection capability of the
proposed PDNN-based method. This negative influence is particularly
evident for damage assessment using exclusively the signals from pass-
ing vehicles. Therefore, the recommendation for drive-by methods in
general is to utilise signals from instrumented vehicles that traverse the
target bridge without the presence of additional traffic. Furthermore,
the presented results also indicate that to reduce the uncertainties in
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damage assessment, it is beneficial to combine the vehicles’ responses
with the signals from a limited number of sensors mounted on the
bridge.

5. Discussion

The results presented here provide the proof of concept for the
applicability of vehicle assisted bridge monitoring. The study demon-
strates the merits of combining multiple sensory information, including
fixed sensor as well as moving sensors (vehicle mounted). The strengths
of the proposed PDNN model approach are: (1) scalability, because
the proposed method can easily incorporate different types of mea-
surements for damage assessment tasks; (2) robustness, because of the
inherit probabilistic nature of proposed method, the effect of noise
and different loading conditions do not alter the overall accuracy; (3)
implementable, because it does not require heavy pre-processing of the
measurements since it can work with raw signals; and (4) enhanced
performance of damage detection and localisation in comparison to the
similar methods reported in literature [23,45], because the proposed
method does not only provide the damage detection results but also
quantifies the uncertainty in the output decision.

Furthermore, the novelty of the proposed method can be sum-
marised in three points. First, the proposed PDNN model can combine
multiple sensors and extract the damage sensitive features without any
pre-processing of the input signals, even when considering realistic
operational conditions. The accuracies of damage assessment results
for different sensor combinations highlight the ability of the proposed
model to distinguish small changes in structural dynamic characteris-
tics. Secondly, compared to other commonly used data driven methods,
the proposed PDNN model provides additional insights, since it can
quantify the reliability of the model’s decision. In previous studies
reported in literature, the deep learning models have been trained
with fixed weights. This makes their generalisation ability highly sus-
ceptible to changing operational and environmental conditions. The
proposed PDNN model addresses this issue by replacing fixed weights
by probabilistic distributions of weights. This, not only enhances the
generalisation ability of the PDNN model, but also quantifies the re-
liability of the decision making. Lastly, this study can be used as a
guideline for future planning of bridge health monitoring systems in
practice. The study comprehensively discussed multiple bridge health
monitoring scenarios for different levels of damage. Bridge owners can
greatly benefit from this study while considering their needs for a
monitoring campaign for a particular bridge.

However, there are still some limitations for the implementation of
the proposed method. Arguably, the main limitation is related to the re-
quirement of damage labels while training the proposed PDNN model.
At present, this can be addressed by combining hybrid approaches
and transfer learning techniques, as discussed in [55]. In a hybrid
approach, the target bridge labels can be acquired from numerical
simulations from Finite element model (FEM) of the bridge and then
further combined with real measurements of the bridge for further
damage assessment. Nevertheless, this line of work still requires more
studies to properly demonstrate the ability for damage assessment in a
real life implementation. The other minor limitation is the requirement
of synchronised signals from multiple sensors. This can be addressed
by adequately utilising existing technologies.

6. Conclusions

This paper has explored the feasibility of vehicle assisted monitoring
for damage assessment. The study had two main objectives; (1) to
develop a damage assessment method by combining direct and indirect
measurement response; (2) to study and quantify the influence of
different sensor information combinations. To that end, a probabilistic
deep neural network (PDNN) based method was proposed, which is
capable of quantifying the uncertainty of its predictions under varying
15
Fig. A.1. 2-axle vehicle model.

operational and environmental conditions. The effectiveness of the
proposed method was evaluated with two case studies, which consisted
of 5-axle trucks traversing a simply supported beam and a multi-span
continuous bridge. These studies considered several damage cases and
investigated the effect of measurement noise, temperature variations,
and random traffic. The main findings of this study can be summarised
as follows:

• The overall results suggest that vehicle assisted monitoring has
the potential to detect small and realistic damage cases under the
influence of varying operational and environmental conditions.

• By employing the wavelet transform based filter bank the contri-
bution of the road profile can be removed from vehicle responses
which is one of the main hinders in deployment of on-board
vehicle sensors for structural damage assessment.

• The combination of sensor information from vehicle and bridge
enables a more reliable damage assessment with lower uncer-
tainty in the decision making.

• Random traffic on the bridge adversely affects the ability of the
proposed method to detect and localise the damage, when only
vehicle sensors are used. Thus, is drive-by or indirect monitoring
strategies, it is recommended to use only vehicle responses with
no additional traffic present on the bridge.

• Road authorities and bridge owners can use the proposed proba-
bilistic deep neural network based method as a reliable decision
making tool for damage assessment.
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Table A.1
5-axle truck model parameters.

Parameters Min. Max. Mean SD

Mass (kg)
Tractor body 𝑚𝑏1 2800 3400 3100 80
Trailer body 𝑚𝑏2 15 000 25 000 20 000 1000
Tractor axles 𝑚𝑢1, 𝑚𝑢2 500 1000 750 30
Trailer axles 𝑚𝑢3, 𝑚𝑢4, 𝑚𝑢5 800 1400 1100 50

Moment of inertia (kg m2)
Tractor body 𝐼𝑏1 4250 5500 4875 50
Trailer body 𝐼𝑏2 112 000 135 000 123 000 2500

Spring stiffness (N/m)
Tractor suspension 𝑘𝑆1, 𝑘𝑆2 4.0 ⋅ 106 8.0 ⋅ 106 6.0 ⋅ 106 0.5 ⋅ 106

Trailer suspension 𝑘𝑆3, 𝑘𝑆4, 𝑘𝑆5 5.0 ⋅ 106 15.0 ⋅ 106 10.0 ⋅ 106 0.5 ⋅ 106

Tractor tyre 𝑘𝑇 1, 𝑘𝑇 2 1.3 ⋅ 106 2.3 ⋅ 106 1.8 ⋅ 106 0.2 ⋅ 106

Trailer tyre 𝑘𝑇 3, 𝑘𝑇 4, 𝑘𝑇 5 2.8 ⋅ 106 4.8 ⋅ 106 3.5 ⋅ 106 0.2 ⋅ 106

Viscous damping (N s/m)
Tractor suspension 𝑐𝑆1, 𝑐𝑆2 1.0 ⋅ 104 8.0 ⋅ 104 4.0 ⋅ 104 0.5 ⋅ 104

Trailer suspension 𝑐𝑆3, 𝑐𝑆4, 𝑐𝑆5 2.0 ⋅ 104 16.0 ⋅ 104 8.0 ⋅ 104 1.0 ⋅ 105

Geometry (m)
𝑏1 3.50 6.50 5.00 0.10
𝑎2 3.00 5.00 4.00 0.02
𝑑1 −0.50 −1.20 −1.09 −0.01
𝑑2 3.00 4.00 3.50 0.05
𝑑3 – – 1.20 –
𝑑4 – – 2.20 –
𝑑5 – – 3.20 –

Velocity (km/h)
Velocity 36 72 54 8

Table A.2
2-axle truck model parameters.

Parameters Min. Max. Mean SD

Mass (kg)
Body mass 𝑚𝑏1 5000 16 000 10 500 500
Tractor axles 𝑚𝑢1, 𝑚𝑢2 600 1200 900 100

Moment of inertia (kg m2)
Body 𝐼𝑏 45 000 65 000 53 651 2000

Spring stiffness (N/m)
Suspension 𝑘𝑆1, 𝑘𝑆2 4.0 ⋅ 106 8.0 ⋅ 106 6.0 ⋅ 106 0.5 ⋅ 106

Tyre 𝐾𝑇 3, 𝐾𝑇 4 1.25 ⋅ 106 2.25 ⋅ 106 1.75 ⋅ 106 0.20 ⋅ 106

Viscous damping (N s/m)
Suspension 𝑐𝑆1, 𝑐𝑆2 0.5 ⋅ 104 1.5 ⋅ 104 1.0 ⋅ 104 0.2 ⋅ 104

Geometry (m)
𝑑1 4 6 – –

Velocity (km/h)
Velocity 36 72 54 8

Appendix

Table A.1 provides the numerical values of the parameters for the
5-axle truck model, together with their statistical variability, used for
the Monte Carlo simulations. Similarly, Table A.2 provides the model
parameter for the 2-axle vehicle model (shown in Fig. A.1), which
is used to simulate the additional random traffic in case study B
(Section 4.2).
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