
M
PI Edutainm

ent G
am

e
Vetle Finstad

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Vetle Olav Pettersen Finstad

Parallel Programming with MPI
through Gaming

MPI Edutainment Game

Master’s thesis in MIDT
Supervisor: Professor Anne C. Elster
June 2022M

as
te

r’s
 th

es
is





Vetle Olav Pettersen Finstad

Parallel Programming with MPI
through Gaming

MPI Edutainment Game

Master’s thesis in MIDT
Supervisor: Professor Anne C. Elster
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Vetle Olav Pettersen Finstad

Parallel Programming with
MPI through Gaming

Master’s thesis in Computer Science
Supervisor: Professor Anne C. Elster
June 2022





Abstract

Lack of experience with parallel programming among programmers is a growing
concern. This is problematic as parallel programming is required to fully utilize
components such as GPUs and multi-core CPUs. We address this problem in our
thesis by building an environment for learning parallel programming with MPI.
MPI is one of the dominating programming extensions for programming highly
parallel systems. Through developing an edutainment game that simulates the
MPI environment, we intend to make the process of familiarizing programmers
with MPI more fun and interesting.

Our thesis work is an extension of the work done as part of the author´s fall
project. In enhancing our MPI game, we consider standard qualitative gaming
characteristics that might impact players’ engagement in the game. These consid-
erations include appropriate game difficulty, limiting new game experiences, and
a concise game tutorial. While further developing the game, we are cognizant of
our choice and illustration of MPI-functions while, at the same time, implementing
several new MPI-functions.

We also make use of the results from a prior user study, as well as a user
study conducted for our extended work. The latter tries to determine the game’s
enjoyability and game difficulty, as well as players’ perceived learning and interest
in the field of parallel programming.

Some of the technical and conceptual challenges we faced when making an
edutainment game, precisely for familiarizing a user with parallel programming,
are also described.

In particular, we discuss our choice of using the Unity game engine and how
we used an approach where players can visually program inside the game with
MPI. The MPI processes are simulated by robots. Furthermore, game-elements are
implemented to abstract out code such as inversion of a pixel color. Users are also
able to add to and look at the underlying MPI codes that control these robots.

MPI functions simulated include MPI_Init, MPI_Finalize, MPI_Comm_rank,
MPI_Send, MPI_Recv, MPI_Bcast, MPI_Scatter, MPI_Gather and MPI_Sendrecv.

Our final user study showed this game has a lot of potential. A discussion of
several avenues for future work is also included.

iii





Sammendrag

Mangel på erfaring med parallell programmering blant programmerere er en øk-
ende bekymring. Dette er problematisk ettersom parallell programmering kreves
for å utnytte komponenter som GPUer og flerkjerne-CPUer fullt ut. Vi tar opp
dette problemet i oppgaven vår ved å bygge et miljø for å lære parallell program-
mering med MPI. MPI er en av de dominerende programmeringsutvidelsene for
programmering av svært parallelle systemer. Gjennom å utvikle et edutainment-
spill som simulerer MPI-miljøet, har vi til hensikt å gjøre prosessen med å gjøre
programmerere kjent med MPI morsommere og mer interessant.

Avhandlingsarbeidet vårt er en forlengelse av arbeidet som er gjort som en del
av forfatterens høstprosjekt. For å forbedre MPI-spillet vårt vurderer vi standard
kvalitative spillegenskaper som kan påvirke spillernes engasjement i spillet. Disse
vurderingene inkluderer passende spillvanskeligheter, begrensende nye spillop-
plevelser og en kortfattet spillveiledning. Ved utvikling av spillet tar vi også hen-
syn til vårt valg og illustrasjon av MPI-funksjoner samtidig som vi legger til flere
MPI-funksjoner.

Vi bruker også resultatene fra en tidligere brukerstudie, samt en brukerstudie
til vårt utvidede arbeid. Sistnevnte prøver å bestemme spillets fornøyelse og spill-
evanskelighet, samt spillernes opplevde læring og interesse for feltet parallellpro-
grammering.

Noen av de tekniske og konseptuelle utfordringene vi møtte ved å lage et
edutainmentspill nettopp for å gjøre en bruker kjent med parallell programmering
blir også beskrevet.

Spesifikt, diskuterer vi vårt valg av å bruke Unity-spillmotoren og hvordan vi
brukte en tilnærming der spillere visuelt kan programmere inne i spillet med MPI.
MPI-prosessene simuleres av roboter. Videre er spillelementer implementert for å
abstrahere ut kode som, for eksempel, inversjon av en pikselfarge. Brukere kan
også legge til og se på de underliggende MPI-kodene som styrer disse robotene.

Simulerte MPI-funksjoner inkluderer MPI_Init, MPI_Finalize, MPI_Comm_rank,
MPI_Send, MPI_Recv, MPI_Bcast, MPI_Scatter, MPI_Gather og MPI_Sendrecv.

Vår siste brukerstudie viste at dette spillet har mye potensial. En diskusjon av
flere veier for fremtidig arbeid er også inkludert.

v





Acknowledgement

I would like to thank my advisor Anne C. Elster, for providing me with important
feedback along the way. Moreover, I would like to thank her for the great ideas
for the game during development she has given me. I would also like to thank her
for giving me access to the HPC-Lab, providing me with a possible workspace and
hardware to create my application.

I would also like to express my gratitude to my girlfriend, Olga Sandvær, for
all her love and support during this difficult time. And my friend, Gabriel Marti-
nussen, for his invaluable discussions around the game and thesis. A final grati-
tude for all people that took the time to test my game, you know who you are.

vii





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 User Study Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Important Video-Game Design . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Design for an Engaging Game . . . . . . . . . . . . . . . . . . . 6
2.1.2 Environment Design . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Game Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Unreal Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Parallel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Message Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Message Passing Interface . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Black/White Image Inversion . . . . . . . . . . . . . . . . . . . 12
2.3.4 Border Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Bezier Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Human Resource Machine . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Developing an MPI Edutainment Game . . . . . . . . . . . . . . . . . . . 17
3.1 Choosing a Game Engine (RQ1) . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Description of the Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



x Vetle Finstad: MPI Edutainment Game

3.3 Game Models and Licensing . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Visual Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Controlboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Visual Programming Architecture . . . . . . . . . . . . . . . . . 20
3.5.3 Development Process . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Simulation of Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.1 Development Process . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.2 Simulation of Functions . . . . . . . . . . . . . . . . . . . . . . 24
3.6.3 MPI-Interpreter (RQ2) . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Interactable Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.8 Conversion from Visual Programming to Programming Language C 33
3.9 Simulating MPI Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.9.1 Black/White Inversion . . . . . . . . . . . . . . . . . . . . . . . 36
3.9.2 Border Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.10 Handling of Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.11 Interactive tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.12 Local Game Save Data and Audio . . . . . . . . . . . . . . . . . . . . . 39

4 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1 Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Reflection on our User Study . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Recommended Specifications for Running the Game . . . . . . . . . 47
5.3 Development Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Game Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.3 Level Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.4 Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.5 Visual Programming . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.5.1 Displaying an Exception in a Control . . . . . . . . . 54
5.3.6 Console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.7 Level Completed . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.8 Displaying Equivalent C Code . . . . . . . . . . . . . . . . . . . 56
5.3.9 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.10 Interactable Objects . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.11 Border Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 User Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Increase of Interest in Parallel Programming . . . . . . . . . . 61
5.4.2 Game Difficulty for the Players . . . . . . . . . . . . . . . . . . 61
5.4.3 Learning Effect of the Game . . . . . . . . . . . . . . . . . . . . 62



Contents xi

5.4.4 Enjoyment Effect of the Game . . . . . . . . . . . . . . . . . . . 63
6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Development Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.1 Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.3 Level Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.4 Visual Programming . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.5 Simulation of Processes . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.6 Simulation of Functions . . . . . . . . . . . . . . . . . . . . . . 68
6.1.7 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.1.8 Border Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.1 Increase of Interest in Parallel Programming . . . . . . . . . . 70
6.2.2 Game Difficulty for the Players . . . . . . . . . . . . . . . . . . 70
6.2.3 Learning Effect of the Game . . . . . . . . . . . . . . . . . . . . 71
6.2.4 Enjoyment Effect of the Game . . . . . . . . . . . . . . . . . . . 71

7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 User Study Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 Main menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.1.1 Gameplay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B Code Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C Survey and Interview Questions . . . . . . . . . . . . . . . . . . . . . . . . 95

C.1 Survey Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
C.2 Interview Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

D Quiz Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
E Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107





List of Figures

2.1 Border Exchange between Process 1 and Process 2 [18] . . . . . . . 13
2.2 Bezier curve according to the control points [19] . . . . . . . . . . . . 14
2.3 The visual programming inside the game [20] . . . . . . . . . . . . . 15
2.4 Scratch’s user interface [21] . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Architecture for controls and arguments . . . . . . . . . . . . . . . . . 21

5.1 Main menu in our fall project . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Main menu in our current project . . . . . . . . . . . . . . . . . . . . . 49
5.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Old level selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 New level selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Level 6 in our fall project . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.7 Level 12 in our current game . . . . . . . . . . . . . . . . . . . . . . . . 51
5.8 The controlboard in the our project . . . . . . . . . . . . . . . . . . . . 52
5.9 The controlboard in the current project . . . . . . . . . . . . . . . . . . 52
5.10 Overview of arguments for If control in our fall project . . . . . . . 52
5.11 Overview of arguments and controls in current project . . . . . . . . 53
5.12 Closer look at the active controls and arguments in current project 53
5.13 Describes what an Action control does . . . . . . . . . . . . . . . . . . 54
5.14 An exception display in a control in our fall project . . . . . . . . . . 54
5.15 An exception displayed in a control in the current project . . . . . . 55
5.16 The console displaying an exception in the current project . . . . . . 55
5.17 Interface when completing a level in our fall project . . . . . . . . . . 56
5.18 Interface when completing a level in the current project . . . . . . . 56
5.19 Equivalent C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.20 Tutorial in our fall project . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.21 Tutorial in our current project . . . . . . . . . . . . . . . . . . . . . . . 57
5.22 Crate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.23 Barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.24 Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.25 Transporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.26 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.27 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



xiv Vetle Finstad: MPI Edutainment Game

5.28 Hand scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.29 Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.30 Scattering a cube to other robots . . . . . . . . . . . . . . . . . . . . . . 59
5.31 Robots disassembles its cube, and exchanging with its neighbour . . 59
5.32 Robots assembling the cube back together, creating a cube with

only one color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.33 The root robot gathers all white cubes from the other robots . . . . 60

A.1 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2 Main menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.3 Selection of a level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.4 Example of picking up a crate, putting it onto the transporter and

initiating transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.5 Description of what the Action control do . . . . . . . . . . . . . . . . 81
A.6 Showcasing start, pause and fast forward buttons . . . . . . . . . . . 82
A.7 Run-time exception occurred to robot 0 . . . . . . . . . . . . . . . . . 82
A.8 Panel that opens when player completes a level . . . . . . . . . . . . 83
A.9 Converts visual programming code to C code. This equivalent C

code is converted from A.4 . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.10 Crate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.11 Barrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.12 Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.13 Transporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.14 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.15 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.16 Hand scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.17 Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.18 Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.1 Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
D.2 Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
D.3 Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.4 Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
D.5 Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
D.6 Question 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
D.7 Question 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
D.8 Question 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
D.9 Question 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
D.10 Question 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
D.11 Question 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
D.12 Question 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



List of Tables

5.1 Minimum Specifications for development of the game, based on
Unity’s own website. For more information: Link . . . . . . . . . . . . 48

5.2 Question 4 and 5 from the survey . . . . . . . . . . . . . . . . . . . . . 61
5.3 Question 1 and 6 from the survey . . . . . . . . . . . . . . . . . . . . . 62
5.4 Question 2 from the survey . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.5 Question 3 from the survey . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv

https://docs.unity3d.com/2020.1/Documentation/Manual/system-requirements.html




Listings

3.1 Wrapper for controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Functions for spawning controls and arguments in Controlboard.cs 20
3.3 Creation of a bezier curve . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Robot iterating over controls . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Using the control name to determine which function to run . . . . . 25
3.6 Matching an argument name to an object . . . . . . . . . . . . . . . . 25
3.7 Extraction of the three first arguments . . . . . . . . . . . . . . . . . . 26
3.8 Checking whether the sentence is true or false . . . . . . . . . . . . . 26
3.9 Checking whether the sentence is true or false with modulo . . . . . 27
3.10 More arguments imminent and the sentence was true . . . . . . . . . 27
3.11 More arguments imminent and the sentence was false . . . . . . . . 27
3.12 Else function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 Declaring control points . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14 Retrieving bezier points, the highest point of the curve and declar-

ing some variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.15 Animating the game-element to the highest point, and then to its

final destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16 Extracting out the receiver . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17 Create handler if handler is null, then subscribe to action and in-

crement number of ready workers . . . . . . . . . . . . . . . . . . . . . 30
3.18 Function in MPIHandler.cs . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.19 Creating a new BroadcastHandler object . . . . . . . . . . . . . . . . 31
3.20 If owner of MPI_Bcast, subscribe to action and increment, other-

wise call the function WorkerReady . . . . . . . . . . . . . . . . . . . . 31
3.21 Start of interaction with object . . . . . . . . . . . . . . . . . . . . . . . 33
3.22 Conversion to camel-case . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.23 The AND operator in Arguments.json . . . . . . . . . . . . . . . . . . . . 34
3.24 Example of MPI_Sendrecv in controls.json . . . . . . . . . . . . . . . . 34
3.25 Inserting arguments at appropriate indexes . . . . . . . . . . . . . . . 35
3.26 Adding arguments to code output . . . . . . . . . . . . . . . . . . . . . 35
3.27 Conversion to C with an If control . . . . . . . . . . . . . . . . . . . . 36
3.28 Small cubes being sent to robots in Worker.cs . . . . . . . . . . . . . 37
3.29 Creation of an exception . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xvii



xviii Vetle Finstad: MPI Edutainment Game

3.30 Overrided function in Level1Tutorial.cs . . . . . . . . . . . . . . . . 39
3.31 UserAction enum in LevelTutorial.cs . . . . . . . . . . . . . . . . . 39
3.32 Setting a level button to be interactable or not in MainMenu.cs . . . 39
3.33 Plays and loops a song based on level index . . . . . . . . . . . . . . . 40
3.34 Subscribing to the PlaySound Action in GameHandler.cs . . . . . . 40
3.35 An enum to distinguish what sound effect to play . . . . . . . . . . . 40
3.36 Playing sound based on what enum . . . . . . . . . . . . . . . . . . . . 40
3.37 Invoking the Action in GameHandler to play sound effect when a

control/argument is dragged in Draggable.cs . . . . . . . . . . . . . 41

B.1 Function for instantiating control . . . . . . . . . . . . . . . . . . . . . 87
B.2 Function for instantiating argument . . . . . . . . . . . . . . . . . . . . 88
B.3 Function for checking whether an If control is true or false . . . . . 89
B.4 Checking for exceptions in a control . . . . . . . . . . . . . . . . . . . 90
B.5 Creation of a small red line . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.6 Setting the red line’s position and rotation . . . . . . . . . . . . . . . . 93
B.7 Calculating the bezier point . . . . . . . . . . . . . . . . . . . . . . . . . 93



Acronyms

edutainment educational entertainment. 1, 2, 7, 15, 17, 65, 66, 73, 75

fps frames per second. 32, 47, 66

MP Message Passing. 11

MPI Message Passing Interface. 1, 2, 11, 12, 18, 22, 23, 28, 32–34, 36, 43, 44,
52, 61–63, 65, 67–69, 71, 73–76

MPP Massively Parallel Processing. 11

xix





Glossary

Emergence Defining general global rules to induce emergent gameplay. 8

Scripting Developers hand-craft, anticipate -and script game-objects, interactions
and events. 8

xxi





Chapter 1

Introduction

Because the limits of CPU frequency scaling have been reached, computers today
are equipped with multi-core processors and GPUs. To make use of these compo-
nents, parallel programming is required. Parallelism offers a huge performance
improvement that should be taken advantage of. Despite the high demand for
parallel programming skills, many computer scientists will graduate in 2022 with
little or no experience in the field according to [1].

This thesis project expands on the work done in the "fall project". Several Mes-
sage Passing Interface (MPI) functions have been added, including illustrating
border exchange examples. The visual programming has also been revamped. A
user study was done in the fall project, this thesis has the same set-up, but the
questions have been changed. The background chapter has been extended and its
sections, although also based on the fall project, have been rewritten for readabil-
ity.

1.1 Motivation

Video games have seized the world by storm, and they are now a common part
of people’s daily lives. As a result, scientists began researching the world of video
games and how it affects individuals. They started looking at how a video game
can be both educational and entertaining, coining the phrase "edutainment game."
These games are used to educate a wide range of subjects. With today’s technology,
a video game may provide an immersive and interactive experience, increasing
attention span and focus.

1.2 Contribution

We demonstrate how an educational entertainment (edutainment) game may be
utilized as an environment for learning parallel programming using MPI. We also
show how to simulate MPI functions in a game, as well as how to simulate over-
simplified image processing and border exchange, to enable players to become

1



2 Vetle Finstad: MPI Edutainment Game

familiar with and understand how parallelism speeds up a program.

1.3 Research Questions

Four research questions have been induced to collect relevant information about
the project´s overall solution.
RQ 1: "What is the best game engine for implementing an MPI edutainment game?"
RQ 2: "What are some of the technical advantages and challenges with the approach
chosen?"
RQ 3: "What are the most useful MPI functions, and how does one illustrate them
well in a gaming setting?"
RQ 4: "Will there be any timing issues related to such a game?"

1.4 User Study Questions

Four different user study questions have been produced to demonstrate the quality
of the edutainment game, as well as to collect useful information about players´
experience with the game.
USQ 1: "Will the game have an effect on increasing interest in parallel program-
ming?"
USQ 2: "Is the game too difficult?"
USQ 3: "What is the learning effect of playing the game?"
USQ 4: "What is the enjoyment effect of playing the game?"

1.5 Thesis Outline

The rest of the thesis is outlined as follows:

• Chapter 2 holds all the relevant background and related work relevant for
this thesis
• Chapter 3 describes how the game was implemented
• Chapter 4 presents the user study method applied to answer the user study

questions
• Chapter 5 holds the development results as well as the results from the user

study
• Chapter 6 contains a discussion of the results in chapter 5 for both the de-

velopment results and the user study
• Chapter 7 concludes this thesis and answers both the research -and user

study questions as well as presenting the future work
• Appendix A: User guide
• Appendix B: Code snippets
• Appendix C: Survey and Interview Questions
• Appendix D: Quiz Questions



Chapter 1: Introduction 3

• Appendix E: Poster





Chapter 2

Background

Nuclear physicist William Higgingbotham created one of the first games called
Tennis for two in 1958, which was designed to inform visitors of the Brookhaven
National Laboratory on the effects of gravity [2].

But the real breakthrough for video games happened in 1961 when MIT stu-
dent Steve Russell created the game Spacewar!. It included elements that are still
used in video games today such as a scoring system, in-game settings, and a two-
player mode, to mention a few. It was the slow beginning of video-game’s growth
to the commercial summit [2].

The video-gaming industry has grown huge over the last 60 years. According
to [3], in 2020, there were 2.69 billion players playing video games worldwide.
Furthermore, the revenue from gaming reached over $159.3 billion. This shows
the immense pull gaming has on people.

The following sections contain the relevant background information for this
thesis about important video-game design, parallel programming with the mes-
sage passing interface, and some general image processing techniques including
both independent as well as more complicated features.

2.1 Important Video-Game Design

One of the reasons people play video games is because it is fun. Fun also plays an
important role in learning for both adults and children. According to [4], pleasure
and enjoyment function as an incentive to obtain the necessary knowledge and
skills. Furthermore, fun and enjoyment encouraged concentration, which aided
understanding. Some researchers describe how the game’s difficulty should be
managed: "The player should be able to customize the controls and the gameplay
to fit their learning and playing styles or the game should be designed to allow
different styles of learning and playing." [5] The following sections describe the el-
ements a developer should keep in mind to create a fun and enjoyable experience
for players.

5



6 Vetle Finstad: MPI Edutainment Game

2.1.1 Design for an Engaging Game

In 1980, Tom W. Malone [6] discovered five important characteristics for making
educational games fun. Years later, Sweetser and Wyeth [5] studied the flow ele-
ments in games, where they identified eight different flow elements. Despite the
fact that the authors list five and eight separate features, they can be divided into
three groups: challenge, curiosity and fantasy.

Challenge

"Challenge is consistently identified as the most important aspect of good game
design." [5]

As discussed in [5, 6], games should have a clear goal and be sufficiently chal-
lenging. It is also critical that the game’s challenge does not surpass the player’s
ability, as this may result in players experiencing anxiety. On the contrary, too easy
a game might make players feel unmotivated to play.

Players experience enjoyment from the challenge of the game. A game should
portray itself as hard through careful level design that triggers a sequence of chal-
lenging scenarios - giving an experience that encourages players to keep playing
the game. Providing such an experience must first of all present a goal to reach.
This goal must be clearly defined with immediate feedback on players’ progress
towards it. The clearer the goal, the better.

A game can be made challenging by the introduction of variable levels of dif-
ficulty. This can, for instance, be determined automatically by the game, chosen
by the player, or automatically determined by their opponent’s skill level. When
the difficulty is determined automatically by the game, it is important that the
game gradually increases its difficulty when the player progresses, maintaining
the player’s interest. Equally important is that the game does not start too diffi-
cult, else, players can feel discouraged.

Players can also feel discouraged by experiencing new details and challenges
at a too high rate. To sustain the game’s challenge and tension, unlocking new me-
chanics or tougher foes should be done at a steady pace. This also serves to pique
the player’s curiosity. Another way of making a game uncertain is by introducing
several goals for the player to reach. While the player’s primary goal is to achieve
something in the game world, they may also have additional meta-goals. These
meta-goals can come in the form of speeded responses or maximizing scorelines.

The game should also be playable without the need for external resources;
players should not be expected to read, for instance, a game manual to start play-
ing the game. This may be avoided by including a tutorial that teaches the player
how to continue through the game. This typically happens in the earlier stages of
the game. However, the tutorial mustn’t provide lengthy explanations, as this can
result in the player becoming bored. Moreover, it should be obvious to the players
when they have done something wrong, and how it can be resolved.

Another valuable contribution to a game’s challenge is that the players should
feel a sense of control over their actions. The user interface should be intuitive



Chapter 2: Background 7

and easy to use - and its controls should be easy to learn and master. "The game
shell menu should be easy to use, intuitively organized, and should not sacrifice
readability and functionality for aesthetics." [5].

Fantasy

Another way of making a game engaging can be made possible according to [6],
is by implementing fantasy, where the game includes images of physical objects
or social situations not present. Malone found a relatively easy way of trying to
increase the fun of learning where the player progresses toward a fantasy goal or
tries to avoid a fantasy disaster. Malone put fantasy in two different categories: ex-
trinsic and intrinsic fantasies. This can, for instance, be demonstrated by an arith-
metic problem game; an extrinsic fantasy could be that hangman is used to in-
dicate whether the player in the game was incorrect - fantasy is dependent on
the skill. Whereas for intrinsic fantasies, the skill is also dependent on the fan-
tasy. An arithmetic problem game might be used to explain this. In the game, the
player must travel to the proper tile indicating the correct number for the arith-
metic problem provided, while wrong responses result in a bomb creeping closer
to explosion. He found that intrinsic fantasies are more interesting than extrinsic
fantasies.

Curiosity

Motivation to learn is important in an edutainment game as discussed in [6], this
is where curiosity comes in. Curiosity can be evoked by providing environments
that are neither too complicated nor too simple in relation to the player’s existing
knowledge. A good game world/level is not completely incomprehensible, yet still
surprising and new. It is also categorized in two different categories: sensory and
cognitive.

Sensory curiosity is the response to changes in the environment in the form of
audio, sound, or movement. Malone states different strategies to invoke sensory
curiosity. One way is to "decorate" the environment, by putting in audio, regardless
of what the player is doing. This is often referred to as background music. "My
conjecture is that this kind of effect will enhance the initial interest of a game, but
will quickly become boring." [6]

Another strategy is to enhance the fantasy of the game, by using sound or
graphics. Rewarding the player for good performance with visuals or music was
also discovered to be important, while also adding to the game’s difficulty. Lastly,
representing things inside a game using sound or graphics. It is a far superior way
of representing things inside a game, instead of using text and numbers.

Cognitive curiosity builds upon the fact that people want to expand on existing
knowledge. The degree of curiosity is related to the knowledge level one has in a
field. A person’s curiosity is very low, or non-existent when their knowledge of the
field is zero. However, having grasped a subject will often lead to people wanting
to broaden their knowledge. For instance, watching a TV series 85% finished,



8 Vetle Finstad: MPI Edutainment Game

one is much more likely to finish the series. Compared to a series that has been
watched only 15%. Cognitive curiosity is also invoked by finding out information
that conflicts with what the person currently has knowledge about.

2.1.2 Environment Design

The paper [7] discusses and defines two divergent approaches to designing game
environments:

1. Scripting.
2. Emergence.

Scripting is the most popular alternative for developing games; the developer
designs predefined paths and interactions that the player will follow throughout
the game. This constrains the game to its designer’s ideas of what is consistent and
enjoyable, which can make player interactions appear limited, rigid, and lifeless.

The alternative is emergence, where game elements are globally defined with
consistent characteristics and behavior. Players’ interactions have rules and bound-
aries, rather than prescripted paths.

When designing a game using scripting, there must be an effort in the place-
ment of game objects, puzzles, and sequences to maintain consistency in the game
environment, which requires significant time and work from the designers. Fur-
thermore, extensibility in scripted systems poses an issue: because each instance
of a game object is unique, there must be a direct link between them for every
interaction. Since there can be no uncertainty or unexpected events in the game,
the need for testing and quality assurance is high. However, scripting is effective
for developing simple systems. Additionally, it is straightforward to give feedback
as the developer knows how and when the player will interact with various game
elements.

However, when designing a game where emergence is the desired approach,
the developer designs only the types of objects and interactions, resulting in greater
efficiency in development and testing. In contrast to a scripted system, an emer-
gent system scales well, and is easily extended. Making changes to an emergent
system is more efficient as changes can be made to object types, instead of each
instance of a game object. Emergence can easily make the game designer feel a
loss of creative control, as using this particular approach makes it harder to set up
a specific narrative. As a result, telling a story or controlling the flow of the game
is not as simple as in the scripting approach. On the other hand, emergence makes
it possible to introduce uncertainty, which is one of the ingredients for making the
game feel challenging according to Malone. However, it may also allow harmful
behavior in the game, which requires extensive testing to ensure it is forbidden.
As the game gives rise to numerous actions, assuring the players that they are on
the right track with feedback and direction is important.



Chapter 2: Background 9

When it comes to the game’s players, the scripting technique easily breaks their
immersion since it lacks consistency between the real world and the game. How-
ever, with emergent gameplay, the game environment is closely integrated with
the actual world, preserving the players’ immersion. Another compelling reason
to use the emergent technique is that players will not have to relearn the game’s
conceivable interactions, keeping it intuitive and satisfying the player’s expecta-
tions.

The paper states that both approaches hold benefits and drawbacks for game
developers, with consequences for the players. Developers of the scripted approach
must hand-craft, implement and test every aspect of the game individually while
keeping full creative control and knowing the game will not break after release.
The drawbacks are that players are unable to express their creativity, and inconsis-
tencies may appear. For the emergent method, developers are bound to be uncer-
tain of the game’s behavior after its release, however, it allows players to express
their creativity while keeping the game world consistent and intuitive.

The authors concluded that game development should fall somewhere in the
middle. A good balance of planned, narrated gameplay and freedom to interact,
allows the player to do their own thing while yet driving the plot forward.

2.2 Game Engine

Before the arrival of the game "DOOM" in 1993, id Software promised that the
game would push the boundaries of the processing power of a computer. The game
demonstrated significant technological, content, and gameplay advancements. A
new term was coined: Doom Engine; the term described the technology for id
Software’s newest game software and later revolutionized the game industry [8].

With the release of this game engine, it became possible to avoid creating
games from scratch, saving valuable time. Texturing, animation, lighting, and 3D
rendering, among other things, could now be easily implemented with the help
of this game-changing engine [9].

In 2022, game engines are ubiquitous. They are more powerful and feature-
rich than the original game engine. The motivation for using a game engine comes
from the desire to save time when developing a game from the ground up. Devel-
opers can concentrate on game logic and interactions, while the engine handles
everything from graphics rendering to collision detection.

There is a time limit for the delivery of this thesis, hence, it is crucial to make
use of a game engine to develop the game. However, it is important to choose the
right game engine for the system that is going to be developed. Game engines are
becoming increasingly similar; however, they differ slightly in some areas, such as
graphic quality.



10 Vetle Finstad: MPI Edutainment Game

2.2.1 Unity

On May 21, 2002, Nicholas Francis and Joachim Ante began working together on
a game engine and made good progress, which piqued the interest of David Hel-
gason, who eventually joined the team. Initially, the three developers intended to
make video games for a living, but they quickly realized that they would rather cre-
ate a tool for making games. When Joachim and Nicholas rented a flat in Copen-
hagen to become roommates, with David living just down the street, development
really started to take shape. Launched in 2005, Unity would become one of the
most successful game engines to exist [10].

According to [11], in 2020, there were 5 billion downloaded apps built in
Unity and 2.8 billion monthly active end-users who engaged with content cre-
ated in or operated by Unity. It remains the game engine of choice; 61% of game
developers chose Unity as their game engine in 2020.

Unity is a cross-platform game engine, supporting both 2D and 3D graphics,
with C# as its scripting language. What makes Unity different from other game
engines is its huge target platforms, simplicity, and asset store. The asset store
is a place where developers can upload their creations and share them with the
community [12].

2.2.2 Unreal Engine

In 1991, 21-year-old Tim Sweeney created a game called ZZT. It was a simple
game, but the approach he used to program that game would germinate into
something much bigger. He designed the game in such a way that allowed him
to have easy control over gameplay objects without much complexity. This would
allow a user to do significant user modifications – which laid out the framework
for the idea of a game engine. With Tim Sweeney, Epic Games began working on
Unreal, which developed into arguably the best-looking shooter game of its time.
As a result, competitors became interested and desired to develop their games on
Epic Games’ engine [13].

The Unreal Engine is a game engine that, like Unity, supports both 2D and
3D graphics and employs C++ as its scripting language. Unreal Engine’s huge
potential for creating beautiful graphics is where it truly shines, and it is frequently
picked up and used by AAA game companies [14].

2.3 Parallel Programming

Microprocessor performance increased by more than 50% per year on average
between 1986 and 2003. This implies that users and software developers could
simply wait for the next generation of microprocessors to improve application
performance. However, since 2003, single-processor performance has slowly de-
clined. In 2005, the majority of big manufacturers decided that parallelism was



Chapter 2: Background 11

the way to go, and they began putting multiple complete processors on a single
integrated circuit [1].

This change had a significant impact on software developers; simply adding
more processors would not improve serial-application performance. Applications
must be parallelized to take advantage of these multi-core processors. This is
where parallel programming comes in [1].

2.3.1 Message Passing

Message Passing (MP) is a parallel programming model and is defined by having
the ability to communicate with other processes. It is very limited: only a copy of
an item, known as a message can be sent from one process to another. Nonetheless,
it is effectively capable of cooperating programs having read/write access to each
other’s local memory. A process that receives a message can write it to its local
memory, allowing the sender of the message to modify the receiver’s local memory.
A Massively Parallel Processing (MPP) hardware using MP, consists of P sequential
programs, where every process runs its own program. Each of these processes
uses MP instructions to synchronize themselves and access the memory of other
processes [15].

2.3.2 Message Passing Interface

MPI was developed in a year (1993-94) of intensive meetings, involving more
than 80 people from 40 different organizations, mostly from the US and Europe.
Voting at the meetings was done by a single vote per organization, and to vote,
the organization must have had a representative at two of the last three meetings.
Many vendors of concurrent computers were involved, along with researchers
from universities, government, laboratories, and industries. This was how the MPI
specification was publicized [16].

MPI uses the MP parallel programming model. It works by moving data from
the address space of one process to another through cooperative operations on
each process. All of the MPI operations are expressed as functions, subroutines,
or methods, in relation to the language bindings. The main advantage of MPI is
its portability and simplicity [17].

MPI works by having all processes grouped in a communicator. The most com-
mon communicator in an MPI program is a communicator called MPI_COMM_WORLD.
Each process is identified by a unique number, which is retrieved and stored in
a variable by calling the function MPI_Comm_rank. By doing this, processes can
be differentiated and manipulated to do separate things.

An MPI program contains synchronization points, these are points in the pro-
gram where processes synchronize themselves with all or some processes in the
program. It means that processes wait for other processes to reach the same point
in the program before continuing. An example of this can be made in a simple
send and receive program between two processes. The sending process (process
0) has to call the send function, while the receiving process (process 1) has to



12 Vetle Finstad: MPI Edutainment Game

call the receive function. When process 0 reaches the send function, it waits until
process 1 reaches its receive function and then continues - and vice versa. An-
other example is where a collective operation is done, the root process (process
0) sends information to all other processes. It then waits until all other processes
have reached this point before it can send the information, and then continues
further.

Using a lot of communication between processes can slow down an MPI pro-
gram, which is called communication overhead. A program can run faster with
eight processes instead of, for instance, sixteen processes. One must be careful
when choosing the number of processes used to run the program.

MPI Functions

All of the functions simulated in the game are covered and explained here.

• MPI_Init, initializes the MPI execution environment.
• MPI_Finalize, terminates the MPI execution environment.
• MPI_Comm_rank, retrieves the rank of the process and stores it in a vari-

able.
• MPI_Send, sends data to a recipient process.
• MPI_Recv, retrieves data from a sending process.
• MPI_Sendrecv, both sends and retrieves data.
• MPI_Bcast, sends data to all other processes.
• MPI_Scatter, splits up and sends an equal amount of array data to all other

processes.
• MPI_Gather, receives array data from all other processes and stores it in a

single array.

2.3.3 Black/White Image Inversion

This is an independent parallel programming task, meaning the processes do not
need to communicate with each other during the processing. The root process
scatters an image to the other processes, who can all independently invert the
pixel color of their portion of the image. Afterward, the root process can gather
the results from the processes.

2.3.4 Border Exchange

The majority of MPI applications are complex and require domain decompositions
(splitting the main system matrix over several processes). Several applications in
science and engineering programs then iterate over the distributed domain, but
must update the results via "border exchanges." When doing image filtering, for
example, the root process scatters the image to all of the processes, and the pro-
cesses begin the filtering process. When processing its individual image chunk
with a kernel, one difficulty arises: It requires data from its neighboring processes



Chapter 2: Background 13

to complete its computation. While performing image filtering, processes receive
border pixels from neighboring processes and send border pixels to other pro-
cesses. Border exchange is the common name for this operation [18].

Figure 2.1: Border Exchange between Process 1 and Process 2 [18]

2.4 Bezier Curve

One way of expressing geometric design is by utilizing Bezier curves. By establish-
ing "control points", a smooth and continuous curve that may be scaled endlessly
can be created. The first and last "control points" are always the start and end-
points of a bezier curve [19]. A bezier curve can be written as:

BZ(t) =
n
∑

i=1

�

n
i

�

t i(1− t)n−i Pi, 0≤ t ≤ 1, (2.1)

Where n is the degree of the curve, and Pi are elements of Rk, k ≤ n, called
bezier points. If Pi = (Pix , Pi y, Piz) ∈ R3, 0≤ i ≤ n, then we have:

BZ(t) =
n
∑

i=1

Bn
i (t)(Pix , Pi y, Piz) (2.2)



14 Vetle Finstad: MPI Edutainment Game

Figure 2.2: Bezier curve according to the control points [19]



Chapter 2: Background 15

2.5 Related Work

We were not able to find work related to parallel programming edutainment
games. However, we found work related to an edutainment game in which vi-
sual programming was utilized. As well as a visual programming language.

2.5.1 Human Resource Machine

This is a puzzle-type game where you program an office worker to do tasks given
by the game. The game takes advantage of visual programming to automate the
office worker’s tasks. The game starts with only 2 commands available, gradually
increasing the game’s difficulty as well as the number of commands available after
levels are completed. "Commands" are programming functions in which you drag
and drop in the game [20]. "The entire language contains only 11 total commands
- but they’re enough to simulate almost any computer algorithm in the world!"
[20].

Figure 2.3: The visual programming inside the game [20]

2.5.2 Scratch

Scratch began its development in 2003 and was released in 2007. Their inspira-
tion came from the fact that no tools were able to offer an easy way for children
to create interactive animations, digital stories, and games. Now, scratch is the
world’s largest coding community for children, allowing for the creation of these
digital stories, animations, and games by utilizing a visual programming language
with a simple interface [21, 22].

"Scratch promotes computational thinking and problem-solving skills; creative
teaching and learning; self-expression and collaboration; and equity in comput-
ing" [22].



16 Vetle Finstad: MPI Edutainment Game

Figure 2.4: Scratch’s user interface [21]



Chapter 3

Developing an MPI Edutainment
Game

This chapter will present what game engine was chosen to develop the game, a
description of the game, and how the edutainment game was implemented, with
the reasoning behind the choices we made. Including possible encounters with
pitfalls. Not every part of the implementation is covered, only the most relevant
and important aspects.

3.1 Choosing a Game Engine (RQ1)

As previously stated in Section 2.2, using a game engine is essential for finishing
a game in such a short amount of time. It is also critical to select the right game
engine, as Abraham Maslow stated:

"If the only tool you have is a hammer, you tend to see every problem
as a nail."

According to the quotation, different problems necessitate different tools. The
two most popular gaming engines, Unity and Unreal Engine, will be compared and
one of them will be chosen as the development platform. They are quite similar,
however, there are some significant distinctions between them. In terms of visuals,
Unreal Engine has the upper hand because it comes with a lot of capabilities out
of the box, such as post-processing and volumetric fog. To get achieve a similar
result in Unity, developers must install third-party libraries, which takes more time
[14].

Both game engines have out-of-the-box support for networking, but Unreal
Engine’s networking is far superior. Unity has the upper hand for creating 2D
games, while Unreal Engine has the upper hand in the field of AI. Unreal Engine
supports only C++, whereas Unity supports C#. Unity has far more user-created
content with Unity’s asset store than Unreal Engine has with UE Marketplace.
Thus, it is easier to find assets that you require in Unity’s asset store [14].

17



18 Vetle Finstad: MPI Edutainment Game

The author chose Unity, which may seem counter-intuitive given that Unreal
Engine outperforms Unity in many areas. The author’s experience with Unity was
a major factor in our decision, as the author has been developing games in Unity
for 9 years and only 1 month in Unreal Engine. Not having to learn the inner
workings of a game engine saves a lot of time. Additionally, C# is the language
the author is most comfortable with, and the game will not be using a network
solution. Finally, the game does not need groundbreaking graphics and AI.

3.2 Description of the Game

To create a context for the sections below, a description of the game is presented.
First of all, the game has a controlboard, where the player can build a program
using visual programming. In the levels, there are robots that simulate processes.
They gather the controls (functions) that have been visually programmed from
the controlboard and start interpreting them. The robots also interact with several
different game elements; the goal of the levels is to make the robots transport out
crates, barrels and cubes, depending on the current level the player is in. This is
done by placing them onto a transformer. However, the transformer’s color must
match the crate for instance, to be able to put them onto the transformer. Game-
elements such as the crate can also be put onto a transformer, to change its color
to white. Furthermore, putting a crate on a inverter, inverts the crate’s color. The
transformer also has a color, similar to the transformer, representing that it only
can receive game elements that match its color.

To be able to complete levels, the player will have to make use of MPI -and
traditional programming with a visual programming interface to make robots
communicate with each other, and also use different game elements in the lev-
els to match the game elements’ color to the transformer’s color. The player must
complete 12 different levels, each of which increases in difficulty. There are 2
unique levels that portray simplified versions of image manipulation and border
exchange.

Every level unlocks new controls, arguments, and sometimes new objects.
When a level has been completed by the player, the player receives 0 to 3 stars
based on how optimized the program is. Additionally, run-time and compilation
exceptions can occur, which are presented in a console with a description of the
error. An interactive tutorial is present in the game, guiding players through the
early levels, explaining the goal of the game and the various game mechanics.

The following sections describe in more detail the implementation choices we
made.



Chapter 3: Developing an MPI Edutainment Game 19

3.3 Game Models and Licensing

All game models in the game are downloaded from Unity’s asset store. These
include the license type: Extension Asset, and falls under the license agreement:
Standard Unity Asset Store EULA1.

3.4 Timing

In every part of the game where game elements move, one must make use of
Time.deltaTime2. This makes sure that the operation does not move faster or
slower depending on the frame rate of the game. This is often referred to as frame-
independence.

3.5 Visual Programming

Given that the game provides an environment for learning parallel programming,
it was reasonable to include some type of programming for the player to make use
of. We looked into creating one’s own programming language and using it to pro-
gram in the game. However, the idea was quickly abandoned because it would be
time-consuming and we had no prior experience with language construction. We
began considering various methods of programming within the game and chose
visual programming. The Human Resource Machine game described in Section
2.5.1 became a driving force behind the implementation of this sort of program-
ming. Additionally, as described in Section 2.1.2, a game environment should be
balanced between scripting and emergence. With players programming in the
game, they can complete a level however they want. This induces the emergent
gameplay, while still having a defined goal in place, preserving the scripting part
of the environment.

3.5.1 Controlboard

Controlboard.cs handles the spawning of arguments and controls. It retrieves
the controls from a JSON file called controls.json. Arguments is retrieved from
arguments.json. At the start of a level, all arguments and controls reside in a
side-panel, where the player can drag and drop them into an active-panel to start
building a program.

The system uses a JSONUtility3 class with official support from Unity. The class
converts Unity objects to and from JSON format. To deserialize and serialize lists
and arrays, a "wrapper" is needed. The wrapper is serialized instead of serializing
the list or array directly.

1https://unity3d.com/legal/as_terms
2The interval in seconds from the last frame to the current one. https://docs.unity3d.com/

ScriptReference/Time-deltaTime.html
3https://docs.unity3d.com/Manual/JSONSerialization.html

https://unity3d.com/legal/as_terms
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html
https://docs.unity3d.com/ScriptReference/Time-deltaTime.html


20 Vetle Finstad: MPI Edutainment Game

Listing 3.1: Wrapper for controls

[System.Serializable]
public class ControlsWrapper
{

public Control[] controls;
}

Listing 3.2: Functions for spawning controls and arguments in Controlboard.cs

public GameObject InstantiateControl(Control c, Transform parent, bool isActive)

public GameObject InstantiateArgument(Argument argument, bool isActive,
Transform parent = null, int index = -1,
bool placeHolder = false)

The isActive parameter denotes whether the argument/control has been dragged
and dropped into the active-panel or not. Arguments and controls can have three
different parents; one for its side-panel field where you select it from. Another one
for when they are being dragged, and need to have a parent that does not clip their
image. The last parent is where it is active in the active-panel. Some controls can
have several arguments, the index parameter represents which sibling index it
should have. The last parameter placeholder represents if the argument is being
dragged. As the functions are relatively long, the content of the functions can be
found here: Listing B.1 and B.2.

3.5.2 Visual Programming Architecture

The overall architecture for the visual programming used in our game design is
illustrated in Figure 3.1.

As shown, the controls are functions for the robots to simulate. Similar to real
programming, some functions have parameters. There are several classes defining
which type of control or argument it is. Depending on if it is an argument or a con-
trol it uses either ArgumentDraggable.cs or ControlDraggable.cs respectively;
both inherit from the superclass Draggable.cs.

If the control has the class InActiveControlDraggable.cs, it resides in the
side-panel, ready to be dragged and dropped into the active-panel. However,
if it has the class ActiveControlDraggable.cs, it is in the active-panel. Both
ArgumentControlDraggable.cs and BracketControlDraggable.cs inherit from
ActiveControlDraggable.cs. The first one indicates that the control has avail-
able parameters, while the other one simulates a bracket. ArgumentControlWith-
BracketDraggable.cs inherits from ArgumentControlDraggable.cs and speci-
fies that the control should have a bracket. The last one, ElseControlDraggable.cs
simulates an else in real programming, and inherits from ArgumentControlWith-
BracketDraggable.cs. These classes makes it possible to be able to drag and drop
the arguments/controls. For arguments, the architecture is simpler. It is in the side-
panel if it has InActiveArgumentDraggable.cs or ActiveArgumentDraggable.cs
if it resides in the active-panel.



Chapter 3: Developing an MPI Edutainment Game 21

Figure 3.1: Architecture for controls and arguments



22 Vetle Finstad: MPI Edutainment Game

3.5.3 Development Process

A hurdle we encountered was when the very first control was developed, called:
Action. It enabled a robot to interact with a game element. When the player
picked the Action control an argument-panel opened with options to what game
element to interact with. For example, if each robot had a crate-object in its local
memory, there would be four crate-objects displayed when the argument panel
appeared. In a parallel setting, having four unique options for the same object
type did not make sense to us. Therefore, we changed it to name matching; if the
object’s name matches, only one object should be visible.

If Sentence

In a real MPI program, processes must frequently be distinguished, necessitating
the use of if statements. The game required an If control, to be able to simulate an
if sentence, brackets had to be simulated. By using an End control, players could
drag it where the If control should end. Controls between the If and End controls
were now only executed by processes for which the If control is true. Additionally,
if there are several If controls, one would need to differentiate which End control
is to which If control. The Else control, placed beneath an End control, works in
the same way, simulating whether an If sentence has an Else. Bezier curves as
described in Section 2.4 was utilized to connect the End and the If controls; it
was done by creating a lot of small red lines at every point in the bezier curve.

The CalculateCubicBezierPoint function Listing 2.2, uses the equation from
Section 2.3.4. MakeLine function creates a small red line, and the SetRectTrans-
form function sets the previous created line to its correct position and rotation.
The functions can be found here: Listing B.5, B.6 and B.7.



Chapter 3: Developing an MPI Edutainment Game 23

Listing 3.3: Creation of a bezier curve

public void DrawCurve()
{

Vector3 lastPos = controlPoints[0].position;
for (int j = 0; j < curveCount; j++)
{

for (int i = 1; i <= segmentCount; i++)
{

float t = i / (float)segmentCount;
int nodeIndex = j * 3;
Vector3 pixel = CalculateCubicBezierPoint(t, controlPoints
[nodeIndex].position, controlPoints [nodeIndex + 1].position,
controlPoints [nodeIndex + 2].position, controlPoints
[nodeIndex + 3].position);
if(lines.Count != segmentCount)
{

lines.Add(MakeLine(lastPos.x, lastPos.y, pixel.x, pixel.y,
Color.red).gameObject);

}
else{

SetRectTransform(lines[i - 1].GetComponent<RectTransform>(),
lastPos.x, lastPos.y, pixel.x, pixel.y);

}
lastPos = pixel;

}
}

}

3.6 Simulation of Processes

Processes are simulated and represented in the game as robots, using the class
Worker.cs. Their rank is identified by an integer floating above them. Every robot
is placed in its own cubicle, representing its local memory. If a robot attempts to
interact with an object outside of its cubicle, the game will be paused and a null-
reference exception will be printed. When pressing "Play", the robots gather the
controls and arguments into their local memory and start iterating over them.

3.6.1 Development Process

One of the first obstacles we had to solve was how one could limit game elements
to robots (processes). As MPI does not deliver shared memory between processes,
every robot should not have access to all game elements in the game. For instance,
the root robot (process 0), should only be able to send its game element, because
the game element resides only in the root robot’s cubicle.

This was solved by having the robots put all of its game-element children with
the class Interactable.cs in a local array called interactables. This way, it was
easy to distinguish what game element should be limited to what robot.



24 Vetle Finstad: MPI Edutainment Game

Listing 3.4: Robot iterating over controls

private void NextIteration()
{

currentIteration++;

if(currentIteration >= controls.Count || runTimeError || mpiFinalized)
return;

var currentControl = controls[currentIteration];

if(currentControl.type == Control.ControlType.Action)
{

new ActionInterpreter(currentControl, this, interactables.ToArray(),
NextIteration);

}
else if(currentControl.type == Control.ControlType.Logic)
{

new LogicInterpreter(currentControl, this, NextIteration, ModifyIteration,
lastIfSentenceFalse);

}
else if(currentControl.type == Control.ControlType.MPI)
{

new MPIInterpreter(currentControl, this, NextIteration);
}

lastIfSentenceFalse = false;

}

When the game starts, robots retrieve all of the controls visually programmed
and interpret them. They are interpreted by one of three classes: ActionInter-
preter.cs, LogicInterpreter.cs and MPIInterpreter.cs. All of these inherit
from the superclass Interpreter.cs. The robot passes a System.Action4 delegate
to each interpreter; when it is invoked, the robot continues its iteration over the
controls.

3.6.2 Simulation of Functions

The following subsection will cover and explain how the different controls are
interpreted.

Action-Interpreter

The ActionInterpreter.cs class is responsible for interpreting object-interactive
functions. It receives the robot’s interactables array and uses the control and the
interactables array to determine if the argument name provided to an Action
control matches an object in the interactables array; if it does not, the robot
generates a run-time error and exits. Depending on the control name, it can run
several functions.

4https://docs.microsoft.com/en-us/dotnet/api/system.action-1?view=net-6.0



Chapter 3: Developing an MPI Edutainment Game 25

Listing 3.5: Using the control name to determine which function to run

switch(control.Name)
{

case "Action":
Action();

break;

case "GoTo":
GoTo();

break;

case "Disassemble":
Disassemble();

break;

case "Assemble":
Assemble();

break;
}

Listing 3.6: Matching an argument name to an object

var selection = control.arguments[0].name.ToLower();

var interactableObject = interactables.
FirstOrDefault(x => x.Name.ToLower() == selection);

if(interactableObject == null)
{

ExceptionHandler._instance.
RuntimeError("Can’t find object " + selection + ".", caller,
ExceptionObject.ExceptionType.NullReferenceException);

Controlboard._instance.nextTutorialIteration?.
Invoke(LevelTutorial.UserAction.ActionError);
return;

}

Logic-Interpreter

LogicInterpreter.cs interprets logic controls: If and End controls. It determines
which function to run similarly to ActionInterpreter.cs. The class takes two
actions, onTrue and onFalse to determine if the If or End control was true or
false. An If control can have endless arguments, therefore a recursive function
IfSentence(List<Argument> arguments) was created to check if the If control
is true or false for a robot. The entire function can be found here: Listing B.3.

Creating a Simulation of an If Sentence

The If control was checked for any faults by the ArgumentControlDraggable.cs
before the level was started, for example, if the If control had less than three argu-
ments. Alternatively, if the control’s first parameter is an operator. An If sentence



26 Vetle Finstad: MPI Edutainment Game

can be incorrect in a variety of ways. Because ArgumentControlDraggable.cs exam-
ines the If control, there is no need for any checks in the LogicInterpreter.cs
class.

The first argument for an If control in this context is always a variable or an
integer value.

Listing 3.7: Extraction of the three first arguments

var variableOrInteger = arguments[0];
var argumentOperator = arguments[1];
var variableOrInteger2 = arguments[2];

var variableOrIntegerValue = variableOrInteger.argumentType ==
Argument.ArgumentType.Variable ?
caller.GetType().GetField(variableOrInteger.name.ToLower()).GetValue(caller).
ToString() : variableOrInteger.name;

var variableOrIntegerValue2 = variableOrInteger2.argumentType ==
Argument.ArgumentType.Variable ?
caller.GetType().GetField(variableOrInteger2.name.ToLower()).GetValue(caller).
ToString() : variableOrInteger2.name;

arguments.RemoveRange(0, 3);

bool sentenceTrue = false;

The first variable or integer is extracted first, followed by the operator, and
finally the variable or integer. The initial half of the If control has now been
retrieved. Then, the list removes these arguments. If there are no more arguments
left, we have extracted everything and can check whether the sentence is true or
false.

Listing 3.8: Checking whether the sentence is true or false

private bool CheckSentenceTrue(string arg, string value1, string value2)
{

switch(arg)
{

case "==":
return value1 == value2;

case "!=":
return value1 != value2;

case ">":
return int.Parse(value1) > int.Parse(value2);

case "<":
return int.Parse(value1) < int.Parse(value2);

case ">=":
return int.Parse(value1) >= int.Parse(value2);

case "<=":
return int.Parse(value1) <= int.Parse(value2);

default:
return false;

}
}

However, if there are more arguments, we must determine which operator
is being used. If the operator is a modulo operator, we must calculate the value



Chapter 3: Developing an MPI Edutainment Game 27

already extracted with the modulo operator. We also need to figure out the oper-
ator to use to check the modulo value, as well as which variable or integer to use.
Furthermore, the arguments must be removed from the list.

Listing 3.9: Checking whether the sentence is true or false with modulo

if(argumentOperator.name == "%")
{

var moduloValue = int.Parse(variableOrIntegerValue) %
int.Parse(variableOrIntegerValue2);

var operatorValue = arguments[0].name;
var lastArgValue = arguments[1].name;

arguments.RemoveRange(0, 2);

sentenceTrue = CheckSentenceTrue(operatorValue, moduloValue.ToString(),
lastArgValue);

}

If there are still more arguments imminent, it is guaranteed that it is not a
modulo operator. We will have to check whether it is an OR or a AND operator. If
the sentence was true already, and the next operator is an OR operator, we can
invoke the onTrue action and exit. However, if the operator is an AND operator, we
have to check whether that sentence is true, calling the function again - with the
modified list.

Listing 3.10: More arguments imminent and the sentence was true

if(sentenceTrue && arguments[0].argumentType == Argument.ArgumentType.Operator)
{

if(arguments[0].name.Equals("AND"))
{

arguments.RemoveAt(0);
IfSentence(arguments);

}
else if(arguments[0].name.Equals("OR"))

onTrue?.Invoke();
}

If, on the other hand, the sentence was false and the next operator is an OR
operator, we have to check if that sentence is true. But, if the operator is a AND
operator, we can call onFalse, because there is no need to check if it is true since
both sentences would have to be true. When calling onFalse, we have to pass how
many iterations the robot has to skip.

Listing 3.11: More arguments imminent and the sentence was false

else if(arguments[0].name.Equals("OR"))
{

arguments.RemoveAt(0);
IfSentence(arguments);

}
else
onFalse?.Invoke(Mathf.Abs((control.bracket.EndIndex - control.bracket.StartIndex)));



28 Vetle Finstad: MPI Edutainment Game

Creating the Else control logic is much simpler; it checks whether the last If
control was true or false. If it was true, it invokes onFalse, onTrue otherwise.

Listing 3.12: Else function

private void Else()
{

if(lastIfSentenceFalse)
{

onTrue?.Invoke();
}
else
{

onFalse?.Invoke(control.bracket.EndIndex - control.bracket.StartIndex);
}

}

3.6.3 MPI-Interpreter (RQ2)

MPIInterpreter.cs simulates all of the MPI functions described in Section 2.3.2.
The motivation for choosing these is that the author is most confident with these
functions, also it seems that these functions are the most used and basic when
starting to learn MPI. Additionally, Anne C. Elster uses these functions to teach
MPI in her parallel computing subject and the book [1] uses these functions to
get started with MPI.

To simulate these functions, several classes are used. A GatherHandler.cs,
BroadcastHandler.cs and a SendReceiveHandler.cs. They all derive from the
superclass MPIHandler.cs. Most of the MPI functions contain several parameters:
these are abstracted out, and only the most relevant ones are kept: sender, root and
dest. This means that, for instance, MPI_Send only has one parameter, the receiver.
This is to avoid players feeling overwhelmed and is not essential to be able to
understand the logic of parallel programming/MPI. Additionally, when sending
the game elements, animations are used to give visual appeal and to simulate
communication overhead. These animations also use a bezier curve to achieve
this. To be able to animate something over several frames coroutines5 are essential
to achieve this.

For the animations, first we declare some controlpoints. We choose the start
point where the game-element is now, the second control point we set as 25%
to the destination on the xz plane, while adding 5 to its y value. Same with the
third control point, but inverted. Finally, the end point is at the hands of the robot
receiving.

5Coroutines are excellent when modeling behavior over several frames. https://docs.unity3d.
com/ScriptReference/MonoBehaviour.StartCoroutine.html

https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.StartCoroutine.html


Chapter 3: Developing an MPI Edutainment Game 29

Listing 3.13: Declaring control points

Vector3[] controlPoints = {
startPos,
Vector3.Lerp(startPos, pickupPos.transform.position, 0.25f) + Vector3.up * 5f,
Vector3.Lerp(pickupPos.transform.position, startPos, 0.25f) + Vector3.up * 5f,
pickupPos.transform.position

};

This is then used in the BezierCurve.cs class, as shown in Listing 3.3. How-
ever, a function was created with parameters defining how many segments to
create, while also only returning the points and not actually creating a curve with
red lines. We calculated and retrieved three bezier points. Since it is only three
points, we know that the second one is at the highest point, and in the middle.
Also, we declared some variables, sendTimeT and velocity.

Listing 3.14: Retrieving bezier points, the highest point of the curve and declaring
some variables

Vector3[] bezierCurvePoints = new BezierCurve().
CreateBezierCurvePoints(controlPoints, 3);

Vector3 highestPoint = bezierCurvePoints[1];

float sendTimeT = 0;
float velocity = 1;

Listing 3.15: Animating the game-element to the highest point, and then to its
final destination

while(sendTimeT < 1)
{

sendTimeT += velocity * Time.deltaTime;

velocity = Mathf.Lerp(3, 1, sendTimeT);

transferObject.transform.position = Vector3.Lerp(startPos, highestPoint,
sendTimeT);

yield return null;
}

sendTimeT = 0;

while(sendTimeT < 1)
{

sendTimeT += velocity * Time.deltaTime;

velocity = Mathf.Lerp(1, 3, sendTimeT);

transferObject.transform.position = Vector3.Lerp(highestPoint,
pickupPos.transform.position, sendTimeT);

yield return null;
}

These variables are used to set the velocity of the animation, and also to know
at all times how far along one is to the destination. Then the sendTimeT float is



30 Vetle Finstad: MPI Edutainment Game

added by the velocity times Time.deltaTime, to make sure the animation is frame-
independent. Furthermore, the velocity is changed so that the animation is fastest
at the start and the end. The game element is first animated to the highest point,
and then to the final destination.

Simulation of MPI_Send and MPI_Recv

To accomplish a simulation of MPI_Send and MPI_Recv, a list of SendReceiveHan-
dler.cs called sendReceiveHandlers is declared as a static field, because several
send/receive can occur in the game simultaneously. For a robot sending some-
thing, we have to extract out who is the receiver of the send in the EnterSend
function.

Listing 3.16: Extracting out the receiver

var receiver = ConvertFromArgumentToInt(control.arguments[0]);

Furthermore, we will have to check if there is a sendReceiveHandler already
with the same receiver and same sender. This is because the robot who is on the
receiving end could enter the function EnterReceive before the sender, creating
the handler. If it is not created - create a handler, and declare the receiver and
sender. Further, we subscribe to a onExecute action, and increment the number
of ready workers. When the number of ready workers hit 2, the action will be
invoked and the function ExecuteSendAndReceiveOwner will be executed. In this
function, a dictionary of workers along with its onFinished action is supplied as
an argument, to be able to manipulate other robots.

Listing 3.17: Create handler if handler is null, then subscribe to action and in-
crement number of ready workers

var handler = MPIInterpreter.sendAndReceiveHandler.
FirstOrDefault(x => x.receiver.Equals(receiver)
&&
x.sender.Equals(caller.rank));

if(handler == null)
{

MPIInterpreter.sendAndReceiveHandler.Add(new SendAndReceiveHandler());
handler = MPIInterpreter.sendAndReceiveHandler.Last();

handler.receiver = receiver;
handler.sender = caller.rank;

}

handler.onExecute += ExecuteSendAndReceiveOwner;
handler.ReadyWorkers++;

The EnterReceive function calls a function WorkerReady in the SendAndReceive-
Handler object which increments the WorkersReady integer, and adds the robot
to a dictionary along with its onFinished action.



Chapter 3: Developing an MPI Edutainment Game 31

Listing 3.18: Function in MPIHandler.cs
public void WorkerReady(Worker worker, Action onFinished)
{

workersReady.Add(worker, onFinished);
ReadyWorkers++;

}

Simulation of MPI_Bcast

MPI_Bcast only need a single function for its simulation: EnterBroadcast, and
one static field: broadcastHandler. First, we have to check if the handler is null,
if it is, create a new BroadcastHandler object.

Listing 3.19: Creating a new BroadcastHandler object

if(MPIInterpreter.broadcastHandler == null)
MPIInterpreter.broadcastHandler = new BroadcastHandler();

An MPI_Bcast has one sender, which is denoted as the owner in this context.
So, we have to check if the robot is the owner the MPI_Bcast. If it is the owner,
we subscribe to the onExecute action, and increment the readyWorkers integer.
However, if it is not the owner, we only call the function: Listing 3.18.

Listing 3.20: If owner of MPI_Bcast, subscribe to action and increment, other-
wise call the function WorkerReady

if(ConvertFromArgumentToInt(control.arguments[0]).Equals(caller.rank))
{

if(caller.PickedUpObject == null)
{

ExceptionHandler._instance.RuntimeError("Does not have an item picked up.",
caller, ExceptionObject.ExceptionType.RuntimeError);
return;

}

MPIInterpreter.broadcastHandler.onExecute += ExecuteBroadcastOwner;
MPIInterpreter.broadcastHandler.ReadyWorkers++;

return;
}

if(caller.PickedUpObject != null)
{

ExceptionHandler._instance.RuntimeError("Does have an item picked up.", caller,
ExceptionObject.ExceptionType.RuntimeError);
return;

}

MPIInterpreter.broadcastHandler.WorkerReady(caller, onFinished);

MPI_Gather and MPI_Scatter are very similar to how they were implemented
in regards to MPI_Bcast, so these will not be explained.



32 Vetle Finstad: MPI Edutainment Game

Development process

The very first MPI function simulated in the game was MPI_Send and MPI_Recv.
In a real MPI program, when sending a message, the process will still have the
message data in its local memory. It was originally simulated exactly as the MPI
function, the robot sends an object and another robot receives it, and the sender
still had the object in its local memory. This was not intuitive behavior for the
game, therefore it was changed so that the sender removes it from its local mem-
ory. The sender robot needs to have the object picked up to be able to send it, and
the receiver must have no object picked up.

MPI_Bcast was simulated next. It broadcasts a game element to all other pro-
cesses, and the sender still keeps it in its local memory. The most common usage
of MPI_Bcast is to send configuration parameters or user input to other processes.
In the fall project, the broadcast served no real purpose except for demonstrating
its functionality to the player. To make actual use of such a function, the game
would have to include an object that can be duplicated and still be relevant in the
game. As a result, our solution was to construct a game element that activates a
game element while yet allowing the broadcaster to keep the game element in its
local memory. MPI_Scatter and MPI_Gather behaves the same as MPI_Bcast in
the game, however, it sends chunks of objects.

We also encountered a pitfall regarding the time it took to complete a level -
the time was not always consistent. Even though the program was the exact same.
Our first thought was that it could have something to do with the rounding up to
the first decimal. However, the problem still occurred. Then we started looking at
all of the animations, are they all frame-independent? This problem became clear
as day when we used a slower machine to run the game. The animation to send
game elements between robots took much longer to complete. Our first animation
to send game elements was created by still using a bezier curve, but with a lot
more points, to create a smooth curve. First, we created a for loop, looping every
point in the curve, then we interpolated between the points with a nested while
loop. However, this method was not only causing the bad performance, but it
was also frame-dependant. As frames per second (fps) is not always consistent
during runtime, the smallest change in fps can affect the time an animation takes
to complete.

3.7 Interactable Objects

Interactable objects are game elements that can be interacted with by robots. All
interactable objects derive from the Interactable.cs superclass. Game-elements
that can be picked up use the class InteractablePickup.cs. Other game ele-
ment classes are more tailored to a single item. For instance, InteractableIn-
verter.cs is made to invert a InteractablePickup.cs object’s color. By using a
game element to do this inversion of color, we can abstract out code. This is done
by hand in a genuine MPI program, however, creating such advanced visual pro-



Chapter 3: Developing an MPI Edutainment Game 33

gramming would be far too complex and time-intensive. Another abstraction of
code is the InteractableTransformer.cs class. It transforms a game element’s
color to white.

The Interpreter.cs class has a virtual function to begin interaction with an
object.

Listing 3.21: Start of interaction with object

public virtual void Interact(Action onFinished)
{

this.onFinished = onFinished;

StartCoroutine(worker.Move(transform.position, FinalInteraction,
stoppingDistance));

}

It takes the onFinished action from the robot we have seen before as a param-
eter. Additionally, it tells the robot to move to itself. After the robot has reached
its destination, the protected abstract void FinalInteraction() function is
executed. This is where the derived classes can do individual logic.

3.8 Conversion from Visual Programming to Programming
Language C

As C is mostly used for programming with MPI, it was reasonable to be able to
see what the equivalent code would be in C. This was also a request from advisor
Anne C. Elster. To be able to do this conversion, we would have to have the same
syntax for both arguments and controls as C. Camel cases would also be needed.
We created a CodeName property in both Argument.cs and Control.cs. It converts
the control or argument’s name to camel-case.

Listing 3.22: Conversion to camel-case

public string CodeName {
get {

if(overrideCodeName != null)
return overrideCodeName;

var splittedName = name.Split(’ ’);

if(splittedName.Length == 1)
return name.ToLower();

else
{

var upperLastName = splittedName[1][0].ToString().ToUpper() +
splittedName[1];

return splittedName[0].ToLower() + char.ToUpper(splittedName[1][0]) +
splittedName[1].Substring(1);

}
}

}



34 Vetle Finstad: MPI Edutainment Game

There may also be a need for overriding the argument or control’s name when
the syntax is different. For instance, in our game, the && operator is AND. Overriding
it was done by setting the overrideCodeName variable to &&.

Listing 3.23: The AND operator in Arguments.json

{
"name": "AND",
"argumentType": 0,
"levelAccess": 10,
"description": "And operator",
"overrideCodeName": "&&"

}

Because most MPI function parameters are not utilized but still have to be
displayed in the conversion, we must ensure that the parameters we have are in
the proper position for the functions. First, we add default parameters and select
a communicator. We used the most used communicator: MPI_COMM_WORLD. For the
parameters using a type, we always select MPI_INT. Lastly, we have to create an
array of indices of where to put the arguments called parameterIndex.

Listing 3.24: Example of MPI_Sendrecv in controls.json

"name": "MPI_Sendrecv",
"type": 2,
"levelAccess": 9,
"description": "A combination of MPI_Send and MPI_Recv",
"parameter": "First parameter specifying the rank of the receiver,
second one specifying the rank of the sender",
"maxParameters": 2,
"parameterIndex": [3, 8],
"defaultParameters":[
"&pickedUpObject",
"1",
"MPI_INT",
"0",
"&pickedUpObject",
"1",
"0",
"MPI_COMM_WORLD",
"MPI_STATUS_IGNORE"

],
"validArguments": [1, 3]

Now we have everything in place to do the conversion. The ConvertToCode.cs
class is responsible for the conversion. For a control with no brackets, the Con-
trolWithNoBrackets function is used. First, we create a new list containing the
default parameters for the control. If the control has arguments, we loop through
the parameterIndex array and insert the arguments at the appropriate indices.



Chapter 3: Developing an MPI Edutainment Game 35

Listing 3.25: Inserting arguments at appropriate indexes

List<string> controlParameters = new List<string>(control.defaultParameters);
if(control.arguments.Count > 0)
{

int i = 0;
if(control.parameterIndex != null)
foreach(var index in control.parameterIndex)
{

if(index == controlParameters.Count - 1)
controlParameters.Add(control.arguments[i].CodeName);

else
controlParameters.Insert(index, control.arguments[i].CodeName);

i++;
}

}

If the list contains more than one element, we can loop through the created list
and add it to the code output with the appropriate color. However, if the list does
not contain more than one element, it does not have default parameters, and we
can add one argument to the code output. The code variable is a StringBuilder6.

Listing 3.26: Adding arguments to code output

if(controlParameters.Count > 1)
{

for(int i = 0; i < controlParameters.Count; i++)
{

var parameter = controlParameters[i];

if(i != 0)
code.Append(", ");

code.Append("<color=lightblue>");
code.Append(parameter);
code.Append("</color>");

}
}
else if(control.arguments.Count > 0)
{

code.Append("<color=lightblue>");
code.Append(control.arguments[0].CodeName);
code.Append("</color>");

}

For a control containing brackets i.e. If control. We use the ControlWith-
Brackets function. Here we have to add brackets as well as looping through its
arguments and append them to code output.

6https://docs.microsoft.com/en-us/dotnet/api/system.text.stringbuilder?view=net-6.0



36 Vetle Finstad: MPI Edutainment Game

Listing 3.27: Conversion to C with an If control

private static void ControlWithBrackets(List<int> brackets, Control control)
{

brackets.Add(Mathf.Abs((control.bracket.EndIndex - 1 -
control.bracket.StartIndex)));

for(int i = 0; i < control.arguments.Count; i++)
{

var arg = control.arguments[i];
if(i != 0)
{

code.Append(" ");
}

code.Append("<color=lightblue>");
code.Append(arg.CodeName);
code.Append("</color>");

}
}

3.9 Simulating MPI Programs

In the fall project, none of the levels were closely connected to standard MPI
programs. Advisor Anne C. Elster suggested we try to simulate independent tasks,
as well as collective tasks.

3.9.1 Black/White Inversion

To be able to do black/white inversion, it was vital to be able to abstract out
the inversion as mentioned previously. MPI_Scatter and MPI_Gather was also
essential to implement in order to make the inversion easier. Using MPI_Scatter
while holding an object sends chunks of the object to the other robots. Every robot
can then put its chunk in the Inverter, inverting the chunked object’s color. Then
when MPI_Gather is used, all the chunks are collected by the owner and are
joined into the original object with its inverted color.

3.9.2 Border Exchange

This was a difficult subject. The initial concept we came up with was for the root
robot to have a container that was half green and half magenta. When scatter-
ing the object, robots 0, 2, 4, and 6 would receive the green chunk, while the
others would receive the magenta chunk. A Transformer object has a point-light
on it, indicating which color it can invert. The robots receiving the green chunks
would have a Transformer with a magenta point-light, and the opposite for the
other robots. To solve this problem, robots would have to trade chunks with their
neighbors. In a true MPI application including filtering-type image processing,
however, the processes do not exchange their entire image with each other. This
may mislead the players about the purpose of border exchange.



Chapter 3: Developing an MPI Edutainment Game 37

Our solution then became to create a 4x2 cube, made up of small cubes. Every
small cube has a color, but its top is a different color. The 4x2 cube would have the
class InteractablePickupWithChunks.cs. When scattering the cube, if the object
is a InteractablePickupWithChunks.cs the small cubes being sent should have
two different colors on it depending on the robot rank. One for the top part and
one for its body part.

Listing 3.28: Small cubes being sent to robots in Worker.cs
foreach(var worker in workers)
{

if(PickedUpObject is InteractablePickupWithChunks interactablePickupCube)
scatterObject.GetComponent<InteractablePickup>().splittedColors =
interactablePickupCube.SplittedColors[worker.Key.rank % 2];

if(worker.Key != null)
worker.Key.TransferAndPickupItem(scatterObject.gameObject, worker.Value,
scale, PickedUpObject.transform.position);

// The owner of the scatter
if(PickedUpObject is InteractablePickupWithChunks interactablePickupCube2)

scatterObject.GetComponent<InteractablePickup>().splittedColors =
interactablePickupCube2.SplittedColors[rank % 2];

RemovePickedUpItem(false);
InstantiateAndPickupInteractable(scatterObject.gameObject);
onFinished?.Invoke();

}

The goal is to transform the color of an object into white. To be able to do
this, the cube chunk has to be the same color. After scattering, the small cubes
are made up of two colors. We then created a new control called Disassemble,
which disassembles the small cube if the robot has it in its hands, leaving the
body part on the ground, and the top part in the robot’s hands - simulating that
the player extracts out a "border" of an image. Next, the player can exchange the
top with its neighbor, retrieving the matching top for the body of the small cube.
However, the body part is on the ground, therefore an Assemble control needed to
be implemented. It assembles both the parts to reassemble the small cube. Now the
small cube’s color is ready to be transformed into white. Afterward, the small cubes
can be gathered to the root robot. Additionally, robot 0’s Transformer’s point-
light is both magenta and green. Representing that the level can be completed by
only having robot 0 doing the processing, to show the difference in speed between
the alternatives.

3.10 Handling of Exceptions

Exceptions occur when players have done something wrong in the game, and are
vital to implement to give feedback to players about when this happens and how
they can resolve the error. "Games should help players recognize, diagnose, and
recover from errors" [5]

In regular programming, exceptions can occur. In C, if you write code that
cannot be built, a compile exception arises when you try to build the program.



38 Vetle Finstad: MPI Edutainment Game

We wanted to be able to simulate run-time compilation where the visually pro-
grammed code is checked at every change for any exceptions, resulting in a better
workflow, which allows the player to correct their code in the process. Exceptions
are handled in ExceptionHandler.cs. To create an exception, an ExceptionOb-
ject.cs object is created.

Listing 3.29: Creation of an exception

public ExceptionObject CreateException(string description, Transform transform,
ExceptionObject.ExceptionType type)
{

var exceptionPrefab = Instantiate(Resources.Load("Controls/Exception"),
transform) as GameObject;

var exception = new ExceptionObject(description, exceptionPrefab, type);

exceptions.Add(exception);

UpdateConsole();

exceptionPrefab.transform.SetSiblingIndex(transform.childCount - 2);

return exception;
}

There are two types of exceptions available. A NullReferenceException arises
when, for instance, a robot is not able to find an object in its cubicle, and a Com-
pilerException, for when a control has invalid arguments. Checking to see if a
control has invalid arguments is done in the functionCheckForException, and can
be found here Listing B.4. Looking at the function, the most work is done checking
whether an If control has the correct arguments in the correct places.

When a real program is being run, sometimes a NullReferenceException is
not enough to stop the program. Therefore, when a NullReferenceException oc-
curs in the game it is paused and can be continued if the player wants to. However,
the robot that created the exception will never be able to continue. Exceptions
are always displayed in a console describing the error, along with the rank of the
worker, so the player knows which robot received the exception.

3.11 Interactive tutorial

A tutorial implemented in the game was essential for players to progress through
the game. Without a tutorial, players would most likely be clueless about how a
level would be completed; Sweetser and Wyeth [5] reinforce that a game should
be playable without external resources.

In the first levels, players are guided by the tutorial step by step. As the game
processes, the tutorial gradually allows the players to use their imagination to
beat the levels. At the same time, it is essential to maintain the player’s skill level,
as mentioned in Section 2.1.1.

The logic of the tutorial resides in the LevelTutorial.cs super class. When
players do the correct action, the tutorial iterates to the next step. However, as



Chapter 3: Developing an MPI Edutainment Game 39

each level has a different set of "correct actions", different classes, such as Level1Tutorial.cs,
must be implemented, inheriting fromLevelTutorial.cs. In order for a player to
advance to the next iteration of the tutorial, the Level1Tutorial.cs overrides the
NextTutorialIteration function from the LevelTutorial.cs.

Listing 3.30: Overrided function in Level1Tutorial.cs
protected override void NextTutorialIteration(LevelTutorial.UserAction action)

LevelTutorial.UserAction is an enumerable created in LevelTutorial.cs
to be able to know if the player did the right action to iterate the tutorial.

Listing 3.31: UserAction enum in LevelTutorial.cs
public enum UserAction {

Started,
OpenControlBoard,
Stop,
Play,
Pickup,
SelectedParameter,
PlacedActionControl,
PlacedMPI_InitControl,
PlacedMPI_FinalizeControl,
PlacedMPI_BcastControl,
PlacedIfControl,
PlacedMPI_Comm_rankControl,
ActionError

}

3.12 Local Game Save Data and Audio

Players’ progress through the game is saved locally to their disk using Player-
Prefs7 - with official support from Unity. To check if a level has been completed
we check if the key for the level, such as Level 1 has been set. The value for the
key is a float which represents the number of stats received by completing the
level.

Listing 3.32: Setting a level button to be interactable or not in MainMenu.cs
levelButton.transform.Find("Panel").GetComponent<ClickableUI>().Interactable =
PlayerPrefs.HasKey("Level " + (i - 1));

As described in Section 2.1.1, background music can enhance the initial in-
terest in the game. Players also receive feedback from dragging and dropping
controls/arguments with a "clicking" sound. When completing a level, a sound
will accompany the appearance of the stars. "Games should reward players with
feedback on progress and success" [5].

To implement background music, some songs were downloaded from the asset
store. A BackgroundAudioBehaviour.cs class was made to play, and loop, a song
based on which level the player is in.

7https://docs.unity3d.com/ScriptReference/PlayerPrefs.html



40 Vetle Finstad: MPI Edutainment Game

Listing 3.33: Plays and loops a song based on level index

public void PlaySong(int index)
{

if(loop != null)
StopCoroutine(loop);

if(index != 0)
index = index % 3 + 1;

audioSource.clip = audioClips[index];
audioSource.Play();

loop = StartCoroutine(LoopSong((int)audioSource.clip.length));
}

private IEnumerator LoopSong(int songLength)
{

yield return new WaitForSeconds(songLength);

PlaySong(songIndex);

loop = StartCoroutine(LoopSong((int)audioSource.clip.length));
}

For sound effects, an FXAudioBehaviour.cs class was made. The class sub-
scribes to a System.Action in GameHandler.cs called PlaySound with a function
with the same name PlaySound. A Sounds enumerable was then created to distin-
guish what sound effect to play. To facilitate retrieval, the sounds are saved in a
folder with the same name as those in the enum.

Listing 3.34: Subscribing to the PlaySound Action in GameHandler.cs
GameHandler._instance.PlaySound += PlaySound;

Listing 3.35: An enum to distinguish what sound effect to play

public enum Sounds {
PlacedControl,
DraggedControl,
StarSound

}

Listing 3.36: Playing sound based on what enum

private void PlaySound(Sounds obj)
{

var soundObject = new GameObject("Sound Object");
var audioSource = soundObject.AddComponent<AudioSource>();
audioSource.clip = Resources.Load("Sounds/" + obj.ToString()) as AudioClip;
audioSource.volume = volume;
audioSource.Play();

Destroy(soundObject, 10);
}

With this architecture in place, a sound effect can easily be played by invoking
the Action in GameHandler.cs.



Chapter 3: Developing an MPI Edutainment Game 41

Listing 3.37: Invoking the Action in GameHandler to play sound effect when a
control/argument is dragged in Draggable.cs

public virtual void OnBeginDrag(PointerEventData data)
{

GameHandler._instance.PlaySound?.Invoke(FXAudioBehaviour.Sounds.DraggedControl);
}





Chapter 4

User Study

To be able to answer the user study questions, we used a combined approach
by utilizing both the qualitative and quantitative method. Rahi in his paper [23]
explains how the quantitative method ignores the individual´s emotions and feel-
ings, in addition to the environmental context. For the qualitative method, Rahi
explains that the feelings and emotions of a person are equally important to in-
terpret. This approach is used when a researcher wants to observe or interpret
an environment with the intent of developing a theory. The quantitative method
was represented by a quiz and a survey, while the qualitative data constitutes the
use of observation and interview. Eight participants were picked, within the age
range of 18-34, and where half of them were programmers and none with expe-
rience with MPI. The following section will present the user study questions, and
then information about interviews, surveys, quizzes, and our observations of the
participants.

User Study Questions

USQ 1: "Will the game have an effect on increasing interest in parallel program-
ming?"
USQ 2: "Is the game too difficult?"
USQ 3: "What is the learning effect of playing the game?"
USQ 4: "What is the enjoyment effect of playing the game?"

4.1 Interview

Interviews were done to gain insight into the players’ perspectives on the game.
Interviews are a type of qualitative user research that provide more information
and detailed responses than, say, a survey. It also allows for the introduction of
follow-up inquiries which may provide us with useful information on the user
interface and the game’s overall experience. Additionally, we may receive new
and improved game ideas. The outcomes of USQ1, USQ2, USQ4, and partly USQ3

43



44 Vetle Finstad: MPI Edutainment Game

were explained using data from the interviews. The interview questions were as
follows: Appendix C.2

4.2 Survey

A survey was conducted to acquire quantitative data. The questions were single-
choice and allowed participants to choose an option using the Likert’s scale from
strongly disagree to strongly agree. Because surveys provide accurate information
about people’s opinions and behaviors, they may be utilized to make key game
design and mechanics decisions. The survey data was used to explain the USQ1
and USQ4 outcomes. Survey questions can be found here: Appendix C.1.

4.3 Observation

Observing the players while they play the game offers valuable information on
how they interact with the game. For example, the speed with which people com-
prehend and use the user interface might indicate how well it is developed. A
player who is having difficulty with a gaming mechanism may be able to give im-
portant input on where changes might be made. This is a significant indicator of
whether they understand the game or feel it is too difficult.

4.4 Quiz

An MPI quiz was the final research method. This was necessary to evaluate if the
game had any effect on training the players on MPI and if they grasped the ideas
so that we could explain USQ3. The quiz was taken both before and after playing
the game to showcase how the game affected the players’ knowledge. Appendix
D contains the quiz questions. There are single-choice questions and multiple-
choice questions, the participants must have every right answer in the multiple-
choice to be able to receive a point for that question. There are 12 questions, which
equals 12 points maximum. Half of the quiz contains text-based questions and the
other half contains code-based questions. In the fall project, there were a lot fewer
code-based questions than text-based questions. We observed that participants
managed to get the correct answer to the text-based questions based on the name
of the MPI functions. Therefore, more code-based questions are included in this
user study.

4.5 Reflection on our User Study

We chose participants that were easily accessible to us, which could invoke a selec-
tion bias. According to [23] this can provoke "convenience sampling". This means



Chapter 4: User Study 45

that participants could be biased towards us; not giving honest opinions on the
game, ultimately skewing our results.

Moreover, the survey should perhaps have included more questions pinpointed
to elements that have been researched to affect enjoyment, game difficulty, and
interest to get more quantitative data for drawing conclusions. This means that to
research, for instance, if the implementation of a high score had an effect on their
motivation for the game; we could ask: "I felt more motivated by receiving a high
score after completing a level". From this question, we could have concluded that
a high score does or does not increase motivation.

Additionally, from looking at the interview and survey questions, we feel that
the interview and survey questions occasionally were synonymous; the questions
overlapped. Furthermore, the interview questions should have been better phrased
to prevent yes or no responses. Although interview questions are useful for gath-
ering qualitative data, they are ineffective when the responses are either yes or
no.





Chapter 5

Results

An executable of the game can be found and downloaded from: https://github.
com/acelster/MPI-Edutainment-Game/tree/executables. It features executable
for Windows, macOS, and Linux. A user guide for the game can be found in Ap-
pendix A. This chapter will present both the results from the development of the
game and also from the user study.

5.1 Development Environment

The game is developed and built using Unity 2020.3.18f1. The source code for
the game can be found and downloaded from: https://github.com/acelster/
MPI-Edutainment-Game/tree/main, and must be opened in the Unity version
stated. Minimum specifications to develop the game can be found in Table 5.1.
Specifications used for the development of the game:

• OS: Windows 11 Home
• CPU: Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz
• GPU: NVIDIA GeForce GTX 1060 6GB
• RAM: 16,0 GB

5.2 Recommended Specifications for Running the Game

The game was tested on our machine, which was used for the development of
the game, running smoothly at over 300 fps. It has also been run on CPUs with
integrated GPU, however, running slightly under 60 fps. This was on Windows 10,
8.0 GB RAM, and i5 8250U @ 3.40 GHZ CPU. Furthermore, it was also tested on a
machine using NVIDIA GeForce GTX 760 as the GPU. Where the CPU was Intel(R)
Core(TM) i5-3770K CPU @ 3.90GHz, with 8,0 GB of RAM. The game appears to
consume just about 750 MB of RAM, where it operated well at roughly 100 frames
per second. As a result, the recommended specifications should be somewhere in
the middle, with at least 4,0 GB of RAM.

47

https://github.com/acelster/MPI-Edutainment-Game/tree/executables
https://github.com/acelster/MPI-Edutainment-Game/tree/executables
https://github.com/acelster/MPI-Edutainment-Game/tree/main
https://github.com/acelster/MPI-Edutainment-Game/tree/main


48 Vetle Finstad: MPI Edutainment Game

Table 5.1: Minimum Specifications for development of the game, based on Unity’s
own website. For more information: Link

Windows macOS Linux

Operating
system
version

Windows 7
(SP1+), 10, 11,
64-bit versions

only

High Sierra 10.13+ Ubuntu 16.04,
Ubuntu 18.04, and

CentOS 7

CPU X64 with SSE2
instruction support

X64 with SSE2
instruction support

X64 with SSE2
instruction support

Graphics
API

DX10, DX11, and
DX12-capable

GPUs

Metal-capable Intel
and AMD GPUs

OpenGL 3.2+ or
Vulkan-capable,

NVIDIA and AMD
GPUs.

Additional
require-
ments

Hardware vendor
officially supported

drivers

Apple officially
supported drivers

X11 Windowing
system and official
NVIDIA -and AMD

Mesa graphics
driver.

https://docs.unity3d.com/2020.1/Documentation/Manual/system-requirements.html


Chapter 5: Results 49

5.3 Development Results

The following subsections will provide the game’s outcomes, along with images
of the game parts that were implemented. The images will then be compared to
those from the fall project to see how they differ.

5.3.1 Game Main Menu

Players can now delete their game save data in the current project. The settings
may also be accessed from the main menu. The players in our fall project were
unable to change anything about the game, hence there were no available options.
In addition, the UI style has been altered.

Figure 5.1: Main menu in our fall
project

Figure 5.2: Main menu in our cur-
rent project

5.3.2 Settings

The current project’s settings panel may be seen here. Players may toggle between
full screen and no full screen, modify the game’s quality, and adjust the music and
effects loudness.

Figure 5.3: Settings



50 Vetle Finstad: MPI Edutainment Game

5.3.3 Level Selector

This user interface shows all of the game’s levels. Players in the fall project did
not obtain stars for their level performance, which are now visible in the level
picker. Additionally, a screenshot is provided for every level and the user interface
changed.

Figure 5.4: Old level selector Figure 5.5: New level selector

5.3.4 Level Overview

Both versions display their last level. The current project has more objects and
robots visible, and the console has been scaled down to allow a better perspective
of the level.

Figure 5.6: Level 6 in our fall project



Chapter 5: Results 51

Figure 5.7: Level 12 in our current game



52 Vetle Finstad: MPI Edutainment Game

5.3.5 Visual Programming

The images show that inactive controls are located on the left side panel. The panel
in the current project also includes arguments. As previously stated in 3.6.1, ar-
guments popped up when a control was placed into the right-side panel in the
fall project - which is highlighted below. From the images, it is apparent that If
controls are very different. The only argument an If control could have in the
fall project was: "Worker 0", "Worker 1", "Worker 2", and "Worker 3". The current
project gives the player a rich selection of arguments. Arguments are categorized
as follows: object arguments are yellow, operator arguments are gray, variable
arguments are green and integer arguments are purple. For controls: blue is for
object interaction controls, red is for logic controls and yellow is for MPI controls.
Figure 5.10 shows that arguments are visible when a control has been dropped in
the right-side panel from the fall project. Figure 5.13 shows that a control/argu-
ment can be hovered over to receive a description of what it does. This was not
implemented in the fall project.

Figure 5.8: The controlboard in the
our project

Figure 5.9: The controlboard in the
current project

Figure 5.10: Overview of arguments for If control in our fall project



Chapter 5: Results 53

Figure 5.11: Overview of arguments and controls in current project

Figure 5.12: Closer look at the active controls and arguments in current project



54 Vetle Finstad: MPI Edutainment Game

Figure 5.13: Describes what an Action control does

5.3.5.1 Displaying an Exception in a Control

As stated previously in Section 3.2, exceptions can occur in the game. In the first
image, we can see that the End control is above the If control, which is illegal,
producing a compiler exception. In the second image, from the current project,
there is an integer placed as the fourth parameter, where an operator is expected.

Figure 5.14: An exception display in a control in our fall project

5.3.6 Console

The exception is relevant to the error done previously in Section 5.3.5.1 in the
current project. The player will not be able to start the game while having one or
more exceptions. Additionally, the console allows the player to start, pause and
fast forward the game.



Chapter 5: Results 55

Figure 5.15: An exception displayed in a control in the current project

Figure 5.16: The console displaying an exception in the current project

5.3.7 Level Completed

When a level is completed, the player is offered three options: showing the com-
parable C code, which is unique to the current project, replaying the level, and
proceeding to the next level. In addition, the time it took the program to finish the
level, as well as the high score, will be shown. In the current project, the player
will also receive stars based on how long it took for the program to complete the
level.



56 Vetle Finstad: MPI Edutainment Game

Figure 5.17: Interface when completing a level in our fall project

Figure 5.18: Interface when completing a level in the current project

5.3.8 Displaying Equivalent C Code

The code displayed is the equivalent C code for completing the black/white inver-
sion level.



Chapter 5: Results 57

Figure 5.19: Equivalent C code

5.3.9 Tutorial

In the current project, players can close the tutorial. They are also able to iterate
back and forth in the tutorial.

Figure 5.20: Tutorial in our fall
project

Figure 5.21: Tutorial in our current
project

5.3.10 Interactable Objects

In this section the game-elements that are able to be interacted with by the robots
are presented. In the current project four new objects have been implemented:
Figure 5.24 Cube, Figure 5.26 Transformer, Figure 5.27 Inverter and Figure 5.29
Key.



58 Vetle Finstad: MPI Edutainment Game

Figure 5.22: Crate
Figure 5.23: Barrel

Figure 5.24: Cube

Figure 5.25: Transporter

Figure 5.26: Transformer
Figure 5.27: Inverter

Figure 5.28: Hand scanner

Figure 5.29: Key

5.3.11 Border Exchange

First, the root robot picks up the multi-colored cube and scatters it to the other
robots. The robots receive a small cube made up of two colors.



Chapter 5: Results 59

Figure 5.30: Scattering a cube to other robots

After this is done, the robots disassemble the cube, keeping the top part of the
cube, and dropping the other part to the ground. Then the top part is exchanged
with the robot’s neighbor.

Figure 5.31: Robots disassembles its cube, and exchanging with its neighbour

When the exchange is done, the robots assemble the top part with the received
top part - creating a cube with a uniform color.



60 Vetle Finstad: MPI Edutainment Game

Figure 5.32: Robots assembling the cube back together, creating a cube with only
one color

The robots are then ready to begin the color transformation. Every robot puts
it into a Transformer object, changing the color to white. When this is done the
root robot gathers all of the cubes.

Figure 5.33: The root robot gathers all white cubes from the other robots



Chapter 5: Results 61

5.4 User Study Results

This section will present the results of the user study. The word "Strongly" has
been shortened to "Str." for better readability in the tables.

5.4.1 Increase of Interest in Parallel Programming

From the survey, 25% of players agreed that they gained an increased interest
in parallel programming. From the interviews, most of the participants commu-
nicated that they gained an increase or an initial increase of interest in parallel
programming. A few participants did not gain any interest in parallel program-
ming. Their explanations included previous unfavorable encounters with it and a
general lack of interest in programming. This can also be illustrated by looking at
Table 5.2 from the survey. One participant added that they believe this would be
a good starting point for anybody interested in learning about parallel program-
ming/MPI.

Table 5.2: Question 4 and 5 from the survey

Statement Str. Dis-
agree

Disagree Neutral Agree Str.
Agree

Before playing the
game I was interested

in Parallel
programming

50% 12.5% 12.5% 25% 0%

After playing the game
I was interested in

Parallel programming
25% 0% 25% 25% 25%

5.4.2 Game Difficulty for the Players

It was a clear distinction from the observations that programmers advanced through
the levels at a higher pace than the non-programmers. The non-programmers
had a slower start, but it was clear that it ultimately clicked for them. However,
one non-programming participant was perplexed and needed continual assistance
from the observers. Yet, after the first few stages, the struggling non-programmer
began to feel more at ease with moving the controls and comprehending the no-
tion of communication between processes. Some participants added that they ex-
perienced difficulty with various definitions such as if sentence and arguments. We
also noticed that every single one of the participants struggled at one point, and
needed assistance. This was especially apparent in the border exchange level.



62 Vetle Finstad: MPI Edutainment Game

Everyone seemed to understand the goal of the levels - to transport the crates,
barrels, and cubes. One participant made a funny comment; wishing they did not
have an annoying observer watching them. Regarding that, a few participants ex-
pressed that they felt stressed being observed. A participant found the If controls
to be confusing, coming from a non-programmer. Additionally, another participant
added that they found the MPI_Comm_rank control to be "very magical".

Most participants also stated that they had to ask the observers questions to
progress through the stages, but that if they had spent some more time, they would
have made it on their own.

Table 5.3: Question 1 and 6 from the survey

Statement Str. Dis-
agree

Disagree Neutral Agree Str.
Agree

I felt I needed help to
complete the game

12.5% 37.5% 37.5% 12.5% 0%

I felt the tutorial
taught me everything

needed
12.5% 25% 12.5% 25% 12.5%

5.4.3 Learning Effect of the Game

When asking question 11 from Appendix C.2, it was clear that most participants
understood what the intentions of the levels were. Although not everyone could
provide an example, knowing the concept is evidence of learning. Some added
that they understood that dividing up the problem set into several processes could
make programs more efficient. One participant eagerly remarked: "The order of op-
erations is important, almost like a symphony! Additionally, no process must be idle.".
Some participants found it hard to translate what they have learned from the game
into real MPI programming - wishing the tutorial would explain what problem the
level solved. From Table 5.4 one can observe that the participants understood the
MPI functions, some more than others. Concerning the quiz, the participants’ av-
erage points increased from 5,875 to 7,375, after playing the game, where the
maximum score possible was 12. Some participants mentioned that they wish the
game would give information about what tasks have been solved, for instance in
the border exchange level. Another participant thought that the game provided
little information about its purpose.



Chapter 5: Results 63

Table 5.4: Question 2 from the survey

Statement Str. Dis-
agree

Disagree Neutral Agree Str.
Agree

I felt I understood the
MPI functions

0% 0% 0% 62.5% 37.5%

5.4.4 Enjoyment Effect of the Game

Table 5.5 describes the result of the enjoyment effect on the players. 62.5% of play-
ers strongly agreed that the game was fun. A significant percentage of comments
from interview participants indicated that they had a wonderful time. One partici-
pant added that they felt the game gave satisfying interactions between the robots
and a sense of accomplishment when beating the levels. Participants added that
receiving stars for how fast they completed the levels became a motivating factor.
However, one participant found receiving stars to be stressful. Several participants
during observations were motivated to try to beat their own highest score in the
levels. A few mentioned that they want to beat the world record for this level.
A participant felt that functions were missing from the visual programming: "A
lot of duplicated codes can be avoided with functions". Furthermore, the participant
noted that templates would be a useful addition because they found themselves
duplicating a lot of the same code.

The majority of participants found it annoying that after they exited the tuto-
rial, it did not reappear at a later time to provide more information. They closed
the tutorial because it was cluttering up the user interface. We also discovered
that players did not read every tutorial panel based on our findings. One partici-
pant felt the game would have a smoother experience if it could be sped up even
further. Another suggestion was to implement copy & paste, for faster visual pro-
gramming. For a better overview of the code, one participant suggested zooming.
Additionally, one mentioned that being able to choose favorites, would speed up
the visual programming.

Table 5.5: Question 3 from the survey

Statement Str. Dis-
agree

Disagree Neutral Agree Str.
Agree

I found the game fun 0% 0% 12.5% 25% 62.5%

I felt the user interface
was easy to use

0% 0% 0% 62.5% 37.5%





Chapter 6

Discussions

The findings from the development game will be discussed first, followed by the
findings of the user research.

6.1 Development Results

In this section, we will discuss the result of our game development. This was
motivated by the following research questions:
RQ 1: "What is the best game engine for implementing an MPI edutainment game?"
RQ 2: "What are some of the technical advantages and challenges with the approach
chosen?"
RQ 3: "What are the most useful MPI functions, and how does one illustrate them
well in a gaming setting?"
RQ 4: "Will there be any timing issues related to such a game?"
The rest of this section discusses the results in Chapter 5, main menu, settings,
level selector, visual programming, tutorial, and border exchange. Furthermore,
simulation of functions and simulation of processes from 3 will also be discussed.

6.1.1 Main Menu

In regards to the main menu of the game, we have not found a reason to change
much from the fall project. We gave the game a somewhat fitting title "Parallels"
because we wanted to emphasize that the game is centered around parallelism.
The only substantial changes made since the fall project were the implementa-
tion of a settings button and also an option to remove the game save data. The
option to remove game save data is a standard feature in games, but it was also
convenient for us regarding testing the game for the user study. In future ver-
sions of the game, we would want to put more effort into the main menu. We feel
that captivating the audience from the get-go is a powerful tool to create a good
first impression which hopefully will result in more engagement from the player.
However, Sweetser and Wyeth [5] highlights the value of having a pragmatic main
menu, where you do not sacrifice usability for aesthetics. One way to balance this

65



66 Vetle Finstad: MPI Edutainment Game

line could be by having the integrity of the main menu intact while showcasing
some of the endgame content in the background of the main menu art.

6.1.2 Settings

The settings panel is a wholly new feature in the current project. It contains set-
tings regarding the game’s graphics and audio. These are the standard quality of
life game options that the player has at his disposal. We did not want to over-
complicate this part of the game, but we were keen to make the game’s fps as
optimal as possible no matter what computer setup a player has at their disposal.
With the game still being in its early stages, we did not find any reason to im-
plement any more options for the player. In Section 2.1.1, Sweetser and Wyeth
highlight how players should be able to customize the controls and the gameplay
to fit their learning and playing styles, if not, the game should be designed to
allow different styles of learning and playing.

Regarding the ability to customize controls, this is not relevant to our game
since it is in such an early stage. One could customize the camera sensitivity, but
we did not feel like the reward matched the resources required for such a trivial
feature. We do, however, recognize the need for such customization of controls
in potential future iterations of the game, where we can imagine more complex
controls. More interestingly, we want to address the claim that the gameplay, or
game, should be designed to allow different styles of play and learning. On the
surface this seems like a non-controversial claim, but when you factor in that
it is an edutainment game being developed things get a bit murky. There is a
friction present between the player’s ability to complete the game and our ability
as developers to teach the designated curriculum to the player. This is one of
the reasons why we have not implemented different difficulty settings. We were
not able to relieve this tension between teaching the curriculum and engaging all
players, so we prioritized the integrity of the information that we communicated.

6.1.3 Level Selector

The level selector interface has seen some minor changes since the fall project. We
revamped the user interface to make it more aesthetically pleasing to the player,
and we also added stars to represent the scores the player achieved on each level.
The latter was done to provide appropriate feedback to the player. Furthermore,
a preview of the levels is now displayed on each level, even the locked ones. This
was done to give the players a sneak peek at what was awaiting them in the next
level, as well as to make the interface more visually pleasing. In future iterations of
the game, we would want to use this interface to convey more information to the
players. One idea is to include a star counter that displays how many of the poten-
tial stars have been obtained. There are also possibilities regarding the transition
from the level selector interface to the game, or other graphical considerations
that was limited by the time constraint.



Chapter 6: Discussions 67

6.1.4 Visual Programming

As stated, in our fall project, when controls were chosen, an options screen would
pop up and the player was able to select the argument. Participants found it cum-
bersome because if they chose the wrong argument, the whole control would have
to be scratched, as there was no way to change the argument. After looking for in-
spiration from Section 2.5.2, we found that they have an elegant solution, where
arguments are already visible and can be dragged to functions. Now, both argu-
ments and controls already reside on the screen, thus, arguments can easily be
dragged and dropped to the controls. Players are now able to both remove and
move arguments between controls with ease. Furthermore, having the user inter-
face intuitive is a central point in [5]. In the fall project, players were only given
instructions on what a control did by the tutorial, and had to restart the tutorial
to be able to check what the control did. User feedback from the fall project made
it clear that this was not an intuitive behavior. Making it more intuitive was done
by implementing a description of each control and argument.

Moreover, the If control was very limited, lowering the complexity ceiling
of the visual programming. It could only have a maximum of three arguments,
where only "Robot 0", "Robot 1", "Robot 2", and "Robot 3" were the arguments
capable of selection, the control implicitly added an AND operator between them.
It did not behave similarly to a real if sentence. It was improved by introducing
MPI_Comm_rank, a rank variable, integers and operators. Players now have to
run MPI_Comm_rank, to retrieve the ranks of the robots and then use the If
control similar to a real if sentence. Additionally, the If control no longer has any
limitations to how many arguments it can have. Because of user input from the
fall project, the user interface was also altered to translucent blue; participants
complained that the controlboard obscured their view of the robots resulting in
constant closing and opening of the controlboard. There were no complaints from
participants concerning this issue after the user interface was modified.

We have noticed that after the first few levels, a large number If controls must
be placed to complete the levels, which may be laborious to place. In a real MPI
program although if sentences are used, they are not as often used compared to
our game. In a genuine MPI application, only the root process performs anything
that the other processes do not. However, in this game, the processes (robots)
do a lot of different things. This can skew the expectations of the participants
about real MPI programming. When simulating the border exchange level, we
discovered that fewer If controls were utilized to accomplish the level, and this
is how it should be portrayed to players. The game should have featured more
real-life examples of MPI programming to create a more exciting environment for
the players and their expectations.

As stated earlier in Section 3.2, every new level unlocks new controls, argu-
ments and game-elements. We did this because it maintains the game’s difficulty,
and keeps the game interesting. It is far simpler to deal with fewer things ini-
tially than to be assaulted with controls, arguments, and game elements. This is



68 Vetle Finstad: MPI Edutainment Game

underpinned by both [5, 6].
Given the ground structure of the visual programming, it is straightforward to

implement new controls/arguments to, for instance, add a new MPI function. By
adding a new object in the controls.json or arguments.json file, a new control/ar-
gument will appear on the controlboard. It automatically adds the Draggable.cs
class on it when the game starts, making it capable to be dragged. Implementation
of new game elements was also structurally programmed to be straightforward.
With the Interactable.cs class, any game element can easily be manipulated to
be either a game element to abstract out code or an element to be sent between
robots.

6.1.5 Simulation of Processes

When we started this project we were aware that we would need to implement
a lot of levels. Since this is time-consuming work, we were keen to figure out a
solution that would enable us to easily create new levels from scratch. The parent-
child relationship between game elements was found to be an excellent solution
to this problem. This made it possible for us to place robots out in a scene, then
insert game elements under them as a child. When the game has then started
the robot automatically gains a local connection to the game element, making
this an efficient solution and, in the process, a valuable time-saver regarding the
creation of new levels. Furthermore, in real MPI programs, processes have local
memory. By dividing the robots into cubicles, players can explicitly observe what
game element has a local connection to the robots - simulating local memory for
processes.

6.1.6 Simulation of Functions

Our supervisor made remarks about not having the ability to use MPI_Init and
MPI_Finalize in the fall project. We initially thought about adding these functions
in the fall project, but decided that it would be tedious to use those controls for
every level. However, as it is used in every MPI program it is highly relevant in a
game where MPI is being educated. Therefore, these functions were implemented.
Another function that is highly relevant for MPI is MPI_Comm_size. It is used in
every MPI program. However, it was scratched, because we could not find any
usage for it. The function is used to retrieve how many processes are active in
an MPI program. In the game, the player knows at all times how many processes
(robots) are present, thus, it was difficult to find a purpose for it.

In a real MPI program the MPI functions have a lot more arguments than the
controls, we felt like it would be very tedious to have to drag all of these arguments
into the controls. Additionally, we felt that players would have better odds of
understanding the controls with fewer arguments. However, this approach comes
with its drawback; the players’ expectations of these functions will be distorted in
relation to real MPI programming. Despite that, when players complete a level,



Chapter 6: Discussions 69

they can choose to display the equivalent C code. Here, their expectations can be
restored.

MPI_Sendrecv behaves the same as in a real MPI program. Though, we took
notice of something regarding the simulated functions MPI_Send and MPI_Recv;
MPI_Sendrecv should be able to be replicated by only using MPI_Send and MPI_Recv.
This is not possible in the game, because both robots pick up an object and the
receiver must have its hands free. This could, in future work, be changed to be
able to send an object without holding it.

6.1.7 Tutorial

Based on user feedback in the fall project, the tutorial was changed. Players felt
frustrated that they had to have the tutorial panels open at all times. Furthermore,
they had to constantly restart the level to be able to check what information the
tutorial had in its previous iteration. Its functionality was also changed. In the
fall project, no matter what action the player did, the tutorial would increase its
iteration. Players could do the complete opposite of what the tutorial said the
player should do, and the tutorial would iterate anyway. This was changed in the
current project; players will have to do the correct action to be able to continue
the tutorial iteration. These are all the changes that have been made to the project
from the fall version to the current version.

In several of the tutorial panels, the present version of the project suffers from
long explanations. We have reason to believe that this will have a detrimental
impact on player engagement since they will become bored with reading large
blocks of text [5]. Making the game tutorial briefer would improve future editions
of the game. This might be accomplished by breaking up the tutorial panels and
explaining things more progressively. Another method to cut the tutorial down is
to leave out some of the definitions. This approach raises the issue, "For whom is
the game designed?" In the user study part that follows, we will go deeper into
this subject.

6.1.8 Border Exchange

In level 9, we wanted to explain the process of border exchange. Specifically to
highlight one key aspect; that something has to be exchanged between processes
to solve a problem. To make this feasible within the limitations of our game, we
made a simplified simulation of the border exchange process. Actual border ex-
change in an MPI program is a lot more complex than our representation of the
process. However, we wanted to convey the product of border exchange, to give
the player an understanding of its utility. We wanted to show that by using border
exchange one could solve the level more efficiently and speedily. This was done
by making it apparent to the player that a chunk of the processes’ local game el-
ement had to be exchanged between their neighbor to maximize the efficiency of
the processes. We made this point more visceral by allowing the players the slower



70 Vetle Finstad: MPI Edutainment Game

alternative where border exchange was not utilized. The players could then expe-
rience the decreased speed that followed not using border exchange to solve the
level.

6.2 User Study

In this section, we will discuss the results of our user study. The following subsec-
tions are motivated by the following user study questions:
USQ 1: "Will the game affect increasing interest in parallel pro- gramming?"
USQ 2: "Is the game too difficult?"
USQ 3: "What is the learning effect of playing the game?"
USQ 4: "What is the enjoyment effect of playing the game?"

6.2.1 Increase of Interest in Parallel Programming

Results from the interview and quiz showed that most participants gained inter-
est in parallel programming. Evoking the curiosity of players’ motivates them to
learn and be interested according to [6]. Malone stated that environments should
be neither too complicated nor too simple - in relation to the player’s existing
knowledge. According to our observations of the players, we did not feel like most
players got overwhelmed with the complexity, nor found it too easy. This may have
contributed to an increase in interest in the subject. However, there were a few
participants who denied an increase in interest in parallel programming, but their
reasons were not about the game. With the benefit of hindsight, we can see that it
is hard to draw conclusions about players’ interest in parallel programming when
their only experience of it comes through an oversimplified game version of the
concept. We will explore this issue deeper below in Section 6.2.3.

6.2.2 Game Difficulty for the Players

As non-programmers do not have the same background as programmers, they do
not know from their background what arguments or what an if sentence means.
From the observation and the survey, we can see that non-programmers had a slow
start compared to the programmers. This means that the tutorial needs to provide
more in-depth explanations of these concepts. However, this method comes with
its trade-off: even more lengthy explanations. Thus, in future work, it should be
defined what the primary user group should be.

We may have implicitly set the primary user group as programmers, as we
have not provided explanations around these concepts. Consequently, the non-
primary user group could feel overwhelmed and ultimately lose self-confidence
in themselves playing the game. "Failure in a challenging activity, like a computer
game, can lower a person’s self-esteem and–if it is severe enough–decrease the
person’s desire to play the game again" [6]. However, we have observed that even



Chapter 6: Discussions 71

programmers struggled with the border exchange level - requiring more explana-
tions around this level. This is supported by the fact that most participants did not
strongly agree to the tutorial being sufficient enough.

As the game is a type of puzzle game, the player must think hard about the
task at hand. Since the author was observing the participants playing the game,
this might be a cause for increased stress levels for the players, which in turn
might impact their performance.

We believe by hiding controls, arguments, and game elements from the start,
and then selectively revealing them, contributed to keeping the game difficulty
lower, as expressed by [5]. The tutorial also contributed to this, though it should
be improved, as mentioned earlier.

6.2.3 Learning Effect of the Game

It is clear when looking at the results of the quiz and the interview that the partic-
ipants felt like they learned something. The quantitative data from the quiz sug-
gests that they received a broader knowledge field from the game. However, it is
not indicative that this will translate to real MPI programming. And not sufficient
evidence to conclude that it will make it easier for the participants to create a real
MPI program. The users did not try real programming but simply played a game.
Nevertheless, most participants understood the concept of level 8 (Black/white
inversion) in the game, indicating some learning.

A more descriptive tutorial could be an advantage for the learning effect. Ex-
plaining concepts such as border exchange, and come with an example of this
with image manipulation. But, we think by playing around with the simulated
MPI functions that the participants have done, will make it much easier to be-
gin with MPI in the first place. They can see what the functions do, for instance;
MPI_Scatter splitting up chunks and sending them to the robots. Whereas in real
MPI programming, this can not be seen explicitly. In our personal experience,
some of the challenges when beginning with MPI is trying to understand what the
functions do.

In a real MPI-program, the MPI_Comm_rank behaves slightly different from
our simulated function: It takes in an argument, which can then be used to retrieve
a process’ rank. Our implementation of this function has no parameter, thus, can
be experienced as "magical" as one participant mentioned. We suggest that this can
be changed to take in the argument Rank. This may lead to players understanding
that the function is directly connected with the Rank argument.

6.2.4 Enjoyment Effect of the Game

We believe that an important element that decides the game’s enjoyability, is the
participants’ degree of autonomy regarding how to complete the level, while at the
same time striving towards a preconceived goal. As [7] believed, a game should
be balanced between emergent -and scripting gameplay.



72 Vetle Finstad: MPI Edutainment Game

This does not mean that the players are limited only to the narrow goal of
achieving the level. We want, even encourage, the players to have additional meta-
goals. By implementing stars that relate to the player’s efficiency in completing the
level, we allow the players to beat their high score or even the world record. This
is in line with [5, 6], where they have found features with these attributes might
affect the enjoyment of games.

Additionally, we were keen on keeping the pace of the game optimal; starting
with few controls, arguments, and game elements, then selectively revealing them
to the players. We believe this might have contributed to keeping their interest in
the game. This is reinstated by [5, 6].

However, we believe the game could be even more enjoyable by reevaluat-
ing the tutorial. It gives lengthy explanations which according to [5] can result
in players becoming bored. Also, we found evidence that players did not read all
tutorial panels - making an even stronger argument to change the tutorial. The
user interface should be intuitive and easy to use so that players feel a sense of
control of their actions according to [5]. Following this logic, one quick way to
make the game more enjoyable is to make the tutorial more intuitive. At this mo-
ment in time, the tutorial panels pop up in inappropriate places, and the tutorial
gets closed for the rest of the level if the player decides to close the tutorial panel.



Chapter 7

Conclusion and Future Work

This thesis focused on creating an MPI edutainment game to provide an envi-
ronment for players to learn parallel programming with MPI. The thesis proved
that simulating such an environment can be challenging. Challenges arose such
as tedious visual programming with an overload of if sentences and illustrations
of real MPI program tasks. However, we showed that it is possible to develop an
edutainment game that is enjoyable for both programmers and non-programmers.
We found it hard to determine whether players gained interest and learned the
different concepts in the field of parallel programming as a direct result of playing
the game. In the following sections, we will address both the research -and the
user study questions. Additionally, we will discuss our suggestions for future work
regarding the development of MPI edutainment games.

7.1 Research Questions

Following is a summary of how we addressed each research question.

What is the best Game Engine for Implementing an MPI Edutainment
game? (RQ1)

We have found that game engines as of 2022 are very similar to each other, and it
mostly comes down to personal preference. However, there are some differences
between them. Such as how graphically advantageous they are, their AI capabili-
ties, and networking to name a few. For instance, for games that draw in players
on being very visually appealing, developers should probably favor the Unreal En-
gine. Since this game did not need to have AI, networking, or superior graphics,
it came down to personal preference and we settled on the Unity game engine.
But most substantially, this is the engine the author has had the most experience
using, and we felt that this was the natural choice for our project.

73



74 Vetle Finstad: MPI Edutainment Game

What are some of the Technical Advantages and Challenges with the
Approach Chosen? (RQ2)

We recognized several technical advantages that came with the approach chosen
for this project. By creating super-classes and by embracing emergence as a con-
cept, we, and future developers of the game, were able to effortlessly create and
simulate MPI -and general programming functions including new game elements
for the robot (process) to both interact with and to abstract out code, such as the
inversion of pixel color. Furthermore, by creating a parent-child relationship be-
tween the robots and game elements, we reduced the time needed to create new
levels.

However, there were some technical challenges with the approach chosen.
These include the simulation of real MPI programs and implementation of MPI_Comm_size.
Moreover, in a real MPI-program, MPI_Send and MPI_Recv are able to replicate
MPI_Sendrecv. Given how the sending and receiving of game elements between
robots were made in the game, the simulated functions: MPI_Send and MPI_Recv,
were not able to replicate MPI_Sendrecv. This shows some of the difficulties of try-
ing to simulate an MPI environment. Balancing the game’s intuitiveness with the
structural rules that guide the MPI framework, leads to one having to compromise
either the former or the latter.

Another challenge that arose, was connected to the way the levels were set
up to be completed. Most levels required a huge amount of if sentences to be able
to complete them, whereas in actual MPI programs they are not used nearly with
the same frequency. This results in tedious visual programming for the player.

What are the most Useful MPI-Functions, and how does one Illustrate
them Well in a Gaming Setting? (RQ3)

We recognized the most useful MPI-functions to simulate in the game from the au-
thor’s experience and our advisor’s use of these functions in her parallel program-
ming subject. An additional reason for choosing these particular functions were
our familiarity with them, from the book [1]. The functions we deemed as most
useful are as following: MPI_Init, MPI_Finalize, MPI_Comm_rank, MPI_Send,
MPI_Recv, MPI_Bcast, MPI_Scatter, MPI_Gather and MPI_Sendrecv.

To illustrate them we reduced the total amount of arguments in the functions.
This resulted in them being easier to grasp and increased their usability in the
game. Furthermore, our approach led MPI functions to be explicitly seen by the
players. This was done through a visual representation of the game element being
transferred to other robots. This animation represents the idea of communication
overhead, hopefully making it easier for the player to understand this concept.

7.2 User Study Questions

Following is a summary of how we addressed each user study question.



Chapter 7: Conclusion and Future Work 75

Will the Game affect Increasing Interest in Parallel Programming? (USQ1)

We found it difficult to determine players’ interest in parallel programming as a
field. We suspect that players might conflate their enjoyment of the game with
their interest in parallel programming as a field. In hindsight, this user study
question might have been too vague, because you can not confidently claim that
any qualitative judgments the players make about the parallel programming field,
based on their experience playing a game that simulates parallel programming, is
representative of actual interest in said field.

Nevertheless, we tried to determine their interest in the field of parallel pro-
gramming by using the edutainment game as a proxy for parallel programming. By
this standard, we found that participants’ interest in the field of parallel program-
ming increased. We estimate that this came from the fact that the environment
was neither too simple nor complicated in relation to the player’s existing knowl-
edge. However, a few participants felt that the game did not increase their interest
in the field, but the cause for this was not about the gameplay.

Is the Game too Difficult? (USQ2)

We think that the primary user group of the game should be explicitly defined in
any future development. If non-programmers are the primary user group, the tu-
torial should explain concepts around general programming. However, this comes
with its trade-offs where the tutorial includes even more lengthy explanations.

As expected, non-programmers found the game harder compared to program-
mers. The greatest cause of difficulty regarding the game came in the border ex-
change level. The tutorial should be improved to explain concepts around this
level. This is to make sure the players do not lose self-confidence in themselves
and also make sure they can beat the level on their own. Nevertheless, we found
that the game is not too difficult to play.

What is the Learning effect of Playing the Game? (USQ3)

The players gave feedback that they learned something from the game. But it is
not indicative that this is in relation to real MPI programming. A more detailed
and descriptive tutorial that explains MPI concepts should have a positive effect
on players’ learning. Additionally, a more in-depth study is required to be able to
answer this user study question. This can for instance involve having the partici-
pants do real MPI programming, after finishing the game.

What is the Enjoyment effect of Playing the Game? (USQ4)

There was strong evidence of the players enjoying themselves playing the game.
We believe that this came down to players having full control regarding how they
wanted to complete the levels while having a well-defined goal, while at the same



76 Vetle Finstad: MPI Edutainment Game

time having the option to form side-goals, such as beating their high score. Addi-
tionally, selectively revealing game elements to players may have contributed to
an optimal game pace, enhancing and keeping their interest. Moreover, we have
identified the tutorial panel as an area with potential for improvement. We believe
making it more intuitive and more concise will increase the enjoyment effect of
the players.

7.3 Future Work

Based on user feedback, we have a strong belief that featuring more levels closely
connected to real MPI programs will enhance players’ experience of the game pos-
itively. Further work should also focus on shortening the amount of If controls
needed to complete a level. Also, the primary user group of the game should be
defined before any further development is made. Asserting if the game is intended
for only programmers or for everybody, changes the entire manuscript of the tuto-
rial, particularly regarding definitions of terms. Nevertheless, the tutorial should
be more concise indifferent to what user group it is intended for, and the border
exchange level should be explained better. Additionally, even though players close
a tutorial panel, the next tutorial panel should pop back up after another iteration.

Relating to the technical aspect of things, future work should figure out a way
to implement MPI_Comm_size, as it is a vital function for real MPI programs.
Additionally, the behaviour around simulating communication between robots
(processes) should maybe be changed, as the simulated functions MPI_Send and
MPI_Recv are not able to replicate MPI_Sendrecv, as they should be able to. Sim-
ulation of MPI_Comm_rank should be improved and perhaps more similar to the
real function, so it is not experienced as mysterious to players.

We believe future work on this topic would benefit from implementing more
MPI-functions to be simulated, such as MPI_Reduce, MPI_Barrier, MPI_ISend
and MPI_IRecv. Lastly, we would be interested to see an extension of our project
through the use of other parallel programming extensions, such as openMP or
Pthreads. We would be excited to see if any of the myriads of challenges we faced
undergoing this project could be solved more efficiently with a rivaling parallel
programming extension.



Bibliography

[1] P. S. Pacheco and M. Malensek, Eds., An Introduction to Parallel Program-
ming (Second Edition), Second Edition. Philadelphia: Morgan Kaufmann,
2022, p. 1, ISBN: 978-0-12-804605-0. DOI: https://doi.org/10.1016/
B978-0-12-804605-0.00003-8.

[2] G. Howard and K. Berens, The Rough Guide to Videogames. Rough Guides;
1st edition, 2008, ch. 2.

[3] Financesonline. “Number of gamers worldwide 2022/2023: Demograph-
ics, statistics, and predictions.” (), [Online]. Available: https://financesonline.
com/number-of-gamers-worldwide/.

[4] D. Lucaride, “The impact of fun and enjoyment on adult’s learning,” Pro-
cedia - Social and Behavioral Sciences, vol. 142, pp. 439–446, 2014, The
Fourth International Conference on Adult Education, Romania 2014, ISSN:
1877-0428. DOI: https : / / doi . org / 10 . 1016 / j . sbspro . 2014 . 07 .
696. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1877042814046242.

[5] P. Sweetser and P. Wyeth, “Gameflow: A model for evaluating player enjoy-
ment in games,” Computers in Entertainment, vol. 3, p. 3, Jul. 2005. DOI:
10.1145/1077246.1077253.

[6] T. W. Malone, What makes things fun to learn? Heuristics for designing in-
structional computer games. SIGSMALL ’80: Proceedings of the 3rd ACM
SIGSMALL symposium and the first SIGPC symposium on Small systems,
1980, pp. 163–165.

[7] P. Sweetser and J. Wiles, “Scripting versus emergence: Issues for game de-
velopers and players in game environment design,” 2005.

[8] H. Lowood, “Game engines and game history,” Kinephanos, 2014, History
of Games International Conference Proceedings, January 2014, ISSN: 1916-
985X.

[9] F. Sanglard, The Rough Guide to Videogames. Independently published, 2019,
pp. 391, 393, ISBN: 1099819776.

[10] J. K. Haas, “A history of the unity game engine,” 2014.

[11] Unity, “2021 gaming report,” 2021. [Online]. Available: https://create.
unity.com/2021-game-report.

77

https://doi.org/https://doi.org/10.1016/B978-0-12-804605-0.00003-8
https://doi.org/https://doi.org/10.1016/B978-0-12-804605-0.00003-8
https://financesonline.com/number-of-gamers-worldwide/
https://financesonline.com/number-of-gamers-worldwide/
https://doi.org/https://doi.org/10.1016/j.sbspro.2014.07.696
https://doi.org/https://doi.org/10.1016/j.sbspro.2014.07.696
https://www.sciencedirect.com/science/article/pii/S1877042814046242
https://www.sciencedirect.com/science/article/pii/S1877042814046242
https://doi.org/10.1145/1077246.1077253
https://create.unity.com/2021-game-report
https://create.unity.com/2021-game-report


78 Vetle Finstad: MPI Edutainment Game

[12] F. Jerga, “What is the unity game engine- all you need to know,” 2021.
[Online]. Available: https://medium.com/eincode/what-is-the-unity-
game-engine-all-you-need-to-know-d4ce77a1b7d2.

[13] M. Thomsen, “History of the unreal engine,” 2012. [Online]. Available:
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-
engine.

[14] A. Eldad, “Unity vs unreal, what kind of game dev are you?,” 2021. [On-
line]. Available: https : / / www . incredibuild . com / blog / unity - vs -
unreal-what-kind-of-game-dev-are-you.

[15] O. A. McBryan, “An overview of message passing environments,” Parallel
Computing, vol. 20, no. 4, pp. 1–2, 1994, Message Passing Interfaces, ISSN:
0167-8191. DOI: https://doi.org/10.1016/0167-8191(94)90021-3.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/0167819194900213.

[16] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction to the
mpi standard,” USA, Tech. Rep., 1995.

[17] M. P. I. Forum, “Mpi: A message-passing interface standard version 3.1,”
Tech. Rep., p. 1. [Online]. Available: https://www.mpi-forum.org/docs/
mpi-3.1/mpi31-report.pdf.

[18] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the 2010
Workshop on Parallel Programming Patterns, ser. ParaPLoP ’10, Carefree,
Arizona, USA: Association for Computing Machinery, 2010, ISBN: 9781450301275.
DOI: 10.1145/1953611.1953615. [Online]. Available: https://doi.org/
10.1145/1953611.1953615.

[19] S. Baydas and B. Karakas, “Defining a curve as a bezier curve,” Journal
of Taibah University for Science, vol. 13, no. 1, pp. 522–528, 2019. DOI:
10.1080/16583655.2019.1601913. eprint: https://doi.org/10.1080/
16583655.2019.1601913. [Online]. Available: https://doi.org/10.
1080/16583655.2019.1601913.

[20] TomorrowCorporation. “Human resource machine.” (2015), [Online]. Avail-
able: https://tomorrowcorporation.com/about (visited on 06/08/2022).

[21] Scratch. “History.” (2003), [Online]. Available: https://en.scratch-
wiki.info/wiki/Scratch#History (visited on 06/08/2022).

[22] Scratch. “About.” (2003), [Online]. Available: https://scratch.mit.edu/
(visited on 06/08/2022).

[23] S. Rahi, “Research design and methods: A systematic review of research
paradigms, sampling issues and instruments development,” International
Journal of Economics Management Sciences, vol. 6, Jan. 2017. DOI: 10.
4172/2162-6359.1000403.

https://medium.com/eincode/what-is-the-unity-game-engine-all-you-need-to-know-d4ce77a1b7d2
https://medium.com/eincode/what-is-the-unity-game-engine-all-you-need-to-know-d4ce77a1b7d2
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://www.ign.com/articles/2010/02/23/history-of-the-unreal-engine
https://www.incredibuild.com/blog/unity-vs-unreal-what-kind-of-game-dev-are-you
https://www.incredibuild.com/blog/unity-vs-unreal-what-kind-of-game-dev-are-you
https://doi.org/https://doi.org/10.1016/0167-8191(94)90021-3
https://www.sciencedirect.com/science/article/pii/0167819194900213
https://www.sciencedirect.com/science/article/pii/0167819194900213
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1080/16583655.2019.1601913
https://doi.org/10.1080/16583655.2019.1601913
https://doi.org/10.1080/16583655.2019.1601913
https://doi.org/10.1080/16583655.2019.1601913
https://doi.org/10.1080/16583655.2019.1601913
https://tomorrowcorporation.com/about
https://en.scratch-wiki.info/wiki/Scratch#History
https://en.scratch-wiki.info/wiki/Scratch#History
https://scratch.mit.edu/
https://doi.org/10.4172/2162-6359.1000403
https://doi.org/10.4172/2162-6359.1000403


Appendix A

User Guide

Here, the user guide will be presented. It will explain how to start, customize and
play the game. All the various objects in the game will be explained as well as how
to utilize the visual programming in the game to complete the levels. As there is a
tutorial imminent in the game, every aspect of the game will not be covered such
as how every control (programming-function) and arguments works.

A.1 Main menu

When the game is loaded up, the main menu appears. Here, the game save data
can be deleted, able to customize settings and exit/start the game.

Figure A.1: Caption

In the settings, a various of things can be customized; enable or disable fullscreen,
change the quality of the game and set sound volume.

79



80 Vetle Finstad: MPI Edutainment Game

Figure A.2: Main menu

To start the game, the start button can be clicked. Here, all the levels will be
displayed. If a level is greyed out, it means the level has not been unlocked yet.
Additionally, how many stars have been received for each level is displayed.

Figure A.3: Selection of a level

A.1.1 Gameplay

Players can move the camera with WASD, right mouse button and right click. In
the levels, there are robots. The objective is to program the robots to transport out



Chapter A: User Guide 81

all crates, barrels and cubes. This is done by robots picking them up and placing
them onto a Transporter, and then initiating transportation by robots interacting
with a Hand Scanner. A Transporter can be disabled in the game. When disabled,
game-elements can not be put onto it. However, it can be activated by using a Key
on it. Furthermore, a transporter emits light, this light represents which color of
an object it can transport. A green crate can not be put onto a transporter emitting
magenta-light.

To start programming them, the Controlboard has to be opened. Here, the
visual programming can start. The left-side panel holds all of the controls and
arguments a player can use to program the robots. Controls are programming-
functions which can be dragged and dropped into the right side panel of the Con-
trolboard to make them active. Most controls must have arguments. An Action
control interacts with an object specified by the argument. For instance, if an Ac-
tion control has the argument Crate, the robot picks up the crate. Furthermore,
a description of both controls and arguments can be read by hovering over them.

Figure A.4: Example of picking up
a crate, putting it onto the trans-
porter and initiating transportation Figure A.5: Description of what the

Action control do

To run the program, the start button must be pressed. When pressed, it trans-
forms to a stop button, and can be pressed to stop the game. Additionally, the
game can be paused and also fast forwarded.



82 Vetle Finstad: MPI Edutainment Game

Figure A.6: Showcasing start, pause and fast forward buttons

Exceptions can occur, for instance, a robot trying to interact with a Trans-
former object while having no object in its hands. The robot is trying to put an
object onto the Transformer object, creating a run-time exception. The integer
inside the parentheses represents which robot rank it occurred to.

Figure A.7: Run-time exception occurred to robot 0

When a level is completed, stars is received based on the performance (How
long the program took to complete the level). Additionally, it shows the highest
score received. From here, one can go to the next level, play the level again or
display the equivalent C code. The "Display equivalent C code" converts the visual
programming code to actual C code.



Chapter A: User Guide 83

Figure A.8: Panel that opens when player completes a level

Figure A.9: Converts visual programming code to C code. This equivalent C code
is converted from A.4

In level 1, there are only one robot, one control and three arguments unlocked.
As one progresses through the levels, more controls, robots and arguments are
unlocked. Additionally, the levels will be increasingly difficult. After level 1, one
will learn that robots read from the same program. So one will have to be able to
distinguish between the robots and send messages with MPI.



84 Vetle Finstad: MPI Edutainment Game

A.2 Objects

Figure A.10: Crate
Figure A.11: Barrel

Figure A.12: Cube

Figure A.13: Transporter

Figure A.14: Transformer
Figure A.15: Inverter

Figure A.16: Hand scanner

Figure A.17: Key



Chapter A: User Guide 85

Figure A.18: Robot

A.10, A.11, A.12 are objects the robots are able to pick up. A.14 turns any object
placed on it to the color white. A.15 on the other hand, turns any object placed
on it to the inverse of its color. The A.13 transports a game-element. It can either
be activated or deactivated. It is represented as deactivated if its point-light is not
emitting light. A.17 activates a transporter.





Appendix B

Code Snippets

Listing B.1: Function for instantiating control

public GameObject InstantiateControl(Control c, Transform parent, bool isActive)
{

Control control = new Control(c);

var prefab = Instantiate(Resources.Load("Controls/Control"), parent)
as GameObject;

if(isActive)
{

var wrapper = Instantiate(Resources.Load("Controls/Wrapper"), parent)
as GameObject;

prefab.transform.SetParent(wrapper.transform, true);
prefab.transform.SetSiblingIndex(0);

switch(control.type)
{

case Control.ControlType.Action:
Component component =
prefab.AddComponent<ArgumentControlDraggable>();

break;

case Control.ControlType.Logic:

if(control.Name == "If")
{

component =
prefab.AddComponent<ArgumentControlWithBracketDraggable>();

}
else
{

component = prefab.AddComponent<ElseControlDraggable>();
((ArgumentControlDraggable)component).isElse =
control.Name != "If";

}

break;

87



88 Vetle Finstad: MPI Edutainment Game

case Control.ControlType.MPI:
if(control.Name == "MPI_Init" || control.Name ==
"MPI_Finalize" || control.Name == "MPI_Comm_size" ||
control.Name == "MPI_Comm_rank")
{

component = prefab.AddComponent<ActiveControlDraggable>();
}
else
{

component = prefab.AddComponent<ArgumentControlDraggable>();
}

break;

default:
prefab.AddComponent<ActiveControlDraggable>();

break;

}

InstantiateCodeLines();

}
else prefab.AddComponent<InActiveControlDraggable>();

prefab.GetComponent<Image>().color = Control.GetColor(control.type);
prefab.transform.GetChild(0).GetComponent<TextMeshProUGUI>().text =
control.ToString();

prefab.GetComponent<ControlDraggable>().control = control;

return prefab;
}

Listing B.2: Function for instantiating argument

public GameObject InstantiateArgument(Argument argument, bool isActive,
Transform parent = null, int index = -1, bool placeHolder = false)
{

if(parent == null)
switch(argument.argumentType)
{

case Argument.ArgumentType.Operator:
parent = operatorArgumentsContent;

break;

case Argument.ArgumentType.Object:
parent = objectArgumentsContent;

break;

case Argument.ArgumentType.Variable:
parent = variableArgumentsContent;

break;

case Argument.ArgumentType.Integer:
parent = integerArgumentsContent;

break;
}

var argumentPrefab = Instantiate(Resources.Load("Controls/Argument"), parent)



Chapter B: Code Snippets 89

as GameObject;

if(!placeHolder)
{

if(isActive) argumentPrefab.AddComponent<ActiveArgumentDraggable>();
else argumentPrefab.AddComponent<InActiveArgumentDraggable>();

argumentPrefab.GetComponent<ArgumentDraggable>().argument = argument;

if(index != -1)
argumentPrefab.transform.SetSiblingIndex(index);

}

argumentPrefab.transform.GetChild(0).GetComponent<TextMeshProUGUI>().text =
argument.name;

argumentPrefab.transform.GetComponent<Image>().color = argument.GetColor();

return argumentPrefab;
}

Listing B.3: Function for checking whether an If control is true or false

private void IfSentence(List<Argument> arguments)
{

if(arguments.Count < 3)
return;

var variableOrInteger = arguments[0];
var argumentOperator = arguments[1];
var variableOrInteger2 = arguments[2];

var variableOrIntegerValue = variableOrInteger.argumentType ==
Argument.ArgumentType.Variable ?
caller.GetType().GetField(variableOrInteger.name.ToLower()).
GetValue(caller).ToString() : variableOrInteger.name;

var variableOrIntegerValue2 = variableOrInteger2.argumentType ==
Argument.ArgumentType.Variable ?
caller.GetType().GetField(variableOrInteger2.name.ToLower()).GetValue(cal
ler).ToString() : variableOrInteger2.name;

arguments.RemoveRange(0, 3);

bool sentenceTrue = false;

if(argumentOperator.name == "%")
{

var moduloValue = int.Parse(variableOrIntegerValue) %
int.Parse(variableOrIntegerValue2);
var operatorValue = arguments[0].name;
var lastArgValue = arguments[1].name;

arguments.RemoveRange(0, 2);

sentenceTrue = CheckSentenceTrue(operatorValue, moduloValue.ToString(),
lastArgValue);

}
else sentenceTrue = CheckSentenceTrue(argumentOperator.name,



90 Vetle Finstad: MPI Edutainment Game

variableOrIntegerValue, variableOrIntegerValue2);

if(arguments.Count > 0)
{

if(sentenceTrue && arguments[0].argumentType ==
Argument.ArgumentType.Operator)
{

if(arguments[0].name.Equals("AND"))
{

arguments.RemoveAt(0);
IfSentence(arguments);

}
else if(arguments[0].name.Equals("OR"))

onTrue?.Invoke();
}
else if(arguments[0].name.Equals("OR"))
{

arguments.RemoveAt(0);
IfSentence(arguments);

}
else onFalse?.Invoke(Mathf.Abs((control.bracket.EndIndex -
control.bracket.StartIndex)));

}
else
{

if(sentenceTrue)
onTrue?.Invoke();

else onFalse?.Invoke(Mathf.Abs((control.bracket.EndIndex -
control.bracket.StartIndex)));

}

}

Listing B.4: Checking for exceptions in a control

private void CheckForException()
{

List<Argument> arguments = GetArguments();
string description = "";
bool foundException = false;

switch(control.Name)
{

case "If":

for(int i = 0; i < arguments.Count; i+=4)
{

var addedIndexes = 0;

var variableOrInteger = arguments[i];
if(variableOrInteger.argumentType != Argument.ArgumentType.Variable
&&
variableOrInteger.argumentType != Argument.ArgumentType.Integer)
{

description = "A variable or an integer was expected in the if
control, but got " + variableOrInteger.argumentType.ToString();
foundException = true;
break;

}



Chapter B: Code Snippets 91

if(arguments.Count < (i + 2))
break;

var argumentOperator = arguments[i + 1];
if(argumentOperator.argumentType != Argument.ArgumentType.Operator)
{

description = "An operator was expected in the if control,
but got " + argumentOperator.argumentType.ToString();
foundException = true;
break;

}

if(arguments.Count < (i + 3))
break;

var variableOrInteger2 = arguments[i + 2];
if(variableOrInteger2.argumentType != Argument.ArgumentType.Variable
&&
variableOrInteger2.argumentType != Argument.ArgumentType.Integer)
{

description = "A variable or an integer was expected in
the if control,
but got " + variableOrInteger.argumentType.ToString();
foundException = true;
break;

}

if(arguments.Count < (i + 4))
break;

var argumentOperator2 = arguments[i + 3];
if(argumentOperator.name != "%" &&
!argumentOperator2.name.Equals("OR")
&&
!argumentOperator2.name.Equals("AND") ||
argumentOperator.name == "%" &&
(argumentOperator2.name.Equals("OR") ||
argumentOperator2.name.Equals("AND")))
{

description = "An ’OR’ operator or an ’AND’ operator was
expected in the if control, but got " + argumentOperator2.name;
foundException = true;
break;

}

if(argumentOperator.name.Equals("%"))
{

if(arguments.Count < (i + 5))
break;

var variableOrInteger3 = arguments[i + 4];

if(variableOrInteger3.argumentType !=
Argument.ArgumentType.Integer &&
variableOrInteger3.argumentType !=
Argument.ArgumentType.Variable)
{

description = "A variable or an integer was



92 Vetle Finstad: MPI Edutainment Game

expected in the if control, but got " +
variableOrInteger3.argumentType.ToString();
foundException = true;
break;

}

addedIndexes++;

if(arguments.Count < (i + 6))
break;

var argumentOperator3 = arguments[i + 5];
if(!argumentOperator3.name.Equals("OR")
&& !argumentOperator3.name.Equals("AND"))
{

description = "An ’OR’ operator or an ’AND’ operator was
expected in the if
control, but got " + argumentOperator3.name;
foundException = true;
break;

}

addedIndexes++;

i += addedIndexes;
}

}

if(exception != null)
ExceptionHandler._instance.RemoveException(ref exception);

if(foundException)
exception = ExceptionHandler._instance.CreateException(description,
wrapper.transform,
ExceptionObject.ExceptionType.CompilerError);

break;

default:

if(exception != null)
ExceptionHandler._instance.RemoveException(ref exception);

foreach(var arg in arguments)
{

var argType = arg.argumentType;
if(!control.validArguments.Contains(argType))
{

exception = ExceptionHandler._instance.CreateException("Invalid
argument inserted
in ’Action’", wrapper.transform,
ExceptionObject.ExceptionType.CompilerError);
return;

}
}

break;
}

}



Chapter B: Code Snippets 93

Listing B.5: Creation of a small red line

private RectTransform MakeLine(float ax, float ay, float bx, float by,
Color col) {

GameObject NewObj = new GameObject();
NewObj.name = "line from "+ax+" to "+bx;
Image NewImage = NewObj.AddComponent<Image>();
NewImage.sprite = lineImage;
NewImage.color = col;
RectTransform rect = NewObj.GetComponent<RectTransform>();
rect.SetParent(transform);
rect.localScale = Vector3.one;

SetRectTransform(rect, ax, ay, bx, by);

return rect;
}

Listing B.6: Setting the red line’s position and rotation

private void SetRectTransform(RectTransform rect, float ax, float ay, float bx,
float by)
{

Vector3 a = new Vector3(ax, ay, 0);
Vector3 b = new Vector3(bx, by, 0);

rect.position = (a + b) / 2;
Vector3 dif = a - b;
rect.sizeDelta = new Vector3(dif.magnitude, 2);
rect.rotation = Quaternion.Euler(new Vector3(0, 0, 180 *
Mathf.Atan(dif.y / dif.x) / Mathf.PI));

}

Listing B.7: Calculating the bezier point

private Vector3 CalculateCubicBezierPoint(float t, Vector3 p0, Vector3 p1,
Vector3 p2, Vector3 p3)
{

float u = 1 - t;
float tt = t * t;
float uu = u * u;
float uuu = uu * u;
float ttt = tt * t;

Vector3 p = uuu * p0;
p += 3 * uu * t * p1;
p += 3 * u * tt * p2;
p += ttt * p3;

return p;
}





Appendix C

Survey and Interview Questions

C.1 Survey Questions

1. I felt the tutorial taught me everything needed
2. I felt I understood the MPI functions
3. I found the game fun
4. Before playing the game I was interested in Parallel programming
5. After playing the game I was interested in Parallel programming
6. I felt I needed help to complete the game
7. I felt the user interface was easy to use

C.2 Interview Questions

1. Did you feel that the tutorial was enough to understand the content of the
game? If no, what can be explained better?

2. Did you find the game entertaining?
3. Would you say that you have an increase or gained interest of parallel pro-

gramming after playing the game?
4. Did you feel that you learned what parallel programming is about?
5. Was there anything in the game you did not understand?
6. Is there some improvements to the game that can be made?
7. Is there anything you wish were implemented?
8. Did you feel that you understood that all processes read from the same

program, and how you can manipulate them to do other things?
9. Did you feel more motivated to get stars when you cleared a level?

10. Was there any MPI-functions you did not understand, and must be explained
better?

11. In level 8, MPI_Scatter and MPI_Gather were used to send chunks of an
object to other processes and then get them back after the processes have
done something to the chunks. Can you think of how this can be used in a
real MPI-application?

95



96 Vetle Finstad: MPI Edutainment Game

12. Generally, what do you think of the game?
13. Did you feel that you learned something from the game?



Appendix D

Quiz Questions

Figure D.1: Question 1

Figure D.2: Question 2

97



98 Vetle Finstad: MPI Edutainment Game

Figure D.3: Question 3

Figure D.4: Question 4



Chapter D: Quiz Questions 99

Figure D.5: Question 5

Figure D.6: Question 6



100 Vetle Finstad: MPI Edutainment Game

Figure D.7: Question 7



Chapter D: Quiz Questions 101

Figure D.8: Question 8



102 Vetle Finstad: MPI Edutainment Game

Figure D.9: Question 9



Chapter D: Quiz Questions 103

Figure D.10: Question 10



104 Vetle Finstad: MPI Edutainment Game

Figure D.11: Question 11



Chapter D: Quiz Questions 105

Figure D.12: Question 12





Appendix E

Poster

107





M
PI Edutainm

ent G
am

e
Vetle Finstad

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Vetle Olav Pettersen Finstad

Parallel Programming with MPI
through Gaming

MPI Edutainment Game

Master’s thesis in MIDT
Supervisor: Professor Anne C. Elster
June 2022M

as
te

r’s
 th

es
is


	Abstract
	Sammendrag
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Glossary
	Introduction
	Motivation
	Contribution
	Research Questions
	User Study Questions
	Thesis Outline

	Background
	Important Video-Game Design
	Design for an Engaging Game
	Environment Design

	Game Engine
	Unity
	Unreal Engine

	Parallel Programming
	Message Passing
	Message Passing Interface
	Black/White Image Inversion
	Border Exchange

	Bezier Curve
	Related Work
	Human Resource Machine
	Scratch


	Developing an MPI Edutainment Game
	Choosing a Game Engine (RQ1)
	Description of the Game
	Game Models and Licensing
	Timing
	Visual Programming
	Controlboard
	Visual Programming Architecture
	Development Process

	Simulation of Processes
	Development Process
	Simulation of Functions
	MPI-Interpreter (RQ2)

	Interactable Objects
	Conversion from Visual Programming to Programming Language C
	Simulating MPI Programs
	Black/White Inversion
	Border Exchange

	Handling of Exceptions
	Interactive tutorial
	Local Game Save Data and Audio

	User Study
	Interview
	Survey
	Observation
	Quiz
	Reflection on our User Study

	Results
	Development Environment
	Recommended Specifications for Running the Game
	Development Results
	Game Main Menu
	Settings
	Level Selector
	Level Overview
	Visual Programming
	Displaying an Exception in a Control

	Console
	Level Completed
	Displaying Equivalent C Code
	Tutorial
	Interactable Objects
	Border Exchange

	User Study Results
	Increase of Interest in Parallel Programming
	Game Difficulty for the Players
	Learning Effect of the Game
	Enjoyment Effect of the Game


	Discussions
	Development Results
	Main Menu
	Settings
	Level Selector
	Visual Programming
	Simulation of Processes
	Simulation of Functions
	Tutorial
	Border Exchange

	User Study
	Increase of Interest in Parallel Programming
	Game Difficulty for the Players
	Learning Effect of the Game
	Enjoyment Effect of the Game


	Conclusion and Future Work
	Research Questions
	User Study Questions
	Future Work

	Bibliography
	User Guide
	Main menu
	Gameplay

	Objects

	Code Snippets
	Survey and Interview Questions
	Survey Questions
	Interview Questions

	Quiz Questions
	Poster

