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Abstract 
A small-scale CO2 field laboratory was established in Svelvik, Norway, from 2009 to 

2013. The site was characterized during 2009 and 2010, starting from drilling, sampling 

and logging from Svelvik#1 exploration well. In 2012, Svelvik#2 was drilled as the main 

CO2 injector with the completed interval on the depth of 64-65m. 

The main objectives of this study are: to build a history match model based on the Pre-

ACT 2019 injection data, understand the uncertainties and finally develop a proxy model 

that can mimic the numerical simulation result of the Svelvik CO2 field laboratory. The 

proxy model can be used to design the CO2 injection rate for the next injection campaign 

and be input for updating the reservoir model. With the proxy model availability, the 

previous numerical simulation of Svelvik CO2 injection that requires hours to obtain 

results can be reduced to seconds. 

After the model is history matched, the prediction scenario is designed as two cycles of 

injections with the duration of 1 week of injection and 1 week of shut-in period for each 

cycle. The CO2 injection rate is designed by using a modified fractional factorial sampling. 

18 different injection cases were simulated and the results are used for training proxy 

models. A proxy model is defined as a function that approximates the response of the full 

physics model for a given set of input values. The proxy models used in this study are 

response surface proxy and universal kriging proxy. The inputs for the proxy models are 

1st and 2nd CO2 injection rate, and several outputs are predicted, from bottomhole 

pressure, average field pressure, dissolved CO2 in water and CO2 in gas phase. The 

validity of the proxy models is evaluated by percent error and correlation coefficient (R2). 

The results of this study show that, there is still no simulation case that successfully 

matches the measured data. The best history match case, which requires the absolute 

permeability multiplied by 5, has an average percent error of 0.22% (0.016 bar) and 

maximum percent error of 1.01% (0.074 bar) with respect to the measured injection well 

bottomhole pressure. It implies that the permeability in the current geo-model needs to 

be improved in the permeability model. The history match result also shows the 

requirement to modify the previously interpreted mud layer (50.7m to 61.2m) to a non-

continuous mud layer that contains sand lobes due to the fact that in the monitoring 

results, the CO2 is able to migrate to the upper layer which requires a pathway to reach 

(~38m depth). 

The proxy models from the response surface and universal kriging method show a 

promising result from the validation cases and evaluation cases. All predicted results 

have R2 over 0.99, which means that the proxy models are highly correlated to the 

simulation results. The universal kriging proxy shows a better performance than the 

response surface due to the limitation of the response surface in following the polynomial 

regression model, while the universal kriging has the potential to minimize the error 

through the Gaussian process.  

Overall, this study provides a better understanding of the Svelvik CO2 field laboratory and 

successfully developed the proxy models to be implemented for designing the next 

injection campaign or optimization cases in further work. 

Keywords: Svelvik CO2 field laboratory; CO2 storage; History Matching; Proxy Model; 

Response surface; Universal Kriging 
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1.1 Background 

Svelvik CO2 Field Laboratory is part of the European Research Infrastructure for the CO2 

field of Carbon Capture, Utilization, Transport and Storage (CCUS). The CO2 Field Lab 

project is a consortium of industry and research institutes that have a strong involvement 

in CO2 storage in multiple areas from site management, monitoring and certification from 

the early stages (Bakk, et al., 2012). 

The establishment of the CO2 Field Laboratory was conducted to answer the EU directives 

on the geological storage of CO2 and create specific instructions on monitoring that have 

not been developed yet. The objectives and research areas provided in Svelvik CO2 Field 

Laboratory are mainly related to CO2 monitoring and leakage detection using various 

methods with the aim of providing a validated monitoring system through a protocol and 

certification scheme (Bakk, et al., 2012). 

From September to November 2019, through Pre-ACT (Pressure control and conformance 

management for safe and efficient CO2 storage – Accelerating CCS Technologies) project, 

the re-establishment of the Svelvik CO2 Field Laboratory is successfully done by 

performing the first experimental campaign at the lab and disseminating the 

experimental results of the campaign. The new data obtained from the injection 

campaign are the geophysical monitoring of the CO2 plume, the water and CO2 injection 

rate and the bottomhole pressure of the injection well and monitoring wells. Using the 

new conceptual geo-model with more detailed properties in the Svelvik site, history 

matching towards the data obtained and the CO2 plume observation is conducted in this 

study. The new model suffers a high computational time due to the dimension of the 

Svelvik CO2 Field Laboratory and the details required to study the CO2 migration in the 

subsurface.  

To solve the high computational time, proxy models are built to mimic the results of the 

CO2 injection simulation, where the proxy models are capable of predicting the dissolved 

CO2 in water and free CO2 in the site for each layer for the next injection campaign. Two 

types of proxy models were built in this project for each geological scenario. The main 

algorithms of the proxy models that are studied in this project are Response Surface 

Proxy and Universal Kriging Proxy. The proxy models are capable of reducing the running 

time from 2 – 6 hours of injection simulation depending on the time steps to a matter of 

seconds. 

1.2 Objectives 

The main research objectives are to history match the geo-model with the improved 

understanding of CO2 migration and to develop proxy models for the Svelvik CO2 Field 

Laboratory. The proxy models will be used as a complement to the conventional 

numerical simulation model that offers the capability of predicting the injection well 

bottomhole pressure, dissolved CO2 in water and free CO2 with the input of surface gas 

injection rate. 

1 Introduction 
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The research is performed on two geological scenarios in the same field. Several points 

are being studied in this research: 

1. Understanding the CO2 migration and leakage on 2019 Svelvik CO2 Injection 

2. History Matching with the Pre-ACT 2019 injection campaign data 

3. Built proxy models that can mimic the CO2 injection simulation for the next 

injection campaign 

1.3 Thesis Outline 

The outline of the thesis report consists of the introduction of the study, a literature 

review that consists of an introduction to Svelvik CO2 Field Laboratory and proxy 

modelling, methodology from the geological model, dynamic model, history matching 

until the proxy model development, results and discussion, and conclusion from the 

study with the further work that can be continued from this study. 
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2.1 Svelvik CO2 Field Laboratory 

2.1.1 Overview 

Svelvik CO2 Field Laboratory located in the Svelvik ridge about 50 km south-west of Oslo 

and forms the sill of the Drammensfjord. The Svelvik ridge depositional environment is 

glaciofluvial-glaciomarine terminal deposit formed suring the Ski stage of the Holocene 

deglaciation (Sørensen, 1981) (Melø, 2011). This site was chosen as a field laboratory on 

the assumption that the sand ridge contains homogeneous, unconsolidated, highly 

permeable sand, which offers well constrained conditions for controlled gas injection 

experiments (Bakk, et al., 2012). 

 

Figure 2.1: Aerial view of the sand and gravel ridge (the Svelvik ridge) where the Field 
Laboratory is located (Eliasson, 2020) 

The main objective of the CO2 Field Lab project is to assure and increase carbon storage 

safety by obtaining valuable knowledge about monitoring of CO2 migration in geological 

formations. This will enable detection of possible CO2 leakage at the earliest possible 

stage (SINTEF, 2010). 

Currently the Svelvik CO2 Field Laboratory has Svelvik#1 as the exploratory well, 

Svelvik#2 as the injection well, and four monitoring wells (M1 – M4). Overview of the 

drone photo can be seen in Figure 2.2. The Svelvik#2 injection well is connected to the 

water tank and CO2 tank that is designed to enable the injection in the depth of 64-65 

meters depth through a gravel pack completion. A pumping test in 2013 showed that the 

layer is suitable for CO2 injections with a permeability of approximately 123–170 mD. 

The four monitoring wells are 100m deep and located at the corners of a rhombus with 

the Svelvik#2 injection well in the centre. The monitoring wells are located 9.9m (M3 and 

M4) and 16.5 m (M1 and M2) from the Svelvik#2 well. 

2 Literature Review 
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Figure 2.2: Dronephoto of Svelvik CO2 Field Lab Overview (Eliasson, et al., 2017 - 2020) 

2.1.2 Geological Setting of Svelvik Ridge 

Svelvik ridge was deposited approximately 10000 years ago during the Ski stage. During 

this period, the glacier readvanced and stay in its position for a significant time 

(Sørensen, 1981). The deposit forms a seal that act as a blockage between the inner and 

outer fjord as shown in Figure 2.3. The location of the Svelvik CO2 field laboratory 

located in the glaciofluvial deposit. It is deposited in pro-glacial fluvial and marine 

environments during the suspension in the ice retreat. The ice retreat was the result from 

a period of warming after Younger Dryas cool period (Hagby, 2018). In the beach 

deposits, the grains are well sorted, washed and reformed by waves and currents in the 

shoreface (Sørensen, et al., 1990). 

 

Figure 2.3: Geological map showing the Svelvik ridge, by The Geological Survey of 
Norway (NGU, 2018) 
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The Svelvik Ridge has been interpreted by Sorensen in 1981 (Sørensen, 1981) and 1990 

(Sørensen, et al., 1990), and Melø in 2011 (Melø, 2011). The three main facies of the 

depositional systems of glaciomarine: Ice-contact submarine fans; Ice-contact deltas; 

and glaciofluvial deltas (Lønne, 1995). The Svelvik rigde is classified as ice-contact 

submarine fan with the common features shown in Figure 2.4. The ice-contact 

glaciomarine systems used to describe the Svelvik ridge in Melø’s finding was based on 

Lønne (Lønne, 1995) models described that there was a moment where the glacier 

contacts with the ocean, resulting the deposit is characterized as ice-contact system 

(Melø, 2011). The ice-contact submarine fan deposit has a wedge of coarse-grained 

materials that has been deposited under water right in front of the glacier. It was formed 

by re-sedimentation of the poorly sorted glacial material together with ice rafted debris 

from the melting sea (Lønne, 1995). 

 

Figure 2.4: Principal characteristics of ice-contact submarine fan (Lønne, 1995) 

Based on the Lønne’s ideal conceptual model, the ice-contact submarine fan will 

generally consist of four allostratigraphic units: A, B, D and E shown in Figure 2.5.. 

 

Figure 2.5: Cross-sectional conceptual model for the development of an ice-contact 
submarine fan (Lønne, 1995) 

Unit A representing the ice-contact facies formed during glacier advance which shows the 

progradation of an ice-contact submarine fan contemporaneous with advance of the ice 

front. The subunit A3 representing the coarse-grained foreset facies, passes downfan into 
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sub-horizontal bottomset facies that represents by subunit A4. The subunit A4 comprises 

of silty mud inserted with fine-grained turbiditic sand. The subunit A1 and A2 will be form 

if the glacier moves across the fan top and subject to subglacial processes including 

deposition of basal till and sorted debris, erosion and/or deformation. This means that 

the subunit A1 and A2 generally have a low preservation potential due to the requirement 

of both the vigorous meltwater outflow and the advancing glacier itself. (Lønne, 1995) 

Unit B representing the formation of the ice-contact facies during glacier stillsand or 

retreat. This may also consist of facies similar to the unit A. The foreset of this type of 

facies generally dipping away from the glacier terminus, and the upper part may show 

syn-sedimentary glaciotectonic deformation. The unit B sediment are coarse grained and 

might have a high content of sub-glacial derived debris and ice-rafted debris. (Lønne, 

1995) 

Unit D represent the ice-distal facies during glacier retreat. The retreat of the glacier 

terminus shown when the sediment is being deposited majorly from the buoyant 

meltwater plume, drifting icebergs, and contemporaneous gravitational removed from 

the fan surface by itself. The unit D usually shows an upward fining, but the sedimentary 

are highly varied. Therefore, the unit D are highly heterogenous facies with common mud 

clasts and inverted textures. This is depending on the morphology and facies of the 

abandoned fan surface and the dynamics of the retreating glacier. (Lønne, 1995) 

The retreat of a glacier will create an uplift of the submarine fan (post-glacial isostatic 

uplift) which resulting in another succession of ice-contact units. This is labelled as unit E 

in Figure 2.5, where it generally coarsens upwards and is formed by re-sedimentation 

and reworking of the fan deposits. The whole succession of ice-contact units can be 

repeated with the cyclical pattern A-B-D-Ad-D-E based on the Figure 2.5 (Lønne, 1995) 

Based on Sørensen (Sørensen, 1981) interpretation, for the glacier halt, a preexisting 

moraine or bedrock threshold should present. The Svelvik ridge in Figure 2.6, shows that 

the bedrock to the south is capable for a threshold to halt the glacier. There is also a 

moraine that is deposited under the glaciofluvial deposit and marine deposit which also 

serve as threshold for the advancing glacier and probably formed by the oscillating 

glacier front. Additionally, due to the isostatic rebound by deglaciation, the deposits were 

exposed to air around 7000 years ago. The exposure introduces erosional forces in 

several form (rivers, wave and tidal) (Sørensen, et al., 1990). 

 

Figure 2.6: Cross-section north-south interpretation of Svelvik ridge by Sørensen (Lønne, 
1995) 
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According to Melø, the Svelvik ridge consist of two types of aquifers, which is upper and 

lower. Aquifer is defined as a body of rock whose fluid saturation, porosity and 

permeability permit production of groundwater (Schlumberger, 2014). The upper aquifer 

limit is defined with the groundwater table and the lower aquifer limit is shown as below 

the confining layer (Melø, 2011). The understanding of the aquifer itself is useful to 

model the aquifer in the later section. In Melø thesis, the result of the aquifer is shown 

with parameters of transmissivity, storativity and anisotropic ratio (Melø, 2011). 

2.1.3 Current Conceptual Model 

Current conceptual model follows the interpretation from Ruden AS and Rendall, H. from 

the Svelvik#1 well with the summarization of the interpretation shown in Table 2.1. 

Table 2.1: Summary of the sand interval and description 

Intervals (m) Sample (m) Description 

37.1 – 50.7 37 – 38 
9% clay, 49% silt, and sand mainly coarse to very 

coarse. 

61.2 – 71.2 
64 – 65 

Fine to very coarse sand and with about 10% 

coarser grains in the granule/pebble category 

11% silt but clay is absent 

Coarser downward 

67 – 68 4% silt, medium to very coarse sand dominated 

85 – 115 

100 – 101 

An upper sandy part from 85 to 95m 

A more clayey horizon at 95 – 96. 

Sample dominated by fine to very coarse sand 

(85%). 

In addition, 15% very fine sand and silt, almost 

no clay 

110 – 111 

Well sorted sample dominated by very fine to fine 

sand (50%) 

30% sand in the medium to very coarse 

9% silt and 2% clay 

122 – 130.8 126 – 127 

Relatively poor sorted with 

4% clay, 13% silt, and sand from very fine to very 

coarse 

220 - 236 

221 – 222 
Sample has 4% clay and 16% silt 

Very fine to coarse sand 

229 – 230 

Sample has 3% clay and 15% silt. Slightly better 

sorted than sample 221 -222. 

80% sand in the range of fine to coarse. 

 

The interpretation results from the Svelvik#1 well correspond with the interpretation 

result from Svelvik#2 well. Based on the interpretation of gamma and clay content logs, 

the sand layer can be identified are from 36.2 – 49.8 m and 60.4 – 70.9 m. These 

intervals very well correspond to the previous interpretation of sand layer in Svelvik#1 

well which has the sand interval from 37.1 – 50.7 m and 61.2 – 71.7 m (Wiranda, 2021). 

The illustration of the current interpretation of the geological model is shown in Figure 

2.7. The upper layer down to 35m consist of sand and gravel deposits close to the glacier 

front. After the 35m, alternating layers of sand, silt and clay deposition further away 

from the glacier front. (Eliasson, et al., 2017 - 2020) 
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Figure 2.7: Illustration of the geological model N-S cross-section of Svelvik CO2 Field 
Laboratory (Eliasson, 2020) 

A suggested geo-model by Anja Sundal from UiO is shown in Figure 2.8, where the 

clinoform of the sand is represented as a dipping grid. The model that is newly updated 

by Anja is provided in the methodology section. 

 

Figure 2.8: Suggested geo-model by Sundal (2017) with dipping sand layer modelling 
clinoform. Facies on the left and grid model on the right 

2.1.4 Pre-ACT 2019 Injection Campaign 

The Svelvik CO2 Field Laboratory undergoes an injection of saline water and CO2 with the 

period from September to November 2019. The initial studies shown that the CO2 can be 

accurately localized by seismic and electrical methods (Eliasson, et al., 2017 - 2020). The 

valuable geophysical data and the tested method to measure the downhole pressure, is 
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used in this project as an input to update the understanding in Svelvik CO2 Field 

Laboratory. 

Figure 2.9a shows the water and CO2 injection rate that was applied in the injection 

campaign. The water injection has the salinity being match with the salinity in the 

injection depth (0.5% wt.). The total water volume injected is 69m3 and started in 27th of 

September 2019. The pressure gauge measured in the Figure 2.9b is relative to the 

atmospheric pressure. It is also shown that there is a strong tidal variation throughout 

the measured data from the pressure gauge (Jordan & Weinzierl, 2020). The pressure 

gauge is located slightly above the injection depth due to the pressure gauge located 

above the packer. A correction towards these effects will be explain in the next chapter. 

 

 

Figure 2.9: Water and CO2 injection rate in Pre-ACT 2019 injection campaign.  

After the water injection completed, on 24th of October 2019 the CO2 injection started 

with high rate, stop the injection and continue with a lower rate. A total of ~1.8T CO2 

(~1000 Sm3) was injected during this period with the initial rate up to 12 kg/hour (~150 

Sm3/d) and second injection with rate up to 8 kg/hour (~105 Sm3/d). In order to 

determine the location of the CO2 plume, a geoelectric array with 64 electrodes was 

installed. With this small amount of CO2, the geoelectric survey was able to locate the 

CO2 plume, but unexpectedly not located close to the well injection nor the initial 

illustration, but several meters above (Eliasson, et al., 2017 - 2020). 

The result of the initial CO2 monitoring is presented in Figure 2.10. Based on the P-wave 

inversion, it is compared between the baseline and when the CO2 injection started. Based 

on the p-wave velocity difference, it shows that the highest difference from the baseline 

is on the depth of 38 – 40m. The highest difference from the baseline shows the location 

of the CO2 plume. The mud zone that is interpreted based on the 1D velocity profile is 

only the mud zone in between the 30 – 40 m. The location was considered reliable, as 

consistent results were obtained with crosswell-based velocity tomography (Eliasson, et 

al., 2017 - 2020). 

The location of the CO2 plume and the measured data from the Pre-ACT injection is used 

in this study as input for the history matching and simulation. 
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Figure 2.10: Initial CO2 monitoring results based on P-wave inversion (Jordan & 
Weinzierl, 2020) 

 

Figure 2.11: Velocity changes derived from the cross-well seismic tomography at two-

time steps: Initial CO2 injection (left) and Post CO2 injection (right)。 The highest change 

of velocity shown in red color in the difference chart (Jordan & Weinzierl, 2020) 
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2.1.5 Data Availability 

The data availability starting from initial site characterization until pre-ACT 2019 CO2 

injection campaign is shown in Table 2.2. 

Table 2.2: Data Availability from Svelvik CO2 Field Laboratory (Wiranda, 2021) 

Well 
Available 

Data 
Details Source: 

Svelvik#1 

Well Log 

Data 

• Borehole: CALI 

• Formation: GR, U, 

Th, K, Temp 

• Resistivity: ILD, 

ILS, RLLD, RLLS 

• D4-3-3B_Gamma&Grain-

size-flow-line-samples-

deep well-

Svelvik_Rendall_Memo 

• Petrel Project: Svelvik 

2021 - Student 

Core 

Analysis 

Report 

• Petrophysical 

Analysis: Core at 

depth: 30m, 102m, 

201m, and surface 

taken at 40m above 

sea level 

• Water Analysis 

• D2-1-7_Core-analysis-

report_characterization_co

re-flooding 

 

Grain Size 

Report 

• Grain Distribution 

• Sand intervals 

• D4-3-3B_Gamma&Grain-

size-flow-line-samples-

deep well-

Svelvik_Rendall_Memo 

• D4-3-3C1_Svelvik-Geo-

model-interpretation_June-

2012_Ruden-Ltd 

Svelvik#2 

Well Log 

Data 

• Borehole: CALI 

• Formation: GR, U, 

Th, K, DT, Temp 

• Resistivity: RLLD, 

RLLS 

• D2-3-1A-2_Svelvik-well-

logging-in-permeabiliy-

test-well_jan-2013_Report 

• Petrel Project: Svelvik 

2021 - Student 

Injection 

Rate Data 

Water: September 25, 

2019 (19:00) – 

October 16, 2019 

(11:00) 

CO2: October 24, 2019 

(11:00) – November 

5, 2019 (13:00) 

• Pre-ACT injection rate data 

set 

Pressure & 

Temp Data 

September 25, 2019 

(19:00) – November 

11, 2019 (08:00) 

• Pre-ACT injection rate data 

set 

M1 

Bottomhole 

Pressure 

Data 

September 17, 2019 

(16:00) – November 

7, 2019 (09:00) 

• Pre-ACT pressure data 

reduced 

M2 

Bottomhole 

Pressure 

Data 

September 17, 2019 

(16:00) – November 

7, 2019 (09:00) 

• Pre-ACT pressure data 

reduced 

M3 

Bottomhole 

Pressure 

Data 

September 17, 2019 

(16:00) – November 

7, 2019 (09:00) 

• Pre-ACT pressure data 

reduced 

The measurement of the pressure data of the M4 is not included due to the data only 

from capillaries. All of the data are summarized in the attachment section adapted from 

the specialization project report prepared by (Wiranda, 2021) 
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2.2 Numerical Reservoir Simulation 

Numerical simulation or full physics simulation has been used to describe the reservoir 

behaviour and fluid flows in the reservoir. This consist of building geological model, 

petrophysical interpretations and field measurements, which resulting on having a very 

large grid cells to be evaluated in order to achieve a higher resolution (Jaber, et al., 

2019). With these inputs, a numerical simulation was done by evaluating the partial 

differential equations for each grid cells to solve the diffusivity equations of fluid flow in 

porous media. With more advance simulation, the numerical simulation can incorporate 

with multi-physics simulation, which enable the evaluation in different temperature and 

compositional simulation (Jaber, et al., 2019). An integrated reservoir modelling from 

geo-modelling to simulation is shown in Figure 2.12. 

 

Figure 2.12: Integrated reservoir modelling to numerical simulation workflow  (Jaber, et 

al., 2019) 

There are a variety of numerical simulator that can be used to model CO2 storage. The 

summary of simulators that can be used for CO2 storage with the advantages and 

disadvantages is shown in Table 2.3. 

Table 2.3: Reservoir simulation tools for CO2 storage (Nazarian, 2021) 

Simulator Method Advantages Disadvantages 

Eclipse 100 
Two-phase 

gas/oil phase 

Speed 

E100 functionalities 

Deterministic 

dissolution 

Demanding PVT 

Preparation 

Eclipse 300 
Equation of 

State 
E300 functionalities 

Poor performance in 

large models 

Dissolution needs 

additional model 

E300 + CO2STORE 

Equation of 

State 

Spycher & 

Pruess 

solubility 

model 

Easy to model 

E300 functionalities 

Dedicated storage 

output parameters 

Limited to pure CO2 

injection 

Poor performance in 

large models 
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2.3 CO2 Storage Trapping Mechanism 

When injecting CO2 towards a geological formation, several trapping mechanisms occur 

during the CO2 injection until post-injection. The trapping mechanism can be group based 

on the physical and chemical factors (Ringrose, 2020). 

1. Physical trapping related to the basin-scale consists of regional structure, basin 

history fluid flow and pressure distribution; 

2. Physical trapping related to the form of structural and stratigraphic traps; 

3. Physical trapping related to the residual trapping by the principal of capillary 

interfaces between fluids and rock properties retention CO2 as residual phase; 

4. Geochemical trapping mechanism with the principal of CO2 dissolution in brine, 

precipitation as mineral phase and sorption/absorption on clay minerals. 

shows the differences of mechanism over time and combining all of the mechanism, 

there will be increase of storage security during the injection and post-injection. 

 

Figure 2.13: Storage efficiency factor as a function of viscous and gravity force (Benson & 

Cook, 2005) 

The trapping mechanism of the structural and stratigraphic trapping depend on the 

physical process of capillary trapping due to the interfacial tension between fluids in a 

porous medium. The capillary trapping itself is a critical phenomenon to determine the 

size of the CO2. In general, (Naylor, et al., 2011) have observed several effects where 

the capillary entry pressure for CO2 water system is ~50% lower than gas/water systems 

while the buoyance effect is lower due to supercritical CO2 has a higher density. 
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Figure 2.14: Simple sketch of capillary trapping of CO2-water system (Ringrose, 2020) 

Another trapping mechanism affected by the capillary is the residual trapping, where the 

term is summarized as residual CO2 saturation. The residual CO2 saturation is obtained 

from relative permeability as a function of saturation and other factors such as the grain 

size distribution. In the CO2-water system in a sandstone reservoir, the CO2 is considered 

the non-wetting phase, and water is the wetting phase. The residual CO2 saturation 

occurs when the CO2 as the non-wetting phase is no longer in contact with the surface 

and water rapidly fills the pore throat where the CO2 will be snapped and effectively 

trapped the CO2. 

 

Figure 2.15: A sketch of capillary trapping post CO2 injection at a storage site (Krevor, et 

al., 2015) 

2.4 Proxy Modeling 

To understand the phenomenon of CO2 sequestration, quantifying, and predicting how 

much CO2 can be stored in aquifer, a conventional full physics simulation is used to 

describe the CO2 behaviour in the reservoir. The drawback of the full physics 

conventional simulation is the time to simulate a model is high and the resources 

required to run the simulation is very demanding (Schuetter, et al., 2014). 
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One of the approaches to tackle this challenge is to build a proxy model based on the 

understanding of the storage itself. The proxy model is a function that approximates the 

response of the full physics model for a given set of input values. The benefit of the 

proxy model is that it typically takes a fraction of the time to run as compared to the full 

physics model (Schuetter, et al., 2014). The application of proxy modelling has been 

widely used in petroleum industry with a broad range of functionality from sensitivity 

analysis, assisted history matching, field development planning, risk analysis, 

optimization and reservoir characterization (Jaber, et al., 2019). 

Depending on the data availability and the objectives of the study, there are several 

types of proxy that can be develop from field basis, well basis, and grid basis. The 

summary of the input required for developing each type of proxy model is shown in Table 

2.4. 

Table 2.4: Input required for each type of proxy model (Matthew, 2021) 

Data 
Grid-based Well-based Field-based 

Property Domain Property Domain Property Domain 

Static 

Grid Type Grid Drainage Area Well 
No input required 

with the 

assumption 

constant 

geological/static 

condistion 

 

Location (i, j, k, Long, Lat) Grid/Tier Location (i, j, k, Long, Lat) Well  

Thickness Grid Thickness Tier  

Porosity Grid Porosity Tier  

Permeability (x, y, z) Grid/Tier Permeability (x, y, z) Tier  

Grid top Grid/Tier Grid top Tier  

Distance to boundary Grid/Tier Distance to boundary Well  

Dynamic 

Time  Time  Time  

Pressure Grid/Tier Pressure Tier Total Prod/Inj Rate Field 

Saturation Grid/Tier Saturation Tier   

CO2 Mole Fraction Grid/Tier CO2 Mole Fraction Tier   

Wells BHP Well Wells BHP Well   

Wells Prod/Inj Rate Well Wells Prod/Inj Rate Well   

Total Prod/Inj Rate Field Total Prod/Inj Rate Field   

The differences between the grid-based, well-based and field-based proxy are in the 

result and variables that can be predicted: 

 

Figure 2.16: Difference of proxy models with increasing complexity and data required 
(Matthew, 2021) 

There are two types of proxy modelling based on the background information used to 

build the proxy: proxy modelling based on virtual intelligence and proxy modelling based 

on statistical methods (Jaber, et al., 2019). Proxy modelling based on virtual intelligence 



16 

 

used a more sophisticated learning algorithm as artificial neural network, evolutionary 

programming, and fuzzy logic (Jaber, et al., 2019). Proxy modelling based on statistical 

methods mainly achieved by utilizing the design of experiments (DOEs) and the response 

of the results based on the experiments (Jaber, et al., 2019). Zubarev, et al.,2019 

(Zubarev, 2009) shows workflow for proxy modelling (Figure 2.17) that is adapted in this 

study. 

 

 

Figure 2.17: Proxy modelling workflow proposed by Zubarev, et al. (Zubarev, 2009) 

There are several proxy models that has been studied. Several of the studies that is 

related to the CO2 sequestration are shown in Table 2.5. 

Table 2.5: Published literature about proxy models for CO2 sequestration (Jaber, et al., 

2019) 

Authors Work description 

(Amini, et al., 2012) 

Used artificial intelligence and data mining techniques to 

build SRM to predict pressure distribution at the grid 

block level during sequestration of CO2 into a depleted 

gas reservoir 

(Schuetter, et al., 2014) 

Built a statistical proxy model for the CO2 geological 

sequestration in the caprock; they used Box-Behnken 

experimental design with a quadratic polynomial 

response surface and a space-filling maximum Latin 

hypercube sampling design with four different 

metamodeling techniques (quadratic polynomial, kriging, 

multivariate adaptive regression spline and additivity, and 

variance stabilization) 
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(Jaber, et al., 2017) 

Developed a statistical proxy model for real 

heterogeneous clastic reservoir during the miscible CO2-

WAG flooding. They utilize Box-Behnken design based on 

four parameters to develop a new statistical proxy model 

as a function of the most influential parameters of the 

miscible CO2-WAG flooding considering the flow 

compositional simulation model as the data generator for 

the proxy model 

(Ahmadi, et al., 2018) 

Proposed a proxy model to predict the ultimate oil 

recovery during miscible CO2 injection through coupling 

the least square and Box-Behnken design 

 

In this study, the proxy modelling is limited to the statistical proxy modelling. Two types 

of statistical proxy model are investigated and being compared to represent the full 

physics simulation. The statistical proxy modelling that are investigated are: response 

surface proxy and universal kriging proxy. 

2.4.1 Data Sampling 

There are several types of sampling method for proxy modelling. In this study based on 

the objective with limited time, the detailed fractional factorial sampler is used for 

training dataset, while the evaluation is carried out with Latin hypercube sampler.  

Fractional factorial sampler 

A fractional factorial sampler is a deterministic sampling algorithm best suited for 

building linear proxy models with or without interactions (that is, bilinear terms) 

(Schlumberger, 2019). With the same sampling method, the universal kriging proxy 

model also carried out. The training and validation data in this study has the similarity 

with the fractional factorial sampler where it samples the minimum (-), central (0) and 

maximum (+) values and the combination as shown in Table 2.6. 

Table 2.6: Illustration of fractional factorial sampler 

Sample Variable A Variable B 

1 0 0 

2 - - 

3 + - 

4 - + 

5 + + 

 

Latin hypercube sampler (LHS) 

Latin-hypercube is a sampling method that requires fewer model runs to approximate the 

desired variable distribution than a completely random sampling (Schlumberger, 2019). 

The evaluation uses a Latin Hypercube sampling where the sample is distributed over the 

entire range of the parameter. Figure 2.18. has the red dot that shows the outcome 

difference of seven samples from Monte-Carlo simulation and Latin-hypercube sampling.  
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Figure 2.18: Difference of the outcome uses Latin-hypercube sampling method 
(Schlumberger, 2019) 

LHS is usually performed in safety assessment, computer modelling, and petroleum 

industry, particularly in optimization schemes (Iman, 2008). 

2.4.2 Response Surface Proxy 

The response surface proxy is a polynomial model of first order (linear or bilinear) or 

second order (quadratic) that is fitted to the supplied training data and the coefficient of 

the proxy is determined by the least-square fit (Schlumberger, 2019).  

The assumption of the response surface method is that the output response (𝑦(𝑥)) of the 

model can be approximated with a polynomial model. The general term of the polynomial 

proxy is shown in Equation ((1)). 

𝑦(𝑥) = 𝛽𝑜 + ∑𝛽𝑖𝑥𝑖

𝑖

+ ∑∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑗𝑖

+ ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑖

 (1) 

Where 𝑥  is a vector of N input variables, 𝛽𝑖  is the unknown coefficient for the linear 

terms, 𝛽𝑖𝑗 is the unknown coefficient for the first-order interaction terms, and 𝛽𝑖𝑖 is the 

unknown coefficient for the quadratic terms. 

The general term can be simplified depending on the usage such as the first two terms of 

the general term is linear equation. Adding the first-order interaction will yield into a 

bilinear equation, and the last term will result a full quadratic model. Adding the terms 

possibly increases the accuracy with the trade-off increasing the number of sufficient 

training model (Schlumberger, 2019). 

The minimum required number of training data for different terms can be summarize as 

follows, where N is the number of the input variable: 

• Linear model: N+1 

• Bilinear model: N(N+1)/2+1 

• Quadratic model: (N+1)(N+2)/2 

2.4.3 Universal Kriging Proxy 

The universal kriging proxy follows a Gaussian process where the correlation function and 

unknown of the variance determined by maximizing outcome likelihood (Schlumberger, 

2019). 

The general term of the universal kriging proxy is shown in Equation (2). 
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𝑦(𝑥) = ∑𝛽𝑖𝐵𝑖(𝑥)

𝑖

+ 𝑧(𝑥) (2) 

where 𝐵𝑖 is a linear basis over the experimental domain and 𝑧(𝑥) is a random error. The 

z(x) is a Gaussian process with zero mean, unknown variance and correlation function 

(𝑟) . The correlation function (𝑟)  implemented in the Universal kriging proxy has the 

general term shown by Equation (3). 

𝑟(𝜃; 𝑠, 𝑡) = exp (−∑𝜎𝑖𝜃|𝑠𝑖 − 𝑡𝑖|
𝑝

𝑖

) 
(3) 

where 𝜃 is the smoothing parameter that inversely proportional to the correlation length 

of the model, 𝜎𝑖  is the variance, the term |𝑠𝑖 − 𝑡𝑖|  is the residue and 𝑝  is the power-

exponential selector. 

 

Figure 2.19: Illustration of universal kriging method vs linear trend model   
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In this section, a thorough methodology that has been used to reach the objectives is 

being elaborated. This study can be categorized into two major parts, history matching 

and proxy modelling. 

3.1 Study Workflow 

The proposed study workflow in this research is shown in Figure 3.1. The current 

proposed workflow is limited to the designated uncertainties defined from the previous 

project in the history matching part. With increasing data availability, the uncertainty 

parameters can be refined. The proxy model workflow is inspired from “Pros and cons of 

applying proxy-models as a substitute for full reservoir simulations.” (Zubarev, 2009). 

 

Figure 3.1: Study workflow 

3 Methodology 
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3.2 Software and Hardware Used 

The software used for this study is Schlumberger Petrel 2019.3 for the reservoir 

modelling and visualization with Schlumberger Eclipse 2016.2 for simulation. 

The hardware used is a PC with processor Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz 

(6 cores/12 logical processors) operating in 64-bit with Windows 10 Education and 64.0 

GB RAM. 

3.3 Svelvik CO2 Field Laboratory Reservoir Description 

3.3.1 Fluid Model 

The fluid model is based on CO2Thermodynamics VBA Excel from SINTEF. The VBA Excel 

generates a pVT table with the gas phase as CO2 and oil as pseudo-phase of CO2-Water 

based on the pressure and temperature. The temperature of the pVT table is generated 

at the temperature 10oC and pressure of 7 bar (Grimstad, et al., 2018). The water 

salinity is 0.5% wt and the solubility of CO2 in 1000 kg water is about 14 kg at 7 bar and 

increases to 19 kg at 10 bar (Grimstad, et al., 2018). The resulting pVT table for CO2 is 

shown in Figure 3.2. and pseudo-phase CO2-Water in Figure 3.3. 

A water phase is introduced to model the open boundary in the Svelvik ridge below the 

injection layer. The water phase is modelled by using the salinity to determine the water 

formation volume factor, compressibility, and viscosity. Correlation used in the water 

phase model is from “A correlation for water compressibility” and “Correlation for water 

viscosity” by (Meehan, 1980) as the default correlation in Petrel. 

 

Figure 3.2: Black oil model – CO2 properties vs pressure 
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Figure 3.3: Black oil model – Pseudo-phase (CO2-Water) properties vs pressure 

3.3.2 Svelvik Ridge Geo-model 

The geo-model of the Svelvik Ridge has improved understanding from the beginning of 

site characterization in 2012 and continued with the understanding from designing the 

Pre-ACT 2019 CO2 injection campaign in 2018. The latest update of the geo-model was 

built in 2021 by Anja Sundal from UiO with two different scenarios based on the different 

geometry models to model the clinoform in the sand layer. 

3.3.2.1 Dipping Grid Scenario (Scenario#1) 

In this geo-model, the dipping is modelled by the grid geometry, as shown in Figure 3.4. 

 

Figure 3.4: Dipping grid scenario (Scenario#1): (a) porosity distribution; (b) the dipping 
grid view from west; (c) permeability distribution; (d) facies distribution 
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The grid is 100m x 100m with a resolution of 1m x 1m per cell. Figure 3.4(b) presents 

the porosity distribution from the west side and the inclined grid in the sand layer. The 

mud layer act as a horizontal reference was made with a regular grid. The height per cell 

is different depending on the layer. The injected layer and the upper sand of the injected 

layer have a higher resolution with 0.5m height per cell, while the other has 1m height 

per cell (Figure 3.5). 

 

Figure 3.5: Cell height for different layering; reservoir and interest sand have cell height 
of 0.5m; the rest of the model has cell height of 1m 

Facies distribution is based on the log interpretation from Chapter 2.1.3. The defined 

facies consist of coarse sand, sand, fine sand, and mud zone. The porosity distribution is 

based on the facies, where the coarse sand has an average porosity of 0.35, the sand 

has an average porosity of 0.25, fine sand has an average porosity of 0.2 and mud (seal) 

has an average porosity of 0.15. The permeability is also facies dependent on the 

porosity. The porosity and permeability distribution for this scenario is presented in 

Figure 3.6. 

 

Figure 3.6: Porosity vs Permeability distribution with different facies for dipping grid 
scenario  
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The grid summary is shown in Table 3.1. and reservoir property distribution is presented 

in Table 3.2. 

Table 3.1: Gridding in dipping grid scenario 

Description Value 

Grid cells (nI x nJ x nK) 100 x 100 x 189 

Total number of grids 1323816 

 

Table 3.2: Summary of the reservoir properties in dipping grid scenario 

Facies 
Porosity [-] Permeability [mD] 

Mean Min Max Mean Min Max 

Coarse Sand 0.35 0.28 0.38 1500 800 2000 

Sand 0.25 0.24 0.28 800 300 1200 

Fine Sand 0.20 0.16 0.24 200 100 300 

Mud (Silt) 0.15 0.10 0.16 10 0.1 100 

 

3.3.2.2 Dipping Properties Scenario (Scenario#2) 

I In this scenario, the grid on the model is regular gridding which does not consist of any 

inclined grid or irregular grid. The clinoform-like of the Svelvik ridge is modelled in the 

reservoir property distribution, as presented in Figure 3.7. Porosity is assigned by a 

distribution range, while permeability is a single value for each facies. 

 

Figure 3.7: Dipping properties scenario (Scenario#2): (a) porosity distribution; (b) the 
dipping properties view from west; (c) permeability distribution; (d) facies distribution 

The resolution of the grid is the same as in scenario 1, where each cell has the size of 1m 

x 1m. The cell height of the grid is similar to the first scenario, where the injected sand 

zone and upper layer of the sand zone have 0.5m cell height while the other has 1m cell 

height. 
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Figure 3.8: Cell height for different layering; reservoir and interest sand have cell height 
of 0.5m; the rest of the model has cell height of 1m 

The porosity and permeability distribution with respect to the facies is presented in 

Figure 3.9. 

 

Figure 3.9: Porosity vs Permeability distribution with different facies for dipping 
properties scenario  
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The summary of the grid is shown in Table 3.3. and reservoir property distribution is 

shown in table Table 3.4. 

Table 3.3: Gridding in dipping properties scenario 

Description Value 

Grid cells (nI x nJ x nK) 100 x 100 x 131 

Total number of grids 1310000 

 

Table 3.4: Summary of the reservoir properties in dipping properties scenario 

Facies 
Porosity [-] Permeability [mD] 

Mean Min Max Mean Min Max 

Coarse Sand 0.35 0.05 0.45 1500 1500 1500 

Sand 0.25 0.04 0.34 800 800 800 

Fine Sand 0.20 0.04 0.34 200 200 200 

Mud (Silt) 0.15 0.05 0.21 10 10 10 
 

3.3.3 Relative Permeability and Capillary Pressure 

The relative permeability model is based on a previous study for Svelvik modelling 

(Hagby, 2018), which explained that the identified lithofacies has their relative 

permeability curve. 

(Corey & Brooks, 1964) stated that the relative permeability is a function of not only 

saturation but also grain size distribution. The equation relating the relative permeability 

with the relative permeability is shown in the equation: 

𝑘𝑟,𝑤 = (
𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑤𝑟

)

2+3𝜆
𝜆

 

(4) 

𝑘𝑟,𝑛𝑤 = (
1 − 𝑆𝑤

1 − 𝑆𝑤𝑟

)
2

[1 − (
𝑆𝑤 − 𝑆𝑤𝑟

1 − 𝑆𝑤𝑟

)

2+𝜆
𝜆

] 

(5) 

where 𝑘𝑟,𝑤  is the wetting phase relative permeability, 𝑘𝑟,𝑛𝑤  is the non-wetting phase 

relative permeability, 𝑆𝑤 is the wetting phase saturation, 𝑆𝑤𝑟 is the wetting phase residual 

saturation, and 𝜆 is grain size distribution index. 

Figure 3.10 depicts the original relative permeability curves used in simulation. The 

original permeability curve is based on Corey and Brook’s equation. The CO2 end point 

saturations are Sw 0.25 and 1.0 with the exponent of 2.5. The water end point 

saturations are Sw 0.1 and 1.0 with the exponent of 4. (Grimstad, 2013) 
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Figure 3.10: Relative permeability versus water saturation, as original input (Grimstad, 
2013) 

Based on the lithofacies and grain size distribution index in Table 3.5. Grain size 

distribution index, for different porous media (Assouline, 2005), the drainage relative 

permeability for each lithofacies is calculated using Equation (4).  

Table 3.5: Grain size distribution index, for different porous media (Assouline, 2005) 

Lithofacies Grain size distribution index, 𝜆 

Unconsolidated Sand 3.70 

Silt 1.82 

Consolidated Sand 2.29 

 

The imbibition relative permeability was calculated using the Carlson model, which 

assumes that the relative permeability of the wetting phase shows no hysteric behaviour 

(Hagby, 2018). Figure 3.11 shows the relative permeability used in the simulation based 

on the calculation and grouped for each lithofacies used in the simulation. 
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Figure 3.11: Relative permeability and capillary pressure curve  for simulation 

3.3.4 Initialization Properties 

Based on the known datum pressure, the initialization of the model is built for the Eclipse 

E100. The E100 initialization properties are shown in Table 3.6. The pressure datum 

known as the pore pressure at a depth of 61m is 6.04 barg relative to the atmospheric 

pressure. Therefore, in the eclipse file, the pressure@61m is added 1 bar for the 

atmospheric pressure correction. The aquifer water depth represents where the open 

boundary is located and the aquifer attachment is placed. 

Table 3.6 Initialization Properties 

Property Value 

Pressure@datum 7.04 bar 

Datum depth -61.0 m 

Gas-Water-contact 0.0 m 

Water-gas Pc 0.0 bar 

Aquifer water depth -70.0 m 

Pc at aquifer water 0.0 bar 

 

3.3.5 Aquifer Model (Open Boundary) 

The aquifer model is used to model the open boundary in the Svelvik ridge. It can be 

seen through the Pre-ACT injection Svelvik#2 bottomhole pressure response in injection 

and shut-in. The aquifer is attached at the bottom and side of the model to a depth of 

70m (Figure 3.12). The aquifer calculation uses the Carter-Tracy method. This model 

approximates a fully transient model that avoids the requirement for superposition 

calculation. 
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Figure 3.12: Aquifer and open boundary model 

The Carter-Tracy aquifer model uses a table to supply a constant terminal rate influence 

function given by van Everdingen and Hurst. The parameters used to define the Carter-

Tracy aquifer model are shown in Table 3.7. The table is used later as one of the 

matching parameters in history matching. The parameter is defined to have a large 

extent and infinite boundary. 

Table 3.7 Aquifer model properties 

Aquifer model Carter-Tracy 

Pressure initialization Equilibrium 

Permeability 300000 mD 

Porosity 0.25 

Total compressibility 0.00014504 1/bar 

External radius 2000 m 

Thickness 15.24 m 

Angle of influence 3600 

 

3.3.6 Pre-ACT 2019 Injection Campaign Data 

The data used in this study is the Svelvik#2 bottomhole pressure and rate data for the 

history matching input. Initial data measured is prepared as in Figure 2.9. The pressure 

data undergoes correction to the ambient pressure, tide effect, and below packer 

volume. The shifting of the measured pressure data with the corrected is shown in Figure 

3.13. The rest of the data is upscaled in hourly basis to reduce the time step for 

simulation. 
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Figure 3.13: Svelvik#2 corrected and upscaled data 

The correction applied to the pressure data are: 

• The relative difference with atmospheric pressure (additional 1 bar),  

• increase in air pressure from the surface to packer depth (around 7mbar), and 

• the hydrostatic pressure difference between transmitter depth and screened 

interval (around 3m, or 300mbar). 

 

The upscaled data is used as the input for history matching, where the model is adjusted 

to match the behaviour from this data. 

3.4 Reservoir Model & Schedule Upscaling 

3.4.1 Reservoir Model Upscaling 

The initial run of the model took 22435.52 s (7.11hr) per history matching case. With 

this amount of time required for one simulation case, upscaling is recommended to 

decrease the amount of time required. 

The upscale process is shown in Figure 3.14. Both geo-model scenarios undergo 

upscaling to decrease the simulation time required. The workflow of upscaling is as 

follows: 
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1. Define an area of interest in which the grid size will be preserved. 

2. Define the amount of coarsening in I and J direction for the grid outside of the 

area of interest 

3. Define the method of properties coarsening in the coarsened area. 

4. Check the distribution of the properties and the simulation results to prove that 

upscaling will not change the simulation results. 

 

Figure 3.14: Upscale process: Original (left) and Upscaled (right) 

Depending on the properties, the upscaled properties follow the method as below: 

• Porosity: Arithmetic averaging, volume-weighted 

• Facies: Most of averaging, volume-weighted 

• Permeability: Arithmetic averaging, volume-weighted 

The comparison of the original model and upscaled is shown in Figure 3.15. Based on the 

Svelvik#2 bottomhole pressure, the average field pressure, and the CO2 Plume from the 

initial history matching case, it can be inferred that the original and upscaled model is 
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identical in terms of the interest area.

 

 

Figure 3.15: Dipping grid scenario original and upscaled comparison: (a) Svelvik#2 
bottomhole pressure; (b) Average field pressure; (c) Original CO2 plume cross-section; 

(d) Upscaled CO2 plume cross-section 

The summarization of the time reduction from this upscaling is shown in Table 3.8. 

Table 3.8 Comparison of original and upscaled CPU time (Scenario#1) 

Properties Original Model Upscaled Model 

Total Active Grids 1323816 648633 

CPU Time 22435.52s (6.23 hr) 11372.48s (3.15 hr) 

Time steps 

3941 steps 

(2019-09-17 16:00 to 

2019-11-11 09:00) 

3941 steps 

(2019-09-17 16:00 to 

2019-11-11 09:00) 

 

3.4.2 Schedule Upscaling 

The timestep required for the whole history matching is 3941 timesteps which started 

from 17th September 2019 at 16:00 to 11th November 2019 at 09:00, with a 1-hour 

difference for each timestep. 

The new schedule is introduced to reduce the number of the timestep. 
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Table 3.9 Reduced timestep definition 

Date Timestep 

17-09-2019 16:00 to 27-09-2019 08:00 1 month 

27-09-2019 08:00 to 27-09-2019 14:00 1 hour 

27-09-2019 14:00 to 02-10-2019 07:00 1 month 

02-10-2019 07:00 to 04-10-2019 22:00 1 hour 

04-10-2019 22:00 to 07-10-2019 08:00 1 month 

07-10-2019 08:00 to 09-10-2019 19:00 1 hour 

09-10-2019 19:00 to 24-10-2019 10:00 1 month 

24-10-2019 10:00 to 06-11-2019 12:00 1 hour 

06-11-2019 12:00 to 11-11-2019 09:00 1 day 

This timestep focuses more on the event where the injection happens. With the upscaled 

schedule, the number of timesteps is lowered significantly from 3941 timesteps to 1710 

timesteps. This also reduces the simulation time and memory usage to do history 

matching. 

Table 3.10 Upscaled schedule comparison 

Properties Original Schedule Upscaled Schedule 

Timesteps 

3941 steps 

(2019-09-17 16:00 to 

2019-11-11 09:00) 

1710 steps 

(2019-09-17 16:00 to 

2019-11-11 09:00) 

CPU Time 11372.48s (3.15 hr) 8329.14 (2.31 hr) 

 

3.5 Defining Uncertainties 

The selected uncertainties are based on unknown parameters. The initial CO2 monitoring 

proves that the CO2 migrated to the depth of 38m, and the mud zone is interpreted at a 

depth of 29 – 38m without any sign of a lower mud zone (50.7 – 61.2 m). The lower 

mud zone probably discontinues across the zone, which allows the migration of the CO2 

from 65m (injection depth) to 38m (Figure 2.10). The 50.7 – 61.2 m depth is modified to 

be the lithofacies most connected to this mud layer to model this. In this case, 

scenario#1 is defined as coarse sand, and scenario#2 is defined as sandstone, as 

depicted in Figure 3.16. 
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Figure 3.16: Modification of lithofacies for uncertainty 

The design of the injection well and the possibilities of the CO2 leakage from the annulus 

between the injection casing and open hole formation that is sealed using bentonite 

slurry is also uncertain. In the recent observation, the bubble is observable until the 

surface of the Svelvik#2 well. It is modelled by allowing a higher vertical permeability 

along with the well's grid cells until the mud layer region, assuming that the vertical 

permeability modelled the connection between the well and formation only (Figure 3.17). 

 

Figure 3.17: Vertical leakage permeability definition 

The vertical leakage is not modelled to the top of the model due to the requirement to 

model the open boundaries at the top (since the CO2 is observable until the surface). 

Other uncertainties being studied come from global permeability distribution, 

permeability anisotropy, and aquifer properties. Along with the studies, it is observed 

that other uncertainties come from the water salinity injected at the beginning of the Pre-

ACT injection, water table affecting the pressure measurement, below packer volume, 

and the requirement to model the tubing performance relationship for the injection well. 
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3.6 History Matching 

Two methods are used to match the Pre-ACT 2019 injection data: Uncertainty-based 

history matching and conventional history matching based on the sensitivity results. 

3.6.1 Uncertainty Based History Matching 

The uncertainty-based history matching consists of the uncertainties defined in the 

uncertainty table and sampled by Latin Hypercube Method. Several samples are defined 

for history matching. This method's weakness is that the uncertainty should be studied 

thoroughly and defined within a specific range. This method works best with optimization 

algorithms but is not included in this study due to the time required to run many cases 

with too many uncertainty variables. 

The main parameters being investigated at the beginning are the aquifer properties, 

permeability anisotropy, global permeability multiplier, and rock compressibility. 

The summary of uncertainties that are studied initially is shown in Table 3.11. 

Table 3.11: Uncertainty Parameters 

Properties Distribution 
Minimum 

Value 

Maximum 

Value 

Global permeability multiplier [-] Uniform 1 5 

Permeability anisotropy [-] Uniform 0.1 2 

Vertical leakage permeability [mD] Uniform 1000 10000 

Rock compressibility [1/bar] Uniform 1E-07 0.1 

Aquifer rock compressibility [1/bar] Uniform 1E-07 0.1 

Aquifer permeability [mD] Uniform 10 3000 

Aquifer radius [m] Uniform 200 100000 

Aquifer thickness [m] Uniform 1.524 1524 

 

3.6.2 Conventional History Matching 

In parallel with the uncertainty-based history matching, conventional history matching 

was being studied to adjust the uncertainty parameters. In this method, the most 

uncertain parameters affecting the history matching were being studied. In the previous 

studies, the parameter that affects the most is the global permeability multiplier. 

Therefore, a sensitivity study to this parameter was done. The other parameters are set 

to a more realistic value as follows: 

1. Aquifer (Open Boundary setting) 

Table 3.12: Aquifer mode properties 

Aquifer model Carter-Tracy 

Pressure initialization Equilibrium 

Permeability 750 mD 

Porosity 0.25  

Total compressibility 0.00014504 1/bar 

External radius 5000 m 

Thickness 15.24 m 

Angle of influence 3600 
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2. Mud layer on 50.7m – 60m 

The mud layer is changed to coarse sand with 1200mD and porosity of 0.36 for 

the dipping grid scenario (scenario#1) and sand with 800mD and porosity of 0.15 

for the dipping grid scenario (scenario#2). The facies are selected with respect to 

the lithofacies connected to this mud layer. 

 

3. Rock compressibility 

The rock compressibility is the same as in previous studies (Hagby, 2018), in 

which the simulation file states that the rock compressibility was 1.0E-4 1/bar at 5 

bar pressure. 

 

4. Near wellbore vertical permeability 

The near-wellbore vertical permeability is set to 3000 mD, higher than the vertical 

permeability of the formation. The near-wellbore vertical permeability is modelled 

at the possible contact between bentonite slurry and formation that allows the 

CO2 to migrate through, as shown in Figure 3.17. 

 

The limitation of this model is that the current simulation cannot create an open 

boundary on the top of the model to model the CO2 released into the atmosphere 

from the bentonite slurry. 

 

5. Permeability anisotropy (kv/kh) 

The permeability anisotropy that has been studied is presented in the attachment 

section. It is shown that permeability anisotropy plays a role in the migration of 

CO2. 

With permeability anisotropy of 2, the CO2 can naturally migrate upward until the 

depth of 31m. However, it will not spread enough to the north (M3 well). In 

contrast, permeability anisotropy of 0.1 results in the CO2 spreading horizontally 

to the north way further than it should be. Therefore, a permeability anisotropy of 

0.5 in combination with the near-wellbore vertical permeability is used in the 

history matching. 

The history matching is applied to the dipping grid scenario and the dipping properties 

scenario follows. 

3.7 Proxy Model Design 

The proxy model design is started after the history matching is done. The history-

matched model is simulated in constant conditions for up to three years to see the 

behaviour of CO2 dissolving in the pseudo-phase (CO2-Water). The objective of the proxy 

model is to simulate the CO2 injection with different injection rates in two cycles of 

injection. The CO2 is injected for one week and stopped for another week for each cycle. 

Thus, the proxy model will require the input of two injection rates, which are the first 

cycle injection rate and the second cycle injection rate. 

3.7.1 Training Dataset 

The training data uses the detailed fractional factorial design presented in Table 3.13. 

The minimum injection rate is 21.4 Sm3/d and the maximum injection rate is 192.9 

Sm3/d, with the cumulative CO2 injected being 1500 Sm3/d for samples 1 to 9. With this 

sample, the resulting proxy will work only in 1500 Sm3/d cumulative CO2 injected. The 
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additional training data from 10 to 18 allows the proxy to work with the cumulative CO2 

injected ranging from 580 Sm3/d to 2700 Sm3/d. 

Table 3.13: Training dataset for proxy model 

Training 

Sample 

1st Injection Cycle 

[Sm3/d] 

2nd Injection Cycle 

[Sm3/d] 

1 21.42857 192.8571 

2 42.85714 171.4286 

3 64.28571 150.0000 

4 85.71429 128.5714 

5 107.1429 107.1429 

6 128.5714 85.71429 

7 150.0000 64.28571 

8 171.4286 42.85714 

9 192.8571 21.42857 

10 21.42857 21.42857 

11 42.85714 42.85714 

12 64.28571 64.28571 

13 85.71429 85.71429 

14 107.1429 107.1429 

15 128.5714 128.5714 

16 150.0000 150.0000 

17 171.4286 171.4286 

18 192.8571 192.8571 

3.7.2 Validation Dataset 

The validation dataset is the data that is used to check the usability of the proxy. These 

data should be different from the training dataset to ensure that the validation will not be 

biased. In this case, the validation data used is shown in Table 3.14. 
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Table 3.14: Validation dataset for proxy model 

Validation 

Sample 

1st Injection Cycle 

[Sm3/d] 

2nd Injection Cycle 

[Sm3/d] 

1 31.1428 182.1428 

2 53.5714 160.7142 

3 75.0000 139.2857 

4 96.4285 117.8571 

5 117.8571 96.4285 

6 139.2857 75.0000 

7 160.7142 53.5714 

8 182.1428 31.1428 

The validation dataset is mainly the data in between the training dataset. For example, 

between the 1st and 2nd training samples has the data which the 1st injection cycle will be 

32.1428 Sm3/d and the 2nd injection cycle will be 182.1428 Sm3/d. 

3.7.3 Evaluation Dataset 

The evaluation data is generated using the Latin hypercube sampling (LHS) method, 

where the distribution, minimum and maximum values are determined for the first and 

second injection cycles. It means the evaluation data does not follow the training and 

validation rule, which ensures the proxy is usable in every case within the range. 

The evaluation dataset is generated for both geological scenarios separately. Therefore, 

the evaluation for the dipping grid and properties scenario will differ. 

Table 3.15: Evaluation dataset for dipping grid scenario (Scenario#1) 

Evaluation 

Sample 

1st Injection Cycle 

[Sm3/d] 

2nd Injection Cycle 

[Sm3/d] 

1_1 31.1428 182.1428 

2_1 53.5714 160.7142 

3_1 75.0000 139.2857 

4_1 96.4285 117.8571 

5_1 117.8571 96.4285 

 

Table 3.16: Evaluation dataset for dipping properties scenario (Scenario#2) 
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Evaluation 

Sample 

1st Injection Cycle 

[Sm3/d] 

2nd Injection Cycle 

[Sm3/d] 

1_2 40.4125 178.3760 

2_2 139.709 93.3423 

3_3 162.657 169.509 

4_4 181.095 114.866 

5_5 27.4022 164.649 

 

3.7.4 Proxy Model Algorithm 

This study used a statistical proxy model to complement the conventional numerical 

simulation model for the CO2 injection prediction. The independent variables for the 

proxy model are the first injection cycle and the second injection cycle of the CO2 

injection rate. Several dependent variables are evaluated, from the Svelvik#2 

bottomhole pressure, average field pressure, dissolved CO2 in Water, and Free CO2 

volume per layer defined in Figure 3.18. The layering definition follows the different 

lithofacies as defined in the geo-model section. 
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Figure 3.18: Layering definition: Dipping grid scenario (above) and dipping properties 

scenario (below) 

Two types of statistical proxy models were used in this study, and a comparison between 

the proxy models can be made.  

The first statistical proxy is the response surface proxy, where the predicted value will be 

based on a formula that has been fitted with the training data. This proxy model assumes 

that the predicted value follows a polynomial function with respect to the independent 

variable. There are several types of response surfaces, as explained in chapter 2.4.2. 

Based on the limited number of samples for the training and validation dataset, the proxy 

model built was linear model and bilinear model. 

Based on the limited number of samples for the training and validation dataset, the proxy 

model built was the linear and bilinear model. 

The second statistical proxy is the universal kriging proxy, where the proxy uses the 

Gaussian process to determine the random error with zero mean, unknown variance, and 

correlation function. This proxy model is built assuming that the model follows the 

gaussian process. Therefore, this proxy can model a more complex response with the 

training and validation dataset. 

3.7.5 Proxy Model Scoring 

The proxy model scoring used in this study is the R-squared method (Equation (6)) for 

evaluating the observed and predicted responses.  

𝑅2 =

[
 
 
 

𝑛 (∑𝑃𝑠𝑖𝑚𝑃𝑝𝑟𝑜𝑥𝑦) − (∑𝑃𝑠𝑖𝑚)(∑𝑃𝑝𝑟𝑜𝑥𝑦)

√[𝑛(∑𝑃𝑠𝑖𝑚
2 ) − (∑𝑃𝑠𝑖𝑚)2] [𝑛(∑𝑃𝑝𝑟𝑜𝑥𝑦

2 ) − (∑𝑃𝑝𝑟𝑜𝑥𝑦)
2
]
]
 
 
 
2

 (6) 

 

Each of the timesteps will also be evaluated by percent error (Equation  (7)) to see the 

error cause in different timesteps. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟 =
|𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑝𝑟𝑜𝑥𝑦|

𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

× 100% (7) 



41 

 

This will ensure that the proxy model is evaluated thoroughly in the validation and 

evaluation case with the possibility of detecting the error and which situation the proxy 

model will not be able to follow the simulation model. 

3.8 Assumptions and Limitations 

The assumptions used and the limitations in this study are: 

1. There is no leakage to the surface. In reality, there is leakage through the annulus 

to the surface, and the volume is still being investigated. To model the 

atmospheric situation in the reservoir model is complex due to the open boundary 

should exist at the top of the reservoir model.  

2. The high vertical permeability is used to model the bentonite slurry that only 

contacts the formation, which assumes that the bentonite slurry creates a 

possibility of a CO2 migration pathway to the upper formation. 

3. The aquifer model exists below the injection point (70m) since the requirement to 

model the pseudo phase at the top of the model cannot be attached by the 

aquifer model. The simulation uses the E100 simulation model that the aquifer 

attachment is not able to be attached at the pseudo-phase (CO2-Water). 

4. The proxy models use a statistical method where responses surface proxy 

assumes that the model follows a polynomial function. The universal kriging proxy 

assumes that the true model follows Gaussian processes in finding the random 

error. 

5. The new CO2 injection started on the 22nd of April 2022, with the final state based 

on the history matching.  
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4.1 History Matching 

In this section, the history matching results are discussed thoroughly. 

4.1.1 Initial History Matching Results 

The initial history matching result is the base result of the history matching without any 

modification to the model. The upscaled model of the dipping grid scenario and the 

dipping properties scenario are history matches. In Figure 4.1 depicts the Svelvik#2 

bottomhole pressure with the history match result. 

 

Figure 4.1: Initial history matching result 

 

4 Results and Discussion 
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The initial history matching result points out several interesting findings. At the water 

injection phase, the bottomhole pressure simulated is much higher than the pressure 

increment recorded to inject the defined water injection rate. It is also shown at the 

initial CO2 injection period where the bottomhole pressure required to inject the CO2 is 

higher than the historical data. 

In the historical data, some water injected were measured, but the bottomhole pressure 

did not respond (Figure 4.2). This is where the water injection pump is being tested and 

the water is not injected into the formation. Therefore, this data is cleaned on the later 

history matching. 

 

Figure 4.2: Water pump testing false data 

Another interesting result in the water injection period is that the bottomhole pressure 

measured and the water injection rate is not very predictable. The simulation shows that 

the bottomhole pressure required should be higher to inject more water. However, the 

measured data does not have a conclusive trend, as presented in the comparison in 

Figure 4.3. 

 

Figure 4.3: Comparison between measured data (left) and simulated result (right) 

Several possibilities to explain this phenomenon: 

1. Salinity differences from different water tanks at the injection site. With lower 

salinity on the second water injection, the bottomhole pressure required is less 

and similar to the first water injection, where water with higher salinity is 

injected. Unfortunately, the injected salinity is not measured. 

2. Increasing formation injectivity. With a higher rate and unconsolidated sand, 

there is a possibility that the sand near the wellbore is washed-out by the high-

water rate and increases the injectivity. 
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3. Skin effect from the well that is not able to be quantified. 

With these results, the water injection period has given several valuable outputs to this 

study. Based on the history matching result, where the Svelvik#2 bottomhole pressure is 

significantly higher than the history data, it can be inferred that the absolute permeability 

for the Svelvik ridge might be higher than in the geo-model. Therefore, the sensitivity of 

the global permeability distribution will be carried out as an uncertainty parameter. With 

high uncertainty and the results of the water injection period being very inconsistent with 

the ideal performance, the history matching will continue only with the main CO2 

injection period. 

The result of the dipping grid and dipping properties scenario for the CO2 injection period 

are shown in Figure 4.4.  

 

Figure 4.4: CO2 injection period bottomhole pressure with simulation history matching 

During the CO2 injection period, it is shown that the bottomhole pressure when injecting 

the CO2 is higher than the historical data. When the CO2 injection was stopped, history 

shows a trend where the bottomhole pressure declined slowly to a pressure similar to the 

initial pressure. The initial shut-in in simulation shows a trend where it reaches the same 

pressure as the history, but on the second, it differs due to stabilization with the initial 

pressure. Based on the bottomhole pressure data, it shows that the dipping grid scenario 

and dipping properties scenario has similar trend and results. 

Figure 4.5 and Figure 4.6 shows the CO2 plume distribution at the end of the injection 

and 6 days post-injection from both geological scenarios. Several differences between 

both geological scenarios can be spotted with the CO2 plume migration. 
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Figure 4.5: Dipping grid scenario CO2 plume: Stop injection (above) and 6 days post 
injection (below) 
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Figure 4.6: Dipping properties scenario CO2 plume: Stop injection (above) and 6 days 
post injection (below) 

The simulation result shows that the CO2 migration will only spread horizontally and the 

vertical migration is only possible up to the 60m depth. In contrast, the result from P-

wave inversion (Figure 2.10) shows that the CO2 migrated to the depth of 38m and 

towards the north (M3 well).  

In this case, several explanations that discuss the possibility for the CO2 to move 

vertically up to the 38m are: 

1. The mud layer at a depth of 50.7m to 60m is discontinuous by sand lobes. This is 

modelled as an uncertainty where the mud layer lithofacies is modified to coarse 

sand in the dipping grid scenario and sand in the dipping properties scenario. 
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2. The bentonite slurry in the annulus between the formation and the PVC tubing 

enables vertical communication to the formation. 

3. The permeability anisotropy of the Svelvik ridge is uncertain. 

 

With the result from the CO2 injection period, the uncertainty included for the study in 

the history matching is the near-wellbore vertical communication, changing the 

lithofacies from 50.7 – 60m. 

4.1.2 Uncertainty-Based History Matching Results 

The uncertainty-based history matching uses the defined uncertainty provided in Table 

3.11. With the modified 50.7m to 60m mud to sand layer, a total of seventeen different 

parameter combinations are sampled through the Latin hypercube method, where the 

sampled combinations are shown in Table 4.1.  

Table 4.1: Uncertainty sampled by LHS method 

The result of the Svelvik#2 bottomhole pressure history matching results are shown in 

Figure 4.7. 

 

Figure 4.7: Result of seventeen realization of uncertainty history matching (bottomhole 
pressure) 

Based on the result, it is shown that none of the combinations of these parameters could 

match the measured data. Several explanations regarding the result are: 

1. The water injection period has uncertainty explained in the initial history matching 

result, where it differs from the physical expression. This phenomenon could come 
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Scenario1_1 4474.46 0.0098 3.33 0.70 1184.94 9742.07 760.74 0.0139

Scenario1_2 7093.44 0.0588 4.41 1.03 727.27 93395.93 1259.72 0.0744

Scenario1_3 1263.36 0.0571 2.28 1.07 1004.74 65175.31 2420.25 0.0551

Scenario1_4 3846.46 0.0480 4.07 0.13 374.91 50500.01 2020.33 0.0811

Scenario1_5 1860.90 0.0196 1.50 0.56 536.86 22784.60 1987.77 0.0621

Scenario1_6 9336.90 0.0825 3.78 1.93 631.92 72716.83 2612.04 0.0646

Scenario1_7 5606.63 0.0502 2.96 0.40 641.87 75513.72 1631.58 0.0434

Scenario1_8 2499.73 0.0644 2.43 1.66 495.87 55523.84 2141.38 0.0526

Scenario1_9 6389.71 0.0244 3.41 1.23 211.57 82115.50 2747.64 0.0755
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Scenario1_16 3452.02 0.0346 4.21 1.20 1452.05 49528.41 621.47 0.0697

Scenario1_17 2848.25 0.0843 4.58 1.78 1348.89 87561.68 244.63 0.0483
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from the different salinity of the water tank, increasing formation injectivity or 

skin. 

2. The increasing and decreasing pressure trend in the water injection is not 

captured in the simulation model, wherein the simulation follows the same trend 

as the water injection rate. 

3. The CO2 injection period has a good match during the injection but has a 

deviation when the injection is stopped. This deviation is due to the simulation 

result being stabilized to the initial pressure, while the measured data shows that 

pressure dropped slightly lower than the initial pressure. 

4.1.3 Conventional History Matching Results 

The result of the sensitivity of the absolute permeability is presented in Figure 4.8. 

 

 

Figure 4.8: Svelvik#2 bottomhole pressure absolute permeability sensitivity 

It can be seen that the effect of the increasing and decreasing pressure for the CO2 

injection is diminishing with higher permeability. For example, permeability multiplied by 

2 shows a sharp increase in bottomhole pressure when the CO2 is injected and a sharp 
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decrease of bottomhole pressure when the CO2 injection is stopped, while permeability 

multiplied by 10 has a smoother increase and decrease of bottomhole pressure. 

The fitness of the history matching is scored by several methods, as shown in Table 4.2. 

Table 4.2: History matching error summary 

Cases 
Absolute Error [bar] Percent Error [%] 

RMSE [bar] R2 [-] 
Maximum Average Maximum Average 

Perm_x10 0.074 0.023 1.018 0.305 0.0258 0.653 

Perm_x5 0.074 0.016 1.014 0.219 0.0203 0.806 

Perm_x4 0.073 0.017 1.004 0.235 0.0219 0.702 

Perm_x2 0.096 0.017 1.297 0.236 0.0245 0.560 

 

The breakdown of the percent error is presented in Figure 4.9. The error increases for all 

cases on the 7th of November due to the simulation stabilizing the initial pressure while 

the measured pressure keeps decreasing. An interesting finding is shown at each 

beginning of the CO2 injection. The case where permeability is multiplied by 2 has the 

highest error and diminishes over time, while the other case has a lower error during this 

period. This effect is due to the sharp increase of the bottomhole pressure as in the 

simulation result. 

 

Figure 4.9: Percent error vs time for different absolute permeability 

With this result, it is agreeable that a higher permeability as multiplication up to 5 times 

favours the given geo-model. A new distribution of the permeability is presented in Table 

4.3. 
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Table 4.3: After history matching permeability distribution 

Facies 
Permeability [mD] 

Mean Min Max 

Coarse Sand 6000 4000 10000 

Sand 4000 1500 6000 

Fine Sand 1000 500 1500 

Mud (Silt) 50 0.5 500 

 

The permeability improvement required to match the Svelvik#2 bottomhole pressure 

data with the given CO2 injection rate is too high. This value is not very realistic with the 

available data and contradicts the pumping test from the previous study. The possibilities 

that explain the differences in the results can come from: 

1. The correction of the pressure data that require a further study 

2. The pumping test results were not a pure unconsolidated sand result where it 

might be contaminated by mud that lower the pumping test permeability result. 

4.1.4 Results Summarization 

With several considerations taken into account from uncertainty definition and lots of 

history matching cases, none of these efforts that have been done could match with the 

behaviour of the Svelvik Pre-ACT injection campaign. A further study on the pressure 

data measured and CO2 plume migration is very recommended. 

Based on the history matching results, it can be concluded that: 

1. No simulation result can match precisely with the measured data. This can come 

from various uncertainty explained in each step of the history matching. 

2. A higher permeability value than the current geo-model is expected. This is seen 

through the Svelvik#2 bottomhole pressure is always higher when injecting into 

the reservoir than the measured data. 

3. The mud layer from 50.7 – 61.2 m, which is expected based on the well log 

analysis in the Svelvik#1 and Svelvik#2 wells, might not be continuous and have 

a connection to the upper layers through sand lobes. 

4. The well annulus where the bentonite slurry was used as the sealing element 

between the injection PVC pipe and the formation shows that the CO2 can migrate 

through it. 

 

In order to continue for proxy models, since no model w able to match with the pressure 

data, a model with a more realistic value is selected with a trade-off to the history 

matching accuracy. The permeability multiplied by 2 is continued to the proxy modelling 

part. The result of the CO2 plume where the permeability is multiplied by 2, with near 

wellbore vertical permeability and permeability anisotropy of 0.5, is shown in Figure 4.10 

for 1st geological scenario and Figure 4.11 for 2nd geological scenario. 
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Figure 4.10: History matched dipping grid scenario CO2 plume: Stop injection (above) 
and 6 days post injection (below) 

The dipping grid realization shows that the CO2 spreads across east-west (M1-M2) and 

slightly toward the north (M3). It is also shown that the top view has some part of cross-

over between CO2-water due to the grid definition. 

The dipping properties realization depicts that the CO2 plume tends to centralize in 

Svelvik#2 with the tendency to spread to the north (M3). 
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Figure 4.11: History matched dipping properties scenario CO2 plume: Stop injection 

(above) and 6 days post injection (below) 

The Svelvik#2 bottomhole pressure results in the simulation are similar to the two 

realizations shown in Figure 4.12. 
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Figure 4.12: History matched Svelvik#2 bottomhole pressure 

The error for the selected case between both geological realizations is presented in Table 

4.4. 

Table 4.4: Svelvik#2 bottomhole pressure history matching error  

Cases Scenario 1 Scenario 2 

Absolute Error [bar] 
Maximum 0.096 0.169 

Average 0.017 0.017 

Percent Error [%] 
Maximum 1.297 2.276 

Average 0.236 0.233 

RMSE [bar] 0.024 0.025 

R2 [-] 0.560 0.604 

 

4.2 Proxy Models 

The proxy models are used to create a prediction for further injection. The history match 

model is predicted until the 22nd of April 2022 without any injection to see the migration 

and change of the CO2 saturation when it is undisturbed for 3 years. After the prediction, 

the model is used as a starting point for the proxy model.  

After three years, it is shown that the CO2 in the gas phase has majorly dissolved in the 

water after three years. The starting point for the proxy modelling is shown in Figure 

4.14 for the dipping grid scenario and Figure 4.14 for the dipping property scenario. 
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Figure 4.13: Three years post CO2 injection: Dipping grid scenario 



55 

 

 

 

Figure 4.14: Three years post CO2 injection: Dipping properties scenario 

Using the training, validation, and evaluation dataset design in chapters 3.7.1 and 3.7.2, 

the proxy models were trained and tried to mimic the behaviour of CO2 injection in the 

Svelvik Field Laboratory. Using the input of CO2 injection rate, the Svelvik#2 bottomhole 

pressure, dissolved CO2 in water, and CO2 in gas phase are predicted. The illustration 

based on the dataset in Table 3.13 for the training dataset and Table 3.13 for the 

validation dataset is shown in Figure 4.15.  
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Figure 4.15: Training and validation dataset illustration 

Since the proxy used to simulate the behaviour of the CO2 injection is a statistical proxy, 

the probability of the predicted value is also shown as the proxy result as one of the 

validation methods, where the result predicted by the proxy should be in the range of the 

simulated value. 

4.2.1 Response Surface Proxy 

This study built two types of response surface proxy: linear and bilinear proxy. 

4.2.1.1 Dipping Grid Scenario Proxy Model 

The resulting probability for each predicted value is shown in Figure 4.16 for linear 

response surface proxy and Figure 4.17 for bilinear response surface proxy. 

 

Figure 4.16: Linear response surface probabilities from training data (scenario#1) 
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Figure 4.17: Bilinear response surface probabilities from training data (scenario#1) 

The result of the proxy probabilities from the training dataset can simulate the trends 

from the injection and shut-in periods. The 1st result of the validation is presented in 

Figure 4.18. 

 

Figure 4.18: Validation_1 result for linear and bilinear proxy model (scenario#1) 
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The validation case 1 result demonstrates that the bilinear proxy is slightly better than 

the linear proxy. This is due to the additional interaction terms offered by the bilinear 

proxy that give a better approximation than the linear proxy. The detail of the percent 

error is illustrated in Figure 4.19. The validation result matches CO2 dissolved in water, 

Svelvik#2 bottomhole pressure, and the average field pressure. Significant error is found 

in CO2 in gas phase, where both of the response surface proxies have difficulty in the 1st 

injection, but the bilinear shows a better fit on the 2nd injection. 

A summary of the error for every validation case is presented in Table 4.5 for the linear 

proxy model and Table 4.6 for the bilinear proxy model. In some cases, the linear proxy 

can perform better than the bilinear proxy. The R2 for all cases is good (more than 0.99), 

which means that the trend and value are close between the response surface proxy and 

the simulation result. In terms of error, the CO2 in gas phase has a relatively higher error 

than the other variables. The proxy captures the trend of the CO2 in gas phase. However, 

the predicted value by proxy is not as exact as the simulation result, with the maximum 

error reaching about 13-15% and the average error about 4-7%. This error could come 

from the limitation of the response surface proxy model where it assumes the 

approximate variable following the response surface polynomial expression. 

The other parameters, such as Field CO2 dissolved in water, Svelvik#2 bottomhole 

pressure, and average field pressure predicted by the linear and bilinear proxy model, 

have less than 1% error in all validation cases. 

 

Figure 4.19: Validation_1 percent error for linear and bilinear proxy model (scenario#1) 
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Table 4.5: Linear proxy model validation cases error summary (scenario#1) 

 

Table 4.6: Bilinear proxy model validation cases error summary (scenario#1) 

 

4.2.1.2 Dipping Properties Scenario Proxy Model 

With the same training and validation case based on Table 3.13 and Table 3.14, another 

linear and bilinear proxy model is created for the dipping properties scenario. The 

resulting probabilities are shown in Figure 4.20 for the linear proxy model and Figure 

4.21 for the bilinear proxy model. 

 

Figure 4.20: Linear response surface probabilities from training data (scenario#2) 
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Sample_1 0.17 0.04 0.9982 1.62 0.71 0.9998 15.16 7.33 0.9994 0.22 0.06 0.9964

Sample_2 0.15 0.02 0.9982 0.72 0.39 0.9999 5.87 3.55 0.9993 0.19 0.03 0.9969

Sample_3 0.09 0.03 0.9983 0.78 0.22 0.9999 6.94 2.23 0.9988 0.10 0.04 0.9968

Sample_4 0.10 0.04 0.9986 0.70 0.27 0.9999 6.09 2.20 0.9985 0.12 0.04 0.9973

Sample_5 0.11 0.04 0.9988 0.88 0.32 0.9998 4.93 2.34 0.9984 0.15 0.05 0.9976

Sample_6 0.10 0.03 0.9993 0.74 0.25 0.9998 4.42 2.10 0.9986 0.12 0.03 0.9986

Sample_7 0.07 0.02 0.9991 0.29 0.07 1.0000 2.22 0.42 0.9995 0.11 0.02 0.9980

Sample_8 0.22 0.05 0.9944 1.59 0.68 0.9989 13.54 6.22 0.9623 0.32 0.07 0.9859

Linear

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure
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Sample_1 0.09 0.03 0.9990 0.78 0.34 0.9999 13.41 4.27 0.9993 0.13 0.03 0.9978

Sample_2 0.09 0.02 0.9990 0.45 0.22 1.0000 5.99 2.62 0.9997 0.11 0.02 0.9983

Sample_3 0.09 0.03 0.9984 0.77 0.21 0.9999 7.11 2.21 0.9991 0.11 0.04 0.9971

Sample_4 0.10 0.04 0.9986 0.69 0.27 0.9999 6.11 2.23 0.9985 0.12 0.05 0.9973

Sample_5 0.12 0.04 0.9987 0.89 0.32 0.9998 5.11 2.44 0.9984 0.16 0.05 0.9975

Sample_6 0.11 0.03 0.9991 0.90 0.31 0.9998 5.58 2.70 0.9973 0.14 0.04 0.9980

Sample_7 0.07 0.02 0.9992 0.53 0.19 0.9999 4.45 1.58 0.9957 0.08 0.02 0.9985

Sample_8 0.12 0.03 0.9982 0.77 0.35 0.9998 5.59 2.40 0.9956 0.13 0.04 0.9961

Bilinear

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure



60 

 

 

Figure 4.21: Bilinear response surface probabilities from training data (scenario#2) 

The result from the probability range does not differ much from the dipping grid scenario 

(scenario#1), which means that the response surface proxy created for the dipping 

properties scenario can also imitate numerical simulation for the CO2 injection. The result 

of the first validation sample is shown in Figure 4.22, and the percent error for each time 

step is provided in Figure 4.23. 

 

Figure 4.22: Validation_1 results for linear and bilinear proxy model (scenario#2) 
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Figure 4.23: Validation_1 percent error for linear and bilinear proxy model (scenario#2) 

The validation of the same case between scenario#1 and scenario#2 has similar results. 

In the dipping properties scenario, the CO2 in gas phase can follow the trend of the 

simulation result but has a higher percent error than the other parameters. Since the 

proxy model is built with the polynomial regression model, the value of the predicted 

variable will be limited to the linear and bilinear formula. A summary of errors for all 

validation cases for the dipping properties scenario is presented in Table 4.7 for the 

linear proxy model and Table 4.8 for the bilinear proxy model. 

Table 4.7: Linear proxy model validation cases error summary (scenario#2) 

 

Table 4.8: Bilinear proxy model validation cases error summary (scenario#2) 
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Validation_1 0.20 0.05 0.9980 1.88 0.66 0.9997 10.67 5.44 0.9993 0.32 0.09 0.9959

Validation_2 0.10 0.02 0.9989 0.95 0.39 0.9999 4.46 2.38 0.9990 0.15 0.04 0.9979

Validation_3 0.08 0.03 0.9991 1.07 0.28 1.0000 5.91 1.64 0.9990 0.12 0.04 0.9983

Validation_4 0.10 0.03 0.9992 0.80 0.34 0.9999 4.18 1.73 0.9993 0.16 0.05 0.9984

Validation_5 0.10 0.04 0.9988 0.97 0.28 0.9998 5.04 1.79 0.9984 0.16 0.06 0.9976

Validation_6 0.11 0.03 0.9989 0.94 0.23 0.9998 5.09 1.86 0.9977 0.18 0.05 0.9977

Validation_7 0.09 0.02 0.9993 0.21 0.09 1.0000 1.90 0.60 0.9993 0.14 0.03 0.9984

Linear

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure
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Validation_1 0.09 0.03 0.9990 0.88 0.33 0.9999 8.91 2.71 0.9995 0.15 0.04 0.9978

Validation_2 0.06 0.02 0.9994 0.92 0.25 1.0000 4.92 1.34 0.9994 0.08 0.03 0.9988

Validation_3 0.08 0.03 0.9992 1.06 0.33 1.0000 6.10 1.99 0.9992 0.12 0.04 0.9985

Validation_4 0.11 0.03 0.9991 0.80 0.35 0.9999 4.20 1.80 0.9993 0.16 0.05 0.9984

Validation_5 0.11 0.04 0.9987 0.99 0.29 0.9998 5.26 1.87 0.9983 0.17 0.06 0.9975

Validation_6 0.13 0.04 0.9984 1.12 0.29 0.9997 6.41 2.40 0.9959 0.21 0.06 0.9968

Validation_7 0.10 0.02 0.9991 0.69 0.21 0.9999 4.50 1.71 0.9957 0.16 0.03 0.9982

Bilinear

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure
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On average, the proxy models from the response surface have a lower error in the 

dipping properties scenario than the dipping grid scenario. This could be due to the grid 

in the dipping properties scenario being a regular grid. In contrast, the dipping grid 

scenario consists of irregular grids that create complexity for the response surface proxy 

to mimic. The maximum error in the dipping properties scenario comes from the CO2 in 

gas phase, which is 8-10%, with an average error of 2-5%. The other parameters yield 

an error of less than 1% in all validation cases. The R2 for all cases is good (more than 

0.99), similar to the dipping grid scenario result.  

4.2.2 Universal Kriging Proxy 

The universal kriging proxy assumes that the predicted value follows a gaussian process 

with a correlation function and an unknown variance determined by maximizing the 

outcome likelihood. 

4.2.2.1 Dipping Grid Scenario Proxy Model 

The probability based on the training data using the universal kriging algorithm is 

presented in Figure 4.24. The probability shows a similar range with the probability from 

the response surface proxy, which also has a similar trend to mimic the injection and 

shut-in of CO2 injection. 

 

Figure 4.24: Universal kriging probabilities from training data (scenario#1) 

The 1st validation result is presented in Figure 4.25. Based on the validation result, the 

universal kriging proxy is capable of capturing the trend and predicting the value better 

than the response surface proxy. The reason is that the universal kriging proxy uses the 

term random error addition to the linear basis over the experimental domain. This 

random error is determined using the Gaussian process with zero mean, unknown 
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variance, and correlation function determined by maximizing the outcome likelihood. 

Therefore, the predicted value from universal kriging tends to fit with the data and 

makes it possible to model a complex response with sufficient training data. 

The detail of the percent error is shown in Figure 4.26. Overall, it shows a lower error 

magnitude than the response surface proxy model. In the universal kriging proxy, the 

CO2 in gas phase also shows a little bit higher error than the other variables that the 

proxy model predicts. Looking at the figure between the simulated and the proxy, it 

seems that the error is due to the initial value of the CO2 in gas phase being low. The 

error starts to diminish when the CO2 in gas phase increases. 

The summary of all validation cases is shown in Table 4.9. The universal kriging proxy 

model based on all validation cases is capable of predicting with high accuracy, with most 

of the R2 calculated at nearly 1. The highest error from the universal kriging proxy comes 

from predicting the CO2 in gas phase with a maximum error of 2.94% and an average 

error of 0.67% in validation sample 1. The rest of the predicted results have a minor 

(~0.1% percent) error. 

 

Figure 4.25: Validation_1 results for universal kriging proxy (scenario#1) 
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Figure 4.26: Validation_1 percent error for universal kriging proxy (scenario#1) 

Table 4.9: Universal kriging proxy model validation cases error summary (scenario#1) 

 

4.2.2.2 Dipping Properties Scenario Proxy Model 

The universal kriging proxy for the dipping properties scenario is built to compare the 

performance with the dipping grid scenario. The probabilities for universal kriging with 

dipping properties geo-model are shown in Figure 4.27. 

Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Sample_1 0.02 0.01 0.9999 0.11 0.05 1.0000 2.94 0.67 1.0000 0.02 0.01 0.9998

Sample_2 0.03 0.01 0.9999 0.09 0.05 1.0000 2.80 0.36 1.0000 0.03 0.01 0.9998

Sample_3 0.02 0.01 0.9999 0.06 0.02 1.0000 0.99 0.27 1.0000 0.02 0.01 0.9999

Sample_4 0.02 0.01 0.9999 0.10 0.02 1.0000 1.15 0.25 1.0000 0.02 0.01 0.9999

Sample_5 0.02 0.00 0.9999 0.06 0.02 1.0000 0.41 0.16 1.0000 0.02 0.00 0.9999

Sample_6 0.02 0.01 0.9999 0.12 0.07 1.0000 0.53 0.14 1.0000 0.02 0.01 0.9999

Sample_7 0.03 0.01 0.9999 0.10 0.05 1.0000 0.40 0.13 1.0000 0.03 0.01 0.9999

Sample_8 0.02 0.01 0.9999 0.07 0.03 1.0000 0.40 0.16 1.0000 0.02 0.01 0.9999

Field: Average Pressure
Universal 

Kriging

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase
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Figure 4.27: Universal kriging probabilities from training data (scenario#2) 

The result from the 1st validation case with the universal kriging proxy built for the 

dipping properties scenario is presented in Figure 4.28 and the percent error in Figure 

4.29. These two figures demonstrate that the universal kriging proxy can fit with the 

result from the simulation data with very little error. It means the universal kriging proxy 

can be used as a proxy from the numerical simulation with a similar result for predicting 

the new CO2 injection. 

The summary of all errors from the validation case in the dipping properties scenario is 

shown in Table 4.10. Overall, the predicted results by universal kriging proxy for dipping 

properties scenario are able to simulate the trend and the values of CO2 injection in this 

type of geological model. 
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Figure 4.28: Validation_1 results for universal kriging proxy (scenario#2) 

 

Figure 4.29: Validation_1 percent error for universal kriging proxy (scenario#2) 
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Table 4.10: Universal kriging proxy model validation cases error summary (scenario#2) 

 

4.2.3 Comparison between Different Proxy Model 

The proxy models from the response surface algorithm and universal kriging algorithm 

that have been made and validated through the cases are being compared. The proxy 

model is compared by using the evaluation dataset, which is not from the training and 

validation case. This process ensures that the proxy can emulate the numerical 

simulation, and unbiased comparison can be obtained. 

4.2.3.1 Dipping Grid Scenario Evaluation 

The result of the simulation and all the proxies for the dipping grid scenario is shown in 

Figure 4.30. All of the proxy models succeeded in mimicking the result from the 

simulation. The trend and value can be captured in the evaluation test. The percent error 

detail of each timestep is shown in Figure 4.31. The percent error shows that the 

universal kriging has the lowest error compared to the proxy from the response surface. 

Both response surface proxy linear and bilinear are comparable in terms of error, as seen 

in Figure 4.31. his is due to the response surface assuming that the predicted value 

follows a polynomial function, while universal kriging uses the Gaussian process and 

correlation function determined by maximizing the outcome likelihood. The full evaluation 

error is shown in Table 4.11. 

 

Figure 4.30: Evaluation_1_1 results of proxy models (scenario#1) 
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Max Percent 

Error [%]

Avg Percent 

Error [%]
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Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Validation_1 0.03 0.01 0.9998 0.21 0.07 1.0000 1.70 0.65 1.0000 0.04 0.02 0.9996

Validation_2 0.03 0.01 0.9999 0.15 0.09 1.0000 1.29 0.57 0.9999 0.04 0.01 0.9997

Validation_3 0.02 0.01 0.9999 0.17 0.10 1.0000 0.83 0.34 1.0000 0.03 0.01 0.9998

Validation_4 0.02 0.01 0.9999 0.16 0.08 1.0000 1.32 0.35 1.0000 0.04 0.01 0.9999

Validation_5 0.01 0.00 1.0000 0.04 0.02 1.0000 0.63 0.26 1.0000 0.03 0.01 0.9999

Validation_6 0.04 0.01 0.9999 0.08 0.03 1.0000 0.61 0.18 1.0000 0.04 0.01 0.9998

Validation_7 0.02 0.01 0.9999 0.10 0.04 1.0000 0.87 0.24 0.9999 0.03 0.01 0.9999

Field: Average Pressure
Universal 

Kriging

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase
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Figure 4.31: Evaluation_1_1 percent error of proxy model (scenario#1) 

Table 4.11: Evaluation error for all proxy (scenario#1) 

 

Based on the evaluation result, where the evaluation dataset is introduced to check the 

validity of the proxy, all results can reach a very high correlation with the simulation 

result (R2 > 0.99). It proves that all of the proxies can be used for CO2 injection 

prediction in Svelvik CO2 Field Laboratory. The highest error also comes from the CO2 in 
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Error [%]

Avg Percent 

Error [%]
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[-]

Evaluation_1_1 0.08 0.04 0.9991 1.06 0.44 0.9996 5.23 3.10 0.9980 0.11 0.05 0.9980

Evaluation_2_1 0.11 0.03 0.9982 0.83 0.36 0.9998 6.46 3.05 0.9984 0.11 0.03 0.9959

Evaluation_3_1 0.06 0.02 0.9987 0.55 0.17 0.9999 3.81 1.66 0.9956 0.08 0.03 0.9968

Evaluation_4_1 0.11 0.02 0.9993 0.52 0.18 1.0000 4.64 1.46 0.9988 0.16 0.03 0.9984

Evaluation_5_1 0.12 0.03 0.9993 0.61 0.26 0.9999 3.64 1.54 0.9994 0.15 0.04 0.9987
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Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Evaluation_1_1 0.08 0.04 0.9990 1.01 0.42 0.9996 5.35 3.20 0.9979 0.11 0.05 0.9977

Evaluation_2_1 0.12 0.03 0.9982 0.78 0.32 0.9998 6.40 2.94 0.9985 0.11 0.03 0.9961

Evaluation_3_1 0.06 0.02 0.9990 0.55 0.18 0.9999 3.85 1.61 0.9970 0.08 0.03 0.9978

Evaluation_4_1 0.06 0.02 0.9998 0.33 0.11 1.0000 2.01 0.72 0.9998 0.09 0.02 0.9995

Evaluation_5_1 0.08 0.02 0.9996 0.48 0.20 1.0000 2.49 0.98 0.9997 0.10 0.03 0.9993

Max Percent 
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Avg Percent 
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Error [%]

Avg Percent 

Error [%]
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Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Max Percent 

Error [%]

Avg Percent 

Error [%]

R2

[-]

Evaluation_1_1 0.05 0.01 0.9995 0.18 0.08 1.0000 2.24 0.78 0.9995 0.05 0.02 0.9991

Evaluation_2_1 0.04 0.01 0.9997 0.21 0.10 1.0000 2.74 1.13 0.9997 0.04 0.01 0.9994

Evaluation_3_1 0.06 0.03 0.9984 0.78 0.31 0.9997 5.92 2.90 0.9911 0.07 0.03 0.9963

Evaluation_4_1 0.03 0.01 0.9999 0.12 0.05 1.0000 1.03 0.32 1.0000 0.03 0.01 0.9999

Evaluation_5_1 0.02 0.01 1.0000 0.11 0.06 1.0000 1.30 0.38 0.9999 0.02 0.01 0.9999

Field: Average Pressure

Bilinear

Linear

Universal Kriging

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure
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gas phase, as shown in the validation result. This also could be because the value of the 

CO2 in gas phase is small, and little deviation could yield a high error. 

4.2.3.2 Dipping Properties Scenario Evaluation 

With a different set of evaluation datasets, the dipping properties scenario is also being 

evaluated with the same method as the dipping grid scenario. The different set is used to 

ensure that the validity of the proxy is universal and unbiased. The results are shown in 

Figure 4.32. 

  

Figure 4.32: Evaluation_1_2 results of proxy model (scenario#2) 
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Figure 4.33: Evaluation_1_2 percent error of proxy model (scenario#2) 

Table 4.12: Evaluation error for all proxy (scenario#2) 
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Evaluation_1_2 0.18 0.04 0.9983 1.49 0.45 0.9998 6.86 3.17 0.9995 0.29 0.06 0.9969

Evaluation_2_2 0.12 0.04 0.9987 0.97 0.24 0.9998 5.63 1.88 0.9978 0.19 0.06 0.9975

Evaluation_3_2 0.14 0.02 0.9994 0.30 0.14 1.0000 2.98 1.19 0.9995 0.22 0.04 0.9990

Evaluation_4_2 0.14 0.04 0.9978 0.84 0.28 0.9998 5.42 1.87 0.9960 0.22 0.07 0.9962

Evaluation_5_2 0.16 0.05 0.9977 1.41 0.63 0.9998 16.55 6.34 0.9988 0.26 0.09 0.9947
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Evaluation_1_2 0.08 0.02 0.9992 0.57 0.17 1.0000 4.27 1.18 0.9998 0.12 0.03 0.9985

Evaluation_2_2 0.13 0.04 0.9985 1.05 0.26 0.9997 6.11 2.07 0.9974 0.21 0.06 0.9972

Evaluation_3_2 0.05 0.01 0.9999 0.21 0.06 1.0000 0.64 0.29 1.0000 0.05 0.01 0.9998

Evaluation_4_2 0.12 0.04 0.9982 0.78 0.26 0.9998 4.53 1.59 0.9970 0.19 0.06 0.9969

Evaluation_5_2 0.11 0.03 0.9981 1.26 0.34 0.9999 14.96 3.89 0.9987 0.19 0.05 0.9958
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Avg Percent 

Error [%]
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[-]

Evaluation_1_2 0.03 0.01 0.9998 0.15 0.04 1.0000 2.25 0.56 1.0000 0.05 0.01 0.9997

Evaluation_2_2 0.03 0.01 0.9999 0.13 0.05 1.0000 1.84 0.48 0.9999 0.04 0.02 0.9997

Evaluation_3_2 0.02 0.01 1.0000 0.08 0.02 1.0000 0.61 0.17 1.0000 0.03 0.01 0.9999

Evaluation_4_2 0.08 0.03 0.9990 0.44 0.18 0.9999 2.98 1.23 0.9987 0.12 0.05 0.9982

Evaluation_5_2 0.07 0.02 0.9989 1.11 0.30 0.9999 11.00 3.29 0.9991 0.11 0.04 0.9977

Field: Average Pressure

Bilinear

Linear

Universal Kriging

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure

Svelvik#2 Bottomhole Pressure Field: CO2 Dissolved in Water Field: CO2 in Gas Phase Field: Average Pressure
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The evaluation result demonstrates that all of the proxies are correlated to the simulation 

result based on the R2 higher than 0.99 for all evaluation cases and all predicted 

variables. 

In the case of Evaluation_5_2, it has the highest maximum percent error reaching 11 – 

16%. It is further investigated that the error comes from the small initial injection rate 

(27.4022 Sm3/d), which initially yields a low value of CO2 in gas phase (Figure 4.34). 

Therefore, even if the difference is less than 10 Sm3/d, it still has a very high calculated 

percent error. 

 

Figure 4.34: Evaluation_5_2 results of proxy model (scenario#2) 

 

4.2.4 CO2 Migration Prediction 

As it is seen in Figure 4.10 and Figure 4.11 hat, the CO2 has the possibility to migrate 

vertically from the injection depth to the upper mud layer (~38m). The proxy model also 

provided an interesting result, predicting the dissolved CO2 in water and CO2 in the gas 

phase for different layers (Figure 3.18). The results of the predicted layers are shown in 

Figure 4.35 to Figure 4.38 for evaluation sample 1 with dipping grid scenario and  Figure 

4.39 to Figure 4.42 for evaluation sample 1 with dipping properties scenario. 

The main interest layers in this study are layer 3 as the mud layer, layer 4 as the sand 

layer, layer 5 as the coarse/ fine sand layer, and layer 6 as the injection layer with sand. 
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4.2.4.1 Dipping grid scenario 

The CO2 migrates mostly to layer 4 rapidly when the CO2 is injected and dissolved in the 

water when the injection stops. The same trend is observed in layer 5 and layer 6, where 

the CO2 in gas phase increases when the CO2 is injected and declines when injection 

stops. Layer 3 has a different trend where the CO2 in gas phase is accumulated in a small 

amount due to layer 3 being a mud layer, and the CO2 spreads mainly in the interface 

between layer 3 and layer 4. 

The evaluation result shows that the proxy model can mimic these effects. The response 

surface proxies have some difficulty mimicking the dissolved CO2 in water for layer 6 due 

to the trend not following a linear model with the current input. Universal kriging proxy 

can have a better result in emulating the field and layered prediction since universal 

kriging has the advantage of increasing the likely outcome from the Gaussian process. 

 

Figure 4.35: Evaluation_1_1 dissolved CO2 and CO2 in gas phase layer 3 prediction 

(scenario#1) 
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Figure 4.36: Evaluation_1_1 dissolved CO2 and CO2 in gas phase layer 4 prediction 

(scenario#1)  

 

Figure 4.37: Evaluation_1_1 dissolved CO2 and CO2 in gas phase layer 5 prediction 
(scenario#1)  
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Figure 4.38: Evaluation_1_1 dissolved CO2 and CO2 in gas phase layer 6 prediction 
(scenario#1)  

4.2.4.2 Dipping properties scenario 

The proxy model for the dipping properties scenario is also used to predict the dissolved 

CO2 in water and CO2 in gas phase per layer to investigate the migration of the CO2. The 

result of each layered zone is shown from Figure 4.39 to Figure 4.42. The proxy models 

are able to emulate the trend of the dissolved CO2 in water and the CO2 in gas phase per 

layer. 

The dipping properties scenario shows a different migration from the dipping grid 

scenario due to the difference in the initial state, as shown in Figure 4.13. The same 

trend is shown in layer 3, where the dissolved CO2 in water and the CO2 in gas phase 

increase over time. Similar results are shown in layer 4, where most of the dissolved CO2 

and CO2 in gas phase accumulated. This trend is also shown in the dipping grid scenario. 

An interesting finding is in layer 5 and layer 6, where it differs from the dipping grid 

scenario. In the dipping properties scenario, when the CO2 is injected initially, both layers 

show increasing CO2 in gas phase, and while the injection stops, it declines. When 

injected at a higher rate, a high incremental is shown in both dissolved CO2 in water and 

the CO2 in gas phase. In layer 5, it started to decrease directly even when the injection 

was ongoing, while layer 6 kept the increasing trend. This happens because the 

migration of CO2 from layer 5 to the upper layer happens faster than the migration from 

layer 6 to layer 5 since there is fine sand between layer 6 and layer 5 for this realization 

(Figure 3.18). 
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Figure 4.39: Evaluation_1_2 dissolved CO2 and CO2 in gas phase layer 3 prediction 

(scenario#2) 

 

Figure 4.40: Evaluation_1_2 dissolved CO2 and CO2 in gas phase layer 4 prediction 
(scenario#2)  
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Figure 4.41: Evaluation_1_2 dissolved CO2 and CO2 in gas phase layer 5 prediction 

(scenario#2)  

 

Figure 4.42: Evaluation_1_2 dissolved CO2 and CO2 in gas phase layer 6 prediction 
(scenario#2)  
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4.2.5 Proxy Models Limitations 

With the limited training dataset and input variables for the proxy, there are several 

limitations when the proxy model is able to be used for prediction. The limitations are 

listed below: 

1. The training dataset has a minimum CO2 injection rate of 21.42857 Sm3/d and a 

maximum CO2 injection rate of 192.8571 Sm3/d. Therefore, the proxy model 

cannot accurately outside the range. 

2. The proxy models currently only take two inputs: the 1st CO2 injection rate and 

the 2nd CO2 injection rate. A pre-set injection design consists of two CO2 injection 

cycles with 1 week of injection and 1 week of shut-in period for each cycle. 

3. The CO2 injection rate is constant through the injection period. 

4.2.6 Results summarization 

Chapter 4.2 describes the development, training, validation and evaluation of the proxy 

models to mimic the prediction of CO2 injection in the Svelvik CO2 Field Laboratory. 

The proxy models use two independent variables as input: 1st cycle and 2nd cycle CO2 

injection rate. The predicted results from the proxy models are the Svelvik#2 bottomhole 

pressure, average field pressure, field dissolved CO2 in water and CO2 in gas phase. The 

proxy models are also capable of predicting layered dissolved CO2 and CO2 in gas phase. 

The layering definition is shown in Figure 3.18. The proxy models are developed for both 

geological scenarios. 

Two types of proxy models are studied: response surface proxy and universal kriging 

proxy. With the results presented, it is shown that the universal kriging results have a 

lower percent error than the universal kriging proxy. The limitation of the response 

surface proxy is it only follows the general equation (Equation (1)) that is fitted to the 

simulation results to obtain the coefficient. Therefore, the response surface is only limited 

to the linear, bilinear function. The universal kriging shows a better result with the 

advantage of increasing the likely outcome from the Gaussian process. 

Based on the evaluation results, all proxy models are highly correlated with the 

simulation results with R2 above 0.99. It means that the proxy models are able to mimic 

the results from numerical simulation and can be used to design a further CO2 injection 

in the Svelvik CO2 field laboratory. The successful development of the proxy can save the 

time required to run a simulation that requires hourly per case to a matter of seconds. 

The limitations of current proxy models are: the design only for 2 cycles of CO2 injection 

with 1 week of injection period and 1 week of shut-in period per cycle, the CO2 injection 

rate is assumed to be constant during the injection period, and finally, the input for the 

CO2 injection rate is limited to the range of 21.42857 Sm3/d and 192.8571 Sm3/d since 

the training data is limited to that range.  
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A thorough study starting from understanding the Svelvik CO2 Field Laboratory and the 

Pre-ACT 2019 injection campaign data, uncertainty definition based on the observed 

data, history matching with the monitoring results, and finally, the development of the 

proxy model of Svelvik to be used for the next injection campaign is completed. 

Following the successful Pre-ACT 2019 injection campaign in Svelvik CO2 Field 

Laboratory, several valuable insights and initial interpretation results are used to improve 

the reservoir model. The Pre-ACT injection campaign consists of a water injection period 

and CO2 injection period with the Svelvik#2 bottomhole pressure and injection rate 

recorded (Figure 2.9). The initial interpretation shows that the CO2 migrates to the upper 

mud layer at a depth of ~38m (Figure 2.10). 

The initial history matching result shows a higher Svelvik#2 bottomhole pressure is 

required while injection happens in the geological model realizations (Figure 4.4). It is 

also shown in the water injection result, where the bottomhole pressure required to inject 

the amount of water is higher in the simulation than in the measure data (Figure 4.1). 

The best match from the history matching shows that the permeability from the 

geological model is multiplied by 5 with an average percent error of 0.22% (0.016 bar) 

and maximum percent error of 1.01% (0.074 bar) to the Svelvik#2 bottomhole pressure. 

The history matching results conclude that a higher permeability than the current 

geological model is required to match the measured data. 

During the CO2 injection, with the initial geological model, the CO2 is spreading 

horizontally at the injection depth (Figure 4.5 & Figure 4.6) and it is impossible to 

migrate to a higher layer, as seen in Figure 2.10. This observation concludes that there is 

a migration path from the injection depth to the upper layer ~38m, which could be due 

to the discontinuation of the mud layer by sand lobes. This observation also portrays that 

the CO2 is leaking to the surface through the annulus filled with bentonite slurry. With 

the lithofacies of the lower mud layer (50.7 – 61.2 m) being changed to sand in 

combination with the vertical leakage along the well, it allows the migration of the CO2 to 

the upper layer (Figure 4.10 & Figure 4.11) with a result similar to the initial observation 

results (Figure 2.10). The dipping grid scenario spread more to the East-West direction, 

while the dipping properties scenario spread more to the North direction. The simulation 

results during CO2 injection show a match with the measured data. However, after the 

CO2 injection is stopped, the simulation results could not match with the declining 

measured bottomhole pressure due to the simulation result stabilizing with the initial 

pressure (with the assumption of an open boundary aquifer to a large extent). 

Finally, two types of proxy models (response surface and universal kriging) are 

successfully built during the study for two geological realizations. With the input of CO2 

injection rate for each injection cycle, several parameters from the dissolved CO2 in 

water, CO2 in gas phase, average field pressure, and Svelvik#2 bottomhole pressure can 

be predicted with R2 more than 0.99. The proxy models can be used for layer prediction 

to detect the migration throughout the layer defined. The universal kriging has better 

results than the response surface due to the nature being limited to polynomial function 

response, while universal kriging can predict a more complex trend. With the proxy 

models successfully developed, the simulation can be completed using the proxy model 

in seconds without running 2 – 3 hours of simulation. 

5 Conclusions  
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6.1 Challenges 

Several challenges that were met in this study are: 

1. The small grid (1m x 1m) and the small timesteps (1 hour per timesteps) require 

high computational time. Upscaling the non-interest zone and timesteps are 

implemented to improve the time required to run a simulation case and reduce 

the memory usage. 

2. The water injection measured data has an effect that is not following the ideal 

principle due to the different salinity of different tanks. Salinity measurement is 

suggested for water injection. 

3. The measured injection and monitoring pressure data understanding are complex 

due to several required corrections. The parameters that can affect the pressure 

measured are the depth of the gauge, location of the transmitter, below packer 

volume, tide and water table fluctuation. 

4. There is much uncertainty to be studied, and in combination with high 

computational time, the project will require an extensive hour to study. 

6.2 Further Work 

Several suggested further work that can refine this study are: 

1. A further study of the injection and monitoring well bottomhole pressure data is 

required to apply a better correction before the next simulation study. 

2. An improvement of the permeability geological model is required. 

3. The relative permeability that is used in the simulation can be part of the 

uncertain parameter for history matching. 

4. Implementation of the tubing performance relationship (TPR) model for the 

simulation is recommended and becomes one of the uncertainty parameters to 

match with the CO2 injection behaviour. 

5. With all uncertainty parameters gathered, a proxy model and optimization for 

history matching can be built. Building the proxy model for this study can be time-

consuming. 

 

6 Challenges and Further Work 
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Appendix 1: Svelvik CO2 Field Laboratory Data Availability 

Svelvik#1 Well Data 

Svelvik#1 as an exploration well was drilled in July 2010 in the Svelvik sand ridge in 

Hurum, Norway. The well was drilled with the depth of 333m with several data were 

taken from the well. 

Core analysis report 

One-meter-long core samples were taken at 30, 102 and 201 m mean sea level. The 

water permeability and porosity were measured on these core samples and on a surface 

sample from 40m above mean sea level. 

Core analysis report summary 

Parameter Unit Depth 40m asl Depth 30m 

msl 

Depth 102m msl Depth 201m 

msl 

Composition - 100% high 

porosity and 

permeability sand 

70% high 

permeability 

sand 

30% water 

20% clay 

80% silty 

unconsolidated 

sand 

70% clay 

30% silty 

unconsolidated 

sand 

Porosity 

(water) 

- ~0.3-0.4 0.351 0.302 0.127 

Permeability mD 2521.1 1016 – 2567 223.9 7.9 

The core analysis report also reported water analysis that were extracted from cores at 

depth of 102 and 201 m with additional sample of the drilling mud at 232 m. 

The results are summarized in Error! Reference source not found.. and shows that 

the total salt concentration is approximately 0.2% (2000 ppm) and is essentially fresh 

water. These results are not very related to the injection point interest. 

Summary of water analysis at various depth 

Specie Result, mg/litre PQL1) Method Uncertainty2) 

 
102 m 201 m 232 m Lower Upper 

 
Relative/absolute 

Sodium, Na 956 1080 991 0.1 100000 I-1-29 ±15%/±0.1 

Calcium, Ca 2.9 26.6 47.5 0.1 50000 I-1-29 ±10%/±0.1 

Magnesium, 

Mg 

0.1 <0.1 3.7 0.1 50000 I-1-29 ±15%/±0.1 

Barium, Ba 0.1 0.1 2.9 0.05 50000 I-1-29 ±10%/±0.1 

Iron, free, Fe 0.6 0.1 1.7 0.1 50000 I-1-29 ±10%/±0.1 

Strontium, Sr 0.1 0.4 0.4 0.05 50000 I-1-29 ±10%/±0.1 

Potassium, K 28.8 30.1 32.4 0.1 100000 I-1-29 ±15%/±0.1 

Sulphur, S 131 121 218 0.1 
 

I-1-29 ±10%/±0.1 

Chloride, Cl 720 810 990 1 
 

ISO 10304-

2 

±10%/±0.1 

Total 1839.6 2068.3 2287.6 
    

1) PQL, Practical quantification limits 

2) Both relative and absolute uncertainties are reported. The larger argument is 

always the valid one 

  



 

Grain size report 

127 spectral gamma measurements and 27 grain size distribution analysis was carried 

out on selected flow line samples from Svelvik#1. The analyses revealed a silt dominated 

lithology with a number of sand horizons. 

 

Spectral gamma measurements and grain size distribution 

Sand intervals and descriptions 

Intervals (m) Sample (m) Description 

37.1 – 50.7 37 – 38 
9% clay, 49% silt, and sand mainly coarse to very 

coarse. 

61.2 – 71.2 
64 – 65 

Fine to very coarse sand and with about 10% coarser 

grains in the granule/pebble category 

11% silt but clay is absent 

Coarser downward 

67 – 68 4% silt, medium to very coarse sand dominated 

85 – 115 

100 – 101 

An upper sandy part from 85 to 95m 

A more clayey horizon at 95 – 96. 

Sample dominated by fine to very coarse sand (85%). 

In addition, 15% very fine sand and silt, almost no clay 

110 – 111 

Well sorted sample dominated by very fine to fine sand 

(50%) 

30% sand in the medium to very coarse 

9% silt and 2% clay 

122 – 130.8 126 – 127 

Relatively poor sorted with 

4% clay, 13% silt, and sand from very fine to very 

coarse 



 

Based on the well-logs, 7 sand intervals are defined. The intervals and description of 

each interval are summarized. 

 

Well log data 

Well log data available as spectral gamma ray has been reported from the grain size 

report shown below. The other well log data available in this well is based on the Petrel 

project that has been provided in which the induction and dual laterolog resistivity logs 

are included. 

The resistivity values vary between 2 and 7ohmm for the entire log section. These 

observations are applicable on each layer, which were identified as high sand content. 

 

Well log of Svelvik#1 

Svelvik#2 Well Data 

Svelvik#2 is currently an CO2 injection well where the well logging was performed from 

15th December to 16th December 2012. The data available after the well logging are 

gamma ray (GR), caliper (CALI), acoustic log (TT), temperature (TEMP), and dual 

laterolog resistivity shallow and deep (RLLS and RLLD) from depth 20 – 80 m. 

220 - 236 

221 – 222 
Sample has 4% clay and 16% silt 

Very fine to coarse sand 

229 – 230 

Sample has 3% clay and 15% silt. Slightly better sorted 

than sample 221 -222. 

80% sand in the range of fine to coarse. 



 

Well log data 

The full well log data is available on D2-3-1A-2_Svelvik-well-logging-in-permeabiliy-test-

well_jan-2013_Report (R&P Geo Services AS, 2012). Based on the interpretation of 

gamma and clay content logs, the sand layer can be identified are from 36.2 – 49.8 m 

and 60.4 – 70.9 m. These intervals very well correspond to the previous interpretation of 

sand layer in Svelvik#1 well which has the sand interval from 37.1 – 50.7 m and 61.2 – 

71.7 m. 

The summary of the well log data can be seen in the petrel project 

 

Well log of Svelvik#2 

  



 

Appendix 2: Carter-Tracy Aquifer Model (Based on Schlumberger Eclipse 

Technical Description 2016.2) (Schlumberger, 2016) 

There are two main parameters governing the Carter-Tracy aquifer model behaviour: 

time constant (Equation A.1) and aquifer influx constant (Equation A.2). 

𝑇𝑐 =
𝜇𝑤𝜙𝐶𝑡𝑟𝑜

2

𝑘𝑎𝑐1

 

 

(A.1) 

Where:  

𝜇𝑤 is the viscosity of water in the aquifer 

𝜙 is the aquifer porosity 

𝐶𝑡 is the total (rock + water) compressibility 

𝑟𝑜 is the outer radius of the reservoir (or inner radius of the aquifer) 

𝑘𝑎 is the aquifer permeability 

𝑐1 is 0.008527 (METRIC, PVT-M); 0.006328 (FIELD); 3.6 (LAB) 

𝛽 = 𝑐2ℎ𝜃𝜙𝐶𝑡𝑟𝑜
2 

 

(A.2) 

Where:  

ℎ is the aquifer thickness 

𝜃 is the angle subtended by the aquifer boundary from the center of the reservoir, in 

degrees, divided by 360o 

𝜙 is the aquifer porosity 

𝐶𝑡 is the total (rock + water) compressibility 

𝑟𝑜 is the outer radius of the reservoir (or inner radius of the aquifer) 

𝑐2 is 6.283 (METRIC, PVT-M); 1.1191 (FIELD); 6.283 (LAB). 

The time constant (𝑇𝑐) calculation is to calculate the dimensionless time and the Carter-

Tracy model can expresses the pressure drop at the aquifer boundary in terms of the 

dimensionless pressure influence function. 

𝑝𝑎0 − 𝑝̅ =
𝑄𝑎

𝛽
𝑃𝐼𝐷(𝑡𝐷) 

 

(A.3) 

Where: 

𝑄𝑎 is the aquifer inflow rate 

𝑝𝑎0 is the initial pressure of water in the aquifer 

𝑝̅ is the average water pressure on the aquifer/reservoir boundary. 

The average aquifer inflow rate is calculated in grid block i over simulation time interval 

as 

𝑄𝑎𝑖
̅̅ ̅̅ = 𝛼𝑖{𝑎 − 𝑏[𝑝𝑖(𝑡 + ∆𝑡) − 𝑝𝑖(𝑡)]} (A.4) 



 

Where: 

𝑎 =
1

𝑇𝑐

 {
𝛽∆𝑝𝑎𝑖 − 𝑊𝑎(𝑡)(𝑃𝐼𝐷

′ )(𝑡 + ∆𝑡)𝐷

𝑃𝐼𝐷(𝑡 + ∆𝑡)𝐷 − 𝑡𝐷𝑃𝐼𝐷
′ (𝑡 + ∆𝑡)𝐷

} 

𝑏 =
𝛽

𝑇𝑐[𝑃𝐼𝐷(𝑡 + ∆𝑡)𝐷 − 𝑡𝐷𝑃𝐼𝐷
′ (𝑡 + ∆𝑡)𝐷]

 

∆𝑝𝑎𝑖 is the pressure drop 𝑝𝑎0 + 𝜌𝑔(𝑑𝑖 − 𝑑𝑎) − 𝑝𝑖(𝑡) 

𝑃𝐼𝐷′ is the derivative of 𝑃𝐼𝐷 to 𝑡𝐷 

𝛼𝑖 is the area fraction for each connection 

The area for each connection is calculated by the block face communicating with the 

aquifer with the aquifer influx coefficient multiplier by Equation A.5. 

𝛼𝑖 =
𝑚𝑖𝐴𝑖

∑𝑚𝑖𝐴𝑖

 
(A.5) 

Where: 

𝐴𝑖is the area of the block face communicating with the aquifer. 

𝑚𝑖 is an aquifer influx coefficient multiplier 

  



 

Appendix 3: Anisotropy Study 

A previous anisotropy study is shown in figure below 

The mud layer on the depth of 52 – 58m is modified to coarse sand. 

Without the vertical leakage introduced along the well, the permeability anisotropy 

required for the CO2 plume to migrate to the upper mud layer is 2. Permeability 

anisotropy of 0.1 will only gives a lateral movement, therefore a vertical path is needed 

when anisotropy is 0.1. 
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