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Abstract. High costs of maintenance and lost production during downtime are a challenge
to the offshore wind industry, and there is a great potential to improve cost efficiency by
improved maintenance and control strategies utilizing condition monitoring information. As
wind farms get older, there is also an increased need to find ways of extending the lifetime
of wind turbines allowing continued operation. This may be obtained by de-rating strategies,
meaning adjustments of the power production to reduce the fatigue loads on the turbines. This
subsequently means wind farm operators are faced with a trade-off between maximizing power
production while limiting the degradation of the turbines. To investigate the best trade-off, this
paper presents an optimization framework that considers component condition and planned
power production to find the best times to perform predetermined preventive and condition-
based maintenance on an offshore wind farm. To solve the scheduling problem, it is formulated
as a constrained integer linear program, maximizing the net income for the planning horizon.
The proposed method considers logistic restrictions, wind and electricity price forecasts, control
strategies, component condition and probability of failure. Moreover, the method uses a short
time horizon (days) to utilise weather forecasts and a long time horizon (weeks) to better
capture the impact of deteriorating condition. The model is presented in a general framework
for accounting for component condition in offshore wind farm operation and maintenance. It is
illustrated for a specific potential application, considering condition monitoring of main bearings
and corrosion of structural elements as examples.

1. Introduction
Offshore wind power is growing rapidly, but high costs of maintenance and long turbine outage
times is still a challenge. These challenges may be solved by condition monitoring solutions [1, 2].
To fully utilize condition monitoring it is necessary to include condition information in decision
making for operation and maintenance (O&M) of the wind farms.

Maintenance tasks can be classified as either corrective maintenance (CM) or preventive
maintenance (PM). PM tasks can in turn be classified as either predetermined or condition-
based [3], but for simplicity we reserve PM to denote predetermined preventive maintenance
in this paper. Condition-based maintenance (CBM) tasks are associated with a component,
one or more failure modes, and a condition monitoring technique. Examples of failure that can
be monitored include generator and gear box bearings [4], or damaged coating and subsequent
corrosion of structural elements. Incipient bearing failures are typically monitored by analysing
vibration data, while corrosion may initially be detected on inspections, either through manual
inspections or by developing drone-based monitoring systems [5]. Based on inspection results it
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Nomenclature

Functions
FZ(z) Cumulative distribution function of the

random variable Z
P (w) Power curve (kW)
Indices
i Wind turbine
k Wind power production level
t Time stage
Parameters

∆Ttk Hours in time step and production level
∆Tt Hours in time step
λ Electricity price (e /MWh)
µs Mean time from state s− 1 to state s
ρti Failure probability
τx Time for PM (h)
τy Time for CBM of type y (h)
τz Time for CBM of type z (h)
Cf Cost of failure (e )
Ctr Transportation cost (e )
Cturb Capital cost of wind turbine (e )
Cvis Cost visiting a turbine (e )
Hmax

tk Available work-hours long-term (h)
P 1
ti Power production after CBM (MW)
P 0
tki Initial production level k (MW)
P 1
tki Production level k after CBM (MW)
P 0
ti Initial wind power production (MW)
q Discount rate
Qt Number of available technician teams

Sti Technical condition of wind turbine
TL Nominal lifetime of a wind turbine
T s Workday hours (h)
TRUL Remaining useful life of wind turbine
wt Wind speed (m/s)
Sets
K Wind power production levels
T Time step
T long Time step in the long horizon
T short Time step in the short horizon
W Wind turbines
Variables
ȳti CBM task of type y is performed in pre-

vious time steps (binary)
z̄ti CBM task of type z is performed in pre-

vious time steps (binary)
ati Time available for production (h)
bti Restored turbine operation time in the

short term
ctki Operation time at production level k
dtki Restored turbine operation time at pro-

duction level k
htki Worked hours (h)
rti Turbine visited (binary)
vt Wind farm visited (binary)
xti PM task is performed (binary)
yti CBM task of type y is performed (binary)
zti CBM task of type z is performed (binary)

may be decided to intensify inspections or to install additional sensors on critical points of the
construction. Possible CBM actions in case of corrosion include recoating.

Offshore wind farms are typically placed in remote locations and are subject to harsh weather
conditions. This means maintenance activities include long travel times and are subject to
restrictions on when maintenance can be executed. These facts imply a large value of carefully
planning maintenance operations, and that a failure usually leads to long down times and large
production losses. Moreover, information about the technical condition of turbines may be
used to reduce the fatigue load for deteriorated turbines by control strategies involving turbine
derating [6]. CBM actions may in that case bring the turbine back to full capacity but requires
shutdown of production during maintenance. In other words, the wind farm operator must
balance short-term losses against long-term gains. To jointly consider wind farm control and
maintenance planning thus makes O&M decisions even more complex.

There is an extensive literature on scheduling of maintenance actions for offshore wind
farms [7, 1]. Daily scheduling including service maintenance (i.e., PM) and CM was considered
in [8] and [9] more than a decade ago, while much of the subsequent work has focused on
both scheduling and routing of maintenance vessels [10, 11]. An overview of related research
on maintenance scheduling for offshore wind farms is shown in Table 1. It shows that most
of the previous work considers the scheduling of CM and PM, while some do not specifically
define the type of maintenance tasks considered. Routing and scheduling models consider a
short-term planning horizon (from two to 30 days), but some scheduling models also consider
an additional long-term (LT) planning horizon. The column ”Risk of failure” indicate works
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Table 1: Overview of related research and the contributions of this work. The symbols indicate
if the feature is: x = included, (x) = indirectly included.

Ref. Maint. Horizon Routing Downtime Risk of Control/ Degradation
tasks (days) cost failure derating

[9] PM+CM 7 + LT x
[13] PM 365 x
[14] PM+CM 12 x (x)
[11] n/a 2-3 x x (x)
[15] PM+CM 3-7 x x (x)
[10] PM+CM 3-7 x (x)
[16] CM+CBM 200 x x
[17] PM 365 (x)
[18] PM+CM 3-7 x (x)
[19] PM+CM 1 x x
[20] n/a 7
[21] PM+CM 7 + LT (x)
[22] PM+CM 14 x (x) x
[23] PM+CM 1 x x (x)
[24] n/a 30 x x
This work PM+CBM 7 + LT x x x x

that indirectly or directly account for the risk of failure occurring after the planning horizon if
maintenance is not completed. Most optimization models for maintenance scheduling considers
this indirectly through a penalty term for non-completion of maintenance tasks. Very few of
these works consider control strategies, including derating, or account for the degradation of
component condition.

This paper contributes to the literature by proposing a modelling framework for including
condition-based maintenance in the short-term maintenance scheduling. As shown in Table 1, the
proposed models consider control strategies, component condition and probability of failure, in
addition to wind power production forecasts and logistic restrictions. The optimal maintenance
schedule is defined as the one that maximizes the net expected revenue, i.e. the revenue minus
the maintenance costs. Both i) the potential power production and thus the revenue and
ii) the accessibility to wind turbines will depend on the weather conditions. Precise weather
forecasts for a few days ahead are usually available, while for a longer time horizon the weather
forecast is uncertain [12]. The proposed model therefore adopts the approach used in [8] and [9]
and considers two different time horizons. For the short-term time horizon it is assumed that
production forecasts are available. This work does not consider routing, which is a simplification
and means intra-day logistics are omitted.

The paper is organized as follows. In Section 2 the optimization model is formulated and
explained. The modelling of power production forecasts is presented in Section 3, and Section
4 shows the condition monitoring framework used in this study. In Section 5 the methods from
the previous sections are combined in an illustrative case study considering as examples the
condition monitoring of i) the main bearing and ii) corrosion of structural elements. Section 6
concludes the paper.

2. Method
The objective of the maintenance scheduling problem is to maximize the revenues from wind
power operations while minimizing the costs of preventive and condition-based maintenance
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tasks and failures. To this end we define a model that considers predetermined maintenance
tasks xti, and two types of condition-based maintenance tasks, yti and zti. Predetermined
tasks are required to be performed once within the planning horizon. Tasks of type y can be
performed to prevent failure, while tasks of type z can be performed to bring the turbine back
to full capacity. Performing any maintenance task requires the turbine to be shut down and
leads to lost revenue. We divide the model horizon into two periods, short and long term. In
the short term, the model has a temporal resolution of days and wind power is represented by
production scenarios. In the long term, statistical data is used to estimate the production losses
related to maintenance activities with a weekly temporal resolution.

2.1. Mathematical formulation
The method may be formulated as a mixed integer linear program (MILP) with objective
function given in (1), where the short and long term is accounted for in the first and second
lines respectively.

max
∑

t∈T short

[∑
i∈W

[
λ(P 0

tiati + (P 1
ti − P 0

ti)bti)− Cfρti(1− ȳti)− Cvisrti

]
− Ctrvt

]
+ (1)

∑
t∈T long

∑
i∈W

[∑
k∈K

[
λ(P 0

tkictki + (P 1
tki − P 0

tki)dtki)−
Ctr + Cvis

τx + τy + τ z
htki

]
− Cfρti(1− 0.5yti − ȳti)

]
Revenue is given by the product of the electricity price λ the produced power P 0

ti and the hours
available for production ati. Wind turbines that are operating with a derated capacity have a
power production P 0

ti and can return to full capacity P 1
ti after condition-based maintenance is

performed. This is expressed by the term (P 1
ti − P 0

ti)bti, where bti = atiz̄ti and z̄ti is a binary
variable indicating whether CBM of type z has been performed before time step t. The expected
costs of faults are accounted for by the term Cfρti(1−ȳti), where ȳti is a binary variable indicating
whether CBM of type y has been performed before time step t. The costs of traveling to the
wind farm and to visit a turbine is accounted for by the terms Ctrvt and Cvisrti. The same terms
are included in the long term, but production is discretized in a set of production levels. This
means the produced power at power level k is given by P 0

tkictki where ctki is the hours available
for production. The term (P 1

tki−P 0
tki)dtki, where dtki = ctkiz̄ti, is added to account for additional

power production possible after CBM tasks are performed. Travel and turbine visit costs are
accounted for by the aggregate cost multiplied by the worked hours. Finally, failure costs are
accounted for in a similar way as for the short term but because the time steps are longer we
include the probability that a failure happens in the same time step but before maintenance is
actually performed.

Predetermined preventive maintenance tasks are carried out once for each wind turbine during
the model horizon as stated in (2) and condition-based maintenance of type y can be done at
most once as stated in (3).∑

t∈T
xti = 1 ∀i ∈ W (2)∑

t∈T
yti ≤ 1 ∀i ∈ W (3)

The amount of work that can be carried out on maintenance tasks is limited by the number
of teams of technicians and available work hours during the work-day as shown in (4). We do
not specify the number of technicians per team in this model, but technicians typically work
together at the turbines in teams of 2 to 5 persons. In the long term, available work hours are
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grouped based on how they statistically coincide with wind power production. In this way, the
amount of work carried out during a discretized wind power production level is accounted for
in (5) and limited by the statistics of wind power production in (6).∑

i∈W
(τxxti + τyyti + τ zzti) ≤ QtT

s ∀t ∈ T short (4)

τxxti + τyyti + τ zzti =
∑
k∈K

htki ∀i ∈ W, ∀t ∈ T long (5)∑
i∈W

htki ≤ QtH
max
tk ∀t ∈ T long, ∀k ∈ K (6)

The time available for power production is initially ∆Tt in each time step. In the long term
it is necessary to divide the available time into power production levels and let ∆Ttk be the
time available in power production level k. The available time when accounting for performed
maintenance, is given by the auxiliary variables ati, and ctki, which are calculated by subtracting
the time used for maintenance from the total time as shown in (7) and (8). Note that in this
formulation there is an implicit assumption that different tasks on the same turbine are done
sequentially.

ati = ∆Tt − τyyti − τ zzti − τxxti ∀i ∈ W, ∀t ∈ T short (7)

ctki = ∆Ttk − htki ∀i ∈ W, ∀t ∈ T long, ∀k ∈ K (8)

The auxiliary variables ȳti and z̄ti are updated by the inventory constraints in (9) and (10).

ȳti = ȳ(t−1)i + y(t−1)i ∀i ∈ W, ∀t ∈ T \ t0 (9)

z̄ti = z̄(t−1)i + z(t−1)i ∀i ∈ W, ∀t ∈ T \ t0 (10)

We need the products atiz̄ti and ctkiz̄ti to calculate the wind power production after performing
condition-based maintenance. This can not be included directly in the problem when using a
MILP solver as the problem becomes quadratic. However, by utilizing the big M-method we
can linearize the products to be represented by the continuous variables, bti and dtki, as shown
in (11) to (16).

bti ≤Mbz̄ti ∀i ∈ W, ∀t ∈ T short (11)

bti ≤ ati ∀i ∈ W, ∀t ∈ T short (12)

bti ≥ ati −Mb(1− z̄ti) ∀i ∈ W, ∀t ∈ T short (13)

dtki ≤Mcz̄ti ∀i ∈ W, ∀k ∈ K, ∀t ∈ T long (14)

dtki ≤ ctki ∀i ∈ W, ∀k ∈ K, ∀t ∈ T long (15)

dtki ≥ ctki −Mc(1− z̄ti) ∀i ∈ W, ∀k ∈ K, ∀t ∈ T long (16)

The big M should be equal to the upper bound of the continuous variable of the original products.
For our problem this bound is ∆Tt and ∆Ttk, which can be derived from (7) and (8). The variable
rti keeps track of whether a turbine is visited on a given day. This is obtained by the constraints
in (17) to (19)

xti ≤ rti ∀i ∈ W, ∀t ∈ T short (17)

yti ≤ rti ∀i ∈ W, ∀t ∈ T short (18)

zti ≤ rti ∀i ∈ W, ∀t ∈ T short (19)
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Figure 1: Available hours at each production
level for an average year.
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Figure 2: A Markov diagram illustrating the
probabilistic failure model.

The variable vt indicates whether the wind farm is visited and is subject to the constraint in
(20).

vti ≤ vt ∀i ∈ W, ∀t ∈ T short (20)

3. Production forecast
In the general case, wind power production depends on many factors and may be the output of
a wind farm control module. However, as wind speed is the most important factor, in this paper
power production is forecast based on the forecast wind speed. The relation between wind speed
w and power production is given by a power curve P (w). In the current framework it is assumed
that a precise wind forecast is available within the short-term time horizon, and scenarios for
the power production is thus obtained by Pt = P (wt).

3.1. Long-term forecast
For the long-term time horizon, the approach of [25] is adopted and extended for the current
context. The relevant parameters are the power production levels P loss

tk , and the available hours
at each level. Power production levels are given by discretizing the power curve P (w), while
available hours at each level may be obtained by statistical weather data for the wind farm. As
an illustration, the available hours per week based on 50 years of data from a location in the
North Sea have been calculated. The result is shown in Figure 1 where it can be observed that
there are more high speed wind conditions in the winter than in the summer.

3.2. Derating
In some cases it may be possible to avoid or postpone failure of a degraded wind turbine by
operating at a lower load. If this is the case, the wind turbine is in a derated state. As long as
the wind turbine is derated the turbine will produce less energy than it would when operating
at full capacity. A CBM task may be performed to bring it back to full capacity. To account
for derating in the optimization problem, the required inputs are the power production forecast
without derating, Pti, and the power production forecast with derating, P 0

ti. In the general case
the power production Pti1 and P 0

ti may also be an output from a wind farm control module. In
this work the derating is modelled by an alternative power curve.

4. Condition-based maintenance
The proposed framework is agnostic to which specific failure modes are considered, and aims to
be general enough to be applicable in a variety of situations. The applicability will depend on
the time frame of deterioration and the repairability of the failure mode. By repairability we
mean whether the damaged equipment can be repaired and to what degree the component is as
good as new after a repair.
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4.1. Failure modelling
The model requires a probability of failure as input, which means it is necessary to establish
a relation between condition information and the probability of failure ρti. In this paper, a
Markov state model similar to the ones proposed in e.g. [26, 25, 27] is adopted as illustrated in
Figure 2. State 0 represents no deterioration, state 1 represents that some failure progression is
detected, while state 2 represents a fault. As indicated by the diagram, the transition time from
state 0 to state 1 is exponentially distributed with parameter µ1, while the transition time from
state 1 to state 2 is exponentially distributed with parameter µ2. If the component is in state 1
it may be returned to state 0 by a condition-based maintenance task at a cost CCBM , while if
in state 2 it may be returned to state 0 at a cost Cf . The exact interpretation of the states will
depend the failure mode as illustrated in Section 4.1.1.

The probability of failure may be obtained by considering the probability distribution function
FZ(z|λ1, λ2, S0) of the time to failure Z0i. The probability of failure in time step t is given by
ρti = FZ0i(Tt+1)−FZ0i(Tt) where Tt is the time from the start of time step 0 to the start of time
step t, and T0 = 0. The expected time spent in a state depends on the specific situation but
typically the time spent in state 0, given by 1/µ1 is in the range of decades, while the expected
time spent in state 1, given by 1/µ2, is in the range of days, weeks, or months. This section
presents an example where the proposed model may be useful.

4.1.1. Corrosion condition monitoring system We consider a condition monitoring system to
track corrosion on the wind turbine structural elements. A system may consist of periodic
inspections made by people, or possibly drones. Corrosion will in the long term decrease the
structural integrity of the wind turbine. To maintain safe operation, the turbines are designed
with an extra wall thickness, called corrosion allowance, which ensures sufficient wall thickness
even with some corrosion [28].

Assume that the state of corrosion can be categorized in three states: 0) no indication
of corrosion, 1) corrosion detected, and 2) corrosion allowance depleted. Assume that when
condition is in state 1, it is sufficient to grind and recoat, which means τy is the time
it takes to grind and recoat the corroded area. When corrosion has reached state 2, the
damage is irreversible. The cost of doing maintenance too late is Cf , and includes the cost
of decommissioning or replacing the turbine. Here, we define this cost of failure as the difference
in net present value of the cost of replacing the turbine now (renewal) as compared to replacing
it later (e.g., when repowering the entire wind farm after the end of the its useful lifetime):

Cf =
Cturb(1− (1 + q)T

RUL
)

1− (1 + q)TL . (21)

Consequently the cost Cf will be smaller for an old turbine than for a new turbine.

4.2. Derating to avoid main bearing failure
A common way to monitor the drivetrain main bearing is to use vibration data [29]. Assume that
vibration analysis shows that main bearing is in a degraded state, and it may break if run at full
capacity. To avoid failure of the drivetrain a derating strategy is used. An appropriate strategy
may be obtained e.g. through model predictive control as suggested in [30]. For simplicity
assume that the derating strategy is to run the turbine at a proportion Ri < 1 of full capacity.
This is equivalent to setting P 0(w) = RiP (w), which in turn means P 0

ti = RiPti.

5. Case study
A case study has been constructed to illustrate the methodology. We consider a wind farm
with N = 16 wind turbines. All turbines are of the DTU 10 MW reference wind turbine [31]
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Figure 3: Summary of the case study. Upper left: Short term wind forecast, Upper right:
Available hours at each production level in the long term. Lower: The optimal plan for executing
maintenance tasks per turbine and time step. The short-term horizon is from time step 1-7 with
daily resolution, while the long horizon spans time steps 8-19 with weekly resolution.

type, with associated power curve P (w). For each wind turbine there is one annual service
maintenance task, which is due within the end of the long-term time horizon T long. In addition,
condition information is available about corrosion status and the main bearing. We plan the
PM and CBM tasks using the optimization model presented in Section 2.

The corrosion status follows the model presented in Section 4.1.1. Specifically, if no corrosion
is detected, the mean time until corrosion is detected is assumed to 20 years, which means
µ1 = 1/20. If, on the other hand, corrosion is detected, the mean time to failure is 6 weeks,
which means µ2 = 52/12, assuming there are exactly 52 weeks in a year. We assume that
corrosion is detected on wind turbine 1, 2 and 3, i.e. Si0 = 1 for i ∈ {1, 2, 3} and Si0 = 0
otherwise. The nominal lifetime of a wind turbine TL is 20 years. The age of all wind turbines
is 10 years, which means TRUL = 10 years for all wind turbines. Assuming a discount rate of
q = 4%, and the cost of a new wind turbine to be 23 million e [32], the cost of failure Cf ,
calculated by equation (21), is found to be 13.7 million e . A degraded condition of the main
bearing is detected at turbine 4, and this follows the derating strategy described in Section 4.2
and runs at 60% capacity, i.e. R4 = 0.6 while Ri = 1 for all i 6= 4.

The short time horizon spans one week and the time steps are 1 day, while the long time
horizon spans 12 weeks and time steps are 1 week. The choice of the long time horizon means
that there is a high probability that turbines in a degraded state will fail within the time horizon
if no CBM action is taken. The planning horizon starts in week 15, and implies the weather and
production forecasts shown on the top row in Figure 3. Week 15 is in April and just prior to
the season that is typically best for planning predetermined maintenance work. The electricity
price is 60 e /MWh, there are Qt = 2 teams of technicians available at all time steps, a PM
task requires τx = 6 hours, recoating requires τy = 8 hours, and bearing repair requires τ z = 8
hours. Each work day is 12 hours and the transportation cost is Ctr = 500 e [8] and turbine
visit cost Cvis = 100 e .

The optimal plan for when to execute the different maintenance tasks is shown in Figure 3.
Recoating is prioritized on the first day of the planning horizon. Low wind speeds on day five are
utilized to do bearing repair on wind turbine 4. During the visit to wind turbine 4, preventive
tasks are done on turbine 4 and one other turbine. Preventive tasks on other turbines are planned
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Timestep

Base case

Scenario 1

Scenario 2

Scenario 3 No task
PM
Recoating
PM and recoating
Bearing repair
PM and bearing repair
Recoating and bearing repair
All tasks

Figure 4: Summary of all scenarios. The color indicates whether at least one task of the given
types are planned for the given time step.

for the long-term time horizon, utilizing the expectation of hours of low power production.
To investigate the effect that different input parameters have on the optimization, three

additional scenarios have been designed. In Scenario 1, the failure cost Cf is set to 5000 e ,
in scenario 2 it is assumed that the number of available hours for power production levels 0
to 3 are all assigned to power production level 3, emulating a situation where the long term is
less favourable for maintenance. In scenario 3, the derating factor for wind turbine 4 is 0.1. A
comparison between the base case and the alternative scenarios is shown in Figure 4. Scenario 1
illustrates that a low failure cost means bearing repair is prioritized before recoating. Scenario
2 shows that less favourable long term wind expectations means more tasks are planned for
the short term. Scenario 3 shows that a more severe derating strategy means bearing repair is
planned for day 2 despite higher forecasted power production.

6. Conclusion
Maintenance costs of offshore wind farms may be greatly reduced by the use of condition
monitoring, reducing the amount of maintenance which is performed and the number of
component failures. There is a need for tools to determine the optimal plan for performing
maintenance taking into account the information from condition monitoring systems.

This paper has presented a modelling framework for including condition-based maintenance
when optimizing the short-term maintenance schedule for an offshore wind farm. It has been
illustrated for an example application where condition information is utilized to jointly plan two
different condition-based maintenance tasks and a predetermined preventive task for each wind
turbine, where a degraded condition is assigned to a subset of the turbines. The framework
is general, and the optimization model could easily be extended to consider additional types
of condition-based maintenance tasks. It is also a first step towards integrating wind farm
control in O&M decision making. This work is part of the WATEREYE project (O&M tools
integrating accurate structural health in offshore energy), and one of its objectives is to find the
best balance between energy production, protective control, and predictive maintenance. The
method proposed in this paper can interact with a wind farm operations and control module to
provide the best joint decisions, co-optimizing control and maintenance strategies.

Acknowledgments
This research is supported by the WATEREYE project (O&M tools integrating accurate
structural health in offshore energy), funded from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 851207. The authors thank Konstanze Kölle,
Valentin Bruno Chabaud, Karl Merz, and other WATEREYE project partners for discussions.

References
[1] Ren Z, Verma A S, Li Y, Teuwen J J E and Jiang Z 2021 Renewable and Sustainable Energy Reviews 144

110886 ISSN 1364-0321



EERA DeepWind Offshore Wind R&D Conference
Journal of Physics: Conference Series 2362 (2022) 012041

IOP Publishing
doi:10.1088/1742-6596/2362/1/012041

10

[2] Kang J, Sobral J and Soares C G 2019 Journal of Marine Science and Application ISSN 1993-5048
[3] European Committee for Standardization 2010 Maintenance. Maintenance terminology Tech. Rep. EN 13306:

2010 European Committee for Standardization
[4] Keller J, Sheng S, Guo Y, Gould B and Greco A 2021 Wind Turbine Drivetrain Reliability and Wind Plant

Operations and Maintenance Research and Development Opportunities Tech. Rep. NREL/TP-5000-80195
National Renewable Energy Laboratory Golden, CO

[5] Thibbotuwa U C, Cortés A and Irizar A 2022 Applied Sciences 12 808
[6] Andersson L E, Anaya-Lara O, Tande J O, Merz K O and Imsland L 2021 IET Renewable Power Generation

15 2085–2108 ISSN 1752-1424
[7] Shafiee M and Sørensen J D 2019 Reliability Engineering & System Safety 192 105993 ISSN 0951-8320
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