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ABSTRACT

Federated learning (FL) literature typically assumes that each client
has a fixed amount of data, which is unrealistic in many practical
applications. Some recent works introduced a framework for online
FL (Online-Fed) wherein clients perform model learning on stream-
ing data and communicate the model to the server; however, they do
not address the associated communication overhead. As a solution,
this paper presents a partial-sharing-based online federated learning
framework (PSO-Fed) that enables clients to update their local mod-
els using continuous streaming data and share only portions of those
updated models with the server. During a global iteration of PSO-
Fed, non-participant clients have the privilege to update their local
models with new data. Here, we consider a global task of kernel re-
gression, where clients use a random Fourier features-based kernel
LMS on their data for local learning. We examine the mean con-
vergence of the PSO-Fed for kernel regression. Experimental results
show that PSO-Fed can achieve competitive performance with a sig-
nificantly lower communication overhead than Online-Fed.

Index Terms— Online federated learning, energy-efficiency,
partial-sharing, kernel least mean square, random Fourier features.

1. INTRODUCTION

Federated learning (FL) [1–3] has emerged as an appealing dis-
tributed learning framework that allows a network of edge devices
to train a global model without revealing local data to others. Among
the features that make federated learning (FL) stand out from typical
distributed learning, the four most significant are as follows. First,
the local data of each client device are not independent and identi-
cally distributed (i.e., non-IID) and unbalanced in the amount [4, 5].
Besides that, devices will not disclose the local data to the server
or any other client during the training process. Second, federated
learning was originally designed to use data collected on battery-
constrained or low-performance devices, which also tend to have a
low memory capacity [6]. The memory should, therefore, not be
depleted by local learning. Third, clients frequently go offline or
have limited bandwidth or expensive connections [7, 8]. Lastly, the
reliability of clients in federated learning is questionable [9, 10].
Clients with malicious intent may attempt to degrade the global
model’s reliability. In this paper, we are primarily concerned with
reducing communication overhead.

One of the most popular FL methods is federated averaging (Fe-
dAvg) [11]. The workflow of FedAvg is as follows: At the start
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of each global round, a random fraction of clients receive a copy
of the global model from the server (generally, clients are selected
uniformly, but various methods may be used [12–14]). Using the
global model and local data, the selected client then performs mul-
tiple iterations of local learning and sends the updated local model
to the server. The server then aggregates these updated local mod-
els to build a new global model, and the process repeats. Even
though FedAvg minimizes communication overhead by executing
multiple local updates at each selected client before communicating
to the server, its learning accuracy largely depends on the number
of epochs (a critical factor in deciding the communication interval)
performed at each client [11, 15].

As we can see from the workflow of FL, the participating clients
have to communicate the model back and forth with the server
in each global iteration. Furthermore, the FL framework gener-
ally takes hundreds or thousands of iterations to finalize the global
model, and the size of a modern machine learning model is on the
order of a billion. The FL framework would have to deal with this
enormous communication overhead if utilized. Various solutions
have been explored in the literature for reducing the communica-
tion overhead associated with FL. Among these, communication-
mitigated federated learning (CMFL) [16] discards the irrelevant
updates from clients by checking the alignment between the local
and global updates tendency. A couple of procedures have been
proposed in [17] for reducing uplink communication overhead. The
first one is the structured update: clients update the model in a
restricted space parametrized with fewer variables. The other one
is sketch update: clients update a full model and then compress it
using a combination of 1-bit quantization, random rotations, and
subsampling before sending it to the server. While sketch updates
reduce communication overhead, they are time-consuming and in-
cur additional complexity for clients. By discarding unimportant
client updates for global learning (i.e., when numerous model pa-
rameters remain unchanged), structured communication reduction
for federated learning (FedSCR) [18] can reduce the communication
overhead.

The FL approaches outlined above assume a fixed amount of
training data at each client, which is impractical in many real-life
scenarios, e.g., in wireless communications. Instead, clients may
have access to new data or a stream of data during the training [19].
Recently, in [20], the concept of online federated learning (Online-
Fed) is discussed; however, no concrete mathematical equations
have been given. In Online-Fed, the clients perform online learning
on a continuous stream of local data while the server aggregates
model parameters received from the clients. On the other hand, the
asynchronous online federated learning framework (ASO-Fed) [7]



focused mainly on learning a global model from asynchronous
client updates. However, these frameworks have not addressed the
communication overhead associated with them.

In this paper, we present an energy-efficient online federated
learning framework, namely, partial-sharing-based online federated
learning (PSO-Fed), wherein each client updates its local model us-
ing continuous streaming data and then shares just a portion of the
updated model parameters with the server. In contrast to Online-Fed,
PSO-Fed permits non-participant clients to update their local models
when they access new data during global iteration. To demonstrate
the efficacy of PSO-Fed, we considered nonlinear regression in a
non-IID setting. For this, we employ random Fourier features-based
kernel LMS (RFF-KLMS) [21–23] to perform the nonlinear regres-
sion task locally at each client. In addition, mean convergence anal-
ysis of PSO-Fed is provided for these settings. Finally, we perform
numerical experiments on synthetic non-IID data, and our results
confirm that PSO-Fed achieves competitive performance at very low
communication overhead compared to Online-Fed.

2. PROBLEM FORMULATION AND ALGORITHM
DESCRIPTION

In this section, we first introduce the Online-Fed in the context
of kernel regression. Then, we present an energy-efficient version
called PSO-Fed. In the following, we consider a scenario whereinK
geographically distributed clients communicate with a global server.
At every time instance n, every client k has access to a continuous
streaming signal xk,n and associated desired outputs yk,n, assumed
to be described by the model:

yk,n = f(xk,n) + νk,n, (1)

where f(·) is a continuous nonlinear model to be estimated collab-
oratively using clients’ data, xk,n = [xk,n, · · · , xk,n−L+1]

T is the
local data vector of size L×1, and νk,n is the observation noise. For
client k, we then define the local optimization function for estimat-
ing f(·) as follows:

Jk(wk) = E
[
|yk,n − ŷk,n|2

]
, (2)

with ŷk,n = wT
k zk,n, where the local model parameter vector wk ∈

RD , is a linear representation of the nonlinear model f(·) in a ran-
dom Fourier feature (RFF) space of dimension D, and zk,n ∈ RD
being the mapping of xk,n into RFF space. Cosine, exponential, and
Gaussian feature functions [22, 23] can be used to represent xk,n in
the RFF space. Then, the optimization at the global server is

J (w) =
1

K

K∑
k=1

Jk(w). (3)

Here, the goal is to find an estimate of global optimal representation
of the function f(·) in RFF space, i.e., w? as:

wn = min
w
J (w). (4)

2.1. Online-Fed

In each global iteration n, the server selects a subset of clients and
share the global model wn with them. Thereafter, the selected
clients ∀k ∈ Sn (Sn is a set containing selected client indices in
global iteration n) run a stochastic gradient descent to solve the local
optimization problem Jk(wk) as follows:

wk,n+1 = wn + µ zk,n εk,n, (5)

where µ is the learning rate and εk,n = yk,n − wT
nzk,n. These

clients communicate the updated local models to the server. Then,
the server aggregates the received updates as

wn+1 =
1

|Sn|
∑
k∈Sn

wk,n+1, (6)

where |Sn| denotes the cardinality of Sn. We see from the work-
flow of Online-Fed that clients not selected during the nth global
iteration do not perform a local model update, despite having ac-
cess to the local streaming data. Regardless of whether they update,
whenever the global server selects them, the latest local model will
be replaced by the global model without considering the last update
made locally. This issue hinders the performance. Furthermore, the
amount of communication taking place at each global iteration is still
significant. One solution is to use the concept of structure updates
or sketch updates [17]. Our solution to this problem stems from a
different approach, namely, partial-sharing concepts [24,25] that are
very attractive for communication-efficient distributed learning.

2.2. PSO-Fed

In the proposed partial-sharing-based online federated learning
(PSO-Fed), clients and the server exchange just a fraction of their
model parameters in each update round. In order to keep track of the
model parameters being exchanged in each communication round,
the client and server maintain selection matrices.

To this end, at every global iteration n, the model parameters to
be exchanged between clients and the server are specified by a diag-
onal selection matrix Sk,n of size D×D. On its principal diagonal,
Sk,n contains M ones and D −M zeros. In Sk,n, the positions of
ones specify which local model parameters to be exchanged with the
server. As in [24, 25], we can select the M model parameters either
stochastically or sequentially. To simplify the implementation, we
consider coordinated and uncoordinated partial-sharing. The server
assigns the same initial selection matrices to all clients in coordi-
nated partial-sharing (i.e., S1,0 = S2,0 = · · · = SK,0 = S0). As
a result, all clients exchange the same portion of their local model
parameters with the server. On the other hand, in uncoordinated
partial-sharing, the server assigns initial selection matrices randomly
to clients (i.e., S1,0 6= S2,0 6= · · · 6= SK,0). Both schemes belong to
sequential and stochastic partial-sharing families, respectively. For
the current global iteration n, the entry selection matrix Sk,n can be
obtained via a right circular shift of Sk,n−1. In this process, each
entry will be exchanged M times over D iterations, so the probabil-
ity of a specified model parameter being exchanged with the server
is M

D
. With the help of selection matrices, Online-Fed workflow can

be alternatively expressed as:

wk,n+1 = Sk,nwn + (ID − Sk,n)wn + µ zk,n εk,n, (7a)

with εk,n = yk,n − (Sk,nwn + (ID − Sk,n)wn)
Tzk,n

wn+1 =
1

|Sn|
∑
k∈Sn

Sk,n+1wk,n+1 + (ID − Sk,n+1)wk,n+1).

(7b)

Since PSO-Fed limits the exchange of model parameters, the
server does not have access to all participating clients’ model pa-
rameters during the aggregation phase. Similarly, the participating
clients do not have access to entire global model parameters; there-
fore, they will use their previous model parameters in place of the
unknown portions. Participating clients use (ID − Sk,n)wk,n in



Algorithm 1: PSO-Fed. K clients, learning rate µ, set of
all clients S, and circular shift variable τ .

Initialization: global model w0, local model wk,0, RFF
space dimension D and selection matrices Sk,0, ∀k ∈ S,

For n = 1 to N
The server randomly selects a subset Sn of K clients and

communicate Sk,nwn to them,
Client Local Update:

If k ∈ Sn
εk,n = yk,n − (Sk,,nwn + (ID − Sk,n)wk,n)

Tzk,n,

wk,n+1 = Sk,,nwn + (ID − Sk,n)wk,n + µ zk,n εk,n,

Else
εk,n = yk,n −wT

k,nzk,n,

wk,n+1 = wk,n + µ zk,n εk,n,

EndIf
The clients ∀k ∈ Sn communicate Sk,n+1wk,n+1 to the

server, where Sk,n+1 = circshift(Sk,n, τ),
Aggregation at the Server:

The server updates the global model as,

wn+1 =
1

|Sn|
∑
k∈Sn

Sk,n+1wk,n+1 + (ID − Sk,n+1)wn.

EndFor

place of (ID − Sk,n)wn and the server uses (ID − Sk,n+1)wn in
place of (ID − Sk,n+1)wk,n+1. The non-participating clients use
their previous local models to perform the local learning. The pro-
posed PSO-Fed is summarized in Algorithm 1.

It is important to note that even clients do not take part in all
global iterations, the PSO-Fed still permits them to perform local up-
dates as long as they have access to new data. In contrast, as touched
upon above, state-of-the-art approaches replace local models with
the global model whenever clients are selected for contributing to the
model update, making local updates during communication-dormant
times futile. It is evident that clients have better control over lo-
cal learning with PSO-Fed than with current state-of-the-art FL ap-
proaches.

3. CONVERGENCE ANALYSIS

In this section, we examine the mean convergence of PSO-Fed. Be-
fore proceeding to the analysis, we define the global optimal ex-
tended model parameter vector w?

e = 1K+1 ⊗ w?, extended esti-
mated global model parameter vector we,n = col{wn,w1,n, . . . ,
wK,n}, extended input data matrix Ze,n = blockdiag{0, z1,n, . . . ,
zK,n} and extended observation noise vector νe,n = col

{
0, ν1,n,

. . . , νK,n
}

, where col{·} and blockdiag{·} represent column-wise
stacking operator and block diagonalization operator, respectively.
The symbol 1K+1 is a (K + 1) × 1 column vector with each ele-
ment taking the value one. From the above definitions, we can write

ye,n = col{0, y1,n, y2,n, . . . , yK,n} = ZT
e,nw

?
e + νe,n,

εe,n = col
{
0, ε1,n, ε2,n, . . . , εK,n

}
= ye,n − ZT

e,nAS,nwe,n,

(8)

with

AS,n =
ID 0 0 . . . 0

a1,nS1,n ID − a1,nS1,n 0 . . . 0
...

...
...

. . .
...

aK,nSK,n 0 0 . . . ID − aK,nSK,n

 ,
(9)

where ak,n = 1 if the client k ∈ Sn, and zero otherwise. Using
these definitions, the global recursion of PSO-Fed can be stated as

we,n+1 = BS,n+1

(
AS,nwe,n + µ Ze,n εe,n

)
, (10)

where

BS,n+1 =
ID −

∑
k∈Sn

ak,n

|Sn|Sk,n+1
a1,n
|Sn|S1,n+1 . . .

aK,n

|Sn| SK,n+1

0 ID . . . 0
...

...
. . .

...
0 0 . . . ID

 .
(11)

We make the following assumptions to establish the convergence
condition for PSO-Fed:
A1: At each client k, the input signal vector zk,n is drawn from a
wide-sense stationary multivariate random sequence with correlation
matrix Rk = E[zk,nz

T
k,n].

A2: The noise process νk,n is assumed to be zero-mean i.i.d. and
independent of all input and output data,
A3: At each client k, the model parameter vector is taken to be in-
dependent of input signal vector.
A4: The selection matrices Sk,n are assumed to be independent of
any other data; in addition, Sk,n and Sl,m are independent, for all
k 6= l and m 6= n.

Denoting w̃e,n = w?
e −we,n, and utilizing the fact that w?

e =
BS,n+1AS,nw

?
e (since BS,n+1w

?
e = AS,nw

?
e = w?

e , one can
easily prove this result), then from (10), w̃e,n+1 can be recursively
expressed as

w̃e,n+1 =BS,n+1

(
I− µZe,nZT

e,n

)
AS,nw̃e,n

− µBS,n+1Ze,nνe,n.
(12)

Applying expectation E[·] on both sides of (12) and using assump-
tions A1− A4, we obtain

E[w̃e,n+1] = E[BS,n+1]
(
I− µRe

)
E[AS,n]E[w̃e,n], (13)

where Re = blockdiag{0,R1,R2, . . . ,RK}. One can see that
E
[
w̃e,n

]
converges under ‖E[BS,n+1]

(
I−µRe

)
E[AS,n]‖ < 1 for

every n, where ‖ · ‖ is any matrix norm. Since ‖E[BS,n+1]‖ = 1
and ‖E[AS,n]‖ = 1, the above convergence condition reduces to
‖I−µRe‖ < 1, or, equivalently, ∀k, i : |1−µλi(Rk)| < 1, where
λi(·) is the ith eigenvalue of its argument matrix. After solving the
above convergence condition, we finally have following first-order
convergence condition:

0 < µ <
2

max
∀k
{max
∀i
{λi(Rk)}}

. (14)



4. NUMERICAL SIMULATIONS

In this section, experimental results are presented to examine the per-
formance of PSO-Fed. Our experiment considers K = 100 clients
with access to a global server. At every client k, synthetic non-IID
input signal xk,n and corresponding observed output are generated
so that they are related via the following model:

f(xk,n) =
√
x2k,1,n + sin2(π xk,4,n)

+
(
0.8− 0.5 exp(−x2k,2,n

)
xk,3,n + νk,n. (15)

The input signal at each client xk,n was generated by driving
a first-order autoregressive (AR) model: xk,n = θk xk,n−1 +√

1− θ2k uk,n, θk ∈ U(0.2, 0.9), where uk,n was drawn from a
Gaussian distribution N (µk, σ

2
uk

), with µk ∈ U(−0.2, 0.2) and
σ2
uk
∈ U(0.2, 1.2), respectively (where U(·) indicates the uniform

distribution). The observation noise νk,n was taken as zero mean
i.i.d. Gaussian with variance σ2

νk ∈ U(0.005, 0.03). Using a Cosine
feature function, xk,n was mapped into the RFF space whose di-
mension was fixed to 200. All simulated algorithms were set to the
same learning rate of 0.75 for each client. The server implemented
uniform random selection procedure to select |Sn| = 4 clients in
every global iteration n. By calculating the average mean-square
error (MSE) on test data after each global iteration n, we evaluated
the simulation performance:

MSE =
1

Ntest
‖ytest − ZT

testwn‖22, (16)

where {Ztest,ytest} is the test data set (Ntest examples in total) cov-
ering all clients data. In order to perform the nonlinear regression
task, the proposed PSO-Fed was simulated for a variety of values
of M (number of model parameters exchanged between the server
and clients). In addition, we also simulated the Online-Fed for
comparative evaluation. The learning curves (i.e., test MSE in dB
against the global iteration index n) are obtained by averaging over
500 independent experiments, are shown in Figs. 1a and 1b for co-
ordinated and uncoordinated partial-sharing schemes, respectively.
From Fig. 1, the following interesting observations can be made:

1. With PSO-Fed, we can achieve competitive results at a lower
communication cost than Online-Fed. Firstly, PSO-Fed ex-
hibits a slower convergence rate but with a similar steady-
state MSE as Online-Fed at small values of M (e.g., 1). As
M increases to higher values (e.g., 5 and 40), its convergence
becomes faster. In summary, PSO-Fed exhibits a similar con-
vergence rate with a minor improvement in steady-state MSE
when M ≥ 40.

2. Because M is much smaller than D, PSO-Fed’s communica-
tion cost is lower than that of Online-Fed. PSO-Fed behaves
the same as Online-Fed when M = 40 but only consumes 1

5
of its communication load. As non-participating clients make
updates locally if they have access to new data, partial-sharing
alters only part of these locally updated models when they get
a chance to communicate with the server. Thus, resulting in
improved performance and reduced communication load. It is
worth noting that the proposed partial-sharing does not incur
any additional computational overhead, unlike sketch updates
proposed in [17]. Keeping track of partially-shared parameter
indices just requires a little extra memory.

3. Coordinated partial-sharing has a faster initial convergence
speed than uncoordinated one, for very small values of M
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Fig. 1. Performance of PSO-Fed: (a). Coordinated partial-sharing.
(b). Uncoordinated partial-sharing.

(e.g., 1 in our experiment). In particular, the coordinated
scheme preserves the connectedness of clients by allowing
the server to aggregate the same entries of the local model
parameter vectors. However, both schemes are equally effec-
tive for large values of M (e.g., ≥ 5 in our experiment).

5. CONCLUSIONS

A communication-efficient framework has been developed for on-
line FL, called PSO-Fed. In PSO-Fed, participating clients exchange
a fraction of model parameters with the server, but non-participating
clients update their local model if they have access to new data.
Thus, the negative effects of partial-sharing have been compen-
sated. PSO-Fed’s performance has been demonstrated via kernel
regression. The convergence of PSO-Fed has been analyzed under
these settings. Simulation results have shown that both coordinated
and uncoordinated PSO-Fed algorithms exhibit competitive estima-
tion performance while reducing communication costs compared to
Online-Fed.
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