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Abstract: One of the biggest problems in applying machine learning (ML) in the energy and buildings
field is the lack of experience of ML users in implementing each ML algorithm in real-life applications
the right way, because each algorithm has prerequisites to be used and specific problems or appli-
cations to be implemented. Hence, this paper introduces a generic pipeline to the ML users in the
specified field to guide them to select the best-fitting algorithm based on their particular applications
and to help them to implement the selected algorithm correctly to achieve the best performance.
The introduced pipeline is built on (1) reviewing the most popular trails to put ML pipelines for the
energy and building, with a declaration for each trial drawbacks to avoid it in the proposed pipeline;
(2) reviewing the most popular ML algorithms in the energy and buildings field and linking them
with possible applications in the energy and buildings field in one layout; (3) a full description of
the proposed pipeline by explaining the way of implementing it and its environmental impacts in
improving energy management systems for different countries; and (4) implementing the pipeline on
real data (CBECS) to prove its applicability.

Keywords: machine learning; benchmarking; prediction; pipeline; features; training; validation;
tuning; evaluation and model verification

1. Introduction

Building energy benchmarking and prediction is a complex (i.e., multi-variant and
nonlinear) problem. Building energy demands depend on many features such as climate
conditions, characteristics of a building, and the type of equipment in the building. The
demands include electrical and thermal (heating and cooling) loads. ML algorithms can
solve this type of problem as they automatically derive hidden patterns in the collected data.
The patterns are then used to create the ML model, which generalizes real-life problems to
provide more well-informed and adaptive results.

There are a lot of ML algorithms that are used in the energy and buildings field, but
this paper explains the most popular algorithms that have dynamic behavior and are widely
used in the field. Dynamic behavior means the ability of an algorithm to solve different
problems in different applications, and the ability of algorithm integration with other
algorithms to improve overall performance. The paper focuses on four ML algorithms:
(1) artificial neural networks (ANNs), (2) support vector machine (SVM), (3) Gaussian
process regression (GPR) or Gaussian mixture models (GMM), and (4) clustering (such as
k-means and k-shape clustering algorithms).

To identify the essential steps required for implementing the ML concepts in the energy
and buildings field, previous trials must be reviewed. In 2014, Zhao mentioned a pipeline
for prediction energy values by split data into two data sets: (1) a training set that adjusts
the weights of the ML model and (2) a test set to evaluate the trained ML model, without
any data preprocessing. This technique is not enough to overcome drawbacks of (1) data
quality such as missing values or outliers or noisy, and (2) overfitting training data because
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of adjusting ML model on the same data set, as well as the loss of some data in the test set
not seen by the ML model [1]. In 2019, Tabrizchi, Javidi, and Amirzadeh Kim presented a
prediction pipeline depending on the same two data sets but applying a cross-validation
technique on the training data set to overcome the problem of overfitting. They proposed a
pipeline depending on the feedback or results from the model evaluation process to make
an optimization process for model parameters and a feature selection process, which help
to reduce problem dimensionality without reducing ML model performance [2]. In 2019,
Cai et al. declared the process of feature selection through a pipeline for the classification
process in a layer called feature engineering which has also feature an extraction process,
and dealing with missing data and outliers’ values is also explained as a preprocessing
layer [3]. The importance of the feature selection process and the case that is used in to be
effective, is declared in the pipeline proposed in 2020 by Seyedzadeh et al., in addition to an
explanation of the feature extraction process, which is very important when the algorithm
cannot perform automatic feature extraction during training [4].

On other hand, Somu, Raman, and Ramamritham, in 2021, mentioned adding a third
data set called the validation data set that is used to overcome the overfitting problem of
ML models, but the problem of losing some data points while making the test data set
remains. In addition to adding a preprocess layer containing processes of increasing data
quality such as clean data from noise, missing values imputation, outlier detection, and
data normalization, the authors also mentioned different evaluation methods for predic-
tion problems such as mean square error (MSE), root mean square error (RMSE), mean
absolute error (MAE), or mean absolute percentage error (MAPE). However, they added a
benchmarking process as a feature extraction preprocess that integrates the clustering layer
with the prediction pipeline to decrease the complexity of the prediction process [5]. The
preprocess layer and evaluation layer were proposed before by Fayaz and Kim in 2018, but
not in depth [6].

One of the trials of a general pipeline of ML algorithms was carried out by Liu et al.
in 2019. The paper proposes different structures of pipelines, each one depending on
the ML algorithm used inside. The layers of the proposed pipelines are data collection
and preprocessing, training and evaluating models, and determining the best model
parameters and structure. The authors mentioned a very important layer that must be
found in the pipeline, especially in the implementation of a real-life problem. This layer
is called the verification layer, which is very important to measure the trained model’s
robustness during operation. The weakness point of the proposed pipelines is that the
authors cannot make a general pipeline cover all the requirements of different algorithms
in different cases [7]. The trial of generating a general pipeline that suitable with different
ML algorithms was performed by El-Gohary et al. in 2018. The pipeline deals with four ML
algorithms: Naive Bayes, SVM, Decision Trees, and Random Forest. The pipeline depends
on layers of data preprocessing, feature extraction, principal component analysis, and an
evaluation layer. The main drawback of this pipeline is that it depends on only one path
for any real-life problem, which cannot be generalized in all cases, and the authors do not
mention requirements or criteria of selecting each ML algorithm. In addition, putting the
classification process as a preprocessing layer to decrease prediction complexity means that
the classification is an essential step [8]. In 2018, Saleh Seyedzadeh, Farzad Pour Rahimian,
Ivan Glesk, and Marc Roper propose three pipelines: (1) a prediction pipeline depending
on splitting data to train and test data which make a feature extraction process depending
on the validation of model on test data, (2) a classification pipeline which depends on
feature selection as a preprocessor process before classification, and (3) a pipeline to select
the most appropriate ML algorithm (ANN, SVM, GPR or GMM, k-mean, and k-shape)
depending on the data set and requirements of each algorithm. The drawbacks of pipelines
are (1) neglecting the preprocessing process that must be performed to increase data quality,
(2) depending on the simple technique of split data to train and test data, which cannot
produce a general model solution, (3) the third pipeline does not cover all ML algorithms’



Energies 2021, 14, 5410 3 of 30

requirements or data set cases, and (4) the authors cannot integrate the three pipelines into
one general pipeline [9].

After reviewing the previous trials to create a generic ML pipeline, the resultant
pipeline consists of main three general steps: (1) the preprocessing steps, (2) the ML
algorithm selection, and (3) the ML model creation and implementation scientifically in
real life. The most complicated part of creating this pipeline is the interaction between
these three general steps (the main interactions come during ML selection procedures), so
the proposed pipeline overcomes all obstacles for ML users. The ML algorithm selection
step represents the main source of interaction between the three main steps and is usually
difficult (i.e., selecting the most appropriate ML algorithm for a specific application and
implementing it in real life) because it depends on many factors related to applications (e.g.,
energy assessment and forecasting; prediction for buildings loads such as cooling or heating
or electricity; classification for buildings depending on energy consumption; modeling solar
radiation; modeling and forecasting loads for air conditioning systems; simulating and
control for energy consumption systems; fault detection and diagnosis; and energy-saving,
verification and retrofit studies) and factors related to data (e.g., data size, features size,
data type (residential or non-residential data and time serious or not); degree of uncertainty
in data; and degree of complexity in data). After solving all interactions between the
three main steps, the final pipeline structure covers several factors including problem
formulation, data collection and integration, data augmentation, feature engineering, data
preprocessing and visualization, different machine learning approaches with requirements,
model training, model validation and tuning, model evaluation, and model verification.
The generic ML pipeline will enhance the performance and organization of the reviewed
ML algorithms, because while working on ML problems, many steps are heavily repeated,
and thus, putting these steps into one generic pipeline will ensure that the right algorithms
are deployed seamlessly, reducing the complexity of transferring ML models to real life
quickly and managing ML models easier.

The proposed paper consists of two main sections besides the introduction section.
Section 2 explains each step of the proposed pipeline, with some previous cases demon-
strated (i.e., the most popular ML algorithms and their applications used in the building
energy field and how each one is used to have most benefits). Section 3 implements the
pipeline on CBECS data as an example to help ML users in using it.

2. The Essential Steps and Potential Improvements in ML Algorithms Implementation

There is a huge effort in the ML field to produce a general pipeline that covers all steps
needed for algorithm implementation, but these efforts did not produce a robust pipeline
to be used flexibly with different cases of data size, features size, data type, uncertainty
in data, and complexity in data. Therefore, this paper aims to produce a general pipeline
suitable for benchmarking and prediction in the building energy field.

Depending on the review of different pipelines resulting from previous trials, the
proposed machine learning pipeline overcomes the drawbacks of each reviewed pipeline,
explaining how to select and implement each machine learning approach on building
energy benchmarking and prediction problem in a sufficient way. There are essential steps
that must be found in the pipeline, and these steps will be described one by one. In addition,
each ML algorithm has requirements to be selected as a solution tool for a real-life problem.
Based on results from existing works and reviewed pipelines for different applications, a
Pipeline is proposed to select and implement ML algorithms on real-life problems of the
energy and buildings field.

2.1. Problem Identification and Formulation

In the beginning, the real-life problem is identified as building energy consumption
benchmarking and prediction. From there, we began problem formulation which includes
articulating the problem and converting it into an ML problem. Converting it to a machine
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learning problem requires us to identify features that should be found in the data to predict
accurate output [10].

2.2. Data Collection, Analysis, and Preprocessing

Data have two elements: (1) a feature, which is an attribute that is used to help extract
patterns and predict future answers, and (2) a label, which is an answer that is wanted from
the model to predict. The data are collected by answering problem formulation questions,
then converting answers to features’ effect on output. After the problem is formulated, we
need to ensure that the data are formulated correctly for the ML algorithm and cleaned up
in a way that will maximize the performance of the model. Thus, the step of data collection,
preparation, and preprocessing is very important [11].

This step includes the following. (1) Data collection and integration ensures that raw
data are in one central, accessible place. The importance of this step appears when the
results of the evaluation metric on training and test data are low because the learning
algorithm did not have enough data to learn from. Thus, performance can be improved by
using the data augmentation technique which increases the amount of data. (2) Data pre-
processing involves transforming raw data into an understandable format and extracting
important features from the data. (3) Data visualization entails several things including
a programmatic analysis to give a quick sense of feature and label summaries, which is
effectively helping understand the data [12].

There is a relation between the selection process of the appropriate ML algorithm
and the nature of collected data. This relation depends on many factors: (1) data size,
(2) features size, (3) data type (residential or non-residential data and time serious or not),
(4) degree of uncertainty in data, and (5) degree of complexity in data.

The ANN is the most flexible algorithm in the popular ML algorithms. It has a high
dynamic power that resulting from the flexibility in performance control by using different
hyper-parameters values. The dynamics of ANN give this algorithm an advantage over
other ML algorithms such as (1) handling huge data sizes in faster time with minimum
computation power [13,14], (2) dealing with different data types by changing the type of
ANN used (e.g., time serious data [13,15,16], annual commercial buildings’ data [17,18],
and residential buildings’ data [19]), (3) it can overcome the complexity of data sets that
have a lot of features because it gives high weights for important features during training,
and it can be integrated with feature selection or feature extraction concepts [16,20,21],
(4) it is integrated with other ML algorithms in different ways to increase performance [22],
and (5) it can train on noisy data sets by changing the sensitivity of the trained model to
changes of values [23] or use the Kalman filter [24] as preprocessing steps. The problems
that keep ANN from an important role in the building energy field are that (1) ANN
needs an experience to deal with the hyper-parameters tuning process to deliver the best
performance [13,25], (2) the difficulty of identifying the most appropriate sample size that
is suitable for real-life problems [25], and (3) decreasing prediction power with residential
buildings’ data [18,26].

The ability of ANN algorithms to handle big data is declared in different applications.
In 2010, Dombaycı et al. utilized a total of 35,070 hourly temperature data to estimate
the hourly energy consumption of a model house designed in Denizli, Turkey’s Central
Aegean Region, for selecting appropriate and efficient heating and cooling equipment,
with 26,310 h used for training and 8760 h used for testing. (The ANN model was trained
using heating energy consumption data from 2004 to 2007 and evaluated using heating
energy consumption data from 2008.) The result states that energy consumption levels
may be predicted with a high degree of accuracy and that the ANN is extremely successful
with large data sets [13]. In 2015, Antanasijevi et al. developed a new approach for
determining the accuracy of a GRNN (general regression neural network) model applied
for the prediction of EC (energy consumption) and GHG intensity of energy consumption
using historical data from 2004 to 2012 for a set of 26 European countries (EU Members).
The result states that the GRNN GHG intensity model is more accurate than the MLR
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(multiple linear regression) and second-order and third-order non-linear MPR (multiple
polynomial regression) models that were evaluated [14].

The importance of preprocessing steps declared in some previous papers, such as the
complexity that results from increasing the number of features, was discussed in 2015 by
Li et al. while improving short-term building hourly electricity consumption prediction.
They utilized principal component analysis (PCA) as an automated approach to reduce
the ML problem complexity, and they said that this technique was able to fulfill two
goals (i.e., lowering ANN model complexity without compromising prediction accuracy)
in only one automatic step [16]. In 2015, Platon, Dehkordi, and Martel used the same
feature selection technique (PCA) to select the most significant features from all studied
features (i.e., only 10 significant features were selected out of the 22 available features)
to develop hourly electricity predictive models based on ANN [15]. In 2006, Karatasou,
Santamouris, and Geros explained the ability to improve ANN performance by using
statistical analysis (e.g., hypothesis testing and information criteria) as a preprocessing
step before training to design an hourly building load predictor based on a feed-forward
artificial neural network (FFANN) [21]. The concept of preprocessing steps for ANNs
may depend on another ML concept that help in simplifying the process for complex
problems. In 2014, Du et al. employed a clustering method to aid ANN algorithms in
detecting abnormalities in air handling units, which are common in commercial buildings
(e.g., fixed biases, drifting biases, and complete failure of the sensors and chilled water
valve faults). For prior mistakes, the fault diagnosis tool for the HVAC system obtained
good identification results [22].

The SVM algorithm is better than neural network algorithms, because of (1) the small
number of parameters compared to ANN and genetic programming [27,28], (2) the SVM
solution is unique and optimal because SVM can reach a global solution for problem [28,29],
and (3) it can handle different types of data (e.g., time serious data [29], annual commercial
buildings’ data [18], and residential buildings’ data [30]). On the other hand, the SVM
algorithm cannot handle complex data that have too many features, so it is integrated
with feature selection methods to decrease the number of problem dimension spaces by
decreasing features [31]. In addition, it is not suitable for large data sets because the
training process of SVM algorithms becomes very slow with a large amount of data, yet
achieving good performance [28,29]. Sometimes, multi SVMs are used in parallel to reduce
the computation time of large data [31,32].

The importance of preprocessing steps for SVM algorithms is greater than for ANN
algorithms because it cannot handle the complex ML problems that have many features
and nonlinear relations. Thus, in 2012, Zhao and Magoulès used correlation analysis for
feature selection on complex data while assessing the energy demands of office buildings
to reduce the number of features for suggested algorithms. By manually computing the
linear correlation coefficients between characteristics and energy needs, the most significant
features with significant correlations were chosen [31].

The GPR or GMM algorithms are the best ones to deal with noisy data or uncertainty
in the data set. The reasons are as follows: (1) they overcome noisy measurements which
come from sensors [33,34], (2) can extract complex patterns such as nonlinear and multi-
variate relations between features [33], (3) can be integrated with other ML algorithms as a
preprocessing step to remove uncertainty in the data set [35], and (4) give very efficient
and robust predictions results even if with a small size of data [33,34]. The main drawback
of GPR or GMM algorithms is that they need high computation power and cost, especially
with large data sizes [33].

Due to the ability of GPR and GMM algorithms to deal with complex ML problems
and noisy data, the preprocessing steps do not have an essential role with these algo-
rithms during their implementation in complex applications. In 2012, Heo and Zavala
demonstrated that these algorithms could capture complicated behavior (i.e., nonlinearities,
multivariable interactions, and time correlations). Furthermore, because they were created
in a Bayesian environment, they have the potential to overcome problems of uncertainty,
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but require a lot of computing power to accomplish these findings in a short amount of
time [33]. Moreover, the GPR and GMM algorithms can be used as a preprocessing step to
filter noisy data. In 2012, using these algorithms, Heo, Choudhary, and Augenbroe detected
uncertainty in buildings’ measurements to improve modeling and retrofit performance
while creating a scalable, probabilistic methodology [35].

The clustering algorithms are very powerful because (1) they can handle different
types of data [36–38] and (2) propose a very powerful tool when integrated with prediction
algorithms that increase prediction performance [36,39]. However, they have drawbacks
such as (1) falling into the local minimum solution, especially the k-means algorithm, so it
is recommended to iterate the clustering process to obtain the general solution; (2) they
are affected by high data complexity, so it is necessary to apply feature extraction, feature
selection, and PCA as a preprocessing step [36,40]; (3) they are affected by data uncertainty,
so it is necessary to integrate the Kalman filter or GPR or GMM as a preprocessing step [24];
and (4) as the data size increases, the time of the iteration processes increases, too [38,40].

For increasing clustering algorithms’ performance in obtaining global solutions, they
can be integrated with preprocessing steps such as statistical analysis or feature selection in
retrofit studies. In 2010, Gaitani et al. published an energy categorization tool for heating
school buildings. Three steps were involved in the creation of the tool: (1) performing
an extensive statistical analysis on the data, (2) applying PCA to select most significant
features, and (3) using k-means clustering technique to classify. The conclusions declare
that the proposed tool achieved very effective results because it used the two preprocessing
methods with clustering for energy-saving techniques [40]. One of the big advantages of
clustering algorithms is that they can be used as a preprocessing step for prediction models
to increase performance. In 2017, Yang et al. demonstrated that combining the k-shape
clustering technique with the SVR model as a feature extraction phase to produce new
features from output clusters greatly improved the SVR model’s hourly and weekly energy
consumption forecasting accuracy [36].

2.3. ML Algorithm Selection

In general, determining which machine learning algorithm is the best is difficult. As
a result, it is critical to thoroughly examine the type of accessible or gathered data as
well as the application to select the most appropriate model. The ML algorithm selection
step depends on many factors such as (1) application-type factors and (2) data factors.
In this section, applications of four ML algorithms (i.e., ANN, SVM, GPR or GMM, and
Clustering K-Means or K-Shape) are explained to represent advantages, drawbacks, and
potential improvements for each algorithm to help ML users in the selection process for
the most appropriate algorithm during implementation in the field. After reviewing ML
applications, the ML users in the energy and buildings field can deduce that (1) ANNs are a
strong tool for modeling and reliable prediction of building energy. They do, however, need
a careful selection of network topology and fine tweaking of their many hyper-parameters
for training. Because ANN suffers from a local minimum issue, the models’ performance
cannot be guaranteed. In addition, to obtain acceptable accuracy, ANN needs to be fed
with a sufficient number of samples. Simple MLR models may be able to outperform
them otherwise. As a result, ANN is best suited to engineers who are well-versed in
deep learning and statistical modeling. We can also deduce that (2) SVM has been found
to outperform ANN in load forecasting and can construct models from small data and
(3) GPR is utilized for model training with uncertainty assessments among ML approaches
and other black-box methods. Uncertainty and sensitivity analysis for various machine
learning models have recently been presented and used. As a result, it is worthwhile to
devote research resources to deploying these techniques for modeling construction under
unclear data. Finally, we find that (4) in multi-dimensional energy assessment systems,
k-means and k-shape are both highly efficient, with k-shape being used with time serious
data and k-means being used with other data types. The popular applications of ML
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algorithms around the world in the field are explained in the following subsections and
summarized in Figure 1.

Figure 1. The popular applications for four types of ML algorithms around the world in the energy and buildings field.

2.3.1. Applications of ANN Algorithm

ANN algorithm represents a very powerful tool in the energy and buildings field
because it can simulate the human brain by using nodes, weights, and layers to store
information in parallel paths and it is extracted when necessary in a parallel way, too. This
section demonstrates the ability of ANNs to be used in different applications of the energy
and buildings field, with a description for implementation methods and contributions.

Modeling Solar Radiation and Solar Steam Generators

Kalogirou, in 1998, demonstrated several ANN applications in the field of solar energy.
The author utilized artificial neural networks (ANNs) to predict solar radiation and a solar
steam generator at varied incidence angles. ANN uses climatic parameters to estimate
hourly solar irradiance in solar radiation modeling. ANN can forecast the collector intercept
factor (i.e., the ratio of the energy absorbed by the receiver to the energy incident on the
concentrator aperture) for solar steam generator design, as well as the radiation profile and
the heat-up temperature response [41].

Modeling and Forecasting Energy Loads and Consumption

ANNs also take the place in energy simulation systems because they achieve fast
computation time and performance in many applications. Olofsson et al. developed a
long-term prediction and performance evaluation tool based on artificial neural networks
(ANN) in 2001, using data from two to five weeks for six building families in Sweden built
in 1970. The authors utilized the PCA approach to reduce the number of characteristics
to only four (e.g., construction year, number of floors, framework, floor area, number of
inhabitants, and ventilation system). The tool was created by using short-term data to
evaluate performed retrofits and present conditions for improving the exited buildings,
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and made a long-term prediction for building energy consumption [20]. Ascione et al., in
2017, studied the ability to create a building energy prediction tool with low computational
power and high accuracy. The tool was constructed using data from office buildings
erected in southern Italy between 1920 and 1970. Based on the ANN algorithm, the authors
presented two concepts of prediction tools: (1) used the existing data as it is, and (2) used
the existing data but in the presence of energy retrofit measures. The proposed ANNs were
optimized by “Simulation-based Large-scale sensitivity/uncertainty Analysis of Building
Energy performance” (SLABE). The performances of the networks were estimated by using
the distributions of the relative error to compare ANNs’ outputs with EnergyPlus program
targets. The conclusion declares that the developed ANNs can replace standard building
performance simulation tools, thereby reducing computational effort and time [42]. Beccali
et al. studied EU non-residential building energy consumption in 2017 to develop an
energy evaluation tool based on two artificial neural networks (ANNs), the first of which
was used to forecast actual energy consumption and the second of which was used to assess
economic indicators. The authors used 151 existent buildings in four locations of southern
Italy to assess the two ANNs. The conclusion states that the decision support tool based on
ANNs was able to forecast the energy performance of buildings quickly and accurately
and that it was used to pick energy retrofit alternatives that can be implemented [43].

The ANNs’ flexibility is also declared in different applications when integrated with
other optimization techniques to improve overall performance. Paudel et al. in 2014,
integrated a pseudo-dynamic technique with an ANN model to make a daily short-term
prediction for building heating demand. Because the hidden information in heating de-
mand cannot be retrieved from climatic data by using ANN alone, the pseudo-dynamic
approach improved the overall performance of the ANN model by aspects of operational
heating power characteristics. The algorithm is used in the construction of French insti-
tutions. The created dynamic model is resilient, according to the conclusion, and may
be utilized by energy service companies (ESCOs) in heat production dynamic control
systems [44]. In 2017, Ascione et al. presented a detailed analysis and forecasting method
based on ANN for cooling load of institutional building. For two years, data were collected
from three institutional buildings. Due to the nature of vacation times and university
timetables, the research reveals a large variance in daily cooling loads energy consumption.
The authors proposed dividing the data into groups based on vacation times and university
timetables to solve the problem of variation and examine it. The conclusion states that
by adding categories’ numbers as a new input feature to the ANN algorithm, it was able
to improve predicting accuracy. Furthermore, by utilizing the Bayesian regularization
approach for the hyper-parameters automated tuning process, the performance of ANN
can be most effective and rapid in computation time [45].

We can analyze the performance of the ANN algorithm declared in some previous
papers to highlight the advantages and drawbacks by comparing it with other ML algo-
rithms in the energy and buildings field. In 2015, Platon, Dehkordi, and Martel presented
hourly electricity predictive models based on ANN and case-based reasoning (CBR) for an
institutional building. The measured data from a Canadian institutional facility included
elements, such as weather information, that are relevant to the building’s operation. To
forecast power usage with a horizon of 1 to 6 h, the authors utilized principal component
analysis to identify the most important characteristics (i.e., only 10 significant features
were chosen out of 22 available features). The models’ prediction abilities were evaluated,
and the ANN models regularly outperformed the CBR model, according to the results.
Both the CBR and ANN models, on the other hand, had an error that was well within the
ASHRAE limits. To improve the CBR model’s performance, different approaches were
tried: (1) varying the case similarity criterion and the number of previous instances used for
prediction and (2) using automated optimization techniques on values’ weight. However,
none of these techniques had a substantial impact on the CBR models’ performance [15].
Edwards, New, and Parker, in 2012, sought to reduce difficulties such as a large number of
features in the building characterization and prevent the problem of energy consumption
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in the predesign stage. The scientists used sensor-collected energy usage data to conduct
statistical analysis using several machine learning methods (e.g., feed-forward neural
network, support vector regression, least squares support vector machine, a hierarchical
mixture of experts, and fuzzy c-means with feed-forward neural networks). To forecast
next hour energy usage, researchers compared several machine learning algorithms on
two types of data: (1) data on commercial building consumption gathered hourly and
(2) data on residential building consumption collected every 15 min. According to the find-
ings of this comparison, ANN-based techniques perform better on commercial structures.
However, results show that these methods perform poorly on residential data and that
least squares support vector machines perform best on both, but with high computation
costs [18]. Kialashaki and Reisel, in 2013, created a hybrid method using artificial neu-
ral networks (ANN) and multiple linear regression techniques to forecast future energy
consumption for residential buildings in the United States under various input scenarios
(e.g., dwelling size, number of occupants, the efficiency of heating equipment and energy
intensity). The authors describe how ANN’s effectiveness varies in residential structures in
the United States, especially with test data. As the ANN model prediction is dependent on
the cumulative trends of the various parameters, the reason for the variation in forecast
energy was the fluctuation induced by the economic recession [19].

Simulation and Control for Energy Consumption

The energy consumption for buildings can be enhanced and controlled easily by
using the ANN algorithm because it has the ability to deal with nonlinear equations in
some applications. In 2015, Huang, Chen, and Hu proposed predictive control for an
HVAC system to forecast an interior temperature by taking into account nonlinear building
thermal dynamics (e.g., interaction between locations, noise in sensors, and delay time).
Energy input from mechanical cooling, ventilation, weather, and convective heat transfers
for thermal coupling between locations are all features of the ANN input. The suggested
ANN model incorporates the thermal interaction between zones, resulting in more accurate
prediction results than a single zone model, according to the conclusion. This management
approach resulted in a high level of building energy consumption control [23]. In 2016,
Benedetti et al. presented an automatic tool based on ANN to control building energy
consumption and investigated the effect of the collected data period on the automatic
utilization of such tools where a large amount of data is not always available in the
real world, so the minimum and maximum period of required data were identified to
achieve reliable results. To determine the optimal ANN design for an energy consumption
management tool, the authors used three alternative ANN architectures. Furthermore,
because a large quantity of data is not always present in practice, a method is presented for
determining the minimum time of data collection required to achieve accurate findings
and the maximum period of usefulness [46]. In 2017, Ahn, Cho, and Chung presented
a hybrid control approach on mass and temperature for supply air of heating system to
minimize energy consumption. To understand the nonlinear relations between features and
forecast or assess precise thermal, the suggested technique uses a mix of fuzzy inference
systems and ANN. To assess supply air conditions for a heating season, the suggested
technique was compared to a basic thermostat on/off controller, and it was discovered
that the ANN controller can reduce energy usage when compared to a simple thermostat
on/off controller [47].

Fault Detection and Diagnosis

Time consumption problems during energy assessment and retrofit studies for build-
ings vanish in some studies. Kalogirou et al. proposed a fault diagnostic prediction system
in 2008 that used temperature readings to identify problems in solar water heater compo-
nents and forecast mistakes in collectors or pipe insulation. There were four elements to
the problem diagnosis system: (1) a data acquisition system measured temperatures in
four locations of the solar water heater system and the mean value for a storage tank; (2) a
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prediction module based on an artificial neural network (ANN) that was trained with fault-
free system values obtained from a TRNSYS under the same meteorological conditions
(e.g., Nicosia, Cyprus, and Paris, France), (3) the residual calculator takes measurement
data from the data collection system as well as error-free predictions from the prediction
module, and (4) the diagnosis module detects a variety of defects, including collector faults
and insulation failures in the pipes linking the collection to the storage tank [48].

Energy Assessment

In 2013, Hong et al. studied the energy performance of schools (from 2008 to 2011) to
create energy evaluations by combining statistical analysis with artificial neural networks
(ANN) to evaluate the influence of each feature on energy and the relationship between
them. About 7700 schools were utilized in a rapid statistical study, and 465 schools were
investigated in depth using ANN to find variables that influenced school energy usage
patterns. The results declared that the non-domestic buildings must be re-classified be-
cause of different reasons: (1) changes in the energy use pattern and (2) differences in
energy performance between primary and secondary schools such as a gradual increase
in electricity consumption and a decrease in heating consumption in both. By comparing
simulation and engineering calculations, the authors noted the ability of ANN in energy
assessment and the limitation in prediction [49]. Buratti, Barbanera, and Palladino devel-
oped a verification tool based on ANN in 2014 to forecast energy consumption and assess
building performance by comparing it to energy certificates. The Umbria Region (central
Italy) acquired around 6500 energy certificates (2700 of which were self-declarations). To
train the ANN, the authors utilized only right certificates recognized by comparing them
to energy standards, and they created a new index called the neural energy performance
index to describe the degree of accuracy and to identify the certificate’s precise control
needs (NEPI) [50].

2.3.2. Applications of SVM Algorithm

The SVM algorithm represents the best alternative solution for the ANN algorithm
in many applications of the energy and buildings field. SVMs have a low number of
hyper-parameters compared to ANN models, so they are easier to control and can be
trained with small data sizes.

Modeling and Predicting Energy Loads and Consumption

The power and drawbacks of the SVM algorithm appeared in many applications of
the field by comparing it with ANN models to solve the same problems. By using the SVM
method for hourly cooling load forecast of an office building in Guangzhou, China, Li et al.
demonstrated in 2009 that it is extremely successful, even with small data sets. The findings
were compared to those of backpropagation ANN to indicate that SVM outperformed
ANN in terms of accuracy and global solution. The input features were (1) outdoor dry
bulb temperature of the past 2 h and (2) solar radiation intensity of the past 1 h. The result
states that the SVM algorithm performed as well as the ANN method in terms of speed and
accuracy, but with fewer data samples [28]. Using the least square support vector machine,
Xuemei et al. increased the time efficiency required for hourly cooling load forecast in 2009
(LSSVM). The authors compared the proposed approach to backpropagation ANNs to
assess its performance. In the end, LSSVM outperformed backpropagation ANN in terms
of accuracy and global solution, especially when the available training set is restricted. As a
result, LSSVM might be a viable option for predicting the cooling demand in a building [29].

After proofing the ability of SVM to replace ANN in different applications of the same
field, there are different papers applied the algorithm with some adjustments to overcome
drawbacks such as high time consumption when used with large data size. Hai Xiang
Zhao et al. in 2009, studied the ability of SVM with the Gaussian kernel algorithm to deal
with large time series datasets and reduce the training time of predicting energy models
by using a concept of parallel SVM algorithms. Results showed very good performance
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in the prediction of energy consumption in multiple buildings based on large time series
datasets [32]. Zhao and Magoulès, in 2012, studied the ability to reduce time consumption
in SVM training with large data size by using radial and polynomial functions as a kernel
for parallel SVM algorithms to predict the energy consumption of office buildings. The
algorithm feature selection is implemented on data by using correlation analysis for features.
Using correlation analysis for features, the algorithm feature selection is implemented on
data. To compute the energy demands, the authors utilized simulated data from EnergyPlus
software and manually selected features by computing correlation coefficients to reduce
the number of features for the proposed algorithms [31].

Making Simulation and Prediction Tools

SVM algorithms can also outperform the ANN algorithm in dealing with residential
buildings data for many cases such as energy prediction and creating tools. Jain et al., in
2014, used a support vector regression (SVR) algorithm with sensor measurements from
residential buildings to make energy predictions. The inputs feature during training were
(e.g., weather, time of day, and previous energy consumption) from multi-family residential
building data in New York City. The authors mentioned a paucity of research applying
multi-family residential buildings. Thus, he expanded the study-to-study algorithm limita-
tions by examining different time steps (i.e., 10 min, daily, and hourly) and different spatial
categories (i.e., by unit, by floor, and whole building). The conclusion declares that the SVR
could be used in energy prediction for residential buildings and the best prediction results
occurred at floor level in hourly intervals [30]. In 2008, Lai, Magoulès, and Lherminier
utilized SVM to develop a simple and rapid method for predicting the electric energy con-
sumption of residential buildings. The data include daily electricity usage for a year and
three months, as well as climatic data such as temperatures and humidity. For the learning
stage, the authors utilized a year and two months, and for the prediction step, the authors
used the last month. The findings demonstrate that the model has high performance and
that the SVM tool may be utilized to conduct predictive modeling [51].

Classification for Buildings Depending on Energy Consumption

The SVM algorithm is very flexible to be integrated into existing systems on building
energy management. In 2010, Li, Bowers, and Schnier developed a daily power consump-
tion management system for buildings based on detecting abnormal energy behavior and
providing the capacity to handle problems in real time to enable prediction and detection
of abnormal energy usage. The system consisted of the following steps: (1) outliers’ detec-
tion in real time to identify abnormal energy use and delete it from further analysis, and
(2) classifying based on the SVM-predicted daily electricity profile. The suggested system
was computationally efficient and resilient enough to be incorporated into current building
energy management and alarm systems [52].

2.3.3. Applications of GPR or GMM Algorithm
Energy Saving Verification and Retrofit Studies

Although the Gaussian-based algorithms need high computation power resources,
they have a lot of advantages declared through implementation in some complicated
applications which make them used in the field. In 2012, Heo and Zavala investigated
the possibility of the GPR model to substitute a linear regression approach in energy
savings, uncertainty measurements, and verification problems since it is highly powerful
in prediction, particularly with noisy data. The conclusion asserts that generalized linear
models (GPR models) can represent complicated behavior (i.e., nonlinearities, multivariable
interactions, and time correlations). Furthermore, because they were created in a Bayesian
environment, they can overcome difficulties of uncertainty [33].

These solution algorithms are best in the case of noisy data or probabilities and retrofit
studies to help decision makers in taking steps in improving countries. Furthermore, in
2012, Heo, Choudhary, and Augenbroe presented a scalable, probabilistic methodology for
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energy modeling based on Bayesian calibration (the same base for Gaussian models) to
improve modeling by detecting uncertainty in buildings models and aid in studying the
probability of building energy consumption improvements and retrofit performance. The
suggested technique, according to the conclusion, may accurately assess energy retrofit
choices and promote risk-aware decision-making by clearly inspecting risks associated
with each retrofit option [35].

The GPR and GMM algorithms can be integrated with other models to improve
performance even if the collected data are limited. In 2014 Burkhart, Heo, and Zavala
utilized a GPR with a Monte Carlo expectation maximization (MCEM) model to cope
with noisy data from sensors (e.g., weather, occupancy) and investigated the impact of
the method on the quantity of necessary data from sensors during measurement and
verification (M&V) stages. The GPR-MCEM model, according to the result, reached robust
prediction levels when compared to conventional GPR alone, and may be utilized as a
mechanism to decrease data collection and sensor installation costs in M&V processes since
it provides high performance with fewer data [34].

2.3.4. Applications of Clustering Algorithms (K-Means and K-Shape)
Energy Assessment and Forecasting

The benchmarking process is very helpful in building energy assessment applications,
especially when integrated with other algorithms to create energy assessment techniques.
In 2007, Santamouris et al. developed an intelligent technique to cluster school buildings
as the first step in energy assessment procedures. Then, the output clusters used in the
energy performance studies specified the buildings’ rating and environmental impact
of each cluster. The energy rating of the school buildings gives detailed information on
their energy consumption and efficiency in comparison to other buildings of a similar
kind, allowing for better intervention planning to enhance their energy performance. The
authors created the technique in three steps: (1) energy consumption data were collected
from 320 schools in Greece, (2) fuzzy clustering techniques were used to make the energy
rating scheme, and (3) 10 schools were selected and detailed analysis was performed
for energy efficiency, performance, and environmental impacts. The conclusion declares
the ability of the used technique to identify and rate the existing school buildings and
studied the potential for energy and environmental improvements [39]. Gaitani et al.,
in 2010, presented an energy classification tool for school buildings’ heating based on
a k-means clustering technique with PCA to help decision makers in the schools rating
process and study probabilities of energy savings. The data used consisted of 1100 cases
from secondary education school buildings in Greece, which represented 33% of the total
secondary school sector, and included information such as energy consumption for space
heating and lighting, building area, number of students and professors, a boiler installed
power, building manufacturing year, and operation schedule. The tool was created in
three steps: (1) an extensive statistical analysis on the data was performed, (2) PCA was
applied to select the most significant features, and (3) a k-means clustering technique
was used to classify. The results state that the categorization may be used to aid decision
makers’ energy-saving strategies [40]. In 2017, Yang et al. proposed an energy clustering
method based on the k-shape algorithm for time series data, which can recognize patterns
in time series data and categorize them using multi-dimensional space. The clustering was
performed on data from 10 institutional buildings’ hourly and weekly energy usage using
the k-shape method to find form patterns in time series data, which increased the accuracy
of forecasting models. The conclusion declared that the proposed method could detect
building energy usage patterns in different time intervals effectively and also proved that
the forecasting accuracy of the SVR model is significantly improved by integrating the
clustering method with the SVR model [36].

These clustering algorithms also prove efficiency as an alternative solution for software
such as the Energy Star program. In 2014, Gao and Malkawi proposed a benchmarking
technique based on the smart clustering concept, which classifies buildings’ energy based
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on all features that have a relationship with energy consumption and groups buildings with
the most similarity of features into one cluster, implying that the problem of classifying
is multi-dimensional. The proposed methodology contains four steps: (1) data collection,
(2) feature identification and selection, (3) selection for clustering algorithm depending on
collected data, and (4) buildings’ benchmarking concerning cluster group and centroid. The
findings were compared to the Energy Star approach to show that the suggested strategy
can give a more thorough approach to benchmarking, particularly with multi-dimensional
challenges, inspiring a fresh viewpoint on building energy performance benchmarking [37].

The complexity of ML problems can be handled by the clustering algorithms, which
convert the chaos data to more homogenous ones in simple iterative steps. Arambula Lara
et al. in 2015, studied the European policy of energy saving and the Commission Delegated
Regulation (EU) 244/2012, which gave recommendations for some reference buildings to
make a compromise cost from expected improvements. The solution was found in the k-
means clustering approach, which split huge data into tiny and homogeneous groups based
on building characteristics’ similarity, decreasing the complexity of energy optimization
and retrofits by reducing school buildings’ stock homogeneously. The data came from a
sample of roughly 60 schools in the region of Treviso in northern Italy, collected between
2011 and 2012. The conclusion declares that this method could identify a small number of
parameters to assess the energy consumption for air heating and hot water production [38].

2.4. Model Training, Validation, and Tuning

This is an iterative process during the conversion of a solution that can be performed
many different times. Initially, upon training, the model will not achieve the results that are
expected. Thus, the tuning process is very important to evaluate model performance under
different values of hyper-parameters. During training, the machine learning algorithm
updates a set of numbers known as parameters or weights. The goal is to update model
parameters in the global solution direction which makes the predicted output as close as
possible to the true output (as seen in the data). This cannot be achieved in one iteration,
because the model has not yet learned; it watches the weights and outputs from previous
iterations and shifts the weights to a direction that lowers the error in the generated output.
If the error in the output gradually decreases with each successive iteration, the model is
said to converge, and the training is considered successful. If, on the other hand, the errors
either increase or change randomly between iterations, the hyper-parameters of the model
need to be tuned [12].

The most important thing in model performance is overfitting and underfitting. The
underfitting problem means that the model performance is very low on the training data,
and thus, the training model is unable to represent the data correctly. In underfitting
problems, the model could be very simple (the problem cannot be formulated well with
enough features) to produce accurate outputs well, because of the inability to extract
patterns or relationships between input and output features for data. To overcome the
underfitting problem, there are different techniques: (1) reformulate the real-life problem
by adding more effective features, (2) choose suitable preprocessing methods to solve data
drawbacks of missing or outlier values, and (3) decrease or change amount or type of model
regularization techniques such as dropout. The problem of overfitting is present when the
model performance is very high on training data but low on the validation or test data. The
reason for the overfitting problem is the inability of the model to attain the global solution
of the problem to cover all data sets. With low performance for unseen data, it makes sense
to use fewer feature combinations and increase the amount of regularization [53].

There are several techniques to overcome overfitting and maximizing generalization.
The most popular one is simple Hold-Out Validation. The simple hold-out technique
depends on splitting data into multiple sets for training, validating, and testing models.
Training data, which include both features and labels, feed into the model. The model is
then used to make predictions over the validation data set, which checks performance to
tune and change the model’s weights. Then, test data that only include features are used
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to produce the labels. The performance of the model with the test data set is what we can
reasonably expect to see in real life [13,54,55].

The problem of the hyper-parameters tuning process is mainly related to the ML
algorithm type. For the ANN algorithm, many papers discussed this problem during
the implementation of different real-life problems and recommended using an automatic
technique in the tuning for a large number of ANN hyper-parameters because the ANN
model has a lot of hyper-parameters.

González and Zamarreño, in 2005, studied the effect of hyper-parameters such as the
number of neurons per layer and data size on the performance of ANN while creating an
algorithm for short-term building load prediction. The authors mentioned difficulties in
reaching the global solution because it related to large numbers of ANN hyper-parameters
values [25]. Dombaycı et al. in 2010, studied the number of neurons per layer only as a
hyper-parameter for an ANN model that was developed to make an hourly heating energy
prediction in the design stage for a building to help in selecting appropriate and efficient
heating and cooling equipment. The authors explained the complexity of tuning ANN
hyper-parameters by using manual methods because of their large numbers [13]. One of
the trials to overcome the problem of a large number of hyper-parameters was conducted in
2015 by Li et al., who used particle swarm optimization technique in automatic ANN hyper-
parameters tuning while improving the short-term building hourly electricity consumption
prediction and compared this method and simple ANN with manual tuning for hyper-
parameters. The authors concluded that the automatic tuning process has a shorter training
time and higher performance than the manual method and the hybrid genetic algorithm
model [16]. In 2017, Ascione et al. presented a solution for the same problem using the
Bayesian regularization technique for hyper-parameters’ automatic tuning while making a
detailed analysis and forecasting method based on ANN for the cooling load of institutional
buildings, and mentioned that the performance of ANN is the most effective and quick in
computing time by using this tuning technique [45].

Otherwise, the SVM algorithms are easily tuned and manually optimized. These
advantages appeared in many applications such as in 2009 when Zhijian Hou et al. studied
the ability to replace huge numbers of trainable parameters for ANN by using radial
function as a kernel for an SVM algorithm in an HVAC system energy prediction in
Nanzhou. The paper proved that the algorithm has fewer parameters to tune compared
with ANN and is better than the ANN algorithm in forecasting [27].

2.5. Model Evaluation

The model evaluation is performing using test data to make sure that the required goal
is achieved and to overcome the problem of over-fitting and under-fitting for the trained
model. If the trained model does not meet the required goal, it increases the required time
to re-validate the model and achieve goal. In this step, the feature engineer takes the role
to study data and features and find ways to improve the model, and the way that it is
produced. Once the retraining happens and the required goal is achieved, the model is
deployed to perform the best possible predictions on the unknown data to begin evaluating
how the model responds in a non-training environment.

To evaluate the machine learning model, we need to know the type of ML problems,
classification (such as benchmarking), or regression (such as prediction) problems. The
type of machine learning problem will influence the type of metric used to evaluate the
model. We can start by looking at classification problems metrics. There are different
types of metrics to evaluate models: (1) accuracy, (2) precision, (3) recall, (4) F1 score (2*(re-
call*precision)/(recall + precision)), and (5) area under the curve-receiver operator curve
(AUC-ROC). To implement this metric method on the trained model, the model predictions
and the known target values are sent to the confusion matrix. A confusion matrix is the
building block for running these types of model evaluations for classification problems.
Then, the predictions are returned, compared with the values of ground truth. Finally, the
evaluation metric between predicted values and ground truth values is computed [56].
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It is recommended in classification problems to use F1 as an evaluation metric because
the F1 score combines precision and recall together to give one number to quantify the
overall performance of a particular ML algorithm. In addition, the F1 score should be
used when the dataset has a class imbalance but we want to preserve the equality between
precision and recall.

In regression problems, there are other common metrics that we can use to evaluate the
model: (1) mean squared error and (2) R-squared. Mean squared error is very commonly
used. The difference between the prediction and actual value is calculated, that difference
is squared, and then all the squared differences for all the observations are summed up [16].

The other metric type is R-squared, which explains the fraction of variance accounted
for by the model. It is like a percentage, reporting a number from 0 to 1. When R-squared
is close to 1, this usually indicates that a lot of the variabilities in the data can be explained
by the model itself. The threshold for a good R-squared value depends on your machine
learning problem. In some machine learning problems, it is very difficult to achieve a high
R-squared value. The high value of R-squared does not always represent strong model
performance because R-squared is always increasing when more variables are added to the
model, which sometimes leads to overfitting [13]. To counter this potential issue, there is
another metric for model performance called the Adjusted R-squared value. The Adjusted
R-squared has already taken care of the added effect for additional variables and it only
increases when the added variables have significant effects on the prediction. The adjusted
R-squared adjusts the final value based on two factors: (1) the number of features and
(2) the number of data points in the data. A recommendation, therefore, is to look at both
R-squared and Adjusted R-squared. This will ensure that the model is performing well but
also that there is not too much overfitting.

In the building energy prediction field, it is preferred to evaluate ANN using mean
absolute percentage error (MAPE) as a performance metric during model training. It is
used in different applications in the same field and is proved to be very effective in the
examination of model quality during the prediction process [25].

The most recommended evaluation technique is the cross-validation method that was
used in 2006 by Karatasou, Santamouris, and Geros. They evaluated the hourly buildings
load predictor based on feed-forward artificial neural network (FFANN) by splitting the
data into many packages and looping them in the training process (i.e., each iteration in the
training process carried out by using one of the packages as test data and others as training
data to cover all data samples without overfitting problems). In addition, the authors
discussed the cross-validation technique effect during training on the result of prediction
and modeling and recommended this technique in such applications to achieve more robust
models. The authors also discussed, the importance of attaining a more robust model by
using different types of data sets in the evaluation process (i.e., the model performance was
evaluated using two different data sets: (1) energy prediction shootout I contest and (2) an
office building in Athens) [21]. Furthermore, one of the evaluation techniques was used
by Dombaycı et al. in 2010 while developing an hourly heating energy prediction model
based on ANN for building. The total data of 35,070 h were split into two packages to train
and test the model: (1) the data from 2004 to 2007 (i.e., 26,310 data sample) used during
model training, and (2) the data of the year 2008 (i.e., 87,60 data sample) used in model
testing or evaluating. The authors mentioned the importance of using test or unseen data
to improve model performance in real life [13].

2.6. Model Verification

The verification of machine learning models’ robustness refers to checking models
deployed on a real-life problem to ensure that it adheres to these specifications and achieves
the target for a long run. A variety of machine learning models are also assessed according
to how robust they are proven to be. This step must be performed frequently to make sure
that the system is still working in high performance.
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The evaluation step represents the base for verification steps during model deploy-
ment. The more models are robust in the evaluation step, the easier the verification step,
and results in real life will be better. The robustness or verification for any model is ex-
amined firstly during the evaluation step by using unseen data or new data that differed
from training data. Different types of data packages in many applications are used in the
ML model evaluation step, such as in the 2006 work Karatasou, Santamouris, and Geros,
who evaluated the FFANN models by using two different data sets: (1) energy prediction
shootout I contest, and (2) an office building in Athens. In addition, they trained models on
different time steps to identify limitations for models and create a robust hourly buildings
load predictor tool so that the FFANN can be deployed on different data sets and used
for a long run [21]. Moreover, in 2015, Li et al. collected hourly data from two resources:
(1) energy prediction shootout contest I, and (2) a campus building in east China; mean-
ing that the data were collected from different locations all over the world to ensure the
reliability and robustness of the model [16].

3. Discussion

As shown in Figure 2, the generic ML covers all required steps to use and deploy
the ML algorithms (i.e., ANN, SVM, GPR or GMM, and k-mean or k-shape clustering)
in the energy and buildings field. The pipeline starts with problem identification (i.e.,
identify application type and specify the benchmarking and prediction problems). Then,
this real-life problem must be converted to an ML problem in the problem formulation
step by identifying the related features. After that, the data scientists start in collecting
the data depending on the related features identified in the previous step and make
some statistical analysis and visualization to study the nature of collected data and their
distribution (this step is very important to help data scientists in choosing the appropriate
preprocessing techniques).

Thereby, the data preprocessing step starts with answering some questions: (1) are
there too many features? If there are too many features, the features must be decreased by
feature selection (i.e., keeping only the most significant features that have a high effect on
the studied problem). If there are not too many features, the second question is (2) are there
too few features? If the collected data have a small number of features that have nonlinear
or deep interaction relationships, the data scientist must employ some feature extraction
techniques to increase the number of features and help the algorithm reach for a global
problem solution during training. The third question concerns (3) noisy data. If the data
contain noise, the filtration must be carried out by Gaussian based models or the Kalman
filter. The fourth question concerns (4) time series data. To identify the noise filter type, this
question must be answered to select between Gaussian-based models or the Kalman filter.
The final step in preprocessing steps is solving problems of outliers and missing values.

Then, the most appropriate ML model must be selected. The selection depends on the
ML problem type (i.e., benchmarking or prediction) that is identified in the first step in the
proposed pipeline. In addition, some questions must be answered to identify the algorithm
type. The first question concerns (1) time series data. If the data are time series, the k-shape
clustering algorithm is the best selection for benchmarking. If not, the k-means clustering
algorithm is better. The second question concerns (2) very big data. If the data are very big,
the ANN algorithm is the best solution for prediction problems. If not, the next question
concerns (3) complex systems. If the data have nonlinear or deep interaction relationships
between features, the GPR or GMM are the best solution models for prediction problems. If
not, the SVM model is better. After that, the labels from clustering is appended to the data
in benchmarking to analyze the result, and the data must be normalized before training in
prediction problems.
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Figure 2. Building energy prediction and benchmarking pipeline.

Then, the model is trained, validated, tuned, and evaluated by using the cross-
validation technique to create a robust model. Finally, if the evaluation results achieve the
model goal, the model is deployed in real-life applications and make verification processes
regularly. If the results are bad, the feature engineering must be conducted to increase or
decrease features more and more (i.e., feature selection or feature extraction) and return to
the training step again, or the collected data are not enough and must be increased by a
return to the problem formulation again.

The final ML pipeline is very important for ML users in the energy and buildings
field because it abbreviates a high level of experience in one pipeline to avoid the time
consumption from new ML users to learn the potential of each ML algorithm. For more
demonstration, we explain some previous work in the field by using the proposed pipeline
(in Tables 1 and 2) to prove that the pipeline can be used as a reference for implementing
the ML concept in the right way and achieving high performance:

(1) In 2006, Karatasou, Santamouris, and Geros designed an hourly buildings load predic-
tion tool based on a feed-forward artificial neural network (FFANN). By comparing
between paper steps and the proposed pipeline, it is found that the authors did not
mention any preprocessing steps except statistical analysis. They stated that the data
did not have any noise, removed the missing values, and normalized the data. Thus,
they did not take the full benefits of statistical analysis to study the data nature, and
there are some wrong prediction peaks due to ignoring the outliers’ effect in the
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preprocessing data step. Because of the large data size and since the ML type is pre-
diction, the selected algorithm was ANN, and they implemented the cross-validation
technique to create a robust model. In addition, the ANN algorithm was evaluated
with two different data sets to ensure robustness, but it is not enough because the
evaluation would be better if performed on the same model structures with different
data sets but with the same input features to increase reliability and robustness [21].

(2) Dombaycı et al., in 2010, developed an hourly heating energy prediction model based
on ANN to estimate energy in the design stage. The authors did not mention any
preprocessing steps, just normalization, because the user data were calculated, so the
probability of containing noise, missing values, and outliers is very small (this does
not have the same worth of actual data). The ANN was used because the data are
big and the ML problem concerns prediction. The data were split to train and test
sets, but this was not enough because the trained model could be more robust if the
cross-validation technique was used in training and evaluation steps [13].

(3) Mena et al., in 2014, developed and assessed a short-term predictive ANN model of
electricity demand. The authors manually reduced the number of features because the
data had a high number of features. Although the authors mentioned the outliers and
noise in the data, they did not apply any type of analysis to solve these two problems
in the data. In addition, the missing values in the data are kept as is and the authors
depended on a manual method in splitting the data to skip missing values, which means
the splitting blocks are imbalanced. Thus, the efforts made in the training and evaluation
steps to create a robust model are useless because the preprocessing steps are not well
performed, so the results from the model have a relatively high mean error [57].

(4) In 2015, Li et al. improved the short-term hourly electricity consumption prediction
of a building. The authors mentioned a large number of features, so they used an
automatic method of reducing features (PCA). However, the authors did not mention
anything about the missing values and outliers in the data. Because of the large
data size and since the ML type is prediction, the selected algorithm was ANN.
The automatic tuning gives high prediction results, but it needs to integrate with
cross-validation techniques to ensure the robustness and reliability of the model [16].

(5) In 2017, Yang et al. proposed an energy clustering and prediction method based on
k-shape and SVM algorithms for time series data. The authors mentioned the noise in the
data but did not mention solving it. In addition, there was no mention of any technique
to solve the problem of outliers and missing values. The data size is relatively high to
be used in SVM algorithms (the authors did not take into consideration the data size
when selecting the algorithm), and the authors extracted features to decrease complexity
and effort during model training. Due to the huge data size, it is recommended to used
parallel SVM to reduce time or replace it directly with ANN [36].

(6) Heo and Zavala, in 2012, used the GPR model in energy savings and uncertainty mea-
surements and verification problems. The authors did not use any feature extraction
concept, although they mentioned a high degree of complexity in the data due to
noise and nonlinear relationships. Moreover, they did not mention any technique to
detect and solve the outliers and missing values problems. The data size is relatively
large and since the authors did not mention time consumption in training, it may be
too large. Thus, it will be better to use the Gaussian model to remove noise only and
complete the prediction by ANN or use ANN directly for all problems [33].

(7) In 2014, Gao and Malkawi proposed a benchmarking technique for building energy
based on the k-means concept. The authors used the features selection technique
due to the high number of features. The data contain outliers, but the authors did
not mention the technique to solve this. In addition, the imputation technique for
missing values was not declared well, which greatly affected the k-means solution
(the k-means has a high probability of falling into local minimum) [37].
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Table 1. Review of some previous papers comparing them with the proposed ML pipeline.

Preprocessing Questions and Actions Model Selection Questions and Actions Model Creation
Too

Many
Fea-

tures? or
Too Few

Fea-
tures?

Extracted or
Selected
Features

Noisy
Data?

Time
Seri-
ous

Data?

Kalman
or

Gaus-
sian

Filters

Outliers’
Values

Missing
Values

Benchmarking
or Prediction?

Time
Seri-
ous

Data?

Very
Big

Data?

Complex
Sys-
tem?

Selected
Algo-

rithm?

Append
Clusters
Labels to
Data? or

Normalize
Data?

Training,
Validation
and Tuning

Evaluation

Not
asked —– ×

√
—– —– removed prediction

√ √ Not
asked ANN normalized

Applied cross-
validation on
two data sets

Used two
data sets
and tried
different
samples

steps

[21]

Not
asked —– ×

√
—– —– —– prediction

√ √ Not
asked ANN normalized

Split data to
train and test

sets

Used test
data [13]

Too
many

features

Selected
features

using
correlation

between
features

√ √
—– Keep as

it
Keep as

it prediction
√ √ √

ANN normalized

Split data to
train, validate,
and test sets

with different
samples steps

Used test
data with
different
samples

steps

[57]

Too
many

features

Selected
features

using PCA
×

√
—– —– —– prediction

√ √ Not
asked ANN normalized

Split data to
train and test

with
automatic

tuning (PSO)

Used test
data [16]

Too
many

features

Extracted
features

using
k-shape

clustering

√ √
—– Filtered Imputed Benchmarking

and prediction
√ Not

asked
Not

asked

k-shape
and
SVM

normalized
and append
cluster labels

Split data to
train and test
and applied

cross-
validation

Used test
data with
different
samples

steps

[36]



Energies 2021, 14, 5410 20 of 30

Table 1. Cont.

Preprocessing Questions and Actions Model Selection Questions and Actions Model Creation
Too

Many
Fea-

tures? or
Too Few

Fea-
tures?

Extracted or
Selected
Features

Noisy
Data?

Time
Seri-
ous

Data?

Kalman
or

Gaus-
sian

Filters

Outliers’
Values

Missing
Values

Benchmarking
or Prediction?

Time
Seri-
ous

Data?

Very
Big

Data?

Complex
Sys-
tem?

Selected
Algo-

rithm?

Append
Clusters
Labels to
Data? or

Normalize
Data?

Training,
Validation
and Tuning

Evaluation

Not
asked —–

√ √
—– —– —– prediction

√ √ √
GPR normalized

Split data to
train and test
with different
samples steps

Used test
data with
different
samples

steps

[33]

Too
many

features

Selected
features

using
p-value

×
√

—– —– replaced Benchmarking ×
√ Not

asked k-mean normalized

Applied
similarity

measure on
one package

data

Compare
results with
EnergyStar

software

[37]

Table 2. The details of the reviewed papers and the comments that result from comparison with the proposed ML pipeline.

Model Target Data Source Data Size Model Features
Selected

Algo-
rithm?

Best Evaluation
Results Comments and Expected Improvements

Predict Hourly
Energy

Consumption
[21]

“Two different data sets provided
from two different buildings: The

first set is the benchmark
PROBEN 1, and comes from the

first energy prediction contest, the
Great Building Energy Predictor

Shootout I, organized by
ASHRAE (data set A)

& The second data set derives
from an office building located in

Athens, Greece (data set B)”

data set A: a total
of 4208 time

steps,
data set B: a total
of 8280 time steps

data set A: “temperature,
solar radiation, humidity

ratio and wind speed”
data set B: “ambient

temperature, humidity,
daily, weekly and yearly

cycles the hour of day,
day of week and day

of year”

ANN

data set A: RMS is
15.25, MAPE is 1.50,
CV is 2.44 and MBE

is 0.37
data set B: RMS is
1.13, MAPE is 2.64,
CV is 2.95 and MBE

is –0.03

There are some wrong prediction peaks due to
ignoring the effect of the outliers in

preprocessing data step, and the evaluation
would be better if carried out on the same

model structures with different data sets but
with the same input features to increase

reliability and robustness.
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Table 2. Cont.

Model Target Data Source Data Size Model Features
Selected

Algo-
rithm?

Best Evaluation
Results Comments and Expected Improvements

Predict Hourly
Heating Energy

[13]

“A model house designed in
Denizli which is located in Central

Aegean Region of Turkey”

A total of 35,070
time steps

“Month, day of the
month, hour of the day,

and energy consumption
values at certain hours”

ANN
RMSE is 1.2125, R2 is

0.9880 and MAPE
is 0.2081

The author did not mention any preprocessing
steps, just normalization because the used data
was calculated, which did not have the same
worth of actual data, and the trained model
could be more robust if the cross-validation
technique was used in training and different

time steps during the evaluation,

Predict Hourly
Energy

Consumption
[57]

“CIESOL bioclimatic building,
located in the southeast of Spain”

A total of 700,000
time steps

“The type and hour of
the day, weather

variables (outdoor
temperature, outdoor

humidity, solar radiation,
wind velocity and wind
direction) and the state

of the actuators from the
solar cooling installation”

ANN Mean error is 11.48%

Although the authors mentioned the outliers
and noise in the data, they did not apply any

type of analysis to solve these two problems in
the data. In addition, the missing values in the
data are kept as is and the authors depended
on a manual method in splitting data to skip

missing values, which means the splitting
blocks are imbalanced. Therefore, the efforts
made in the training and evaluation steps to

create a robust model were useless because the
preprocessing steps are not well performed, so

the results from the model have a relatively
high mean error.

Predict Hourly
electricity

consumption
[16]

“The Great Building Energy
Predictor Shootout I, organized by

ASHRAE in 1990s (data set A)
Data from a library building

located in Hangzhou, East China
(data set B)”

data set A: a total
of 4208 time

steps, data set B:
a total of

2472 time steps

Data A: “outdoor dry
bulb temperature, solar

radiation, humidity ratio
and wind speed”

Data B: “daily
temperature

and occupancy”

ANN

data set A: CV is
0.0254 and MAPE is

0.0162
data set B: CV is

0.0758 and MAPE
is 0.058

The authors did not mention anything about
the missing values in the data. The automatic

tuning gives high prediction results, but it
needs to integrate with a cross-validation
technique to ensure the robustness and

reliability for model.
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Table 2. Cont.

Model Target Data Source Data Size Model Features Selected
Algorithm?

Best Evaluation
Results Comments and Expected Improvements

Benchmark and
predict (hourly and

weekly) Energy
consumption

[36]

“10 institutional buildings
in Singapore”

a total of 122
days for

each building

“Hourly and weekly
energy consumption”

k-shape and
SVM

Respective MAPE
values are 15.36, 9.46,
1.033 1.23, 2.37, 3.66,
0.57, 54.11, 3.63, 4.46
for the ten buildings

The authors mentioned the noise in data but did not
mention solving it. In addition, the outliers and

missing values did not mention solve in the
technique. The data size is relatively high to be used

in SVM algorithms (the authors did not take into
consideration the data size when selecting the

algorithm), and the authors extracted features to
decrease complexity and effort. Thus, it is

recommended to used parallel SVM to reduce time.

Predict Daily
Energy

Performance
[33]

“Real weather data in the
Chicago area”

a total of
8736 time steps

“Weather and occupancy
levels, and the most
commonly used is
outdoor dry-bulb
air temperature”

GPR

SSE is from 2.7e5 to
3.6e6 and total
energy savings

prediction error is
from 31 to 41.23

The data size is relatively large, and the authors did
not mention time consumption in training, as it may

be too large. Therefore, it will be better to use the
Gaussian model to remove noise only and complete

prediction by ANN or use ANN directly for
all problems.

Benchmark annual
Energy

Performance
[37]

“commercial building
(CBECS database)” 5215 samples

“Area, percent heated,
percent cooled, wall

materials, roof materials,
window materials,

window percent, shape,
number of floors,
construction year,

weekly operation hours,
occupants, variable air
volume, heating unit,

cooling unit, economizer,
refrigerators, number of

servers, office
equipment, heating and

cooling degree day”

k-mean

Ratio between actual
energy index to

centroid for cluster in
range from 0.96 to 2.1

for each cluster

The data contain outliers, but the authors did not
mention this or the technique to solve this. In

addition, the imputation for missing values is not
declared well. The evaluation step is carried out

using a comparison with EnergyStar without
declaration of any approach to overcome the local

minimum solution of the k-mean algorithm.
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4. Implement the Pipeline on CBECS Data

In this section, the pipeline is used as a reference to make commercial building energy
predictions by using CBECS data. The data are collected by the US Energy Information
Administration (EIA). Since 1979, the EIA has performed the CBECS regularly, as mandated
by Congress. For commercial buildings, the EIA gathers data in two parts: (1) building
characteristics or features are gathered through an in-person or online survey of building
owners and managers, and (2) energy use data are gathered from power suppliers.

After collecting the data, the preprocessing and visualization step follows. The targets
during data visualization are to (1) check missing values, (2) check outlier values, and
(3) understand the nature of each feature distribution (normal distribution or skewed
distribution). The visualization helps to choose the best method suitable for filling missing
values and replacing outlier values. The difference between mean and median reflects the
influence of outliers on data distribution, as seen by the calculation procedure of mean and
median values for each characteristic in Table 3. In addition, the visualization of missing
values of each feature is very important to decide which feature is suitable to be taken
in the training of ML because features with a high percentage of missing values cannot
be taken.

Table 3. Selected features’ characteristics.

Selected Features Values and Ranges
Format

Analysis before
Changes Notes and Changes Analysis after

Changes

Square footage
(SQFT) 1001–1,500,000

Mean = 124,473.50
Median = 20,750.00

Std = 258,613.18
Outliers = 12.31%
Missing = 0.0%

No changes

Mean = 124,473.50
Median = 20,750.00

Std = 258,613.18
Outliers = 12.31%
Missing = 0.0%

Number of floors
(NFLOOR)

1–14
994 = 15 to 25

995 = More than 25

Mean = 30.16
Median = 2.00
Std = 163.61

Outliers = 9.73%
Missing = 0.0%

Change (994 = 15 to 25)
to (‘20’ = 15 to 25) as

mean value to this range
and change (995 = More
than 25) to (30 = More

than 25) [17]

Mean = 3.01
Median = 2.00

Std = 4.31
Outliers = 9.73%
Missing = 0.0%

Year of construction
(YRCON)

995 = Before 1946
1946–2012

Mean = 1861.10
Median = 1981.00

Std = 325.77
Outliers = 12.37%
Missing = 0.0%

Change
(995 = Before 1946) to
(1932 = Before 1946)

Mean = 1976.97
Median = 1981.00

Std = 23.34
Outliers = 0.00%
Missing = 0.0%

Total hours open per
week

(WKHRS)
0–168

Mean = 78.02
Median = 60.00

Std = 51.37
Outliers = 0.00%
Missing = 0.0%

No changes

Mean = 78.02
Median = 60.00

Std = 51.37
Outliers = 0.00%
Missing = 0.0%

Number of employees
(NWKER) 0–6500

Mean = 178.78
Median = 15.00

Std = 565.94
Outliers = 15.97%
Missing = 0.0%

No changes

Mean = 178.78
Median = 15.00

Std = 565.94
Outliers = 15.97%
Missing = 0.0%

Percent heated
(HEATP)

0–100
Missing = Not

applicable

Mean = 88.52
Median = 100.00

Std = 24.24
Outliers = 19.94%
Missing = 7.75%

Fill missing values with 0
because (not applicable
mean zero percentage)

Mean = 81.49
Median = 100.00

Std = 33.38
Outliers = 15.73%
Missing = 0.0%
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Table 3. Cont.

Selected Features Values and Ranges
Format

Analysis before
Changes Notes and Changes Analysis after

Changes

Percent cooled
(COOLP)

1–100
Missing = Not

applicable

Mean = 79.81
Median = 100.00

Std = 30.13
Outliers = 8.29%

Missing = 10.18%

Fill missing values with 0
because (not applicable
mean zero percentage)

Mean = 71.68
Median = 95.00

Std = 37.39
Outliers = 0.00%
Missing = 0.0%

Number of computers
(PCTERMN)

0–4195
Missing = Not

applicable

Mean = 168.93
Median = 10.00

Std = 530.48
Outliers = 16.21%
Missing = 3.56%

Fill missing values with 0
because (not applicable

mean zero)

Mean = 162.92
Median = 9.00
Std = 521.90

Outliers = 16.1%
Missing = 0.0%

Percent lit when open
(LTOHRP)

0–100
Missing = Not

applicable

Mean = 82.12
Median = 95.00

Std = 25.01
Outliers = 8.04%
Missing = 4.4%

Fill missing values with 0
because (not applicable

mean zero)

Mean = 78.50
Median = 90.00

Std = 29.70
Outliers = 8.66%
Missing = 0.0%

Annual electricity
consumption
(thous Btu)
(ELBTU)

Output Feature

Mean = 9,283,680.98
Median = 822,346.50
Std = 32,174,631.57
Outliers = 14.67%
Missing = 2.47%

No changes

Mean = 9,283,680.98
Median = 822,346.50
Std = 32,174,631.57
Outliers = 14.67%
Missing = 2.47%

The first question in the pipeline comes after the preprocessing and visualization step
(i.e., do the data have a high number of features?). The data contain a large number of
features, so the feature selection step must be implemented to select the most significant
features. The features selection step depends on the paper [17], which depended on
calculating linear correlations between studied features and selecting the most appropriate
ones (i.e., have a low level of missing values and high correlation with output features).
The selected features are (‘Square footage’, ‘Number of floors’, ‘Year of construction’, ‘Total
hours open per week’, ‘Number of employees’, ‘Percent heated’, ‘Percent cooled’, ‘Number
of computers’, ‘Percent lit when open’, ‘Annual electricity consumption (thous Btu)’).

By moving through the pipeline, the answer to the next question (i.e., are the data
noisy?) leads to the final part in the preprocessing steps (i.e., solving the problems of miss-
ing values and outliers). These problems are primarily declared through the visualization
step for features. There are missing values and outliers in some features, so some changes
are made (shown in Table 3) as a first action to reduce these effects during ML model
training. After making these changes, the missing values are eliminated in all features
except the ‘Annual electricity consumption (thous Btu)’ feature, which still has a small
percentage of missing values that can be replaced by the median value of the feature. In
addition, the percentage of outliers’ values decreased significantly but was not eliminated.

The remaining outliers’ values can be decreased by combining two features or more
in one feature to reduce the effect of very high and very low values in each feature on
the model. The final features are (‘Total hours open per week’, ‘Building age’, ‘Building
area per employee’, ‘Building area per PC’, ‘Building area per employee’, ‘Number of
floors’, ‘Percent heated’, ‘Percent cooled’, ‘Percent lit when open’, and ‘Electricity use
per area’). The new features’ analysis shows that the new features (Table 4) have low
outlier percentages compared with the original features in Table 3. Some of the new
features have left-skewed distribution and a high percentage of outliers. Therefore, the log-
scale transformation can be used to reduce the effect of outliers’ values on the ML model.
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Table 4. The final features of the ML model.

Selected Features Analysis before Changes Notes and Changes Analysis after Changes

Total hours open per week

Mean = 78.02
Median = 60.00

Std = 51.37
Outliers = 0.00%

No changes

Mean = 78.02
Median = 60.00

Std = 51.37
Outliers = 0.00%

Building age

Mean = 35.03
Median = 31.00

Std = 23.34
Outliers = 0.00%

Mean = 35.03
Median = 31.00

Std = 23.34
Outliers = 0.00%

Building area per employee

Mean = 596,141.43
Median = 1176.48
Std = 2,362,836.96
Outliers = 13.33%

Convert to log scale

Mean = 7.62
Median = 7.07

Std = 2.37
Outliers = 6.92%

Building area per PC

Mean = 1,530,342.86
Median = 2000.00
Std = 3,595,546.34
Outliers = 18.51%

Mean = 8.72
Median = 7.60

Std = 3.35
Outliers = 15.28%

Number of floors

Mean = 3.01
Median = 2.00

Std = 4.31
Outliers = 9.73%

Mean = 0.65
Median = 0.69

Std = 0.82
Outliers = 2.80%

Percent heated

Mean = 81.49
Median = 100.00

Std = 33.38
Outliers = 15.73%

No changes

Mean = 81.49
Median = 100.00

Std = 33.38
Outliers = 15.73%

Percent cooled

Mean = 71.68
Median = 95.00

Std = 37.39
Outliers = 0.00%

Mean = 71.68
Median = 95.00

Std = 37.39
Outliers = 0.00%

Percent lit when open

Mean = 78.50
Median = 90.00

Std = 29.70
Outliers = 8.66%

Mean = 78.50
Median = 90.00

Std = 29.70
Outliers = 8.66%

Electricity use (thous Btu)
per area

Mean = 64.29
Median = 40.96

Std = 82.96
Outliers = 7.16%

Convert to log scale

Mean = 3.58
Median = 3.71

Std = 1.24
Outliers = 2.83%

Finally, the remaining outliers’ values are deleted and the final size of used data
after all preprocessing steps is 4371 samples. Because of the large data size, the selected
algorithm step is the ANN algorithm. Thus, the data will be normalized by each maximum
value in each feature [17].

In the pipeline, after selecting the appropriate ML model, two steps must be performed:
(1) using k-fold cross-validation in model training, validation, and hyper-parameters tuning
steps; and (2) a model evaluation step by using unseen data. The ANN model has hyper-
parameters such as (1) the learning rate, (2) the number of dense layers, and (3) the
number of nodes per layer. Because of difficulties in tuning hyper-parameters, different
combinations of hyper-parameters are used and evaluated by using adjusted R-squared
values during the evaluation step on test data (Table 5). Some other hyper-parameters are
fixed for all models such as (1) mean square error (MSE) as a loss function, (2) stochastic
gradient descent (SGD) as an optimizer and (3) k = 5 for the cross-validation technique.
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Table 5. Results of different ANN architectures (Model 7 achieves best results).

Hyper-Parameters Test Results
ANN

Models Learning Rate Dense Layers
Number Nodes Number Adjusted R2

Model 1 4.54 × 10−3 1 143 0.63

Model 2 2.31 × 10−3 1 512 0.64

Model 3 2.18 × 10−5 5 434 0.45

Model 4 4.98 × 10−3 7 119 0.76

Model 5 3.28 × 10−3 21 124 0.85

Model 6 9.98 × 10−5 25 227 0.9

Model 7 9.41 × 10−5 25 263 0.91

Model 8 40.47 × 10−5 30 180 0.897

Model 9 29.79 × 10−5 30 74 0.894

The results of different ANN architectures are shown in Table 5, where model 7
achieves the best results on test data and can be deployed in real life as discussed in the ML
pipeline. The values of hyper-parameters for different models declare that: (1) deeper ANN
can obtain higher prediction results, but too many layers reduce results; (2) the small value
for learning rate makes model 3 fall into local minimum; (3) the high value for learning
rate makes the models 1, 2, 4, and 5 fluctuate around minimum loss during training; and
(4) the change of nodes per layer does not have the same significant effect as changing the
number of layers.

5. Conclusions

This paper overcomes the problem of losing experience in the ML concepts and
applications by (1) providing an explanation for the building energy applications of ML
over the world to increase knowledge of applications and (2) a clear explanation for
advantages and drawbacks of each reviewed ML algorithm and how to implement each
one to achieve the highest performance, and by (3) proposing a generic ML pipeline for
the energy and building field with recommended preprocessing steps. In addition, the
steps of implementing ML algorithms are very clear: (1) select and justify the appropriate
ML approach for a given problem such as benchmarking or prediction; (2) build, train,
evaluate, deploy, and fine-tune a machine learning model; (3) apply the steps of the ML
pipeline to solve a specific problem; (4) describe some of the best practices for designing
scalable, cost-optimized, and reliable models; and (5) identify the steps needed to apply
machine learning in real life.

As its first contribution, this paper proposes in Figure 1 ML building energy applica-
tions for ANN, SVM, GPR or GMM, and Clustering algorithms, which include (1) energy
assessment studies, (2) prediction for loads and energy consumption, (3) classification of
energy consumption in buildings, (4) modeling solar radiation and solar steam generators,
(5) modeling and forecasting loads for air conditioning systems, (6) simulating and con-
trolling for energy consumption systems, (7) fault detection and diagnosis, and (8) energy
saving, verification, and retrofit studies.

The second contribution of this paper is the general ML pipeline (Figure 2) to be used
in the energy and building domain, which summarizes the requirements for each ML
algorithm used depending on reviewed papers and how to overcome the drawbacks of
each one. The pipeline is as follows: (1) identifying a real-life problem such as building
prediction or benchmarking, (2) the real-life problem is transformed into an ML problem
during the problem formulation step, and (3) the data about the problem must be collected
to cover different cases of the problem and integrated if collected from different resources.
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(4) The visualization step for the collected data helps to study the nature of problem by data
analysis, answering some questions concerning data size, data features, correlation between
features, density distribution of data, mean, median, and mode of data and percentage of
noise, missing values, and outliers. (5) The preprocessing step depends on the data analysis
step and is where the best technique of preparing data is selected and outliers and missing
values are removed. (6) The selection of ML algorithms depends on the data analysis step to
answer the questions that identify the suitable algorithm for the problem. (7) The training,
validation, and hyper-parameters’ tuning process must be carried out depending on k-fold
cross validation to cover all data points without falling into the local minimum problem or
overfitting and underfitting problems. (8) The evaluation step is the key to knowing the
overall performance of the trained model. Finally, depending on the model evaluation,
(9) we choose between implementing the model in real life and monitoring its performance
by a verification step, or rearranging the features and increasing the data sample.

The proposed pipeline lays out the main steps of evaluating any research in the
energy and buildings field to identify the value of new research. This approach will
reconsider all previous papers in the field to repeat the previous work with a declaration
for implementation steps by using the ML pipeline to improve performance. In addition, it
will reduce the time required for any new ML user who does not have enough experience
in ML applications to enhance their work in a well-arranged pipeline. The contributions
of this paper are approved through implementing the ML pipeline on a real case study
(i.e., CBECS data), which helps in creating a robust ANN model for a real-life problem and
evaluating the performance for each hyper-parameter to achieve the best results. During
implementation, the pipeline represents an effective reference in handling one of the real-
life problems (i.e., energy prediction for commercial buildings) and converting it to an
ML model scientifically. The implementation finds that many steps are heavily repeated
throughout the solving of ML problems. Putting these steps in one generic pipeline to
deploy the right algorithms seamlessly, reduce the complexity of quickly transferring
ML models into real life, and manage ML models easier increases the performance and
organization of creating a scientific model for real-life problems in a sufficient way.

This paper may be the basis for benchmarking in the field of energy and buildings
as well as for prediction software that need the user to select one application from the
applications list and upload just two files containing input data and output data. Then, the
software performs some statistical analysis to collect information about data such as data
type (i.e., categorical or numerical and time serious or not), size, most significant input
features, degree of noise, and mean, median, percentage of missing values, and outliers.
From the selected application and all calculated information, the software will detect the
best techniques required in each situation, choose algorithms, perform automatic training,
tuning, and evaluation, and finally give the user the final model with its specifications file
(i.e., model type and its inputs and outputs) to deploy it in real life. This future dream will
decrease the effort and time required by engineering to solve such problems. The software
may also have the energy certificates and regulations to conduct energy retrofit studies
for users.

The dream of creating compatible software may have extended to other fields to create
other versions; each one related to a specific field, but all are based on this ML pipeline.
These types of software are very helpful nowadays to control our life more and more by
managing real-life problems in some models in a fast, accurate, and scientific way.
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