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Abstract

Abstract and thesis continues in English below

Norwegian:
Mengden av sammenkoblede enheter øker stadig. Mange av disse enhetene kr-
ever ikke tidsgarantier og er bedre tjent med administrerte operativsystemer som
muliggjør rask utvikling med reduserte sikkerhetsproblemer og kompleksiteten
som følger med utvikling p̊a lavt niv̊a. For å muliggjøre dette forsøker denne
oppgaven å portere Inferno-operativsystemet til ARMv7-M-arkitekturen som er
bredt distribuert i edge-enheter over hele verden. Inferno OS er et distribuert
operativsystem med innebygd støtte for kommunikasjon mellom enheter. En ny
backend for den medølgende vertktøkjeden rettot mot ARMv7-M arkitekturen
som produserer ARM Thumb instruksjoner er utviklet. Denne backenden resul-
terer i en 18% reduksjon i binær størrelse sammenlignet med ARM32 varianten.
Det komplette operativsystemet er enn̊a ikke brukbart p̊a grunn av den virtuelle
maskinen som brukes til brukerromsapplikasjoner. Oppgaven diskuterer alterna-
tive WebAssembly som ett alternativ til den eksisterende virtuelle maskinen.

English:
The amount of interconnected devices is ever-increasing. Many of these devices
do not require timing constraints and are better served by managed operating
systems that enable rapid development with reduced security concerns and the
intricacy of low-level development. In order to enable this, this thesis attempts
to port the Inferno operating system to the ARMv7-M architecture which is
broadly deployed in edge devices throughout the world. Inferno is a distributed
operating system with native support for inter-device communication. A new
toolchain backend for the ARMv7-M architecture that produces ARM Thumb
instructions is produced. This backend results in a 18% reduction in binary
size compared to the ARM32 variant. The complete operating system is not yet
usable due to the virtual machine used for userspace applications. The thesis
discusses WebAssembly as an alternative to the current virtual machine.



Chapter 1

Introduction

Small embedded devices and their interconnection is a topic of interest as the
number of deployed embedded devices increase. The devices are deployed in a
wide array of different products and can be separated into two broad categories;
Real-Time and Non-Real-Time. Non-Real-Time systems are not bound by strict
timing constraints and can function without timing guarantees. Real-Time sys-
tems, however, require timing guarantees to ensure correct operation. There are
many available operating systems for developing Real-Time applications, how-
ever, there are few directed at Non-Real-Time applications. One key difference
between these two types of operating systems is the facilities they provide the
developer. Real-Time systems present the developer with a framework where
tasks can be given priorities and guarantees, depending on the hardware, can
be provided. These systems require the developer to use low-level systems lan-
guages, typically C/C++. Non-Real-Time operating systems however allow the
developer to use higher-level languages that enable faster development and allow
the developer to ignore some of the finer details of how the hardware functions.
This thesis attempts to port Inferno OS to the ARM Cortex-M series CPUs. The
ARM Cortex-M is ARMs series of CPUs designed for embedded systems, the one
used in this thesis is the Cortex-M7. Cortex-M devices utilize the ARMv7-M
architecture, which differs from the better-known ARM-A/R architecture. The
differences that matter for this thesis will be explained more in-depth in the
Background chapter.

Inferno OS is a small distributed operating system, officially only requiring 1MiB
of RAM [1]. Inferno does not require hardware memory management function-
ality and is, therefore, a good contender for a Non-Real-Time operating system
running on Cortex-M devices, as this memory management hardware is an op-
tional feature for these devices.

The need for embedded intelligence in endpoint devices has facilitated the growth
of small embedded devices. In the fourth quarter of 2019 ARMs partners sold
a total of 6.4 billion ARM-based chips and shipped 4.2 billion Cortex-M-based
devices [2]. In the fourth quarter of 2020 the numbers are 6.6 billion and 4.4
billion respectively [3], showing that Cortex-M devices constitute a large part
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of ARMs’ total chip sales. With a total of 225 billion devices sold in 2021 [4]
and assuming the Cortex-M chips constitute a fair percentage of this sale, it is
apparent that Cortex-M-based devices are flourishing throughout the world.

Many of these endpoint devices are accumulating data through attached hard-
ware, perform various degrees of processing and then relay the data to a central
system. The interaction between the endpoint devices and the central systems is
facilitated by public infrastructure, be it wireless or wired. Consequently, they
are possible targets for ill-intentioned actors who wish to abuse the systems for
some nefarious purpose. Common problems with these systems include the lack
of updates and improper security implementation in the networking stack. While
Inferno does not mitigate the issues arising from outdated software it does assist
with securing the connection between devices. Inferno achieves this by provid-
ing a uniform interface for accessing remote resources [5], removing the need for
application developers to concern themselves with the security aspects of their
application.

Microcontrollers that utilize the Cortex-M series CPUs are memory constrained.
There are multiple providers of these devices. The STM32 family offers boards
with memory ranging from 32KiB to 512KiB, with some sporting up to 1184KiB,
although these are intended for devices that provide a graphical user interface,
which is possible with Inferno although not intended for the applications envi-
sioned here. Nordic semiconductors offer microcontrollers with networking ca-
pabilities that come with 256KiB of memory. There are also Cortex-M devices
sporting 8MiB of RAM. Regardless, the target is to enable deployment to as
many devices as possible, and preferably devices that many companies and orga-
nizations use to enable adaptation. It is unlikely that Inferno will be able to run
on systems with less than 512KiB of memory, at least without heavy modification
to how and when the system allocates memory.

This thesis looks at porting the Inferno operating system to ARM Cortex-M se-
ries CPUs, specifically the ARMv7-M architecture using the Thumb instruction
set. A functional Thumb backend for the compiler toolchain is produced, al-
though with some limitations. A primitive port for the Teensy41 has been used
to evaluate the ported backend.

The OS is ported to the Teensy41 [6] board. The board uses the i.MX RT1060 [7]
Micro Controller Unit (MCU) which uses a Cortex-M7 and has 1MiB of RAM
divided into two 512KiB chunks.
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Chapter 2

Background

As costs and size of devices have decreased they are becoming an ever more promi-
nent part of new products. Additionally, as we seek to improve and expand how
we interact with technology, the need for decentralized processing is becoming
more important. While central processing is still necessary, where warehouse-
scale computing is utilized, running thousands of devices with full-blown com-
mercial operating systems running x86 systems with terabytes of memory, the
devices at the end of the stream are in many cases running smaller Reduced
Instruction Set Computer (RISC) CPUs and have limited memory availability.

ARM [8] has for many years provided CPU designs intended for these smaller
devices. Today ARM has three profiles for their 32bit architecture, where the
profile specifies the intended use case for the device. The profiles are A for
Application, R for Real-time and M for Microcontroller. The A and R profiles
support the same Instruction Set Architecture (ISA), with support for both the
ARM32 and Thumb instruction set. The difference between A and R is that A
requires support for virtual addresses in the memory management model while
R does not. The M profile does not support the ARM32 instruction set, instead
opting only for Thumb. The M profile is intended for situations where the overall
size and deterministic operation is more important than absolute performance.

The focus of this work is to add support for the ARM M profile to the existing
5 [9] toolchain that supports the ARM A profile with a subset of the Thumb
instruction set. The Thumb instruction set consists of 16bit and 32bit instruction
encodings. The 16bit versions were added to the ARM32 instruction set and offer
an opportunity for developers to use the instructions to reduce the binary size.
However, for the CPU to execute Thumb instructions it has to change execution
mode. Since the original Thumb extension does not support all commonly used
instructions, there was a need for extending the instruction set so that it could be
used without changing execution mode back to ARM32. To resolve this Thumb2
was introduced. Thumb2 is an extension for the Thumb instruction set, adding
support for all the instructions required to compile a program and to control the
CPU. With these features, the collective Thumb instruction set can represent
any program previously represented by the ARM32 version. ARM even revised
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their assembler syntax to produce the Unified Assembler Language (UAL) [10]
that enables developers to produce ARM32 and Thumb compliant binaries from
the same assembler source code.

While ARM has defined the UAL the two instruction sets are not equal. ARM32
generally has support for more features than Thumb, both because ARM32 can
leverage Thumb instructions, assuming a modern CPU and because some features
of ARM32 have not been incorporated into Thumb. The differences between the
two instruction sets will be discussed in more detail when porting the loader is
presented in Section 3.1.1.

2.1 Inferno

Inferno [11] is based on Plan9 [12] created by Ken Thompson, Rob Pike, Dave
Presotto, and Phil Winterbottom at Bell Labs in the 1980s. Inferno is a compact
operating system designed for building distributed and networked systems on
various devices and platforms. Some of the intended use cases are hand-held
devices, TV set-top boxes, and inexpensive networked computers.

Inferno retains the core aspects of Plan9, an expansion of the UNIX philosophy
of ”everything is a file.”. In Inferno, process state, IO, and hardware devices are
all remotely accessible by other devices. The kernel provides this for all devices
by requiring that devices implement a standard interface. One of the exciting
differences between Inferno and other operating systems is the ability to share all
resources natively without involving the application developer.

Accessing the resources of remote devices requires a connection to the remote
device, and the remote must have marked the resource as shared. Once these
criteria are fulfilled, the resource can be mounted into the local filesystem names-
pace. The resource is then accessible by applications as any other resource in
the system. There are no further considerations the application developer must
make.

Under the hood, Inferno’s filesystem uses the 9P [13] protocol. Because all devices
also implement the interface to the filesystem, Inferno can leverage this protocol
between devices. In Inferno, using 9P for the local filesystem and remote com-
munication is referred to as the Styx [14] protocol. Styx defines operations for
resources such as; open, read, stat and close.

Because the kernel handles remote resource access, it also handles the security
aspect of this interaction. This frees the application developer from having to
concern themselves with the security aspect of the application and provides a
centralized implementation of protocols, making them easier to maintain.

One common concern when working with small embedded devices, such as the
Cortex-M series CPUs, is that they are not guaranteed to have memory man-
agement or protection hardware, which some modern operating systems require.
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Figure 2.1: Inferno Layer Overview

Inferno does not require any such hardware in order to function. If a Memory
Management Unit or Memory Protection Unit is available, Inferno can use it,
although the lack of one does not present an issue for the operating system.

The market envisioned in this work is the usage of Inferno in networked devices
without strict real-time requirements, such as; cameras, set-top boxes, monitoring
systems, and applications commonly featured in smart-home solutions. In other
words, networked devices that see broad deployment. There are other projects
targeted at these devices, however, most of them are Real-Time Operating System
(RTOS). Inferno being a Non-RTOS system, leads it to have certain differences
from RTOS: Firstly, Inferno applications are developed using Limbo [15] a higher-
level language instead of C. Limbo executes on the Dis virtual machine [16].
By developing applications in a higher-level language, developers can disregard
some of the details of low-level programming. Additionally, since applications are
executed on a virtual machine, they can be shared between devices as the virtual
machine abstracts any hardware specific concerns. Figure 2.1 shows the basic
stack for Limbo applications, since Limbo languages can either be distributed as
raw code or in bytecode format there are two alternate sources. Secondly, Inferno
is designed around resource sharing. All mounted resources, including hardware
devices and process states, can be shared between devices without implementing
protocols or being aware that the resource is remote. These benefits provide
a framework to create endpoint devices as a central server commonly controls
these. It also follows that since the remote connection is handled by the kernel
all security mechanisms are also handled by the kernel. This improves security
since there is a common implementation of the security protocols and again, these
security protocols do not need to be implemented by the application developer.

The limbo language used for Inferno can either be interpreted or compiled to
bytecode. Since the dis VM is by default present in Inferno these applications
can be executed on any device without modification. Assuming the device has
the necessary optional features enabled as is discussed in the next section.
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2.1.1 Configuration

When working with Inferno, it is possible to select the features that should be
built into the kernel. These features are selected from the pool of available
features using a configuration file. In addition to selecting the features wanted in
the kernel, the configuration file can also be used to supply constants that will
be made available during the compilation stage of the kernel.

The configuration file is split into ten sections:

• dev - device drivers compiled into the kernel

• root - filesystem paths and raw files

• ip - Connectivity protocols

• link - hardware-specific complements for device drivers

• misc - architecture-specific complements for device drivers.

• lib - Libraries to include in the kernel

• mod - Dis modules to include

• port - Portable components to include in the kernel

• code - C parameters provided during kernel build

• init - Specify the userspace initialization program

In the first section dev, the devices that should be part of the kernel are specified.
These devices can be hardware-specific device drivers such as uart or general
kernel devices such as the OS root serving as the filesystem root and the prog

device which handles the scheduling of processes in the kernel.

In the second section root, a list of files and directories that should be included
in the kernel is specified. There are often a few required files as they are needed
by features enabled in the other sections, for instance, the chan port requires
that /chan/ is mounted in the root section.

In the third section ip, the desired network protocols are specified. A list of the
currently available protocols is shown in the Appendix C.

In the fourth section link, hardware-specific parts of the device drivers can be
defined. For instance, serial and LED interfaces.

In the fifth section misc, architecture-specific interfaces can be supplied. Exam-
ples are Direct Memory Access(DMA), co-processor, and MultiMediaCard(MMC).
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The sixth section is the lib section. Here the libraries that should be linked into
the kernel are specified. A list of the currently available libraries shipped with
the Inferno source code is shown in the Appendix D

The seventh section is the mod section. Here the builtin Dis modules one wishes
to use are specified. The sys module is required for interaction with the kernel
from the VM.

The eight section is the port section. Here portable components, excluding those
that are defined as drivers, can be specified.

The ninth section is the code section. Here C code can be specified which will
be included as-is in a generated configuration file which is then available to the
rest of the source. Common variables are the size of the different memory pools
and if the console should be enabled.

The tenth section is the init section. This section specifies the name of the
Dis script that should be launched on startup. The script is then responsible for
attaching the required devices and starting any user interface that is necessary.
The init script configured in this thesis attaches common devices and then
initiates a shell session with input from the UART interface.

The configuration file used through this project in order to produce a bootable
Inferno kernel is show in the Appendix B.

2.1.2 Ports

Inferno uses the concept of ports. Ports contain the specific configuration, device
drivers, and non-portable features used to run Inferno on a specific platform.
Commonly ports contain:

• A configuration file as presented above.

• Files that define constant values.

• Implementation of hardware-specific procedures.

• The main function that enables and configures features of the OS.

• Device drivers needed by the system.

• Tooling to produce a bootable binary file.

Some of the constant values required by the system are: Where the kernel’s
memory starts, the address of the core machine structure, and the start of the
text segment.
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Hardware-specific procedures relate to interrupts/exception handling, exit, and
reboot.

The main procedure enables desired features, configures memory pools, and ini-
tializes the kernel. Once the kernel is configured, the main procedure is responsi-
ble for initializing userspace by initializing the Dis VM and loading the configured
initialization script defined in the init section.

Adding device drivers is done by implementing a Dev interface for the hardware
structure. The implementation is responsible for abstracting away any hardware-
specific operations so that the device can be accessed in the same way as any
other. Once the interface is created, the device can be hooked into the kernel
and will be available for other applications to use.

Since different platforms have different requirements for the binary format, the
port implementation should also provide a method to produce the final binary in
the correct format.

2.1.3 Compiler Toolchain

Inferno is distributed with a custom C toolchain. The toolchain consists of three
components: The assembler, compiler, and loader. All three of these consist of
architecture-independent and architecture-dependent parts. Generally speaking,
the assembler and compiler produce intermediate representations from the assem-
bler and C input data, respectively, and the linker converts this representation
to the binary format of the target architecture.

Inferno already supports producing binary instructions for the ARMv6-A ar-
chitecture with partial support for Thumb instructions. The added ARMv7-M
backend discussed in this thesis is based on this ARMv6-A backend.

Assembler

The Inferno toolchain’s assembler, just like any other assembler, enables the pro-
grammer to define low-level procedures. One big difference between the Inferno
assembler and the GCC/LLVM counterparts is that Inferno employs an internal
assembler syntax while the others enable the usage of ARM’s UAL [10]. The
UAL allows programmers to write assembler code that can be compiled to both
ARM32 and Thumb instructions. While the Inferno assembler for Thumb and
ARM32 are very similar, there is currently no practical way of implementing
on-demand predication without inserting nop instructions in Thumb.

An important feature of the Inferno assembler is the ability to specify instructions
that the compiler is not able to produce due to limitations in the C syntax.
Since the Inferno compiler does not support inline assembler in the C source,
the assembler must enable developers to use hardware features that cannot be
expressed in C.
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Compiler

The Inferno compiler implements ANSI C with some restrictions and extensions.
The compiler uses a YACC-based parser to produce a block-structured symbols
table. The compiler performs nine passes on this structure, resulting in an object
file that the linker can process. Of the nine passes performed by the compiler,
four are machine-dependent. The other passes are part of the shared compiler in-
frastructure, and consequently, any changes to them will impact the compilers for
other targets as well. Therefore, only the four machine-dependent passes are rele-
vant to review when adding a new compiler. These four passes are addressability,
code generation, registerization, and machine-code optimization.

The functionality of the compiler is hardly modified in this work, as the base
compiler produces object files that conform to the format of the loader. Therefore
only a slight description of the machine-dependent passes is presented to give an
overview of the procedures that might be modified for future optimizations of the
compiler.

Addressability concerns the legal address field expressions of a machine language
instruction. Both ARM32 and Thumb are load-store architectures and employ
identical rules regarding addressability, with slight variation in the immediate val-
ues used. In some cases, Thumb1 instructions limit the number of valid registers
to the first seven. However, there are extended Thumb2 variants that support the
complete set of registers. While performing the addressability pass the compiler
will label each node with a Sethi-Ullmancomplexity, which is roughly equal to
the number of registers required to compile the tree.

The next pass is code generation. Code generation uses recursive descent through
the structure mentioned above. It converts the structure from a syntax tree to
machine code in an internal format. This is then used in the following steps.

Using the machine code in internal format produced in the previous pass the
compiler performs registerization. The purpose of this pass is to reintroduce
registers for heavily used variables.

The final machine dependent pass is machine code optimization. This pass is a
catch all for opportunistic optimizations that fit the target architecture.

Loader

The final part of the toolchain is the loader. Both the assembler and compiler
produce object files that are passed to the loader which converts the internal
format used in the object file to a binary file with instructions for the targeted
architecture.

9



The loader is the most relevant part for this thesis. Since all parts of the toolchain
are based on a Thumb1 implementation they already respect most of the differ-
ences between Thumb and ARM32 instructions. Therefore, in most cases the
work is related extending the loader to support new instruction formats.

2.2 ARMv7-M

The ARMv7 architecture is available in three profiles; A, R and M. Both A and R
support mixing ARM32 and Thumb instructions, while M only supports Thumb.
The profiles have different suggested areas of usage, the one of concern here, the
M profile, is targeted at microcontrollers where overall size and deterministic
operation for an implementation is more important than absolute performance.

The Thumb instruction set has been released in two instances, first it was a
supplement to the ARM32 instruction set, providing the ability to use 16bit in-
structions alongside the 32bit ARM instructions. Later, in 2003 ARM announced
an extension to the Thumb instruction set with 32bit instructions as well, with
this the number of features were extended enabling applications to be developed
solely with Thumb. The reasoning behind extending Thumb was that, while
ARM32 and Thumb instructions can be mixed, it requires that the CPU’s exe-
cution mode is changed between the two. The execution mode can be changed
by using the BranchX instructions. While this only incurs a slight degradation
in performance it complicates the hardware design and with limited support for
operations in the first iteration of Thumb, the possible applications are limited.

Thumb instructions consists of halfwords. The value of the most significant bits
specify whether the next halfword is also part of the same instruction. The
separate widths are referred to as narrow for one halfword and wide for two, with
many instructions offering both narrow and wide variants. The first iteration of
Thumb consists of mostly narrow instructions, although there are some wide
instructions such as branches.

When instructions are wide the bits [15:11] are set to any of the following values:
0b11101, 0b11110 or 0b11111. Figure 2.2 shows the 16bit T1 encoding of add
register and equivalent 32bit T3 encoding. One difference of note between the
encoding is that the 16bit version does not support the full set of 16 registers,
since only three bits are reserved for register selection. This distinction is present
in many of the 16bit variations, presenting a new challenge when optimizing for
space during the register allocation phase of the compiler.

2.2.1 ARMv7-M vs ARMv6-A

The Inferno ARM toolchain already present in mainline Inferno supports the first
iteration of Thumb instructions interleaved with ARM32 instructions. However,
there is only support for Thumb1 instructions. In other words, it’s a ARMv6-A
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Figure 2.2: Add register 16 vs 32bit

compiler. Since this instruction set only allows code size reduction for ARM32
by using Thumb1 instructions where possible, it is not able to produce working
ARMv7-M binaries. Additionally, the ARMv6-A architecture differs in usage of
exception and special registers. Therefore the compiler needs to be modified so
that the ARM32 cases are altered to produce valid Thumb2 instructions instead
in addition to replacing the exception handler structure and instructions used to
access special registers.

2.2.2 Predication

ARM Thumb instructions do not support the predication commonly used in
ARM32. Predication is the ability to specify the condition under which the
instruction should execute without other control structures. This can be written
in assembler as addeq, where the add instruction should only execute if the
state of the CPU has the zero flag set to true, which was set by some preceding
instruction.

Instead of this per-instruction predication, Thumb supports the usage of If-
Then(IT) blocks. IT blocks consist of one IT instruction that sets the predication
for up to four subsequent instructions.

2.2.3 LDM/STM

The LDM and STM instructions enable loading multiple registers from a mem-
ory region or storing multiple registers to a memory region with a single instruc-
tion. Both LDM and STM have variants that define how the provided memory
address should be changed for each register. One type is Increment After(IA)
in which the address is incremented after each register. The other is Decre-
ment Before(DB) where the address is decremented before each register. The
ARM32 instruction set supports two additional variants that are not supported
in Thumb, Increment Before(IB) and Decrement After(DA). If these are required
they can be implemented with a combination of instructions. By offsetting the
base register by four prior to the instruction so that LDMIB rx, {} becomes
ADD rx, #4; LDMDB rx, {}; SUB rx, #4. The restoration of rx is only nec-
essary if subsequent instructions depend on the value of rx or if writeback is
enabled.

Common usecases for LDM and STM in Inferno is in saving or restoring registers
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when calling and returning from procedures, as well as copying fields from one
struct to another. These instructions are commonly used in the 64bit library of
Inferno which is presented in 3.1.5.

2.2.4 ARMv7-M Exceptions

In ARMv7-M exceptions are normal procedures that do not require any special
handling by the compiler or developer. The CPU will always save the caller-saved
registers (R0-R3, LR, PC, and PSR) prior to calling the handler. Because of this,
implementing exception handling with ARMv7-M only requires that exceptions
are enabled and that the handler is registered. Registering the handler can be
done by setting the address of the handler in the vector table or pointing the
Vector Table Offset Register (VTOR) to an array at runtime.

2.2.5 Size comparison

One of the selling points of the Thumb instruction set is that it can reduce the
binary size. The major constraint when using ARMv7-M is that devices that use
this architecture are usually severely limited in the amount of memory available.
Therefore, one important aspect of porting Inferno to this architecture is that
the resulting binary is smaller, so that it may be used on a general selection of
devices, rather than a subset of devices that have high memory availability.

ARMv7-A/R also support using Thumb instructions and can therefore optimize
for size by opting for using only Thumb instructions, however in this case the
ARM32 pipeline is unnecessary and adds costs to the device. Also, this is only
an option if the toolchain supports the full Thumb instruction set, which Inferno
currently does not.

Because size is a primary concern for adopting Inferno in the ARMv7-M space
the following section will look at the binary size of simple C programs. A compar-
ison between the existing ARMv6-A compiler, the produced ARMv7-M compiler
and the ARMv7-M variant of GCC is shown in Figure 2.3. The source for the
programs is found in the Appendix A.

As can be seen from the Figure, there is a fair amount of space to be saved by
using the Thumb instruction set, additionally it is apparent that there is room
for adding size optimizations to the Inferno compiler as the results from GCC
show.

The call_deep program tests the calling convention used by the toolchain. As
can be seen from the graph, this is one area where the ARM32 version outperforms
Thumb in size. The reason for this is that the linker has not been made aware
that it can use store instructions that access the link register. It assumes it
only has access to Thumb1 instructions, where storing to registers with number
higher than seven is not possible. Therefore, it copies the link register to register
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Figure 2.3: Size of binary with different compilers

six and then stores that register onto the stack. Additionally it modifies the
stack pointer with a subtract instruction, whereas the ARM32 version uses the
writeback features of stores to update the stack pointer at the same time as it
saves the return address onto the stack. This will be further discussed in 3.1.3

2.3 Teensy41

The board used to evaluate the new backend for Inferno is the Teensy41 [6].
The Teensy41 utilizes the i.MX RT1060 [7] microcontroller which provides a
ARM Cortex-M7 CPU running at 600MHz. It has 1MiB of RAM divided into
two separate 512KiB blocks, and 7636KiB of Flash memory. It supports many
external interfaces, although in this work only the UART interface is of interest.

The Teensy41 has multiple memory regions: Instruction Tightly Coupled Mem-
ory(ITCM), Data Tightly Coupled Memory(DTCM), On-Chip RAM(OCRAM)
and OCRAM2. ITCM, DTCM and OCRAM share the same 512KiB block of
memory which can be assigned to the different memory regions in 32KiB blocks.
While all three share the same physical memory unit, the memory addresses are
different for all. ITCM starts at address 0x0, DTCM starts at 0x20000000 and
OCRAM starts at 0x20280000. OCRAM2 has a full 512KiB block of memory
starting at 0x20200000. ITCM being intended for instructions has a single 64bit
interface while DTCM, intended for data, has two 32bit interfaces.

2.3.1 Boot sequence

The i.MX RT1060 supports various boot procedures, an overview of the process
is shown in Figure 2.4. The one used in this thesis is SPI NOR. Specific details of
the boot sequence is not important in order to understand the contribution of this
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Figure 2.4: i.MX RT1060 boot sequence( [17])

paper, and interested readers are referred to the reference manual [17]. The i.MX
RT1060 requires that the beginning of the binary contains a specific structure, this
structure is used to specify the type of boot sequence and provide some variables
used during boot. It also requires the implementation of a setup procedure that
configures hardware devices on the board, loads the main application into RAM
and finally branches into the main procedure of application.
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Chapter 3

Method

This thesis is concerned with adding a new target architecture to the Inferno
toolchain and porting Inferno to the Teensy41 board running the i.MX RT1060
MCU. This chapter presents how the toolchain is extended, what extensions have
been made, and why. The process of porting Inferno to a new target device is also
presented, along with the hardware-specific adaptations made to the operating
system. The chapter starts with the toolchain, followed by Inferno, then the
specifics of loading the kernel onto the Teensy41, and finally presents some general
debugging methods used throughout the process.

3.1 Porting the Toolchain

Porting the toolchain is the core contribution of this thesis as it enables others
to develop their own ports of Inferno for the ARMv7-M architecture. The parts
of the toolchain that have been modified are the compiler, assembler and loader.
Both the compiler and assembler are concerned with parsing a source file and
producing an object file. This object file can then be consumed by the loader in
order to produce an executable binary for the target architecture. Consequently,
both the compiler and assembler are constrained by the capabilities of the loader.
As such, this section will first present the loader so that the operations of the
others are better understood.

3.1.1 Loader

The method used for porting the loader consists of three broad parts: discovery,
extension, and testing. The discovery involves mapping out the combinations of
internal instructions and parameters the compiler and assembler produce. The
second part, extension, is concerned with implementing the missing combinations.
The third and final part, testing, is concerned with verifying the added encodings
and adding checks to the loader, so it provides errors for unsupported parameters
or conditions.
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Discovery

Since the loader is based on the existing ARM32 loader with Thumb1 capabilities,
and the ARM32 instruction set is similar to the Thumb instruction set, the dis-
covery part was performed by pushing the loader to produce Thumb instructions
rather than ARM32. In order to push the loader, two trivial modifications were
made to the main loop of the loader. First, when the loader begins processing
a new TEXT block, which is equivalent to a procedure, it marks it as Thumb by
setting a flag in the Intermediate Representation (IR) structure. When the loader
begins emitting binary instructions for the operations contained within the TEXT
block it uses this flag to set a global state thumb to 1. When thumb is set to 1 the
loader will use the Thumb structures to lookup operations and produce binary
instructions.

This method works for all the instructions that are intended to be supported.
However, one condition will cause the loader to revert to ARM32, and that is
when it encounters floating-point instructions. In this case, it will unset the
thumb flag for the TEXT block and produce a warning with the name of the
procedure and the instruction it encountered that made it revert to ARM32.
Again, this is because floating-point support is beyond the scope of this thesis.

While floating-point support is not required to run the kernel with the configu-
ration used in this thesis, some procedures contain branches that utilize floating-
point. Since the entire procedure is promoted to ARM32 this will raise an excep-
tion when branching to the procedure. To prevent the exception from crashing
the runtime, procedures that contain these branches have had these branches
replaced with an error so that the procedure remains thumb compliant and when
floating-point support is added these branches can be reverted to operate cor-
rectly.

With the addition of the modifications described above, the loader will produce
an error when it encounters unsupported operations previously supported by
ARM32. This provides the feedback necessary to move to the extension stage.

Extension

The process of extending the loader is, in most cases, simple. Only two parts of
the loader source need modifications. First, a new entry is added to a structure
called optab. The optab is used to lookup supported combinations of operations
and parameters. After extending the optab an encoder is added to the asmout

procedure, which processes the operation and supplied parameters to produce
the appropriate binary representation.

The optab is an array of type Optab seen in Figure 3.1. The as property is the
operation type, for example if the as is set to AADD then it is an add operation.
The first A is used to namespace the enumerations. The instruction types are
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struct Optab {

char as;

char a1;

char a2;

char a3;

char type;

char size;

char param;

char flag;

}

Figure 3.1: Loader optab structure

shared by the compiler, assembler, and loader so that the value is equal in all of
them. The next three properties a1, a2, a3 specify the type of data the instruction
will be working on, these are commonly either register or constant. The type

property specifies how the binary output should be processed in asmout. The
size property defines the size of the encoded instruction in bytes. When there are
one-to-one mappings between internal operation and the ARMv7-M instruction
set the size is either two or four. Some special combinations of operations and
parameters result in more than one binary instruction. An example is when an
immediate value exceeds the supported size of the operation so the loader will
insert data operations to produce the immediate. It can produce these sequences
without modifying the internal representation or special handling beyond the
asmout handler producing all the necessary operations.

Adding a new supported combination of an operation and parameters is done by
adding an entry to the optab with the operation and the parameter types. To
reduce the number of entries in the optab it is possible to alias one operation
to another. This is preferable because many instructions are identical except for
a few bits specifying the sub-operation. For instance, ADD, SUB, MOV, MVN,
and CMP with parameters of a register and an immediate are all identical except
for bits [8:5] of the first halfword. Selecting the specific bits is therefore left to
asmout. This results in fewer entries in the optab improving readability and
fewer entries in asmout. One downside to this approach stems from the fact that
aliasing is done globally. Therefore, if there are operations that are equal in some
cases, yet differ in others, then they will still resolve to the same optab entry,
so it is necessary to check what types alias to the newly added entry and either
add special handling for edge cases in asmout or emit an error informing that the
combination is not yet supported.

By adding a new entry to the optab the loader will be able to recognize the pattern
and pass the arguments on to the asmout procedure. The asmout procedure is
primary a large switch statement. It selects the appropriate case from the type in
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the optab entry it is passed. Each entry in the switch statement stores the binary
representation of the instruction in local variables, these are then, depending on
the size, written to the binary file. Common checks performed by the cases
in asmout are: check that the arguments are valid, for instance, validate that
the register number is within the bounds of the requested encoding. If any input
variables are immediate values the handler should validate that the value is within
the acceptable range and transform the immediate to the format expected by the
instruction.

In the case of immediate encoding, one addition made by this work is the addition
of a ThumbExpandImm encoder. The ThumbExpandImm encoding is optionally used
by some of the data processing instructions that accept immediate values. The
format enables the representation of 32bits of value given 12bits. The format is
not able to present the full scope of the 32bit values, instead, the first four bits
are used to specify the pattern of the latter eight bits. The encoding table can
be seen in Table 3.1. The implemented encoding does not support all patterns,
specifically the repetitive patterns. Still, it is featureful enough for the Inferno
configuration used.

Table 3.1: Thumb Expand Immediate encoding

i:imm3:a consta

0000x 00000000 00000000 00000000 abcdefgh

0001x 00000000 abcdefgh 00000000 abcdefghb

0010x abcdefgh 00000000 abcdefgh 00000000b

0011x abcdefgh abcdefgh abcdefgh abcdefghb

01000 1bcdefgh 00000000 00000000 00000000

01001 01bcdefg h0000000 00000000 00000000

01010 001bcdef gh000000 00000000 00000000

01011 0001bcde fgh00000 00000000 00000000
... 8-bit vaules shifted to other positions

11101 00000000 00000000 000001bc defgh000

11110 00000000 00000000 0000001b cdefgh00

11111 00000000 00000000 00000001 bcdefgh0

a In this table, the immediate constant value

is shown in binary form, to relate abcdefgh to

the encoding diagram . In assembly syntax, the

immediate value is specified in the usual way(a

decimal number by default)
b UNPREDICTABLE if abcdefgh == 00000000

In addition to the operation and parameters asmout can produce alternate en-
coding based on a value scond. The scond is passed by either the compiler or
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the assembler and provides additional conditions for the operation. These condi-
tional values were used for predication in ARM32, and are still used for supplying
parameters to load/store operations. These operations have optional parameters
for updating the register used as the base address, whether it should use post
or pre-increment, and if ut should add or subtract the immediate value from the
base register.

Testing

When evaluating the produced encoding it was compared to the ARM32 equiv-
alent, which is known to be correct. In most cases the instructions are identical.
This makes it simple to detect if the loader encodes instructions correctly. In
some other cases, such as conditional execution, more effort is needed to compare
the two results. The comparison was made for already existing logic to spot im-
mediate differences, then very simple tests were written which could be produced
using the assembler or compiler and then validated manually. Manual validation,
while slow, is in many cases quite simple to perform if the source is known and
the number of instructions is limited.

Since many features were missing from the loader used as the base for the pro-
duced Thumb loader, starting with the entire OS would result in there being
many erroneous encodings and it would be hard to discern issues. Therefore, in
addition to manually verifying the produced output and before using the loader
to build the Inferno kernel, a simple qemu [18] instance running on the Cortex-
M4 was used to test the basic features of the loader. The goal for the qemu
application was to define the vector table used to startup the Cortex-M core and
test the features the loader was missing but were required in order to build the
kernel itself. There are some benefits of using qemu over a physical device that
made it a good candidate: Launching a new build on the qemu device is faster
than flashing onto a physical device, and exceptions are easier to spot in qemu
since it will immediately crash with a basic error condition, and qemu requires
very little setup and no physical connections. The qemu application produced
can boot on the Cortex-M4, enable the UART interface and read/write messages
through this interface.

3.1.2 Compiler

The first step in porting the compiler was to choose the base compiler on which
the port would be based. For this, the existing ARMv6-A compiler was chosen.
The reason for using the ARMv6-A backed as the base was in part because
it already had support for Thumb1 instructions which resolves the compiler side
differences between Thumb and ARM32 instructions. Furthermore, there already
exists a raspberry PI port for the ARM32 version which made it possible to run
the kernel and inspect the kernel on a fully functional system.
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Following the base selection it is important to recognize which optimizations/con-
cepts are incompatible with the new target. Since the existing compiler already
supports Thumb1 it already recognizes the key differences between the ARM32
and Thumb instruction set such as predicates ad limited register usage. Beyond
the differences already remedied by using the Thumb1 compiler there are no
architecture dependant alterations required by the compiler.

One unexpected issue with using the ARM32 toolchain as the base for a Thumb
port was that it had explicitly removed forwarding of conditional parameters for
Thumb. In the ARM32 compiler, a field called scond is used to set conditional
parameters that can alter the resulting encoded instruction. In the Thumb com-
piler, these parameters were explicitly removed and replaced by a constant value.
This constant is fine for most instructions in the Thumb instruction set, however,
it is necessary in the case of LDM and STM instructions. Since these instructions
support alternate modes of operation it is necessary to know which mode is ex-
pected. Re-implementing the scond parameters was done by backporting it from
the ARM33 compiler. This involved updating the value of the scond value in the
same manner as the ARM32 compiler and passing it through to the object file
output. Because the interpretation of the scond parameters change depending
on the type of instruction being encoded the parameters are only forwarded the
MOVM operation which is encoded as either STM or LDM instructions.

3.1.3 Assembler

As with the rest of the toolchain, the assembler is based on the ARMv6-A assem-
bler. As with the compiler, the assembler uses a YACC-based parser to parse the
source assembler. Alongside the parser, a lookup table enables conversion from
convenient string-based symbols to types and constant values.

The structure of the entries in the assembler lookup table is:

char *name;

ushort type;

ushort value;

The name is the symbol that can be used in the assembler file, the type is used
internally so that operations are only performed on the relevant types, the type
is also used to select the relevant encoding in the loader. Finally, value is the
value assigned in the intermediate representation. For instance, the symbol R1 is
mapped to a type of LREG with a value of 1.

The process of extending the assembler depends on what type of extension is
required. Since the assembler already supports the required features of ARM32
there is no need for extending the syntax of the assembler. The only addition to
the assembler made for the purpose of porting it to ARMv7-M is to add a few
new keywords used to access special registers in the architecture. This extension
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relates to updating and reading the PRIMASK register. In order to add support
for this in the assemble all that is required is to add a new entry to the lookup
table on the form:

"PRIMASK", LPSR, 4,

The ARMv6-A assembler uses the LPSR type to modify the Application Program
Status Register(APSR) register. While the PRIMASK is not part of the ARMv7-
M special-purpose Program Status Registers xPSR the value type LPSR is used
because it falls under the special-purpose mask registers, which are not that far
removed from the xPSR registers. Additionally, by using the existing value type,
no further modifications are required in the assembler.

Improving stack save and restore

The Inferno loader saves the LR register when a procedure is called, updates
the stack pointer, and performs the inverse operation before returning. The only
exception to this is if the procedure is a leaf node, meaning it does not call any
other procedures. Because the Thumb1 ISA does not support load and store
operations with registers higher than 7, this operation, therefore, requires three
separate instructions. With Thumb2 these three operations can be performed
with one instruction. Figure 3.2 shows the old and new setup for saving the LR
and updating the stack pointer.

sub sp, #4

mov r6, lr

str r6, [sp, #0]

(a) Old update SP and save LR

str.w lr, [sp, #-4]!

(b) New update SP and save LR

Figure 3.2: New VS old update SP and save LR

The existing loader already had support for this if it was running in ARM32 mode.
Therefore, this feature could be added by adding support for the new store and
load instruction. However, for ARM32 the load and store instructions accept
12bit immediate with writeback, while Thumb only supports 8bit immediate if
writeback is required. In cases where the stack pointer needs to be moved by an
immediate larger than 8bit, the loader uses the old approach.

3.1.4 Added instructions

Since the original loader only implements Thumb1 instructions, some additional
instructions have been added so that the loader is capable of producing all the
instructions required to compile the kernel.
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The following list shows the instructions that have been added to the loader.
They are shown with the UAL syntax since that is the syntax most will be familiar
with. In Appendix E the same list is shown with the encoding formats used and
the optab entries added for each instruction. Some items in the list below resolve
to two instructions, these are shown with two instructions on one line separated
with a semicolon(;).

• Usecase: Store the PC or SP to a memory address. The reason it consists
of both a move and a store is that using the PC as the source register causes
unpredictable behaviour.

UAL syntax:

mov PC/SP, rtmp; str PC/SP, [rtmp, offset]

• Usecase: Load the PC or SP from a memory address. Same reasoning here
for using two separate instructions as the case above

UAL syntax:

ldr rtmp, [rx, offset]; mov rtmp, PC/SP

• Usecase: Read the current PRIMASK value. Currently there is only sup-
port for PRIMASK as it was the only one required. Extending it would be
simple, although it also requires that the assembler is extended because the
compiler would not generate this sequence from the C source code.

UAL syntax:

mrs rd, PRIMASK

• Usecase: Set the value of PRIMASK. Same reasoning as the one above.

UAL syntax:

msr PRIMASK, rd

• Usecase: 32bit dataprocessing instructions, used for larger immediates and
registers higher than seven. These are added because they support larger
immediate encoding than the Thumb1/narrow equivalent and they support
4bit registers.

UAL syntax:

and rd, rn, #const

add rd, rn, #const

orr rd, rn, #const
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• Usecase: Store multiple registers at once. Used when copying structs or
when assigning many fields to a struct at once.

UAL syntax:

STMIA rn, <registers>

STMDB rn, <registers>

• Usecase: Store and load multiple registers at once. Used when copying
structs or when assigning many fields to a struct at once.

UAL syntax:

LDMIA rn, <registers>

LDMDB rn, <registers>

• Usecase: Not used yet, will be used by userspace to trap into kernel proce-
dures.

UAL syntax:

svc #imm8

• usecase: Used by the manual div and modulo implementation.

UAL syntax:

RSB.W rd, rn, #const

• Usecase: load from memory using a register as an offset. The versions
with support for writeback are used in the improved stack save/restore
implementation.

UAL syntax:

ldr rt, [rn, #+/-imm8]

ldr rt, [rn, #+/-imm8]!

ldr rt, [rn] #+/-imm8

ldr rt, [rn, imm12]

• Usecase: Perform logical AND operation on a shifted register to update
conditional flags.

UAL syntax:
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TST.w rn, rm, shift

• Usecase: Shift register by register value, added to enable shifting on regis-
ters higher than 7.

UAL syntax:

LSR.W rd, rn, rm

LSL.W rd, rn, rm

• Usecase: Enable usage of high registers for AND, ORR, and EOR.

UAL syntax:

ORR.W rd, rn, rm

AND.W rd, rn, rm

EOR.W rd, rn, rm

• Usecase: store with writeback and post/pre-increment.

UAL syntax:

STR rt [rn, #-imm8]

STR rt [rn], #+/-imm8]

STR rt [rn, #-imm8]!

3.1.5 Special Handling

The Inferno toolchain does not expect that the target architecture natively sup-
ports all features the OS requires. When the compiler encounters requirements
that it knows the architecture does not support, it will insert predefined sym-
bols that handle these operations. The loader then expects these symbols to be
available during linking. There are a few instances where this is necessary for the
Inferno kernel.

The first instance is the handling of 64bit integers. While Inferno is targeted at
32bit architectures, some OS structures rely on 64bit integers. In order to provide
64bit support, the loader inserts predefined procedures when it encounters 64bit
operations. These procedures must therefore be provided to the loader when
building a program that requires 64bit support. In the case of the kernel, these
procedures are provided by libkern. In libkern there are structures for holding
the 64bit values along with procedures for data processing such as compare, add,
and sub. These procedures are implemented in C. However, they are also defined
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as architecture-dependent, therefore, a copy of the ARM32 implementation is
provided for Thumb.

The second instance is for division and modulo operations. While ARMv7-M
supports integer division, it does not support modulo operations. There are
two available methods for adding the missing features. Either the compiler will
replace division and modulo operations with predefined symbols that must be
linked, much like the 64bit procedures discussed above, or the loader can be
extended to provide support for these operations. Since porting the existing
division and modulo procedures from ARM32 to Thumb was a fast non-intrusive
method of providing support for the missing procedures, that option was selected.

3.2 Inferno

Porting Inferno to a support ISA is concerned with implementing drivers for
hardware devices, producing a bootable binary and configuring the memory lay-
out. Most of the setup code can be sourced from existing ports and only minor
modifications are needed to achieve a running system. In the case of this thesis
there are some additional concerns since the kernel uses certain features that are
architecture dependant that are not provided by the port. The reason these pro-
cedures require manual porting is that they are implemented in assembler. By
basing the ports on the existing ARM32 implementation the primary concern is
to replace predication with branches.

Since the kernel configuration used for building the kernel in this thesis uses a
minimal amount of libraries only a couple of libraries have received the necessary
modifications to support the ARMv7-M architecture. The first library is the
libkern which implements many kernel specific procedures. In libkern the
procedures memmove, memcpy, memset, strchr, div, _divu, and _modu have been
modified and tested.

In the case of memmove, memset and strchr the existing ARM32 implementa-
tions rely heavily on load and store operations with writeback and post-indexing.
While this is supported by the Thumb instruction set, it was decided that adding
the 32bit implementiation to the compiler would require modifications beyond
extending the optab structure, as the 32bit version is only required in the case
that writeback is necessary(there is no option to have post index without write-
back). Therefore the pre/post incrementing was added manually in the assembler
files using ADD/SUB on the appropriate register before or after the instruction.
Figure 3.3 compares the ARM UAL syntax, Inferno ARM32 assembler with post
increment and Inferno Thumb assembler with manual post increment.
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strb r4, [r2], #1

(a) ARM Unified Assem-
bler Syntax

MOVBU.P

R(4), 1(R(2))

(b) Inferno Assembler
with Post Index

MOVBU R(4), (R(2))

ADD $1, R(2)

(c) Inferno Assembler
without Post Index

Figure 3.3: Comparing STRB with post incrementation variants

3.3 The Interpreter

The Dis interpreter is implemented in libinterp. It uses a large number of macros
to define how to produce the architecture specific instructions. As of now this
has not been ported, therefore the userspace aspect of the OS is unusable since
this is implemented with Limbo running on the Dis VM. It is however possible
to start other binaries, for instance another virtual machine, and leverage the
Inferno API from this binary.

3.4 Building & Booting

On ARMv7-M systems booting the device is handled by providing the vector
table at the start of the binary, with the reset handler and the stack pointer, along
with optional additional exception handlers. The Teensy41, however, employs a
separate boot path. There are multiple boot schemes available for Teensy41.
The SPI NOR sequence is the one used and is the one discussed here. First,
the boot configuration is read from the start of flash, address 0x60000000. This
configuration defines the type of boot sequence and provides other values required
to configure the system. One essential value in the configuration is the address
of the setup handler. This address is sourced and jumped to immediately after
parsing the configuration. The setup handler is responsible for configuring the
system’s hardware components, loading the actual binary from flash into memory,
and branching into the reset handler of the actual binary.

The SPI NOR implementation used was sourced from the Teensy41 Arduino
SDK [19] and modified so that it would work with the Inferno toolchain. Since
there is no linker file available, the configuration structure is defined in assembly
and provided as the first parameter to the loader, ensuring that it is the first part
of the resulting binary.

Following the initial boot structure, the setup handler is loaded. Next, the han-
dler configures the entire first 512KiB of memory as ITCM memory. This is done
to provide as much contiguous space as possible for the main binary in an effort
to avoid needless memory issues during the development process. Next, the setup
handler loads the main binary into the ITCM memory, configures the clock for
the UART interfaces, enables the FPU, and then branches into the reset handler
in ITCM. After this the main binary has control of the system.
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Since the setup handler uses address 0x60000000 as the base address for the text
section it is unable to be compiled alongside the main binary which expects 0x0
as the start of the text section. To accommodate for this a script is used to
merge the two binaries together after they have been compiled. This script also
updates values in the boot structure providing information about where the main
binary is positioned in flash and how large it is, both values are used by the setup
handler when copying the main binary into RAM.

3.5 Debugging

Debugging is an core part of any type of software development. Since this thesis
is concerned with a compiler toolchain and an operating system, the amount of
tooling available is very limited. One common way of debugging applications is
to use GDB. GDB enables stepping through code, inspecting variables and the
state of the CPU. However, in order to use GDB a debugger must be attached to
the target device. This is not immediately possible for the Teensy without some
workarounds. Additionally, without debugging symbols emitted by the toolchain,
the features of GDB is very limited. In this case, the Inferno toolchain does
not provide support for any of the debug symbols formats supported by GDB.
Because of this, the majority of the debugging done throughout this project
is done through a combination of assembler inspection, print statements, and
verbose exception handlers.

Assembler inspecting is performed by using arm-none-eabi-objdump from GNU
binutils [20] to dump the binary in UAL assembler format. The objdump tool
highlights obvious errors as binary sequences that are invalid will be output as
unknown instructions. Beyond this the tool requires a lot of manual inspection
of the assembler in order to spot errors. Combining objdump with small test
programs intended to hit the specific parts of the loader that are being tested
will in most cases highlight errors. In some cases it is also useful to define the
assembler file as well if there are very specific patterns being tested.

The usage of objdump is not limited to only the loader. By implementing de-
tailed logging in the Inferno source the path the program takes becomes apparent.
When the kernel fails, either because of incorrect values or because it performed
an illegal action, printing the address of the offending procedure can be used
alongside objdump to inspect the specific procedure. In many cases, there are
apparent discrepancies between the C source and the produced assembler. In
these cases, copying the procedure to a standalone file with verbose logging from
the loader provides the necessary into where the loader fails to remedy the issue.
In some rare cases, the issue is caused by incorrect assignment in earlier proce-
dures cause the issue. For these types of issues inspection of the error clause, for
instance a branch that was or was not taken is used as the beginning and the
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variable is tracked to every mutation and reviewed to see if the mutation was
performed incorrectly. Once the incorrect mutation is found, objdump is used
again to inspect the invalid assignment.

Some incorrect instructions or bad values will result in the processor attempting
to perform an illegal instruction. In these cases it is very convenient to review
the exception that was thrown as they provide a good base understanding for
what is likely causing the problem. For this reason, all non-hardware dependent
exceptions have registered handlers that log the type of exception and dump the
values in the registers related to the exception. These are especially practical
when there is a branch to a ARM32 instruction.
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Chapter 4

Results

This thesis is concerned with multiple goals, the first being to produce a new
backend for the Inferno toolchain to produce ARMv7-M compliant binaries with
the Thumb instruction set. The second is to produce a port of Inferno running
on the Teensy41. The third is to get the Inferno OS to a state where it can be
interacted with through an UART interface. Alongside these the evaluation of
the size requirements of the system is central due to the memory constraints of
microcontrollers that use the ARMv7-M architecture.

4.1 State of the toolchain

The new toolchain is able to compile a functional version of the kernel. It has
support for essential data handling and memory operations, with some alternate
variants that enable the loader to produce fewer instructions overall. It has sup-
port for arithmetic and logic operations although not all variants are supported,
and floating-point is not supported to any degree. It supports control flow oper-
ations with improved call sequences over the original Thumb1 implementation.

The lack of support for floating-point operations is conveyed by the loader by
emitting a warning when building the binary. The program will also produce a
USAGEFAULT exception with INVSTATE set should the running binary attempt to
call into a procedure that uses floating-point operations.

Additionally, a trivial optimization for updating the stack pointer on procedure
enter and return has been implemented highlighting that there are low hanging
optimizations that can be implemented to improve the overall binary size.

4.2 Binary size

Figure 4.1 shows the binary size of the kernel compiled with the ARM32, Thumb,
and the improved Thumb toolchains. All were built using the same configuration
file, seen in the Appendix B, and the same source. From the figure, it is apparent
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Feature Thumb Size ARM32 size Saved(bytes) Diff(%)
devdup 1256 1560 304 19.5
devpipe 3536 4112 576 14.0
libmath 11808 12352 544 4.4
modmath 66560 63192 -3368 -5.3

Table 4.1: Size comparison of different features

that the Thumb toolchain produces smaller binaries. For the base case shown
here, the improved Thumb compiler reduces the binary size by 18% over ARM32.
While all the included modules are compiled without errors, it is possible that
some of the included source code is incorrectly compiled and the size might change
slightly in order to remedy any issues found. However, it is unlikely that this will
result in any significant size change.

The improved version references the improved save and restore stack sequence
used at procedure entry and exit. This simple improvement reduced the binary
size by 10KiB or 4% from the base Thumb output.

Table 4.1 compares the size of different Inferno features built for ARM32 and
Thumb. The table shows that, as expected, the size of features will likely reduce
when built for the Thumb instructions set. Additionally, it also shows that using
Thumb is not guaranteed to improve the size. Exactly what causes modmath to
become larger for Thumb than in ARM32 is unclear. The most likely reason is
that math operations often have many local variables. Since only a subset of
the registers are allocated by the compiler it has to store variables on the stack
resulting in added instructions to store and load these variables. The reason
only four features are shown in the table above is because it is impractical to
remove and add features due to dependencies resulting in errors if core features
are removed, and libraries that require hardware-specific implementations.
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Figure 4.2: Size of binary with different compilers

Figure 4.2 shows the same test programs as in the background built with Inferno
Thumb, Inferno ARM32 and GCC Thumb. There is little change in the size of
these programs, the only thing of note is that call_deep is now equal in size for
ARM32 and Thumb after the save/restore stack improvement.

4.3 State of the OS

Currently Inferno OS is not usable with the Dis VM. While the OS boots suc-
cessfully it expects that userspace is launched through the Dis VM. Since the dis
VM is not yet ported to ARMv7-M userspace is also not operable. It is possible,
instead of running the Virtual Machine, to go into applications that run natively
on the hardware. However, this removes the envisioned benefits of using a man-
aged operating system and removes the ability to use most of the libraries and
tools that ship with Inferno. Alternatively another virtual machine can be used.

Additionally, a minimal port of the i.MX RT1060 boot sequence has been ported
to the Inferno toolchain. Along with some external tooling, it is capable of
dynamically loading the main binary into memory, and branching to the main
procedure.
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Chapter 5

Discussion

5.1 Compiler Choice

Currently Inferno employs its own toolchain, while this works just fine it intro-
duces some complications when porting between architectures as demonstrated in
this work. Additionally since the Inferno toolchain is far from being a mainstream
compiler it is not afforded the benefits of constant updates to add improved fea-
tures. Toolchains such as GCC and LLVM have huge communities involved in
their development and as a result they provide more features. Additionally, since
these toolchains are pretty much the standard across the industry it is easier
to attract new developers without having to teach them the quirks of Inferno’s
toolchain and the features it lacks.

The GCC and LLVM toolchains have many features not present in the Inferno
toolchain. Consequently, they are quite complex systems that are harder to get
into than that of Inferno, the respective binary sizes of the individual tools are
2-3 times larger for the LLVM and GCC toolchains running an x86 targeted at
ARM. While this further inhibits deploying the compilers onto a embedded board
to enable compilation on the board, the Inferno toolchain alone exceeds 1MiB.
Therefore, without alternate approaches such as execute in place, it is not possible
to use either for on-device compilation of C. Since the intended application of the
ARMv7-M Inferno port is in IoT applications it is also unlikely that the ability
to compile C code on the device itself is necessary. Therefore the port would
benefit more from the advanced features of GCC and LLVM than it gains from
having a slightly smaller, less complex toolchain.

If the ability to compile C code on the device is strictly necessary then toolchains
such as TCC [21] might be a decent middle ground solution. Offering a more
adopted compiler without drastically increasing the memory required in order to
host the OS.

If any other toolchain is to be used for building the Inferno kernel, it is not as
simple as changing the toolchain and everything will work. First off, all features
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that are implemented in assembler will have to be ported to the appropriate
assembler language of the new compiler. Secondly, it is very likely that some
concepts used by the Inferno toolchain will not translate to other toolchains.
Therefore it will be necessary to modify the source as well. This has already
been achieved by Harvey OS [22], a port of Plan9 that can be built using C11
compliant toolchains. They achieved this using semantic patching [23].

Another benefit, beyond reducing the size of the binary, is that these compilers
support the usage of a linker script. With this it would be possible to use Execute
In Place for static libraries, for instance the compiler. A lot of RAM could then
be freed up for use by the OS with static resources being stored in flash.

One downside of using the Inferno toolchain is that due to it not supporting
features that are commonplace in more commonly used toolchains is that using
external libraries might require that they are modified to make them compatible.

5.2 Addressability

While the addressability was not modified in this work, it holds potential for im-
proved binary size and performance since instructions that access registers eight
to fifteen are better served by thumb2 instructions. Therefore, if the compiler
is made aware of the limitiations of certain instructions it can attempt to store
variables that are used a lot in registers 0-7 if they do not require Thumb2 in-
structions. Additionally, if it knows that a variable requires Thumb2 instructions
and there are not enough free registers to store all variables in registers 0-7 it can
instead store this specific variable in registers 8-12. This however requires a bit
more insight since if the value that is stored in registers 8-12 is accessed often it
would be better to store it in lower registers. It becomes a cost analysis of storing
and loading from the stack or heap versus using larger instructions.

5.3 Binary Size

The Thumb binary is quite a bit smaller than the ARM32 equivalent. However, it
is still larger than that of the GCC thumb output, as was shown in the Results 4.2.
In the test cases shown, for all except call_deep, GCC outperforms the Inferno
Thumb compiler. The main reason is that the Thumb compiler always saves the
return address to the stack, even if it does not call into another procedure. For
call_deep GCC optimizes out all the procedures, though it still keeps the bx lr

and a few nop instructions for the ones that were optimized out.

5.4 Floating Point Handling

As mentioned in Method 3, the loader will change to ARM32 mode if it encounters
floating-point operations. This was done since the current configuration of the
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kernel does not require floating-point operations to function. Regardless, some
alterations were made so that the loader did not promote entire procedures simply
because floating-point operations were encountered. While it would have been
possible to extend the loader so that instead of producing ARM32 instructions
in the case of floating-point usage it could instead produce noop or some other
type of instruction. This was implemented, however it required that the loader
be extended with new accepted immediate formats. While not a problem on its
own, this would result in the loader containing untested and very likely incorrect
encodings which would make the process of adding these features in the future
becoming a cumbersome bug hunt to fix these issues. One of the benefits of
the current solution is that since ARMv7-M CPUs do not support changing to
ARM32 mode a USAGFAULT exception with INVSTATE being set in the Usage
Fault Status Register. This way it is very apparent when the CPU is calling
into a routine with unsupported operations. Along with the log from the loader
informing of loaded procedures that have been emitted as ARM32 it is relatively
easy to find the offending procedure and modify it as needed.

Floating-point support was not added because it went beyond the scope of this
thesis. ARMv7-M however, does provide optional an floating-point extension.
Indeed, the i.MX RT1060 supports floating-point operations, therefore adding
support for this at a later date should not pose a problem.

5.5 Boot Handler

As mentioned in 3.4, the Teensy41 uses a configuration structure and a setup
handler when booting. The implemented boot setup was ported from the Arduino
SDK for the Teensy41 [19] and a custom script was used to merge the two binaries
into one before flashing the device. Since the boot binary is not linked with the
main binary it could technically be compiled using GCC which would enable the
utilization of the existing boot handler in the SDK which is more feature full than
the one ported to Inferno. This way, it would be possible to use the linker script
functionality of GCC to embed the main binary and therefore remove the need
for the merge script since the relevant values can be extracted from the main
binary since it includes the standard ARMv7-M vector table.

5.6 Virtual Machine

At the moment the Dis VM has not been ported to Thumb, and therefore the OS
is not usable. Porting the VM is a non-trivial task. Instead of porting Dis VM
it might instead be more beneficial to implement WebAssembly (WASM) [24]
support for Inferno. WASM is a standard for portable bytecode which can be
produced from several source languages. It has risen in popularity in resent years,
with support for WASM in all major webbrowsers. WASM would expand upon
the amount of libraries and tools available since the ecosystem is much larger

34



than that of Dis/Limbo. WASM also has a lower barrier of entry since different
high level languages can be compiled to WASM, this makes it possible for many
contributors from different fields to participate in growing the ecosystem.

One large issue with swapping the virtual machine used for the OS is that all the
libraries currently written in Limbo would no longer be compatible. A lot of the
functionality provided by these is already available for WASM, however wrapper
libraries that map with the system calls of Inferno would will need to be created in
order to fully leverage a new virtual machine in Inferno. One possibility however,
is to implement a WASM backend for the Limbo compiler.

5.7 Space Saving

Other methods of reducing the overall memory requirements of the system can
be applied. One of those is eXecute In Place(XIP) which allows running code
from ROM. This reduces the amount of RAM required as most of the application
code of the kernel does not require modification. XIP however, introduces some
requirements to the hardware which might not always be available. In the case of
the i.MX RT1060, the MCU used on the teensy41 board, the interface to flash is
handled by FlexSPI. This interface always supports XiP, however it requires that
the device is configured properly with the variables that can be provided in the
boot structure. These parameters have yet to be explored as they appear quite
involved when reading through the reference manual for the MCU, and since the
MCU already has 1MiB of RAM available, this feature is more interesting on
devices that are even more memory constrained.

For other devices that do not support the use of XiP, another possibility could be
to dynamically load and unload Dis binaries as they are needed. As of now, the
binaries are embedded directly into the main binary along with the filesystem,
and consequently they are also loaded into RAM along with the kernel. If instead
they were loaded into RAM when used and freed afterwards the maximum RAM
usage at any one point would be reduced.

5.8 Edge computing

The envisioned market for a distributed operating system is running on small
embedded devices which typically have a lot of idle time. Because interacting
with other devices is very simple in Inferno, one possible benefit of it is to use
this free time in order to work on some other task. The specifics of the task are
not of concern, although it would have to be tasks that can be easily separated
into smaller chunks of work.

35



Chapter 6

Conclusion & Future Work

The size of the kernel, with the used configuration, has seen a size reduction of
approximately 18% from switching from ARM32 to the Thumb instruction set.
It is now possible to build and run the kernel on microcontroller-class devices,
instead of only larger CPUs. While the size is still too large for many devices
running Cortex-M CPUs there are size optimizations that can be added to the
Inferno toolchain to further reduce the binary size. Without the usage of execute-
in-place or other size optimizations, few Cortex-M devices will be able to run the
current version of Inferno.

From this work the Inferno compiler toolchain has been successfully ported to
ARMv7-M with some restrictions. The benefit of this is that it opens a new mar-
ket for deploying Inferno applications although the Dis VM will also have to be
ported. While the port has been produced, it is noted that Inferno would benefit
from an upgrade in the toolchain. There is no explicit reason for Inferno needing
a custom C toolchain when there are already many better and well maintained
toolchains that can be used free of charge. This sentiment is also reflected in
the virtual machine used by Inferno, the Dis VM programmed with Limbo is a
niche VM and by replacing it with a more modern alternative for instance WASM
would open for greater adaptation of the OS, not only for Cortex-M devices but
also for all other platforms supported by Inferno.

6.1 Future work

As has been mentioned several times through this thesis, the Dis VM is not yet
ported to the Thumb instruction set. It has also been mentioned that alternative
Virtual Machines should be considered. In my view the most interesting alter-
native is WASM as this enables many different types of developers to contribute
with libraries since many different languages can be used to develop WASM ap-
plications. There are also different WASM runtimes available such as wasm3 [25]
and wasmtime [26], a list of WASM runtimes can be found here [27]. The different
runtimes present different features and have different requirements. Developers
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are therefore able to choose the runtime that best matches their needs. In the
case of this project an interpreter(wasm3) or ahead-of-time runtime would reduce
size of the runtime. For processors with fewer restrictions runtimes with Just-In-
Time optimizations such as wasmtime enable better performance for applications.
Any future additions to this work should consider if compliance with the current
Inferno standard is more important than the possible benefits of replacing the
Dis VM and Limbo. It would also be possible to reap the benefit of the existing
Limbo modules by implementing a new WASM backend for the Limbo compiler.

Regarding the toolchain used to build the kernel, either the current one should be
expanded to add more space saving optimizations or the source should be ported
to be compatible with another toolchain. Since there are many features missing
in the toolchain that are convenient when developing for embedded devices and
the fact that there are few people invested in maintaining the current toolchain,
it would most likely be better to invest into porting the kernel to be compatible
with a better maintained toolchain.

If the Inferno toolchain is used in future works it should be extended to support
floating-point instructions. Once this has been implemented the loader should
be restructured, removing the ARM32 part and properly separating the Thumb
implementation into the file structure used by the other loaders in Inferno. At
the moment almost all Thumb related features are defined in a single file which
makes it somewhat unorganized.

37



Bibliography

[1] Vita Nuova, “Inferno OS Overview,” 2022. https://www.inferno-os.org/
inferno/.

[2] ARM, “ARM sales 4th quarter 2019,” 2020.
https://www.arm.com/company/news/2020/02/

record-shipments-of-Arm-based-chips-in-previous-quarter.

[3] P. Hughes, “ARM sales 4th quarter 2020,”
2021. https://www.arm.com/company/news/2021/02/

arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter.

[4] P. Hughes, “Arm sales 2021,” 2022. https://www.arm.com/company/news/
2022/05/arm-delivers-record-revenues-and-record-profits-in-fy21.

[5] “Introduction to the inferno file protocol, styx,” 2022. http://man.cat-v.
org/inferno/5/intro.

[6] PJRC, “Teensy41,” 2022. https://www.pjrc.com/store/teensy41.html.

[7] NXP semiconductors, “i.mx rt1060 product overview,” 2022.
https://www.nxp.com/products/processors-and-microcontrollers/

arm-microcontrollers/i-mx-rt-crossover-mcus/

i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060.

[8] “ARM website,” 2022. https://www.arm.com/.

[9] K. Thompson, “Plan 9 C compilers,” 1990. Accessed on 15.06.2022.

[10] ARM, “Unified assembler language,” 2011.

[11] Sean Dorward, Rob Pike, David Leo Presotto, Dennis M. Ritchie, Howard
Trickey, Phil Winterbottom, “The Inferno Operating System,” 1997.

[12] Plan 9 Foundation, “Plan9,” 2022. https://plan9.io/plan9/about.html.

[13] “9p protocol manual,” 2022. http://man.cat-v.org/plan_9/5/intro.

[14] R. Pike and D. M. Ritchie, “The styx architecture for distributed systems,”
Bell Labs Technical Journal, Vol. 4, No. 2, 1999.

38

https://www.inferno-os.org/inferno/
https://www.inferno-os.org/inferno/
https://www.arm.com/company/news/2020/02/record-shipments-of-Arm-based-chips-in-previous-quarter
https://www.arm.com/company/news/2020/02/record-shipments-of-Arm-based-chips-in-previous-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2022/05/arm-delivers-record-revenues-and-record-profits-in-fy21
https://www.arm.com/company/news/2022/05/arm-delivers-record-revenues-and-record-profits-in-fy21
http://man.cat-v.org/inferno/5/intro
http://man.cat-v.org/inferno/5/intro
https://www.pjrc.com/store/teensy41.html
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1060-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1060
https://www.arm.com/
https://plan9.io/plan9/about.html
http://man.cat-v.org/plan_9/5/intro


[15] D. M. Ritchie and Vita Nuova, “Limbo language,” 2005.

[16] Lucent Technologies Inc and Vita Nuova Limited, “Dis Virtual Machine
Specification,” 2000.

[17] NXP semiconductors, i.MX RT1060 Processor Reference Manual Rev. 3,
2021. https://www.pjrc.com/teensy/IMXRT1060RM_rev3.pdf.

[18] “qemu,” 2022. https://www.qemu.org/.

[19] “Teensyduino,” 2022. https://www.pjrc.com/teensy/td_download.html.

[20] “GNU binutils,” 2022. https://www.gnu.org/software/binutils/.

[21] F. Bellard, “Tiny C Compiler,” 2022. https://bellard.org/tcc/.

[22] “Harvey OS,” 2022. https://github.com/Harvey-OS/harvey/tree/

GPL-C11.

[23] J. Lawall, “Program Manipulation of C Code: From Partial
Evaluation to Semantic Patches for the Linux Kernel,” 2021.
https://popl21.sigplan.org/details/pepm-2021-papers/11/

Program-Manipulation-of-C-Code-From-Partial-Evaluation-to-Semantic-Patches-for-the-L.

[24] “Webassembly,” 2022. https://webassembly.org/.

[25] “Wasm3,” 2022. https://github.com/wasm3/wasm3.

[26] “wasmtime,” 2022. https://wasmtime.dev/.

[27] S. Akinyemi, “WASM runtimes,” 2022. https://github.com/appcypher/

awesome-wasm-runtimes.

39

https://www.pjrc.com/teensy/IMXRT1060RM_rev3.pdf
https://www.qemu.org/
https://www.pjrc.com/teensy/td_download.html
https://www.gnu.org/software/binutils/
https://bellard.org/tcc/
https://github.com/Harvey-OS/harvey/tree/GPL-C11
https://github.com/Harvey-OS/harvey/tree/GPL-C11
https://popl21.sigplan.org/details/pepm-2021-papers/11/Program-Manipulation-of-C-Code-From-Partial-Evaluation-to-Semantic-Patches-for-the-L
https://popl21.sigplan.org/details/pepm-2021-papers/11/Program-Manipulation-of-C-Code-From-Partial-Evaluation-to-Semantic-Patches-for-the-L
https://webassembly.org/
https://github.com/wasm3/wasm3
https://wasmtime.dev/
https://github.com/appcypher/awesome-wasm-runtimes
https://github.com/appcypher/awesome-wasm-runtimes


Appendix A

Sample programs

I Call Deep

A simple program highlighting the cost of calling procedures.

void func3 (void ) {
int a = 4 ;

}

void func2 (void ) {
func3 ( ) ;

}

void func1 (void ) {
func2 ( ) ;

}

int main (void ) {
func1 ( ) ;
return 1 ;

}

II Fib

A simple Fibonacci implementation.

int f i b ( int n) {
int f = 1 ;

int prev = 0 ;
int tmp ;
for ( int i = 1 ; i < n ; i++) {

tmp = f ;
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f = prev + f ;
prev = tmp ;

}
return f ;

}

int main ( ) { return f i b ( 4 ) ; }

III Loops

A simple program highlighting the cost of loops. Note volatile is used to prevent
GCC from optimizing out the loop.

int main (void ) {
volat i le int b = 0 ;
for ( int i = 0 ; i < 1000 ; i++) {

b += i ;
}

return 0 ;
}

IV Simple program

A simple program with some common operations.

int f i b ( int n ) ;

int main (void ) {
int a = 2 + 2 ;

i f ( a == 4) {
a = 6 ;

}

int b = 6 ;

f i b ( 4 ) ;

return a ;
}

int max( int a , int b) {
i f ( a > b) {
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return a ;
} else {

return b ;
}

}

int f i b ( int n) {
int f = 1 ;

int prev = 0 ;
int tmp ;
for ( int i = 1 ; i < n ; i++) {

tmp = f ;
f = prev + f ;
prev = tmp ;

}
return f ;

}
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Appendix B

Configuration

dev
root
cons archteensy noscreen not
env
mnt
pipe
prog
srv
uart
dup

ip

l i b
i n t e rp
math
kern
sec

mod
sys

port
alarm
a l l o c
a l l o c b
chan
dev
d i a l
d i s
d i s c a l l
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except ion
expo r t f s
i n f e r n o
l a t i n 1
nocache
nodynld
parse
pgrp
p r i n t
proc
q io
q lock
random
s y s f i l e
t a s l o c k
x a l l o c

l i n k

code
i n t main pool pcnt = 40 ;
i n t heap poo l pcnt = 40 ;
i n t image poo l pcnt = 0 ;
i n t c f l a g = 0 ;

i n t c on s o l e p r i n t = 1 ;
i n t r e d i r e c t c o n s o l e = 1 ;
char debug keys = 1 ;
i n t pan i c r e s e t = 0 ;
Type ∗Trdchan ;
Type ∗Twrchan ;

i n i t
e v a l i n i t

root
/chan /
/dev /
/ d i s /
/ d i s / sh . d i s
/ net /
/prog /
/ o s i n i t . d i s
/n/ remote /
/ l i b /

44



/env /
/ fd /
/n /
/tmp /
/ d i s / l i b
/ d i s / d i sk
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Appendix C

Configuration IP protocols

• arp

• bootp

• dhcp

• esp

• ethermedium

• gre

• icmp

• icmp6

• igmp

• il

• ip

• ipv6

• ppp

• rudp

• tcp

• udp
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Appendix D

Configuration Libraries

• libbio

• libdraw

• libdynld

• libfreetype

• libinterp

• libkern

• libkeyring

• liblogfs

• libmath

• libmemdraw

• libmemlayer

• libmp

• libnandfs

• libprefab

• libsec

• libtk
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Appendix E

Added Instructions

• Usecase: Store the PC or SP to a memory address
UAL syntax:

mov PC/SP, rtmp

str PC/SP, [rtmp, offset]

Encodings:

– MOV(register) T1 + STR(immediate) T1

Optab entries:

{AMOVW, C_SP, C_NONE, C_SOREG, 60, 4, 0},

{AMOVW, C_PC, C_NONE, C_SOREG, 60, 4, 0},

The reason it consists of both a move and a store is that using the PC as
the source register causes unpredictable behaviour. is

there
really
no
ideal
way of
stor-
ing
the
PC in
one
go?

• Usecase: Load the PC or SP from a memory address
UAL syntax:

ldr rtmp, [rx, offset]

mov rtmp, PC/SP

Optab entries:

{AMOVW, C_SOREG, C_NONE, C_PC, 61, 4, 0},

{AMOVW, C_SOREG, C_NONE, C_SP, 61, 4, 0},

Encodings:

– LDR(immediate) T1 + MOV(register) T1

Same reasoning here for using two separate instructions as the case above
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• Usecase: Read the current PRIMASK value
UAL syntax:

mrs rd, PRIMASK

Optab entry:

{AMOVW, C_PSR, C_NONE, C_REG, 62, 4, 0},

Encodings:

– MRS T1

Currently there is only support for PRIMASK as it was the only one re-
quired. Extending it would be simple, although it also requires that the as-
sembler is extended because the compiler would not generate this sequence
from the C source code.

• Usecase: Set the value of PRIMASK
UAL syntax:

msr PRIMASK, rd

Optab entry:

{AMOVW, C_REG, C_NONE, C_PSR, 63, 4, 0},

Encodings:

– MSR T1

Same reasoning as the one above.

• Usecase: 32bit dataprocessing instructions, used for larger immediates and
registers higher than seven.
These are added because they support larger immediate encoding than the
Thumb1/narrow equivalent and they support 4bit registers.
UAL syntax:

and rd, rn, #const

add rd, rn, #const

orr rd, rn, #const

Optab entries:
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{AMVN, C_LCON, C_NONE, C_REG, 64, 4, 0}

{AMVN, C_LCON, C_REG, C_REG, 64, 4, 0}

Encodings:

– AND (immediate) T1

– ADD (immediate) T3

– ORR (immediate) T1

• Usecase: Store multiple registers at once. Used when copying structs or
when assigning many fields to a struct at once.

UAL syntax:

STMIA rn, <registers>

STMDB rn, <registers>

Optab entries:

{AMOVM, C_LCON, C_NONE, C_REG, 66, 4, 0},

{AMOVM, C_REG, C_NONE, C_LCON, 76, 4, 0},

Encodings:

– STMIA T2

– STMDB T1

• Usecase: Store and load multiple registers at once. Used when copying
structs or when assigning many fields to a struct at once.

UAL syntax:

LDMIA rn, <registers>

LDMDB rn, <registers>

Optab entries:

{AMOVM, C_REG, C_NONE, C_LCON, 76, 4, 0},
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Encodings:

– LDMIA T2

– LDMDB T1

• Usecase: Not used yet, will be used by userspace to trap into kernel proce-
dures.
UAL syntax:

svc #imm8

Optab entries:

{ASWI, C_NONE, C_NONE, C_NONE, 68, 2, 0},

{ASWI, C_NONE, C_NONE, C_LOREG, 68, 2, 0},

Encodings:

– SVC T1

• usecase: Used by the manual div and modulo implementation.
UAL syntax:

RSB.W rd, rn, #const

Optab entries:

{ARSB, C_LCON, C_REG, C_HREG, 69, 4, 0},

{ARSB, C_LCON, C_REG, C_REG, 69, 4, 0},

{ARSB, C_SAUTO, C_REG, C_HREG, 69, 4, 0},

{ARSB, C_SAUTO, C_REG, C_REG, 69, 4, 0},

Encoding:

– RSB (immediate) T2

• Usecase: used to load from memory using a register as an offset. The ver-
sions with support for writeback are used in the improved stack save/restore
implementation.

UAL syntax:
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ldr rt, [rn, #+/-imm8]

ldr rt, [rn, #+/-imm8]!

ldr rt, [rn] #+/-imm8

ldr rt, [rn, imm12]

Optab entries

{AMOVW, C_SAUTO, C_NONE, C_HREG, 70, 4, 0},

Encodings:

– ldr (immediate) T3

– ldr (immediate) T4

• usecase: Perform logical AND operation on a shifted register to update
conditional flags.

UAL syntax:

TST.w rn, rm, shift

Optab entries:

{AMOVW, C_SAUTO, C_NONE, C_HREG, 70, 4, 0}

Encodings:

– TST (register) T2

• Usecase: Shift register by register value, added to enable shifting on regis-
ters higher than 7
UAL syntax:

LSR.W rd, rn, rm

LSL.W rd, rn, rm

Encodings:

– LSR (register) T2

– LSL (register) T2
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Optab Entries:

{AMOVW, C_SHIFT, C_NONE, C_HREG, 74, 4, 0},

{AMOVW, C_SHIFT, C_NONE, C_REG, 74, 4, 0},

• Usecase: Enable usage of high registers for AND, ORR, and EOR
UAL syntax:

ORR.W rd, rn, rm

AND.W rd, rn, rm

EOR.W rd, rn, rm

Encodings:

– ORR (register) T2

– AND (register) T2

– EOR (register) T2

Optab entries:

{AMVN, C_REG, C_NONE, C_HREG, 75, 4, 0},

• Usecase: store with writeback and post/pre-increment
UAL syntax:

STR rt [rn, #-imm8]

STR rt [rn], #+/-imm8]

STR rt [rn, #-imm8]!

Encodings:

– STR (immediate) T4

Optab entries:

{AMOVW, C_HREG, C_NONE, C_LAUTO, 78, 4, 0},

• Usecase: Store the PC or SP to a memory address
UAL syntax:
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mov PC/SP, rtmp

str PC/SP, [rtmp, offset]

Encodings:

– MOV(register) T1 + STR(immediate) T1

Optab entries:

{AMOVW, C_SP, C_NONE, C_SOREG, 60, 4, 0},

{AMOVW, C_PC, C_NONE, C_SOREG, 60, 4, 0},

The reason it consists of both a move and a store is that using the PC as
the source register causes unpredictable behaviour. is

there
really
no
ideal
way of
stor-
ing
the
PC in
one
go?

• Usecase: Load the PC or SP from a memory address
UAL syntax:

ldr rtmp, [rx, offset]

mov rtmp, PC/SP

Optab entries:

{AMOVW, C_SOREG, C_NONE, C_PC, 61, 4, 0},

{AMOVW, C_SOREG, C_NONE, C_SP, 61, 4, 0},

Encodings:

– LDR(immediate) T1 + MOV(register) T1

Same reasoning here for using two separate instructions as the case above

• Usecase: Read the current PRIMASK value
UAL syntax:

mrs rd, PRIMASK

Optab entry:

{AMOVW, C_PSR, C_NONE, C_REG, 62, 4, 0},

Encodings:

– MRS T1

Currently there is only support for PRIMASK as it was the only one re-
quired. Extending it would be simple, although it also requires that the as-
sembler is extended because the compiler would not generate this sequence
from the C source code.
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• Usecase: Set the value of PRIMASK
UAL syntax:

msr PRIMASK, rd

Optab entry:

{AMOVW, C_REG, C_NONE, C_PSR, 63, 4, 0},

Encodings:

– MSR T1

Same reasoning as the one above.

• Usecase: 32bit dataprocessing instructions, used for larger immediates and
registers higher than seven.
These are added because they support larger immediate encoding than the
Thumb1/narrow equivalent and they support 4bit registers.
UAL syntax:

and rd, rn, #const

add rd, rn, #const

orr rd, rn, #const

Optab entries:

{AMVN, C_LCON, C_NONE, C_REG, 64, 4, 0}

{AMVN, C_LCON, C_REG, C_REG, 64, 4, 0}

Encodings:

– AND (immediate) T1

– ADD (immediate) T3

– ORR (immediate) T1

• Usecase: Store multiple registers at once. Used when copying structs or
when assigning many fields to a struct at once.

UAL syntax:

STMIA rn, <registers>

STMDB rn, <registers>
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Optab entries:

{AMOVM, C_LCON, C_NONE, C_REG, 66, 4, 0},

{AMOVM, C_REG, C_NONE, C_LCON, 76, 4, 0},

Encodings:

– STMIA T2

– STMDB T1

• Usecase: Store and load multiple registers at once. Used when copying
structs or when assigning many fields to a struct at once.

UAL syntax:

LDMIA rn, <registers>

LDMDB rn, <registers>

Optab entries:

{AMOVM, C_REG, C_NONE, C_LCON, 76, 4, 0},

Encodings:

– LDMIA T2

– LDMDB T1

• Usecase: Not used yet, will be used by userspace to trap into kernel proce-
dures.
UAL syntax:

svc #imm8

Optab entries:

{ASWI, C_NONE, C_NONE, C_NONE, 68, 2, 0},

{ASWI, C_NONE, C_NONE, C_LOREG, 68, 2, 0},

Encodings:

– SVC T1
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• usecase: Used by the manual div and modulo implementation.
UAL syntax:

RSB.W rd, rn, #const

Optab entries:

{ARSB, C_LCON, C_REG, C_HREG, 69, 4, 0},

{ARSB, C_LCON, C_REG, C_REG, 69, 4, 0},

{ARSB, C_SAUTO, C_REG, C_HREG, 69, 4, 0},

{ARSB, C_SAUTO, C_REG, C_REG, 69, 4, 0},

Encoding:

– RSB (immediate) T2

• Usecase: used to load from memory using a register as an offset. The ver-
sions with support for writeback are used in the improved stack save/restore
implementation.

UAL syntax:

ldr rt, [rn, #+/-imm8]

ldr rt, [rn, #+/-imm8]!

ldr rt, [rn] #+/-imm8

ldr rt, [rn, imm12]

Optab entries

{AMOVW, C_SAUTO, C_NONE, C_HREG, 70, 4, 0},

Encodings:

– ldr (immediate) T3

– ldr (immediate) T4

• usecase: Perform logical AND operation on a shifted register to update
conditional flags.

UAL syntax:
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TST.w rn, rm, shift

Optab entries:

{AMOVW, C_SAUTO, C_NONE, C_HREG, 70, 4, 0}

Encodings:

– TST (register) T2

• Usecase: Shift register by register value, added to enable shifting on regis-
ters higher than 7
UAL syntax:

LSR.W rd, rn, rm

LSL.W rd, rn, rm

Encodings:

– LSR (register) T2

– LSL (register) T2

Optab Entries:

{AMOVW, C_SHIFT, C_NONE, C_HREG, 74, 4, 0},

{AMOVW, C_SHIFT, C_NONE, C_REG, 74, 4, 0},

• Usecase: Enable usage of high registers for AND, ORR, and EOR
UAL syntax:

ORR.W rd, rn, rm

AND.W rd, rn, rm

EOR.W rd, rn, rm

Encodings:

– ORR (register) T2

– AND (register) T2

– EOR (register) T2

Optab entries:
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{AMVN, C_REG, C_NONE, C_HREG, 75, 4, 0},

• Usecase: store with writeback and post/pre-increment
UAL syntax:

STR rt [rn, #-imm8]

STR rt [rn], #+/-imm8]

STR rt [rn, #-imm8]!

Encodings:

– STR (immediate) T4

Optab entries:

{AMOVW, C_HREG, C_NONE, C_LAUTO, 78, 4, 0},
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