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ABSTRACT 1 

The thermodynamically based hyperplasticity framework is employed to develop a hyper-2 

viscoplastic constitutive model describing clay's creep and rate-dependent behaviour. The 3 

proposed model complies with the concept of the isotache viscosity and the paradigm of the 4 

critical state soil mechanics that is the uniqueness of the critical state friction envelope. A 5 

versatile force potential or dissipation rate function is presented that provides adjustability of 6 

the location of the critical state while securing a unique critical state friction envelope. A non-7 

associated flow rule as an essential property of frictional material is adopted by further 8 

development of the force potential. Adequacy of the proposed constitutive model is evaluated 9 

through the simulation of the triaxial tests conducted on Hong Kong marine deposits (HKMD). 10 
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LIST OF NOTATIONS 1 

 Helmholtz free energy potential 

 Shear modulus 

 Dimensionless shear modulus coefficient 

 Bulk modulus 

 dimensionless bulk modulus coefficient 

 slope of critical state line in  plot  

 exponent in power-law relationship for stiffness 

 rate sensitivity parameter 

OCR Over consolidation ratio 

 Mean effective pressure 

 isotropic pre-consolidation pressure associated with the reference isotache 

 Reference isotropic pressure at zero plastic volumetric strain 

 Reference pressure (atmospheric pressure) in Helmholtz free energy potential 

 Equivalent pressure on isotropic unloading reloading line (IURL) 

 Deviatoric stress invariant 

 Spacing ratio 

 norm of an arbitrary reference volumetric strain rate 

 State variable 

 Transition function 

 Flow potential 

 Plastic work 

 Force potential 

 Specific volume 

 Deviatoric plastic strain measure 

 Total and plastic volumetric strain  

 parameter for non-associated flow rule 

 Stress ratio invariant 

 slope of isotropic unloading reloading line (IURL)  

 slope of normal compression line (NCL) 

 Creep index 

 Intrinsic reference time, normally 24 hrs. 

 Poisson ratio 

,  Mean and deviatoric invariant of dissipative stress 
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INTRODUCTION 1 

The hyperplasticity framework (Houlsby and Puzrin, 2000, Houlsby and Puzrin, 2007) 2 

provides a rigorous and systematic procedure to establish a hierarchy of thermodynamically 3 

consistent constitutive models without the unnecessary and restrictive postulate of Drucker 4 

(1957). By invoking the orthogonality postulate of Ziegler (1977), all elements of a constitutive 5 

model can be defined with the specification of two potentials: the free energy potential and 6 

dissipation rate function (or the force potential). 7 

The hyperplastic description of the Modified Cam-Clay (MCC) model (Houlsby, 1981) has an 8 

integrable term in the increment of plastic volumetric work. This term has been considered in 9 

the free energy function by Houlsby (1981), Collins and Hilder (2002) and Collins (2005). 10 

However, Collins and Houlsby (1997) and Houlsby (2000) demonstrated that the MCC model 11 

could also be derived by putting this energy in the dissipation function. Houlsby (2018) argues 12 

that both cases can alternatively be employed to formulate families of the MCC model. 13 

Furthermore, Houlsby (2018) concluded that since there is no unique expression for the MCC 14 

model, the free energy and dissipation generally are not ‘observable’. 15 

The potential of the hyperplasticity theory has been explored rather extensively in developing 16 

rate-independent constitutive models for clay (Einav and Puzrin, 2003, Yan and Li, 2011, 17 

Coombs, 2017, Zhang et al., 2018, Rollo and Amorosi, 2020). On the contrary, its application 18 

in modelling clay's creep and rate-dependent behaviour is rare. The work by Puzrin and 19 

Houlsby (2003) is one of the pioneering attempts. They formulated a model based on ‘rate 20 

process theory’ (Mitchell et al., 1968, Feda, 1989) for undrained behaviour of natural clay 21 

under the triaxial condition. However, the model does not comply with the critical state soil 22 

mechanics (CSSM) in which shear and consolidation behaviour are intertwined. Later, 23 

Likitlersuang and Houlsby (2006), Likitlersuang and Houlsby (2007) and Apriadi et al. (2013), 24 



5 

by employing the specific form of the hyperplastic MCC model with the plastic-free energy 25 

(Houlsby, 1981), proposed a rate-dependent constitutive model to capture the gradual 26 

degradation of stiffness during monotonic loading and the effect of stress history. However, 27 

the rate dependency in these models is essentially considered for simplifying the incremental 28 

formulation and the numerical integration. More recently, Jacquey and Regenauer-Lieb (2021) 29 

extended the rate-independent family of critical state models to include the rate dependency 30 

with the non-associated flow rule. However, in addition to the questionable dimension they 31 

used for viscosity, it has not been realised that the choice of using the specific form the rate-32 

independent hyperplastic critical state model of Collins and Hilder (2002) with the plastic-free 33 

energy comes with the expensive cost of non-uniqueness of the friction mobilisation at the 34 

critical state under different loading rates. 35 

Similarly, Aung et al. (2019) employed the hyperplasticity framework to formulate a 36 

constitutive model for soils' creep and rate-dependent behaviour. However, some serious 37 

theoretical flaws are inherent in their application of the framework, such as violation of the 38 

first law of thermodynamics and the principle of maximal rate of dissipation (Ziegler, 1977), 39 

which is the cornerstone of the hyperplasticity framework. By addressing some of these issues, 40 

Grimstad et al. (2020) proposed a hyper-viscoplastic formulation of the classical creep model 41 

(Vermeer and Neher, 1999) that was derived based on Janbu’s resistance concept (Janbu, 1985). 42 

This work is an attempt to give more clarification for the construction of hyper-viscoplastic 43 

formulation for creep and rate-dependent constitutive models that comply with the CSSM and 44 

the isotache concept. The terminology used herein follows Collins and Houlsby (1997) and 45 

Houlsby and Puzrin (2002). The force potential proposed by Grimstad et al. (2020) is derived 46 

and further developed. Particular attention is given to the model's generalisation to attain a 47 

family of isotropic isotache viscoplastic models with the non-associated flow rule while 48 

securing a unique friction envelope at the critical state. Moreover, the model is employed to 49 
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simulate the behaviour of Hong Kong Marine Deposit (HKMD) (Yin and Zhu, 1999, Yin et al., 50 

2002). 51 

ELEMENTS AND ASSUMPTIONS 52 

Following conventional practice, the irreversible (plastic) strain known as the internal variable 53 

and the total strain are assumed to be the kinematic variables of the system (the soil element). 54 

The formulations are strain-based. The infinitesimal strain hypothesis is adopted. The 55 

developments in the current paper are further confined to the isothermal processes for the 56 

decoupled frictional materials whose elastic moduli are independent of the internal variable. 57 

All stresses are taken to be effective stresses. Compressive stresses and strains are assumed to 58 

be positive. Two fundamental and phenomenological concepts, namely the critical state 59 

concept (Schofield and Wroth, 1968) and the isotache concept (Suklje, 1957), are invoked. 60 

CLASSICAL FORCE AND FLOW POTENTIALS 61 

Similar to the rate-independent case (Collins and Kelly, 2002, Collins and Hilder, 2002), the 62 

construction of the dissipation function can begin with the observation of the kinematic 63 

variables on the isotropic compression plane (Fig. 1). After Butterfield (1979), Hashiguchi 64 

(1995), and Collins and Kelly (2002),  (  is specific volume) is chosen for the observation 65 

since despite other theoretical benefits it can readily resemble the volumetric strain. Therefore, 66 

according to the isotache concept (Leroueil, 2006), the rate-dependent isotropic responses of 67 

clay can be ideally depicted as Fig. 1. In order to obseve the kinematic variables and evaluate 68 

the state of the soil element, a reference state  is defined. This is because for a 69 

system like the soil element there is no natural state to which it can return by removal of stress 70 

(Collins and Kelly, 2002).  71 

The series of parallel lines represent the isotaches associated with normal compression lines 72 

(NCL) at different plastic strain rates. Since it is assumed that the material is decoupled and 73 
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frictional, the isotropic unloading-reloading response is linear (IURL) with the slope of . As 74 

can be seen, in addition to the rate-independent reference state, a reference strain rate  75 

(reference isotache) is also required to observe the internal variable and ‘soil memory’ (reserve 76 

resistance). It should be noted that the components of the reference state are independent and 77 

not work-conjugated (Collins and Kelly, 2002). The volumetric strain , the internal 78 

variable , and the soil memory  for an arbitrary state A in the compression plane are 79 

shown in Fig. 1. Following the isotache concept, rate response can be described by two 80 

equations: 81 

  (1) 

  (2) 

Several rheological scaling functions  for soft clays have been proposed (Adachi and 82 

Oka, 1982, Fodil et al., 1997, Stolle et al., 1999, Rocchi et al., 2003, Hinchberger and Rowe, 83 

2005, Yang et al., 2016), and their applications in engineering practice have been demonstrated 84 

(Rowe and Taechakumthorn, 2008, Karstunen and Yin, 2010, Degago et al., 2011, Mirjalili et 85 

al., 2012, Karim et al., 2013, Grimstad et al., 2016, Tornborg et al., 2021). Of particular interest 86 

is the work of Stolle et al. (1999) which is consistent with Janbu’s time resistance concept. This 87 

distinction provides an objective interpretation and evaluation of the time-dependent 88 

parameters (Vermeer and Neher, 1999, Grimstad et al., 2015). These parameters, as shown in 89 

Fig. 2, are the slope of the line  on the bi-logarithmic plane (which is commonly used 90 

for the rheology of flows) and a reference point .  91 

As can be seen, the scaling relation is logarithmically linear, whose practicality in the 92 

examination of the viscous response of several worldwide clays has been confirmed (Leroueil, 93 

2006, Qu et al., 2010). The detailed procedure of obtaining this scaling function based on the 94 
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time resistance concept is presented by Grimstad et al. (2010). The scaling relation can be 95 

expressed as: 96 

 yields
 (3) 

The rate sensitivity parameter  in equation (3), which regulates the spacing between isotaches 97 

must be larger than one. Several fundamental studies (Buisman, 1936, Suklje, 1957, Bjerrum, 98 

1967, Garlanger, 1972) have shown that  is slightly larger than one. Indeed, according to 99 

Vermeer and Neher (1999) and Grimstad et al. (2010)  can be expressed as: 100 

  (4) 

where  and  respectively are the slope of the NCL and IURL as shown in Fig. 1. The one-101 

dimensional creep or secondary compression index  is the creep rate (volumetric strain) in 102 

oedometer or isotropic creep tests. In the following, for simplicity, we continue to use  instead 103 

of its detailed value.  in equation (3) is the norm of an arbitrary reference volumetric strain 104 

rate which is typically taken as the average strain rate obtained in 24-h incremental loading 105 

consolidation tests.  106 

It should be noted that  and r must be evaluated consistently. They define a reference state 107 

from which the other pairs of plastic volumetric strain rate and pre-consolidation pressure are 108 

extrapolated with the scaling function. This importance has been demonstrated by Grimstad et 109 

al. (2016). According to the CSSM,  can be defined as: 110 

  (5) 

in which  is the value of  at zero plastic volumetric strain. Evolution of  based on 111 

equation (5), known as the isotropic hardening, renders the memory of the soil, i.e., reserve 112 

resistance against further compression. 113 
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It is of prime importance to recognize that  as the domain of the logarithmic function (or 114 

exponentiation) in equation (3) must be strictly positive. It can become infinitesimal but never 115 

zero or negative. According to the isotache scaling function, as , then . 116 

This refers to two extreme conditions: creep and stress relaxation (a decrease of effective stress 117 

under constant volume) after an infinite time. 118 

Based on the isotache concept, creep as a rheological phenomenon is a compressive and 119 

completely dissipative process with a progressive and one-way motion like the universal or 120 

Newtonian time, i.e., it only increases with the march of the universal time. The strict positivity 121 

of  in equation (3) is consistent with this unidirectional attribute of creep. In other words, the 122 

bi-logarithmic compression plane (Fig. 1) comprises infinite isotaches spread to the states with 123 

unlimited logarithmic volumetric strain associated with  at infinite time. This 124 

importance can be appreciated through the time resistance concept of Janbu (1969), which is 125 

based on the causality relation between the universal time (cause) and the creep (effect). Time 126 

here is referred to as a universal property to be differentiated from the intrinsic time defined as 127 

an inherent property of the material in the endochronic theory (Valanis, 1971). Considering the 128 

design life of infrastructures, the unlimited creep with decreasing rate has limited practical 129 

implications. For instance, in this regard, by using the isotache concept, den Haan and van den 130 

Berg (2001) reasoned that the corresponding age of clay with an over consolidation ratio (OCR 131 

= p/p0) of 4 is greater than the postulated age of the universe. 132 

Similarly, effective mean stress can theoretically relax to an infinitesimal value after an infinite 133 

time . This is due to the feature of the logarithmic scaling function (equation (3)), 134 

which fits with the feature of the bi-logarithmic compression plane. The process depends on 135 

the particular choice of free energy function as it defines the state of the material. If the free 136 

energy function requires infinite volumetric elastic expansion to reach zero effective stress 137 
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level (as implied by IURLs with the slope of κ), the time will clearly be limitless. Therefore, 138 

this has little practical implication again, considering the same argument as above. A detailed 139 

discussion about the performance of equation (3) in the description of the creep behaviour of 140 

clay is provided by Leoni et al. (2008) and den Haan and van den Berg (2001). 141 

The unidirectionality attribute of isotache framework led Yin and Tong (2011), Feng et al. 142 

(2017) and Yao and Fang (2020) to consider swelling and creep as two mutually exclusive 143 

phenomena. In this regard, Alonso and Navarro (2005) provided a microstructural 144 

interpretation for the existence of distinct creep and swelling zones. On the other hand, through 145 

analyses of several experimental observations, Vergote et al. (2021) concluded that swelling is 146 

a non-isotache and essentially a transient process that strongly depends on the amount of 147 

unloading. In the light of the above, the pure plastic swelling (unlike dilation) is excluded from 148 

the current basic version of the model. 149 

Suppose the initial state of the soil element is located at point A  in Fig. 3. Now 150 

imagine the soil element undergoes an isotropic loading  and experience the process 151 

illustrated with the dashed grey curve in the figure. During the process, the state of the soil 152 

element shown by black dots changes and passes through different isotaches. The isotache 153 

scaling at each state is applied over the IURL associated with the related internal variable. As 154 

can be seen, the IURLs are parallel due to the assumption of the uncoupled relation between 155 

the elastic bulk modulus and the plastic strain. As a result of the history from state A to state B 156 

and the evolution of the plastic strain, the soil attains a new memory, and subsequently, the 157 

reference pre-consolidation pressure  took the relative position to the arbitrary state B 158 

 on the related IURL as depicted in Fig. 3. By applying the isotache scaling (equation 159 

(3)), the plastic work at the arbitrary state B  along the isotropic process becomes: 160 
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 (6) 

To exclude the plastic swelling and make the base of the exponentiation positive based on the 161 

previous discussion, equation (6) is hence modified to: 162 

  (7) 

Following Roscoe and Burland (1968), the shear and consolidation behaviour can be coupled 163 

via the Euclidean norm of the plastic volumetric strain and the plastic shear strain weighted by 164 

the frictional material parameter . The plastic work can then be expressed as: 165 

  (8) 

Interestingly, if  then the dissipation function for the MCC model with the integrable 166 

term (Houlsby, 2000) can be retrieved. However, in contrast to the rate-independent case 167 

(Collins and Hilder, 2002), the plastic work rate here is completely path-dependent without any 168 

recoverable part. Therefore, herein equation (8) is considered as the dissipation rate. This is 169 

also consistent with the meaning taken for the creep in the isotache framework i.e., creep is a 170 

progressively compressive (in absence of dilatancy) and dissipative process.  171 

Following Houlsby and Puzrin (2002), since the dissipation function in equation (8) is a 172 

homogenous function of order n, the force potential (z) can be defined as the dissipation 173 

function (equation (8)) divided by the homogeneity order n: 174 
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  (9) 

Trivially, as is the case here, the dimension of the rate of the dissipation function or force 175 

potential must be energy per volume per time equal to stress/time. However, this simple but 176 

essential point has been overlooked in some works, e.g. Aung et al. (2019) and Osman et al. 177 

(2020). Similarly, for securing a correct dimension for the dissipation function, Jacquey and 178 

Regenauer-Lieb (2021) ended up in a questionable dimension for viscosity. 179 

The Legendre-Fenchel transformation of the force potential provides the flow potential 180 

(Houlsby and Puzrin, 2002), which defines the evolution of the internal variable (plastic strain). 181 

Following Grimstad et al. (2020), the flow potential  can be found: 182 

  (10) 

where  is known as the size of the dynamic yield surface (Perzyna, 1963), whose division 183 

by  here represents the relative rate of the ongoing process. It is defined as: 184 

  (11) 

Equation (11) is similar to the MCC yield surface employed in the classical creep model 185 

(Vermeer and Neher, 1999), but here it is in terms of the dissipative stresses . This is 186 

of prime importance since it opens a possibility to introduce a non-associated flow rule, while 187 

still obeying the principle of maximal dissipation guaranteed by Ziegler’s orthogonality 188 

postulate (Ziegler, 1977, Houlsby and Puzrin, 2007). For instance, Grimstad et al. (2021) has 189 

practised this possibility to propose a relation for the evolution of the earth pressure coefficient 190 

at rest  with time. 191 
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The force potential was one of the two required potentials for constitutive modelling using the 192 

hyperplasticity approach. The free energy potential is also necessary to describe the path-193 

independent behaviour of soil. This potential will be expressed in terms of the Helmholtz free 194 

energy in the following. 195 

HELMHOLTZ FREE ENERGY POTENTIAL 196 

Experimental studies on clay (Janbu, 1963, Hardin and Black, 1968, Viggiani and Atkinson, 197 

1995, Rampello et al., 1997) indicate that the elastic behaviour is non-linearly state-dependent 198 

(stress or strain). In this regard, Houlsby et al. (2005) proposed a versatile free energy potential. 199 

The Helmholtz form  of this potential for the strain-based description of the current model 200 

is expressed as: 201 

  (12a) 

  (12b) 

where  is an arbitrary reference pressure (preferably ), and m, k, and g are 202 

dimensionless material parameters. 203 

Interestingly, like the MCC dissipation function, the volumetric and shear strains in equation 204 

(12b) are coupled by the square root function. In addition to being strictly convex, the free 205 

energy potential is positive definite for any strain values, i.e., work must be done on the soil 206 

(positive work) to deform. 207 

For an isotropic process, the bulk and shear moduli can be obtained from the free energy 208 

function as: 209 

  (13a) 
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  (13b) 

 as an exponent ( ) defines the non-linearity of the pressure dependency. For 210 

 the bulk modulus is a linear function of pressure, and subsequently, a linear relation for 211 

IURLs on the logarithmic compression plane (Fig. 3) can be retrieved. In this case, the slope 212 

of IURLs  equals . This is also conforming to the CSSM definition of the soil memory 213 

(equation (5)), which in the isotache concept controls the time resistance of soil (Grimstad et 214 

al., 2010). This distinction provides an objective measurement for the viscous properties (the 215 

slope of the line in Fig. 2) from the time resistance concept, as the measures will be independent 216 

of the choice of the reference state. 217 

For  the free energy function in equation (12) becomes singular. Houlsby et al. (2005) 218 

presented the Helmholtz free energy for this case as: 219 

  (14) 

The volumetric and shear strains in equation (14) are still coupled to give a pressure-dependent 220 

elastic shear modulus. The byproduct of having this experimentally supported feature for the 221 

elastic stiffness is another feature called ‘stress-induced anisotropy’. This kind of anisotropy is 222 

an imposed condition on the system by the first law of thermodynamic and is not related to the 223 

fundamental structure of the material. In this case, according to Muir Wood and Graham (1990), 224 

for a non-isotropic process, the unloading-reloading behaviour on the compression plane is not 225 

a single line but rather an unloading- reloading region whose size and shape depend on the 226 

stress field. This is shown schematically in Fig. 4.  227 

Perhaps the most striking feature of the free energy potential is lack of the plastic-free energy 228 

or stored plastic work. For the rate-independent case, Collins and Hilder (2002) have proposed 229 

a family of the CSSM model by modifying the flow rule and the location of the critical state 230 
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via adjustment of shares of the stored and the dissipated plastic work. Based on Ziegler’s 231 

orthogonality postulate, the plastic-free energy gives a rate-independent ‘shift’ or ‘back’ stress 232 

that relates the true stress to the dissipative stress (Collins and Houlsby, 1997). Grimstad et al. 233 

(2020) demonstrated that plastic-free energy could not be included for a rate-dependent system 234 

with a single internal variable. Otherwise, there would be no unique mobilised friction at the 235 

critical state, which contradicts the paradigm of CSSM (Schofield and Wroth, 1968). This is 236 

because the plastic-free energy must be a unique function of the internal variable, not its rate. 237 

Whereas the creep or the rate-dependency of the material behaviour is essentially a history or 238 

path-dependent (loading history), i.e., they must be considered in the dissipation function of 239 

the rate of the internal variable. 240 

On the other hand, based on the interpretation of Collins (2005), ignoring the stored plastic 241 

work imposes a homogenous volumetric mechanism at the micro/mesoscale. Therefore, by 242 

acknowledging this limitation that dissipative and true stress are equal (no shift stress), the 243 

following focuses on devising a sophisticated force potential to attain a versatile flow rule and 244 

an adjustable critical state location on the unique critical state friction envelope. 245 

GENERALISATION OF THE FORCE AND FLOW POTENTIALS 246 

The force potential defined in equation (9) provides the classical viscoplastic model (Vermeer 247 

and Neher, 1999). The model's performance in the true stress space is schematically shown in 248 

Fig. 5. As can be seen, there are three MCC elliptical surfaces with homothetic relations. Each 249 

 is a function of an elliptical convex set of the deviatoric and the mean stresses. The 250 

homothetic relation between the convex sets or the ratio of  determines the relative rate 251 

of the loading of a certain process. As a result, the critical state is always located in the middle 252 

of the ellipses. In other words, the ratio of the equivalent stress measure to the isotropic 253 

component of the corresponding critical state stress, known as ‘Spacing Ratio’, is always equal 254 
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to two. However, experimental studies show that this is not the general case, and higher values 255 

for spacing ratio have been reported for clay (Chakraborty et al., 2013, Chen and Yang, 2017). 256 

To redress this limitation, the force potential in equation (9) is modified to: 257 

  (15) 

where R >1 is the spacing ratio. Every other parameter in equation (15) is the same as equation 258 

(9) except the first term inside the square root, which is called the transition function: 259 

  (16) 

 where  is a state variable defined as: 260 

  (17a) 

  (17b) 

Considering the homothetic functioning of isotache framework, the critical state stress ratio is 261 

taken as a reference in the definition of the state variable. The stress ratio  can represent the 262 

mobilised friction at the current stress state. For , the transition function will be 263 

independent of , and the force potential in equation (9) can be retrieved. Again following 264 

Houlsby and Puzrin (2002) and Grimstad et al. (2020), the same structure for the flow potential 265 

as equation (10) can be obtained in which  is expressed in terms of dissipative stress as: 266 

  (18) 

Since there is no shift stress,  and . In Fig. 6, the convex sets (solid curves) for 267 

 in the normalised true stress space are illustrated. The other two elliptical surfaces 268 
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shown by the circle and square marks are just drawn to explain the performance of the transition 269 

function T. As it is seen, the centre of the ellipses is located at the desired spacing ratio R. This 270 

is ensured by fixing the share of the plastic volumetric strain outside of the square root in the 271 

force potential to be . Considering the property of the hyperbolic tangent function in T, 272 

when  and subsequently , then . In this case, the force potential 273 

resembles equation (6) for any values of  describing the dissipative isotropic compression 274 

process. However, by increasing  on the compressive side of the critical state stress ratio, the 275 

stress state moves along the ellipse with square marks whose size depends on the share of the 276 

plastic volumetric strain inside the square root through T. As  approaches , the stress state 277 

slightly diverges from the ellipse with square marks towards the one with circle marks which 278 

has a different size due to change of T with . 279 

On the other hand, on the dilative side of the critical state stress ratio, with the decrease of  280 

from +∞ at the extreme state  towards at the critical state, the stress state moves along 281 

the ellipse shown by circle marks. One should bear in mind that  is an unapproachable 282 

state because of the chosen free energy (equation (14)) and the isotache scaling functions. Like 283 

the compressive side, as  approaches M, the stress state slightly diverges from the ellipse 284 

shown by circle marks to the one with square marks through changes in T. The fact that dilation 285 

is controlled by the ratio of the current stress ratio  to the critical state stress ratio and the 286 

spacing ratio  is a fundamental premise of the CSSM for isotropic soils, which has been 287 

employed in the current model via the versatile force potential (equation (15)). Fig. 7 shows 288 

the convex sets and related inelastic flow directions in the normalised true stress space for 289 

different values of the spacing ratio. As shown, the inelastic flow directions are practically 290 

associated, although the force potential in equation (15) involves the true stress terms in the 291 

transition function. 292 
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With an adjustable spacing ratio, the model can now compete with the analogue viscoplastic models 293 

(Kutter and Sathialingam, 1992, Yin and Zhu, 1999, Yin et al., 2002, Islam and Gnanendran, 2017). 294 

These models pursue associated flow rule as they are based on the viscoplastic theory of Perzyna 295 

(1963) proposed by invoking the postulate of Drucker (1957). Moreover, these models use a 296 

composite dynamic surface presented by Dafalias and Herrmann (1986), which can cause their 297 

numerical integration problematic. In contrast, the proposed model up to this stage can 298 

continuously describe a process with the single and convex sets of dissipative stresses defined in 299 

equation (18). This distinction allows the employment of particular numerical schemes (de Borst 300 

and Heeres, 2002, Simo and Hughes, 2006) to integrate the proposed constitutive model. Despite 301 

this distinction, the proposed model still practically suffers from the associated flow rule. 302 

According to Collins and Kelly (2002), this deficiency stems from a lack of the essential property 303 

of frictional material that is the pressure-dependent frictional dissipative mechanism. This 304 

deficiency can be overcome by introducing a linear frictional dissipation mechanism to the force 305 

potential (equation (15)) via rewriting  as a linear function of the true mean stress . Therefore, 306 

by preserving the dimension of the force potential and considering the boundaries, namely the 307 

critical state shearing and isotropic compression, as two mutually exclusive processes,  in 308 

equations (15) and (18) can be replaced by  defined as: 309 

  (19a) 

  (19b) 

where  is a positive value parameter interpolating  between mutually exclusive states of 310 

,  and . To increase the flexibility in fine-tuning the value of , it is 311 

suggested to employ the following equation instead of equation (19a): 312 
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  (20) 

Fig. 8 depicts the new convex loci together with the inelastic flow directions in the normalised 313 

true stress plane for different values . As can be seen, the frictional dissipative mechanism, 314 

which is intensified by the increase of  value, pushes the loci towards more “tear-drop” shapes. 315 

However, the loci remain convex as it must, even for relatively high values of . Unlike the 316 

rate-independent case (Collins and Kelly, 2002), convexity in the true stress space, as well as 317 

the dissipative stress space, is necessary for isotache viscoplastic models. Otherwise, the 318 

concave parts of loci would shrink as the loading rate increases causing lower shear strength 319 

for high loading rates, which contradicts the experimental observations. 320 

 As another substantial distinction shown in Fig. 8, it can be observed that whilst the critical 321 

state location remains unchanged, the intensification of the frictional mechanism mitigates the 322 

dilatancy on the dilative side of the critical state envelope, whereas it relatively increases the 323 

dilatancy on the compressive side of the critical state envelope.  324 

MODEL PARAMETERS 325 

Equations (13), (10), (9) and (18) define all components of the proposed model. These 326 

equations can be compacted into two potentials since the combination of the last three 327 

equations is the flow potential (equation (10)). Based on these equations, the current model 328 

requires seven dimensionless parameters. These parameters can straightforwardly be evaluated 329 

from conventional triaxial and oedometer tests. Table 1 shows the model parameters and their 330 

value for HKMD.  331 

Three parameters ,  and  are the traditional parameters of the CSSM.  and  specify the 332 

elastic moduli. As it has been assumed  in equation (13), the slope of IURL  is equal 333 

to . Based on the free energy function (equation (14)), there is no stress-induced anisotropy 334 
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for isotropic loading processes (Houlsby et al., 2005). Subsequently, a constant Poisson’s ratio 335 

 for isotropic stress condition can be retrieved:  336 

  (21) 

In the absence of the proper experimental data for small strain conditions, equation (21) can be 337 

employed for the estimation of .  338 

Parameters  and  adjust the shape of the convex locus. The locus equivalently represents the 339 

yield surface for the rate-independent condition. Specifically, spacing ratio  determines the 340 

relative location of the critical state on the convex set or the location of the critical state line 341 

from the NCL on the compression plane. By reviewing the experimental observation, Chen and 342 

Yang (2017) demonstrated that R varies typically between two and three for clay. A positive 343 

value for parameter  specifies the degree of non-associativity in the flow rule. As it increases, 344 

the convex surface becomes more twisted and shows significant stress softening on the 345 

compressional side of the critical state line. For  the flow rule is practically associated, 346 

as shown in Fig. 7 and 8. 347 

The creep index  is the rate of creep in the oedometer or isotropic creep tests. Based on this 348 

definition, it is tempting to estimate the value of  by plotting the creep data in terms of strain 349 

against the logarithm of time. However, this would result in an unobjective value for  350 

depending on subjective appreciation of the curvature of the plotted response. This is of great 351 

importance since a slight change in the value of  significantly affect the creep or rate-352 

dependent response of the model. For an objective value of , according to the time resistance 353 

concept (Janbu, 1969, Janbu, 1985), the creep data should be plotted in the form of the inverse 354 

of strain rate (time resistance) against time which results in a linear pattern whose slope is equal 355 

to  (Vermeer and Neher, 1999, Grimstad et al., 2015). Alternatively, according to Nash and 356 
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Ryde (2001),  can also be objectively determined by plotting the creep data in terms of strain 357 

against the logarithm of strain rate and computing the slope of the trendline. 358 

The arbitrary reference strain rate ( ) is usually taken to be the norm of the average volumetric 359 

strain rate obtained in 24-h incremental loading consolidation tests such as oedometer (  360 

loading) or isotropic consolidation. For instance, for the oedometer test, the plastic strain rate 361 

under  loading can be written as: 362 

  (22) 

in which, equation (4) is employed for . Since the isotache associated with the -loading 363 

 is chosen as the reference,  and therefore  can be computed as: 364 

 
 

(23) 

in which,  is replaced by its value  according to the time resistance concept 365 

(Grimstad et al., 2010). Note that since there is no shift stress,  should be employed in 366 

equation (22) and (23).  is the intrinsic reference time which is normally taken to be 24-h for 367 

an odometer test. 368 

EVALUATION OF MODEL 369 

To evaluate the adequacy of the proposed model, triaxial tests conducted by Zhu (2000) on the 370 

reconstituted samples of the HKMD are simulated. The model parameters presented in Table 371 

1 are obtained based on the data reported by Yin and Zhu (1999), Zhu (2000), and Yin et al. 372 

(2002).  373 
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Fig. 9 shows the simulated and measured data of undrained triaxial compression tests at 374 

constant strain loading rates of 0.15, 1.5, and 15%/h. Before shearing, each specimen was 375 

normally consolidated to isotropic mean effective stress of 400 kPa . Except 376 

for the case of  (the MCC dynamic surface) at the strain rate of 15%/h, there is a 377 

reasonable agreement between the simulations and the experiments. The simulation with 378 

 demonstrates the significant effect of the spacing ratio parameter on the predicted undrained 379 

shear strength. In fact, the ratio of the shear strength when  to the one when  is 380 

equal to the inverse of the ratio of their correspondent spacing ratios. 381 

Fig. 10 shows the comparison between the measurements and the simulations of undrained 382 

triaxial tests at the strain rate of 1.5%/h conducted on the specimens with different over-383 

consolidation ratios (OCR). The model captures the response of the lightly overconsolidated 384 

samples (OCR = 1, 2) well. However, the responses of the specimens with OCR of 4 and 8 are 385 

overestimated. This is even worse for the case of OCR = 8 using the MCC dynamic surface. 386 

The measurements depict a hardening behaviour all over the test. However, the model exhibits 387 

softening response after attaining the peak stress at axial strains between 1% and 2%. This is 388 

the identical drawback seen in the MCC model that can be overcome by considering the 389 

stiffness degradation through the introduction of kinematic hardening (Houlsby, 2000, Einav 390 

and Puzrin, 2003). 391 

The undrained triaxial test with complicated loading stages shown in Table 2 is also simulated. 392 

An initial effective cell pressure of 300 kPa is considered for the normally consolidated sample. 393 

The comparison between the simulation and the measurements can be seen in Fig. 11. The 394 

Simulations have also been done with the constant shear modulus (G) of 9200 kPa to assess 395 

the effect of the stress-induced anisotropy imposed by the first law of thermodynamic. 396 

According to Fig. 11(a), the stress-strain response of both simulations is quite similar with an 397 

acceptable agreement with the measurements. However, Fig. 11(b) shows some differences 398 
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between the simulations of developed excess pore water pressure. The result of both 399 

simulations are generally in agreement with the measurements, but the simulation with constant 400 

G shows more sensitivity in the excess pore water pressure to the change of loading rate, 401 

particularly for relaxations and the subsequent reloading parts. The difference between the two 402 

simulations can be observed clearly in the stress path shown in Fig. 11(c). Due to the stress-403 

induced anisotropy, the stress path for the case with pressure-dependent shear modulus is 404 

inclined and indicates better agreement with the measurements in the early stages of the test. 405 

However, in both cases, the model could not satisfactorily capture the reloading after the 406 

unloading stage and consequently the relaxations and the subsequent reloading stages. 407 

CONCLUSIONS 408 

This paper demonstrates the application of the hyperplasticity approach in the development of 409 

a constitutive model to characterise the creep and rate-dependent behaviour of clays. The 410 

compliance with the concepts of critical state and the isotache viscosity is considered.  The 411 

proposed model is specified by defining the free energy and force potentials. The force 412 

potential for the classical creep model is derived and further developed for a wide range of 413 

clays by considering the spacing ratio. The developed model enjoys the non-associated flow 414 

rule as a natural consequence of the frictional dissipative mechanism. It requires seven 415 

dimensionless material parameters. Some of the model's distinctive features, namely 416 

adjustability of the critical state location and stress-induced anisotropy, are validated by 417 

simulation of the triaxial tests conducted on the reconstituted HKMD clay. 418 

Compliance with the uniqueness of the critical state friction envelope rejects the plastic part of 419 

the free energy for a system with a single internal variable. A promising remedy for this 420 

deficiency could be the introduction of additional internal variables, which might help model 421 

the pure plastic swelling behaviour. Moreover, further development of the model can include 422 
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the Lode angle dependency, the plastic anisotropy, and the destructuration, which are all 423 

notable features of the mechanical behaviour of clays. 424 
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Table 1: Parameters of the model and their values for HKMD 

Model parameters Description Value 

κ the slope of the isotropic unloading-reloading line 
(IURL) in the logarithmic compression plane 0.018 

λ the slope of normal compression line (NCL) in the 
bi-logarithmic compression plane 0.0793 

g Dimensionless shear modulus coefficient 42 

M The slope of the critical state line in the p-q stress 
plane 1.26 

R Spacing ratio 2.5 

γ parameter for non-associated flow rule due to the 
frictional dissipation 0 

μ Creep index 0.0025 

Table 2: Loading history of the multi-stage triaxial compression test on HKMD 

Schedule Loading Unloading Reloading Relaxation Loading Relaxation Loading Relaxation 
Axial 
strain 
rate 

(1/min) 

0.1% -0.1% 0.1% 0 0.01% 0 0.001% 0 

Duration 
(min) 29 7 20 2540 232 1320 830 705 
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