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Abstract
Monte Carlo (MC) simulations in path space are much more computationally expensive
than MC simulations in configuration space since molecular dynamics (MD) trajectories
must be generated for each MC move. Furthermore, when the initial state in the Markov
chain is poorly chosen, more MC moves need to be ignored when averaging to obtain
the desired equilibrium properties, as subsequent moves might still bear the memory
of the initial states. A carefully chosen set of initial states is thus far more important
in path sampling techniques than in standard Markov chain MC methods that sample
configuration space.

This thesis explores a new method to generate initial paths for the RETIS scheme.
Moreover, we have written a fully functioning code as an implementation of the new
method and integrated it as a Git-branch in the PyRETIS library. The new initialization
method is based on an energy criterion. It favors paths that have progressed far along
an order parameter and have low path energy, where the path energy is defined as the
average total energy of all the constituent points in phase space.

We have tested the method on a single-particle one-dimensional double-well potential
system, using PyRETIS’s internal Langevin engine, and on a three-dimensional sodium-
chloride system consisting of one Na+ ion, one Cl− ion, and 908 water molecules, using
GROMACS as an external MD engine. In both systems, we show that the new method
produces initial paths with far lower energy than the standard ‘kick’ method in all the
path ensembles. Moreover, in the NaCl system, the new method produces paths with
lower energy than the system exhibits in equilibrium, suggesting that the energy criterion
might be excessive. Nevertheless, we think the new method without the energy criterion
will still be better than the ‘kick’ method.

Furthermore, we investigate the importance of choosing a time-symmetric integration
scheme when performing the MC shooting move. Specifically, the velocity Verlet algorithm
(time-symmetric) and leap-frog algorithm (time-asymmetric) are studied.

Finally, we compare TIS simulations with initial paths made by ‘kick’ and the new
method, revealing a regression toward the mean for both the methods.
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Sammendrag
Monte Carlo-simuleringer (MC) i banerommet (eng. path space) er langt mer beregn-
ingskrevende enn MC-simuleringer i konfigurasjonsrommet fordi molekylærdynamikkbaner
må genereres hvert MC-steg. Hvis initialtilstanden i Markovkjeden er langt unna likevekt
må man ignorere flere Monte Carlo-steg n̊ar man skal regne ut de ønskede egenskapene til
systemet. Det er fordi p̊afølgende steg fortsatt kan bære minnet av initialtilstanden, som
kan forplante seg n̊ar man regner ut gjennomsnittet. Derfor er det mye viktigere å bruke
en omhyggelig valgt initialtilstand i banesamplingsteknikker enn i standard Markovkjede
Monte Carlo-teknikker som sampler konfigurasjonsrommet.

I denne masteroppgaven utforsker vi en ny metode for å generere initialbaner til RETIS.
Dessuten har vi skrevet en fullt fungerende kode som implementerer den nye metoden og
integrert den som en Git-forgrening i PyRETIS-biblioteket. Den nye initialiseringsmeto-
den er basert p̊a et energikriterium. Den favoriserer baner som har kommet langt langs
en reaksjonskoordinat og har lav baneenergi, der baneenergien er definert som den gjen-
nomsnittlige totalenergien til alle faseromspunktene som banen best̊ar av.

Vi har testet metoden p̊a et endimensjonalt énpartikkel-system i et dobbelbrønn-potensial
med PyRETIS’ interne Langevin-maskin og p̊a et tredimensjonalt natriumkloridsystem
best̊aende av ett Na+-ion, ett Cl−-ion og 908 vannmolekyler med GROMACS som ekstern
maskin. I begge systemene viser vi at den nye metoden produserer baner med langt lavere
energi enn den ordinære «kick»-metoden i alle baneensemblene. Dessuten produserer den
nye metoden initialbaner til NaCl-systemet med lavere energi enn det systemet viser i
likevekt, noe som kan tyde p̊a at energikriteriet kanskje er overflødig. Uansett antar vi
at den nye metoden uten energikriteriet likevel vil være bedre enn «kick»-metoden.

Videre investigerer vi viktigheten av å bruke en tidssymmetrisk integrasjonsalgoritme
n̊ar man utfører det s̊akalte «shooting»-steget. Her studeres spesifikt «velocity Verlet»
(tidssymmetrisk) og «leap-frog» (tids-asymmetrisk).

Til slutt sammenligner vi TIS-simuleringer med initialbaner lagd av «kick» og av den
nye metoden, noe som viser en regresjon mot middelverdien for begge metodene.
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Preface
Rare events are events that occur very infrequently and have a significant impact. Earth-
quakes, pandemics, stock market crashes, and acts of terrorism are all examples of rare
events from everyday life. As the statistician, trader, and author Nassim N. Taleb writes
in his book The Black Swan: The Impact of the Highly Improbable, “The inability to pre-
dict outliers implies the inability to predict the course of history.” In this thesis, I address
computer simulation techniques for rare events on the molecular scale and how they are
crucial in studying, for example, chemical reactions.

My master’s thesis builds on theoretical study and coding that I did in a special-
ization project, which is part of the Master of Science degree in Applied Physics and
Mathematics. Due to overlap in the theoretical background and the scientific goal,
this thesis should be viewed as an extension of the previously delivered specialization
project [1]. If you, the reader, have any questions, do not hesitate to contact me by email
at jg.frydenlund@gmail.com.
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Nomenclature
List of Symbols and Physical Constants

This list is ordered according to the approximate appearance in the text.

ri = (xi, yi, zi) position of particle i (3-dimensional vector)
vi = (vix, viy, viz) velocity of particle i (3-dimensional vector)
fi = (fix, fiy, fiz) force on particle i (3-dimensional vector)

mi mass of particle i

t time
ẋ = dx

dt
time derivative of x

δt discrete time step
Ψ molecular wave function
⟨...⟩ ensemble average

N number of particles (i.e. point-particles) in the system
R = (r1, r2, ..., rN) configuration point (3N -dimensional vector)

V = (v1, v2, ..., vN) velocity vector (3N -dimensional vector)
x = (R, V) phase point or point in phase space (6N -dimensional vector)

U(R) potential energy of configuration point R
K(V) kinetic energy corresponding to velocities V

E(R, V) total energy U(R) + K(V)
kB Boltzmann’s constant (1.380 649× 10−23 J K−1)
T temperature
β reciprocal temperature (1/kBT )
n new configuration
o old configuration

Pacc(o→ n) acceptance probability of a move from o to n
τeff(a) CPU efficiency time: minimum computational cost needed

to determine a with a relative error equal to 1
τ−1

eff efficiency
n total number of simulations used in a simulation series

A, B stable states: reactant and product, respectively
λA = λ0 interface defining stable state A

λB = λn interface defining stable state B

A, B overall states
fA flux through λA

kAB reaction rate
λ(x) reaction coordinate at a phase point x

ix



λi value defining interface i

PA(λ|λ′) conditional crossing probability to go from interface λ′ to λ

[i+] path ensemble
[i+]↔ [(i + 1)+] swapping move between two adjacent path ensembles

rion = |rNa+ − rCl−| Euclidean distance between Na+ and Cl−

Nw number of water molecules
V volume
F Helmholtz free energy
S entropy
ρ probability density
α probability to select a point from a ranking list’s upper half

ndel number of times a criterion must be fulfilled to delete a path
nreac number of AB-paths that must be found to terminate

the algorithm
AA, BB, AB categories defining A-to-A, B-to-B, and A-to-B trajectories

pAA, pBB, pAB probabilities to select categories AA, BB, and AB

pj probability to choose point xj

λmin,k minimum order parameter of path k

λmax,k maximum order parameter of path k

λ∗
min minimum order parameter in a group of paths

λ∗
max maximum order parameter in a group of paths
Ek path energy of path k

Nk number of phase points in path k

CV heat capacity at constant volume
NA Avogadro’s number (6.022 140 76× 1023 mol−1)

R = NAkB molar gas constant
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List of Abbreviations and Acronyms
AIMD ab initio molecular dynamics

CPU central processing unit
MC Monte Carlo

MCMC Markov chain Monte Carlo
MD molecular dynamics
OP order parameter (used interchangeably with RC)
RC reaction coordinate (used interchangeably with OP)

RETIS replica exchange transition interface sampling
TIS transition interface sampling

TPS transition path sampling
TST transition state theory
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1 Introduction
Traditionally, physics divides into two categories: theoretical physics and experimental
physics. Theoretical physics uses mathematical models to explain and predict natural phe-
nomena, whereas experimental physics applies measurements and observations to address
the same phenomena. Computational physics is the application of numerical analysis and
computer science to solve problems in physics where a theory exists, but the phenomena
are too complex to find an exact (or even approximate) analytical solution. Computa-
tional physics uses nothing but the laws of (theoretical) physics as a framework, yet it
is still sometimes regarded as the third category in physics. The problems solved by
computational physics are often referred to as ‘computer experiments’ or ‘simulations.’

Molecular dynamics (MD) is a simulation method for mimicking the physical movements
of atoms and molecules using both quantum and classical mechanics. The movement
from one configuration of atoms to another is called a path or trajectory. Today’s fastest
supercomputers can simulate a million atoms at 100 microseconds per day [2]. MD has
many applications, such as drug design, protein structure predictions, and understanding
allostery [3].

Events that are rare on the molecular time scales dominate the kinetics of many vital
processes such as phase transitions, self-assembly, conformational changes, chemical and
biological reactions, and protein folding [4]. The limitations on the number of atoms and
simulation time make simulating such events impossible using straightforward MD.

Path sampling is a method to attain precisely the same results with respect to rate
constants and activation energies as one would get from a (hypothetical) extremely long
MD simulation, but orders of magnitude faster [5–7]. Path sampling is essentially a Monte
Carlo (MC) procedure where short MD paths are generated. New states are generated
by a random modification of the previous state: this is called Markov chain Monte Carlo
(MCMC). However, in standard MC, the states are configuration points of a molecular
system, whereas, in path sampling, the states are MD trajectories.

Replica exchange transition interface sampling (RETIS) was developed by Van Erp in
2007 and is a highly efficient path sampling method that utilizes a series of path sampling
simulations for sampling a set of path ensembles [8, 9]. An order parameter, which is a
function of the phase space, measures the progress a path has made from one stable state
to another. The path ensembles differ by the minimum order parameter the paths need
to reach.

In MCMC simulations, an initial state needs to be established since we always modify
the previous state. In RETIS, this implies that a valid path for each path ensemble needs
to be generated. In principle, the initial paths do not need to be very representative of the
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most probable paths—and can even be unphysical—since the MC procedure should ensure
that the sampling evolves automatically to the relevant state space. When averaging over
the ensembles, one usually ignores a small part at the beginning of the simulation. The
ignored states are those that still bear the memory of the initial paths, that is, the paths
in the Markov chain that have not reached equilibrium.

However, practice has shown that when the initial paths are very different from the
most probable paths, many MC steps are required to bring the sampled paths to equilib-
rium [10]. Since an MC step in path sampling is much more computationally expensive
than a standard MC step in configuration space, a method to generate good initial paths
is essential. A simple and commonly used scheme in RETIS is the ‘kick’ method, which
works by forcing a configuration point toward an increasing order parameter. Unfortu-
nately, the ‘kick’ method is often known to produce initial paths far from equilibrium.

PyRETIS is a Python library that can run RETIS simulations [11, 12]. The latest
public version of PyRETIS at the time of writing is 2.5.0, and the latest current version
can be found at www.pyretis.org.

My scientific goal for this thesis is to develop a method that produces better initial paths
to the RETIS method, such that fewer initial Monte Carlo steps must be ignored in the
Markov chain. The purpose is ultimately to increase the performance and computational
efficiency of rare event molecular simulations. Moreover, I aim to implement the method
into the PyRETIS library [13].

For the specialization project, I began implementing the algorithm of the new initial-
ization method and tested it on simple systems after a theoretical study. For this thesis,
I have made some changes to the user input parameters, which are now more intuitive to
select. Furthermore, I have improved and generalized the code such that it now supports
three-dimensional systems and external MD engines. Lastly, I have tested the code on a
realistic full-atom system.

Following is a basic explanation of the underlying theory behind RETIS (Chapter 2),
a description of the new initialization scheme (Chapter 3), results and discussion (Chap-
ter 4), and finally, a conclusion and further work that is expected to be part of any further
development of the new method (Chapter 5).

2
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2 Theoretical Background
2.1 Rare Events

There is no formal definition of what classifies an event to be rare—it depends on the
field and the perspective. Generally speaking, rare events occur infrequently and impact
systems significantly, such that they might destabilize.

In our case, a rare event can be defined as an important event that takes an extremely
long time to occur in a straightforward MD simulation. Observing such an event in a
computer experiment can literally take centuries or more.

2.2 Molecular Dynamics

Molecular dynamics (MD) simulations try to mimic the true physical movements of atoms
and molecules. MD is a simulation technique for computing the dynamical and equilibrium
properties of a classical many-body system consisting of atoms and molecules. The word
classical means that the particles obey the laws of classical mechanics. The most precise
physical description of atoms and molecules we have is, of course, quantum mechanics.
Therefore, the ‘ideal’ way to simulate chemical reactions and other processes would be
to use a fully quantum mechanical approach. However, such calculations are very time-
consuming for large systems, and classical mechanics is an excellent approximation for a
wide range of materials [14]. The trajectories of the particles are obtained by numerically
solving Newton’s second law,

fi = mi
d2ri

dt2 , (1)

for N particles with constant mass, where fi is the force on particle i, and mi and ri are
the mass and position of particle i, respectively. The force on each particle depends on its
position relative to the other particles. Consequently, the particles’ motions are difficult
and often impossible to describe analytically. A well-known example is the absence of an
analytical solution to the general three-body problem [15].

When molecular dynamics simulations emerged in the late 50s, hard-sphere models were
used. In such models, the spheres move at constant velocity in straight lines, exerting
perfectly elastic collisions [16]. As computer power increased and clever algorithms were
introduced, more realistic models could be used, where the forces update whenever the
particles change their position or whenever any of the particles with which it interacts
changes position. Finite difference methods are used to generate trajectories with con-
tinuous potential models. The trajectories are integrated in time with a fixed time step
δt. The net force on each particle at time t is calculated by invoking the superposition
principle, i.e., by summing the interactions with other particles. The forces are assumed
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to be constant during one time step, and hence also the acceleration, by Equation (1).
The positions and velocities at time t + δt are calculated using the acceleration and the
positions and velocities at time t. Then the new forces are calculated, resulting in yet
new sets of positions and velocities at time t + 2δt, and so on. A commonly used integra-
tor in MD is the velocity Verlet algorithm, although several others exist, such as Verlet,
leap-frog, and Runge-Kutta.

The molecular motion can be simulated either by classical MD or by ab initio MD
(AIMD). Both methods capture the dynamics in terms of classical dynamics and statis-
tical mechanics. In standard MD, the forces are determined by taking the gradient of a
classical force field, which is a function of the atomic coordinates, whereas AIMD unifies
approximate electronic structure theory and classical MD [17].

Ab initio strictly means “from the beginning” or “from first principles,” which implies
that such calculations should only require the input of physical constants and the funda-
mental laws of physics. In practice, however, ab initio MD means obtaining the forces by
considering a full electronic structure calculation based on the Schrödinger equation using
two approximations. First, the Born–Oppenheimer approximation is applied, where one
assumes that the electronic and nuclear motions can be separated since the electrons have
a much smaller mass than the nuclei [16]. Under the Born–Oppenheimer approximation,
the total wave function for a molecule can be written as

Ψtot(nuclei, electrons) = Ψ(electrons)Ψ(nuclei). (2)

Second, the nuclei are considered classical particles; only the electrons are treated quan-
tum mechanically.

The force evaluations are the most computationally heavy operations in molecular dy-
namics, and the two approaches for calculating them differ significantly in terms of com-
putational cost. Ab initio methods study system sizes and time scales that are far smaller
than systems studied by standard MD because they are the most costly.

The major advantage of molecular dynamics over Monte Carlo methods is the ability
to calculate time-dependent properties [16]. This is possible because MD generates sys-
tem configurations that are connected in time. However, from a rare event perspective,
there are two problems with standard MD approaches. First, the time scale of atomistic
MD simulations for realistic dimensions (> 105 particles) is typically limited to a few
milliseconds—far lower than the relevant time range of many processes dominated by
rare events.
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2.3 Monte Carlo

The underlying concept of Monte Carlo (MC) simulations, or Monte Carlo methods, is
to determine some properties by using random numbers. This is done by generating
configurations of a system by making random changes to, for example, the position or
orientation of a molecule. MC simulations can therefore only determine thermodynamic
properties, i.e., time-independent properties.

Each new configuration generated by the MC method is accepted according to a special
set of criteria. In the end, the desired property A is calculated by simply averaging over
all the M accepted configurations,

⟨A⟩ = 1
M

M∑
i=1

A(Ri). (3)

The average in MD and MC is not taken from the first sampled configuration because it
is generally far from representative of the desired properties. Instead, ignoring the first
(say 5–10 %) of the MD or MC steps is good practice. This is because the subsequent
steps might still resemble the initial configuration, which could be far from equilibrium
(Section 2.6.5).

There are many applications of Monte Carlo methods (and, to a lesser extent, of molec-
ular dynamics) beyond computing equilibrium properties of classical many-body systems.
However, the notions of MC and MD will only refer to such uses in this report.

2.3.1 Metropolis Algorithm

The Metropolis algorithm is the most popular way to generate an ensemble of configura-
tions in Monte Carlo simulations of molecular systems [16]. The Metropolis algorithm is
a Markov chain Monte Carlo (MCMC) method. MCMC is also referred to as importance
sampling and is a method for sampling from a probability distribution where it is difficult
to draw samples. In rare events, for example, the values of interest are very improbable
to draw. In a Markov chain, each trial depends only upon the preceding trial and not any
previous trials.

The Metropolis algorithm is as follows. Make a random change to the system, for in-
stance by moving an atom. Calculate the new energy of the configuration using the poten-
tial energy function. If the energy of the new configuration is lower than the energy of the
old configuration, the new configuration is accepted. If the energy of the new configuration
is higher, then the Boltzmann factor of the energy difference, exp [−β(Un(R)− Uo(R))],
is calculated, where ‘n’ and ‘o’ denote ‘new’ and ‘old,’ respectively. A uniformly random
number between 0 and 1 is drawn. If the Boltzmann factor is higher than the random
number, the new configuration is accepted and becomes the next state; otherwise it is
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rejected and the old configuration is retained for the next iteration and recounted. The
acceptance probability of going from the old state to the new state, Pacc(o→ n), can then
be formulated as

Pacc(o→ n) = MIN [1, exp(β(Uo − Un))] . (4)

Hence, the higher the energy of the new state (i.e., the lower the value of Uo − Un), the
lower the probability of accepting.

One needs to have an initial configuration in order to make a first random change to
a configuration. How to obtain such an initial configuration will be discussed in Sec-
tion 2.6.5.

The Metropolis algorithm assumes that the generation probabilities are symmetric, i.e.,
that the probability of generating the new state from the old equals the probability of
generating the old state from the new, Pgen(o→ n) = Pgen(n→ o). If this is not the case,
the Metropolis-Hastings scheme must be used, which is a generalization of the Metropolis
scheme.

2.4 Efficiency

The CPU time is the part of the total simulation time spent by the central processing
unit (CPU), measured in seconds. The CPU time is thus dependent on the hardware
and technical details of the implementation. The CPU efficiency time, τeff(a), can be
defined as the minimum computational cost needed to determine a with a relative error
equal to one [7]. In MD simulations, force calculations are the most computationally
expensive operations. Therefore, τeff can be expressed as an integer representing the
number of MD steps. This provides a measure of the CPU efficiency time independent of
the computational resources. The lower the value of τeff, the more efficient the simulation
method. The efficiency is sometimes defined as the inverse CPU efficiency time, τ−1

eff , so
that a greater value means a more efficient method.

2.5 Path Sampling

The conventional way to tackle the time-scale problem with rare molecular events is based
on transition state theory (TST) and separates the problem into two steps [18]. First, the
calculation of the free energy barrier as function a reaction coordinate (RC), and second,
the calculation of the transmission coefficient by sampling trajectories departing from the
top of the barrier. The problem, however, with this approach is that choosing a good
reaction coordinate can be extremely difficult in certain systems. Furthermore, it usually
requires detailed a priori knowledge of the transition mechanism. A poorly chosen RC
can lead to a statistically inaccurate or immeasurable rate constant (Section 2.6.2).
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2.5.1 Reaction Coordinate and Stable States

A reaction coordinate (RC) is chosen to determine what state the system is in. In this
thesis, the term ‘order parameter’ (OP) will be used synonymous with the term ‘reaction
coordinate.’ The reaction coordinate, λ(x), is a function of a phase point x = (R, V) and
is chosen such that the system is in

stable state A if λ(x) < λA, and

stable state B if λ(x) > λB.
(5)

In practice, λ often depends only on the positions R. In chemistry jargon, the stable
states A and B are known, respectively, as the reactant and the product. The transition
region is when λA ≤ λ(x) ≤ λB. In transition interface sampling (TIS), only the stable
states A and B are used to determine the reaction rate (Section 2.6.2).

In TIS and replica-exchange TIS (RETIS), the overall states A and B are introduced.
The overall state A is defined such that it covers all phase points inside the stable state A

and all phase points that have a path, or trajectory, coming directly from A, i.e., without
having been to B. The same definition applies for overall state B, with {A, B} → {B, A}.
In this way, the overall states also depend on the history of the paths—not just the position
at a specific time—thus eliminating the fluctuations in and out of the stable states [8].

Ideally, an RC is a function of all the collective variables responsible for the reaction
dynamics and is alone sufficient to track the progress of the reaction. Finding a proper
RC is difficult in practice, especially in high-dimensional complex systems, but it should,
in any case, describe the progress of the reaction to some extent [19]. In some cases, the
RC can be the distance between two ions, as in the sodium chloride system described in
Section 2.10.

2.5.2 Monte Carlo Moves in Path Space

The shooting move is a method for generating a new path from A to B or from A to A,
using the old path. Using the Metropolis algorithm, each path should only depend upon
the previous path. An intuitive way to generate a new path could be to slightly change
the initial condition (in A) and use MD to generate a new path toward B. The problem
with this approach is that even though the MD trajectories are deterministic, the system
might be chaotic: that is, the final position is highly sensitive to changes in the initial
conditions. Moreover, since the event is rare, the new trajectory will probably not be
much closer to B.

Instead, a random perturbation is made, e.g., by changing the momenta at a randomly
chosen phase point of the old path. Then, the equations of motion are integrated forward
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Figure 1: Illustrated examples of the shooting move and the time-reversal move. The
arrows represent the paths moving through a free energy landscape in two di-
mensions; the colored curves are equipotentials of constant energy; the straight,
dashed lines are the interfaces. The vertical axis is the order parameter λ; the
horizontal axis is an arbitrary variable. Left panel: The shooting move on the
[i+] ensemble. A random phase point (black dot) of the old path (dashed, blue
arrow) is chosen. Then the equations of motion are integrated forward and back-
ward in time, creating a new path (yellow arrow). The new path is accepted if
it too crosses the λi interface. Right panel: The time-reversal move on the [i+]
ensemble. The path direction is simply changed by reversing the order of the
phase points and reversing the velocities.

and backward in time from this point, creating a new path. The shooting move gives a
much higher chance of generating a valid path than simply starting from a random point
in the phase space [11]. The left panel of Figure 1 illustrates the shooting move. The
points on a path can also be referred to as time slices, as they are discrete snapshots of
the path.

The time-reversal move changes the direction of the old path by changing the order of
the time slices and reversing the velocities. This move is computationally cheap as it does
not require any force calculations. The time-reversal move is illustrated in Figure 1, right
panel.

The swapping move is also computationally cheap. It is described in the RETIS section
(Section 2.7) as it requires the introduction of interfaces and path ensembles.

2.5.3 Transition Path Sampling

Transition path sampling (TPS) is a method where no prior knowledge of the system is
needed. The main difference to TST is that where TST sees the transition of a system
as the crossing of a specific point or surface in the free energy landscape, TPS sees the
transition as a path (or trajectory) between the reactant and the product state. In TPS, a
random walk in path space is performed via the Metropolis scheme, creating an ensemble
of unbiased paths between the two stable states. To achieve this, TPS generates a Markov
chain of paths, where each new trial path is created by modifying an old path, using a
Monte Carlo move like the shooting move.
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The reaction rate in TPS, kTPS
AB (t), is determined as the time derivative of a general

time correlation function C(t) [20],

kTPS
AB (t) = dC(t)

dt
, C(t) = ⟨hA(x0)hB(xt)⟩

⟨hA(x0)⟩
, (6)

where hA(x) and hB(x) are the characteristic functions,

hA(x) =

1 if x ∈ A

0 if x /∈ A,
hB(x) =

1 if x ∈ B

0 if x /∈ B,
(7)

and the stable states A and B are defined as in (5). Note that hA(x) + hB(x) ̸= 1.

2.6 Transition Interface Sampling

Transition interface sampling (TIS) is a technique for modeling rare events and an im-
provement of TPS, developed by Van Erp et al. in 2003 [18]. The results of TIS-based
methods are equivalent to the ones that would be obtained by running exceedingly long
brute-force molecular simulations, but orders of magnitude faster [11]. The advantage
of TIS and replica-exchange TIS (RETIS) over TPS is that they are based on statistical
path ensembles with flexible lengths, whereas, in TPS, the paths have a fixed path length.
In TIS and RETIS, many paths are shorter than the fixed TPS path length, reducing the
number of MD steps per path. Furthermore, sometimes a TIS path is longer than the
corresponding TPS path because there is no limiting value. TPS will therefore miss the
contribution of the very long trajectories. The TIS/RETIS approach is consequently more
accurate and precise than TPS.

2.6.1 Interfaces

In TIS, the phase space is divided by a set of n− 1 non-intersecting interfaces in between
λA and λB. By defining λ0 ≡ λA and λn ≡ λB, the set of interfaces is {λ0, λ1, ..., λn}, with
λi < λi+1. Each interface is defined as where the reaction coordinate, λ(x), equals λi, see
Figure 2. The number of interfaces and their separation should be chosen to optimize the
efficiency. λ0 should be placed such that it is frequently crossed when an MD simulation
is initiated from within the stable state A: this is to calculate the flux in Equation (10).

2.6.2 Reaction Rate

The reaction rate is the most central quantity calculated in TIS simulations and can be
formulated as

kAB = fAPA(λB|λA), (8)
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Figure 2: Example of the division of phase space by n + 1 = 8 interfaces {λA =
λ0, λ1, ..., λ7 = λB}. The interfaces correspond to the calculation of Equa-
tion (9) with n = 7. A and B are the stable state regions where λ(x) < λA and
λ(x) > λB, respectively. Paths belonging to ensemble [3+] are shown. Here,
the corresponding calculation of the interface crossing probability would yield
PA(λ4|λ3) = 2/5. The trajectories in this figure are more similar to the RETIS
method (Section 2.7), because there the trajectories are continued after reaching
λi+1. The figure is based on Van Erp et al. [18].

where

PA(λB|λA) = PA(λn|λ0) =
n−1∏
i=0
PA(λi+1|λi), (9)

and fA is the flux of trajectories through the first interface λA. PA(λB|λA) is the proba-
bility that once λA is crossed, λB will be crossed before any recrossing with λA. In a rare
event, this overall probability is very small, but it can be computed by factorizing it into
probabilities PA(λi+1|λi) that each has a much higher value than the overall probability,
thus reducing the computational cost. PA(λi+1|λi) is the probability of a path crossing
λi+1, given that it starts at λA, crosses λi at least once, and ends by crossing either λA

or λB. Consequently, PA(λi+1|λi) is a complicated history-dependent conditional proba-
bility. The probabilities are calculated as fractions of the sampled paths that satisfy the
conditions.

In TIS, fA is determined by a straightforward MD simulation,

fA = N+
c

T∈A
, (10)

where N+
c is the number of positive crossings (i.e. crossings that increase the RC) with the

interface λA = λ0 and T∈A is the time spent in A. If a transition to B happens, however
unlikely, the simulation is stopped, and another MD simulation is run from A, to avoid
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waiting for the system to return to A. In the end, the fA’s from the different simulations
are averaged.

2.6.3 Path Ensembles

For each interface λi (i = 0, 1, ..., n − 1), there is a path ensemble [i+]. The [i+] path
ensemble is constructed as a Markov chain by sampling paths that obey the λi crossing
condition. If a path starts at λA, has at least one crossing with λi, and ends by either
crossing λA or λB, it satisfies the λi crossing condition. In TIS, the sampling is done via
the shooting move. An excellent flowchart diagram of the shooting move in TIS can be
seen in Van Erp et al. [21].

A new path generated by the shooting move is accepted to ensemble [i+] if the backward
trajectory crosses λA, the total trajectory has at least one crossing with λi, and the path
length remains within the maximum path length determined at the start of the shooting
move (see Van Erp [8]). If these criteria are not met, the old path is kept, recounted,
and used again to repeat the shooting move for a new random time slice, as described in
Section 2.5.2.

The final result follows from a set of independent simulations {[MD], [0+], [1+], ..., [(n−
1)+]}, where the MD simulation is used to determine fA in Equation (10).

2.6.4 Placement of the Interfaces

To illustrate the essence of importance sampling in path space, imagine a rare event with
an overall crossing probability of PA(λB|λA) = 10−6. MD would then, on average, need to
sample one million paths to observe just one crossing. Typically, TIS (and RETIS) aim to
sample an equal number of paths in each ensemble. We could, for instance, place n+1 = 7
interfaces such that each interface has a crossing probability of PA(λi+1|λi) ≈ 0.1. We can
get an estimate of the overall crossing probability using just ten paths in each of the six
ensembles [0+], [1+], ...[5+], by Equation (9). This approach has effectively reduced the
minimum number of required paths from 106 to 60. Of course, more paths are required to
obtain a statistically significant result, but the difference in required CPU time between
the two methods is obvious from this back-of-the-envelope calculation.

An optimization problem is finding the number of interfaces, n+1, and their placements,
λi, to minimize the CPU efficiency time. From the above example, it is apparent that
the minimum number of interfaces (i.e., two: λ0 = λA and λ1 = λB) is inefficient because
finding the overall crossing probability PA(λB|λA) will then be similar to an ordinary
MD simulation. In the limit of a huge number of interfaces, the crossing probabilities
PA(λi+1|λi) will approach one. This is also highly inefficient as the number of simulations
will be vast.
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Figure 3: CPU efficiency time τeff versus crossing probability pi ≡ PA(λi+1|λi), see Equa-
tion (11). The vertical axis is normalized to the minimum at pi = 0.2. Note that
several assumptions are made [7, 22]. For example, the crossing probabilities
are assumed to be the same for all i.

Van Erp [7] showed that an optimal value for the crossing probabilities in TIS can be
found by invoking some assumptions that will not be presented here. The optimal value
was calculated by minimizing the CPU efficiency time, which was shown to be

τeff ∝
1− pi

pi| ln pi|2
, (11)

where the crossing probabilities, pi ≡ PA(λi+1|λi), are assumed to be the same for all i.
The minimum occurs at pi = 0.2, see Figure 3. In RETIS, however, the minimum value
is assumed to be somewhat larger [22]. Although the theoretical optimal value of pi relies
on several assumptions that will not be truly fulfilled in a simulation, the plot in Figure 3
can still serve as guidance when deciding the number of interfaces and their placements.

2.6.5 Initialization

An obvious challenge with the Markov chain of paths is that before the first shooting move
can be made to generate a new path, a path must already exist in the path ensemble.
Each path ensemble [i+] needs an initial path, i.e., a path that crosses the interface λi.
The same path can, in principle, be used for several ensembles, provided that it crosses λi

in all the ensembles it serves as the initial path. The initial paths need to be established
using some initialization procedure. Finding an initial reactive path for a rare event is
not necessarily trivial, as the number of simulations required to observe just one barrier
crossing in a straightforward MD approach is vast (see Section 2.6.4). Although the
equilibrium properties of a system do not (or, at least, should not) depend on the initial
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Kicking

Backward MD
Forward MD

Figure 4: A configuration point is given as a starting point in the’ kick’ initialization
procedure. Here, the starting point is the bottommost dot of the black line. New
velocities are drawn randomly from a distribution (e.g., Maxwell–Boltzmann)
and given to the point. Then one MD step is executed to find a new point.
While kicking (black path), only forward-going steps with respect to the order
parameter are accepted. These steps are repeated until a crossing with the
interface λi occurs. Then, MD forward in time from the point immediately
above λi (red path) and MD backward in time from the point immediately
below λi (blue path) is performed, creating a path to the [i+] ensemble. The
final path is then the reverse blue path plus the last segment of the black path
plus the red path.

conditions, some initial conditions are more appropriate to choose concerning the physical
process and the computational efficiency [14]. In any case, the initial path does not have
to be very good and can even be unphysical.

One initialization procedure, called kick, works by searching for a crossing with interface
λi (see Figure 4). Given that the system has some initial starting point, the ‘kick’ method
performs the shooting move by modifying the velocities randomly according to some
distribution (e.g., the Maxwell–Boltzmann distribution) and performing one MD step. If
the MD step results in a point closer to the interface λi as measured by the RC, it is
accepted. If it results in a point further away from λi, it is rejected. These steps are
repeated until the crossing occurs. When the crossing is found, the point immediately
before λi and the point immediately after the interface are kept. Then, forward MD
integration from the point after the interface and backward MD integration from the
point before the interface is performed, creating a path belonging to the [i+] ensemble.
This procedure has a disadvantage in that the kicking may move over local energy barriers.
In other words, it might try to climb a wall instead of taking a step back and moving
beside it. Another initialization procedure, dubbed ‘flick,’ will be described in great detail
in Chapter 3.
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2.7 Replica Exchange Transition Interface Sampling

Replica exchange transition interface sampling (RETIS) is an improvement of TIS, devel-
oped by Van Erp [9]. The main differences to TIS are the introduction of the [0−] ensemble
and the swapping move. The [0−] ensemble consists of all paths that start at λA, then go
in the opposite direction of the reaction progress, and end at λA again. The reaction rate
is calculated as in TIS using Equation (8), but the flux fA is calculated differently. The
[0−] ensemble replaces the initial MD simulation used in Equation (10). The flux is in
RETIS calculated from the average path lengths of the [0−] and [0+] ensembles,

〈
t
[0−]
path

〉
and

〈
t
[0+]
path

〉
, respectively, as [9]

fA =
(〈

t
[0−]
path

〉
+
〈
t
[0+]
path

〉)−1
. (12)

The swapping move swaps paths between two adjacent ensembles. Or rather, it dupli-
cates the last path in both ensembles, then swaps the duplicates (hence replica-exchange)
if the acceptance criterion is met. A swap [i+]↔ [(i + 1)+] is accepted if both paths are
valid in both ensembles, i.e., if the [i+]-path crosses λi+1. Such swaps are computationally
cheap. The swap [0−] ↔ [0+] is always accepted, and it is the only swapping move that
requires force calculations (through MD steps). Such a move generates new paths by in-
tegrating backward in time from the first time slice for the [0−]← [0+] move and forward
in time from the last time slice for the [0−] → [0+] move, see Figure 5. The swapping
move significantly increases the sampling efficiency [9].

The RETIS algorithm is as follows. At each step, it is decided by some probability
whether a series of shooting, time-reversal, or swapping moves will be performed. If
shooting moves are chosen, all ensembles will be extended sequentially by performing
the computationally expensive shooting move. If time-reversal moves are chosen, all
ensembles will be updated sequentially by performing the computationally cheap time-
reversal move. If swapping moves are chosen, an equal probability will decide whether
the swaps {[0−] ↔ [0+], [1+] ↔ [2+], ...} or the swaps {[0+] ↔ [1+], [2+] ↔ [3+], ...} are
performed. Whether the last ensemble, [(n−1)+], is swapped is then dependent on which
of the series is chosen and on the parity of n. Each time [0−] and [(n − 1)+] do not
participate, they are left unchanged and recounted, like all the other swapping moves
that are not accepted.

While TIS can run all path ensembles embarrassingly parallel, parallelization of RETIS
is not so clear-cut. For example, the PyRETIS software implements RETIS fully sequen-
tially [11, 12]. In TIS, the path ensembles are independent of each other, while they are
not in RETIS due to the swapping move. Therefore, a straightforward parallelization of
RETIS, where a separate computer node treats each ensemble, would lead to many nodes
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Figure 5: Illustrated example of the swapping move. Notations and labels are the same
as in Figure 1. Left panel: A [i+] ↔ [(i + 1)+] swap. The left-hand side and
the right-hand side of the panel show the last counted path before and after
the move has been executed, respectively. Here, the [i+] path happens to cross
λi+1, such that the move is accepted. If the path had not crossed λi+1, it would
not have been accepted, and the old path would have been counted again, like
in standard Metropolis Monte Carlo. Right panel: A [0−] ↔ [0+] swap. The
dashed blue arrows are shown as references. This swapping move is always
accepted and generates new paths by integrating backward in time from the
first time slice for the [0−]← [0+] move and forward in time from the last time
slice for the [0−]→ [0+] move.
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being idle while waiting for longer paths to finish in other ensembles. In addition, the
non-flexible path length algorithm mentioned in Section 2.6 results in considerable differ-
ences in the CPU time when performing a single path generation move. Nevertheless, a
parallelizable RETIS method was recently (May 2022) developed [23].

2.8 PyRETIS: Rare Events in Python

PyRETIS is an open-source Python library for rare event molecular simulations, empha-
sizing methods based on TIS and RETIS. It utilizes both object-oriented and procedural
programming and is developed by a research team at the Theoretical Chemistry Group
at NTNU [11, 12, 24].

Figure 6 illustrates the main loop for a typical rare event in a PyRETIS simulation.
The user decides the number of interfaces and their placements (Section 2.6.4). RETIS
requires a valid initial trajectory for each path ensemble (Section 2.6.5). In PyRETIS,
this can either be generated by the internal software or loaded from an existing trajectory.

2.8.1 Input File

The PyRETIS simulations can be set up and carried out by explicitly using the library in
a Python script or by using an input file. All the user-specified parameters and settings
are specified here. See the PyRETIS web-page for a full description of the input file [24].

The one-dimensional double-well potential (Figure 7) is given by

U = ax4 − b(x− c)2, (13)

where x is the position and a, b, and c are parameters for the potential. The double-well
potential parameters are specified in the Potential section of the input file:

Example potential section
Potential
---------
class = DoubleWell
parameter a = 1.0
parameter b = 2.0
parameter c = 0.0

Choosing which simulation PyRETIS will run is done in the Simulation section:
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Figure 6: Flowchart of a rare event simulation with PyRETIS. After the initial paths
have been generated or loaded, the main loop is entered. In the main loop,
new trajectories are generated from previous ones by randomly selecting an MC
move (swap, shoot, or time-reversal). The red rectangles are computationally
costly operations, while the green ones are cheap. The yellow rhombuses are
choices made by the user or by the algorithm. The figure is based on Lervik et
al. [11].
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Figure 7: The one-dimensional double-well potential, Equation (13), with a = 1, b = 2,
and c = 0. Two stable states are located around x = −1 and x = 1, which
correspond to where the system is likely to be.

Example simulation section
Simulation
----------
task = retis
steps = 20000
interfaces = [-0.9, -0.8, -0.7, -0.6,

-0.5, -0.4, -0.3, 1.0]

Note that the leftmost and the rightmost number of the interfaces list defines the stable
state definitions in (5) (here: λA = −0.9 and λB = 1.0).

The Initial-path section specifies how the initial path (Section 2.6.5) for a TIS/RETIS
simulation should be generated:

Example initial path section
Initial-path settings
---------------------
method = kick
kick-from = previous

Three schemes are currently available in PyRETIS: ‘kick,’ ‘load,’ and ‘restart.’ Chapter 3
addresses a new initialization scheme, referred to as ‘flick.’

2.9 GROMACS

Gromacs is a free, open-source software suite for high-performance molecular dynamics
and output analysis [25].
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2.9.1 GROMACS in PyRETIS

Gromacs can be used as an external engine in PyRETIS by specifying the class gromacs
in the Engine section of the input file (Section 2.8.1):

Example engine section
Engine settings
---------------
class = gromacs
gmx = gmx
mdrun = gmx mdrun
input_path = gromacs_input
timestep = 0.002
subcycles = 1
gmx_format = gro

The gromacs2 engine is, at the time of writing, an experimental engine implemented into
PyRETIS, which is faster than the standard gromacs engine. Note that gromacs and
gromacs2 are PyRETIS engines that both use Gromacs, but differently, to integrate the
equations of motion.

The input path keyword sets the directory where PyRETIS will look for input files to
use with Gromacs. Inside this folder, the following files must be present: conf.gro (the
initial configuration), grompp.mdp (the molecular dynamics parameters), and topol.top
(the topology for the system). In Section 4.2.2, we discuss one of the keywords in the
grompp.mdp file, namely integrator.

2.10 Dissociation of Sodium Chloride in Water

In Section 4.2, the new initialization algorithm is tested on a realistic full-atom NaCl
system consisting of one Na+ ion and one Cl− ion immersed in a bath of water molecules,
using the Gromacs engine. The ion-ion distance rion = |rNa+ − rCl−| is used as reaction
coordinate.

Ballard and Dellago [19] have shown that the ion-ion distance alone is a poor reaction
coordinate and that the surrounding solvent must be taken into account to describe the
progress of the reaction. With the ultimate goal of finding a reaction coordinate for the
event, a complete set of solvent variables that jointly account for the dissociation process
is still unknown. Ballard and Dellago studied a system consisting of one Na+ ion, one Cl−

ion and Nw = 216 water molecules. They modeled the ion-ion and ion-water interactions
using the OPLS force field, which includes short-ranged Lennard-Jones and long-ranged
Coulomb terms. Their simulations were performed sampling the NVT ensemble, with
constant temperature T = 300 K and volume V = (18.64 Å)3, using Gromacs with time
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Figure 8: Thermodynamics of ionic dissociation in water. The Helmholtz free energy F
(red line) exhibits a stable associated state at rion = 2.7 Å, separated from the
dissociated state by a free energy barrier of 5 kBT with a peak at rion ≈ 3.6 Å.
The average energy U (green line) and the negative entropy (blue line) are also
plotted. The figure is taken from Ballard and Dellago [19].

step δt = 2 fs. They calculated the Helmholtz free energy along the interionic distance as

F (rion) = −kBT ln
(

ρ(rion)
ρref

)
, (14)

where ρ(rion) is the probability density and ρref is a reference value that will vanish when
considering free energy differences. They did the calculation by histogramming rion from
the concatenated trajectories, revealing the red line in Figure 8. From there, they identi-
fied the associated state as all configurations with rion < 3.2 Å, and the dissociated state
as rion > 4.4 Å. Also plotted is the average energy U(rion) = ⟨E⟩rion − ⟨E⟩∞ and the
entropy S, which is identified from

F (rion) = U(rion)− TS(rion). (15)

The master’s thesis by Konrad Wilke calculates the crossing probabilities of five path
ensembles using PyRETIS for a similar NaCl system with 908 water molecules [26]. This
is the same system we study in Section 4.2. The interfaces where chosen to be {λi/nm} =
{0.32, 0.34, 0.36, 0.38, 0.41, 0.70}, where i = 0, 1, ..., 5. Using a larger value (λB = 0.70 nm)
for the dissociated state than Ballard and Dellago [19] (λB = 0.44 nm) should not matter,
as the barrier has been crossed and hence the crossing probability will be flat beyond
this point (Figure 8). The crossing probabilities were computed to {PA(λi+1|λi)} ≈
{0.26, 0.45, 0.66, 0.77, 0.62}. Using Figure 3 and the discussion in Cabriolu et at. [22] as
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Figure 9: The OP is the ion-ion distance in nanometers. The figure is taken from
Wilke [26].

Table 1: Summary of the main results for the NaCl system [26].
Property Value (%) Relative error (%)

Crossing probability PA(λB|λA) 3.7 6.2
Flux fA (1/gromacs) 17 1.5

Rate constant kAB (1/gromacs) 0.64 6.4

guidance, one can argue that the crossing probabilities seems ‘reasonable.’ Figure 9 shows
a standard PyRETIS output generated by the pyretisanalyse application. The main
results from the analysis are reported in Table 1. The left panel in Figure 9 shows the
individual probabilities, while the right panel shows only the matched overall probability,
obtained by matching and aligning the individual probabilities.

Figure 10 shows a simplified illustration of the salt dissociating. We see that the
solvent goes through a structural change during the dissociation, which also highlights the
problem of finding a proper OP that fully describes the reaction. Note that a phase point
is not uniquely defined for a given order parameter λ = rion, as there are infinitely many
phase points that give the same order parameter. For example, changing the position or
velocity of any water molecule, moving all the water molecules, or translating or rotating
the ion-ion pair all reveal the same OP.
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Figure 10: Schematic illustration of dissociation of NaCl in water (dotted lines indicate
hydrogen bonds). The left panel shows the associated state (rion < λA); the
middle panel shows the barrier crossing, which requires the breakage of hydro-
gen bonds; the right panel shows dissociated state (rion > λB). The figure is
based on Cabriolu et al. [22].
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3 Description of the New
Initialization Method

As noted in Section 2.6.5, an initial path for each path ensemble must be generated to
perform Markov chain Monte Carlo. Each ensemble does not necessarily need to have
a unique path, as the same path, in principle, can be used in several ensembles. Fur-
thermore, as previously noted, the equilibrium properties do not depend on the initial
conditions. However, because of computational efficiency and limitations in computa-
tional power, it is desirable to use initial conditions that are relatively probable and not
unphysical.

The python code I have written as an implementation of the new method builds on
ideas and personal notes given by Titus van Erp and Raffaela Cabriolu. The purpose of
introducing a new method is to provide a way to generate more likely (i.e., lower energy)
paths for the PyRETIS library than, for example, the ‘kick’ method. We have dubbed the
new method ‘flick,’ as it is a softer way to produce initial paths than by ‘kicking’ (thanks
to Daniel Zhang for suggesting this name).

The output of this method is a set of paths starting in A and ending in A or B. The
algorithm will, at minimum, produce one reactive path, connecting state A and B. In
principle, only λA and λB need to be known, but given a set of interfaces {λi}, the
algorithm will suggest the best possible initial path for the different [i+] ensembles. This
could be a reactive path since that is a valid path for all [i+] ensembles. However, paths
from the set that crosses λi but do not reach λB might have a higher path probability.
The aim is to find the most probable path for each ensemble based on an energy criterion.

This method requires some user inputs, namely a number α ∈ [1/2, 1], two integers
ndel ≥ 1 and nreac ≥ 1, and a list of one or more points in configuration space {R1, R2, ...},
with order parameters in the range λ(R) ∈ (λA, λB). Strictly speaking, it is the corre-
sponding phase points {x1, x2, ...} that should have order parameters in the range. How-
ever, this will rarely be a problem since the order parameter is often a function of the
configuration and not the velocity. The user can opt to input a full path instead of
configuration points. The meaning of the user inputs should become apparent in the de-
scription of the algorithm. The algorithm is illustrated in Figure 12, and the description
is as follows.

Algorithm: The new initialization method (‘flick’)

1. Generate trajectories from the user-provided configuration points by assign-
ing velocities according to some probability distribution and then integrating
backward in time and forward in time using MD. A trajectory’s forward and
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backward parts are stopped once they cross either λA or λB. Each path then
consists of many phase points in the interval (λA, λB) and two phase points
(the end-points) outside the interval.

2. Categorize the trajectories according to which state they start and end in, i.e.,
AA, BB, or AB. If a trajectory starts in B and ends in A (that is, it is a
BA-trajectory), a time-reversal move (Section 2.5.2) is applied such that it
becomes an AB-trajectory. The sole purpose of BB-trajectories is that they
can assist in generating AA- and AB-trajectories. The BB category itself,
however, is of no interest and will be dismissed after the completion of the
algorithm.

3. Choose randomly one of the groups AA, BB, or AB. The default option is
that each group has a 1/3 probability of being selected. If the group is empty,
choose again.

4. Each path in the chosen group consists of phase points. Put all the points
(except the end-points that are outside the interval (λA, λB)) into one single
list, and sort the list:

a) For the AA group, sort the points by decreasing λ(x).

b) For the BB group, sort the points by increasing λ(x).

c) For the AB group, sort the points by the number of MD steps away from
the shooting point that created the path to which it belongs. Here, it is
assumed that a point close to a previously successful shooting point is
more likely to create a new AB-trajectory than a point far away.

Points that are equal regarding their sorting-measure are scrambled in random
order each time the list is updated.

5. Let N be the number of points in the chosen group. Associate a unique rank
j = 0, 1, ..., N − 1 to each point in the list corresponding to the sorting order.
Calculate the probabilities for each point based on its ranking j and the user-
specified parameter α according to

pj =
(

1− q

1− qN

)
qj, (16)

where
q =

(1− α

α

)2/N

, (17)
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and α ∈ (1/2, 1]. If α = 1/2, all points get an equal probability, pj = 1/N , by
definition. If α /∈ [1/2, 1], an error is returned.

6. Choose a random point xj according to the corresponding probability pj, using
a biased roulette wheel algorithm, illustrated in Figure 11. The roulette wheel
is divided into N segments, each with a size proportional to their probabilities
p0, p1, ..., pN−1. A random angle is drawn, and the point corresponding to that
angle is chosen.

7. Do the shooting move from the chosen point and categorize the path corre-
spondingly to AA, BB, or AB.

8. Do the deleting procedure for the group that the path of the previous step
belongs. The deleting procedure requires the user-input ndel, which is a pos-
itive integer. For group AA, the procedure deletes a path if there exist at
least ndel other AA-paths that have both higher maximum order parameter
λmax and lower path energy E. The path energy is here defined as the average
total energy of all the phase points in the path (see Equation (27)). For group
BB, a path is deleted if there are at least ndel other paths in BB that have
both lower λmin and lower path energy. For group AB, a path is deleted if
there are at least ndel other paths in AB that have lower path energy. See the
conditions in (26).

9. Repeat steps 3–8 until some stopping criterion is reached, or the user decides
to stop the initialization by typing some command (provided that some useful
information is printed during the steps). In the current version, the stopping
criterion is to acquire nreac AB-paths.

10. The BB-trajectories are deleted after the stopping criterion has been reached,
such that one is left with at least one reactive path and possibly some AA-
trajectories. All the trajectories can now be stored in one list of trajectories,
sorted by increasing path energy. In the RETIS algorithm, the chosen initial
path is one with the lowest path energy, which is valid for the path ensemble
in question.

11. For the [0−] ensemble, we can simply take any path of the AA or AB groups
and integrate the equations of motion backward in time starting from the first
phase point of this path. This is similar to how a new [0−] path is generated
via the replica-exchange move (see Figure 5, right panel). It makes sense
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Figure 11: A biased roulette wheel algorithm chooses points according to their probabil-
ities. Here, the roulette wheel is divided into seven segments. Each segment
has a size proportional to the probabilities p1, p2, ..., p7. There are several ways
to implement this algorithm. One way is to draw a random number (cor-
responding to an angle) from a uniform distribution, say a number between
0 and 2π, and the point corresponding to the angle is chosen. This algo-
rithm is, of course, implemented into popular python libraries such as NumPy
(numpy.random.Generator.choice) [27].

nonetheless to take the most likely path among the AA or AB groups for
which we use the same energy-based criterion as in step 10.

The value of q in Equation (17) tells us that the probability of selecting a point with a
certain rank is 1/q times higher than selecting the point one step lower in the rank [10]. So
in principle, we could have opted to let the user provide q directly as an input parameter,
where 0 < q ≤ 1. The lower the value of q, the more elitist the selection procedure
becomes. q = 1 means that all points have the same probability of being selected, with a
probability equal to 1/N . On the other hand, it is not very intuitive to choose a reasonable
value of q. Additionally, the fact that the number of points N in the groups is not constant
could imply that two similar points suddenly get very different selection probabilities due
to additional points getting ranked between these. These are the reasons why we define
q indirectly via Equation (17), where α has the following meaning,

α ≡

the probability to select a point from the upper

half (j = 0, 1, ..., N/2− 1) of the ranking list.
(18)

Based on the definition of α, q = q(N, α) can be determined as follows. Let

s(N) ≡
N−1∑
j=0

qj, (19)
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Figure 12: The ‘Flick algorithm’ steps 1–9 illustrated (with arbitrary α). Larger point
size indicate larger probability pj. Thicker line indicate higher path energy
Ek. ‘Delete criterion’ in (26a) and (26b): progressed further and lower Ek.



such that
α = s(N/2)

s(N) . (20)

Using standard maths, Equation (19) can be rewritten to

s(N) = 1− qN

1− q
, (21)

such that
α = 1− qN/2

1− qN
or α = 1− x

1− x2 , (22)

where
x ≡ qN/2 or q = x2/N , (23)

(not to be confused the with position i the x-direction). Since 1 − x2 = (1 + x)(1 − x),
we get

α = 1
1 + x

or x = 1− α

α
, (24)

such that
q =

(1− α

α

)2/N

,

which is identical to Equation (17) in the algorithm. Finally, we normalize the weights
such that pj = const.×qj is the probability to select point xj. The normalization constant
follows from ∑

j pj = 1, and therefore,

const. = 1∑N−1
j=0 qj

= 1− q

1− qN
, (25)

such that
pj =

(
1− q

1− qN

)
qj,

which is identical to Equation (16).

The parameter ndel decides how many times the ‘delete criterion’ in step 8 has to be
fulfilled in order to delete a path from its group. The ‘delete criterion’ considers a path k

and compares it to all the other paths belonging to the same category. It is fulfilled if
there exists a path l (̸= k) belonging to the same category as k that satisfies the following:


(λmax,k < λmax,l and Ek > El) if k ∈ AA

(λmin,k > λmin,l and Ek > El) if k ∈ BB

Ek > El if k ∈ AB,

(26a)

(26b)

(26c)
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where

Ek ≡
1

Nk

Nk∑
j=1

(K(xj) + U(xj)) (27)

is the path energy of path k, and Nk is the number of phase points in path k. If the
number of paths l1, l2, l3, ... satisfying the ‘delete criterion’ in (26) is greater than or equal
to ndel, path k is deleted.

In other words, for categories AA and BB, the delete criterion for a path k is fulfilled
if there exists a path l belonging to the same category that has progressed further and
has lower energy. For category AB, the energy criterion is sufficient. The ndel parameter
can be interpreted as a measure of how ‘strict’ the algorithm is in deleting paths—the
lower the value of ndel, the lower the threshold of deleting. Consequently, a higher value
of ndel will lead to more points to choose from in step 6 of the algorithm and therefore
also requires more disk space.

In step 4, we said that points that are equal regarding their sorting-measure are scram-
bled in random order each time the list updates. However, we could instead have done
the following. If points j = k, k + 1, ..., k + l have the same sorting-measure, we give all
these points the same probability using the average of the original probabilities pj:

pk = pk+1 = ... = pk+l =
∑k+l

j=k pj

l + 1 . (28)

Scrambling or using the expression in (28) are presumably equally good. Ultimately, we
chose to scramble as it was easier to implement.

There is a potential drawback with the path energy definition in Equation (27). A path
that stays long in a low energy configuration and then moves past a very high energy
barrier will still reveal low path energy, as it takes the average of all the phase points.
However, if λA and λB are chosen sensibly, this will probably not happen.

The energy criterion in (26) might also reveal a weakness in another aspect. We added
this criterion to get rid of very high-energy paths. For example, a too fast and aggressive
approach for obtaining a transition can lead to overlapping molecules, resulting in high
energies—this has been observed in other studies with the ‘kick’ approach. Based on the
Boltzmann weight, exp(−βE), it also seems to make sense to eliminate paths with high
energies. On the other hand, we must also account for entropy when generating paths,
as low-energy paths might not be as likely as paths with some higher energy. Water, for
example, is liquid at room temperature even if a configuration point representing an ice
crystal is lower in energy. It is, therefore, an open question whether the energy criterion
in the selection approach is not overshooting its goal of producing good paths by selecting
paths that are too low in energy compared to the average transition path.

The settings of the ‘flick’ method are specified in the Initial-path section of the input
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file:

Example initial path section
Initial-path
------------
method = flick
reactive_paths = 5
alpha = 0.8
n_del = 2
p_aa = 0.4
p_bb = 0.4
p_ab = 0.2

In the current version of the code, only one user-provided configuration point is possible.
It should be located the same place as in the ‘kick’ method: for the Gromacs engine,
for instance, in the input path folder specified in the Engine section, as conf.gro or
conf.g96. The parameter alpha corresponds to α, and is a required input. The parameter
n del corresponds to ndel, and is set to 1 if not specified. The parameters p aa, p bb,
and p ab correspond to the probabilities of choosing a group in step 3 of the algorithm,
and are optional. These probabilities, pAA, pBB, and pAB, must sum to one, and are each
set to 1/3 if not specified. In the current version of the code, the initialization is finished
(terminated) when a given number of reactive trajectories nreac, connecting A and B, is
found, specified by the reactive paths parameter.

As previously noted, the equilibrium properties of a system are independent of the
initial conditions. However, it is advantageous to use realistic initial conditions concerning
computational efficiency. It is evident, then, that the initialization procedure itself cannot
take an extremely long time to run compared to the rest of the RETIS algorithm because
then the expenses would absorb the profits.

A technical note regarding the implementation of this algorithm is that significantly
more storage is required compared to, e.g., the ‘kick’ algorithm. This is because the ‘flick’
method keeps several paths for comparison. One path might require several gigabytes of
storage. Moreover, it is not known in advance exactly how much storage will be needed.
Therefore, when bookkeeping these paths, the paths can not be stored in the random-
access memory (RAM); but need to be stored on the storage, like a solid-state drive
(SSD).
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4 Results and Discussion
The implementation of the new initialization method presented in Chapter 3 is virtually
finished and has been tested on a 1D single-particle system (Section 4.1) and a 3D many-
particle system (Section 4.2).

4.1 1D Double-Well Potential

The single-particle one-dimensional double-well potential system (see Figure 7) has been
tested using the internal Langevin engine in PyRETIS. The tests are presented in the
examples below. The order parameter is chosen to be the position (in the x direction),
specified in the Orderparameter section of the input file, and the units are dimensionless
(reduced).

4.1.1 Example 1

The ‘Example 1’ input file below has been used to simulate the paths presented in Fig-
ure 13. The steps=0 keyword means that we are producing only initial paths, i.e., zero
RETIS-steps. Note especially the Initial-path section. The initial configuration point
is given as a separate file (‘example1.xyz’), referenced in the Particles section.

A notable observation in Figure 13 is that only the second path got deleted by the
‘deleting procedure’ in step 8 of the algorithm. Only one path gets deleted because with a
large α, the algorithm is likely to pick a point close to λmax = xmax. This is because xmax

always occurs when ẋ = 0 in the single-particle 1D system, that is, at a point with only
potential energy. Hence, when a point with close to zero velocity is given a new velocity
(and thus, more energy), it will, in all likelihood, result in a path with higher xmax.

4.1.2 Example 2

When a new path that both starts and ends in A (or B) is generated by the new initial-
ization method, it gets added to the group of paths belonging to category AA (or BB).
Since the deleting procedure only deletes paths if both the conditions in (26a) (or (26b))
are fulfilled, the path that has the highest λmax in AA (or lowest λmin in BB) can never
be deleted. Consequently, this value strictly increases (or decreases) as a function of the
step number, where the step number is the number of times step 9 in the algorithm has
been repeated. This ‘super-λmax’ value, referred to as λ∗

max, is plotted as function of the
step number in Figure 14 (top row). The ‘super-λmin’ value, referred to as λ∗

min, is plotted
in Figure 14 (bottom row). The values of α are chosen somewhat arbitrarily but in a
fashion to demonstrate the difference between a low and a high value.
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Input file: Example 1

Retis 1D example
================

Simulation
----------
task = retis
steps = 0
interfaces = [-0.9, -0.8, -0.7, -0.6,

-0.5, -0.4, -0.3, 1.0]

System
------
units = reduced
dimensions = 1
temperature = 0.1

Box settings
------------
periodic = [False]

Engine settings
---------------
class = Langevin
timestep = 0.002
gamma = 0.3
high_friction = False
seed = 1

TIS settings
------------
freq = 0.5
maxlength = 20000
aimless = True
allowmaxlength = False
zero_momentum = False
rescale_energy = False
sigma_v = -1
seed = 1

RETIS settings
--------------
swapfreq = 0.5
relative_shoots = None

nullmoves = True
swapsimul = True

Initial-path settings
---------------------
method = flick
n_del = 1
reactive_paths = 1
alpha = 0.9999

Particles
---------
position = {'input_file':

'example1.xyz'}
velocity = {'generate': 'maxwell',

'momentum': False,
'seed': 1}

mass = {'Ar': 1.0}
name = ['Ar']
ptype = [0]

Forcefield settings
-------------------
description = 1D double well

Potential
---------
class = DoubleWell
a = 1.0
b = 2.0
c = 0.0

Orderparameter
--------------
class = Position
dim = x
index = 0
periodic = False

Output settings
---------------
trajectory-file = 1
energy-file = 1
order-file = 1

example1.xyz
1

Ar -0.75 0 0
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Figure 13: A 1D simulation example shows how the steps achieving a reactive path might
look like in phase space. Here, one configuration point is provided by the user:
x0 = −0.75. The inputs are the same as in the ‘Example 1’ input file, but with
α chosen extremely close to one (alpha=0.9999): this is to achieve a reaction
in few simulation steps. The label numbers refer to the path creation order.
Observe that the second path gets deleted according to the criteria in (26a).
The arrow in each step shows the randomly (Maxwellian) chosen change in
the velocity. The arrows point from the randomly chosen phase point, which
is chosen using the probabilities in Equation (16). The stable state conditions
λA = xA = −0.9 and λB = xB = 1.0 are also shown.
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Figure 14: Simulation examples in 1D highlights the difference between a high (close to 1)
and a low (close to 1/2) value of α and a high (close to λB) and a low (close
to λA) value of the OP of the user-provided configuration point in the ‘flick’
method. λmax (or λmin) is the OP extremum of the new path created in each
step. λ∗

max (or λ∗
min) is the highest λmax (or lowest λ∗

min) in group AA (or BB)
in each step. Here, the parameters are the same as in the ‘Example 1’ input
file, but with different values of α and the user-provided configuration point
x0. The step number is the number of times step 9 in the algorithm have been
repeated. Top row: x0 = −0.75, bottom row: x0 = 0.80, left column: α = 0.70,
right column: α = 0.95.
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We see in Figure 14 that a higher value of α results in a faster convergence (i.e., fewer
simulation steps) to a reactive path. As mentioned earlier, a large α makes the new
method similar to the ‘kick’ method, described in Section 2.6.5. In realistic systems, such
fast creations of reactive paths (category AB paths) are likely to lead to high path energy,
as defined in Equation (27).

4.1.3 Energy Comparison of Initial Paths

Figure 15 shows the path energy for each path ensemble for 15 simulations with ‘flick’
and 15 simulations with ‘kick.’ The input files are the same as in the ‘Example 1’ input
file, but with different Initial-path sections:

Initial-path section, ‘flick’
Initial-path
------------
method = flick
reactive_paths = 1
alpha = 0.8
n_del = 1

Initial-path section, ‘kick’
Initial-path
------------
method = kick
kick-from = initial

We see that the median energy in all the [i+] path ensembles is lower for ‘flick’ than for
‘kick.’ The path energy (average total energy of all the phase points) can, of course, never
go below negative one, as is evident by looking at the double-well potential in Figure 7.
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Figure 15: Top: Scatterplot of the path energy for ‘kick’ vs ‘flick’ on the single-particle 1D
double-well potential system. Fifteen data points are used for both method. A
random amount of jitter in the categorical axis is applied. The input files are
the same as in ‘Example 1,’ but with different Initial-path sections. The
parameters in ‘flick’ are α = 0.8, ndel = 1, and nreac = 1. The order parameter
of the initial configuration point is λ(x0) = −0.75. Bottom: Box-and-whisker
plot of the above data. The line inside a box indicates the median value,
whereas the top and bottom lines of a box indicate the median of the upper
and lower half of the values, respectively. Here, the whiskers extend from the
minimum to the maximum value.
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4.2 NaCl in Water

The new initialization method has also been tested on a NaCl system (Section 2.10)
consisting of one Na+ ion and one Cl− ion immersed in a bath of Nw = 908 water molecules
using an OPLS-AA force field [28]. Gromacs was used as an engine (Section 2.9) and the
ion-ion distance rion = |rNa+− rCl−| in nanometers is used as order parameter. The ‘NaCl
in Water’ PyRETIS input file below and additional Gromacs input files have been used
in all the simulations, but with some different values in the Initial-path section and
in the Gromacs files. All the simulations samples the NVE ensemble with V = (30 Å)3,
except in Section 4.2.1, in which NVT is sampled with T = 300 K using velocity rescaling
(keyword v-rescale in the .mdp file).

4.2.1 Obtaining an Initial Point in Configuration Space

There are many ways to acquire a valid and sensible initial configuration point R0 to use
with the ‘flick’ method to ensure λA < λ(R0) < λB. For instance, a straightforward MD
run from stable state A using the temperature one wants to study should yield several
crossings with λA, given that λA is placed reasonably.

Figure 16 shows the energy and order parameter of an MD run sampling the NVT
ensemble with T = 300 K and V = (30 Å)3 from some low energy configuration. The
simulation was executed with Gromacs, with a time step of δt = 2 fs and integration
performed using the velocity Verlet algorithm. After about 85 ps, the order parameter
is between the stable state conditions that is going to be used in the ‘NaCl in Water’
example, i.e. 0.32 < λ(R0) < 0.70. The point corresponding to t = 85 ps from this
trajectory is thus a valid initial configuration point for the ‘flick’ method. The energy
plots show that the energy has converged at this time. Also worth noting is that the salt
dissociates (goes from stable state A to stable state B) by itself in this run, suggesting
that this event might not be so rare after all.

4.2.2 Errors and Troubleshooting

Not everything has run smoothly while working on this thesis. This section will elaborate
on a few of the debugging quest’s time-consuming efforts, successes, and workarounds.

One problem emerged while running TIS/RETIS simulations using the gromacs2 engine
on my personal computer. An inexplicable error occurred during simulations that did not
occur on a different computer with the exact same configurations and settings. The only
difference was the brands of the machines. One was a Linux machine with an Intel chip,
while I used a MacBook Pro with an Apple Silicon M1 chip. A hypothesis is that the
gromacs2 engine in PyRETIS was unable to kill the correct processes due to some specifics
of the M1 chip’s efficiency and performance cores. However, the error did not occur during
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Input file: NaCl in Water

NaCl in Water
=============

Simulation
----------
task = retis
steps = 0
interfaces = [0.32, 0.34, 0.36,

0.38, 0.41, 0.70]

System
------
units = gromacs

Box
---
cell = [3, 3, 3]
periodic = [True, True, True]

Engine
------
class = gromacs2
gmx = gmx
mdrun = gmx mdrun
input_path = gromacs_input
timestep = 0.002
subcycles = 1
gmx_format = gro
maxwarn = 15

TIS
---
freq = 0.5
maxlength = 100000

aimless = True
allowmaxlength = False
zero_momentum = False
rescale_energy = False
sigma_v = -1
seed = 0

RETIS
-----
swapfreq = 0.5
relative_shoots = None
nullmoves = True
swapsimul = True

Initial-path
------------
method = flick
n_del = 1
reactive_paths = 4
alpha = 0.8

Orderparameter
--------------
class = Distance
index = (0, 1)
periodic = True

Output
------
backup = 'backup'
order-file = 1
energy-file = 1
trajectory-file = 1
screen = 1
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Figure 16: Gromacs MD run for the NaCl system sampling the NVT ensemble with T =
300 K and V = (30 Å)3. The time step is δt = 2 fs and the integration
is performed using the velocity Verlet algorithm. We see that the system
is in equilibrium in the range 25–200 ps. Here, the average total energy is
−31 489 kJ/mol, the average kinetic energy −6 800 kJ/mol, and the average
potential energy −38 289 kJ/mol (plotted as dashed lines).
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the initialization process using ‘kick’ or ‘flick’—only during the TIS/RETIS part. I spent
quite some time trying to figure out the bug, but in the end, a workaround was to use
one of the Department of Chemistry’s computer clusters when performing TIS/RETIS
simulations.

Another problem was regarding the integrator chosen in the Gromacs settings (Sec-
tion 2.9). The problem arose using the leap-frog integration method when performing the
shooting move (Section 2.5.2). In Gromacs, leap-frog is the default integrator, selected
by the not-so-descriptive keyword md, while velocity Verlet requires the keyword md-vv.
Figures 17 and 18 show a comparison between two paths produced by ‘kick’: one via
leap-frog and the other via velocity Verlet. Otherwise, the initial conditions and settings
are identical (except for the random seed).

Figure 17 shows the energy and OP of each step in the kicking part of the ‘kick’ method
(corresponding to the black path in Figure 4). The initial configuration point is the same
as the one that was chosen in Section 4.2.1. The OPs are strictly increasing for both
integrators, as they should. What is surprising is that the energy is decreasing for the
leap-frog integrator. Since the initial point was already in energy equilibrium, and since
high-potential moves always will be accepted if they increase the OP—regardless of how
unphysical they are—one would expect the energy to increase in the kicking part. Velocity
Verlet, on the other hand, seems to increase the energy, as expected.

Figure 18 shows two initial paths produced to the [3+] ensemble. The last point for each
integration scheme in Figure 17 should be identical to the leftmost points in the forward
parts in Figure 18 (i.e. equal OPs and energies). Moreover, the second to last point
should match the rightmost point in the backward part considering OP and potential
energy. The leap-frog path reveals a considerable discontinuity in the total energy in the
path connected by the shooting points. Furthermore, it is not expected to see such an
extreme change in the energy right by the shooting points. If any, one would expect to
see a decrease rather than an increase in the potential energy near the shooting points,
as they are expected to be in a higher potential due to the unphysical nature of the ‘kick’
method. Figure 18 shows only one simulation for each integration scheme, but one can
verify that the jump in energy for the leap-frog integrator is not due to randomness by
doing more simulations.

The reason why the leap-frog integrator is not suited for the shooting move is that it
uses positions R at time t and velocities V at time t − 1

2δt to update its positions and
velocities [25]. On the other hand, the velocity Verlet integrator uses both positions and
velocities at time t to integrate the equations of motion. This means that given a starting
point x(0) = (R(0), V(0)), the leap-frog and the velocity Verlet will not produce identical
trajectories, as the leap-frog will interpret the velocities as corresponding to t = −1

2δt,
while the velocity Verlet will interpret them as corresponding to t = 0. While performing
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the shooting move, the velocities at ±1
2δt shifted time steps are not defined; only the

velocities at ±δt shifted time steps. I do not know what Gromacs does when it finds out
that the velocities are not defined—it is presumably drawing new velocities from some
distribution. In any case, it is evident that the velocity Verlet algorithm is a more suitable
integration scheme than the leap-frog algorithm in TIS/RETIS.

In Sections 4.2.3 and 4.2.4, we compare the path energies of ‘kick’ and ‘flick’ using initial
configuration points just to the right of the λA = 0.32 nm interface. We also wanted
to compare the energies using a configuration point close to the free energy barrier at
λ ≈ 0.36 nm (Figure 8). However, in all the simulations, ‘kick’ was unable to produce
initial paths to the [2+] ensemble (λ2 = 0.36 nm). What happened was that the forward
MD trajectory went to B in the shooting move and was accepted. The backward trajectory
also went to B and, hence, got rejected. In fact, the backward path went to B in all the
consecutive trials, eventually leading to a disk overflow error since they did not get deleted.
Some trivial bug assumably causes this error in the ‘kick’ method. Furthermore, there is
an improvement of the ‘kick’ method described in Section 2.6.5 that ensures consecutive
trials to progress toward λA—maybe this improvement has not yet been implemented?
The new method, on the other hand, was indeed able to produce initial paths from a
configuration point close to the energy barrier.

4.2.3 Energy Comparison of Initial Paths

Figure 19 shows the OPs and energies of two example initial paths made to the [3+]
ensemble: one made by ‘kick’ and the other by ‘flick.’ The box plot in Figure 20 was
made using 15 simulations for both methods. The plot clearly shows that the initial
paths created by ‘flick’ are lower than those created by ‘kick.’ The reason why ‘flick’
has identical boxes in path ensembles [2+], [3+], and [4+] is that the algorithm found a
low-energy path in [4+] that it reused in the lower-order ensembles—for all the individual
simulations—which we can verify by studying the scatterplot.

Figure 21 conveys the same message as Figure 20, but in a different representation: a
straightforward MD run of the NaCl system in equilibrium shows the energy fluctuations
and mean, alongside the [3+]-ensemble initial paths from ‘kick’ and ‘flick.’ A comparison
of different values of input parameters for the ‘flick’ method is shown in Figure 22. The
parameter values are chosen somewhat arbitrarily.

For NVE dynamics, the energy in a path is constant, whereas this is not true for NVT.
The energy fluctuations can be analyzed in a system with many particles via the relation
between heat capacity and the standard deviation in the total energy. The heat capacity
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Figure 17: Kicking (corresponding to the black path in Figure 4) in the [3+] path ensemble
(λ3 = 0.38) with velocity Verlet and leap-frog. The NVE ensemble is sampled
using the ‘NaCl in Water’ input file, but with method=kick. The dashed lines
in the energy panels are references to the energy in step 0.
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Figure 18: Comparison of an initial path to the [3+] path ensemble (λ3 = 0.38) produced
by the ‘kick’ method using the leap-frog algorithm (solid curve) and the velocity
Verlet algorithm (dashed curve). The dynamics is run in the NVE ensemble,
the order parameter is the ion-ion distance in nanometers, and the input pa-
rameters are the same as the ‘NaCl in Water’ input file but with method=kick.
The two black dots on each curve are the two shooting points produced in the
kicking part of the ‘kick’ method (Figure 4): they correspond to the last two
steps in Figure 17. The dash-dotted lines in the middle panels indicate the
minimum and maximum energy observed for the system in equilibrium (see
Figure 21).
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(see Figure 21).
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Figure 20: Top: Scatterplot of the path energy of ‘kick’ vs. ‘flick’ for the NaCl-in-water
system in the NVE ensemble. Fifteen data points are used for both methods.
A random amount of jitter in the categorical axis is applied. The inputs are
the same as in the ‘NaCl in Water’ input file. The order parameter of the
initial configuration point is λ(R0) ≈ 0.327. Here, the ‘flick’ input parameters
are α = 0.8, ndel = 1, and nreac = 4. The dashed line indicate the average total
energy of the system in equilibrium (Figure 16). Bottom: Box-and-whisker
plot of the above data point. The line inside a box indicates the median value,
whereas the top and bottom lines of a box indicate the median of the upper
and lower half of the values, respectively. Here, the whiskers extend from the
minimum to the maximum value.
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CV = ⟨∂E/∂T ⟩ can be written as [16]

CV = ⟨E
2⟩ − ⟨E⟩2

kBT 2 = σ2
E

kBT 2 , (29)

where σ2
E is the variance. The standard deviation can thus be written as

σE = T
√

kBCV = T
√

kBCV,mn = T
√

kBCV,mN/NA, (30)

where n = N/NA is the number of moles, N the number of molecules, and CV,m the
molar heat capacity. To express the standard deviation σE =

√
⟨E2⟩ − ⟨E⟩2 in J/mol, we

multiply by Avogadro’s number, yielding

σ∗
E = σENA = T

√
kBCV,mNAN = T

√
RNCV,m, (31)

where R = kBNA is the gas constant. There are Nw = 908 water molecules, the heat
capacity of water is 75.38 J/(K mol) ≈ 9R, and T = 300 K. Therefore,

σ∗
E ≈ 3RT

√
908 ≈ 225 kJ/mol. (32)

This shows that energy fluctuations up to 225 kJ/mol happen frequently. The solvent
is the main cause of the high energy states. Since there are so many particles, there will
often be some particles that overlap, thereby causing the energy to fluctuate.

4.2.4 Energy Comparison of TIS Simulations

In Figure 23, we see two TIS simulations executing 1000 cycles in the [3+] path ensemble,
comparing ‘flick’ and ‘kick.’ Like in a Markov chain, only the accepted cycles are shown.
In the top panel, the path energy is shown for each cycle; in the bottom panel, the
full trajectories of all the cycles are pasted next to each other. We see that the energy
difference between the two methods is large in the beginning (as in Figure 20) and that
both methods eventually start fluctuating around the system-equilibrium energy.

Figure 24 shows the average of several TIS simulations executing 300 cycles in the [3+]
path ensemble. The figure compares how the path energy of the accepted paths propagates
from the initial path. We see that the energy at step 0 is like in Figures 21: ‘kick’ is in
the system-equilibrium zone, whereas ‘flick’ is substantially lower. The propagation of
the new method suggests that after 100 cycles, the path energy of new accepted paths
has regressed to a fluctuation about the mean, keeping in mind the standard deviation in
Equation (32).
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Figure 23: Two TIS simulations in the [3+] path ensemble (λ3 = 0.38) with 1000 cycles
resulted in 245 accepted cycles for the simulation that used ‘kick’ and 256 for
the one that used ‘flick.’ Here, the initial configuration point had an order
parameter λ(R0) ≈ 0.327, and the ‘flick’ parameters were α = 0.7, ndel = 2,
and nreac = 7. The dashed horizontal lines indicate the average total energy of
the system in equilibrium (Figure 21). Top: The path energy (Equation (27))
of each cycle in the Markov chain (i.e., if a cycle is rejected, the previous cycle
is kept and recounted, thereby causing the horizontal segments in the plots).
Bottom: The full trajectories of all the cycles are pasted next to each other.
The vertical black lines show the link between the accepted cycles.
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Figure 24: Fifteen TIS simulations with 300 cycles in the [3+] path ensemble (λ3 = 0.38)
with initial paths made by ‘flick’ and fifteen made by ‘kick.’ The plot shows
the average path energy for each cycle in the Markov chains (i.e., the average
of 15 plots similar to the top panel in Figure 23). The initial configuration
point had an order parameter λ(R0) ≈ 0.327 and the ‘flick’ input parameters
were α = 0.7, ndel = 2, and nreac = 7. The solid lines show the mean and
the bands show the 95 % confidence interval (automatically generated by the
plotting software [29, 30]). The dashed horizontal line indicates the average
total energy of the system in equilibrium (Figure 21).
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5 Conclusion and Further Work
As stated in Section 2.3, the first, say 5–10 %, of the steps of a molecular dynamics or
Monte Carlo method, is usually ignored when averaging because they are generally not
representative of the desired equilibrium properties. In path sampling, this issue can be
even more delicate. Since generating new paths is computationally costly, minimizing
the number of paths that will later be ignored is essential. Besides, finding a suitable
initial trajectory for each path ensemble is far more complicated than finding an initial
configuration in MD and MC.

Since integration is done forward and backward in time in the shooting move, it is
important to use a time-symmetric integration scheme. Specifically, we have studied the
leap-frog (time-asymmetric) and the velocity Verlet (time-symmetric) and concluded that
the former leads to strange behavior and discontinuities, whereas the latter produces
sensible trajectories.

The ‘kick’ procedure makes physical trajectories (since they obey Newton’s equations
of motion) and finds the initial trajectories very quickly. However, it generally leads
to highly unlikely trajectories and can even result in a permanent sampling trap where
it is impossible to relax to the more relevant region in path space in consecutive MC
moves. The ‘kick’ initial paths did not show the expected rapid energy increase due to
forcefully increasing the OP while kicking—even as it would potentially lead to overlapping
molecules. The test system (NaCl in water) was perhaps not the best system to illustrate
the shortcomings of the ‘kick’ method.

We see that the new method (dubbed the ‘flick’ method) produces paths with far lower
energy than the ‘kick’ method—it even produces paths with far lower energy than the
NaCl system exhibits in equilibrium. In a way, ‘flick’ finds trajectories that almost freeze
the system. However, this might be different for other systems. It means, nevertheless,
that the energy criterion in (26) might be extravagant. The ‘kick’ approach is known
to produce high-energy paths, and we added the energy criterion to the new method
to eliminate such paths. Eliminating paths with high energy also seems to make sense
based on the Boltzmann weight. On the other hand, entropy also plays a role, which is
why water is liquid at room temperature even if a configuration point representing an
ice crystal is lower in energy. The removal of the energy criterion will still presumably
produce better paths than ‘kick,’ as no unphysical kicking is involved.

When the user provides the interfaces {λ1, λ2, ..., λn−1}, the path chosen as the initial
path by the ‘flick’ method to each ensemble is the one with the lowest path energy that is a
valid path for the ensemble in question. A task for further work is: Can the information of
the sampled paths in the initialization procedure be used to suggest the ‘best’ interfaces?
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The algorithm presented in Chapter 3 starts by assuming that λA and λB are given, and
so do most theoretical ‘rules of thumb.’ However, it is known that the placement of λA

greatly influences the efficiency since shifting λA to the right decreases the average path
length in all the ensembles except for the [0−] ensemble, which is increased. The next
phase of the initialization should therefore focus on optimizing the number of interfaces
and their placements (including λA and λB) during a preliminary RETIS run in which all
MC moves are executed in addition to on-the-fly adjustments of the interfaces.

The implementation of the new initialization method is virtually finished. Further work
will involve the above-mentioned prospects, finishing a small remainder of the implemen-
tation of the algorithm, and testing it on additional systems. As mentioned earlier, the
dissociation of salt in water is not particularly rare—it is desirable to test the new method
on a rarer event. The remaining parts of the algorithm are making it support more than
one initial configuration point, making it possible to terminate before the acquired number
of reactive paths are found, and handling a potential disk overflow. Moreover, we would
like to see running time, error, and efficiency analyses compared to other initialization
methods. Also, analysis of how the user-specified parameters (α, ndel, and nreac) affects ef-
ficiency and performance is of interest. Finally, the declaration of docstrings in the source
code, proper output to the log file, and so on, in alignment with the PyRETIS project,
is required before a possible adoption into the next version of PyRETIS. On a final note,
a parallelizable RETIS method was recently developed [23]. The ‘flick’ algorithm will
probably need some adaptions to be compatible with this method.
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