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Neural and behavioural effects of typicality, denotation and composition in an
adjective–noun combination task
Isabella Fritza and Giosuè Baggio b

aLanguage and Brain Lab, Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford, UK; bLanguage Acquisition and
Language Processing Lab, Department of Language and Literature, Norwegian University of Science and Technology, Trondheim, Norway

ABSTRACT
Formal semantics states that the meanings of phrases are composed from the meanings of
constituent parts and syntax. Little is known about how composition is neurally implemented.
We studied ERP and behavioural responses to determiner-adjective-noun phrases. We assessed
the effects of typicality and denotation, using intersective (typical: “A green turtle”, atypical: “An
orange turtle”) or subsective adjectives (typical: “A slow turtle”, atypical: “A fast turtle”). After
each phrase, participants responded to two questions (e.g., for “A fast turtle”: “Is it a common
turtle?”; “Is it a fast animal?”). We contrasted these 4 semantic conditions, requiring
composition, to 2 nonsemantic conditions, where the adjective was replaced with a
pseudoword or a nonword. This contrast revealed a larger P600, if participants performed the
task without instructions and feedback (experiment 1), or a larger sustained negativity, if they
were nudged to pay attention to meaning by instructions and feedback (experiment 2).
Typicality or denotation had an impact only on behavioural responses. We discuss implications
for theories of language processing and compositional semantics.
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1. Introduction

Composing simple expressions, such as words or ges-
tures, into more complex structures is a cornerstone of
the human language capacity. Despite some progress
in understanding the cortical mechanisms of speech
and language processing, relatively little attention has
been paid to linguistic composition at the phrasal
level. Most psycho- and neurolinguistic studies have
focused on sentence-level processing, where at least
two different mechanisms are at play: bottom-up com-
position and top-down prediction. These two mechan-
isms can interact continuously in sentence or discourse
processing and are therefore difficult to disentangle.
Some studies have tried to isolate compositional oper-
ations by looking at minimal phrases (e.g. adjective–
noun phrases), where the effects of predictive or antici-
patory processing are minimised. MEG results suggest
that processing phrases drives activity in the left anterior
temporal lobe (LATL) at∼200–250msec after word onset
(Bemis & Pylkkänen, 2011, 2013; Blanco-Elorrieta & Pylkkä-
nen, 2016; Del Prato & Pylkkänen, 2014; Zhang & Pylkkä-
nen, 2015; Ziegler & Pylkkänen, 2016). However, it is

unclear whether this early LATL response is specifically a
signature of syntax-driven semantic composition, as
opposed to conceptual combination (Pylkkänen, 2016).
A recent ERP study (Fritz & Baggio, 2020) points to a
later stage at which compositional operations might
(also) occur, in the P600 frame (for a theory predicting a
P600 “composition effect”, see Baggio, 2018, 2021),
while other studies have implied that composition may
also be reflected by N400 effects (Neufeld et al., 2016).
Given these different experimental methods, dependent
measures and results, we currently lack a firm empirical
basis for models of syntax-driven meaning composition
in the brain.

In addition, little is known about the brain correlates
of different lexico-semantic variables within phrasal
structures (e.g. [determiner [adjective noun]]) in which
the predictability of the noun is minimised. Two well-
investigated variables that affect language processing
are context-sensitivity and typicality. Typicality and
related semantic manipulations have been researched
extensively in the field of sentence comprehension
(Federmeier & Kutas, 1999; Molinaro et al., 2012).
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Context-sensitivity has been studied in lexical and
formal semantics, mainly in the adjectival modification
literature (Solt, 2018) and in psycholinguistics (Lyu
et al., 2019). One important distinction in the linguistic
literature is between context-sensitive adjectives (e.g.
subsective adjectives: “fast”, “slow” etc., whose contri-
bution to the meaning of a phrase or sentence
depends also on the modified noun) and relatively
context-insensitive ones (e.g. intersective adjectives of
colour, shape etc.). The interpretation of many subsec-
tive adjectives depends on the lexical semantics of the
head noun and requires taking a relevant comparison
class into consideration (details below). E.g. a fast
turtle may be fast relative to other turtles, but it is still
slow in comparison to other animals; it might therefore
not count as a fast animal. In contrast, a green turtle is a
green animal, irrespective of the comparison class one
chooses to interpret the adjective. In two EEG exper-
iments, we studied the neural bases of adjective–noun
phrase composition using intersective (e.g. “green”)
and subsective (e.g. “fast”) adjectives. Further, we exam-
ined the ERP effects of typicality in adjective–noun
phrases, using typical and atypical intersective adjec-
tives (e.g. “A green turtle” vs “An orange turtle”) and sub-
sective adjectives (e.g. “A slow turtle” vs “A fast turtle”).
We aimed to assess whether typicality and the subsec-
tive vs intersective distinction would affect the ampli-
tude of language-related ERP components, such as the
N400 (Federmeier & Kutas, 1999; Molinaro et al., 2012;
Urbach & Kutas, 2010). An additional aim of the study
was to replicate and to probe further the P600 “compo-
sition effect” we recently reported using the same para-
digm, but a different set of stimuli and different
adjective manipulations (Fritz & Baggio, 2020).

1.1. Neural correlates of phrasal composition

In a series of MEG studies, Pylkkänen and colleagues
investigated phrasal composition by comparing adjec-
tive–noun phrases (e.g. “red boat”) with nonword-noun
combinations (“xkq boat”) and word lists (“cup, boat”)
(for representative studies, see Bemis & Pylkkänen,
2011, 2013; Blanco-Elorrieta & Pylkkänen, 2016; Del
Prato & Pylkkänen, 2014; Westerlund et al., 2015;
Zhang & Pylkkänen, 2015; Ziegler & Pylkkänen, 2016).
Across multiple experiments, the left anterior temporal
lobe (LATL) was found to be engaged in an early time
frame, i.e. ∼200-250 msec after the noun’s onset in
phrases, but not in the other conditions.

Initially, this early effect was interpreted as a syntactic
effect, in agreement with syntax-first models of language
processing (Friederici, 2002, 2017), in which local syntac-
tic operations precede semantic interpretation (Bemis &

Pylkkänen, 2011, 2013). However, recent results suggest
that the early LATL effect rather reflects combinatorial
conceptual processing (for a review, see Westerlund &
Pylkkänen, 2017). Research using the same or similar
paradigms and tasks has found activity for the compo-
sition conditions also in ventromedial prefrontal cortex
(vmPFC), around 400 msec after the noun’s onset
(Bemis & Pylkkänen, 2011, 2013). Although this effect is
not observed consistently across experiments, Pylkkä-
nen (2016) has proposed that, following early concep-
tual combination in the LATL, the vmPFC carries out
compositional operations, together pointing to a multi-
step model of semantic processing.

Seemingly in accord with the early MEG data are the
results of an ERP study using a similar paradigm and
stimuli as in Bemis and Pylkkänen (2011). Neufeld et al.
(2016) report an early ERP effect, at ∼180-250 msec,
when contrasting adjective–noun phrases with letter
strings. This earlier negative-going response was fol-
lowed by an ERP effect in a later time window, at
∼300-400 msec, which the authors suggest could be
interpreted as an N400 effect. This conclusion is compa-
tible with the proposal that the N400 reflects the inte-
gration of lexical meaning in context (Cosentino et al.,
2017; Hagoort et al., 2009).

However, although it is generally accepted that the
N400 reflects lexico-semantic processes (Kutas & Feder-
meier, 2011), its functional interpretation remains to
this day controversial. The controversy revolves around
two functional models of the N400: semantic retrieval
of a content word from memory (Brouwer et al., 2017;
Delogu et al., 2019; Federmeier, 2007) and semantic inte-
gration of a word into the context (Calloway & Perfetti,
2017; Hagoort et al., 2004; Lau et al., 2016). Hybrid
accounts, proposing that the N400 indexes both seman-
tic access or retrieval and integration processes, have
been discussed in the literature (Baggio, 2012; Baggio
& Hagoort, 2011; Nieuwland et al., 2020 for ERP evi-
dence). Importantly, in all these proposals, consistent
with the experimental evidence, the N400 reflects top-
down processes, such as context-driven activation and
integration of lexical meanings, rather than bottom-up
operations (syntax-driven composition). As for Neufeld
et al.’s (2016) findings, the observed ERP effects are
not fully compatible with the classic N400 onset and
duration.

Another ERP component that has been linked to
language processing is the P600. Although initially
associated with grammatical processing (Hagoort,
2003), more recent studies have interpreted the P600
as an index of phrasal or sentential “integration”
(Brouwer et al., 2017; Delogu et al., 2019), or of combin-
ing syntactic and semantic information (Bornkessel-
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Schlesewsky & Schlesewsky, 2008; Kuperberg, 2007).
Semantic composition indeed requires that lexical
meanings and syntactic information are combined. The
P600 is a possible candidate signature of semantic com-
position (Baggio, 2018, 2021; Fritz & Baggio, 2020).

1.2. Intersective and subsective adjectives

A prominent distinction, discussed in the linguistic litera-
ture about adjectival modification, is that between inter-
sective and subsective adjectives. The relation between
an intersective adjective and the modified noun may
be seen as a symmetric one. For example, the sentence
“Floyd is a Canadian surgeon” entails both that Floyd
is Canadian and that he is a surgeon: Floyd is a
member of the intersection of the two sets ([Adj N] =
[Adj]⋂[N]) (Morzycki, 2016). Noun phrases containing a
subsective adjective do not give rise to the same entail-
ments. In particular, the relationship here is asymmetric,
in that the set denoted by the noun phrase is a subset of
the denotation of the noun only and bears no fixed
relation with the denotation of the adjective: [Adj
N]⊆[N]. A specific type of subsectivity may be found in
the semantics of gradable adjectives (e.g. “fast”, “slow”,
“cold”, “warm”). Gradable modifiers are characterised
by their vagueness and context-sensitivity. Kennedy
(2012) has even argued that gradable adjectives, as
such, do not directly denote properties. Rather, their
denotational effects only come into play through com-
position. On this account, adjectives such as “slow”
only denote a property once a threshold or standard
of speed for a given object (e.g. a turtle) has been estab-
lished. This requires reference to a relevant comparison
class (Kamp, 1975; Kennedy, 2007): e.g. a “fast turtle” is
fast relative to standards for turtles, not for animals in
general.

Do the properties of gradable subsective adjectives
result in on-line processing costs? In an MEG study,
Ziegler and Pylkkänen (2016) tested whether the
context-sensitivity of subsective scalar adjectives (e.g.
“fast”, “large”) influences the time-course of compo-
sitional operations in a phrasal context. Their study
showed that the early effect of conceptual combination
in the LATL at ∼200 msec post-noun onset found in pre-
vious studies (e.g. Bemis & Pylkkänen, 2011, 2013) was
only present for intersective adjectives, but not for
scalar ones. This result suggests that the early LATL
effect only occurs for combinatorial operations on
the relevant words in specific conditions. Due to the
context-sensitive nature of the scalar adjectives,
the combinatorial process may only be triggered when
the noun has been processed. However, at later proces-
sing stages, following the noun, the intersective

adjectives did not trigger any additional effects, while
processing of the scalar adjectives did elicit an effect in
the LATL at around 400 msec. The authors tentatively
suggest that combinatorial operations for Adj-N
phrases containing a scalar adjective may be delayed
until the meaning of the noun is “fully determined”.
Interpreting functionally the patterns of later activation
in the LATL is further complicated by the fact that, in
addition to the adjective manipulation, Ziegler and Pylk-
känen (2016) also manipulated the noun’s specificity, as
in “dog” vs “animal”. In a recent replication experiment in
Dutch, Kochari et al. (2021) failed to observe the early
combinatorial effect for intersective adjectives and the
later effect for scalar adjectives. To our knowledge,
there are no EEG studies on composition of intersective
vs subsective adjectives in NPs. Research is needed to try
to tease apart the effects of context sensitivity and com-
position in the time frames associated with the N400 and
P600 in ERPs.

1.3. Typicality and adjectival modification

Studies investigating the neural correlates of semantic
processing often employ paradigms using different lin-
guistic manipulations. In many of these studies, the sen-
tence or discourse context is kept constant, while the
semantic fit of the target word is manipulated (see
Kutas & Hillyard, 1980 for a seminal study). The N400
amplitude is proportional to the semantic fit of the elicit-
ing word in the given context. For example, incongruous
words elicit a larger N400 component relative to congru-
ous sentence continuations (for reviews, see Lau et al.,
2008; Kutas & Federmeier, 2011). Importantly, not only
semantic violations, but also world and background-
knowledge violations, are associated with increased pro-
cessing costs and with increased amplitudes of the N400
component (Urbach & Kutas, 2010). Yet, from these
studies one cannot conclude whether N400 effects
stem from difficulties in composition or from (non-
confirmed) predictions of the target-word. Studies inves-
tigating typicality more directly did not target compo-
sition effects. For example, Federmeier et al. (2010)
presented category cues to participants followed by
typical, atypical or incongruous exemplars of that cat-
egory (e.g. “A kind of tree”; typical: “oak”, atypical:
“ash”, incongruent: “tin”) and found that typicality
modulated the N400 response, with low typicality
items eliciting N400 responses whose amplitude falls
between high typicality and incongruous target words.
Although this study did produce an N400 effect of typi-
cality, the setup and stimuli presentation are more con-
sistent with an effect of prediction error, rather than
composition. Using ERPs, Molinaro et al. (2012) aimed
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to isolate composition and processes related to semantic
pre-activation. They embedded within sentences adjec-
tive–noun combinations that could be semantically
neutral (e.g. “Lonely monster”), low-typicality (“Lovely
monster”), high-typicality (“Horrible monster”), or anom-
alous (“Geographic monster”). These adjective–noun
combinations were equally (un)predictable across con-
ditions. As in previous work, they found an N400 effect
when comparing the neutral and anomalous conditions.
However, there was no N400 when comparing the
neutral condition to the high-typicality or the low-typi-
cality conditions. This contrasts with earlier behavioural
works that found off-line differences of typicality
(Lucas, 2001; Smith et al., 1988). Rather, the two
different typicality conditions both elicited a late
frontal positivity (after 500 msec) compared to the
neutral cases, which the authors related to increased
processing demands when embedding an adjective–
noun combination into its sentence context. Thus,
from this study, it is unclear whether those ERP effects
were driven by adjective–noun composition as such or
instead by integration of the target noun/NP into the
sentence context. Also, the authors only compared the
typical and atypical conditions to the baseline (neutral)
condition and not to each other.

Lau et al. (2016) contrasted a “multiple generators”
theory of the N400 (Baggio & Hagoort, 2011) with
models that account for the N400 in terms of either
semantic access (Lau et al., 2008) or semantic compo-
sition. They manipulated the predictability and the con-
gruency of the noun in adjective–noun phrases, e.g. in
“runny nose” vs “dainty nose” (predictability) and
“yellow bag” vs “innocent bag” (congruency). The
phrases “runny nose” and “dainty nose” can result in
congruent meanings, but “nose” is more predictable in
the former than in the latter. Instead, “bag” is unpredict-
able in both “yellow bag” and “innocent bag”, but only in
the former case does it result in a congruent meaning.
Access-based accounts predict a larger N400 in “dainty
nose” than in “runny nose”, and composition-based
accounts predict a larger N400 in “innocent bag” than
in “yellow bag”. Neither of those models predicts an
N400 effect for both “dainty nose” and “innocent bag”.
Hybrid accounts of the N400 (Baggio & Hagoort, 2011)
can accommodate N400 effects of both predictability
(top-down) and congruency (bottom-up; Baggio, 2018).
Indeed, Lau et al. (2016) found a larger N400 predictabil-
ity effect for “dainty nose” vs “runny nose” and a smaller
N400 for “innocent bag” vs “yellow bag”. The N400 effect
of congruency showed a different topographical distri-
bution compared to the predictability effect. That is sug-
gestive of contributions from multiple cortical sources
(for additional EEG evidence along the same lines, see

Nieuwland et al., 2020). These studies do not show
that the N400 is a neural correlate of preactivation or
composition, but they do point to multiple functional
factors or concurrent processes potentially affecting
the N400’s amplitude. The reason why these studies
cannot directly bear on composition and its ERP corre-
lates is that all of them compare conditions that
require or involve composition, and none of them uses
a baseline or control condition in which composition is
not engaged. This is not the case for Pylkkänen’s lab
studies, which did include a low-level no-composition
condition. As noted above, however, EEG/ERP data are
needed to integrate LATL and vmPFC results from MEG
studies with the electrophysiology of language at
large, including research on the N400 and P600. This
also applies to interactions between composition and
other linguistic variables.

1.4. The present study

Initially, the present study had two aims. The first was to
further assess the hypothesis that the P600 is one candi-
date ERP signature of composition, by comparing
semantic conditions to nonsemantic conditions. The
former were noun phrases of the form [Det [Adj N]],
where all three elements are actual words in Norwegian
(Bokmål). In the nonsemantic conditions, the adjectives
were replaced by either nonwords (phonotactically
illegal consonant strings) or pseudowords (phonotacti-
cally legal strings; see Methods; Table 1). We assume
that the semantic conditions involve semantic compo-
sition and the nonsemantic conditions do not: because
the nonword and pseudoword carry no meaning, there
is nothing to be composed with the meaning of the
noun, i.e. no applicable modifier. This follows closely
the design of previous MEG experiments by Pylkkänen’s
group. Additionally, the distinction between the
nonword and pseudoword conditions has been used
previously in an ERP study (Neufeld et al., 2016) and in
an MEG study (Kochari et al., 2021). We slightly depart
from those studies, however, in that our stimuli (seman-
tic and nonsemantic) also include a determiner and are
therefore complete, syntactically licensed noun phrases
(NPs). The reason is theoretical. In linguistics (formal
semantics), composition is often assumed to be a
syntax-driven process: it only applies given some syntac-
tic representation of the phrase or sentence. As a result,
it is possible that composition qua cognitive/neural
process is only triggered for syntactically licensed struc-
tures. By contrasting the semantic conditions, which
require composition, to the nonsemantic conditions,
we tried to isolate a candidate ERP correlate of compo-
sition in complete [Det [Adj N]] phrases, in which the
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effects of contextual prediction are minimised. In our
study, pseudowords were effectively pseudoadjectives
and expressed morphological features (a grammatical
gender suffix) that always agreed with both the Det
and the N. The [Det [pseudo-Adj N]] condition may
then be expected to engage syntactic composition,
but not semantic composition (see Kochari et al.,
2021). This implies that any candidate neural signature
of semantic composition, revealed in ERPs in the seman-
tic/nonsemantic contrast at the N, must also hold up in
the semantic/pseudoword contrast. Based on theory
(Baggio, 2018, 2021), on earlier studies on syntax-seman-
tic integration (see above), and on our own findings
(Fritz & Baggio, 2020), we expect that signature to be a
modulation of the P600 component in the present para-
digm (see Olstad et al., 2020 for a different paradigm).

The paradigm adopted here is exactly as described by
Fritz and Baggio (2020), but the stimuli differ. The
second aim of this study was to disentangle brain
responses underlying different types of nominal modifi-
cation, by manipulating lexical-semantic features of the
adjectives. We are interested in how and when lexical-
semantic properties of adjectives are taken into
account during the online processing of a phrase’s
head noun. In Fritz and Baggio (2020), we studied the
real-time effects of intensionality (modal vs temporal
adjectives) and denotation (privative vs nonprivative
adjectives). In the current study, we investigated the
ERP effects of denotation (adjective type: intersective vs
subsective) and typicality (typical vs atypical combi-
nations) in the semantic conditions. A few studies
reported that typicality affects the N400 amplitude (Fed-
ermeier et al., 2010; Urbach & Kutas, 2010), but they
could not decide whether this typicality effect stems
from prediction errors or composition. Moreover, in
the Molinaro et al. (2012) study, where prediction was
kept constant across typical or atypical adjective–noun
combinations, no N400 effect was observed, but a
P600 was obtained when comparing a neutral baseline
condition to the atypical condition. Based on earlier
research, it is not clear which ERP components, if any,

are modulated by (a) typicality, (b) denotation, and (c)
composition in phrasal contexts, when prediction is mini-
mised or absent. This is the problem we set out to
address in this study. Predictions for typicality or denota-
tion effects are difficult to formulate on theoretical
grounds. The distinction between intersective and sub-
sective adjectives concerns denotational aspects of
meaning—formal properties of the real-world structures
that can verify (or satisfy) an NP. These properties are
often modelled in terms of sets and relations between
them (see above). In the ERP literature, referential pro-
cessing has been associated with modulations of post-
N400 components, e.g. sustained negativities (SAN,
Baggio et al., 2008; Nref, Van Berkum et al., 1999; Van
Berkum et al., 2003). This is the most likely candidate
ERP response, also in the present study (Fritz & Baggio,
2020).

We conducted two subsequent experiments, collect-
ing EEG and behavioural data: accuracies and response
times to questions targeting the typicality and denota-
tion manipulations (see Table 2). Task-free, naturalistic
reading or listening paradigms are increasingly used in
the neuroscience of language. But given our aims, a
task was necessary and had to be designed so as to (a)
ensure that participants are indeed composing the
meanings of the NPs and (b) assess how they interpret
Adj-N phrases, e.g. whether they are sensitive to the dis-
tinctions between intersective vs subsective adjectives
and between typical vs atypical combinations. The task
should then include two questions, to check that partici-
pants would judge “a green turtle” (intersective typical)
as a common turtle (typicality question) and as a green
animal (denotation question). We used a superordinate
category in denotation questions (Table 2). “An orange
turtle” (intersective atypical) should be judged as a
non-common turtle and an orange animal. “A slow
turtle” (subsective typical) should be judged as a
common turtle and a slow animal. “A fast turtle” (subsec-
tive atypical) should be judged as a non-common turtle,
but not as a fast animal: a turtle that is fast relative to
other turtles may not be fast relative to other animals.

Table 1. Experimental design and examples of stimulus phrases.
Det Adj N ↓ERP Composition Denotation Typicality Label

en
a

xkqh
[nonword]

skilpadde turtle Syn− Sem− ∅ ∅ NW

en
a

tæff
[pseudoword]

skilpadde turtle Syn+ Sem− ∅ ∅ PW

en
a

grønn
green

skilpadde turtle Syn+ Sem+
[Adj N] = [Adj]⋂[N]

Intersective Typical IST

en
an

oransje
orange

skilpadde turtle Syn+ Sem+
[Adj N] = [Adj]⋂[N]

Intersective Atypical ISA

en
a

langsom
slow

skilpadde turtle Syn+ Sem+
[Adj N]⊆[N]

Subsective Typical SST

en
a

rask
fast

skilpadde turtle Syn+ Sem+
[Adj N]⊆[N]

Subsective Atypical SSA
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In the first experiment, we did not give feedback and
explicit instructions to participants on how they should
respond. However, our results showed that participants
tend to interpret intersective and subsective adjectives
similarly, for example judging “A fast turtle” to be a
fast animal. We therefore decided to conduct a second
experiment, in which participants were provided with
instructions and trial-to-trial correct/incorrect feedback
to highlight the distinction between intersective and
subsective adjectives. The difference in instructions
and in-task feedback between the two experiments
was intended to achieve a third emerging aim of the
study, namely to encourage participants to pay atten-
tion to the meaning of phrases, which could also
increase our chances to detect meaningful behavioural
and ERP effects of typicality, denotation, and
composition.

2. Methods

In what follows, we describe jointly the methods used in
experiments 1 and 2 (abbreviated as E1 and E2). Differ-
ences in experimental design between E1 and E2 will
be noted. Unless stated otherwise, the information pro-
vided below applies to both experiments. For both E1
and E2, we describe (in Methods) and report (in
Results) all measures, conditions, and data and partici-
pant exclusions. Determination of sample sizes is
addressed in section 2.2. Data and scripts are available
at DataverseNO (https://doi.org/10.18710/K849XH).

2.1. Stimuli

We constructed 176 Norwegian Bokmål phrases with the
syntactic form [Det [Adj N]]. The stimuli formed 44 quad-
ruplets with the same Det and N, but varying the Adj
preceding the N. The length of the Ns ranged between
3 and 10 letters (E1 & E2: M=6.2, SD=2.1). Ns were
drawn from different categories, e.g. animals, transpor-
tation, food, or drinks. All Adjs were either intersective

or subsective. We manipulated the Adj-N combinations
in the typicality dimension: adjectives were either inter-
sective ([Adj N] = [Adj]⋂[N], either typical or atypical
Adj-N phrases) or subsective ([Adj N]⊆[N], either typical
or atypical Adj-N phrases). Apart from these 4 semantic
conditions, we included a nonword condition (an unpro-
nounceable consonant string) and a pseudoword con-
dition (a phonotactically licensed, pronounceable
string, but not a real Adj in Norwegian). Each nonword
and pseudoword was used just once in the stimulus
set. They were matched in length with the 4 Adjs, i.e.
for each real adjective, 1 nonword and 1 pseudoword
were created with the same length (examples in Table 1).

Across all 6 experimental conditions, within each
item, the exact same noun was used (e.g. “turtle”, in
Tables 1 and 2), resulting in exactly matched stimuli.
For the subsective condition, 11 pairs of gradable anto-
nyms (e.g. fast/slow; big/small) were created. We then
combined those Adjs with Ns to form typical Adj-N com-
binations (e.g. “a slow turtle”) and atypical but non-
anomalous combinations (e.g. “a fast turtle”). Impor-
tantly, Ns were selected so that the scalar meaning of
the Adj becomes apparent: e.g. if all turtles are slow
animals, then even a fast turtle is a slow animal. Each
of the subsective adjectives was repeated 4 times,
twice in each typicality condition. For the intersective
conditions, we used 20 Adjs in E1 and 19 Adjs in E2,
denoting either colour or shape attributes. Substance
Adjs as used in previous studies (e.g. wooden, glass,
plastic) were not used, because such Adj-N combi-
nations are relatively infrequent in Norwegian (Schuma-
cher, 2013). For some intersective Adjs, it was impossible
to create Adj pairs that can be used with different Ns and
are matched across the typicality conditions. Rather, we
matched the category from which Adjs were drawn,
across typicality conditions within the same item (e.g.
colour or shape). Moreover, each Adjective was used at
least 3 times, and no more than 6 times in E1 and 7
times in E2, and at least once in each of the two typicality
conditions (see Supplementary Materials).

Table 2. Experimental task and examples of questions and expected answers.

Label Det Adj N ↓ERP
Typicality question
[Expected answer]

Denotation question
[Expected answer]

NW en
a

xkqh
[nonword]

skilpadde
turtle

Is it an animal?
[Yes]

PW en
a

tæff
[pseudoword]

skilpadde
turtle

Is it an animal?
[Yes]

IST en
a

grønn
green

skilpadde
turtle

Is it a common turtle?
[Yes]

Is it a green animal?
[Yes]

ISA en
an

oransje
orange

skilpadde
turtle

Is it a common turtle?
[No]

Is it an orange animal?
[Yes]

SST en
a

langsom
slow

skilpadde
turtle

Is it a common turtle?
[Yes]

Is it a slow animal?
[Yes]

SSA en
a

rask
fast

skilpadde
turtle

Is it a common turtle?
[No]

Is it a fast animal?
[No]
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To assess differences in adjective–noun co-occur-
rences across the four semantic conditions, we extracted
Adj-N frequencies from NoWaC (Norwegian Web as
Corpus, containing ∼700 million words; Guevara,,
2010). Co-occurrences of the adjective–noun combi-
nations, based on lemma forms, were generally very
low, or even 0 (in 97 items). As expected, frequencies
were higher in the typical conditions than in the atypical
ones, but in any case well below 1 occurrence per million
(typical intersective: 0.05; typical subsective: 0.02).
Corpus data are given in the Supplementary Materials.
In NoWaC, individual lemma frequencies per million
entries are: intersective Adjs, E1: M=26.42, SD=31.6,
and E2: M=27.45, SD=32.1; subsective Adjs, E1 and E2:
M=228.36, SD=418; Ns, E1 = 33.96, SD=95.4, and E2 =
19.49, SD=27.7.

After each trial, participants were asked two ques-
tions in all four semantic conditions. The questions
were chosen to address the typicality and denotation
(subsective vs intersective) manipulations: “Is it a
common [N]?” (typicality); “Is it a [Adj] [superordinate
category N]?” (denotation). The denotation question
provided an appropriate comparison class for the
N. The comparison class was a superordinate category,
such as animal, building, food etc. The categories were
chosen so that only world knowledge, and no special-
ised knowledge, was needed to answer the questions.
Nonword and pseudoword trials were followed by a
single question with the following form: “Is it a [superor-
dinate category N]?” (Table 2). Note that it would not be
possible to include typicality and denotation questions
also for nonsemantic trials, because of the missing Adj.
For semantic trials, 50% of the questions required a
“yes” answer and 50% required a “no” answer (random-
ised and counterbalanced over trials and blocks). The
resulting 264 trials were shown in 6 blocks. Each block
contained all 44 nouns just once, whilst adjectives
were drawn equally from the 6 conditions. Trials in
each block were randomised so that 2 or more items
from the same condition were never shown after each
other. The order of the 6 blocks was randomised, result-
ing in 6 experiment versions.

2.2. Participants

Twenty-six native Norwegian speakers (19 women;
mean age: 23.3 years; age range 19–33 years) partici-
pated in E1 and were included in the final analyses.
Thirty native Norwegian speakers (21 women; mean
age: 22.9 years; age range 19–43 years) participated in
E2 and were included in the final analyses. No partici-
pants were excluded based on their responses to the
two task questions in either experiment. Sample sizes

were determined based on our previous study (Fritz &
Baggio, 2020; N=23), which produced robust effects
using the same paradigm with Adj-N phrases, the
same number of conditions (6) and trials per condition,
a similar 2-question task, the same nonsemantic con-
ditions, and a similar 2×2 design for the semantic con-
ditions. All participants in E1-E2 were right handed,
had corrected-to-normal or normal vision, and had no
history of neurological or psychiatric disorders. The
study was approved by the Norwegian Center of
Research Data (NSD; projects 60081 and 719026).

2.3. Procedure

Participants were seated in a dimly lit, sound-attenuated
booth, approximately 90 cm away from an LCD monitor.
Phrases were delivered visually using Presentation (Neu-
robehavioral Systems, Inc.), in lowercase letters, with a
white 30-point size Arial font against a dark grey back-
ground. Each trial started with a white fixation cross
shown on screen for 500 msec, followed by word-by-
word presentation of a [Det [Adj N]] phrase. Each word
was displayed for 400 msec and followed by a 400
msec inter-word interval (blank screen). After the NP, a
white fixation cross was shown for 500 msec, before
the first question appeared. Compared to other studies
with similar trial presentations, we extended the
latencies of the word and of the inter-word intervals to
400 msec. This allowed us to detect possible late ERP
effects. The fixation cross appeared 800 msec after the
onset of the noun. To answer the two task questions,
participants were instructed to use the key “F” on a stan-
dard QWERTY keyboard for “Yes” and “J” for “No”, or vice
versa: the pairings of the F/J keys to Yes/No responses
were counterbalanced across participants. The exper-
iment continued as soon as the participant provided
an answer or, if no response was given, after a time
limit of 4 sec. In the nonword and pseudoword con-
ditions, only one question was asked, after which a
new trial started. In the semantic conditions, the
second question followed the first, after a fixation
cross in between. The order of the typicality and denota-
tion questions was randomised over trials.

In E1, participants were asked to read silently and
carefully each phrase. They were told to answer each
question quickly and accurately and that there would
be a limited amount of time to answer. However, no
instructions were given on how to answer the questions.
In E2, instead, we highlighted the intersective vs subsec-
tive distinction and the atypical vs typical distinction by
training participants on how to answer each question
appropriately, prior to the EEG session: we showed par-
ticipants 2 examples of each of the 4 semantic
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conditions, including the 2 questions and their correct
answers; for each answer, we provided a short expla-
nation as to why that was the expected, appropriate
response: e.g. for the denotation question in the subsec-
tive atypical condition (e.g. “a fast turtle”), we glossed
the example as follows: ““Is it a fast animal?” — No,
because fast turtles are not fast compared to most
other animals” (see Supplementary Materials). During
training, participants could ask questions. The exper-
iment began with a practice block with 2 trials from
each condition. Importantly for the purposes of E2,
both in the practice block and in the actual experimental
blocks, for each trial we provided immediate feedback
on whether the participant answered correctly.
Between experimental blocks (44 trials), participants
could take a break and continue with the experiment
when they were ready. E1 took about 45 min on
average to complete, including breaks; E2 took approxi-
mately 55 min.

2.4. Data acquisition

The EEG was recorded from 31 active electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz,
C4, T8, CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8,
PO9, O1, Oz, O2, PO10), using the actiCAP system by
Brain Products, GmbH. The implicit reference channel
and the TP10 channel were placed outside the elastic
cap on the left and right mastoid respectively. All EEG
channels were then re-referenced offline to the aver-
aged signal from the mastoids. EEG data were sampled
at 1000 Hz resolution with a 1000 Hz high cutoff filter
and a 10 sec time constant. Impedance was kept
below 5 kOhm across all channels.

2.5. Data analysis

2.5.1. Behavioural responses
Accuracy and response time data were analyzed by
fitting generalised linear mixed-effects models
(GLMMs) in R by using the lmer and glmer functions of
the lme4 package (Bates et al., 2015). To obtain p-
values when fitting GLMs with lmer, the Satterthwaite
approximation was used, as implemented in the lmerTest
package (Kuznetsova et al., 2015). Tables 6–9 present the
results of the models that best fit the accuracy and RT
data. Typicality (atypical vs typical) and denotation
(intersective vs subsective) were fixed factors (treatment
coded). As baselines, we used atypical for the typicality
variable and intersective for the denotation variable.
For the random effects structure, we treated Subject
and Item as random effects. For each model, we
started with the maximal random effects structure

(Barr et al., 2013). Because none of the maximal
models converged, we simplified the random effect
structure by first dropping covariance between
random slopes and random intercepts for item and
then for subject, typicality, and denotation. If the
model still did not converge, we then also removed
the slopes contributing the least to the variance
explained, until convergence was achieved. Only
correct responses were included in RT models. We
further excluded all trials exceeding a 2.5 standard devi-
ation from the mean in each condition per participant
and all responses faster than 200 msec. This resulted in
the exclusion of 3.01% of all correct trials in E1 and
2.46% of all correct trials in E2. Responses from the
two questions were analyzed separately. Only answers
to the task questions in the 2 semantic conditions
were analyzed, but we report RT means and accuracies
also for the two nonsemantic conditions (Table 3).1

2.5.2. Event-related potentials
EEG data were analyzed using the FieldTrip toolbox
(Oostenveld et al., 2011). Epochs were extracted from
200 msec before word onset (the onset of the N or the
prenominal stimulus in each phrase, i.e. a nonword,
pseudoword, or real adjective). A 1600 msec post-stimu-
lus interval was used to analyse ERPs time locked to the
prenominal stimuli, spanning the full Adj-N epoch
(excluding the Det and the response interval following
the fixation cross). An 800 msec post-stimulus interval
was used to analyse ERPs time locked to the N. In all
cases, the 200 msec pre-stimulus data were used for
baseline correction. Artifacts in the epoched data were
detected and rejected using two FieldTrip functions:
(1) trials where amplitude values exceeded a threshold
of ±150 μV relative to baseline were discarded; (2)
trials that contained eye blinks or movements were
rejected by means of thresholding z-transformed
values of the preprocessed EEG data from channels
Fp1 and Fp2, in the 1-15 Hz band. The data were
filtered with a digital low-pass filter at 30 Hz. Based on
these criteria, on average 41.3 trials per condition per
participant were retained for ERP data analysis in E1

Table 3. Descriptive statistics of response accuracy (0-1) and
response time (msec) data for the nonsemantic conditions in
experiment 1 (N=26) and experiment 2 (N=30).

Response accuracies Response times

Condition (experiment 1) Mean SD Mean SD

Nonword (NW) 0.67 0.43 1118.91 326.12
Pseudoword (PW) 0.68 0.39 1080.81 256.91

Condition (experiment 2) Mean SD Mean SD

Nonword (NW) 0.86 0.26 1514.64 270.98
Pseudoword (PW) 0.88 0.25 1497.89 250.85
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and 40.3 in E2. Next, artifact-free epochs were averaged
per participant in each condition to obtain condition-
specific ERPs. In our statistical analyses, we used the
cluster-based permutation approach of Maris and Oos-
tenveld (2007) with the standard α=0.05 for both the
sample- and cluster-level (Monte Carlo) p-values. To
identify the channels and time points at which two con-
ditions differed, ERPs were compared via a t test in each
sample: (electrode, time point) pair. Samples in which
the t values exceeded the 95th quantile of a T distri-
bution were used to derive spatiotemporally connected
clusters of electrode-time point pairs (samples). Our clus-
tering criteria assumed a minimum of 2 adjacent time
points and 2 adjacent channels. The algorithm searched
for clusters in the entire epochs, [−200, 1600] or [−200,
800] msec, where 0 msec is the onset of the critical
word. Cluster-level t values were computed as the sum
of sample-level t values, while cluster-level p values
were estimated using Monte Carlo simulations: partici-
pant-specific ERP averages in each of two experimental
conditions were collected in one set, which was then
randomly partitioned into two equally sized subsets; a
dependent-samples t test was used to compare the
means of the subsets; this was repeated 1000 times;
p values were then estimated as the proportion of
random partitions (x/1000) resulting in a larger t statistic
than the observed one. The output is: a (possibly empty)
set of spatio-temporal clusters where the conditions,
considered pairwise, differed; the sum of t statistics in
each given cluster (Tsum); Monte Carlo p-value estimates;
and cluster size (S) in number of samples (Tables 10
and 11). This method addresses the multiple compari-
sons problem by (a) requiring samples to cluster
together spatially and temporally, instantiating a

neurophysiologically plausible constraint on MEEG
effects, and (b) replacing sample-level with cluster-
level statistics for inferential purposes (Maris & Oosten-
veld, 2007). We further used GLMs to test whether ERP
amplitudes in each condition (in the intervals and chan-
nels corresponding to statistical clusters; see Results)
predicted accuracies or response times in those con-
ditions. We fitted GLMs in R by using the same functions
and model structures as above, but now including ERP
amplitudes in each condition as predictors, for each
question and in each experiment separately.

3. Results

3.1. Behavioural responses

In experiment 1, we found high accuracies across con-
ditions, with the exception of atypical subsective trials
(SSA; Figure 1; Table 4), where accuracy was down to
0.63 in the typicality question and to 0.29 in the denota-
tion question. This suggests that participants interpret a
substantial fraction of SSA trials in ways inconsistent
with the patterns expected according to linguistic
theory. In particular, in the typicality question, many
trials (i.e. ∼37%) were interpreted as typical (e.g. a “fast
turtle” is a common turtle); in the denotation question,
a large majority of trials (i.e. ∼71%) was interpreted as
non-subsective or intersective (e.g. a “fast turtle” is a
fast animal). It took longer to produce correct responses
in SSA trials than in the other semantic conditions
(Figure 1; Table 4), especially in the denotation ques-
tions. This indicates that the task is most demanding
with subsective atypical (SSA) trials. These observations
are confirmed by statistical analyses, which revealed

Figure 1. Violin plots and box plots of response accuracies (0-1) and response times (RT) for correct responses to the typicality and
denotation questions in experiments 1 and 2. See Tables 4 and 5 for descriptive statistics and Tables 6–9 for inferential statistics.
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clear interaction effects of typicality and denotation, for
both questions, on both accuracy and RT data (Tables 6–9).
Further, we found effects of typicality and denotation on
response accuracies and response times, for both typi-
cality and denotation questions (Tables 6–9), indicating
that differences between conditions are not driven
only by lower accuracies and longer RTs for SSA trials.

In experiment 2, we found a different pattern of
responses overall—one that matches more closely the
predictions of linguistic theory. In the typicality question,
accuracy improved, in particular in SSA trials (Figure 1;
Table 5), now up to 0.89 (between-groups Wilcoxon
test: W=81, p<0.001). The effect of typicality, observed
in experiment 1 (more errors in atypical trials), disap-
pears in experiment 2, as a result of better accuracies
in ISA and SSA (Table 6). The interaction between typi-
cality and denotation persists in experiment 2: SSA is
still the condition with most errors in typicality ques-
tions, in both experiments. We found a similar pattern
in RT data in typicality questions: the typicality effect
(slower responses in atypical trials) in experiment 1 is
clearly reduced in experiment 2. However, in SSA trials,
responses were slower in experiment 2 (W=900,
p<0.001). We found again an interaction of typicality
and denotation (Table 7): SSA is the condition in which
producing a correct response takes the longest, in
both experiments. In brief, the performance gain in the
typicality question in experiment 2 comes at the cost
of slower responses.

In the denotation question, too, we found a clear
accuracy improvement in experiment 2, in particular in
SSA trials (Figure 1; Table 5), where it now reached
0.64 (W=124.5, p<0.001). Yet, the interaction of typicality
and denotation remained significant, reflecting the fact
that most errors are still made in the SSA condition
(Figure 1; Table 8): a sizeable portion of SSA trials was
interpreted as non-subsective (e.g. a “fast turtle” is a

Table 4. Descriptive statistics of response accuracy (0-1) and
response time (msec) data for the semantic conditions in
experiment 1 (N=26).

Response
accuracies Response times

Condition (Typicality question) Mean SD Mean SD

Intersective Typical (IST) 0.86 0.07 961.61 250.82
Intersective Atypical (ISA) 0.77 0.17 1033.36 307.09
Subsective Typical (SST) 0.95 0.05 950.16 265.28
Subsective Atypical (SSA) 0.63 0.24 1154.47 306.31

Condition (Denotation question) Mean SD Mean SD

Intersective Typical (IST) 0.97 0.07 951.57 233.96
Intersective Atypical (ISA) 0.89 0.18 1043.64 236.41
Subsective Typical (SST) 0.97 0.05 958.55 220.40
Subsective Atypical (SSA) 0.29 0.31 1468.53 406.07

Typicality question: “Is it a common [Noun]?” Denotation question: “Is it a
[Adj] [superordinate category Noun]?”

Table 5. Descriptive statistics of response accuracy (0-1) and
response time (msec) data for the semantic conditions in
experiment 2 (N=30).

Response
accuracies Response times

Condition (Typicality question) Mean SD Mean SD

Intersective Typical (IST) 0.85 0.06 983.22 251.77
Intersective Atypical (ISA) 0.91 0.07 1010.28 234.76
Subsective Typical (SST) 0.95 0.04 1021.56 268.86
Subsective Atypical (SSA) 0.89 0.07 1231.57 315.27
Condition (Denotation question) Mean SD Mean SD

Intersective Typical (IST) 0.98 0.02 1044.97 222.59
Intersective Atypical (ISA) 0.87 0.13 1231.79 254.53
Subsective Typical (SST) 0.98 0.02 1101.14 244.13
Subsective Atypical (SSA) 0.64 0.15 1431.83 316.69

Typicality question: “Is it a common [Noun]?” Denotation question: “Is it a
[Adj] [superordinate category Noun]?”

Table 6. Summary of effects of the full mixed logistic model for
response accuracy data for the typicality question in experiment
1 (N=26) and experiment 2 (N=30).
Predictor (experiment 1) β SE z p

Intercept 1.633 0.269 6.068 <.0001
Typicality 0.933 0.418 2.236 .025
Denotation −0.831 0.286 −2.906 .004
Denotation × Typicality 2.332 0.308 7.571 <.0001

Predictor (experiment 2) β SE z p

Intercept −2.443 0.149 16.405 <.0001
Typicality 0.220 0.239 0.921 .357
Denotation 0.226 0.129 1.753 .080
Denotation × Typicality −1.644 0.203 −8.083 <.0001

Table 7. Summary of effects of the full mixed logistic model for
response time data for the typicality question in experiment 1
(N=26) and experiment 2 (N=30).
Predictor (experiment 1) β SE t p

Intercept 3.959 0.0225 175.818 <.0001
Typicality −0.02456 0.0112 −2.190 .0311
Denotation 0.04457 0.0093 4.769 <.0001
Denotation × Typicality −0.0481 0.0124 −3.883 <.0001

Predictor (experiment 2) β SE t p

Intercept 3.958 0.019 203.10 <.0001
Typicality −0.015 0.001 −.1.55 .127
Denotation 0.085 0.011 7.64 <.0001
Denotation × Typicality −0.068 0.012 −5.89 <.0001

Table 8. Summary of effects of the full mixed logistic model for
response accuracy data for the denotation question in
experiment 1 (N=26) and experiment 2 (N=30).
Predictor (experiment 1) β SE z p

Intercept 2.3768 0.1902 12.497 <.0001
Typicality 1.3744 0.1991 6.903 <.0001
Denotation −3.8547 0.1408 −27.387 <.0001
Denotation × Typicality 3.9030 0.2819 13.846 <.0001

Predictor (experiment 2) β SE z p

Intercept −2.609 0.307 −8.503 <.0001
Typicality −2.476 0.240 10.334 <.0001
Denotation 1.871 0.343 5.450 <.0001
Denotation × Typicality −1.184 0.317 −3.74 .0002
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fast animal). Errors were in the same direction as in
experiment 1, in spite of training, feedback, and clear
performance gains. This parallels what we found for
the typicality question. However, for the denotation ques-
tions, accuracy improvements were not accompanied by
longer response times, which were similar to experiment

1 (Tables 4 and 5; W=359, p=0.8102). SSA is the slowest
condition, as is reflected by the typicality by denotation
interaction on RT data (Table 9). Performance gains were
also observed between experiments 1 and 2 for the base-
line questions, but this resulted once again in longer
response times (Table 3), as for the typicality question.
These results show that our task manipulation in exper-
iment 2 had a clear effect on performance, across all con-
ditions, with a particular impact on subsective atypical
phrases.

3.2. Event-related potentials

3.2.1. Long epochs: stimulus type effects in the
adj-N interval
Pairwise contrasts between pseudowords, nonwords,
and real adjectives showed clear ERP effects, in line
with earlier results (Barber et al., 2013; Kim & Lai, 2012;

Figure 2. Grand-average ERP waveforms and raw effects of pairwise comparisons between nonwords, pseudowords, and adjectives
and results of cluster-based permutation statistics from experiment 1 (N=26). The middle-row plots show raw effects across channels
in each pairwise contrast: each line is a difference wave from one channel; the thick black line is the mean. The bottom-row plots
display statistical clusters from Table 10: a tick mark indicates that the ERP difference between conditions is significant (at
sample-level α=0.05) in a given sample, (electrode, time point) pair. Adjective onset is at 0 msec.

Table 9. Summary of effects of the full mixed logistic model for
response time data for the denotation question in experiment 1
(N=26) and experiment 2 (N = 30).
Predictor (experiment 1) β SE t p

Intercept 3.978 0.0193 206.689 <.0001
Typicality −0.0354 0.0066 −5.378 <.0001
Denotation 0.1172 0.01410 8.310 <.0001
Denotation × Typicality −0.1144 0.01294 −8.843 <.0001

Predictor (experiment 2) β SE t p

Intercept 4.055 0.017 243.42 <.0001
Typicality −0.065 0.012 −5.641 <.0001
Denotation 0.066 0.010 6.318 <.0001
Denotation × Typicality −0.053 0.012 4.444 <.0001
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Kounios & Holcomb, 1994; Meade et al., 2019; Ziegler
et al., 1997). Nonwords elicited larger positivities com-
pared to both pseudowords and real adjectives
(Figures 2 and 3). In both experiments, we found a
large positive cluster (POS1; Table 10), with a broad dis-
tribution over time and channels. The polarity, latency,
and scalp topography of this effect are compatible
with a P300-type of response (Ziegler et al., 1997): raw
effects (Figures 2 and 3, middle rows) appear at ∼300
msec post stimulus onset (nonword, pseudoword, adjec-
tive) and wane around 700 msec. Statistical effects
persist into the noun interval (Figures 2 and 3, bottom
rows). In both datasets, we found an N400-type of
response to pseudowords relative to adjectives
(Figures 2 and 3), manifested as a single largest negative
cluster (NEG1; Table 10) between 300 and 500 msec after
stimulus onset. Raw effects show a characteristic peak at

400 msec (Figures 2 and 3, middle rows), and statistical
effects indicate that the N400 here has a broad topogra-
phical distribution, but does not extend to the noun
window (Figures 2 and 3, bottom rows). Typicality and
denotation (the intersective/subsective distinction)
were expected to have an impact on real-time neural
processing only when the noun is encountered. Still,
we assessed whether ERP signals already at the adjective
differ along those dimensions. We found that they did
not. There were no clusters of differential activity for
either subsective vs intersective adjectives, or for atypi-
cal vs typical adjectives (i.e. for adjectives that, if com-
bined with a noun, result in atypical or typical
combinations), in either experiment (Table 10). In
summary, ERP effects in the Adj-N interval are primarily
driven by stimulus type: nonwords elicited P300-type
effects relative to both pseudowords and real adjectives,

Figure 3. Grand-average ERP waveforms and raw effects of pairwise comparisons between nonwords, pseudowords, and adjectives
and results of cluster-based permutation statistics from experiment 2 (N=30). The middle-row plots show raw effects across channels
in each pairwise contrast: each line is a difference wave from one channel; the thick black line is the mean. The bottom-row plots
display statistical clusters from Table 10: a tick mark indicates that the ERP difference between conditions is significant (at
sample-level α=0.05) in a given sample, (electrode, time point) pair. Adjective onset is at 0 msec.
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while pseudowords evoked N400-type effects relative to
real adjectives, similarly in the two experiments.

3.2.2. Short epochs: semantic effects in the N
interval
In the noun interval, we assessed semantic effects across
the four semantic conditions (IST, ISA, SST, SSA; effects of

typicality and denotation and pairwise contrasts) and
between the semantic and nonsemantic (NW, PW) con-
ditions. We could not detect effects of typicality or deno-
tation in either experiment (Table 11): ERP waves at the
noun were similar in atypical and typical trials, and in
subsective and intersective trials (Figure 4). There is a
discrepancy between behaviour and ERP data:

Table 10. Summary of cluster-level permutation statistics for ERP data time locked to the adjective and spanning the Adj-N interval.
For each cluster, we report the sum of sample-level statistics (Tsum), the cluster-level permutation-based Monte Carlo p-value, and
cluster size in number of samples (S).
Experiment 1 (Fig. 2) Cluster I (Tsum; p; S) Cluster II (Tsum; p; S) Cluster III (Tsum; p; S)

Nonword – Pseudoword POS1: 43394.75; <0.001; 9878 POS2: 4744.39; 0.052; 1609 POS3: 4110.04; 0.061; 1403
Nonword – Adjective POS1: 53090.3; <0.001; 16304 POS2: 6633.41; 0.027; 2475 NEG1: −547.67; 0.321; 192
Pseudoword – Adjective NEG1: −7320.39; 0.007; 2204 POS1: 440.89; 0.355; 178 POS2: 220.7; 0.562; 92
Atypical – Typical POS1: 824.9; 0.176; 348 POS2: 464.21; 0.296; 185 POS3: 319.82; 0.392; 118
Subsective – Intersective NEG1: −261.28; 0.518; 96 NEG2: −261.24; 0.518; 105 NEG3: −249.93; 0.533; 102

Experiment 2 (Fig. 3) Cluster I (Tsum; p; S) Cluster II (Tsum; p; S) Cluster III (Tsum; p; S)

Nonword – Pseudoword POS1: 54688.58; 0.002;11910 POS2: 2574.1; 0.086; 1078 POS3: 979.13; 203; 419
Nonword – Adjective POS1: 52317.65; 0.004; 14111 NEG1: −703.46; 0.25; 238 POS2: 60.94; 0.865; 27
Pseudoword – Adjective NEG1: −10574.82; 0.031; 3114 POS1: 2410.89; 0.115; 935 POS2: 408.2; 0.439; 163
Atypical – Typical POS1: 494; 0.278; 206 POS2: 203.24; 0.529; 91 POS3: 129.73; 0.654; 56
Subsective – Intersective NEG1: −179.76; 0.645; 71 NEG2: −146.41; 0.693; 59 POS2: 58.67; 0.867; 27

Table 11. Summary of cluster-level permutation statistics for ERP data time locked to the noun. For each cluster, we report the sum of
sample-level statistics (Tsum), the cluster-level permutation-based Monte Carlo p-value, and cluster size in number of samples (S).
Experiment 1 (Figs. 4, 5) Cluster I (Tsum; p; S) Cluster II (Tsum; p; S) Cluster III (Tsum; p; S)

Atypical – Typical POS1: 48.16; 0.851; 22 POS2: 46.55; 0.857; 21 POS3: 45.64; 0.859; 20
Subsective – Intersective NEG1: −735.44; 0.239; 292 POS1: 364.27; 0.461; 148 NEG2: −142.61; 0.713; 59
Semantic – Nonsemantic POS1: 7064.02; 0.014; 2474 POS2: 3216.33; 0.05; 1091 POS3: 1950.05; 0.081; 674
Semantic – Pseudoword POS1: 15487.32; 0.003; 5378 POS2: 710.84; 0.24; 239 NEG1: −221.29; 0.574; 87

Experiment 2 (Figs. 4, 6) Cluster I (Tsum; p; S) Cluster II (Tsum; p; S) Cluster III (Tsum; p; S)

Atypical – Typical POS1: 898.08; 0.185; 358 POS2: 829.21; 0.206; 331 POS3: 398.68; 0.368; 167
Subsective – Intersective POS1: 844.29; 0.165; 330 POS2: 505.53; 0.264; 223 POS3: 413.09; 0.298; 155
Semantic – Nonsemantic NEG1: −8045.86; 0.02; 2720 POS1: 1742.58; 0.068; 721 POS2: 940.8; 0.139; 370
Semantic – Pseudoword NEG1: −2085.62; 0.068; 771 NEG2: −1063.85; 0.142; 413 POS1: 950.69; 0.176; 356

Figure 4. Grand-average ERP waveforms and raw effects of pairwise comparisons between atypical vs typical trials and subsective vs
intersective trials from experiments 1 and 2. No effects (clusters) in either case were found (Table 11). Noun onset is at 0 msec.
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accuracies and response times showed effects of typical-
ity or denotation, or both, in both questions, whereas
those effects are absent in ERP data. Our GLM analyses
also showed that ERP amplitudes in each of the four
semantic conditions did not predict accuracies or
response times in those conditions, in the typicality or
denotation questions, in both experiments (all effects,
p>0.1). We did not find ERP differences between SSA
and the other three semantic conditions, which largely
patterned together through the N epoch (Figures 5
and 6; all cluster-level p-values>0.05). Further, compar-
ing the four semantic conditions in pairs (ISA vs IST,
SSA vs SST; SST vs IST; SSA vs ISA) failed to reveal any
effects (all cluster-level p-values>0.05). This is the main
apparent discrepancy between behavioural data and
ERP data: the interaction of typicality and denotation,
driven by SSA in accuracies and RTs, in both questions
and both experiments, did not correspond to any

detectable ERP differences between SSA and the other
conditions.

We found both similarities and differences across the
two experiments at the critical noun in semantic trials
compared to nonsemantic trials. In experiment 1,
semantic trials resulted in more positive amplitude
values than nonsemantic trials, particularly in a post-
N400 time frame. Specifically, we identified three distinct
positive clusters of activity: a highest-ranked cluster
(POS1) over centro-parietal electrodes between 350
and 700 msec; a second cluster (POS2) with the same
spatial distribution as the first one and adjacent to it
temporally; and a third activity cluster (POS3) between
100 and 300 msec (Figure 5). Only cluster POS1 had an
associated Monte Carlo p-value below the 0.05 alpha
threshold (Table 11). Cluster POS1 was also identified
in the contrast between semantic and pseudoword
trials (Table 11). The distributions of the raw effect and

Figure 5. Grand-average ERP waveforms and raw effects for the contrast between semantic and nonsemantic (NW, PW) conditions
and results of cluster-based permutation statistics from experiment 1 (N=26). The middle-row plots display difference waves across
channels and contour maps of the ERP effect and of sample-level t-statistics over time and channels. The bottom-row plots show the
statistical clusters in the semantic vs nonsemantic contrast from Table 11 and ERP waves for all conditions from two channels. Noun
onset is at 0 msec.
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of sample-level statistics over time and channels and the
spatio-temporal properties of POS1 are compatible with
the characteristics of a P600 effect (Figure 5). We take up
issues of classification and functional interpretation in
Discussion.

In experiment 2, we found a similar positive-going
ERP shift in semantic trials compared to nonsemantic
trials, especially late in the N epoch and over posterior
channels: this is visible in ERP waveforms and in the tem-
poral evolution of the raw ERP effect and of sample-level
statistics (Figure 6). We found two positive clusters,
similar to experiment 1, around 5–600 msec and
around 2–300 msec (POS1, POS2; Figure 6), but these
were the second- and third- ranked clusters overall,
and their associated p-values were above the 0.05 α

(Table 11). The highest ranked cluster here was a nega-
tive one (NEG1; Table 11; Figure 6), with an anterior topo-
graphical distribution and a sustained temporal profile,

starting around 200 msec and lasting through the
epoch. NEG1 was also found in the comparison
between semantic trials and pseudoword trials. In the
dataset from experiment 1, we could not find, among
clusters with rank lower than 3, negative clusters with
the same spatiotemporal characteristics. The spatial
and temporal features of the late positivity (POS1) are
consistent with a P600 effect, while those of the
observed slow negativity (NEG1) match the profile of
sustained anterior negativities (SAN or Nref) reported
in other language processing experiments.

4. Discussion

In the present study, we aimed at investigating the
neural correlates of semantic processing in minimal
phrases where a noun (the critical word) is combined
with a determiner and an adjective, e.g. “a green

Figure 6. Grand-average ERP waveforms and raw effects for the contrast between semantic and nonsemantic (NW, PW) conditions
and results of cluster-based permutation statistics from experiment 2 (N=30). The middle-row plots display difference waves across
channels and contour maps of the ERP effect and of sample-level t-statistics over time and channels. The bottom-row plots show the
statistical clusters in the semantic vs nonsemantic contrast from Table 11 and ERP waves for all conditions from two channels. Noun
onset is at 0 msec.
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turtle”. We compared four semantic conditions, which
are assumed to involve composition, [Det [Adj N]],
with two nonsemantic conditions, which do not
undergo semantic composition, [Det nonword N] and
[Det [pseudo-Adj N]]. This contrast revealed a larger
P600, if participants performed the task without explicit
instructions or trial-to-trial feedback (experiment 1), or a
larger sustained anterior negativity (SAN), if they were
made to pay attention to meaning by instructions and
in-task feedback (experiment 2). Our study does not
provide conclusive evidence that either the P600 or
the SAN are ERP correlates (in a narrow, technical
sense) of semantic composition. Yet, the fact that
these ERP components and effects have been associated
to linguistic processes in the literature suggests that,
here too, they may reflect linguistic or cognitive pro-
cesses involved in the real-time construction of phrasal
meaning. Importantly, we view this as a hypothesis to
be further assessed, not as a conclusion following from
our results. This issue is discussed in section 4.1.

Our study comprised a manipulation of two well-
studied variables in the (psycho)linguistic literature:
typicality (e.g. “an orange turtle”/“a fast turtle”) and
denotation, using subsective adjectives (e.g. “a slow
turtle”/“a fast turtle”). A 2-question task shared by
both experiments was devised to test whether the dis-
tinction between intersective and subsective adjec-
tives is apparent to speakers of Norwegian
(denotation question) and whether they distinguish
between typical and atypical phrasal combinations
(typicality question). In neither of the two experiments
did we find differences in ERP waveforms when com-
paring intersective vs subsective trials, typical vs atypi-
cal trials, or the 4 semantic conditions in pairs: there
were no on-line ERP effects of typicality and denota-
tion, and there were no interactions between the
two. However, we found off-line behavioural differ-
ences in both experiments. Notably, in experiment 1,
a large portion of all trials in the subsective atypical
(SSA) condition received an intersective reading, as
indicated by low accuracies in both the typicality
and denotation questions. Although instructions and
feedback were given in experiment 2, the intersective
reading prevailed in about one third of trials for the
denotation question. Still, performance improved in
experiment 2: responses matched more closely the
expected patterns based on linguistic theory. Appar-
ent discrepancies between the behavioural and ERP
data are further discussed in section 4.2.

ERP effects at the prenominal stimuli were very
similar in the two experiments. We found a larger
P300 for nonwords compared to pseudowords and
real adjectives, and a larger N400 for pseudowords

relative to adjectives. A P300 effect in response to non-
words, compared to real words and pseudowords, has
been previously reported by Ziegler et al. (1997). In
their experiment, all three stimulus types had the
same occurrence probability, and the P300 had a
similar latency and distribution to the P300 effect we
describe here. In our study, different instructions and
trial-to-trial feedback had no effect at the prenominal
stimuli, but they had different effects on on-line ERPs
at the noun (P600 vs SAN in the semantic vs nonseman-
tic contrast) and on behaviour (performance gains,
especially in the SSA condition).

4.1. Effects of phrasal meaning composition:
positive and negative components

Replicating the results of Fritz and Baggio (2020), we
observed both early and late positivities in the compari-
son between semantic vs nonsemantic trials. The late
positivity (P600) is the strongest ERP effect at the noun
in experiment 1. It is also found in experiment 2,
where it is, however, accompanied by a statistically
stronger SAN effect. The waveforms time-locked to the
prenominal adjective, letter string, or pseudoword indi-
cate that these effects are not due to spill-over from
the preceding stimulus: the sign of effects in the pre-
nominal interval (positive for nonwords vs pseudowords
or real adjectives; negative for pseudowords vs real
adjectives) is not consistent with the sign of the effects
in the noun interval. We are inclined to exclude that
the ERP effects observed at the noun are driven primarily
by differences in task demands across semantic and non-
semantic trials. If that was the case, we should find ERP
effects already at the prenominal stimulus, when it
becomes clear to participants what task questions they
will get: pseudowords and nonwords should then
pattern together (one question) against real adjectives
(two questions) in the ERP data. But that was not the
case in either experiment. This is, however, an empirical
question that deserves to be addressed in a separate
experiment. Indeed, one possibility is that in a naturalis-
tic or task-free setting, the effects we found at the noun
will be greatly reduced or will disappear altogether.

Nouns following adjectives elicited a more positive
P200 effect relative to nouns following pseudowords
or nonwords. This P200 response was found in both
experiments. In neither experiment did the P200 reach
a cluster-level significance threshold. This effect is unli-
kely to correspond to the early conceptual combination
effects in the LATL reported by previous MEG studies
(e.g. see Bemis & Pylkkänen, 2011, 2013; Blanco-Elorrieta
& Pylkkänen, 2016; Del Prato & Pylkkänen, 2014). Estab-
lishing systematic correspondences between EEG and
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MEG effects is difficult for several methodological, phys-
iological, and neurophysical reasons to do with the
nature of the signals involved. The temporal profiles of
the P200 and of MEG effects from LATL are different:
the onset time is comparable, but the duration of our
effect is longer, i.e. ∼150 msec, vs ∼50-70 msec of the
LATL effects of Bemis and Pylkkänen’s (2011, 2013). As
a P200, the effect observed here is likely to be a manifes-
tation of modulations of attention between semantic
and nonsemantic trials. Participants may (re)allocate
attention differently when processing the noun,
depending on whether it is preceded by an adjective
(normal or heightened attention) vs by a nonword or a
pseudoword (decreased attention as compared to real
adjectives). Research suggests that ERP effects in the
150–300 msec range, such as the P200, reflect
dynamic, task- or stimulus-dependent (re)allocation of
attentional resources (for a review, see Crowley &
Colrain, 2004). P200 effects were weak in our study,
and our experiments were not designed to manipulate
attention independently of semantic load. Further
research is needed to draw firmer conclusions on the
possible role of dynamic attention reallocation in seman-
tic processing and semantic composition tasks, as well as
on the distinctness and independence of the P200 and
P600 effects as reported here.

The composition contrast between the semantic and
nonsemantic trials resulted in a larger P600 component
in phrases where the noun followed a real adjective
compared to phrases where it followed a nonword or
a pseudoword. This P600 effect is as described by Fritz
and Baggio (2020). It was especially evident in exper-
iment 1 and detected in experiment 2, too. One reason
for us to include pseudowords (i.e. pseudoadjectives) is
that they resemble real adjectives phonotactically and
morphologically: in our stimuli, in each phrase pseudo-
words agreed with the noun in both gender and
number. Pseudowords may therefore be assumed to
involve a form of syntactic composition, but not seman-
tic composition (see also Kochari et al., 2021; Neufeld
et al., 2016). If that is correct, then the observed P600
could be taken to reflect semantic composition: the
P600 was also found in a contrast with pseudowords
only, which suggests it requires that both the adjective
and noun have meaning. A more prudent stance
would be to argue that, if pseudowords and nonwords
block syntactic and semantic composition, the P600
would reflect syntactic and semantic composition. In
either case, our data do not conclusively link the P600
to syntactic or semantic composition (see below for
further discussion), but they are consistent with the
hypothesis that syntax-driven meaning composition,
along with other processes, can modulate the P600’s

amplitude (Baggio, 2018; 2021) and with several
proposals relating the P600 to computation at the
syntax-semantics interface (Bornkessel-Schlesewsky &
Schlesewsky, 2008; Kuperberg, 2007). Also, P600-like
effects have been described in studies on pragmatic
phenomena, such as scalar implicature (Spychalska
et al., 2016), metonymy (Schumacher, 2013), and infer-
ence (Burkhardt, 2006). These P600 effects have been
attributed to the processing costs of reanalysis or updat-
ing of the current discourse model (Brouwer et al., 2017;
Delogu et al., 2019). Likewise, our results are compatible
with the view that the P600 indexes “semantic inte-
gration” (Brouwer et al., 2017). There are important
differences between these proposals that our data
cannot address, however. Our results do not support
the idea that meaning composition in phrases is
reflected by the N400 (Neufeld et al., 2016). Moreover,
the time course of the P600 seems to conflict with the
proposal, based on MEG findings (Bemis & Pylkkänen,
2011, 2013), that compositional processing occurs at
around 400 msec from noun onset (in the vmPFC).
That different methods—EEG vs MEG—may reveal
different neural signatures of composition, in brain
space and time, is a real possibility (but see Fló et al.,
2020). Future work will need to integrate these
different data types in new ways to resolve apparent
inconsistencies.

An alternative account of the observed P600 is that it
is, in fact, an instance of P300, which would, in this study,
reflect task contingencies. We are open to the sugges-
tion that the P600 does not reflect composition or,
more generally, syntactic or semantic processes, but
rather decision making or other processes driven by
task demands. Dedicated experiments may be designed
to pit the composition and decision making accounts
against each other. However, prior to that, a more expli-
cit decision-making account should be produced that
meets three requirements: (1) it must not be ad hoc or
post hoc, but should follow from theory, as does the
hypothesis that the P600 reflects composition or
syntax/semantics interface processes (see above); (2) it
must not be based on assumptions of continuity or con-
nectedness of the observed P200 and P600, which
should be demonstrated with an experimental design
that, by manipulating the stimuli or the task, allows
these two ERP effects to vary independently; needless
to say, this line of research would also benefit the devel-
opment and further testing of the composition account;
(3) it has to be distinguished from the hypothesis that
the P600 is part of the “P300 family”; this is a long-
running and recently revived discussion (Coulson,
1998; Osterhout, 1999; Sassenhagen et al., 2014; Sassen-
hagen & Bornkessel-Schlesewsky, 2015; Sassenhagen &
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Fiebach, 2019), which is still consistent with the exist-
ence of different “members of the family”, both phenom-
enologically and neurophysiologically, as the P300 we
found for nonwords and the P600 observed in the
semantic conditions in our experiment.

The idea that the P600 is associated with composition
or processes at the syntax/semantics interface should be
combined with specific hypotheses on how other ERP
components may be modulated by processes that feed
into composition, that depend on it, or that impact the
way it unfolds in real time. For example, it may be
expected that on-line effects of typicality and denota-
tion should be manifested as changes in the amplitude
of the P600. However, in previous work (Fritz & Baggio,
2020), we found effects of intensionality (temporal vs
modal adjectives) and denotation (privative vs nonpriva-
tive adjectives) in [Det [Adj N]] phrases on N400 and
post-N400 effects at the noun, respectively, while a
larger P600 was observed for all semantic vs nonseman-
tic trials, as in the current study. In formal semantics,
composition is seen as a discrete operation that either
applies or not does apply to given input (Martin &
Baggio, 2019). Different adjective types may determine
the structures that are composed or those that result
from composition, as well as their inferential properties
(e.g. entailment), but will not affect the composition
operation as such. On the other hand, complex mean-
ings may be constructed in multiple ways by the brain,
depending on properties of the input and context and
on available resources (Baggio, 2018; 2021). Our results
suggest that sustained anterior negativities (SAN) may
also be elicited during composition, when participants
have to pay special attention to the meaning of the
input in order to perform a task as instructed and
receive (positive) feedback at each trial. This result is
consistent with work linking SAN effects to higher-
order semantic processes (e.g. Baggio et al., 2008; Van
Berkum et al., 1999; Van Berkum et al., 2003) and with
theories positing a dynamic balance between syntax-
driven composition, as hypothetically indexed by the
P600, and context-driven interpretive processes, as
reflected by N400 and SAN effects (Baggio, 2018, 2021;
Michalon & Baggio, 2019).

4.2. On discrepancies between on-line and
off-line effects

Our study design, in particular the distinction between
intersective vs subsective adjectives, is based on linguis-
tic theory. By taking formal analyses as a starting point,
one can avoid ad hoc notions or distinctions of
meaning and generate experimental results that are rel-
evant to confirming or redressing linguistic theory.

Experimental results on adjectives have been used
mainly to strengthen the intuition-based “data” in
which formal theories are grounded and secondarily to
refine or further develop those theories. This is
reflected in the task- and dependent measures-choices
of experimental studies building on formal semantic the-
ories, which utilise mainly off-line behavioural tasks,
such as verification or acceptability judgment tasks,
inferencing, and interpretation tasks (Solt, 2018). These
studies may help us obtain a clearer picture of what
meanings may be derived from phrases or sentences,
but they tell us little on how different types of
expressions (e.g. adjectives) are processed on-line.

An important observation here is that classical, truth
conditional semantic theories specify, for any given
expression in the language, what it can mean when
the information provided by lexical or constituent mean-
ings and syntax is fully exploited, as required by the prin-
ciple of compositionality (Baggio et al., 2012). Gradable
subsective adjectives exemplify well this point: their
meaning is assumed to be such that the entities
denoted by a noun phrase (e.g. “a fast turtle”) are not
necessarily a subset of the entities denoted by the adjec-
tive (i.e. fast Xs, where X is any relevant comparison class,
e.g. all animals). It is possible that speakers of a language
can assign such “maximal” meanings to all or most
phrases or sentences, but it is unclear whether (in
what conditions and to what extent) such capacity can
play out on-line during processing. Semantic theories
that do not follow the truth conditional tradition have
assumed that meaning representations can be
“minimal” or “underspecified” (for discussion, see
Baggio, 2018). This proposal goes along well with psy-
cholinguistic results showing that on-line language pro-
cessing does not normally result in automatic extraction
of the kind of “maximal”meanings posited by traditional
theories. Our ERP results fit this narrative. They show that
the intersective/subsective distinction, and even the
typical/atypical distinction, as tested in the present
study, may not be reflected by ERP signals. Behavioural
results from experiment 1 show that off-line responses
may not follow the formal analyses either, as we found
for many atypical subsective trials, where participants
classified a fast turtle as a fast animal. When participants
paid attention to the subsective vs intersective distinc-
tion, their accuracy rates increased, especially for typical-
ity questions. It may be suggested that there are no
discrepancies between on-line and off-line effects of
denotation: readers may simply not be sensitive to the
intersective vs subsective distinction. Note that the
typical subsective (SST) condition is not relevant for dis-
tinguishing between the two alternative readings, and
that the behavioural denotation effect is largely driven
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by atypical subsective (SSA) trials. So, the main discre-
pancy between behavioural and ERP data would
concern the latter condition.

How can these observations be accommodated in
light of MEG reports of early composition effects in
NPs featuring an intersective but not a subsective adjec-
tive (Ziegler & Pylkkänen, 2016)? Different method-
ologies may well detect different neural signals that
contribute to semantic processing. Moreover, Ziegler
and Pylkkänen (2016) included a manipulation of the
noun’s specificity (e.g. “dog” vs “animal”). This makes it
difficult to compare their findings of an early and late
composition effects to our own results. Finally, Kochari
et al. (2021), using the same paradigm in Dutch, did
not find the scalar effect of Ziegler and Pylkkänen (2016).

The discrepancy between ERP data and behavioural
responses in our dataset, particularly in relation to sub-
sective atypical phrases, may also be interpreted in
light of the “good enough” approach to language com-
prehension, put forward by Ferreira et al. (2002). Their
proposal is based on the assumption that language pro-
cessing can (and, in fact, typically does) result in partial,
or underspecified, semantic representations. Yet, these
meanings are often “good enough” for the purposes of
comprehension, given task demands, time, processing
load, and cognitive limitations (for a review and syn-
thesis, see Karimi & Ferreira, 2016). However, in addition
to this hypothesis, and to formal semantic theories that
emphasise minimality and underspecification (see
above), we envisage a possible explanatory role for the
distinction between on-line and off-line representations.
Although meanings computed on-line may be under-
specified or “good enough”, off-line representations
need not be. The latter may “flesh out” elements that
remain implicit in the initial on-line representation:
that may be the case especially for those semantic
elements that are not strictly necessary for understand-
ing the “gist” of the message (see Baggio, 2018; Baggio
et al., 2016a, 2016b; Johnson-Laird, 1983; Stenning &
van Lambalgen, 2008); the distinctions between typical
and atypical phrases and between intersective and sub-
sective adjectives might be of that kind. This may also
explain the observed discrepancies between ERP and
behavioural effects. What is computed on-line is a rep-
resentation where the meanings of the adjective and
noun are effectively composed together, but where
relations of typicality and denotation, among other
aspects of meaning, are not explicitly fleshed out—
that only happens off-line, after meaning composition,
under pressure from the task and given goals; only
then do the effects of typicality and denotation
become apparent and result in processing costs, such
as errors and longer response times. Not all aspects of

meaning as specified by semantic theories leave traces
on on-line neural signals, although most (or even all)
such aspects are in principle recoverable by competent
speakers of a language on the basis of the represen-
tations computed on-line. Fritz and Baggio (2020) for
example found that privativity as encoded in an adjec-
tive (e.g. “fake”, “former”) is reflected in ERPs for modal
privative adjectives, not for temporal privative adjec-
tives. ERPs time-locked to the noun in the phrase “A
fake president” elicited a larger negativity in a post
N400 frame relative to “A real president”. No difference
in ERPs was found when comparing “A current presi-
dent” to “A former president”, suggesting that specific
aspects of denotation (privativity) or intensionality
(modal vs temporal) are used on-line. The behavioural
results by Fritz and Baggio (2020) are comparable to
those from the current study: null results in the ERPs
(e.g. for the non-privative temporal “current” vs the pri-
vative temporal “former”) were accompanied by off-
line differences (main effects of intensionality and
denotation).

A large body of work described on-line ERP effects of
manipulations that are close enough to the present typi-
cality manipulation to warrant the expectation of an
N400 effect in our experiments (Kutas & Federmeier,
2011). However, it is important to note that earlier
work that has reproduced reliable N400 typicality
effects always used sentences or discourses. The current
study therefore cannot be seen as a failed replication
of a well-known (N400) effect, because there has not
been enough research on typicality manipulations at
the phrase level. The study which is closest to our own
in terms of linguistic stimuli, by Lau et al. (2016), did
not manipulate typicality within the adjective–noun
combination: it manipulated congruity, resulting in
semantic anomaly (e.g. “Innocent bag” vs “Yellow
bag”). As shown by Federmeier et al. (2010), low typical-
ity items trigger N400 components whose amplitudes
fall between high typicality and incongruous target
words. Typicality manipulations as in our study may
indeed be less marked than semantic anomalies or viola-
tions (Lau et al., 2008; Kutas & Federmeier, 2011). More
semantically deviant stimuli than atypical adjective–
noun phrases in our stimuli can elicit N400 effects also
in minimal phrases (Bekemeier et al., 2019). Further,
N400 effects of semantic manipulations tend to be
larger toward the end of a sentence, and early on in sen-
tences mostly frequency effects emerge (Van Petten &
Kutas, 1990): semantic constraints need to be built up
by several successive words before they can modulate
N400 amplitudes. This would explain why variables
that modulate N400 effects in sentences may not
produce comparable effects in phrases. As a final
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point, we note that even the stronger congruity manipu-
lation at the phrasal level, as used by Neufeld et al.
(2016), only elicited a weak effect of congruity in two
studies. In one study, they just found an interaction
between congruity and hemisphere in a by-quadrant
analysis. No other contrasts involving congruity yielded
significant effects. Also, although some studies found
off-line behavioural differences of typicality (Lucas,
2001; Smith et al., 1988), Molinaro et al. (2012) found
no N400 effects of typicality in phrases embedded in
sentences (Segaert et al., 2019). Understanding the con-
ditions in which the N400 component is modulated in
phrases, as opposed to sentences or discourses, is an
important area of future research. Likewise, the P600
and SAN effects we report here, and that we hypotheti-
cally associate with meaning construction processes,
should be replicated and further tested in alternative
versions of our paradigm and in other paradigms, with
a focus on matching more closely composition and
non-composition trials, in terms of both stimuli and task.

Notes

1. Regarding accuracies in the nonsemantic conditions,
participants consistently answered the questions with
either “Yes” or “No” and kept to one response through-
out the session. As the task in the nonsemantic con-
ditions is not relevant to our research questions, we
refrain from interpreting these results here.
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