
Sensitivity analysis using Finitie Elem
ent M

ethod
Eirik Kaasbøll Andresen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

Eirik Kaasbøll Andresen

Development of an automation
method to conduct sensitivity
analysis on weakness zones using
Finite Element Modelling

with focus on total deformations

Master’s thesis in Tekniske Geofag
Supervisor: Alexandre Lavrov
Co-supervisor: Are Håvard Høien
July 2022

M
as

te
r’s

 th
es

is

Eirik Kaasbøll Andresen

Development of an automation
method to conduct sensitivity analysis
on weakness zones using Finite
Element Modelling

with focus on total deformations

Master’s thesis in Tekniske Geofag
Supervisor: Alexandre Lavrov
Co-supervisor: Are Håvard Høien
July 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Geoscience and Petroleum

 2

Abstract
In hard rock areas, such as the Norwegian geological landscape, are weakness zones one

of the most prominent reasons for instability related problems met in the tunnelling

industry. It is therefore imperative to gain reliable information regarding such zones early

enough, to make the impact on the economy and the excavation time of the project as low

as possible. Over the years, many contributions have been made to include the effect

weakness zone has on the general stability of the tunnels. Most of these contributions are

empirically based, assessing the stability based on field observations. However, due to

being empirically based, these systems are not optimized. It has been proven that the

usage of security measures often is unnecessary high or the wrong security method is

chosen in Norwegian road tunnelling projects in areas affected by weakness zones.

In this thesis, a sensitivity study on weakness zones’ impact on the overall stability of a

tunnel has been done using computer based Finite Element Modelling-tools. The FEM

method was mainly chosen due to its abilities in modelling the complex geometries and

material behavior. The 2-dimensional FEM program RS2 distributed by RockScienceTM was

chosen in this thesis due to its popularity in the industry and being well documented.

However, RS2 is not optimal when conducting a sensitivity study, since it does not support

model creation using scripting. This would potentially limit the number of models to be

created. To overcome this problem, it was developed a script to automize the model

construction, calculation and data gathering process of RS2. The development of the script

made it possible to run in the total of 3696 models in matter of days, which would not be

possible without it.

The focus of the sensitivity study was on geometrical features regarding weakness zones

resembling faults, which is one of the most usual type of weakness zone faced in hard rock

tunnelling as there is Norway. The included parameters were: (a) the zone thickness, (b)

the overburden, (c) the zone angle and (d) the shortest distance between tunnel center

and the zone.

An important finding was that the zone angle Θ did not have any significance on the tunnel

stability for any zone thicknesses 𝛵, overburdens Η, and normalized shortest distances

between tunnel center and weakness zones Γ𝑛𝑜𝑟𝑚. Another important insight was that

maximum strain 𝜖𝑚𝑎𝑥 = 𝜖𝑡𝑜𝑡(Γ𝑛𝑜𝑟𝑚 = 1.1)∀Τ . A third curiosity was that the weakness zone

was out of the influence zone of the tunnel when Γnorm >≈ 2. The exponential increase of

𝜖𝑡𝑜𝑡 with increasing Η is severely primed when Τ also is increased.

It is believed that the method developed in the thesis could be used to define a

dimensionless number, analogous to the Reynolds number used in Fluid mechanics. This

number can be used to predict when the weakness zone no longer affects the stability of

the tunnel. To do this the tunnel size must be varied in addition with a more thoroughly

defined sensitivity study in where the material behavior also must be varied

 3

 4

Sammendrag
I områder med harde bergarter, tilsvarende det Norske geologiske landskapet, er

svakhetssoner en av de viktigste årsakene til stabilitetsrelaterte problemstillinger møtt i

tunnelindustrien. Det er derfor nødvendig å få tilgang på representative data tilknyttet

slike soner tidlig nok, til å kunne redusere dets negative konsekvenser angående

økonomiske forhold og eventuell stans under driving. Gjennom årene har det vært bange

bidrag for å inkludere svakhetssonens negative innvirkning på tunnelstabiliteten. Fleste

parten av disse er empiriske konstruksjoner, som beskriver det totale stabilitetsbildet

basert på feltobservasjoner. Men, det faktum at de er tuftet på empiri, medfører at de ikke

er optimalisert. Det har blitt vist at overforbruk av sikringstiltak og/eller feil valg av

sikringstiltak forkommer ofte i tunneldriving i norske tunneler når svakhetssoner er

innenfor influensavstanden visavis tunnelen.

Denne masteroppgaven tar for seg en sensitivitetsstudie angående svakhetssoners effekt

på en tunnels totalstabilitet ved å benytte programvare basert på endelig-element

metoden (EEM). Hovedgrunnen til å benytte EEM var på grunn av dets evne til å modellere

komplekse geometrier og materialoppførsler. Den 2-dimensjonale EEM-baserte

programvaren RS2, distribuert av RockScienceTM, var valgt grunnet dets popularitet i

industrien, og grunnet at dets bruk er vel dokumentert.

Men, RS2 er ikke optimal når det skal utføres en sensitivitetsanalyse, siden det ikke er

mulig å definere modellene ved å anvende scriptbaserte løsninger direkte, som igjen ville

kunne begrense antallet modeller som kunne blitt laget. For å overkomme denne

hindringen ble det utviklet et script for å automatisere modelleringsprosessen prosessen

til Rs2 og den påfølgende dataprosesseringen. Det utviklede scriptet muliggjorde å

konstruere totalt 3696 modeller i løpet av få dager, noe som ikke ville vært mulig uten

det.

Sensitivitetsstudien ble fokusert til å i hovedsak angå svakhetssonens geometriske

parametere, hvor det ble kun sett på forkastningssoner. Dette er en av de hyppigst møtte

svakhetssoner i hardt berg tilsvarende norske forhold. Følgende parametere ble undersøkt:

(a) mektigheten til sonen, (b) overdekningen, (c) sonevinkelen, og (d) korteste avstand

fra tunnelsenter til sonen.

En viktig innsikt var at sonevinkelen Θ ikke hadde en signifikant innvirkning på tunnel

stabiliteten for alle sonetykkelser Τ, overdekninger Η og den normaliserte korteste avstand

mellom tunnelsenter og svakhetssone Γ𝑛𝑜𝑟𝑚 . En annen kuriositet var at den maksimale

tøyning 𝜖𝑚𝑎𝑥 = 𝜖𝑡𝑜𝑡(Γ𝑛𝑜𝑟𝑚 = 1.1)∀Τ,Η . En tredje innsikt var at svakhetssonen forekom

utenfor influensavstanden til tunnelen når Γ𝑛𝑜𝑟𝑚 ≈ 2. Den eksponentielle vekst av 𝜖𝑡𝑜𝑡 med

økende Η skjyter ytterligere fart når Τ samtidig blir økt.

Det er grunner til å tro at det vil være mulig å kunne utvikle et enhetsløst tall analogt til

Reynoldstallet i fluidmekanikken. Dette tallet ville kunne uttrykke punktet hvor sonen

forlater influensavstanden relativt tunnelen. For å gjøre dette må en mer omfattende studie

bli utført, der hvor tunnelradiusen må bli endret, og hvor elastitets- og styrke parametere

for sone og omkringliggende berg blir inkludert.

 5

 6

This thesis has been performed as the final work of the master’s degree program

Geotechnology at the Department of Geoscience and Petroleum, Norwegian University of

Science and Technology.

The thesis has been done in cooperation with Norwegian Public Roads Administration

(NPRA).

First and foremost, I want to thank my supervisors. Professor Alexandre Lavrov, thank you

for your help regarding technicalities of modelling and stability calculations. Thank you for

your good advice and for always being available and open for discussions. I have learned

a great deal of your guidance. Are Håvard Høien, thank you for giving me the opportunity.

I am grateful for the internship I was given the summer 2021 and for the opportunity to

develop my understanding of how rock mechanics is used in practice in the field of rock

engineering, and the implication it has on practical modelling. Thank you for your support

and for your endurance, for it have been a few questions over the last months. And thank

you for letting me be creative in the solution of this thesis. Without your support, I would

not have been able to steer this thesis towards scripting development and automation,

which is two interests of mine.

Thank you so much, Jorge, for being available for discussions and for sharing your

experiences with me, and for believing in my work. It means a great deal to me. I am

looking forward to follow the work of your doctoral thesis in the years to come!

A great thanks to my father, your support and guidance have been more than welcome.

You always manage to motivate me somehow; you have to teach me your secret. I want

to express my gratitude to my siblings, for always being bored when I was talking about

my thesis. It helped me remember the life outside the realm of academic writing and that

the thesis is not everything. We have had many interesting and amusing conversations

about all and nothing over the last months. And thanks to you mom, for believing in me

and for your daily support. I would not have been here I am today without it.

Last, my appreciation goes to my classmates, without your comradeship and daily lunches

I do not know if I would ever finish the thesis. Erlend, together we have raised our skills

in table tennis to new heights. It has been quite a journey. Thanks to you, John Isak, your

sense of humor is a delight. Thank you, Anders and Brage, for your positive energy and

your initiative to also have some fun at the department. The idea of one of us bringing

“nogo godt attått kaffen” the last weeks of writing was one of those great initiatives. Thank

you, Sander and Espen, for good and frequent discussions regarding our thesis work. It

has been interesting to follow your journey. Thank you, Kristoffer, Vegard, Are Håvard and

Alexandre for giving helpful feedbacks regarding the technicalities of writing.

Preface

 7

P.S

I must confess; I greatly underestimated the amount of scripting needed to complete this

thesis. In fact, if I knew what I do today regarding the knowledge and skills needed to

create the script, this journey would have ended faster than you can say

(𝑀𝑔, 𝐹𝑒2+)2(𝑀𝑔, 𝐹𝑒2+)5𝑆𝑖8𝑂22(𝑂𝐻)2. Indeed, it has truly been a journey, which I am glad I

stumbled across.

He is: frog: unworried by the self-consciousness with which the human animal is stuck; it is
our blessing and our curse; not only do we know; we know that we know. And we are not
often willing to face how little we know.

― Madeleine L'Engle, The Summer of the Great-Grandmother

Luckily, I was not willing to know!

https://www.goodreads.com/work/quotes/666441

 8

Table of Contents
Table of Contents ... 8

List of Figures ...10

List of Tables ...13

List of Abbreviations and Symbols ..14

1 Introduction .. 16

2 Background ... 22

2.1 Insights of the specialization project ..22

2.2 Rock mechanics theory ..24

2.2.1 Important definitions ... 25

2.2.2 Stress ... 26

2.2.3 Strain .. 30

2.2.4 Deformation properties of rock ... 31

2.2.5 Plasticity .. 42

2.2.6 Time-dependent deformation ... 43

2.2.7 Strength of intact rock ... 45

2.2.8 Failure criteria of intact rock ... 48

2.2.9 Anisotropy and deformability of rock mass ... 54

2.2.10 The stress distribution .. 65

2.2.11 Structure and material behavior of weakness zones 68

2.3 FEM modelling ..75

2.3.1 A brief summary of numerical modelling and finite element method 75

2.3.2 A comparison of 2D and a 3D numerical modelling 78

2.3.3 The effect of dynamic unloading ... 78

2.4 Programming ..79

2.4.1 Definitions ... 79

2.4.2 Software and tools used the in the thesis ... 83

3 Parameter study setup ... 86

4 Results ... 92

5 The numerical model and experiences of the automation process 98

5.1 Choice of numerical method ...98

5.2 The choice of numerical software and verification of the numerical models99

5.2.1 The choice of numerical software .. 99

5.2.2 Verification of the numerical models .. 99

5.3 Factors regarding the development of the automation script 100

5.3.1 The investigation of approaches of development 100

 9

5.3.2 Implementation of the automation script – a few notes 105

6 Aspects regarding the sensitivity study setup ... 112

6.1 The choices of sensitive parameters .. 112

6.2 The experiment layout ... 113

6.3 Geometry ... 117

6.3.1 Tunnel .. 117

6.3.2 Fault Zone .. 117

6.3.3 The outer boundary.. 118

6.4 Mesh and sampling considerations ... 118

6.4.1 The definition of mesh .. 118

6.4.2 Sampling of data ... 122

6.5 Material behaviour of host rock and weakness zone 124

6.5.1 The host rock .. 124

6.5.2 Weakness zone .. 126

6.6 Stress-inducing forces ... 127

6.7 Symmetry – reducing number of models .. 127

7 Discussion of results .. 130

8 Conclusion ... 132

9 References ... 134

10 Appendix ... 140

 10

List of Figures
Figure 1: A map over the main geological components of the Norwegian geological

landscape. .. 16

Figure 2 Typical structure of fault zones. (a) Replicates a singular high-strain core

surrounded by fractured damage zone and (b) represents a model of multiple high-strain

cores in which enclose lenses of fractured protolith. Taken from (Faulkner et al., 2010).

 ... 24

Figure 3: Types of discontinuities given by their lengths, made by Palmstrom (1996). . 25

Figure 4: Stress state and vectors at a given point, from RocScience (2021)............... 27

Figure 5: Transformation in terms of Euler angles, from Roylance (2001). 28

Figure 6: The three main constituents of rock mechanics and their mutual dependency (Li,

2018). ... 31

Figure 7: Tunnelling related deformations, made by Høien (2018). 32

Figure 8: Typical stress-strain curves for rock, taken from Jaeger et al. (2009). 32

Figure 9: Pattern of radial displacement in the roof and floor of an advancing tunnel.

Illustration made by Hoek et al. (1995). ... 33

Figure 10: A realistic stress-strain curve (Li, 2018) compared to idealised rheological

models of rock masses (Crowder & Bawden, 2004). ... 34

Figure 11: Uniaxial E-modules in GPa for different Norwegian rock types, extracted and

made by Høien et al. (2019) from SINTEF rock mechanical properties database (SINTEF,

2016). ... 37

Figure 12: Range of Poisson’s ratio for some intact rock types extracted by Gercek (2007)

from data presented by (Hatheway & Kiersch, 1986; METU, 1989a, 1989b, 1989c; Vutukuri

et al., 1974) ... 38

Figure 13: Stress-strain curves for six representative rocks in uniaxial compression,

illustration made by Wawersik (1968). ... 39

Figure 14: Rock specimen get more ductile with increased confining pressure which also

affects the failure mode, borrowed from Jaeger et al. (2009). 40

Figure 15: The effect of temperature on the stress-strain curve, taken from Hudson and

Harrison (1997). ... 41

Figure 16: Post-peak behaviour for three different idealistic situations, as illustrated by

Hoek and Brown (1997). .. 43

Figure 17: Creeping curve of imaginary overstressed weak rock, taken from Li (2018). 44

Figure 18: Specimen loading condition for experimental strength tests, from Hudson and

Harrison (1997). ... 45

Figure 19: Uniaxial compressive strength (UCS) in MPa for Norwegian rock types extracted

and made by Høien et al. (2019) from SINTEF rock mechanical properties database

(SINTEF, 2016). .. 46

Figure 20: The peak shear strength of unfilled rock joints from, made by Barton (1976).

 ... 47

Figure 21: Mohr's circle, illustration made by Edelbro (2003). 50

Figure 22: Mohr failure circles and envelope for a limestone given from published triaxial

data for intact samples, figure borrowed from Hoek (1983). 50

Figure 23: This figure presents the scaling effect as a consequence of different tunnel sizes,

as illustrated by Edelbro (2003). ... 55

Figure 24: Illustration of the difference between discontinuous and continuous rock mass.

The size of the tunnel is held constant . Edelbro (2003) has made the illustration. 55

https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029025
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029025
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029026
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029026
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029026
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029026
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029027
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029028
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029029
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029030
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029030
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029031
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029032
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029033
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029033
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029034
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029034
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029035
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029035
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029035
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029036
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029036
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029036
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029037
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029037
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029038
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029038
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029039
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029039
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029040
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029040
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029041
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029042
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029042
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029043
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029043
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029043
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029044
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029044
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029045
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029046
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029046
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029047
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029047
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029048
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029048

 11

Figure 25: Variation of the peak deviatoric stress with the angle of inclination of the major

principal stress to the plane of weakness, given by different confining pressures for (a) a

phyllite(Donath, 1972), (b-d) a slate and two shales (Brady & Brown, 1993). 56

Figure 26: Illustration of joint sets influence on the strength of the rock mass, figure taken

from Li (2018). .. 57

Figure 27: Variation of in situ rock deformability as a function of the frequency of one

discontinuity set (idealized) taken from Hudson and Harrison (1997). 57

Figure 28: The relation between unsupported rock mass strength and strain. (Hoek &

Marinos, 2000) .. 64

Figure 29: Field observations of total strain of headrace tunnels. (Høien et al., 2019) .. 64

Figure 30: Different parameters affecting the stress state(Amadei & Stephansson, 1997).

 ... 65

Figure 31: k-values gathered across the world, made by Brown and Hoek (1978)........ 66

Figure 32: The k-ratio and calculated stress towards depth, made by Høien et al. (2019),

based on (Hatheway & Kiersch, 1986; Sheorey, 1994). .. 67

Figure 33: Illustration of how a weakness zone may alter the stress distribution in the

proximity of the tunnel, illustration made by Myrvang (2001). 68

Figure 34: Typical structure of fault zones. (a) Replicates a singular high-strain core

surrounded by fractured damage zone and (b) represents a model of multiple high-strain

cores in which enclose lenses of fractured protolith. Taken from Faulkner et al. (2010). 69

Figure 35: A classification of fault rocks based on visual characteristics. Made by (Woodcock

& Mort, 2008). .. 70

Figure 36: A fault who undergoes a gradual transition from brittle character to a ductile

shear zone. Made by Sæter (2005). ... 71

Figure 37: Conceptual model of a fault zone with removal of the protolith showing its

complexity. This model focuses on permeability (k) (Caine et al., 1996). 72

Figure 38: Models showing how density of macro-fracture (left) and microfracture (right)

decreases with distance from fault core given from three strike-slip fault zones in low

porosity crystalline rocks north in Chile. Bianca fault showed 35 m of displacement,

Cristales Fault showed 220 m, and Caleta Coloso showed 5 km, from Mitchell and Faulkner

(2009). .. 73

Figure 39: The increase in damage zone width plotted against fault displacement (Mitchell

& Faulkner, 2009). The shaded area shows the extent of data compiled by (Hatheway &

Kiersch, 1986); Savage and Brodsky (2010). .. 73

Figure 40: Log-log plot of gouge-zone thickness, t, against total slip, x. Estimated by Scholz

(1987). .. 74

Figure 41: Illustration of Cartesian coordinate system to the left, and computer coordinate

system to the right. Taken from (Vincent, 2017) ... 83

Figure 42: A line chart presenting the total strain plotted against the normalized shortest

distance from tunnel center to weakness zone for zone thickness of 1m. The difference of

overburden is given by the different color, and distinct entity marks a new zone angle. 93

Figure 43: A line chart presenting the total strain plotted against the normalized shortest

distance from tunnel center to weakness zone for zone thickness of 2m. The difference of

overburden is given by the different color, and distinct entity marks a new zone 94

Figure 44: A line chart presenting the total strain plotted against the normalized shortest

distance from tunnel center to weakness zone for zone thickness of 4m. The difference of

overburden is given by the different color, and distinct entity marks a new zone 95

Figure 45: A line chart presenting the total strain plotted against the normalized shortest

distance from tunnel center to weakness zone for zone thickness of 8m. The difference of

overburden is given by the different color, and distinct entity marks a new zone 96

https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029049
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029049
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029049
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029050
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029050
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029051
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029051
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029052
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029052
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029053
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029054
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029054
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029055
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029056
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029056
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029057
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029057
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029058
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029058
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029058
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029059
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029059
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029060
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029060
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029061
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029061
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029062
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029062
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029062
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029062
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029062
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029063
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029063
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029063
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029064
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029064
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029065
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029065
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029066
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029066
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029066
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029067
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029067
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029067
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029068
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029068
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029068
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029069
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029069
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029069

 12

Figure 46: Snapshots of two methods of assigning materials in RS2. Method (a) on the left

and method (b) the right. .. 102

Figure 47: Two examples on how a successful model creation in RS2 should look like. 106

Figure 48: Six examples of unsuccessful implementation of geometry construction is here

presented. RS2 is very sensitive regarding of the positioning of the points defining the

geometries. ... 107

Figure 49: A model with mesh. ... 108

Figure 50: Examples of contour plots. ... 109

Figure 51: This is used as an analogy to clarify the need of VBA to automize the

construction of charts in excel. ... 111

Figure 52: Example of deformation distribution of one of the models created in the

experiments of the thesis. Observe the skewness of the deformation envelope, indicating

a force momentum that would be developed if security measures were installed. 114

Figure 53: Graphical representation of the force moment calculation. 115

Figure 54: It can be seen from the red arrows indicating direction of deformation, that it

can be assumed that the direction of force along the tunnel rim is normal to the rim. . 116

Figure 55: Example of a tunnel geometry in accordance with the Norwegian national

standard N500. (SVV, 2022) .. 117

Figure 56: The mesh of the experiments of the thesis looks like this. The clustering of

points is kept around the neighborhood of the tunnel. ... 119

Figure 57: The looks of the mesh defined in Table 7. It is relatively fine-grained in

comparison with the mesh of Figure 56. .. 120

Figure 58: The deformation distribution calculated based on Figure 56, but with a 3-noded

mesh. See Table 5 for definition of mesh. The deformation envelope deviates significantly

from the one in Figure 59. ... 120

Figure 59: The deformation distribution calculated based on Figure 56. See Table 5 for the

definition of mesh. .. 121

Figure 60: The deformation distribution calculated based on Figure 57. The mesh is defined

in Table 7. The deformation envelope is almost identical with the one in Figure 59. 122

Figure 61: Tunnel with 90 points only sample 90 datapoints when using the query

excavations function in RS2 Interpret. Else, it gives almost identical deformation

distribution compared with Figure 62. ... 123

Figure 62: Tunnel with 360 points gives 360 datapoints when using query excavations

function in RS2 Interpret. Else, it gives almost identical deformation distribution compared

with Figure 61. ... 123

Figure 63: The distribution of fractures around the tunnel rim in a worst case-scenario

model in where the overburden is 1200m, the zone thickness is 8m and the zone is tangent

to the tunnel. It can be seen that most of fractures are close to the tunnel rim, and that

deformation envelope is dominated by the weakness zone....................................... 125

Figure 64: Deformation distribution of a model with overburden of 100 meters, zone

thickness of 2 meters, zone angle of 22.5o, and shortest distance from tunnel center to

zone of 1 meter. ... 128

Figure 65: Deformation distribution of a model with overburden of 100 meters, zone

thickness of 2 meters, zone angle of 67.5o, and shortest distance from tunnel center to

zone of 1 meter. ... 127

https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029070
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029070
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029071
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029072
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029072
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029072
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029073
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029074
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029075
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029075
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029076
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029076
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029076
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029077
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029078
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029078
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029079
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029079
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029080
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029080
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029081
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029081
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029082
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029082
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029082
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029083
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029083
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029084
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029084
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029085
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029085
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029085
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029086
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029086
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029086
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029087
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029087
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029087
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029087
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029088
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029088
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029088
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029089
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029089
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029089

 13

List of Tables
Table 1: The table enlists the parameters varied in the sensitivity experiment. In the last

column, the number of values for each parameter are given.The value of 3696 is the total

number of models constructed in the thesis. ... 87

Table 2: The parameters defining the geometries of the template models are presented

here. .. 88

Table 3: The parameters defining the stress state and material behavior of the geology are

presented below. ... 89

Table 4: The parameters defining the settings of the calculation is presented here. 90

Table 5: The parameters defining the mesh settings are given below. 90

Table 6: Imagined position values of two drones used to analyze its steering system when

an artificial wind is blowing in x-direction. This is used as an analogy to clarify the need of

VBA to automize the construction of charts in excel. ... 110

Table 7: The definition of the mesh used in the definition of Figure 57. The purpose of this

model is to investigate the effect of a finer mesh than the mesh used in the models created

in the experiments of the thesis. .. 119

https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029016
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029016
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029016
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029017
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029017
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029018
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029018
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029019
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029020
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029022
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029022
https://studntnu-my.sharepoint.com/personal/eirka_ntnu_no/Documents/MasterThesis1.docx#_Toc109029022

 14

List of Abbreviations and Symbols
Abbreviations:

FEM Finite Element Modelling

GHB Generalized Hoek-Brown failure criterion

MC Mohr-Coulomb failure criterion

GSI Geological Strength Index

CAD Computer Aided Drawing

rm Rock mass

i Intact

r Residual

t Tunnel

Symbols:

𝑛 Number of models

𝑛𝑡 Number of points defining the tunnel in the model

𝑅𝑡 Tunnel radius

𝐸 Young’s modulus/Elastic modulus (can be used with the

lower-case acronyms except of t)

𝜈 Poisson’s ratio (can be used with the lower-case

acronyms except of t)

𝑡_0 peak tensile strength

𝜎_𝑐 peak strength, uniaxial compression test

𝑡_𝑟 residual tensile strength

𝜙 friction angle

𝑐 cohesion

𝜓 dilation angle

𝑎 Hoek-Brown constant

𝑚_𝑏 Hoek-Brown constant

𝑠 Hoek-Brown constant

𝑘 vertical to horizontal stress ratio

𝛨 overburden

𝛩 angle of weakness zone

𝛵 thickness of weakness zone

𝛤 shortest distance from tunnel center to weakness zone

𝜀 Young’s modulus/Elastic modulus (can be used with the

lower-case acronyms except of t)

𝜎 Poisson’s ratio (can be used with the lower-case

acronyms except of t)

𝑑𝑡𝑜𝑡 Total deformation

𝜖𝑡𝑜𝑡 Total strain

𝜖𝑚𝑎𝑥 Maximum total strain of all models of an experiment

Γ𝑛𝑜𝑟𝑚 The normalized distance, unitless

 15

 16

The Norwegian geology generally consists of rock mass of good quality. The reason for this

is mainly due to the last ice age, initiated in mid-Mesozoic, where the ice movement eroded

away the weaker layers of rock. The end of the ice age marks the transition from

Pleistocene to Holocene. In Holocene, the ice melted away. This exposed a geological

landscape dominated by folding and fault structures of the Caledonian mountain range

mainly defined by bedrock from Precambrian and Caledonian. A map is presented in Figure

1. The Caledonian rocks are mainly metamorphosed rocks of both sedimentary and

volcanic origin. The Precambrian rocks generally consists of granites, gneisses, and gabbro

of all ranges of metamorphism. The Norwegian geology is therefore dominated by hard

rock intersected by weakness zones originated from tectonic activity and in some cases,

Mesozoic weathering. The weakness zones vary therefore in character and shows a great

variation of quality and extent.

Weakness zones is the main reason for stability challenges in Norwegian tunnelling.

According to (Nilsen, 2016), typical challenges can include: (a) minor zones and jointed

rock in urban areas usually with an overburden between 5 and 100 meters, (b) weakness

zones with Mesozoic weathering which may contain swelling clay, (c) wide weakness zones

in sub-sea fjord crossings between 100 to 300 m below sea level, and (d) overstressing of

solid rock and weakness zones for tunnels under high mountains or along steep valley

sides, ranging up to 1000 meters overburden or more.

1 Introduction

Figure 1: A map over the main geological components of the Norwegian geological
landscape.

 17

Rock mass classification systems to approximate rock mass quality has been the industry

standard for planning and excavation stages in Norwegian tunnelling for decades.

Classification systems main strengths is to make fast and safe assumptions of the quality

of the rock mass. The gathered stability assessment is then used to predict necessary

security measures. Classification systems is fast in use since the parameters used is mostly

based on field observations. However, classification systems are empirically based.

Therefore, it does not necessarily capture the physical nature of the rock mass. For

instance, it have been proven an overconsumption of ribs of reinforced sprayed concrete

(RRS), a heavy method used to secure against weakness zones of low quality, in

construction of Norwegian road tunnels over the two last decades (Høien, 2018; Høien &

Nilsen, 2019). Of this it is argued that the classification system used do not depict the

impact of weakness zone in a satisfactory manner. Overconsumption of security measures

and the choice of more heavy security measures leads to unnecessary time- and cost

consumption. An optimalization of the stability assessment is also important in an

environmental point of view.

The physical nature of how weakness zones alter the stress state and the distribution of

deformations is still in some extent a mystery and needs more thorough investigations

(Edelbro, 2003). To be able to make better predictions of rock mass quality in future

tunnelling projects with hard rock conditions, it is imperative to gather more knowledge on

the physical nature of weakness zones’ impact on tunnel stability.

An important factor explaining the knowledge gap on how weakness zones affect tunnel

stability; is the limited possibilities on data sampling faced in the field of engineering

geology. This has paved the road for empirically based equations. It is especially difficult

to gather information during tunnelling due to its relatively large scales. The basis for the

decision-making is: (a) observations of free surfaces, (b) measurements of physical

parameters using indirect methods such as geophysics, and (c) measurements of physical

parameters given by direct methods such as the point load test or the UCS-test. Each of

these general approaches comes with a variety of sources of error, pros, and cons. A

common denominator is if the observations or measurements is representative of the

neighboring rock mass. The answer is that it depends on the variability of the rock mass,

which again depends on the location of the tunnel. Also, short time limits, defined by the

contract of a project, has also driven the method of rock engineering in the direction of

inductive decision making.

The general theoretical concepts, borrowed from the field of rock mechanics to describe

rock mass behavior, are often based on assumptions simplifying the behavior of rock

material to be isotropic and homogenous (Kaasbøll Andresen, 2021). There exists more

complex theoretical framework. For example, there is developed failure criteria to describe

the material behavior of breccias (Kalender et al., 2014), but they are seldom used in

practice. One of the reasons is that the simpler equations such as Mohr-Coulomb and Hoek-

Brown has been used for decades in many different applications such as squeezing, and

their limitations is therefore readily understood. This makes it easier to manage the sources

of error. The field of rock engineering is complicating the matter further by combining

theoretical aspects borrowed from rock mechanics with empirical methods, often in where

the parameters used in the equations are based on observations alone. To conclude, the

sources of failure are many in this field and the methods used is not necessarily depicting

the rock mass true physical nature, and is used because they work.

 18

To be able to calculate on stress and strain distributions it was assumed that the behavior

of rock mass can be calculated using linear elastic theory (Hooke’s law) and that Newton’s

laws of motion also applies for rock mass. These two assumptions are vastly used in the

field and enables the usage of the Finite Element Method (FEM) which have been used in

stress analysis of rock mass in the field of rock engineering for decades. One reason for

this is that FEM-tools enables analysis of rather complex geometries and variable material

behavior. This method assumes that a mathematical continuum can be divided into discrete

geometrical entities in which each entity behaves under the same mathematical rule. An

example of such a rule is the failure criterion, which describes when and where a given

material undergoes failure. Moreover, inner forces in this discretized continuum, is

transferred from one entity to another by nodes defined on the rim of these entities. The

source of the inner forces is often due to impact of outer forces such as gravity. A key

concept of the force transfers is the superposition principle. This states that all forces

working on a geometrical entity are independent and can be summed together making a

resultant response called a resultant force. Thus, the principal of super position demands

that the mathematical continuum to be a vector space, which implies that the continuum

behaves linearly. Thus, the rock mass modelled is assumed to be a mathematical

continuum and vector space abiding the laws of Newton and Hooke, which again makes it

possible to use the Finite Element Method in the analysis of the thesis.

Due to the many sources of error, both in the theoretical abstraction of the rock mass

medium and in the observations and measurements of parameters believed to describe

rock mass behavior, a quantitatively designed experiment is a rather complex task. One

of the reasons is that the necessary assumptions to be made must be applicable for the

specimens of the experiment. Nevertheless, a qualitative study, in where several numerical

models are conjunctively compared, may give results which can give new insights

regarding the physical nature of weakness zones and how their presence alters the stress

and strain distribution around excavations. The reason for this is that they all are defined

by the same set of assumptions in where the accompanied errors are the same.

Henceforth, if the models show satisfactory differences in stress and strain states, an

analysis of these differences can be made.

By using FEM modelling it is possible to calculate the changes in stress and strain

distributions induced by an excavation process. Furthermore, with this tool it is possible to

change the input parameters and investigate changes in the output of the modelling

process. More specifically, in this case it would be the parameters deemed important for

describing the behavior of weakness zones that would be of interest. This kind of qualitative

experiment is called a sensitivity analysis. Saltelli (2002) defines sensitivity analysis as the

study of how the uncertainty in the output of a mathematical model or system can be

divided and allocated to different sources of uncertainty in its inputs.

Consequently, it was conducted a sensitivity analysis on how the presence of a weakness

zones in a host rock affects the distribution of deformation around a circular tunnel. The

theoretical and practical basis of stability analysis in rock mechanics and rock engineering

was researched in the specialization project (Kaasbøll Andresen, 2021). This project

culminated with a discussion on weakness zone parameters effect on stability and was

concluded with a suggestion of eight different parameters to be varied in a sensitivity

analysis, ranging from material equations to its geometrical features. Regarding the

sensitivity analysis, the eight parameters imply a need for a vast number of FEM models

to be created and calculated. The reason for this is that the number of FEM models needed

is given by the multiple of the number of values tested for each parameter. Thus, the

 19

number of models needed increases exponentially and more rapidly for each parameter

included in the study.

In accordance with several sources (e.g.Mao & Nilsen, 2013; Trinh et al., 2010), the

commercial software package RS2 made by RockScienceTM is the most used FEM-program

for 2D-analysis in the industry. However, RS2 is not developed for experiments in where

it is necessary to create many models. The only module created for batch-operations is

RS2-compute in where the models to be calculated is prepared in advance. The most

demanding task is the creation of the geometry and the allocation of the material behavior

of the different geological entities which must be done using keyboard and mouse

operations only. Thus, this is a bottle neck for how big the sensitivity study can be designed

using RS2 in where the slow construction and material allocation processes limits how

many models that can be produced.

A solution to this bottleneck was investigated and deemed possible to develop as part of

the thesis. This was possible by combining the Open functionality of the python program

language with the module PyAutoGUI distributed by Conda forge. The PyAutoGUI module

is also written in python, and the implementation of this combination script was

consequently written in python. This combination script’s main purpose was to automate

the entire modelling process; from the model and mesh construction to the first stages of

the data processing.

The automation script was successfully implemented and worked as the backbone for the

experimental method of this project. Consequently, this script enables the creation of

thousands of numerical models in matter of days. Also, the relative short calculation time

made it possible to use it as an integrated part in the development of the method.

A problem with datasets of this magnitude is that one single numerical model is by itself a

big dataset. Thus, it was important to fetch parts of each dataset which was of importance

for the sensitivity analysis of this thesis. The solution was to only analyze the deformations

around the tunnel periphery, since the magnitudes of the deformations are greatest there

depending on the intensity of rock failure. Furthermore, it was observed that the

deformations near weakness zones often are skewed, implying a moment of force that

must be included in calculations when security measures are planned. Therefore, it can be

interesting to capture the skewness of the deformation distribution around the tunnel

periphery in a way that a big dataset of models can be compared. This can be done by

calculating deformation moments, an artificial parameter inspired by the concept of force

moments borrowed from static mechanics.

To summarize, the general goal of the thesis was to map which parameters describing the

geometry and the material behavior of the weakness zone that are leading to notable

changes in the models, and how much each parameter contributes to the leading changes.

In the thesis, the output monitored was the deformations on the tunnel periphery. A

sensitivity analysis was conducted using FEM modelling as the base of the analysis. To be

able to do an analysis with a big enough impact, a script was developed to compensate for

RS2’s lacking batch functionalities. The method of the experiment was developed by

combining insights from the specialization project, and from test experiments using RS2

and the automation script. The key in this process was to map which parameters that was

to be varied in the final experiment and which parameters suggested in the specialization

project that was to be investigated in the full-scale experiment. A discussion upon: (a) the

choices of the model construction in RS2 and of its input parameters, (b) experiences made

during the development of the script, and (c) the implications of the results of the

 20

sensitivity analysis. It all ends with the conclusions of the sensitivity analysis and

culminates with suggestions for further work.

 21

 22

Weakness zones is the most prominent reason for instability problems in hard rock areas

such as Norway (e.g. Høien et al., 2019).

In this chapter, the background of the development of the sensitivity experiment, and to

underline the dilemmas that needs to be solved. The section is subdivided into the following

subsections: (a) a summary of the insights gathered in the specialization project, to depict

the foundation of the thesis, (b) a presentation of the relevant theory of rock mechanics

and its application in rock engineering, (c) a brief representation of the Finite Element

Modelling, and (d) a set of definitions of programming related terms and a presentation of

the tools used in the development process.

It is important to note that section (a) and (b) is products of the specialization project

(Kaasbøll Andresen, 2021). The reason they are included is given in the respective

sections.

2.1 Insights of the specialization project

The master thesis is an extension of the preceding specialization project “A literature

review on important factors considering a numerical sensitivity study on weakness zones”

written in the autumn term 2021 (Kaasbøll Andresen, 2021). Thus, in the specialization

project it was performed a literature study on realistic representation of rock mass and

weakness zones. The knowledge gathered in the specialization project was valuable in the

development of the method of the sensitivity study and in the construction of the models

used in the experiments. Therefore, this section works as an overview of the most

important insights of the specialization project. This section is a summary of the discussion

and conclusion. Together with the coming theory section outlines this section the

foundation of the thesis.

The purpose of the literature study was three folded: (a) To clarify the theory on which the

numerical models in rock mechanics is based, (b) to ensure that the simplified numerical

model abstracts the geological setting in a realistic manner, and (c) to map which

parameters describing weakness zones that needs to be investigated further in the planned

sensitivity study. The project consisted of two main parts, namely a theory section and a

discussion section. The theory section worked as the standalone basis of the discussion

since the project was a pure literature review. Point (c) was the theme of the discussion of

the specialization project in where point (a) and (b) functioned as the foundation of the

argumentation.

Following points where discussed:

(a) The significance of different parameters describing both material and geometry

attributions of both host rock and weakness zone, based on the gathered literature.

(b) The bounds of significant parameters describing both material and geometry

attributions of both host rock and weakness zone, mostly based on review articles

in where large-scale comparisons of test results is done.

(c) Limitations of the literature review in where further investigations were suggested.

(d) Limitations of the theory used in rock engineering.

2 Background

 23

An important notion, attained from the project, was the dilemma between simplicity and

realistic representation. Since mining and civil engineer projects in rock extends over a

relatively large volume, and since the rock mass is notoriously heterogenous and often

show anisotropic behavior, it is almost an impossible task to gather enough information to

represent the rock mass perfectly even though it is possible in theory. This is primarily due

to shortcomings of the processes of information gathering in where many of the methods

are point measurements. Thus, much effort must be given to ensure that these

measurements represent the in-situ state of the rock. Additionally, practical- and economic

considerations complicate this situation even further in engineering projects. Thorough

investigations are both time consuming and expensive. Consequently, this has affected the

practitioners’ approach in the field of engineering geology in where empirically based

equations describing the deformation and failure behavior of rock mass is vastly used. This

approach is based on deductions whereby point-knowledge is used to describe the

neighboring rock mass.

To ensure that the model abstracts a realistic geological setting, there was a focus on

collected data describing deformation behavior of rock mass and weakness zones, and on

the structure and geometry of weakness zones. In general, the variability of the gathered

data is significant. However, since the model is meant to depict a weakness zone in a hard

host rock from the atmosphere and down roughly 1000 meters into the crust, it is possible

to define reasonable restrictions, especially for the host rock (Gercek, 2007; Kulhawy,

1975; SINTEF, 2016). However, several sources indicate that elastic parameters and

strength of rock mass often show lower values compared to the intact counterpart due to

attributes of the discontinuities (Gercek, 2007; Goodman, 1989; Hudson & Harrison, 1997;

Li, 2018).

The geometry (Balsamo et al., 2010; Caine et al., 1996) and material behavior of faults

(Riedmüller et al., 2001; Sæter, 2005) were deemed to be rather complex showing great

variability in all directions of the extension of the fault. Hence, an assumption of faults

showing geometry of a sheet were suggested which is a normal assumption of the fault

geometry close to the atmosphere (Nilsen, 2016). Also, faults often appear in conjunction

with other faults called fault zones, complicating the picture even further, as illustrated in

Figure 2. The density of the damage zone of the fault reduces exponentially when moving

away from the fault (Mitchell & Faulkner, 2009; Wilson et al., 2003). Thus, it was suggested

to make several layers in the model of the weakness zone in where a gradual increase of

strength is accounted for.

 24

There was not found articles representing data on strength and stiffness of fault rock,

breccia, or gouge for engineer geological applications which can be due to difficulties in

sampling of data (Kalender et al., 2014). Still, according to Fasching and Vanek (2011)

only tectonical breccias and mylonite can be attributed with hard rock behavior. Thus,

regular breccias, fault gouge, and cataclasite show mostly soft rock- or soil like behavior.

It is suggested to attain data on strength and stiffness of faults for engineer geological

applications if possible. If this is not possible, assumptions must be made based on the

qualitative descriptions given by Fasching and Vanek (2011).

Following parameters was suggested in the specialization project to be investigated further

in the master thesis:

(a) The strength and stiffness of host rock.

(b) Failure criteria for host rock.

(c) The stress distribution.

(d) The strength and stiffness of weakness zone.

(e) Failure criteria for weakness zone.

(f) Number of weakness zones.

(g) Width of weakness zone.

(h) Orientation of weakness zone.

(i) Position of weakness zone relative to tunnel.

2.2 Rock mechanics theory

First of all, this section was written during the specialization project, which was the

literature study conducted to prepare for the master thesis (Kaasbøll Andresen, 2021). It

is included here since the gathered theory has been central in the development of the

method of the thesis and sets the background of the discussion. This is the reason for it

Figure 2 Typical structure of fault zones. (a) Replicates a singular high-strain core
surrounded by fractured damage zone and (b) represents a model of multiple high-strain

cores in which enclose lenses of fractured protolith. Taken from (Faulkner et al., 2010).

 25

coming after the summary of the specialization project’s discussion and conclusion. The

section has been in some extent edited, but the structure is the same.

Second of all, this section is initiated with a set of definitions central to the study as a

whole and is necessary to be defined before the coming subsections. The subsections are

systemized in a bottom-up fashion, where the fundamentals of rock mechanics are

presented first and where the application of this theory in the field of rock engineering

comes in the later subsections.

finally, definitions which is relevant for a specific subsection is represented accordingly.

2.2.1 Important definitions

A discontinuous medium is a material containing separations or gaps. The antonym is

continuous.

Discontinuities is defined by International Society of Rock Mechanics (ISRM, 1978) as:

The general term for any mechanical discontinuity in a rock mass having zero or low tensile
strength. It is the collective term for most types of joints, weak bedding planes, weak
schistosity planes, weakness zones and faults.

Weakness zones Palmström and Stille (2010) defines as follows:

A part or a zone in the ground in which the mechanical properties are significantly lower than
those of the surrounding rock mass. Weakness zones can be faults, shears/shear zones,

thrust zones, weak mineral layers, etc.

In Figure 3, weakness zone is defined as the largest length range in the category of

discontinuities, ranging from roughly 5 meters in length. Also, according to Palmstrom

(1996) faults is one category of weakness zone. In the thesis, it is the behavior of faults

that are to be modelled, mainly to narrow the scope. Thus, the term weakness zone is

often used interchangeably with the term fault zone.

Intact rock is defined as the rock material within the framework of discontinuities (e.g.

Hudson & Harrison, 1997). Nevertheless, micro-cracks are in this definition excluded from

Figure 3: Types of discontinuities given by their lengths, made by
Palmstrom (1996).

 26

the discontinuity category and is regarded as an integrated part of the rock material itself.

Furthermore, intact rock and rock material is here considered as synonyms in this project.

Rock mass is the term used when considering the intact rock in conjunction with the

weathering of the rock and the rock’s discontinuities.

A material behaves isotropic if a specific parameter is independent of the orientation of

the measurement in a particular point. The antonym is anisotropic. For instance, pressure

is an isotropic physical quantity and force is anisotropic. Also, these terms are used to

describe a variety of physical behavior. Furthermore, in rock mechanics it is also used in a

broader sense. If a rock mass is said to be isotropic it refers to the material as a whole

and implies that several physical quantities such as acoustic impedance or thermal

conductivity will be isotropic.

Homogeneity refers to the situation where the properties of the measurements that is

taken is independent of position. The antonym is inhomogeneity. For instance, a

homogenous rock mass behaves identically over its entire volume. Additionally, the terms

isotropy/anisotropy and homogeneity/inhomogeneity are often used in conjunction. For

example, in a homogeneous and isotropic rock mass the material properties are both

independent of position and direction.

Elasticity is a body’s ability to withstand distortion in response to applied forces and to

regenerate to its original state when that force is removed or changed. A material is said

to be perfectly elastic if it returns to its initial size and shape completely and is in practice

not possible in the strictest sense. Plasticity is the ability of a body to deform permanently

in response to applied forces. A material is said to be perfectly plastic if there is no

regeneration to the original size and shape when the forces is removed or changed.

The strength of rock is defined by Chapple (1987):

Strength is the stress level that is required to produce a certain type of permanent
deformation, fracture or flow, under well-defined experimental conditions.

2.2.2 Stress

Stress can be defined as the internal forces in which adjacent particles in a continuous

material exerts on each other (e.g. Huston & Josephs, 2009). Stress is defined as follows:

𝜎 = 𝐹𝑎𝑣𝑔 𝐴⁄ (2.1)

where Favg is the average force that a given particle of a body exerts on a neighbouring

particle, across an imaginary surface A that separates them. σ is a resultant vector and

can be considered a sum of the normal stress σn acting normal to the surface A and the

shear stress τ acting parallel with surface A.

The stress state in three dimensions is defined as the complete description of the stresses

in a particular point. So, a body at rest consists of three normal stresses and three

independent shear stresses. This term refers to both magnitude and direction. Tensor

notation is one way to express the stress state. A tensor is a mathematical object

analogous to a vector. However, it is a more general description compared to a vector. In

fact, a zero-order tensor is a scalar, and a second order tensor is a vector. The order is

referring to the span of the variable. By multiplying a vector with a scalar this vector can

 27

span a line which is 1-dimensional. Thus, it is a first order tensor. A scalar multiplied by

another scalar gives a third scalar and can therefore not span a space. Thus, it is a zero-

order tensor. In general, a tensor is represented by an array of components that are

functions of the coordinates of a given space of n dimensions. An important distinction

between a vector and a tensor is that the tensor is dependent on the plane in which it is

examined, which is not the case of a vector (Hudson & Harrison, 1997). The description of

static stress is given by the following second order tensor:

𝛔 = (

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

) ; σ12 = σ21 ; σ13 = σ31 ; σ32 = σ23

(2.2)

This tensor is symmetric since it is defined on the base of static equilibrium, hence the

equalities of the shear stresses to the right of the tensor. Subscript i refers to the plane

the stress is affecting and subscript j refers to the orientation of the stress related to one

of three element vectors of the system. A graphical representation of the components of

the stress tensor in a cartesian coordinate system is given in Figure 4.

The stress tensor is dependent of the coordinate system. A coordinate system oriented

such that the shear stresses are zero defines the principal stress space. The principal stress

tensor is given by:

𝛔 = (
σ11 0 0
0 σ22 0
0 0 σ33

) = (
σ1 0 0
0 σ2 0
0 0 σ3

)

(2.3)

The principal stresses are the eigen values of the stress tensor given by the diagonal of

the principal stress tensor. σ1 has the largest magnitude of stress out of all orientations of

the coordinate system and σ3 show the lowest magnitude of stress despite of orientation.

The three principal stresses are important to map to be able to describe the strength of a

material theoretically.

Figure 4: Stress state and vectors at a given point, from RocScience (2021).

 28

Euler angles (e.g. Roylance, 2001) can be used to transform the orientation of the stress

tensor. The following transformation matrix is defined:

a = (
cosψ sinψ 0

− sinψ cosψ 0
0 0 1

)(
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

)(
cosϕ sinϕ 0

−sinϕ cosϕ 0
0 0 1

)

(2.4)

The principle of the transformation is depicted in Figure 5. The rotation matrix rotates a

given tensor by one axis at a time. The angles ψ, θ and ϕ refers to the magnitude of rotation

about the Z, Y and X axes respectively. The rotation matrix rotates a given tensor by one

axis at a time. It starts the rotation about the Z-axis. Then it rotates about the new

orientation of the Y-axis denoted y’. Lastly, it rotates about the double-transformed axis of

X denoted x’’. The new rotation of the coordinate system is then defined by the x′′, y′′ and

z′′. A prime refers to an action of rotation in which the given axis was translated. Thus,

each axis is translated two times.

The concept of effective stress is also relevant. In porous media with hydraulic

connectivity, the hydraulic pressure must be accounted for in the following manner:

𝛔′ = (

σ11 − p σ12 σ13

σ21 σ22 − p σ23

σ31 σ32 σ33 − p
),

(2.5)

whereby 𝛔′ is the effective stress and 𝑝 is the fluid pressure.

In situ stress is in rock mechanics defined as the stress distribution within the rock mass

before excavation has been conducted.

Volumetric stress is related to the volume change of a body and is defined as the average

of the three principal stresses:

Figure 5: Transformation in terms of Euler angles, from Roylance (2001).

 29

𝛔𝐯𝐨𝐥 = (
σvol 0 0
0 σvol 0
0 0 σvol

),

(2.6)

in where σvol = (σ11 + σ22 + σ33)/3 despite the orientation of the basis of the stress state.

Deviatoric stress is related to the shape change of a body and is defined as defined as

follows:

𝛔𝐝𝐞𝐯 = 𝛔 − 𝛔𝐯𝐨𝐥, (2.7)

which is a matrix subtraction using Equation (2.5) and Equation (2.6).

Some combinations of the stresses in the stress tensor are invariant of the orientation of

the coordinate system. Such combinations are called invariants. There are three

invariants when regarding the general stress state tensor: I1(σij), I2(σij), and I3(σij). I1 is the

trace of σij, I2 is the sum of the minors of σij, and I3 is the value of the determinant of σij.

There are also several other invariants, for instance there are two invariants related to the

deviatoric stress tensor. Invariants are important in the formulation of several failure

criteria.

A free surface is defined as the interface between a medium in where share forces can

propagate and a medium that lacks this attribute. For instance, the interface between air

and rock mass.

A surface force is a force exerted on the surface of a body. For instance, the force wind

exerts on a windmill is a surface force. On the other hand, a body force is a force acting

throughout the entire body. For instance, the force gravity exerts on all bodies is a body

force.

 30

2.2.3 Strain

Deformations resulted from the work of forces is usually related in terms of relative

displacement of particles that excludes rigid-body motion (e.g. Huston & Josephs, 2009).

These relative displacements are called strain. Strictly speaking, strain is defined as the

displacement between particles related to a reference length and is given as follows:

ϵ = ∂ ∂X⁄ (x − X), (2.8)

by which 𝐗 is the reference position of material points of the body, and 𝐱 = 𝐅(𝐗) is the

deformation of the body in which both are vectors.

In continuum mechanics, the Cauchy strain is the expression of the ratio between total

deformation and the initial dimension of the material body on which the forces are exerted.

The infinitesimal strain tensor are derivatives of displacement components and is as

follows:

ϵ = (

ϵ11 ϵ12 ϵ13

ϵ21 ϵ22 ϵ23

ϵ31 ϵ32 ϵ33

) ; ϵkl =
1

2
(ukl + ulk)

(2.9)

 This is known as the Cauchy strain tensor or the small strain tensor and implies that

the material described behaves linearly elastic. Thus, the small strain tensor is by definition

symmetric. Transformation and method to find principal strains is conducted similar as the

case of stress.

A material shows strain-hardening behavior if the resistance towards deformation

increases with deformation. The antonym is strain-softening behavior.

A constitutive law is a formulation describing the relation between stress and strain. The

stress is in most often regarded as the cause and strain as the effect.

A system is in static equilibrium when there are no changes in the strain distribution.

Rheology is the study of flow and deformation of a material.

The rheologic mode of a material is the mathematical rule under which the deformation

in a material behaves.

The peak strength of a material is the load in which the material fails. This load is used

to mark the transition point where the rheological mode of the rock material changes

drastically. For instance, for rock salt it goes from behave elastically to behave plastically.

Dilatancy is the volume change observed in granular materials when subjected to shear

deformations.

 31

2.2.4 Deformation properties of rock

It is crucial to capture the rock mass’ response to a given distribution of stress to get a

reliable description of its distribution of deformations. Li (2018) divides this problem into

three main components: (a) The rock mass quality which is used interchangeably with

the strength of the rock mass, (b) the in-situ stresses, and (c) the geometry and size of

the excavation. These three constituents are mutually dependent. Consequently, by

changing attributes belonging to one of the components will lead to changes of the

attributes in the other components. This relationship is presented graphically in Figure 6.

The excavation process induces changes to a massive system which is assumed was in a

static equilibrium to begin with. The removal of rock mass leads to alterations of the

proximate in situ stress distribution whereby a concentration of stresses at the tunnel

periphery develops. If the material shows little cohesion and/or friction in a minor stress

field, or the strength of the rock mass is exceeded due to a major stress field deformations

will occur. The altered stress field in combination with the absence of restrictions from the

removed rock mass leads to convergence of the tunnel perimeter due to the corresponding

deformations. So, the material behavior of the rock mass is an important factor controlling

the magnitude of the strains, the failure mode, and the upper limit before failure initiates.

In Figure 8, characteristic axial stress-axial strain curves for some rocks are indicating that

the behavior of rock materials varies significantly. Constitutive laws are used to describe

the relationship between stress and strain and is linked physically to the material behavior.

Brady and Brown (1993) states that the idealized constitutive laws depend on time-

dependent and time-independent responses of the material in relation to applied load.

Constitutive laws describe responses in terms of elasticity, plasticity, viscosity and creep,

or combinations of these idealized cases. A flow chart demonstrating time-independent

and time-dependent deformations relevant for tunnelling are presented in Figure 7.

Figure 6: The three main constituents of rock mechanics and their mutual dependency
(Li, 2018).

 32

Time-independent deformations

Consider a tunnel under excavation. The face advances through the rock mass along with

the removal of rock mass and a three-dimensional free surface is growing accordingly. This

leads to alterations of the stress distribution in the vicinity of the face leading to

deformations. Hoek et al. (1995) states that the deformation initiates around one-half of

the tunnel diameter in front of the face, as portrayed in Figure 9. About one-third of the

deformations of the rock mass have taken place at the face. The time-independent

deformations reach terminal magnitude approximately one to one and a half tunnel

Figure 8: Typical stress-strain curves for rock, taken from Jaeger et al. (2009).

Figure 7: Tunnelling related deformations, made by Høien (2018).

 33

diameters behind the face. Time-independent deformations results from the change of the

stress distribution induced by the excavation process. The elastic and plastic attributes of

the rock mass are the underlying cause of the occurring deformations.

For small deformations Hooke’s elasticity theory for continuous materials is applicable for

rock mass. However, an assumption of continuous rock mass is herewith implied. If the

load equalizes the materials peak strength, fracturing of the rock will occur and permanent

deformations will dominate. The behavior of the material is said to be reaching its plastic

deformation state. In general, from observations of stress-strain behavior of rocks in

compression tests four stages of deformation behavior is notable (Walton et al., 2019):

(a) pre-yield, showing approximately elastic behavior, (b) post-yield but pre-peak, where

short term frictional strengthening effects due to the compaction of the material lead to

strain-hardening behavior, (c) post-peak weakening, whereby significant cohesion loss

under fracture growth and shearing leads to weakening of the rock material, and (d) the

residual state, where further strain leads to an approximate constant strength and

deformation behavior of the material.

Li (2018) states, due to difficulties measuring the post-peak stage for hard rocks, the post

failure behavior of the material is often not known. However, according to Walton et al.

(2019) the post-peak residual strength of rock is a relevant parameter to assess in

engineer geological problem solving. For instance, in stability assessments of tunnels.

Descriptions of rocks’ deformation state requires a proper rheology model for the material.

This enables a capture of the realistic elastic and plastic response to stress. This rheological

model is included in the constitutive model (Li, 2018). In Figure 10, viable idealized

Figure 9: Pattern of radial displacement in the roof and floor of an advancing
tunnel. Illustration made by Hoek et al. (1995).

 34

rheological models for rock are compared with a realistic depiction of a stress-strain curve

of a typical rock.

Crowder and Bawden (2004) states that rock in general constitutes material behavior

between the two ideals of ductile and brittle post-peak deformation modes. A rock that is

perfectly ductile in the post-peak stage is said to behave perfectly elastic/perfectly

plastic and in the brittle case it is said to behave perfectly elastic/perfectly brittle. In

other words, most rocks show some degree of post-peak strain-softening behavior.

The elastic constitutive model

Hooke’s law is the general expression of the relation between stress and strain for an

elastic material. The linear equation is:

σij = Cijklϵkl, (2.10)

 whereby Cijkl is components of the fourth order constitutive stiffness tensor, σij and ϵkl is

the stress and strain components respectively. Equation (2.10) is expressed by means of

Voigt notation (Voight, 1928) to simplify the calculation. This notation is applicable for

symmetric matrices (e.g. Lamuta, 2019) which means that:

σij = σji,

ϵkl = ϵlk, (2.11)

Cijkl = Cjikl; Cijkl = Cijlk; Cijkl = Cklij.

Thus, 𝛔 and 𝛜 can be expressed as 6 × 1 matrices containing the unique stress elements

and the fourth order tensor can be reduced to a 6 × 6 matrix. This results in the following

simplified matrix equation:

Figure 10: A realistic stress-strain curve (Li, 2018) compared to idealised rheological
models of rock masses (Crowder & Bawden, 2004).

 35

[

σ11

σ22

σ33

σ23

σ13

σ12]

=

[

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66]

.

[

ϵ11

ϵ22

ϵ33

2ϵ23

2ϵ13

2ϵ12]

.

(2.12)

The generic stiffness constant Cmn of matrix in Equation (2.12) is equal to the elastic

modulus Cijkl, where m = i if i = j or m = 9 − i − j if i ≠ j, and n = k if k = l or n = 9 − k − l if k ≠

l.

The stiffness constants Cmn = Cnm according to the symmetry properties presented in

Equation (2.11), and the matrix in Equation (2.12) is therefore symmetric. The stiffness

constants Cmn are functions of Young’s modulus’ Emn, Poisson’s ratios νmn, and shear

modulus’ Gmn. The complexity of these functions depends on the material behavior of the

medium. A general anisotropic material is characterized by 21 independent elastic

constants in static equilibrium. The above mentioned symmetry and the existence of a

strain energy function reason behind this constitution(e.g. Lamuta, 2019).

By doing assumptions of the medium’s material behavior, it is possible to further decrease

the number of independent variables. For example, if the material behaves orthotropic,

only 9 elastic variables of Equation (2.12) are independent. The 9 variables consist of three

Young’s moduli, three Poisson’s ratios, and three shear moduli respectively. For instance,

a rock mass with three sets of orthogonal discontinuities (three planes of elastic symmetry)

dominating the deformation mode would behave orthotropic. According to Ismael et al.

(2017) the deformability of the intact rock of sandstones, granites, coals, and schists shows

the orthogonal anisotropic nature. If the material behaves transversely isotropic, the

number of independent variables describing the constitutive law is reduced to 5. These 5

variables consist of two Young’s moduli, two Poisson’s ratios, and one shear modulus.

Transverse isotropy is often used to describe the elastic symmetry of rocks with one

dominant layer system such as foliation, bedding planes or layering. According to Ismael

et al. (2017) this assumption is relevant for most metamorphic rocks (e.g. gneisses,

phyllites, schists, and slates).

Isotropic materials only have 2 independent parameters. The two independent parameters

are the Young’s modulus E and the Poisson’s ratio ν. In this case the shear modulus G can

be expressed as:

G = E 2(1 + ν)⁄ . (2.13)

 36

Thus, Equation (2.12) simplifies to the equation below:

[

σ11

σ22

σ33

σ23

σ13

σ12]

=
E

(1 + ν)(1 − 2ν)

[

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2]

.

[

ϵ11

ϵ22

ϵ33

2ϵ23

2ϵ13

2ϵ12]

 ,

(2.14)

where Young’s modulus E and Poisson’s ratio ν is independent of direction. This is the

Hooke’s law for isotropic material in three dimensions presented in matrix form. This

behavior is prominent in most brittle rocks when the effect of discontinuities is negligible

(Ismael et al., 2017).

Young’s modulus (E) is a scalar that expresses the elastic deformability of a particular point

in the material measured in a specific direction. Generally, it describes the proportionality

between axial stress and axial strain and is given by:

E = σa ϵa⁄ , (2.15)

 in where σa is the axial stress, and ϵais the axial strain. The term axial is here referring to

the orientation parallel with the applied load and E is consequently a function of loading

direction. In addition, if Young’s modulus is constant for any load in a particular point in a

given direction, the material shows linear elastic behavior in that point. The term linear

is here referring to the shape of the stress-strain curve which is linear.

Young’s modulus is usually attained by uniaxial or triaxial compression tests on small rock

samples with cylindrical shape. Typical values for Young’s modulus taken in uniaxial

compression on intact rock specimens is presented in Figure 11. The variability is

dependent on rock type. Strength and stiffness parameters given a big dataset of rocks

from North and South America was reviewed by Kulhawy (1975).He found Youngs’s

modulus of intact rock to vary between 1.2 and 99.4 GPa, which is in good agreement with

SINTEF’s data. Detailed summary of the Young’s modulus of different categories of rock is

given in Appendix (1).

Poisson’s ratio gives the relation between the transverse and axial strains. Gercek (2007)

defines the Poisson’s ratio as the negative of the ratio of transverse strain to the axial

strain in an elastic material subjected to a uniaxial stress. This definition is closely linked

 37

to the equation of the ratio which is given as:

𝛎 = −𝛜𝐭 𝛜𝐚⁄ , (2.16)

 where ν is Poisson’s ratio, ϵt is the transversal strain, and ϵa is the axial strain. The term

transverse strain is referring to the relative deformation along one direction normal to the

direction of the applied force. The term axial strain is referring to the relative deformation

parallel with the direction of the applied force.

An isotropic material has a Poisson’s ratio independent of direction. Gercek (2007) states

that Poisson’s ratio has no significant effect on the stress distribution in plane elasticity

problems with no body forces acting. Gercek claims that the effect of Poisson’s ratio may

be significant in 3-dimensional stress problems despite small variations of its values.

Ranges of some Poisson’s ratios of intact rock specimens is presented in Figure 12. Kulhawy

(1975) also reviewed Poisson’s ratios in his analysis of elastic parameters of rocks from

the Americas and found it to vary between 0.02 and 0.46 (0.7 if chemical sedimentary

rock is included). This is in good agreement with the data presented by Gercek. Detailed

summary of the Poisson’s of different categories of rock is given in Appendix (1).

Figure 11: Uniaxial E-modules in GPa for different Norwegian rock types, extracted
and made by Høien et al. (2019) from SINTEF rock mechanical properties database
(SINTEF, 2016).

 38

Shear modulus is the ratio of shear stress to the shear strain and is the measure of elastic

shear stiffness in a particular point in a given direction. The relation is as follows:

G = τ γ⁄ , (2.17)

 whereby G is the shear modulus, τ is the shear stress, and γ is the shear strain. As shown

above, this modulus can be expressed with Young’s modulus and Poisson’s modulus if the

material behaves isotropic. If not, the shear modulus must be measured. No data on this

parameter was found in the literature study.

Strictly speaking, intact rock is does not behave perfectly elastic due to permanent

deformation of micro cracks, weak minerals and pores in the rock material under loading

in conjunction with the fracturing which occurs when peak-strength is reached. The

permanent plastic deformation is referred to as hysteresis. Despite of this, elastic

rheologic mode is the most frequent description for crystallized rock, given that the load is

kept beneath peak strength. Figure 13 illustrates the elastic behavior of crystalline rocks,

which consists of the stress-strain curves from uniaxial compression tests on six rock

samples obtained by Wawersik (1968). The six different rock samples all show close to

linear elastic behavior before fracturing, given by the peak stress value.

Figure 12: Range of Poisson’s ratio for some intact rock types extracted by Gercek
(2007) from data presented by (Hatheway & Kiersch, 1986; METU, 1989a, 1989b,

1989c; Vutukuri et al., 1974)

 39

Also, Figure 13 presents Wawersik’s two classes of rock based on the deformation mode

after peak stress is reached. The fracture propagation of class 1 rocks is seen to be stable

after initiation because each increment of strain beyond peak-load requires an increment

of work to be done on the rock sample. In contrast, class 2 rock types are characterized

by unstable fracture growth in where elastic energy release must be controlled to control

failure. Class 2 rocks are said to be brittle and may fail due to rock burst in high stress

areas, for instance in a road tunnel in the bottom of a steep valley near the surface. Class

1 rocks, however, is said to be ductile and may show squeezing behavior when overly

stressed. This is a problem well known for rock engineers working in the alps or in the

Himalayas, which consists of relatively young rock types compared to the Norwegian

mountain ranges.

Figure 13: Stress-strain curves for six representative rocks in uniaxial
compression, illustration made by Wawersik (1968).

 40

Influence of confining pressure

Jaeger et al. (2009) investigated the effect of confining pressure on strength of rock using

conventional triaxial tests where σ1 > σ2 = σ3. The result of this study is depicted in Figure

14. Generally, an intact rocks’ strength, its linear elastic range and degree of plasticity

increases with increasing confining pressure. Though, it does not have a severe impact on

the Young’s modulus magnitude. Multiple shear fracture is the failure mode which

dominates with increasing confinement pressure instead of the axial splitting seen in UCS-

tests. Also, the material shows a dilation decrease as a function of increasing confining

pressure. The reason for this is the degree of internal fracturing (Elliott, 1982) being

lowered. A last remark, Mogi (1967) showed that if σ2 > σ3 an even more prominent

strengthening of the material will occur indicating that information of σ2 should not

necessarily be neglected.

Influence of water

Rocks tend to decrease in degree of elasticity and in strength with increasing moisture

content. In their review, Wong et al. (2016) found that it was no universally approved

explanation for the influence of water on rock strength and elasticity. Yet, two insights of

the water-weakening effects were mentioned: (a) A negative exponential and/or negative

power relationship is observed between rock strength/Young’s modulus and water content,

and (b) an exponential relationship has been observed between tensile strength in regard

to both surface tension and the dielectric constant of the saturating liquid. According to

their result a rock can show strength reductions between 2% observed in some tuffs and

granites. In clay shales, siltstones, and mudstones, however, the rock strength was

reduced to over 90%. Young’s modulus showed near 0% reduction in magnitude in tuff,

slate, sandstone. In shale, siltstone, and mudstone the reduction in Young’s modulus was

Figure 14: Rock specimen get more ductile with increased confining
pressure which also affects the failure mode, borrowed from Jaeger et
al. (2009).

 41

over 80%. Thus, laboratory measurements should be done with the same liquid content

as in the field.

Water also reduces the strength due to water pressure in pores and discontinuities.

Terzaghi (1923) formulated the concept of effective stress for soils in where the

intergranular stress controls the strength and deformation of the rock or soil. To apply the

concept of effective stress in rock engineering purposes, it is necessary to gather

information concerning the water pressure distribution within the rock and rock mass. Hoek

and Brown (1997) describes the method of direct measurements, using piezometers, and

the methods of indirect measurements estimated from manually constructed or

numerically generated flow nets. Nevertheless, in low permeability rocks it may seem that

the effective stress law gives unreliable results. Brace and Martin Iii (1968) conducted a

triaxial tests of low permeable crystalline silicate rocks. In this study it was found that the

effective stress law only was reliable for strain rates under a critical value. Static

equilibrium was not established for higher strain rates. Besides, on the word of Hoek and

Brown (1997) and Li (2018) low pore pressures along tunnels and other cavities is normal

due to their draining effects on the rock mass. Thus, the concept of effective stress can be

neglected in such cases.

Influence of temperature

Hudson and Harrison (1997) states that little information is available indicating the effect

of temperature on the stress-strain curve. However, a decrease in strength and Young’s

modulus is observed with increasing temperature. Also, it is observed an increase of the

rocks ductile character in the post-peak stage with increasing temperature. Figure 15

presents these effects graphically. In this graph the strength of the material is reduced by

50% when increasing the temperature from 300o to 600o. With the same temperature

Figure 15: The effect of temperature on the stress-strain curve, taken
from Hudson and Harrison (1997).

 42

reduction, the range of the plasticity zone is more than tripled. Lastly, with higher

temperatures it is indicating that the magnitude of Young’s modulus is reduced

significantly. In addition, Sheorey (1994) estimate the average temperature gradient of

the earth’s crust to be 0.024oC/m.

2.2.5 Plasticity

Theoretically speaking, plastic materials’ deformation in response to constant stress

continues indefinitely without any further increase of this stress. Also, the strain energy is

changing its state through permanent deformations only. Plastic behavior is generally a

function of distortional strains and deviatoric stresses. Stresses are related to strains in a

time-independent manner in where the material undergoes plastic flow when stressed.

(Hudson & Harrison, 1997)

Knowing the post-peak behavior of the rock mass is important to define the true

deformation mode of a rock mass. The rock mass is often assumed to behave linear

elastically before fracture initiation and to some degree behave plastically after fracturing.

Plasticity theory is used to describe the post peak behavior often in conjunction with

elasticity theory where the defined failure criterion is also treated as the yield criterion.

Plasticity theory postulates that irreversible strains occur whenever the stress state

satisfies the yield criterion and is based on experimental evidence (Luenberger & Ye, 1984).

The general failure criterion of a material is:

f(σij, κ) = 0, (2.18)

 in where σij is the stress tensor and κ represents the material parameters and f is the

failure criterion function. An elastoplastic model is based on the assumption that the strain

state is dependent on elastic and plastic components only, and that their relation is additive

(or in some occasions also multiplicative):

ϵtot = ϵe + ϵp, (2.19)

 in where ϵe is elastic strain state and ϵp is the plastic strain state. In such a model, if f < 0

the plastic strain state ep = 0. Vermeer and De Borst (1984) states that there is no one-to-

one correspondence between plastic stresses and strains, which is the case for elastic

stresses and strains. Thus, the elastic part of the strain obeys Hooke’s law. The plastic

part, however, is described by a flow rule:

ϵp = λ∇g, ∇g = ∂g ∂σ⁄ , (2.20)

 where, λ, is a non-negative multiplier if plastic loading occurs. This multiplier is zero when

the deformation mode is purely elastic. Furthermore, g is called the plastic potential

function and is a scalar function. For most metals f = g, this is not the case for most

geological materials because of dilatancy in where f ≠ g. The term dilatancy refers to the

volume change that happens when granular entities are sliding over each other when

plastic deformation occurs. Also, it is necessary to define a hardening rule for most

geomaterials. A hardening rule enables the consideration of the strain-softening and/or

strain-hardening behavior of the geomaterial.

Hoek and Brown (1997) states that there are no definite parameters to describe the

elastoplastic behavior of intact rock. Discontinuities of the rock mass complicates the

 43

description of this behavior even further. According to Li (2018), the gathering of the post-

peak behavior from uniaxial and triaxial tests is a rather complex task often leading to

inconclusive test results. Thus, in modelling purposes in it is normal to assume: (a)

Perfectly elastic-brittle behavior for strong rock, (b) strain softening behavior for medium

strong rock, and (c) perfect elastic-plastic behavior for weak rock. These post-peak

characteristics are given in Figure 16.

2.2.6 Time-dependent deformation

Time-dependent deformations further complicates the analysis of the deformation mode of

rock materials (Hudson & Harrison, 1997). In most cases, where time-dependent behavior

is present, it is usual to assume that the material behaves elasto-viscoplastic. This term

refers to three attributes of such a material: (a) It show time-independent elastic behavior,

(b) it shows time-dependent viscous behavior, and (c) if a certain limit is reached plastic

flow occurs. Time-dependent viscous behavior consists of strains related to deviatoric

stresses and distortional strains in where the stresses is related to strain rates. The term

viscous is used to underline that the solid material in some extent has flow properties and

behaves in some extent like a fluid. The three constituents of the elasto-viscoplastic model

are assumed to be additive and gives the following relation:

ϵtot = ϵe + ϵp + ϵt, (2.21)

 in where ϵe is elastic strain state, ϵp is the plastic strain state and ϵt is the time-dependent

stress state.

Høien (2018) states that the most prominent time-dependent processes are: (a) mineral

and mechanical swelling, (b) creep, and (c) consolidation. All three time-dependent

processes leads to convergence of the tunnel walls. Einstein (1996) defined swelling as

the: “time-dependent volume increase of the ground, leading to inward movement of the

Figure 16: Post-peak behaviour for three different idealistic situations, as illustrated by Hoek
and Brown (1997).

 44

tunnel perimeter”. Furthermore, Einstein defined squeezing as the “time-dependent

shearing of the ground, leading to inward movement of the tunnel perimeter”.

According to Høien (2018), changes in pore pressure may occur as a consequence of

changes in the stress state due to excavation processes. Positive excess pore pressure

may build up, making the water to flow out of the rock mass. Consequently, the material

consolidates. On the other hand, if it leads to negative pore pressure, water will flow toward

the rock mass and mechanical swelling will occur.

Deformation occurring from the shear failure over time given constant stress is called

creep. This effect is independent of the consolidation/mechanical swelling. This implies

that the two processes may occur simultaneously. Also, Høien (2018) states that creep is

related to the time-dependent properties of the grain skeleton and is usually observed in

drained rock mass. Li (2018) divides the creep process into three successive periods: (a)

The primary period where the strain rate decreases with time, (b) the secondary period

where the strain rate is constant with time, and (c) the tertiary period where the strain

rate increases with time. The components of the creep curve are given in Figure 17.

The Burger model can be applied to describe the primary and secondary periods. The

Burger model is an idealization of the two first period of the time-strain curve given in

Figure 17 and is as follows:

ϵ =
σc

Em
+

σct

3ηm
+

σc

Ek
(1 − exp (−

Ekt

3ηk
)),

(2.22)

 where the first term refers to the immediate elastic deformation, the second term to the

linear part of the creep curve in the second period showing a combination of plastic and

time-dependent deformation, and the third term is describing the lowering of strain rate

in the primary period.

The third term is for the most due to volumetric stresses, which is the uniform stress in

the radial and axial directions. Li (2018) states that it is not possible to model the tertiary

Figure 17: Creeping curve of imaginary overstressed weak rock, taken
from Li (2018).

 45

state. The reason for this is the lack of rheological models to describe this behavior of

creep. The tertiary period only appears when the applied stress is beyond approximately

75% of the UCS. Besides, the tertiary period is linked to resolute failure due to the

accelerating nature and must be avoided to avoid tunnel collapse.

According to Høien (2018), a redistribution of stresses around the tunnel profile occurs

during time-dependent deformations. The change of stress regime may lead to new

deformation processes in areas that before were in static equilibrium. This, again, can be

the beginning of a domino effect. Høien underlines that the processes of time-dependent

deformations are hard to determine, and several processes may occur simultaneously.

There is therefore difficult to separate them. Also, it can be even harder to map each of

the processes’ contributions in the resultant stress and strain field. Time-dependent

deformations are more prominent in overstressed weak rock masses and weakness zones

such as faults.

2.2.7 Strength of intact rock

As already established, the rock strength is the tipping point between the linear elastic

deformation mode of the rock and the post-failure deformation mode of the rock. A brittle

rock is characterized by a narrow or no plastic yield zone and shows high degree of strain-

softening behavior leading to violent strain release. A ductile rock has an extensive plastic

yield zone where little to no strain-softening behavior occurs. Also, most rocks post-peak

time-independent deformation modes resides in between of these two extremes.

According to Hudson and Harrison (1997), several rock strength tests have been developed

over the years. Figure 18 illustrates the experimental loading conditions for intact rock

strength testing. The main concept of all these tests is to gradually increase the forces

exerted on the material until it breaks. Consequently, a test on a specific specimen can

only be conducted once and pre-experiment planning is vital.

Uniaxial, triaxial and poly-axial compression test methods can be used to capture the

compressional strength of an intact rock. Uniaxial compression test is the simplest and

 Figure 18: Specimen loading condition for experimental strength tests, from
Hudson and Harrison (1997).

 46

fastest to conduct, and is therefore the most common. The uniaxial compression test is

done without confinement pressure. This implies that σ2 = σ3 = 0. Triaxial tests is also

extensively used. This test, unlike the uniaxial test, is done with confinement pressure

such that σ1 ≠ σ2 = σ3. The term triaxial is in this regard somewhat vague. It means that

all three principal stresses are non-zero. Yet, it does not communicate that σ2 = σ3. In

practise, this makes for an easier test to conduct compared with the poly-axial test

whereby σ1 ≠ σ2 ≠ σ3. The reason for this is two folded. First of all, both uniaxial tests and

triaxial tests is done on cylinder shaped specimens, which is the shape of rock specimens

after core drilling and only the ends must be prepared. Specimens for poly-axial test

specimens, however, must be prism shaped. Second of all, the poly-axial test apparatus

and procedure is more complex compared to the triaxial case. method itself and the

preparation of test specimens. However, it is the poly-axial test that provides the most

realistic results (Wawersik et al., 1997) which is important for more detailed modelling

projects.

Biaxial compression tests and uniaxial tension tests is used to decide the intact rocks

tensile strength. Rock is well known for the fact that the tensile strength is small compared

to the compression strength (e.g. Palmström & Stille, 2010). Shear strength can be found

using direct shear test and is mostly used to find strength of discontinuities.

The compressional, tensional and shear strengths of intact rock are closely linked to the

lithology. The variation of strength is as severe between rock types as it is within a specific

rock type. Accordingly, this depicts the great variability of mineralogical compounds and

bonding strengths. Yet again, this illustrates the great variability of the geological setting

under which the rocks have been created and resided (Barton, 1976; Kulhawy, 1975).

Figure 19: Uniaxial compressive strength (UCS) in MPa for Norwegian rock types extracted

and made by Høien et al. (2019) from SINTEF rock mechanical properties database

(SINTEF, 2016). illustrates the mentioned variability of the uniaxial compression strength

 Figure 19: Uniaxial compressive strength (UCS) in MPa for Norwegian rock types extracted

and made by Høien et al. (2019) from SINTEF rock mechanical properties database

(SINTEF, 2016).

 47

of Norwegian rocks. This box plot is based on SINTEF’s dataset attained with uniaxial

compression tests conducted at SINTEF’s rock mechanical laboratory. It can be seen that

the variability of uniaxial compression strength varies significantly. For instance, compare

the magnetite ore and the limestone marble.

As earlier mentioned, Kulhawy (1975) analyzed a vast number of data on rock mechanical

parameters of rocks residing in the Americas. It was found that the variability of tensile

strength is much less compared to compression strength. For uniaxial stress tests the

range of tensile strength of rocks was between 0.55 and 17.4 MPa. For compressive

strength, on the other hand, the range was between 3.65 and 355 MPa. Kulhawy did not

investigate shear strengths. However, Kulhawy’s article presents all the raw data analyzed

and can be used to give sensible guesses on the relation between UCS and tensile strength

for a given rock. As well, Perras and Diederichs (2014) tried to correlate UCS values to

tensile stress to make estimations in a preliminary phase of engineering projects. No

correlation was established, yet, they found a correlation between tensile stress and the

crack initiation threshold.

Barton (1976) argued that the variability of shear strength is great at low normal stresses.

This is indicated in Figure 20, in where the shear stresses are more clustered for low normal

stresses. As the normal stress increases the variability of the shear stress increases

dramatically. The data was attained by direct shear test on specimens with a single

discontinuity.

 Figure 20: The peak shear strength of unfilled rock joints from, made by
Barton (1976).

 48

2.2.8 Failure criteria of intact rock

Hudson and Harrison (1997) states that there is a knowledge gap on the exact physical

nature of rock failure. This statement refers to two different aspects. First of all, the precise

description of microcrack initiation and propagation is unknown. Second of all, the mode

of the structural breakdown which occurs when microcracks propagates and coalesce is

unknown. Both processes are complex and hard to describe, and there is no convenient

way to create simplified models. Nonetheless, in practical engineering there is necessary

to predict how, where and when failure will occur. To accomplish this, the concept of failure

criteria is applied.

According to Hudson and Harrison (1997), it has been a tradition in the field of structural

mechanics to regard stress as the cause and strain as the effect when deformation mode

of materials is analyzed. Hence, it has been normal to express strength of rock in terms of

function of stress:

strength = f(σ1, σ2, σ3). (2.23)

 Failure criteria extensively used in the field of rock engineering, such as the Mohr-Coulomb

and the Hoek-Brown criteria is of this type. Though, it is possible to either express strength

in terms of strains:

strength = f(ϵ1, ϵ2, ϵ3), (2.24)

 or in terms of a combination of stresses and strains:

strength = f(σ1, σ2, σ3, ϵ1, ϵ2, ϵ3), (2.25)

 Still, Hudson and Harrison (1997) states that the two latter criteria is not in extensive use.

It is frequently assumed that the intermediate principal stress has insignificant effect on

rock strength in rock mechanical applications. This is the underlaying assumption when

mechanical characteristics is studied through triaxial tests on cylindrical specimens in

where σ2 = σ3. Triaxial tests have been widely used to this day because of the convenience

of the equipment, specimen preparation and testing procedures. (ISRM, 2014)

Massive rocks such as granite, gabbro, quartzite, and marble have in practice shown

approximately linear elastic and isotropic material behavior. Although, they are in some

extent elastically anisotropic (Li, 2018). Consequently, it is normal to assume that these

rocks or equivalents are linear elastic and isotropic. This assumption enables the

application of failure criteria developed for materials behaving accordingly. Mohr-Coulomb

and Hoek-Brown for intact rock are examples of such criteria, and is also frequently used

in rock engineering applications.

Mohr-Coulomb failure criterion

A failure criterion based on the shear failure of glass was proposed by Coulomb (1773). It

was observed that the shear strength was dependent on the materials cohesion and a

 49

constant multiplied with the normal stress acting on the shear plane. Cohesion is a measure

of the particles’ ability to adhere together. Coulomb proposed the following criteria for

shear failure of soils:

S = ca + 1 n⁄ ∗ N, (2.26)

 whereby c is the cohesion per unit area, a is the area of the shear plane, N is the normal

force on the shear plane and 1/n is the coefficient of the internal friction. The coefficient

of the internal friction is a measure of the resistance the particles have when sliding over

each other

Mohr (1882) invented a graphical method to describe the stress state in a material in all

orientations given a 2-dimensional plane. Two equations were needed; one to describe the

normal stress and one to describe the shear stress, both acting on an incrementally small

imaginary surface. The equations are:

σ(θ) =
σx + σy

2
+

σx − σy

2
cos(2θ) + τxy sin(2θ),

(2.27)

τ(θ) = −
σx − σy

2
sin(2θ) + τxy cos(2θ), (2.28)

 in where θ is the orientation of the infinitesimal plane, on which the normal stress σ and

the shear stress τ exerts. With mathematical manipulations, Mohr eliminated θ from these

equations. This resulted to the expression of Mohr’s circle:

(σ(θ) −
1

2
(σx + σy))

2

+ τ(θ)2 = (
σx − σy

2
)
2

+ τxy
2 = R2

(2.29)

 Mohr’s circle is used as a useful tool to graphically illustrate different properties of the

stress state. An example is given in Figure 21. For instance, it can be seen that the maximal

shear stress occurs when σ(θ) = σvol in where σvol is the mean stress. An important note is

that Mohr’s circle is oriented along with the orientation of σ1 such that σvol + R(α = 0) = σ1.

In other words, the angle α = 0 is defined as the starting point of the stress state description

and begins at σ1 revolving counter-clockwise when α > 0.

 50

A Mohr envelope of failure is constructed by plotting the Mohr’s circles at failure

belonging to similar specimens for different confining stresses using triaxial tests. A given

circle is defined by one pair of σ1 and σ3. The trace of the tangents of the Mohr’s circles

defines the Mohr envelope, as seen in Figure 22. Mohr state that failure occurs when a

Mohr’s circle for a point within a material surpasses the envelope. Also, in practice, the

Mohr envelope must be set by taking a best fit of the data at hand, which is illustrated in

Figure 22.

The influence of the intermediate principal stress, σ2, was neglected in the work of Mohr

and Coulomb. This implies that the failure plane is parallel with the direction of σ2. The

 Figure 21: Mohr's circle, illustration made by Edelbro (2003).

 Figure 22: Mohr failure circles and envelope for a limestone given from
published triaxial data for intact samples, figure borrowed from Hoek (1983).

 51

angle between σ1 and the failure plane will decrease as σ3 increases. The final version of

the Coulomb equation is:

τf = c + σn tan(ϕ), (2.30)

 whereby τf is the shear stress along the shear plane at failure, c is the cohesion, σn is the

normal stress acting on the shear plane, and ϕ is the friction angle of the shear plane. For

decades, Equation (2.30) has been referred to as the Mohr-Coulomb failure criterion, to

honor their contributions to the method. Mohr-Coulomb failure criterion is applied in rock

mechanics to predict shear failure of rock joints, intact rock and rock masses. The

assumption of this criterion is that failure occurs along a plane with no dilation.

This method’s simplicity is the reason for its wide usage in rock mechanics. It is easy to

use, to comprehend, and consist of a simple mathematical expression based on few

parameters. When all principal stresses are compressive, experiments have shown that

this criterion does it reasonably well to predict intact rock failure, when the uniaxial

compressive strength (σc) is much greater than the uniaxial tensile strength (σt), e.g.
σc

σt
>

10 . (ISRM, 2014)

However, according to ISRM (2014), there are several factors to consider before using

Mohr-Coulomb as failure criteria. First of all, in numerical coding this criterion is not as

easy to implement because of the hexagonal shape in the π-plane in where smooth shapes

like a circle is preferred. The π-plane is the plane of the deviatoric stresses in the space

with the principal stresses as basis vectors. For materials where the deviatoric stresses are

the only source to failure the π-plane is a useful tool to analyse its failure mode. If not, the

failure mode must be presented in three dimensions. Second of all, if the normal stress is

tensile the assumption of an inner friction is meaningless and a limit of σn = σt is normally

applied. This is called a tension cut-off. Consequently, it is necessary to also measure

values for the tensile strength. Third of all, the failure mode must be shear if this method

should be used. Fourth of all, the relation between normal and shear stress obtained during

triaxial testing normally gives a non-linear behavior opposed to the linear Mohr-Coulomb

criterion. To finish, it does not consider the effects of the intermediate principal stress.

Brady and Brown (2012) states that the Coulomb criterion can provide a good

representation of residual strength conditions of rock mass. This implies that this method

can be used in cases under which the rock mass already shows high degree of fracturing

of no preferred orientation which leads to an isotropic strength reduction. This is relevant

in cases such as weakness zones.

Hoek-Brown

According to Hoek and Brown (2019), it is evident that failure in brittle materials such as

rock or glass originates from micro-cracks or flaws in the intact material. In rock, these

flaws are consisting of grain boundaries, or inter-granular cracks and tensile cracks, that

propagate from their tips when frictional sliding occurs along the flaw. A parabolic failure

mode was proposed by Griffith (1921) based on these observations. Griffith assumed that

tensile failure in brittle materials initiates at the tips of defects. An empirical failure criterion

was developed by Hoek and Brown (1980a, 1980b) inspired by Griffith’s work. The reason

behind this was the insights attained using Mohr envelopes. For rocks these envelopes

tended to behave in a non-linear fashion. By curve fitting results from triaxial tests on

 52

brittle rocks, the non-linear behavior proposed by Griffith was matched with promising

results. Following parabolic failure criteria for elastically isotropic intact rock were

suggested:

σ1 = σ3 + σci (mi

σ3

σci
+ 1)

1/2

,
(2.31)

 where σ1 and σ3 are the major and minor principal stresses respectively, σci is the uniaxial

compression strength for intact rock, and mi is a material constant of the intact rock. The

concept of effective stress was later included in Eq. (27), replacing the total stresses

proposed in the first version. The reason for this was that experiments indicated that the

failure mode was significantly affected by the degree of water saturation.

It was proven by Zou et al.(2008, 2015) that it was possible to derive the Hoek-Brown

criteria theoretically from an analysis on fracture propagation:

σ1 = σ3 + σci ((
μ

κ

σci

|σt|
)

σ3

σci
+ 1)

1/2

,

(2.32)

 where μ = tan ϕ , ϕ is the crack surface friction angle, κ is a coefficient used for mixed

mode fracture, and |σt| is the absolute value of the tensile strength. Thus, by comparison

of Equation (2.31) and Equation (2.32) it is evident that mi = μσci (κ|σt|)⁄ . Ergo, mi has

physical meaning.

ISRM (2014) gives the following advantages of the Hoek-Brown criterion: (a) in accordance

with experimental data over a range of confining pressures the shape of the criterion is

non-linear, (b) it is developed on a wide range of experimental data based on a wide range

of intact rock types, (c) it provides a simple empirical method to predict rock mass

properties, and (d) three decades of experience, in which this criterion has been used

extensively on a variety of rock engineering projects, has highlighted its uses and

limitations.

The main flaw of the criterion is the neglection of σ2, which does enhance the strength of

the rock. Again, this leads to misinterpretation of the transition between brittle and ductile

behavior(e.g. Mogi, 1967). Furthermore, it does not necessarily capture the right strength

of tension. However, there are made a version with a tensile strength cut off, where the

cut off is based on results from lab tests on tensile strength (Hoek & Brown, 2019).

Drucker-Prager

Originally, the Drucker-Prager failure criterion was established as a generalization of the

Mohr-Coulomb criterion for soils (Drucker & Prager, 1952). It is a 3-dimensional failure

criterion which implies that both the deviatoric stress tensor and the volumetric stress

tensor is believed to control the failure mode of the material. The criterion is given as

follows:

√J2′ = λI1
′ + κ (2.33)

 where λ and κ are material constants, J2′ is the second invariant of the effective deviatoric

stress tensor and I1
′ is the first invariant of the effective stress tensor. They are defined as:

I1
′ = σ1

′ + σ2
′ + σ3

′ , (2.34)

 53

J2′ =
1

6
[(σ1

′ − σ2
′)2 + (σ2

′ − σ3
′)2 + (σ3

′ − σ1
′)2],

(2.35)

 where λ and κ can be determined from triaxial tests after plotting the results in the space

of I1
′ and J2′. Alternatively, internal friction angle and cohesion intercept found in triaxial

tests can be used:

λ =
2 sinϕ

√3(3 − sinϕ)

(2.36)

κ =
6c cos ϕ

√3(3 − sinϕ)
,

(2.37)

 in where ϕ is the materials internal friction angle and c is the materials cohesion. Vermeer

and De Borst (1984) stated that the Drucker-Prager condition makes a poorly fit for

material with higher friction angles such as sand, concrete, and rock. However, this

approximation is useful for clays with low angle of friction.

ISRM (2014) made a review of failure criteria for intact rock, where it is shown that the

Drucker-Prager criterion overestimate the strength of the material. This is because the

strength criterion shows an increase in error with increasing difference between σ2 and σ3.

(ISRM, 2014)

Friction of Rocks

Byerlee (1978) found in an analysis shear behavior of joints and faults, that the friction is

dependent on the surface friction of the rock mass in low stress areas. A low stress area is

defined as normal stresses ranging between 0 to 50 Bars and with shear stresses ranging

between 0 to 60 bars. Also, it was found that there was no strong correlation between

friction and rock type. The weak correlation between friction and rock type was attributed

to the variation of friction due to variation of surface roughness. An equation describing

friction of rocks at low stresses was suggested by (Barton, 1976):

τ = σn tan [JRC log10 (
JCS

σn
) + ϕb],

(2.38)

 where τ is the shear stress of the failure plane, σn is the normal stress of the failure plane,

JRC is the undulation number, JCS is the strength of the failure plane taken with Schmidt

hammer, and ϕb is the basic friction angle. The link to Mohr-Coulomb is evident in where

no cohesion is assumed. The equation states that slipping will occur if the shear force

exceeds the criteria given in Equation (2.33).

For intermediate stress areas ranging between 50 to 1000 bars and high stress areas where

the stress is over 1000 bars, there is no correlation between friction and initial surface

friction. Furthermore, it seems that the friction behavior are independent of rock type.

Byerlee (1978) proposed two equations describing friction: Normal stresses up to 2 kb and

above 2 kb respectively.

τ = 0.85σn (2.39)

τ = 0.5 + 0.6σn (2.40)

 54

2.2.9 Anisotropy and deformability of rock mass

Hudson and Harrison (1997) states that thorough examination of the mechanical properties

of rocks have proven most rocks to behave anisotropic. Thus, it is argued that the

assumption of rock mass behaving continuous, homogeneous, isotropic, and linear-elastic

(CHILE) does not hold in most cases.

Features causing anisotropy

Rock anisotropy is attributed to both primary and secondary structures that can be traced

back to the formation environment of the intact rock and the rock mass.

The term primary structures refer to the micro geological features which are formed

during the formation of a specific rock. Features like rock fabric, texture, schistosity, grain

size, and fissility affect the degree of anisotropy. Besides, Ullemeyer et al. (2006) states

that the texture and fabric of the principal rock-forming minerals in general are the most

important factors. According to Bagheripour et al. (2011) the nature of anisotropic intact

rock can be divided in three categories. First of all, most foliated metamorphic rocks, such

as gneisses, phyllites, slates and schists, have a natural orientation in their flat and/or

elongated minerals or a banding phenomenon. This leads to anisotropy in mechanical

properties. Second of all, stratified sedimentary rocks, like sandstone or siltstone, often

display anisotropic behavior. This is due to the sedimentation processes of the different

strata, or different minerals with various grain sizes. Finally, the anisotropy of igneous

intact rocks seldom occurs due to the minerals being oriented more chaotic and sporadic.

However some extrusions do not behave according to this rule of thumb (e.g. Matsukura

et al., 2002; Wahlstrom, 1973).

The term secondary structures refer to the discontinuities of the rock mass. These

discontinuities are associated with three distinct issues (Bobet et al., 2009): (a) The scale

effect illustrated in Figure 23 indicating that the quality of a rock mass is also dependable

of the tunnel size, (b) alteration of stress and strain paths due to discontinuities, and (c)

relative motions of rock blocks whereby discontinuities limits the elastic behavior of the

rock material. According to Hoek and Marinos (2000), anisotropy in strength is a result of

either the filling between blocks or the contact surface among blocks being weaker

compared to the strength of the intact blocks.

Heavily fractured rock mass may behave isotropic since the discontinuity planes continuity

is disrupted. Bray (1967) demonstrated that if a rock mass contains ten or more joint sets,

it is valid to treat it as a homogenous and isotropic material. Furthermore, Hoek and Brown

(1980b) argued that homogeneity is a characteristic reliant on the sample size. This is also

illustrated in Figure 23, assuming that the tunnel is representing a sample.

 55

Edelbro (2003) had these effects in mind when she defined continuous rock mass as either

being intact or being closely jointed in her literature review on quality descriptions of hard

rock. This definition is illustrated in Figure 24. In her definition, discontinuous rock mass

is highly affected by the direction of the discontinuities, and failure gets direction

dependent.

Triaxial tests has been conducted on rock samples with a distinct weakness plane (i.e.

Brady & Brown, 1993; Donath, 1972). Their result is presented in Figure 25. The tests

showed that the anisotropic strength character is dependent on the angle between the

weakness plane and the direction of the applied load. These tests were conducted by

varying the load angle from being parallel with the weakness plane to be orthogonal to the

plane. Angle of zero is the case when the load is parallel. For each change of angle several

tests with different confining pressure were conducted. They found that the lowest peak

strength was attained with an angle between 30 and 45 degrees. This effect was not

affected severely by change in confinement pressure.

Figure 23: This figure presents the scaling effect as a consequence of different tunnel
sizes, as illustrated by Edelbro (2003).

Figure 24: Illustration of the difference between discontinuous and continuous rock mass. The
size of the tunnel is held constant . Edelbro (2003) has made the illustration.

 56

Li (2018) discuss that the weakening effect of a discontinuity is additive. This effect is

illustrated in Figure 26. It is assumed a hard rock mass with 4 distinct joints with of weak

strength that exists in the same plane. A triaxial compression test is done with varying

load angle. If there were only one discontinuity, the behavior would be similar to the cases

in Figure 25. With 4 weakness planes, the result is a combined effect where the rock mass

shows a more constantly weak character. As the specimen rotates there is always one

weakness zone which will dominate the failure mode.

Hudson and Harrison (1997) argues that the stiffness also is affected by the characteristics,

angels, and frequencies of discontinuities. They found a following equation for an idealized

rock mass with one discontinuity set normal to the direction of the applied force with

negligible thickness and one specific frequency:

EMASS = σ ϵ⁄ = 1 [(1 E⁄) + (λ ED⁄)],⁄ (2.41)

 whereby EMASS is the Young’s modulus of the rock mass, σ is the stress from uniaxial load,

ϵ is the total strain, E is the Young’s modulus of intact rock, λ is the frequency of the

discontinuity set, and ED is the Young’s modulus of the discontinuity set. This idealized

case is shown graphically in Figure 27.

Figure 25: Variation of the peak deviatoric stress with the angle of inclination of
the major principal stress to the plane of weakness, given by different confining

pressures for (a) a phyllite(Donath, 1972), (b-d) a slate and two shales (Brady &

Brown, 1993).

 57

Figure 26: Illustration of joint sets influence on the strength of the rock
mass, figure taken from Li (2018).

Figure 27: Variation of in situ rock deformability as a function of the frequency of one
discontinuity set (idealized) taken from Hudson and Harrison (1997).

 58

Goodman (1989) did the same argument just for shear modulus and showed that:

GMASS = τ γ⁄ = 1 [(G) + (λ GD⁄)],⁄ (2.42)

 whereby GMASS is the shear modulus, τ is the shear stress from uniaxial shear, γ is the total

shear strain, G is the intact shear modulus, λ is the frequency of the discontinuity set, and

GD is the shear modulus of the discontinuity.

According to (Gercek, 2007) the Poisson’s ratio is also a weighted sum of the stiffness

behavior of the discontinuities and the intact rock. Important factors describing the

stiffness of joints are the normal stiffness (ke), the shear stiffness (k_s), and joint spacing.

Several studies have shown that the value of Poisson’s ratio for most cases are lower than

the intact value. In fact, in some cases, unusually high values were obtained (ν > 0.5

indicating the anisotropy induced by the joints

According to Hudson and Harrison (1997) is the mathematics associated with further

extensions to account for discontinuity geometry, loading angle, and number of

discontinuity rather complex. However, a complete solution has been provided by Wei

(1988). Wei’s model can in some extent also consider weakening effects due to

impersistent discontinuities.

Deformation prediction of rock mass

It is evident that to capture the true deformation behavior of is a rather cumbersome task,

and in engineering projects it will be too time-consuming and expensive to accomplish

(e.g. Bieniawski, 1974; Palmström & Stille, 2010). This is not only due to the complexity

of the mathematical representation, but it is also due to the heterogeneity of rock mass

and its great variability over relative short distances. Extrapolation of input-data from a

rock mass measured in one site onto the surrounding rock mass cannot readily be done

without sufficient information about similarity of the sites under consideration. Thus, it has

been a long tradition for developing methods to predict rock mass deformation based on

observations in the field. This approach has especially proven to be effective in the pre-

excavation phase in where little is known about the rock mass at hand.

Rock mass classification

Krauland et al. (1989) categories four different approaches to get the rock mass strength:

(a) mathematical modelling, (b) rock mass classification, (c) large-scale testing, and (d)

back-calculation.

The mathematical models (a) capture the strength through describing both the rock

substance and the properties of the discontinuities. The modelling can either be done

through simulation of the discontinuities as discrete elements of the rock mass or be

regarded as the rock mass as a composite material. The properties of this material are

given by the properties of both the intact rock and weaknesses and how these elements

are distributed. The mathematical models all require information of many parameters and

is all based on several assumptions simplifying the rules of the rock mass behavior.

Classification systems (b) can be divided into two sub-groups based on the purpose of the

classification: Stability classification and strength classification.

 59

The goal of stability classification systems is to define the ratio between load and bearing

capacity. This ratio is used to classify the response in which the underground structure has

on it, and then give an estimation on necessary use of support. The size of the stress field

and the influence of the excavations geometry is included within these types of

classification systems. The usefulness of such systems is linked to systems which shows

little variation in the geometry of the excavation, for instance in tunnelling.

 The purpose of strength classification systems is to map the strength of the rock mass

only. The classified rock mass strength is used in combination with information about load

in a stability evaluation. This type of approach has been useful in projects where the

geometry of the excavation, the size of the excavation, and the stress state show large

variations, such as in civil engineering applications. Determination of rock mass strength

through classification systems are based on a limited number of parameters that are

believed to control the rock mass strength. All classification systems are empirically based

and are usually developed with a data base of case studies.

In large-scale testing (c), the strength of representative rock mass samples is determined.

This includes the interaction between intact rock and the discontinuities, hence providing

for thorough description of the properties of the rock mass. High costs and the need for

representative test objects makes this an expensive procedure.

Back-calculation (d) is conducted to assess experience on the properties of the rock mass

from existing engineering structures. In particular, the maximum bearing capacity of the

rock mass can be decided if failure already has occurred.

Edelbro (2003) states that empirically derived failure criteria for rock masses, often used

in conjunction with rock mass classification of strength, should be added to Krauland’s list.

Classification systems is thereby used to assert rock mass properties. Empirical failure

criteria for rock mass are mainly based on triaxial testing on small rock samples, and few

is verified against test data for rock masses. Such classification systems also provide for

an estimation of the rock mass’ deformation parameters. When both the deformation

response and the failure mode is established, it is possible to predict deformation response

through use of numerical modelling. This combined method is the only method which will

be further investigated in this chapter.

Rock mass classification systems

Cai and Kaiser (2006) defines rock mass classification systems as systems intended to

classify and characterize the rock masses, used as a basis for estimating deformation and

strength properties, supply quantitative data for support estimation, and to give a platform

for communication between exploration, design, and construction groups. According to

Palmstrom and Broch (2006) the difficulties in technically describing rock masses and

ground conditions motivated development of an empirical approach of rock mass

classification systems at an early stage of geological engineering and rock mechanics. The

first system in use was developed in USA by Terzaghi (1946) which applies conservative

estimation for loads on the support totally based on the use of steel.

According to Palmström and Stille (2010) rock mass classification systems can be

considerably useful in the initial stages of a project when little is known about the details

of the rock mass. The classification systems can be divided into two distinct groups: (a)

general classification systems, or (b) classification systems for specific applications. The

classification systems consider factors believed to affect the stability. Thus, the parameters

are often related to the discontinuities such as the number of joint sets, roughness, filling

 60

and alteration of joints, joint distance, groundwater conditions, and sometimes the

strength of the intact rock and the magnitude of stress.

Hudson and Harrison (1997) proclaim that classification schemes essentially are a

compromise between the use of complete theory and ignoring the rock properties entirely

– pointing to the fact that all classification systems are based on just a few of the key rock

mass parameters. Furthermore, they state that a single number primarily based on field

observation cannot describe the rock mass anisotropy and time dependent behavior in a

satisfactory manner. Since classification of rock mass is an indirect method, it does not

predict the mechanical properties of the rock mass or failure mode directly. In fact, the

result of such systems gives an estimate of the stability given in subjective terms such as

bad, fairly bad, acceptable, etc. The value from some of the systems can be used to assess

the rock mass strength through use of failure criteria or to predict necessary use of rock

support.

According to Edelbro (2003) there are three systems that are most often used to predict

strength and deformation properties of rock mass: (a) NGI’s Q-system developed by

Barton et al. (1974), (b) the Rock Mass Rating (RMR) first proposed by Bieniawski (1973),

and (c) the Geological Strength Index introduced by Hoek et al. (1995). The Q-system and

the RMR can also be used to get predictions for necessary use of rock support.

The Q-system

The original Q-system was based on an analysis of 212 case records where most of the

material was based on tunnelling cases from Sweden and Norway. 180 of the 212 case

records were from supported excavations, and the rest were from cases permanently

unsupported. The entire scale of projects was investigated ranging from unsupported 1.2

m wide pilot tunnels to unsupported 100 m wide mine-caverns. The excavation depths

ranged from 5 to 2500 m where the most common depths were between 50 and 250m.

The last major update was conducted by Grimstad et al. (2002) and was then based on

around 1050 base records. (Edelbro, 2003)

In application of this classification system, a given site should be divided into several

geological structural units in such a way that each type of rock mass is represented by a

separate geological structural unit. This separation process is mainly based on experiences

in the field. The Q-system uses the following six parameters:

(a) Rock Quality Designation (RQD),

(b) Number of joint sets (Jn),

(c) Joint roughness number (Jr) of least favourable discontinuity or joint set,

(d) Joint alteration number (Ja) of least favourable discontinuity or joint set,

(e) Joint water and pressure reduction factor (Jw),

(f) Stress reduction factor (SRF) for faulting, strength/stress ratios in hard massive

rocks, and squeezing and swelling rock.

Following empirical equation was defined (Barton et al., 1974):

 61

Q = [
RQD

J
n

] ∗ [
J
r

J
a

] ∗ [
J
w

SRF
],

(2.43)

 in where the ratio [RQD Jn⁄] is the relative block size, [Jr Ja⁄] is the relative frictional strength

of the least favourable joint set or filled discontinuity, and [Jw SRF⁄] is the active stress ratio.

The range of Q-values is between 0.001 and 1000. The details of the parameters and how

much each parameter is weighted can be found in the Q-system handbook (NGI, 2015).

The parameters are found either through use of either borehole data or underground

mapping. Also, the Q-system can be used to estimate Young’s modulus for rock mass, but

is not recommended by (Palmstrom & Broch, 2006)

Rock Mass Rating (RMR)

This rating system was originally based on Bieniawski’s experiences in shallow tunnels in

sedimentary rock (Goel & Singh, 2011) and was based on 49 unpublished case histories.

It underwent several stages of development until 1989 with addition with over 64 more

case studies. Also, Aksoy (2008) states that it has been used in over 350 applications in

underground openings, tunnels, underground mines, and open-pit slope designs. Edelbro

(2003) stresses that the RMR-system is calibrated using experiences from coalmines, civil

engineering excavations and tunnels at shallow depths.

In application of this classification system, a given site should be divided into several

geological structural units in such a way that each type of rock mass is represented by a

separate geological structural unit. This separation process is mainly based on experiences

in the field. The following six parameters are attained for each structural unit:

(a) Uniaxial compressive strength of intact rock,

(b) Rock quality designation (RQD) (Deere & Miller, 1966),

(c) Joint or discontinuity spacing,

(d) Joint condition,

(e) Groundwater condition,

(f) Joint orientation adjustment.

Each of the parameter’s contribution is added to give the resulting RMR-value ranging from

0 to 100. The details of the parameters and how much each parameter is weighted can be

found in the book: “Engineering rock mass classification” (Bieniawski, 1989). The

parameters are found either through use of either borehole data or underground mapping.

In addition, RMR can also be used to estimate Young’s modulus for rock mass and UCS for

rock mass (Basarir, 2008), in where the use is recommended for preliminary studies only

due to uncertainty of the estimation.

Geological Strength Index (GSI)

Hoek et al. (1995) introduced the Geological Strength Index to complement their

generalized rock failure criterion (discussed later). GSI is used to estimate the reduction

of strength of the rock mass for different geological conditions for undisturbed rock. In this

context the term undisturbed refers to rock mass that has taken little to no damage

because of the excavation process. GSI was made to focus on the two principal factors

believed to have the most significant influence on the mechanical properties of a rock

mass, namely the blockiness and the condition of the joints. This system was developed

to deal with rock masses comprised of interlocking angular blocks in which the failure

process is dominated by block sliding and rotation without great deal of rock failure.

 62

According to Hoek and Brown (2019), the latest major revision of this system was executed

by (Hoek et al., 2002) where it became possible to adjust for blast damage. It is possible

to decide the GSI through measurements of Q-values or RMR-values. However, Hoek and

Brown (1997) recommends to get GSI-values through usage of their own classification

system because of flaws in the equations describing their relation. Details of the GSI-

classification is given in Hoek and Brown (2019) in where it is stressed that several

adaptations have been made in situations where the rock mass is heterogenous and

tectonically deformed. The last adaptation was done by (Marinos & Carter, 2018). GSI can

also be used to estimate Young’s modulus for rock mass (e.g.Hoek & Diederichs, 2006)

and UCS for rock mass (Hoek et al., 2002). Also, in this case is it recommended for

preliminary studies only. GSI ranges from 1 to 100.

Høien et al. (2019) states that the equations proposed by Hoek and Diederichs (2006) and

Hoek et al. (2002) are probably the most used equations to predict rock mass modulus

and strength. The reason is that they are well documented and is easy to implement in

computer software.

Failure criteria of rock mass: Generalized Hoek-Brown criterion

Alongside with Mohr-Coulomb, the Generalized Hoek-brown criterion is the most used

criterion for rock engineering purposes (Edelbro, 2003).

The Generalized Hoek-Brown failure criterion (Hoek et al., 1995) for jointed rock masses

is defined by:

σ1
′ = σ3

′ + σci (mb

σ3′

σci
+ s)

a

(2.44)

 where mb, s, and a are the rock mass material constants given by:

mb = mi exp[(GSI − 100) (28 − 14D)⁄]

s = exp[(GSI − 100) (9 − 3D)⁄] (2.45)

a = 1 2⁄ +1/6(e−GSI 15⁄ − e−20 3⁄)

 Also, m is equivalent to friction strength of rock, s is a measure of degree of fracture of

rock, thus analogous to cohesion. D is a factor dependent on the degree of disturbance to

which the rock mass has been subjected to blast damage and stress relaxation.

Hoek and Marinos (2000) argued that the generalized Hoek-Brown also could be used for

weak rock if it showed isotropic behavior, and which they stated is a criterion for any other

of the published criteria that can be used for the purpose rock mass failure. In other words,

while the behavior of the rock mass is controlled by movement and rotation of rock

elements separated by intersecting structural features such as bedding planes and joints,

there are no preferred failure direction.

Equation (2.44) was developed for estimating rock mass comprising interlocking angular

blocks in which the failure process is dominated by block sliding and rotation without a

great deal of intact rock failure.

 63

According to (ISRM, 2014), there have also been attempts to generalize this criterion even

further to also include the intermediate stress. However, this was only for intact rock

specimens, and the ISRM concluded that due to either to severe overestimations and

underestimations of the rock strength indicated that more empirical data and testing was

necessary before they could recommend it. There have also been attempts to make a

modified version for anisotropic intact rock (e.g. Saroglou & Tsiambaos, 2008), but not for

rock mass.

Critical strain

Sakurai (1981) introduced the concept of critical strain and is the strain of the rock mass

at the yield load:

ϵ0 = σc E⁄ , (2.46)

where σc is the 𝑈𝐶𝑆, and 𝐸 is the Young’s modulus. If the rock is linear elastic, the critical

strain is the strain at peak-load. According to (Sakurai, 1984), the stability of tunnels can

be predicted based on the strain of the rock mass close to the tunnel. It was further stated

that the critical strains ranged between 0.1% to 1% for rocks and between 1% and 5%

for soils. Sakurai (1984) suggested that stability problems in tunnels occurred when the

critical strain exceeded approximately 1%.

It has been shown that it is possible to predict strain by the rock mass strength and in/situ

stresses (e.g.Hoek, 1999; Hoek & Marinos, 2000). The relation between unsupported rock

mass strength and strain is presented in Figure 28: The relation between unsupported rock

mass strength and strain. (Hoek & Marinos, 2000). It is based on a Monte Carlo simulation

in where: (a) tunnel diameters ranged between 4 and 16m, (b) 𝑚𝑖 between 5 and 12, (c)

overburden between 80 to 800m, (d) GSI between 10 to 30, and (e) 𝜎𝑐 between 1 to 30

MPa. The model was able to confirm Sakurai’s statement that minor stability issues tended

to occur for critical strain passed 1%. Hoek (2001) made a chart in where field observation

of 𝜎𝑐 of rock specimens were plotted against measured strain. The chart is given in Figure

29. The red dots mark the situations where it was experienced issues with instability. It

can be seen from this chart that there was only one occurrence in where it was experienced

instability with strain below 1%. The highest strain with no instability problems was 4%.

 64

Figure 29: Field observations of total strain of headrace tunnels. (Høien et al.,
2019)

Figure 28: The relation between unsupported rock mass strength and strain. (Hoek &
Marinos, 2000)

 65

2.2.10 The stress distribution

The term stress distribution is referring to the distribution of inner forces that consists

within a continuous material, such as a rock mass. These inner forces are a result of several

factors such as gravitation, friction between grains, and temperature. Conceptually is the

stress distribution a summarization of the stress state in each point of a given continuous

material. The convention is that the stress is given with a positive value under

compression. Therefore, must the strain be positive when the material contracts.

The stress state of rock mass is comprised from two sources: in situ stresses and induced

stresses (Bøgeberg et al., 2021), as seen in Figure 30. In situ stress state is defined as the

original stress state in a rock mass before excavation or other disturbances. There are four

main categories of in situ stresses referring to their origin: gravitational-, tectonic-,

residual-, and terrestrial stresses. The induced stress state is the stress state after

excavation or other disturbances. It is apparent that this altogether leads to a complex of

stresses in which it is impractical to grasp the details. To get a decent and detailed picture

of the stress distribution (Haimson & Cornet, 2003), it is necessary with high quality in-

situ stress measurements such as the doorstopper method or hydraulic fracturing. The

details of how stress measurements are executed is beyond the scope of this project.

It is usual to define in-situ rock mass stresses by a vertical stress induced by gravity and

a horizontal stress which is given by its ratio compared to the vertical stress. This is given

in eq. (41) and (42).

σv = γz (2.47)

σh = kσv (2.48)

 Terzaghi and Richart Jr (1952) proposed, for a rock mass gravitationally loaded whereby

no lateral movement is allowed, the k ratio is independent of depth and is approximated

through Poisson’s ratio of the rock mass (ν) in the following way:

 Figure 30: Different parameters affecting the stress state(Amadei &
Stephansson, 1997).

 66

k =
ν

1 − ν
 (2.49)

 Numerous measurements has proven this wrong, whereby Hast (1958) was the first to

report anomaly high k-values shallow in the crust. Stress measurements from several

projects across the globe highlighted the trend of high values of the k-ratio near the surface

in which reduces with depth (Brown & Hoek, 1978; Herget, 1988), see Figure 31. In fact,

the k-factor contains the effects from all the sources of in-situ stresses mentioned above

in addition to Poisson’s restraint, major and minor geological structures, rock properties

and surface topography.

McCutchen (1982) was one of the first attempting to explain the variability of the k-factor

theoretically and showed that it was possible to describe the general behavior of the in-

situ stress field through a simple elastic-static analysis. However, McCutchen was unable

to satisfactory fit his theory to the work of Hoek and Brown given in Figure 31. Sheorey

(1994), inspired by McCutchen, proposed an elastic-static thermal stress model in which

reached a more promising fit. In his work it was found that the earth’s curvature was the

most important factor to create high values for k in the proximity of the surface. Also, he

found that Young’s modulus has a great influence on this factor. He proposed the following

empirical relation:

k = 0.25 + 7E (0.001 +
1

H
),

(2.50)

 where E is Young’s modulus and H is depth beneath the surface. Sheorey stressed that

his analysis do not imply that the other factors mentioned above may be ignored. He

pointed out that his theory does not explain why vertical stresses can be different from

cover pressure. Neither can it explain the occasionally high horizontal stresses, nor the

fact that the two horizontal stresses usually are different. Thus, since stress is a complex

combination of several factors, he stresses the importance of measurements. Although,

the k-values high dependency on Young’s modulus indicates that stress measurements

Figure 31: k-values gathered across the world, made by Brown and Hoek (1978).

 67

done in hard rocks should not necessarily be used in softer rocks. This is shown graphically

in Figure 32.

Discontinuities is a feature of the rock mass that greatly inflicts the proximate surrounding

stress distribution. The alteration of the stress state is a direct consequence of

discontinuities low tensile stress which implies low rock mass quality and leads to a

concentration of stress in the neighborhood of the zone. An illustration of the alteration is

given in Figure 33. (Myrvang, 2001)

Figure 32: The k-ratio and calculated stress towards depth, made by Høien et
al. (2019), based on (Hatheway & Kiersch, 1986; Sheorey, 1994).

 68

The stress state in the weakness zone is assumed to be hydrostatic. It is a reasonable

assumption for very weak rock like in a fault or shear zone, because of such rocks already

has reached failure and therefore cannot sustain significant stress differences. Also, this is

the case even if the stress distribution in the surrounding competent rock mass is

asymmetrical. (Hoek, 1999)

2.2.11 Structure and material behavior of weakness zones

The review of the nature of weakness zone is limited to fault zones in brittle rocks.

Fault zones in brittle rocks

A fault can be defined as a feature where a relative movement between the rock mass on

both sides of a discontinuity has occurred. Furthermore, a fault is a brittle deformation of

the rocks, and may be a consequence of either compression or extension. (Sæter, 2005).

McClay (1987) states that brittle to semi-brittle faults are planar discontinuities along

which significant displacement has occurred, and that they generally occur int the upper

10-15 km of the crust. A fault zone is defined as an area with several parallel faults.

However, it is also used to refer to a single fault complex that is made up by the fault core

and the damage zone, see Figure 34.

Fault material

Gouge, cataclasis, ultra-cataclasis, or a mix of these three is the main constituents of the

fault material (Sæter, 2005). Following fault materials are defined:

Figure 33: Illustration of how a weakness zone may alter the stress distribution in
the proximity of the tunnel, illustration made by Myrvang (2001).

 69

• Cataclasite: A type of rock made after lithification of angular fragments in a fine-

grained matrix coming from the process of abrasion of a brittle protolith due to

shear movement. The fragments show no preferred orientation.

• Mylonite: A foliated rock where the original grain size of the rock was reduced due

to plastic and semi-plastic deformation.

• Breccia: A loose rock of angular fragments in a fine-grained matrix coming from the

process of abrasion of a brittle protolith due to shear movement. Normally, the

fragments show no preferred orientation. Compared to cataclasite, breccias show

less cohesion due to lesser extent of pressurization and bonding of the matrix.

• Gouge: A fine-grained mass of clay-like character which is created because of

severe crushing of the host rock by deformation in the brittle regime. The grain size

is less than 0.1 mm, but there are some rock fragments of greater magnitude

prevalent in the matrix. Dry gouge is loose to partly compact. Wet gouge is sticky,

implies more cohesion.

Woodcock and Mort (2008) proposed a classification on fault rocks based on grain sizes

and extent of orientation. This definition is given in Figure 35. As can be seen, the term

ultra refers to a cohesive non-foliated fault rock dominated by fine-grained matrix (90-

100%).

Figure 34: Typical structure of fault zones. (a) Replicates a singular high-strain core
surrounded by fractured damage zone and (b) represents a model of multiple high-strain
cores in which enclose lenses of fractured protolith. Taken from Faulkner et al. (2010).

 70

No articles regarding data on strength and stiffness of fault rock, breccia or gouge for

engineer geological applications has been found. According to (Riedmüller et al., 2001) the

material of fault zones show great heterogeneity, consisting of randomly occurring material

of more or less undeformed, unaltered stiff rock fragments surrounded by a soft weak

matrix. This matrix can in some instances be altered due to second mineralization and

therefore harden and be cohesive. Also, they state that the ratio between matrix and clasts

is extremely variable, and the distinction between fragments and matrix is given by the

scale of the problem. Another important factor is the water content and hydraulic

connectivity which can lead to an extended weakening of the material especially due

reduced effective stress of the fault. Riedmüller et al. (2001) states that the extensive

complexity of brittle faults makes the geotechnical characterization and investigation

difficult.

According to Kalender et al. (2014), measurements of strength and stiffness of fault rock

and breccias is nearly impossible to do because of the difficulty in attaining high quality,

undisturbed drill core samples. Also, there are problems in preparing laboratory specimens

and gather cohesion values internal friction angle and UCS for such complex mixtures.

Fasching and Vanek (2011) states that only tectonical breccias and mylonite can be

addressed with hard rock behavior, and that regular breccias, fault gouge, and cataclasis

can only be attributed with soft rock and/or soil behavior. Cohesion can only be disregarded

if the material is believed to not show mineral-bonding between the grains and that there

is little of silt and clay-sized grains in the material. Kalender et al. (2014) developed a

failure criterion for fault rock with a significant degree of clasts, which is essential due to

the complex failure behavior such soil/rock hybrids entail. However, this criterion only

works for hybrids with low degree of grain-interlocking under low confinement stress and

under-estimates the strength of the rock.

Figure 35: A classification of fault rocks based on visual characteristics. Made
by (Woodcock & Mort, 2008).

 71

The first 5 km of the crust is dominated by brittle deformation mode, and the ductile zones

is usually found deeper than 5-10 km. There is also possible to find a composite zone which

show a combined behavior. Thus, a fault, given the definition above, is the same as a

brittle shear zone, where a transition zone to a ductile shear zone happens between 5-10

km. An illustration is given in Figure 36. (Sæter, 2005)

Furthermore, as seen in Figure 36 the material of the fault core consolidates with depth,

indicating an increase of strength.

Fault structure:

In general, fault zones vary in complexity both along strike and dip (e.g. Caine et al.,

1996). This yields also over relatively short distances. In other words, fault zones are 3-

dimensional systems which vary significantly both in geometry and material behavior.

Furthermore, fault zone structure, mechanics and permeability can vary severely both over

geological time, and in a time span relevant for a variety of industrial applications, see

Figure 37. A fault zone cores extension, both normal to strike and parallel with dip, is

closely linked to the slipping distance.

Figure 36: A fault who undergoes a gradual transition from brittle character to a ductile
shear zone. Made by Sæter (2005).

 72

Fault zone structure depends on the depth of formation, protolith, tectonic environment

(e.g., strike-slip, extension or compressional), magnitude of displacement and fluid-flow.

Generally, faults in low-porosity rocks consists of a fine-grained core surrounded by a

fracture dominated damage zone. (Balsamo et al., 2010)

Qualitative description of fracture damage zones (brittle protolith) surrounding a fault core,

by e.g. McGrath and Davison (1995) and Berg and Skar (2005), show that damage zones

comprises fractures at a range of sizes. Both microfractures and larger fractures that may

shows some small shear displacements and consist of cataclasis. Also, it can be hard to

distinguish fault damage zone fractures and subsidiary fault structures. Brittle rock damage

zones mostly consists of mode 1 fractures which is the same as extension fractures, also

called dilatant fractures due to the volume increase they lead to (Blenkinsop, 2008). In

low porosity rocks the density of fractures decreases exponentially when moving away

from the fault core, for instance showed by Wilson et al. (2003) in their work on mapping

of micro fracture on Punchbowl fault in San Andreas in California. This behavior has been

linked to the decrease of stress when moving away from the fault tip where fracture

mechanic models anticipate stresses of great magnitude. According to Mitchell and

Faulkner (2009), maximum microfracture density is often attained in close proximity to

the fault core and is dependent on rock type but independent on the displacement of the

fault, see Figure 38.

Figure 37: Conceptual model of a fault zone with removal of the protolith showing its
complexity. This model focuses on permeability (k) (Caine et al., 1996).

 73

However, damage zone width, both in micro and macro scale, tends to be thicker with

increasing displacement. Mitchell and Faulkner (2009) studied damage zone widths from

several faults in the same granodioritic batholith ranging from centimeter scale and up to

kilometer scale showing this effect. Their work indicates a decrease of the width

development for high fault displacements. Their work is presented in Figure 39.

Figure 39: The increase in damage zone width plotted against fault displacement (Mitchell &
Faulkner, 2009). The shaded area shows the extent of data compiled by (Hatheway & Kiersch,

1986); Savage and Brodsky (2010).

Figure 38: Models showing how density of macro-fracture (left) and microfracture (right)
decreases with distance from fault core given from three strike-slip fault zones in low porosity
crystalline rocks north in Chile. Bianca fault showed 35 m of displacement, Cristales Fault
showed 220 m, and Caleta Coloso showed 5 km, from Mitchell and Faulkner (2009).

 74

Faulkner et al. (2010) implies that the prediction of width of fault cores are less good than

the prediction of damage zone width because of a more prominent scatter in the data.

However, a model relating fault core thickness with displacement may present a good

approach to find the upper bound of core thickness. Scholz (1987) is one that have

provided such a model and his results is given Figure 40.

According to McClay (1987), a faults angle is directly linked to the stress-situation when

the fault was created leading to the following: (a) Strike-slip movement of the fault result

sub-vertical dip of the fault, (b) dip-slip movement of normal faults leads to dips of around

60o, (c) dip-slip movement of reverse faults leads to dips of around 45o, dip-slip movement

of thrust faults give dips less than 45o . Thus, seen together they show the total range of

dip of faults between 0 to 90 degrees.

Figure 40: Log-log plot of gouge-zone thickness, t, against total slip, x. Estimated by Scholz
(1987).

 75

2.3 FEM modelling

The main purpose of this section is to present numerical modelling as a tool to attain a

mathematical description of the redistribution of stresses post excavation. This section is

divided in three subsections: (a) gives a brief summary of the use of the general use of

numerical modelling and focuses then on the use of finite element modelling, (b) presents

the dilemma between usage of 2-dimensional and 3-dimensional numerical models, and

(c) presents the problem of dynamic unloading.

2.3.1 A brief summary of numerical modelling and finite element method

This subsection is made for two reasons in mind. It begins with a short summary of the

general use of numerical methods. It is then narrowed down to a more specific presentation

of the finite element method.

It is normal to describe the stress-strain relation of rock mass using partial differential

equations and solve it using numerical software such as RS2 (earlier Phase2), FLAC3D and

more (e.g.Cai, 2008; Mao & Nilsen, 2013; Trinh et al., 2010). To be able to construct a set

of partial equations to describe the stress and strain distribution, it is necessary to define

a set of constitutive laws describing the physical behavior of the examined system.

First of all, the rock mass materials’ response to forces must be defined. In the field of

rock engineering, it is normal to assume that the inspected rock mass’ material behavior

pre-failure, can be described by Hooke’s law of linear elasticity, see Equation (2.10).

Post-failure it is normal to assume that the rock behaves according to a certain flow rule,

generally defined in equation (2.20). In many occasions, it is normal to only calculate the

deformation just after excavation. Under such circumstances it can be assumed no time-

dependent deformations, which is an important factor in long-term stability, see section

2.1.6.

Second of all, another important aspect of the physical system is the description of the

forces that are the source of the deformations. In this case it is normal to assume that the

surface and body forces acting on the rock mass follows the Newton’s laws of motion.

One of the most central body forces is in this regard the force of gravity.

These two assumptions are vastly used in the field and makes it possible to describe the

deformation response of rock mathematically. For easy problems it is possible to calculate

this response analytically. For example, Kirsch (1898) found an analytical description of

the elastic stresses around a circular tunnel in an infinite continuous rock mass. However,

most practical applications cannot be predicted using this analytical solution. Thus, for

most rock engineering applications it is necessary to calculate the equations numerically.

This means that a numerical method is used to approximate the true solution.

Yet, an important note is that the true solution is not necessarily known for a certain

problem. It is therefore important in practical engineer applications to verify the numerical

model by comparing it with similar numerical models already verified, or by verifying it by

comparing the predictions with deformation monitoring of the tunnel of a specific project

post excavation. If there are significant deviations, the numerical model is adjusted

accordingly (Palmström & Stille, 2010)

There are many numerical methods developed over the years which suits a variety of

physical applications. According to Jing and Hudson (2002) the most commonly applied

 76

numerical methods for rock mechanic problems are: (a) continuum methods; the finite

difference method (FDM), the finite element method (FEM), and the boundary element

method (BEM), (b) discrete methods; the discrete element method (DEM), and discrete

fracture network (DFN) methods, and (c) hybrids of the methods presented in (a) and (b).

Furthermore, Jing and Hudson (2002) states in their review that the choice of modelling

with a continuum or discrete method depends mainly on the problem scale and the

geometry of the fracture system. The continuum approach is applied if there are few joints

present in the rock mass, or if fracture opening and full-scale block detachments do not

dominate the failure mode of the rock mass. The discrete approach is mainly applied for

moderately jointed rock mass in where detachments and rotation of blocks dominates the

failure mode. In later years, a hybrid approach has been developed to utilize the strengths

of each method in complex cases, where the rock mass alternates between being

dominated by fractures and not. As stated by Onah (2012), a common denominator of

element methods, is that they all approximates the numerical solution by dividing the

problem into small elements, for then to synthesize the solutions of each element into a

general solution of the system as a whole.

It is not within the scope of the thesis to go into the details of each model. However, both

Onah (2012) and Jing and Hudson (2002) states that the best numerical models are based

on a hybrid of continuum and discrete approaches. Also, it has been stated that the rapid

development of hardware over the two last decades has boosted the use and development

of numerical element methods due to reduction of computational time. This also has paved

the road for complex methods of the abovementioned hybrids.

Despite of the vast number of numerical methods, has the Finite Element Method (FEM)

been the most used approach in stress analysis of rock mass in the field of rock engineering

over the last decades (e.g. Cai, 2008; Mao & Nilsen, 2013) and is in wide use in the field

of rock engineering. One reason for this is that FEM-tools enables analysis of rather

complex geometries and variable material behavior, which is easy to define using a CAD-

based software. Here complex material behavior refers to the elastic-plastic properties of

the rock mass can be varied to fit the problem at hand.

Finite element method is a popular method for solving differential equations describing a

2-dimensional or 3-dimensional space numerically (e.g. Saabye Ottosen & Petersson,

1992). It is a versatile method and can, e.g., be used for applied problem-solving in the

fields of structural analysis, fluid flow, mass transport, and more. This method also applies

for stability assessments of rock in where Newton’s laws and Hooke’s law is assumed to

describe the constitutive behavior. FEM is designed to solve a big and complex problem

by: (a) subdividing the problem into subdomains, called finite elements, (b) defining

approximation functions describing each subdomain’s behavior, (c) assemble each

approximation function into a larger system of equations for the final calculation, and (d)

the approximation of the global system is then done by minimizing an associated error

function. The global system of equations has known solution-techniques, and can be

calculated by defining an appropriate set of boundary conditions.

The finite element method assumes that a mathematical continuum can be divided into

discrete geometrical entities in which each entity behaves under the same mathematical

rule. An example of such a rule is the failure criterion, which describes when and where a

given material undergoes failure. The complete system of the discretized finite elements

is referred to as the mesh, which can be tailored to present more detailed values in areas

considered to be crucial in a project. In fact, it is the mesh that is the reason for the high

 77

computational time of FEM. Thus, by controlling the size of the finite elements, the accuracy

of the predictions can be controlled, which again controls the time it takes to reach

numerical convergence. The smaller the elements, the more demanding it is to calculate

the model and reach convergence.

Inner forces in the discretized continuum, is transferred from one entity to another by

nodes defined on the rim of each finite element. The source of the inner forces is often due

to impact of outer forces such as gravity. A key concept of the force transfers is the

superposition principle. This states that all forces working on a geometrical entity are

independent and can be summed together making a resultant response called a resultant

force. Thus, the principal of super position demands that the mathematical continuum to

be a vector space, which implies that the continuum behaves linearly. Thus, the rock mass

modelled is assumed to be a mathematical continuum and vector space abiding the laws

of Newton and Hooke.

To sum it up, it is made a list of some pros and cons of FEM based on the information

presented above. The pros are as follows:

(a) FEM is applied to numerous problems which means there are much information

regarding its uses, strengths and weaknesses for given engineering applications.

(b) It is possible to model physical properties too complex for any closed bound

analytical solutions.

(c) There are no limitations regarding the complexity of the geometry of the problem.

(d) There are no limitations regarding which physical problem to be modelled as long

as there is a set of constitutive laws which is applicable for the problem at hand.

(e) It is possible to model material anisotropy and non-homogeneity.

(f) There are no limitations of the loading and boundary conditions.

(g) The design of the method is time-saving. It is faster to solve small domains and

then synthesize each contribution into a general solution. The reason for this is that

the equations describing each finite element’s response to a certain force is easier

to calculate than solving one equation describing the entire domain.

The cons are:

(a) Large amount of data is required as input for defining the mesh, which is demanding

for the computer. It is imperative for the user to create a mesh which is refined to

only show details in where it is necessary to know the details.

(b) Even though a mesh is optimized is the calculation time of the finite element method

demanding compared to other numerical element methods. This again leads to high

computational time of each method calculated. It is therefore important to have

access to computers of high performance.

(c) The resulting output will vary considerably, depending on the quality of input

parameters and the defined mesh. Thus, it is important to verify the model at hand

to ensure the quality of the output.

 78

2.3.2 A comparison of 2D and a 3D numerical modelling

Mao and Nilsen (2013) states that 3-dimensional numerical methods are frequently used

in the industry when tunnelling through major weakness zones or faults with complex

geometries. It is further stated that 2-dimensional methods are fast and convenient to use,

but simulation results indicates that the results may deviate significantly from reality if not

used with care.

In their article, a comparison between the 3-dimensional finite difference method program

FLAC3D and the 2-dimensional finite element method program Phase2 (the old name for

RS2). Widths of weakness zones, different sets of stress ratios, and different strengths of

weakness zones were all varied using both methods. These variations set the base of the

analysis. Areas of yielded zones and vertical displacements at the crown and invert was

compared in where the differences in performance were presented.

One important conclusion was that for analysis of the effects of weakness zones

perpendicular to the tunnel alignment, a realistic representation is only ensured if the

thickness of the zone is much wider than the span of the tunnel. The wider the span of the

tunnel, the wider must the weakness zone be. It is further stated that it is rather unusual

for the most commonly used excavation spans to face zones of such attribute. Also, it is

seen that the deviation between 2-dimensional and 3-dimensional methods increases with

decreasing strength of the zone material. It is remarked that it is hard to define

deformations of tunnels correctly before rock support is installed when Phase2 is used.

Finally, it is stated that it is not realistic to develop empirical diagrams for tunnelling in a

weakness zone due to, e.g.: (a) the geometry of weakness zone and tunnel, (b) the

anisotropic stress state, (c) the material properties of weakness zone, and (d) the influence

of side rock.

2.3.3 The effect of dynamic unloading

This subsection is taken from the specialization project (Kaasbøll Andresen, 2021). It is

included to present the errors connected with numerical models that do not take into

account the effect of dynamical unloading. The term dynamic unloading is referring to the

transition state of stress, between pre- and post-excavation. For instance, in drill and blast

methods, it is a short period of gradual unloading during blasting.

Cai (2008) conducted an analysis of the influence of stress path on tunnel excavation

response, to broaden the understanding on numerical tool selection and modelling

strategy. He compared the two commercial 2-dimensional continuum modelling programs

FLAC and Phase2 (now named RS2). Both programs are used for modelling soil, rock, and

structural behavior in the fields geomechanics, geotechnics, and in civil and mining

engineering. The programs differ in their theoretical formulation. Phase2 is formulated with

an implicit finite element scheme while FLAC is based on explicit finite difference

formulation. Cai showed in his article that differences in modelling outcome can be traced

back to the difference in their formulations in which leads to differences in the stress paths.

No difference was found when the problem was considered linear elastic because of the

unimportance of the stress path. However, for a tunnel excavation in an elastic-plastic

material simulating the drill and blast method, a significant difference in yielding zone

distribution was obtained, especially in material with low strength relative to the magnitude

of the in-situ stress.

 79

The differences in yielding zone were attributed to the effect of dynamic unloading, and

hence differences in their description of the stress path. Cai followed a traditional modelling

procedure where a “sudden” excavation (modelling drill and blast) is performed. This

means that material where the excavation is planned suddenly is deleted, and the response

of this deletion is calculated. Cai points out that FLAC has an explicit finite difference

formulation which makes of a smoother transition from the in-situ stress distribution to

stress distribution after excavation, resulting in a more realistic description of the dynamic

unloading which happens in practice. Phase2 does not take this dynamic unloading into

account because of its implicit finite element formulation. On the other hand, deduced from

the results of his models, the importance of this dynamic effect faded when the strength

of the material increased. Also, dynamic unloading was less important given shear failure,

even though it showed some significance at shallow depths.

2.4 Programming

This section is added for two reasons. First of all, a set of relevant definitions of

programming is made, to create the foundation of the discussion of the scripting process.

This will also help readers which is not that fluent in the world of programming. Second of

all, the software utilized in the thesis is presented. This will give the reader some insight

of the development process and in the method used in processing the data.

If the reader wants to know more of the script, see appendix (XX). It is out of scope of this

thesis to go into the details of its functionality. However, see chapter (XX) to get some

insight of the development process.

2.4.1 Definitions

The main purpose of this subsection is to define relevant programming terms to set the

foundation of the discussion of the scripting process.

A computer is an electronic device for storing and processing data, typically in binary

form, according to instructions given to it often most by a user.

A user is a person who utilizes a computer or network services.

Hardware is the machines, wiring, and other physical components of a computer or other

electronic system. For instance, the motherboard which enables the physical connections

between the other components of the computer and the central processing unit (CPU) that

executes the instructions given to the computer.

Software is a set of computer programs. It is categorized in two. System software is

the software needed for the communication between the user and the computer to happen,

and for the communication of the computer’s hardware to happen. Operating Systems such

as windows is an example of a system software. Application software, application or apps

for short, is software made for solve specific tasks. Microsoft Office is an example of

application software helping users doing office related tasks.

A computer program is a set or sequences of instructions of a programming language

for a computer to execute and is most often defined in binary form. A computer program

in the readable form for users is called source code. A computer program is a conglomerate

of modules.

 80

Source code or code is a term used to describe text that is written in a particular

programming language.

Program language is a language designed for people to communicate with a computer.

A computers language is the binary number system. This system is hard for users to

communicate with. This motivates the need for programming languages. There are many

programming languages for different purposes along with a set of pros and cons.

Structured programming is a programming paradigm made to improve the clarity,

quality, and development time of a computer program by extensive use of the control flow

constructs of selection and repetition, block structures, and subroutines. The most used

programming languages today are structured programming languages.

Block structure of a code is a lexical structure of source code which is grouped together.

One block consists of one or several lines of code called statements. Block structures can

be nested, which means that a block can consist smaller blocks, etc.

A statement is the smallest entity of a code. It resembles one action to be carried out.

For example, allocating the value 60 to the variable a.

A command or an instruction is referring to the action the computer is tolled to execute

by a given statement.

Subroutines is a sequence of program instructions that performs a specific task, packaged

as a unit

An If/then/else statements is a programming structure where a block of code is executed

if a certain condition is met. This is a construct of selection.

A loop is a programming structure of repetition that repeats a block of code until a specific

condition is met.

An iteration refers to one repetition of a loop. It can also be used as a verb. Then it refers

to the action of looping/iterate over a given block of code or over a set of files, etc.

A module is a software component or part of a program that contains one or more

routines. These routines may be other modules or functions. So, if a programmer has

several functions and/or modules that can be grouped in a certain way, these functions is

put in a module. This creates a folder structure making it possible to reuse the functions it

resembles efficiently, and to share the work with other programmers in a structured and

logical manner. One or more independently developed modules makes a computer

program.

A function is defined as a portion of code that does a specific task. It is a goal of the

programmer to make a function as general as possible. The reason is to reuse the function,

when possible, to save work in the future. The same philosophy goes for the development

of modules and computer programs, and for the entire field of data science. Reusing earlier

work is gold.

A data file, or file for short, is an entity to store data to be used by a computer application

or system. This can conclude both input and output data. A file does not usually contain

instructions to be executed by the computer. Computer programs often works with files.

Either when certain input data is needed for the execution of the program, or when output

data needs a place to be stored. A file is given a specific place in the memory of the

computer and only one file can exist in this particular position.

 81

A file extension is the suffix to the name of a data file. For instance, .txt, .exe or .docx.

The suffix defines the use of the data file. For example, .docx file says that it is a word file

to be used by the computer program Microsoft Word.

A directory, better known as a folder, is a file system cataloguing structure which contains

references to positions in the computer’s memory of certain files. Directories enables the

user to organize the content stored by the user.

A compiler or an interpreter is a translator of a programming language. It translates

lines of a specific programming language to binary code understood by computers.

A script is a text-file containing all a sequence of instructions of a programming language

not yet interpreted by a compiler.

The term open-source refers to computer programs in where the source code is publicly

available to be downloaded. This means that the computer program is free to use and can

also be altered after downloading.

A commercial computer program is the opposite of an open-source program. The use of

it is protected by a pay wall. Also, it is seldom possible to download the source-code after

paying.

Implementation is the realization of an application. In other words, it is the action of

making the code necessary for the machine to do a certain task.

A crash, or a system crash, occurs when a computer program or operating systems stops

functioning and stops, often accompanied with an error message to help the user find a

solution to the problem. A crash can be forced through the action of the user, or it can be

as a result of actions beyond the control of the user. An example of the former is when the

user opens to many programs at a time which ends with the computer crashing. An

example of the latter is when a commercial software update leads to new bugs introduced

by the changes included in the source code.

A bug is a coding error in a program. To debug is the action of fixing bugs.

A debugger is a computer program designed to help a programmer to test and debug a

script. A debugger is mainly used to run a script under controlled conditions and makes it

possible to track the progression of the instructions and monitor changes in memory areas

used by the script. This can be used to indicate in which segments of the script errors are.

Version control is a system to manage changes to computer programs, documents, or

other collections of information. It works as a library in where earlier versions of, e.g.,

source code is stored whenever the user wants it to be stored. Version control makes it

possible to go back to earlier versions if the programmer manages to introduce major bugs

in a source code. It works therefore as a safety net. There are more advantages, but they

are not relevant for this project.

To run a program or a script is an action done for making the computer to execute the

sequence of instructions contained in the program or script.

To run a batch means that a computer program runs a sequence of files in where the

same instructions is executed on each file.

The user interface (UI) is the area where interactions between users and computers

occur.

 82

Application Programming Interface (API) is a term referring to ways for computers or

computer programs to communicate. An API is a document or standard that describes how

to make this connection. A programmer uses this standard to implement some features of

a computer or software into another computer or software. Also, one purpose of APIs is to

hide certain parts of a system, only showing the details needed to get the wanted

connection or functionality. For example, Spotify’s and Facebook’s developers implemented

a connection with a person’s Facebook profile and Spotify profile. Both software’s’ API was

needed to establish this connection. Most likely, both companies only gave the information

needed to establish this functionality guarding the rest of their source code.

Text User Interface (TUI) is a user interface where the interactions are done by text

commands. For instance, most programming languages are TUIs. The navigation and

communication with TUI-based programs is mostly the keyboard, but also with the mouse

in some circumstances.

Graphical User Interface (GUI) is a user interface where the interactions happen using

graphical icons and short text-based operations in rubrics. GUIs was developed to lower

the steep learning curve of TUIs. Both the icons and rubrics are designed to explain what

is needed by the user of the program. The keyboard and mouse are two devices used to

navigate in and communicate with a given GUI-based program

A Text editor is a computer program to edit plain text for example stored in a .txt-file.

Text editors is often used for programming purposes. Notepad++ is an example of a

popular open-source text editor.

An Integrated Development Environment (IDE) is a software application that provides

a source code editor, a compiler, and debugger in a seamless environment to increase

productivity.

A word processor is a specialized text editor for the purposes of text publishing. For

example, it is normal to use a word processor when writing an article or book. A word

processor has specialized functions and user interface for this purpose in mind. Microsoft

Word is an example of a commercial computer program.

Automation is in this thesis defined as processes, scripts or computer programs designed

to reduce human labor and intervention.

The screen or monitor coordinate system of the computer is needed to define graphical

representation of computer programs. This coordinate system differs from the cartesian

coordinates system. The origin is on the top left of the monitor. There are only positive

values on both on both axes. The x-axis has the same orientation as the cartesian system.

However, y-axis is flipped 180 degrees with the x-axis as the rotation axis. The coordinate

system of the monitor is compared to a 2-dimensional cartesian system in Figure 41.

 83

The ranges of the coordinate system axes are given by the monitor’s resolution. Modern

computers have resolution 1920/1080. This means that the length of the x-axis is 1920

and the length of the y-axis is 1080. The resolution is given by the number of pixels of the

monitor. Pixel is short for picture element and is normally square shaped. Thus, the size

of the pixel is the smallest possible to make on screen.

Input/Output manipulations is referring to reading of an input such as a text-file and

to append or writing operations to an output, for instance, to the same text-file.

A regular expression is a sequence of characters that defines a search pattern of a text.

Regular expressions are utilized to manipulate, find, or store substrings of a file or files,

that are matching with the defined pattern. For example, a regular expression can define

a pattern that finds all numbers in a text-file with 4 digits or more. It can also define a

pattern that replaces all commas with dots. Thus, regular expressions provide a dynamic

method of searching and manipulating strings. Regular expressions are given by a specific

set of syntax.

The phrase by hand is used in the thesis when models is constructed using the RS2

software, and is used as the opposite to running the automation script developed in this

thesis.

2.4.2 Software and tools used the in the thesis

The main purpose of this subsection is to give a brief summary of the software and tools

used in the thesis work.

RS2 is a commercial 2-dimensional implicit FEM modelling program distributed by

RockScienceTM. The term implicit refers to the category of methods used to solve partial

differential equations. It is specifically designed for geotechnical and engineer geological

applications. According to Mao and Nilsen (2013) and (Trinh et al., 2010), RS2 is a popular

choice out of several FEM-based software used in the industry of rock engineering. Also,

it is to this day widely used in the stability assessment of rock tunnels. In addition to be

relatively easy to learn and use, it has big libraries of support, failure criteria and is linked

Figure 41: Illustration of Cartesian coordinate system to the left, and computer
coordinate system to the right. Taken from (Vincent, 2017)

 84

to other programs distributed by RockScienceTM that makes the definition of input

parameters of rock material, stress, etc. easier and more seamless.

RS2 Compute is the program RS2 launches to calculate a numerical model. This program

can be opened independently, which makes it possible to calculate multiple files

successively as a batch.

RS2 Interpret is the program RS2 launches to let the user visualize, interpret, and process

data. It can be opened independently, which makes it possible to open RS2-files that are

calculated without running RS2. By default, the results are presented in iso-contour plots

in where colors are used to show areas where the investigated parameter has the same

magnitude. Two examples of such parameters are: (a) the principal stresses, and (b) total

deformations. RS2 Interpret comes with different visualization tools to further enhance the

analysis. Three strong tools that have been central in this thesis are: (a) display the

deformation vectors, to visualize the vector field, (b) display deformed boundaries, to

visualize the total deformation of the tunnel periphery, and (c) excavation query line, to

define and fetch the datapoints along the tunnel periphery.

Notepad++ is a widely used open-source text-editor. This implies that there are many

modules implemented that are free to download. Notepad++ is a versatile tool to manage

large datasets, e.g., stored in “.csv”- or”.txt”-format. An example of a useful module is the

compare plugin. This plugin compares two files, lines them up, and visualizes the

differences. This makes it easy for the user to detect and analyze these differences.

Git is a an open-source software to track changes in any types of files and folders. It is

mainly used to coordinate work among programmers that works on the same projects.

GitHub provides internet hosting for software development and version control for git

users. In short terms, it makes it possible to store a development project online to share

the work with other programmers. The git and GitHub functionality make it possible for

others to fix bugs or make suggestions for further development of a project. The owner of

the project gets the bugfixes and development suggestions and decides which of them to

implement. The modules used in this thesis is mainly downloaded from GitHub. Another

strength of git and GitHub is that it makes it possible for one user to work with a single

project on several computers at once due to its push and pull functionality. When a change

is made on the script in one computer, a push command is executed. This command sends

the changes to GitHub to be stored. On the other computers, a pull command is initiated.

This results in an implementation of those changes.

Excel is a software for managing spreadsheets and is vastly used. Excel was used in the

data analysis of the thesis. To process the data gathered using RS2 Interpret, which was

stored in “.csv"-files, the Power Query module was used. This is a tool to prepare large

datasets before it is imported into the spreadsheet. The preparations are stored in a query

that is linked to the path of a specific “.csv"-file. Therefore, if changes are introduced to

the “.csv"-file, these changes will be automatically introduced into the table stored in excel.

Another important tool of Excel has been Visual Basic. This is a scripting language that

makes it possible to automize all aspects of work done in the excel environment. This tool

was central in the creation of the scatter plots which was grouped in several subsets. If

changes to the dataset was introduced, excel do not manage these changes well regarding

subsets in scatter plots. Visual basic made it possible to introduce these changes

automatically.

 85

Python is a program language accompanied with a compiler. There are several versions

both of the language and compilers Python is regarded as a high-level language since

its syntax is very close to the English language. A high-level language is therefore easier

to read for users, but is harder to read for computers. Consequently, the execution time

of python is relatively slow. The reason is that it takes longer time to translate into binary

code for the compiler. Lower-level languages such as C is faster. The fastest execution

time would be a code of pure binary. To write in binary is however too impractical. Python

is open-source and widely used in where developers share modules and computer

programs, and to cooperate with other developers for free.

PyCharm is an IDE used in the development of the script. It was chosen due to being

integrated with git and GitHub. One of the best functionalities was the monitoring of

conflicts of implementation after a pull request. It worked by comparing the local file with

the file stored on GitHub. The differences were shown graphically with different colors

depending on the type of conflict. The user goes through the conflicts line by line and

chooses to either implement a particular change to a given line or not.

PyAutoGUI is an open-source module, which enables control of the mouse cursor and the

keyboard commands by writing a python script. It was developed by Sweigart (2014). All

operations needed for full resemblance of the mouse and keyboard is achieved through a

set of implemented functions. For example, the command of right clicking the mouse or

the typing of the letter c three consecutive times.

The Popen constructor from the subprocess module can be used to open computer

programs stored in the computer. The path of the specific computer program and the path

of the file to be opened must be known to call the constructor.

The OS module enables functionality of the windows operating system. In the thesis, the

following functionality was used: (a) creation and removal of directories, (b) fetching of

directory content such as “.csv"-files, and (c) to check if certain files exist. Also, the Shutil

module enables more intricate OS-functionality such as copying of files and file removal.

The Time module consists of functions related to time and date. Two notable functions

are: (a) the time function, which can be used to record the computation time of scripts,

and (b) the Sleep function used to postpone the execution of succeeding lines of a script.

The numpy module provides arithmetic operations and a diverse set of mathematical

equations.

The pandas module provides functions to work with data structures such as excel sheets

and “.csv"-files. One import aspect of this module is the matrix-functionality, in where

matrix addition, multiplication etc. is well defined.

The re module provides functions that utilize regular expressions. For instance, the

function findall returns all instances of a string that are given by the pattern defined by a

regular expression. Another example is the function replace, which replaces substrings of

strings given by the pattern defined by a regular expression.

 86

In the following chapter, all parameters needed to replicate the experiments are presented.

There is one experiment for each weakness zone thickness Τ. From Table 1 it can be seen

that there were 5 experiments in total, where the overburden Η, the weakness zone angle

Θ, and the shortest distance from tunnel center to weakness zone Γ is the parameters

varied for each experiment. Thus, for each experiment Τ is constant. In the last column of

Table 1, the numbers of models required for a sensitivity study for each parameter is

presented. The total of models required to conduct this study is 3696, 924 models for each

Τ. All combinations of the parameters in Table 1 are defined in the main file of the python

script before the compilation and execution.

3 Parameter study setup

 87

T
a
b

le
 1

: T
h

e
 ta

b
le

 e
n

lis
ts

 th
e
 p

a
r
a
m

e
te

r
s
 v

a
r
ie

d
 in

 th
e
 s

e
n

s
itiv

ity
 e

x
p

e
r
im

e
n

t. I
n

 th
e
 la

s
t c

o
lu

m
n

, th
e
 n

u
m

b
e
r
 o

f v
a
lu

e
s
 fo

r
 e

a
c
h

p

a
r
a
m

e
te

r
 a

r
e
 g

iv
e
n

.T
h

e
 v

a
lu

e
 o

f 3
6

9
6

 is
 th

e
 to

ta
l n

u
m

b
e
r
 o

f m
o

d
e
ls

 c
o

n
s
tr

u
c
te

d
 in

 th
e
 th

e
s
is

.

 88

All parameters given in Tables (Table 2-Table 5) is defined in the template models, defined

in RS2 by hand. An important note is that the only difference of the template models is the

size of the outer boundary.

In Table 2 all information regarding the geometries of the template models is defined.

There are in total two template models; one for Η = 100 m, and one for Η ∉ 100 m. The only

difference between the two template models is the length of the sides of the square shaped

outer boundary. Both template models have; (a) square-shaped outer boundary centered

in the origin, (b) circular shaped tunnel centered in the origin with Rt = 5 m and is defined

by nt = 360 points, and (c) a rectangular shaped weakness zone in where Τ = 2 m and Θ =

0o centered in the origin.

In Table 3, all the parameters defining the stress state and the material behavior of the

geological entities are defined. The general picture are as follows; (a) isotropic hydrostatic

stress, (b) drained rock mass with no joints, (c) host rock with isotropic and post-peak

strain softening material behavior with failure described with GHB-failure criterion, and (d)

a weakness zone material which is isotropic and plastic in failure is described by MC failure

criterion.

Table 2: The parameters defining the geometries of the template models
are presented here.

 89

In Table 4, the calculation settings are defined. It is assumed plain strain behavior. The

convergence is attained using the absolute energy convergence type solved by Gaussian

elimination. It is defined two stages; one for before excavation, and one for after

excavation. The tolerance is default, but the number of iterations is changed to 2000.

Table 3: The parameters defining the stress state and material
behavior of the geology are presented below.

 90

In Table 5, the parameters defining the discretization and mesh is presented. The following

can be seen: (a) the mesh type is graded, (b) it is used 6 nodded triangle-shaped elements,

(c) the gradation factor is set to 0,07, (d) the number of nodes is set to 20, and (e) improve

discretization grading is turned on in the advanced section of the define mesh window.

Table 4: The parameters defining the settings of the calculation is presented here.

Table 5: The parameters defining the mesh settings are given below.

 91

 92

In this chapter, the results of the sensitivity study are presented. It is chosen a graphical

approach in where four charts, one for each zone thickness, is created. In each chart the

maximal total strain is plotted against the normalized shortest distance between tunnel

center and weakness zone. The distance is normalized by dividing the distance on the

radius of the tunnel (Γ/𝑟𝑡). Thus, both the total strain (Type equation here. and the distance

is normalized using the same parameter. The model is designed such that a given

overburden is given by a line of distinct color. When moving from one cluster of

overburdens to another, the zone angle is changed.

Figure 42 represents the chart in where the zone thickness is equal to 1m. Figure 43

represents the chart in where the zone thickness is equal to 2m. Figure 44 represents the

chart in where the zone thickness is equal to 4m. Figure 45 represents the chart in where

the zone thickness is equal to 8m. It was necessary to have each chart as large as possible.

Therefore, it is dedicated one page for each chart.

4 Results

 93

F
ig

u
r
e
 4

2
: A

 lin
e
 c

h
a
r
t p

r
e
s
e
n

tin
g

 th
e
 to

ta
l s

tr
a
in

 p
lo

tte
d

 a
g

a
in

s
t th

e
 n

o
r
m

a
liz

e
d

 s
h

o
r
te

s
t d

is
ta

n
c
e
 fr

o
m

 tu
n

n
e
l c

e
n

te
r
 to

 w
e
a
k
n

e
s
s
 z

o
n

e

fo
r
 z

o
n

e
 th

ic
k
n

e
s
s
 o

f 1
m

. T
h

e
 d

iffe
r
e
n

c
e
 o

f o
v
e
r
b

u
r
d

e
n

 is
 g

iv
e
n

 b
y
 th

e
 d

iffe
r
e
n

t c
o

lo
r
, a

n
d

 d
is

tin
c
t e

n
tity

 m
a
r
k
s
 a

 n
e
w

 z
o

n
e
 a

n
g

le
.

 94

F
ig

u
r
e
 4

3
: A

 lin
e
 c

h
a
r
t p

r
e
s
e
n

tin
g

 th
e
 to

ta
l s

tr
a
in

 p
lo

tte
d

 a
g

a
in

s
t th

e
 n

o
r
m

a
liz

e
d

 s
h

o
r
te

s
t d

is
ta

n
c
e
 fr

o
m

 tu
n

n
e
l c

e
n

te
r
 to

 w
e
a
k
n

e
s
s
 z

o
n

e
 fo

r

z
o

n
e
 th

ic
k
n

e
s
s
 o

f 2
m

. T
h

e
 d

iffe
r
e
n

c
e
 o

f o
v
e
r
b

u
r
d

e
n

 is
 g

iv
e
n

 b
y
 th

e
 d

iffe
r
e
n

t c
o

lo
r
, a

n
d

 d
is

tin
c
t e

n
tity

 m
a
r
k
s
 a

 n
e
w

 z
o

n
e

 95

F
ig

u
r
e
 4

4
: A

 lin
e
 c

h
a
r
t p

r
e
s
e
n

tin
g

 th
e
 to

ta
l s

tr
a
in

 p
lo

tte
d

 a
g

a
in

s
t th

e
 n

o
r
m

a
liz

e
d

 s
h

o
r
te

s
t d

is
ta

n
c
e
 fr

o
m

 tu
n

n
e
l c

e
n

te
r
 to

 w
e
a
k
n

e
s
s
 z

o
n

e

fo
r
 z

o
n

e
 th

ic
k
n

e
s
s
 o

f 4
m

. T
h

e
 d

iffe
r
e
n

c
e
 o

f o
v
e
r
b

u
r
d

e
n

 is
 g

iv
e
n

 b
y
 th

e
 d

iffe
r
e
n

t c
o

lo
r
, a

n
d

 d
is

tin
c
t e

n
tity

 m
a
r
k
s
 a

 n
e
w

 z
o

n
e

 96

F
ig

u
r
e
 4

5
: A

 lin
e
 c

h
a
r
t p

r
e
s
e
n

tin
g

 th
e
 to

ta
l s

tr
a
in

 p
lo

tte
d

 a
g

a
in

s
t th

e
 n

o
r
m

a
liz

e
d

 s
h

o
r
te

s
t d

is
ta

n
c
e
 fr

o
m

 tu
n

n
e
l c

e
n

te
r
 to

w

e
a
k
n

e
s
s
 z

o
n

e
 fo

r
 z

o
n

e
 th

ic
k
n

e
s
s
 o

f 8
m

. T
h

e
 d

iffe
r
e
n

c
e
 o

f o
v
e
r
b

u
r
d

e
n

 is
 g

iv
e
n

 b
y
 th

e
 d

iffe
r
e
n

t c
o

lo
r
, a

n
d

 d
is

tin
c
t e

n
tity

 m
a
r
k
s
 a

n

e
w

 z
o

n
e

 97

 98

This chapter is included to highlight some of the most central dilemmas faced in the choice

of software and the following development process of the automation script. This chapter

is divided in three sections: (a) the choice of numerical method is discussed, (b) the choice

of numerical software is discussed, and (c) the implications the choice of numerical

software had on the development on the sensitivity study, which lead to the development

of the automation script is discussed.

The details of the script and its performance is not within the scope of this thesis. However,

the whole python project developed in the thesis is included in the appendix, for those who

are interested. Furthermore, a zip file containing all the models created with this script

together with the calculated data sets are to be found in NTNU Open.

5.1 Choice of numerical method

This discussion is mainly based on section 2.2 and 2.3.

It was found no analytical solution describing weakness zones influence on stability of

tunnels in the literature study of the specialization project (Kaasbøll Andresen, 2021).

Thus, to be able to analyze how weakness zones affects stability it was necessary to

describe the stress-strain relation using a numeric-mathematical approach based on

solving a set of partial differential equations.

To be able to construct a set of partial differential equations, it is normal in rock engineering

to assume that the rock mass behaves according to Hooke’s law of linear elasticity pre-

failure, according to a flow rule of plasticity post-failure (Hudson & Harrison, 1997), and

by for instance the Burger rule when including time-dependent deformations(Li, 2018).

The reason for this is simple. Accompanied with representative input data and qualitative

knowledge of the deformation behavior of similar rock mass, these three approaches

combined resembles the deformation behavior of rock well enough to enable creation of

numerical models (Hoek & Brown, 1997; Hudson & Harrison, 1997; Li, 2018; Wawersik,

1968).

These three constitutive models, combined with the assumption of the system behaving in

accordance with Newton’s laws and suitable failure criteria, it is possible to create the

necessary theoretical base to describe the stress distribution changes post excavation

numerically. These assumptions were therefore necessary for the thesis to be able to

conduct it.

It is imperative for the choice of numerical method that is handles creation of rather

complex geological geometries and material compositions. The reason for this is the

complexity of the geometry and material behavior of weakness zones (Caine et al., 1996;

Riedmüller et al., 2001). In fact, Faulkner et al. (2010) states that a fault zone seldom is

one single entity, but should instead be seen as a system of several fault cores with an

intense state of fracturing in between. Also, according to Mitchell and Faulkner (2009), the

fracture density does not abruptly reach zero with a given distance, but show a non-linear

5 The numerical model and experiences of

the automation process

 99

decrease with distance. The magnitude of a fault zone highly depends on the travel

distance of the slip, and the material mode of the host rock, which also is highly variable

(Hatheway & Kiersch, 1986; Savage & Brodsky, 2010). The same complexity also shows

regarding the fault’s material behavior. According to (Riedmüller et al., 2001) the material

of fault zones show great heterogeneity, consisting of randomly occurring material of more

or less undeformed, unaltered stiff rock fragments surrounded by a soft weak matrix. Also,

Sæter (2005) argues that the material behavior of the fault is dependable on the depth, in

where the ductility increases with depth and where the amount of clasts decreases with

depth.

Finite Element Method has been the most used approach in stress analysis of rock mass in

the field of rock engineering over the last decades (e.g. Cai, 2008; Mao & Nilsen, 2013).

Yet, it is evident that there are several other numerical methods such as: FDM, BEM, DEM,

and DFN (Jing & Hudson, 2002). The strength of FEM-based tools is in fact due to its

capabilities of creating rather complex geometries and variable material behavior showing

both time-independent elastic-plastic and time-dependent deformation behavior. Also,

since the mesh can be defined into the last detail and is presiding over the entire domain,

it is possible to control the accuracy of the numerical solution quite easily.

The finite element method was suitable as the numerical equation solver for the

experiments of the thesis, and was therefore chosen. As discussed, the modelling of

weakness zones comes with potential needs for defining complex material behaviors and

geometries. The same goes with the geometry of the excavation, which is not necessarily

circular. Lastly, since finite element method has been vastly used in the field of rock

engineering over the decades, it implied that there was a great deal of experience

developed using this tool for rock engineering purposes.

5.2 The choice of numerical software and verification of the

numerical models

This section is dived in two. In the first subsection the choice of numerical software is

presented. After this a brief discussion over the possibilities for verification of the numerical

models produced in the thesis work is done.

5.2.1 The choice of numerical software

RS2, earlier known as Phase 2, was chosen as the numerical software of the thesis

experiments. According to Mao and Nilsen (2013), the commercial software package RS2

made by RockScienceTM is a popular choice when a 2-dimensional FEM-analysis is to be

conducted in the tunnelling industry. It is a software that have been used for decades due

to its user-friendly GUI. Also, it provides a complete library including: commonly used

failure criteria, a variety of bolts and liners to be used in modelling of security measures,

and much more. Since it have been used frequently in the industry, it is also much material

regarding its performance and limitations (e.g. Cai, 2008; Mao & Nilsen, 2013). This also

implies that there have been many contributors to verify its modelling performance.

5.2.2 Verification of the numerical models

There was not found any analytic method to verify a theoretical model with one weakness

zone within the range of influence of the tunnel in the specialization project (Kaasbøll

Andresen, 2021). The reason for this is simple. It is hard to do a general verification of a

model in where there is no known analytical solution. Furthermore, since the thesis is

completely theoretical, it is not possible to verify it by comparing its performance to known

 100

practical cases. However, RS2 has been verified compared with many analytical solutions,

for instance Kirch, GHB, and MC for isotropic, continuous rock mass without weakness zone

(RocScience, 1989-2021). There are many more theoretical verifications in this document

for a variety of geotechnical and rock engineering problems.

5.3 Factors regarding the development of the automation script

A sensitivity study using RS2 quickly revealed some impracticalities in the beginning of the

development of the experiment setup of the thesis. RS2 is neither designed for batch

running files nor for sequencing through these files to do repeatable operations. The only

part of RS2’s interface that supports batch running of files is RS2 Compute. The reason

behind the lack of batch functionality is unclear. One reason may be that the

RockScienceTM’s user base has not asked for more batch functionality. Furthermore, RS2

is GUI-based and does not support instructions given from scripts. Therefore, to create a

FEM-model using RS2, changes in material parameters, changes in geometry of the

geology, creation of discretization and mesh, execution of calculation, and interpretation

of data, must be done explicitly by the user with keyboard and mouse.

This section has two subsections: (a) an investigation of approaches for development of

the script, and (b) a few notes regarding the implementation of the final approach.

5.3.1 The investigation of approaches of development

In this subchapter there will be presented three approaches which was investigated during

the thesis work. The last approach presented was the one that became implemented.

It was decided to investigate the possibilities of automation of the modelling process of

RS2 using third-party programming. RS2’s lack of batch and scripting functionality limited

the possibilities of the design of the sensitivity study. It is limited how many models that

are possible to make by hand. Scripting enables batch solutions, where rules for small

changes in the model construction can be defined in advance. To elaborate, assume the

construction of ten models. The only parameter that is differing the models are the

overburden. With scripting it would be possible to ask for 10 models and define a rule for

the implementation of the overburden. An example of a rule could be that the overburden

increased with 100 meters for each model.

The modelling process was subdivided into five stages: (a) creation of the template models,

(b) implementation of geometry alterations, (c) calculation, (d) gathering and storage of

tunnel periphery data, and (e) processing and representation of tunnel periphery data. In

stage (a), all parameters defining parameters that are shared by all models of the

sensitivity experiment are defined. For example, the definition of tolerance and number of

iterations of the defining the rules of the calculation. In stage (b), the parameters unique

to a model is set. These parameters are given by the sensitivity experiment setup. An

example of a parameter is the angle of a weakness zone. Also, the discretization and mesh

are defined in stage (b). In stage (c), the calculation of every model of the sensitivity study

are executed. In stage (d), the gathering and storage of tunnel periphery data is done. A

note, the results are by default represented in contour plots of, e.g., principal stresses or

strains. So, instructions were defined to only store the values around the tunnel periphery.

In stage (e), the data processing and data representation is done. It was stage (b), (d)

and (e) where it was possible to automate the processes. There are two reasons for not to

automate stage (a). Redefinitions of the template models happened seldom, and there was

need for high degree of flexibility in the testing of these templates. Automating this stage

 101

was therefore not necessary and would only slow down the process. Stage (c) is not

automated since RS2 Compute already provide for batch functionality.

Two approaches to learn from

Two solutions to the development of the automation script were found. The most efficient

of the two solutions was scripting using API. However, RockScienceTM had not developed

API for their software. The API of RS2 would give access to call its functions from a script.

For instance, it would be possible to execute commands for changing weakness zone size,

rotation of the zone, construction of mesh and more, using python script. This was a

setback in the development process, since no knowledge of the specifics of RS2’s

implementation is needed with this solution.

The other possible solution was to implement the application of an automation package

called PyAutoGUI developed in the language of python (Sweigart, 2014). This solution is

more tedious and laborious compared to the solution using API. The idea was to record the

operations used when making a model by hand and then translate it to a script. Loops

makes it possible to iterate over the unique input parameters and make a model for each

specific case. This method leaned on the idea of defining a set of template models, one for

each overburden, and to implement changes on copies of those templates. Also, it was

decided to vary the material parameters in the template model since the geometrical

features were deemed most interesting to include in the sensitivity study. In this approach

all changes of geometry, stage (b), were attained using the tools in RS2’s graphical

interface by scripting each command resembling the behavior of the mouse and keyboard

operations.

However, PyAutoGUI processes showed to be more problematic than anticipated. The

reason for this were two folded.

First of all, when the number of actions controlling keyboard and cursor movement

increased, the risk for the script to crash increased. The reason for this instability lies in

the nature of the PyAutoGUI module. Computers share an important trait with the human

being; it cannot multi-task. However, unlike the human being, it is rather good at doing

an enormous number of operations fast in a successive manner. Consequently, one

command must be completed before the next is initiated or else the program will likely

crash or behave unexpectedly. Thus, problems will surely arrive if a command is tried

executed before the predecessor is fulfilled.

A PyAutoGUI based script must be tailored to cope with the computers lack of multi-task

functionality. Operations done with a mouse and keyboard is directly linked to the

computer, making the chain of communication short. In comparison, Auto-GUI based

scripts has a longer communication chain. This chain begins with a command given in the

script. The PyAutoGUI module is itself a python-based script, which consists of several

packages. Each of these packages also consists of several packages and so on. The overall

module connectivity can be depicted as a tree spanning out branches, where each branch

has its own branches. So, several packages are communicating before the communication

with the operative system has been initiated. This system of information makes the

communication from the automation script to the OS slower compared to the

communication from keyboard and mouse, which is seamlessly intertwined with the

functionality of the computer.

Thus, it is possible for the script to send the next command in line before the previous

command is executed by the machine. If too many commands are given before execution

 102

of the previous ones two scenarios may happen. The first scenario is that the interpretation

and execution of the commands gets interrupted in a way leading to latter commands

being executed before preceding commands but the computer do not crash. This leads the

automation script to behave unexpectedly. The other scenario is that the accumulation of

commands reaches a point where the computer no longer can interpret the commands and

the automation script crashes.

Therefore, it was necessary to make small delays in the script by implementing artificial

pauses. The purpose of the break is to give the computer enough time to interpret and

execute a command before the next arrives. This stabilizes the code. However, the length

of each artificial break could only be defined by trial and error. Changes of the length of

the artificial pauses was tested by running the script multiple times until the script was

stabilized. A too long break increases the execution time with no benefits. A too short break

increases the risk of program crash. This process of setting the artificial pauses was slow.

Also, a setup of artificial pauses could work one day for so not work the next. Furthermore,

the need of artificial breaks varied from one pc to another depended on the quality of the

specs of the computer at hand. The faster the computer the shorter the breaks. To

conclude, the risk of accumulation of unexecuted commands increased when the number

of PyAutoGUI-operations increased and decreased with a faster computer.

Second of all, RS2’s implementation was problematic when used in conjunction with

PyAutoGUI. The example presented below is included for two reasons: Both to show the

limitation due to the software and to give some insight of the workflow of the modelling

process.

The main problem was to manage interactions between the script and RS2’s material

assignment tool. There are two ways to set the material category of an enclosed area

defined by boundary lines in RS2: (a) It is possible to right click on the given area, move

the cursor down to assign material, and a drop down menu reveals the different material

categories and the wanted category is then chosen by left clicking that category; (b) The

other method is to open the window assign by for instance using the shortcut “ctrl” + “a”

and choose category from the window, for then to left click on the enclosed areas you want

to assign . Snapshots of the two methods is given in Figure 46: Snapshots of two methods

of assigning materials in RS2. Method (a) on the left and method (b) the right..

Figure 46: Snapshots of two methods of assigning materials in RS2. Method (a) on
the left and method (b) the right.

 103

Method (b) would be the easiest to implement because it leads to fewer clicks and fewer

special cases of clicks. Method (a) leads to three clicks per assigned enclosed area. The

following equation holds:

n(a) = 3na, (5.1)

 whereby n(a) is total number of clicks of a model with method (a) and na is the number of

assigned enclosed areas of a model. Method (b) lead to one click for each material

assignment category given in the assign window together with one click for each assigned

enclosed area. The following statement holds:

n(b) = Nw + na, (5.2)

 in where n(b) is total number of clicks of a model with method (b), Nw is the number of

assigned material categories, and na is the number of assigned closed areas of a model. It

is evident that nc,a = 3(nc,b − Nw). Nw is constant for a given experiment. Also, in the thesis

Nw = 3 in all experiments. Thus, the number of clicks in method (a) increases close to three

times more than in method (b) by increasing na by one.

In the project there was at least four and maximum six enclosed areas. Thus, if a model

had four enclosed areas to assign (na) and three material categories (Nw), method (a)

would lead to twelve clicks and method (b) would lead to 7 clicks. If there were 6 assigned

areas the numbers would have been 18 and 9 respectively. This do not sound much,

however, when there are several thousand models the time consumption due to these

clicks accumulates. The number of assigned areas varies from model to model. The

following can be defined:

Na = ∑na,i

k

i=1

,

(5.3)

where Na is the sum of the number of assigned enclosed areas for each model in the

experiment and na,i is the number of assignments of model i, and k is the number of models

of the experiment. The number of material categories, however, is constant for a given

experiment. The following number series can be established:

N(a) = 3Na, (5.4)

N(b) = kNw + Na, (5.5)

 where N(a) and N(b) is the total number of clicks in the entire experiment given experiment

(a) and (b) respectively, k is the number of models of an experiment, and Nwis the number

of material categories. In the experiments done in the thesis, k = 923. The exact value of

Na is not known, but assume that na,i = 5 for all models i. This gives N(a) = 3 ∗ 5 ∗ 923 = 13 845

clicks, and N(b) = 923 ∗ 3 + 5 ∗ 923 = 7384 clicks. Thus, N(b) ≈ 0,53 ∗ N(a) in this case. Also, six

experiments were conducted in the thesis, so there is a significant difference of the two

methods.

 104

Furthermore, from Equation (5.4), describing the accumulated clicks for method (a), do

not account for the different material categories (Nw). The reason for this, is that the user

right-clicks in the enclosed area that wants to be changed and must choose the category

each time. Thus, this operation is one of three clicks in the drop-down menu used in

method (a). Besides, the drop-down menu changes position when close to the periphery

of the bottom and right side of the screen. This even further complicates the

implementation of method (a) which demands that this changing position of the drop-down

menu is accounted for. To conclude, method(a) was disregarded because of the severe

accumulation of clicks and due to the drag-down menu not appearing on the same relative

position each time. To remind, the accumulation of clicks is a severe problem because of

the instability it brings with it as discussed earlier in this section.

However, method (b) was also problematic. The reason for this was that the assign window

did not appear in the same position of the screen each time it was opened.

It became clear that Auto-GUI operations should be considered as an emergency solution

and should therefore be used with care and kept to a minimum. The PyAutoGUI module is

defined by the same coordinate system as the monitor of the computer. This is the only

coordinate system used in the module. Thus, it is not possible to define coordinate systems

relative to a specific window. So, to be able to use the assign window the position of this

window must be known. However, when the assign window was opened it did not open on

the same place each time it was opened. It was not found a solution to find the window

after it was opened. Consequently, since the assign window does not appear on the same

place each time, and PyAutoGUI does not manage to detect the assign window and create

a relative coordinate system to this window, it is not possible to define where the mouse

should click. Hence, the approach of method (b) did not work. To express it a bit blunt;

the best way to use Auto-GUI processes is to avoid using them.

The final approach

A third approach based on the approach using PyAutoGUI was developed. The idea was to

make use of the fact that is possible to edit “.fea”-files in a text editor such as notepad or

notepad++. Thus, induce changes in the lines defining the file using python’s Open-

function was possible. The idea was to combine the Open functionality with the PyAutoGUI

module. The goal was to use the Open function whenever possible, and supplement with

the PyAutoGUI package when it was beneficial. This approach was the one that worked.

The default file of RS2 is a compressed file which contains 13 text-files after calculation.

All of the files are written in English, which opened for the usage of I/O-manipulations. The

file of interest was the “.fea”-file, since the other files only consisted of meta data or

functioned as storage of the results. “.fea”-file is where all input parameters describing the

project is stored, i.e., material parameters, geometric features, mesh description, stress

definitions, yield and strength criteria etc. This is a dynamic file that varies in length

depending on the stage of the project. When the mesh is defined the number of lines

increases, when the calculation is done even more lines is added etc. Conveniently, the

size of the file is constant in each stage, and I/O-manipulations can still be used.

A “.fea”-file was opened and examined using notepad++. The source file was systemized

with a description of each part. This made it possible to navigate the sections of the file

and understand how each section worked. The file consists of around 47 000 lines before

and 81 200 after calculation. Manipulations of the file was only done before calculation and

 105

almost all of the manipulations were done on the last 2000 lines, which is the lines in where

the geometry of the model is set and where the material of the enclosed areas is allocated.

The early workflow was based on trial and error on replicating a test model created in RS2

by making changes of another model in the source code. Notepad++ was used fluently in

this comparison. The compare plugin was the main tool used. This tool compares two text-

files and shows graphically what is similar and what is not.

It was experienced in the work with the PyAutoGUI based script that some of the operations

was rather fast to execute by using keyboard shortcuts. This was the case for meshing,

calculations, and for the data processing and gathering. If a function lacked a shortcut, it

was often possible to customize a shortcut for it. Also, it was experienced that it was not

as easy or possible to create the mesh, do the calculations, and to the data processing by

the I/O-manipulations executed with the script. Thus, it became evident that it was most

efficient to make a hybrid script, that was using both approaches combined. This approach

was believed to be the most efficient and easiest to develop given the need for a stable

and reliable code.

5.3.2 Implementation of the automation script – a few notes

The workflow of the development of the script followed the workflow of the modelling

process of RS2. It began with; a) the geometry constructions and material allocations,

followed by b) the implementation of mesh construction, then c) the calculations, and was

finished with d) development of the data processing, data storage and data visualization.

The reason for the separation of part a) and b) was that a) was attained using I/O-

manipulations where b) was done by opening RS2 from the script and running keyboard

shortcut commands using PyAutoGUI. The development of c) and d) was similar to b),

except that the programs opened were different and with different commands.

In the following, a brief description of each stage will be presented. The general goal of

the implementation of the script was to make all stages together in one script. This means

that the experiment starts by clicking run, and the entire experiment is finished by the

execution of this script.

Geometry construction and material allocations

The script begins with reading which parameters and in which sequence these parameters

is to be changed. Then, the filenames are created, which contains the information of the

specific changes of a given file. An example of a filename is:

“S_rm80_ws20_k1_ob100_t2_a45_d3”. S is referring to the circular shape of the tunnel,

rm80 refers to a rock mass with GSI 80, ws20 refers to a weakness zone with GSI 20, k1

refers to a stress ratio of 1, ob100 refers to an overburden of 100m, t2 refers to a weakness

zone thickness of 1m, a45 refers to an angle of 45o, and d3 refers to the shortest distance

between the center of the tunnel and the weakness zone. This was the filename template

used in the thesis. This filename structure was practical in two ways. It made it easy for

the user to differ the files, and it was used to tell the script which changes to be done with

a specific file.

After this, the script creates all the “.fea”-files used in the experiment, by copying the

relevant template files and assigning their respective filenames. There was created one

 106

template file for each unique experiment setup. In the experiment, two template files were

created. One for the overburden of 100m and one for the rest. The reason for this was that

the outer boundary was a square of size 150m for all overburdens except the one with

overburden of 100m.

When all the files with their respective filenames are created, the script loops through each

file and implements the changes given in the filename in the order from left to right. It

was the changes related to the geometry of the weakness zone that was the challenge to

implement. The reason for this is that all the geometries in RS2 is defined by points.

Unexpected behavior would occur if just one point was not placed correctly. An incorrectly

placed point would lead to openings in the geometries merging to geometries together. It

could also lead to unwanted additional closed geometries. Both cases lead to unexpected

behavior where the material allocation did not work as intended or that the file could not

be opened by RS2. The implementation of the geometry alteration was the most

demanding part of the development of the script. It was challenges in the implementation

of rotation of the zone, scaling of width of the zone, and translation of the zone. Figure 47

shows an example of how the model alteration should look like.

Figure 47: Two examples on how a successful model creation in RS2 should look
like.

 107

Figure 48 shows some examples of some interesting geometry alterations in where it was

wondered if a pursuit as an artist would be more suitable for the author. To say, there

were many more examples, but they were neither picturesque enough nor intriguing

enough to be shared.

The reason behind these challenges was that the structure of the “.fea”- file was unknown.

The only way to gain this knowledge was by testing using notepad++’s compare

functionality. First, an alteration of a model was done by hand. Then, this alteration was

tried replicated using the script. Finally, the two files were opened in notepad++ and

compared. This process was repeated until the script could replicate the handmade model

with no mistakes and for all categories of changes relevant for the experiment. This was

tedious work and loads of testing too. Many mathematical operations and functions were

necessary to be defined in the script to be able to make the proper changes. Especially in

the transformation of geometry. Furthermore, the core of the problem was to ensure that

there was no leakage in the geometry which would lead to random behavior as depicted in

Figure 48.

Mesh construction

After the script has defined the geometries and allocated the materials, it iterates over the

models defining the mesh. The specifications of the mesh were set in the template files.

Thus, all the models had the same mesh since all were copies of the template files. The

process was rather simple to implement. For each iteration, a model is opened in RS2 using

Figure 48: Six examples of unsuccessful implementation of geometry construction
is here presented. RS2 is very sensitive regarding of the positioning of the points
defining the geometries.

 108

the Popen-function from the subprocess module. Then a keyboard shortcut command

linked to the mesh creation is executed followed by a save-file command. Then the

software is closed. This process was repeated until all the files created had a mesh defined.

In Figure 49 an example model with mesh is presented.

The calculation

When the mesh creation script was finished the calculation functionality was implemented.

The concept is rather simple. The program opens the RS2 Compute, allocates the path in

where the models are stored, opens them into the software, for then to start the calculation

process. After that, RS2 Compute does the rest.

Yet, there was no immediate way to make the script understand when RS2 Compute were

finished with its calculations. The consequence of this problem was that it was not possible

for the script to know when to initiate the next command since there is not possible to

establish a direct connection with RS Compute. The calculation time of the script depends

on the number and the complexity of the models. It was therefore not convenient to use

an artificial break, where the length of the break must be known in advance. The solution

was to get the processor usage data using the Shututil module. RS2 Computes’ processor

usage were over 20%, as long as the calculation process were still going. When the

calculation of the last model was finished, then the process usage dropped down below

1%. This attribute was used in an if/then/else-statement. The script would go to the next

section when the CPU-usage dropped below 1%.

Due to the high number of numerical models, it was hard to check the quality of each

them. RS2 Compute creates a log file for each computed model. This log file consists of all

the calculation stages of the model in where the accomplished lowest tolerance is given for

each stage. Knowing this information is useful in the determination of the quality of the

Figure 49: A model with mesh.

 109

calculation. If a model shows a tolerance that is long away from reaching the tolerance, it

indicates that there may be a problem of the model definition and the user should

investigate this model more closely. However, open the log file over 3000 times is not

ideal. The solution was to let the script scan each logfile, and store the path of the files in

where the tolerance was higher than the tolerance set by the user.

Data processing, storage, and visualization

The last piece of the development process was the data processing, storage, and

visualization script. The data processing has two layers. The first layer is the processing

done by RS2 Interpret which is directly visualized in terms of contour plots. In Figure 50

two different contour plots are presented. The one to the left is presenting the calculated

sigma 1 values around the tunnel periphery, and the one to the right is presenting total

deformations around the tunnel periphery. This is the two data types used in the

experiments of the thesis.

It was the data along the tunnel periphery that was deemed interesting in the thesis.

Therefore, the script had commands to open each model in RS2 Interpret, construct an

excavation query along with the tunnel periphery, and store each dataset in a csv-file by

extracting the copied query from clipboard. It was one csv-file for each model. The values

selected was: (a) the maximal deformations with the accompanied stresses, and (b) the

total deformation and stresses of the intersection points between zone and tunnel

periphery. Value selection (b) was only relevant when the entire thickness of the zone was

crossing the tunnel. Between 4 and 12 values was fetched from each csv-file and stored in

another csv-file. The contents of the last file were the one to be plotted. The data produced

in the thesis is to be found in NTNU Open, stored in a zip-file.

Finally, a system for visualization of the data was developed. Python was first chosen.

However, it became clear that it did not work as intended. The reason was the

implementation of the Matplotlib module. With this module it was only possible to define

changes of the charts with the script. Thus, it was not possible to make changes to the

charts after the charts were created. This made the process of data visualization static and

slow. It may be a module or another solution to enable dynamic charts, but it was not

found.

Figure 50: Examples of contour plots.

 110

It was decided to use excel, which does have dynamic charts. However, excel has problems

when it comes to creating charts based on large datasets that is grouped in several subsets.

Particularly, when the subsets are dynamically changing in size according with changes of

the experiment layout. To elaborate this problem an example is created. Assume the

steering system of a type of drone is under development. Two drones are tested

simultaneously with a wind of certain magnitude coming normal to the flight path. The

position of the drone is sampled every millisecond and is to be monitored in real time. A

table related to this example is given in Table 6 and the chart based on this table is given

in Figure 51.

For every sample, a column is added to Table 6. In this table the last column is colored

with green to emphasize that this column just has been added. Since the data must be

monitored in real time, and the sampling frequency is short, it is necessary for this to

happen automatically. This is a behavior that could be implemented in the excel sheet

quite easily using Power Query.

In Figure 51 the chart before the sampling of column 11 is on the left, and the updated

chart with column 11 is on the right. This inclusion in an excel chart is, however, not

possible to do automatically. In other words, it is no easy way to include the data from the

new column of the table in the groups “x, drone a” and “x, drone b” as defined in the chart

without doing it by hand. This is a problem relevant for the experiment in the thesis, in

where small changes of the experiment setup can redefine the ranges of the group in

similar fashion. There is indeed no demand for real time updates, but, due to big datasets,

changing the ranges manually is too time consuming. Especially, when regarding how hard

it is to update the datasets given Excel’s implementation.

 0 1 2 3 4 5 6 7 8 9 10 11

x, drone a

[cm]

0,42 0,32 0,33 0,31 0,23 0,29 0,39 0,41 0,49 0,42 0,28 0,58

x, drone b

[cm]

0,72 0,62 0,63 0,61 0,73 0,59 0,79 0,81 0,89 0,82 0,98 0,78

y [m] 0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00 9,00 10,0 11,0

The answer to this problem was Visual Basic, which is Microsoft’s very own scripting

language. This language became central in managing datasets of the size in this project.

VBA scripts, called macros, made it possible to make the excel sheets behave dynamically.

The term dynamically is here referring to excel being able to detect changes in the dataset

Table 6: Imagined position values of two drones used to analyze its steering system
when an artificial wind is blowing in x-direction. This is used as an analogy to clarify the
need of VBA to automize the construction of charts in excel.

 111

and its subsets, and implement those changes into the different charts. The excel workbook

is implemented to be directly linked to the CSV-files in where the datasets are stored.

Thus, it is only necessary to refresh the excel workbook and change three variables to

update the changes due to changes of the experiment. Visual Basic was not known by the

author in advance. However, excel enables recording of the commands the user does in

the interface of the workbook and stores it in a macro-script. This resulted in a swift

learning process. Also, VBA is frequently used with a large user base which meant that it

also was easy to search for many answers in where many posts their macros open source

and shares their work.

The final solution proposed was successfully implemented and worked as the cornerstone

for the experimental method of the thesis. Consequently, this script enabled the creation

of thousands of numerical models in matter of a couple of days. Also, the relative short

calculation time made it possible to use it as an integrated part in the development of the

method, in a dynamic trial and error-based workflow.

0
1
2

3
4

5
6
7

8
9

10
11

0

2

4

6

8

10

12

0 0,5 1 1,5

y
[k

m
]

x [km]

Position of two drones in the horizontal
plane

x, drone
a

0
1
2

3
4

5
6
7

8
9

10

0

2

4

6

8

10

12

0 0,5 1 1,5

y
[m

]

x [cm]

Position of two drones in the horizontal
plane

Figure 51: This is used as an analogy to clarify the need of VBA to automize the
construction of charts in excel.

 112

The purpose of this chapter is to discuss the choices made regarding the different aspects

of the sensitivity study setup. The chapter is divided in three sections: (a)

An important note, all the numerical models presented in the following chapter are based

on the parameters given in Chapter 3: Parameter Study Setup.

6.1 The choices of sensitive parameters

In this section the different aspects leading to the final experiment setup is presented.

First, to repeat from the theory section, parameters deemed to be investigated in the

experiment of the master thesis were:

(a) The strength and stiffness of host rock.

(b) Failure criteria for host rock

(c) The stress distribution.

(d) The strength and stiffness of weakness zone.

(e) Failure criteria for weakness zone.

(f) Number of weakness zones.

(g) Width of weakness zone.

(h) Orientation of weakness zone.

(i) Position of weakness zone relative to tunnel

The goal of the development of the experiment setup is to find something fundamental

regarding how the weakness zone alters the stress distribution close to tunnels, and how

this affects the tunnels stability. To achieve this, it was decided to take a bottom-up

approach in where it is necessary to investigate parameters believed to be more vital. In

In his article, Basarir (2008) argues that momentum forces needs to be included to be able

to predict appropriate security measures. Thus, it is important to gain the details of the

deformation distribution. If the distribution gets skewed, this indicates force moments in

the rock mass. Thus, in a bottom-up approach, it is imperative to exclude parameters that

overshadows the effects the weakness zone has on the deformation distribution around

the tunnel alignment. The gathered knowledge of the idealized case can be used as a tool

to understand more complex practical cases.

Høien (2018) investigated the effect the thickness of weakness has on the total

deformation along the crown of a road tunnel, which showed that the deformation increase

was proportional with an increase of thickness. Thicknesses between 1 and 50m were

modelled. Furthermore, it was also seen that the shape of the deformation curve was more

or less the same. This behavior was prominent for the modelled overburdens of 100 and

500m respectively. This gave enough indices to develop a hypothesis that there is

something fundamental with how the geometry of weakness zones affects the stress

distribution. In this experiment the strength of the host rock and weakness zone were held

constant. Both materials were assumed to behave according to the Generalized Hoek-

Brown failure criteria which implies a material that can be assumed continuous, as depicted

6 Aspects regarding the sensitivity study

setup

 113

in Figure 24. It was also assumed perfectly elastic-perfectly plastic material behavior for

both rocks, homogenous stress field, and both rocks consisting of isotropic materials. In

other words, the model resembles a relatively ideal geology with little variation in behavior.

Brady and Brown (1993); Donath (1972) presentation of triaxial tests on rock samples

with a distinct weakness plane, as seen in Figure 25, indicates a situation where the

strength of the rock mass is highly dependable of the orientation of the weakness plane.

If the simulated rock mass was to behave transversely isotropic this would lead to a model

in where the effect of the weakness zone would be dependable on the orientation of the

weakness plane. This would lead to a situation in where it would be hard to be sure what

parts of the deformation distribution that can be traced back to the existence of the

weakness zone alone, and not to the combined effect of joint orientation and the zone.

Also, failure criteria go under the same category. A criterion that depicts anisotropic failure

behavior leads a preferred failure direction and do therefor contribute to mask the

weakness zones contribution to the alteration of the deformation field.

The same argument holds for the induced stress distribution. A complex stress distribution

with gravitational-, tectonic-, residual-, and terrestrial stress components (Amadei &

Stephansson, 1997), often leads to an uneven and anisotropic stress distribution. Figure

31 presents stress-ratios across the globe, which indicates that there is normal with stress

anisotropy in where the variance decreases with depth. However, a complex stress

distribution would make it hard to analyze the weakness zones contribution to the altered

stress state.

In conclusion, the following parameters were chosen to be varied in the numerical

experiments of the thesis:

(a) The isotropic gravitational induced stress distribution.

(b) Width of weakness zone.

(c) Orientation of weakness zone.

(d) Position of weakness zone relative to tunnel

Thus, the sensitivity study is predominantly investigating how the geometrical features

alters the stress distribution, and how these geometrical features interact with gravity

induced stresses.

6.2 The experiment layout

In this section, the choices regarding the experiment setup and the data processing of the

relatively big dataset gain from the experiments of the thesis is discussed. There was done

several test-runs of the experiments to make sure that the values of the parameters

captured all the traits of the final plots, which resulted in the values given in Table 1.

In Table 1 it can be seen that the chosen parameter study setup leads to a total number

of 3696 models. Each of the models is on its own a rather big dataset, containing thousands

of output-values of several parameters based on the calculation of the given set of

equations.

It was decided to divide the parameter study into four smaller experiments; one for each

thickness, see Table 1. It was experienced somewhat instabilities with the developed script

when the dataset became large. Therefore, it was decided to categorize the experiment

based on the sensitivity parameter with the fewest values, and which already had been

exanimated in some extent before, by Høien et al. (2019). Thus, for each experiment there

 114

are three values to be varied: (a) the overburden, (b) the zone angle, and (c) the position

of the zone.

Høien et al. (2019) focused on total deformations and the critical strain concept proposed

by (Sakurai, 1981) in where he back-calculated the strain response of several known

tunneling projects. In the article the strain responses was compared to the proposed 1%-

critical strain limit confirmed by the works of Hoek and Marinos (2000), see Figure 28. It

was a useful approach in where it was shown that most weakness zones, in where it was

installed heavy security measures, did not exceed the 1% percent limit. It was shown in

Figure 29, by (Hoek, 2001), that only one incidence of instability was experienced with a

critical strain lower than 1%.

It was therefore decided to use this approach in the master thesis also. It was observed

during test-modelling that the highest total deformations occurred within the weakness

zones, normally with only one peak. Therefore, it was decided to use the maximum total

deformation of each model to create the charts. One of the advantages of this approach is

that it is possible to reduce the values gathered from each model of the experiments from

360 values to 1 or 2 for each model. There are 2 values only if the entire zone crosses the

tunnel. This is a great reduction in values, given that the total number of models used in

this thesis is over 3696.

It was also during test-modelling observed that the weakness zones of the models lead to

skewness of the deformation envelopes along the rim of the tunnels. An example of one

model created in the experiments of the thesis is presented in Figure 52. It is therefore

suggested to analyze the skewness of the models. The same dilemma was occurring in this

situation as well. It was imperative to reduce the number of values attained from each

model, to be able to make charts that are meaningful.

It was investigated if it was possible to calculate force moments as defined in static

mechanics, given the equation:

Figure 52: Example of deformation distribution of one of the models created in the
experiments of the thesis. Observe the skewness of the deformation envelope,
indicating a force momentum that would be developed if security measures were

installed.

 115

𝑴 = 𝒓𝑥𝑭, (6.1)

 where 𝑴 is the momentum about a given point, 𝒓 is the distance from the point of rotation,

and 𝑭 is the force exerting perpendicular to the distance vector 𝒓. A graphical

representation of the idea is presented in However, it became evident that this approach

was too hard to define. The idea was to define the point of momentum where the change

of strain was higher than a certain limit, and that the calculation stopped when the

difference in strain went below that same limit. This idea is presented in Figure 53. The

goal is to find the resultant force 𝑅 and the arm 𝑠, which rotates about the point given in

the top left corner, and about the bottom right corner, where 𝜖(𝑠)=0. The arm 𝑠 is here

given by the arc length measured from the two points where 𝜖(𝑠) becomes zero. If there

are skewed loads, the two calculated force moments should be different. This is depicted

in Figure 53, whereby the arm s to the resultant force 𝑅 is longer about the point in the

top left corner, compared to the s of R from the point in the bottom right corner. I there

are no skewed load, this distance would be the same. This implies that by this method

there will only be two or four values left after calculation. If the difference of the

momentums is plotted, this will reduce to one or two values. There are four values, only

when the entire zone crosses the tunnel alignment.

Following assumptions was made to create a momentum equation given by the arc length:

(a) tunnel is cylinder with infinite extension along the tunnel axis, (b) the forces are always

normal to the curvature of the tunnel, which implies that the resultant force intersects with

the tunnel center, (c) the rock mass is linear elastic, and (d) there are only static force

interactions. This gives the following equation:

𝑀 = ∮𝜎(𝑠)(𝑠 − 𝑠0)𝑑𝑆 = ∮𝐸(𝑠)𝜖(𝑠)(𝑠 − 𝑠0)𝑑𝑆 (6.2)

The only conflicting assumption is assumption (c), in where it is assumed that the forces

always are normal to the arc of the tunnel. However, investigations on the total

deformation distributions of several models created in the thesis showed that this

Figure 53: Graphical representation of the force moment
calculation.

 116

assumption could be made. An example is given in Figure 54 where the red arrows

represent the direction of the total deformation distribution. It can be seen that the arrows

are near to be normal to the tunnel arc at any 𝑠 along the tunnel rim.

However, there was problems to establish the equation of Young’s modulus, 𝐸(𝑠), as given

in Equation (6.2). Hudson and Harrison (1997) in Equation (2.41), for an idealized rock

mass with one discontinuity set normal to the direction of the applied force with negligible

thickness and one specific frequency, that the Young’s modulus was a weighted sum of the

Young’s modulus of the joint and the Young’s modulus of the rock. The weight was given

by the extension of each entity. This is precented graphically in Figure 27. This idealized

case can be used as an analogy for the case of the thesis wherein the Young’s modulus

𝐸(𝑠) is a weighted sum of all Young’s moduli inflicting on this points, which is altered when

fracturing occurs. In other words, this process is rather chaotic, and is hard to deal with.

It was therefore suggested a non-physical approach which has been given the name

deformation momentum. A hint was given in Figure 53, in where the force field has been

swapped with the deformation field. The idea is simple. Instead of crossing the distance

with the resultant force, it is instead crossed with the resultant deformation. It is underlined

that this approach has no physical meaning. However, it will be useful to be able to indicate

skewness in the models of the thesis in a way that is applicable on the relatively large

dataset given by for instance the 3696 models created in the thesis.

Figure 54: It can be seen from the red arrows indicating direction of deformation, that
it can be assumed that the direction of force along the tunnel rim is normal to the rim.

 117

6.3 Geometry

In this section, different aspects regarding geometry definitions of the numerical models

constructed in the thesis is discussed.

6.3.1 Tunnel

Most road tunnels are driven conventional in Norway (Bruland, 2016). According to N500

(SVV, 2022), the tunnel shall be defined by a flat bottom, whereby the walls and roof shall

resemble a quasi-circular shape. This is done by defining two tunnel radii, one for the walls

and one for the roof, see Figure 55. The most accurate analysis would have been by

defining a tunnel geometry given by these standards, since the geometry of the excavation

is an import factor considering the redistribution of stresses (Nilsen, 2016). However, the

circular shape has some clear modelling practical advantages: (a) it has the highest degree

of symmetry when residing in a homogenous rock mass (b) it is easier to implement when

making the automation script in python, (c) it is a strong shape; so if the problem shows

in these models there will most likely be problems for less optimized shapes, and (d) it

distributes the stresses evenly around the periphery; to be sure that the stress alterations

measured is only because of the contributions of the weakness zone. Thus, it was decided

to model a circular tunnel. The radius was chosen to represent an average size in

Norwegian tunneling and was therefore given the magnitude as seen in Table 2, inspired

by the values of radii in N500.

6.3.2 Fault Zone

In the specialization project (Kaasbøll Andresen, 2021) the investigations on weakness

zones was kept to only include faults to limit the scope. Because, it would be logical to also

include the effects of deep erosion, which is common in hard rock areas such as the

Norwegian. However, fault zones were chosen since it is a more frequent problem in

tunneling.

Figure 55: Example of a tunnel geometry in accordance with the
Norwegian national standard N500. (SVV, 2022)

 118

Faults are often assumed to have the shape of a linear sheet, which often is the case in

Norwegian-like settings, as long as the tunneling project is not close to the surface (Nilsen,

2016). For project near the surface, the shape of weakness zone often can resemble the

shape of a wedge. Thus, it is assumed in the thesis that the modelled fault has the shape

of a linear sheet, which again limits how close to the surface a model can be created.

According to Nilsen, this wedge shape often does not go deeper than 20 meters.

The weakness zone’s strike is assumed parallel to the tunnel axis in the thesis. This is the

worst-case scenario in tunneling, if the zone is close to the tunnel, since it is experienced

to lead to the most severe stability issues (Nilsen, 2016). Also, this assumption makes it

possible to go clear of the addressed by (Mao & Nilsen, 2013). In their comparison of

FLAC3D and Phase2 (today: RS2) a zone, modelled in Phase2, normal to the tunnel axis

must be much thicker than the tunnel span to not deviate significantly from the more

accurate 3D model created in FLAC3D.

It is assumed an infinitely long tunnel when using 2D FEM, which is the case of this thesis.

This implies that effects close surface is not investigated (Cai, 2008).

6.3.3 The outer boundary

The outer boundary was given a square shape, which is normal in tunneling applications

(Basarir, 2008; Høien et al., 2019). However, it is a rule of thumb saying that the

dimensions of this square should be between 3 and 5 times the tunnel diameter. As seen

in Table 2, the size was set to either 10 times or 15 times the tunnel diameter. The reason

for this great deviation is simple. Position of the zone is one of the parameters varied in

the experiments of the thesis. A weakness zone can only be modelled within the area

enclosed by the outer boundaries. In an early stage of the project, it was unclear when a

zone was out of the influence zone of the tunnel. Also, with increased thickness of the

weakness zone and/or increased overburden expands the influence zone. Thus, the

number of 10 and 15 times the tunnel diameter was chosen to be sure it was enough

space. Since it is possible to control the mesh to be more course outside area of interest,

this did not significantly raise the computational time.

There are two different outer boundaries defined, since it was not possible to define an

outer boundary with lengths 150 meters, in the case of overburden equal to 100 meters

due to how RS2 functions.

6.4 Mesh and sampling considerations

This section has two subsections. The first subsection discusses the choice of mesh. The

other subsection discusses the choice of the number of points defining the tunnel, which

in theory can affect the definition of the mesh.

6.4.1 The definition of mesh

In this subsection the choice in the definition of mesh is being discussed. The models

presented in Figure 57 and Figure 56 are both based on the experiment setup presented

in chapter three. They both has overburden of 100m, the weakness zone is centered, the

thickness is 4m, and the angle is 22.5o. The angle is not included in the range of the

experiment setup. The choice of the geometries is not important of this discussion and is

analogous to all the models of the thesis.

Figure 56 shows the mesh defined in Table 5. The mesh of Figure 57 is defined in Table 7.

It can be observed that the mesh of Figure 56 is more specified to be fine-grained only

 119

close to the tunnel. Figure 57, however, has the same gradation around the tunnel as

Figure 56, but is more fine-grained over the entire domain.

Figure 56: The mesh of the experiments of the thesis looks like
this. The clustering of points is kept around the neighborhood of

the tunnel.

Table 7: The definition of the mesh used in the definition of Figure 57. The purpose of this
model is to investigate the effect of a finer mesh than the mesh used in the models
created in the experiments of the thesis.

 120

Figure 58 and Figure 59, are both defined with the same mesh as depicted in Figure 56,

except that Figure 58 is based on a 3-nodded mesh. This gives each element 6 degrees of

freedom instead of 12, which again means a lowering in the quality of the approximations.

The benefit would be to decrease the computational time. Both Figure 58 and Figure 59

depicts the deformation distribution shown graphically by contour plot.

In the comparison of Figure 58 and Figure 59, it can be seen that the 6-nodded mesh was

found to give significant better results than the 3-nodded. The 3-nodded mesh gives more

uneven and round deformation envelope (the gray line). Wrong depiction of the

Figure 58: The deformation distribution calculated based on Figure 56, but with a 3-
noded mesh. See Error! Reference source not found. for definition of mesh. The d
eformation envelope deviates significantly from the one in Figure 59.

Figure 57: The looks of the mesh defined in Error! Reference source n

ot found.. It is relatively fine-grained in comparison with the mesh
of Figure 56.

 121

deformation envelope, would be a problem, since the skewness-calculations is based on

this shape. Also, the total deformation is 5 centimeters less, which gives a difference of

about 15%. This is not ideal, since the total deformation of each model of the experiments,

which always resides on the tunnel periphery, is gathered for later to be plotted.

Figure 60, shows the deformation distribution around a tunnel with a centered weakness

zone. However, it is based on the calculations of Figure 57, which again is based on the

mesh given in Table 7. In the comparison of Figure 59 and Figure 60, it can be seen a good

fit between the two deformation envelopes. Even though it resembles a more rounded

shape in the tails of the deformation contour-lines, it is not important in this case. The

reason for this is that it is only the values along the tunnel periphery that are analyzed.

Therefore, by choosing the mesh definition as seen in Table 5, it will lead to lower

Figure 59: The deformation distribution calculated based on Figure 56. See Table 5
for the definition of mesh.

 122

computational time compared to the definition given in Table 7, without compromising of

the accuracy of the total deformation along the tunnel periphery.

6.4.2 Sampling of data

In this section, a brief discussion of the data sampling of the tunnel delimiter is made.

In this subsection the sampling of data is briefly discussed. The models presented in Figure

61 and Figure 62 are both based on the experiment setup presented in chapter three. Their

geometric features are the same as Figure 57 and Figure 56, except of having an angle of

45o. As the discussion of mesh the choice of geometric features are not important to this

discussion.

For technicality reasons regarding the implementation of the automation script it was the

excavation query function that worked best to get the data along the rim of the tunnel.

However, this function only creates a datapoint for each point defining the tunnel. Both

Figure 61 and Figure 62 presents the deformation distribution around a tunnel with a

weakness zone positioned in the center of the tunnel. The only difference is that Figure 61

has a tunnel defined by 90 points and that Figure 62 has a tunnel defined by 360 points.

The deformation envelopes of Figure 61 and Figure 62 are almost identical. Logically, it

would be vise to choose Figure 61, since it would lead to a slightly more efficient calculation

of the model. However, it is imperative to get a decent number of data points in the

calculation of skewness, which will be more accurate when there are more data points.

Therefore, the version with 360 tunnel defining points was chosen.

Figure 60: The deformation distribution calculated based on Figure 57. The mesh is
defined in Error! Reference source not found.. The deformation envelope is almost identical w

ith the one in Figure 59.

 123

Figure 62: Tunnel with 360 points gives 360 datapoints when using query
excavations function in RS2 Interpret. Else, it gives almost identical
deformation distribution compared with Figure 61.

Figure 61: Tunnel with 90 points only sample 90 datapoints when using the
query excavations function in RS2 Interpret. Else, it gives almost identical
deformation distribution compared with Figure 62.

 124

6.5 Material behaviour of host rock and weakness zone

In this section a discussion regarding the material definitions of the host rock and weakness

zone of the models are discussed. It is divided in two subsections: one for the host rock,

and one for the weakness zone.

The definition of the material behavior of both host rock and weakness zone was chosen

to be static and the same for all models of the project. The reasons are given in section

6.1. The material definitions of the thesis are given in Table 3. To make the results

comparable with the sensitivity study conducted by Høien et al. (2019).

It was assumed that the experiments were to model the deformation distribution around

the tunnel just after exaction. The reason for this was to exclude the effects of time-

dependent deformations, which is an important factor when considering long term stability

(Hudson & Harrison, 1997). Also, this assumption is a necessity when the FEM-method

was chosen, since RS2’s implementation of FEM does not directly include time-dependency.

However, this assumption does not come without its complications. According to (Cai,

2008), the stress distribution change when modelling a procedure of “sudden” excavation,

e.g. drill and blast, the transition from the state of in-situ stresses and the post-excavation

stress-state should be taken into account. This cannot be readily attained with RS2 which

do not resemble time in a direct manner. However, by assuming an excavation process

done with TBM solves this issue.

It was assumed drained condition, which often is the case in tunneling projects as stated

by Hoek and Brown (1997) and Li (2018). The joints are assumed to be integrated in the

rock mass by using the rock mass classification of GSI.

6.5.1 The host rock

The host rock was assumed to have a density of 2,7 g/cm^3, which is a normal assumption

of rock mass density. It was assumed no distinct orientation of the rock mass, which

implies that the rock mass can be assumed to have isotropic material behavior. This

resembles the case shown in Figure 26, where Li (2018) illustrated how the deviatoric

stress becomes constant when the number of rock joints of different orientation increases.

This assumption makes it possible to use the Generalized Hoek-Brown to describe the host

rocks failure mode.

The Hoek-Brown parameters 𝑚𝑏, 𝑎, and 𝑠 was defined using the equation-set (2.45). It

was assumed no damage zone due to the excavation process, and since the tunnel is

circular, the tunnel would most likely be excavated with TBM, which is known to be a gentle

excavation method. Thus, the two parameters necessary to define was the GSI and the 𝑚𝑖

of the host rock. It was assumed a representative Norwegian granitic gneiss, which was

the assumption made by Høien et al. (2019). The reason behind this choice Is its relatively

low variability for both strength and stiffness. The 𝑚𝑖 was then chosen in the chart given

in the RS2 software. The mean value of 28 was chosen. The GSI was set to 80, which was

the same Høien did.

The 𝜎𝑐 was chosen based on the values given in Figure 19 and 𝐸𝑖 was chosen based on the

data set presented in Figure 11. The mean values of the granitic gneiss were chosen for

both strength (125 MPa) and stiffness (20000 MPa). The tensile strength was assumed to

be 0, which would only be a good assumption if the deformation mode is controlled by the

joints and fracture of the rock. It could be argued that a rock mass of GSI 80 would not

only be dominated by the strength of its joints. However, this assumption does not have a

 125

huge impact since all of the models is based on the same materials, in where the study is

a comparative study.

The assumption of perfectly elastic – perfectly plastic rheology of the host rock was done

by Høien et al. (2019) and Basarir (2008). It is a normal assumption to do in the industry

when numerical models of rock engineering projects are created, also for rock mass that

show more brittle behavior. The reason for this is that it increases the chances of the model

to converge, even though it is not physically correct. If the rock mass is strong, and there

is little chance of it to fail, most of the rock will reside in the linear elastic part of the

deformation curve, see Figure 10. This implies that the assumption can be made without

great errors. This assumption means that the residual strength values is the same as the

peak value.

This assumption was also made in this thesis. The reason for this is that during the test-

modelling it was observed that the fracture zones around the tunnel rim was dominated

by the weakness zones in most cases, and was only starting to show at high overburdens.

A model resembling the worst-case scenario is given in Figure 63. In this model the

overburden is 1200m, the zone thickness is 8m, the zone angle is at 60o and the zone is

tangent to the tunnel. It can be seen that the fracture zone is compacted around the rim

of the tunnel. Also, by studying the deformation envelope it can be deduced that the

weakness zone still dominates. This indicates that the assumption of perfectly elastic –

perfectly plastic material behavior also holds in the thesis. Furthermore, since this is a

comparative study in where the material parameters and failure modes are the same for

all models, the details of the material behavior in itself are not that important.

Figure 63: The distribution of fractures around the tunnel rim in a worst case-scenario
model in where the overburden is 1200m, the zone thickness is 8m and the zone is
tangent to the tunnel. It can be seen that most of fractures are close to the tunnel rim,
and that deformation envelope is dominated by the weakness zone.

 126

Basarir (2008) assumed no dilation, since the rock mass model was assumed to be

relatively brittle rock. Thus, such a rock show little to no volume increase. It is based on

assumption with no volume change when slip along intersecting continuities. The same

assumption is made in the thesis since the rock is assumed to be a relatively brittle granitic

gneiss.

The poisons ratio was assumed to be 0.3 which was done by (Høien et al., 2019).

6.5.2 Weakness zone

Fasching and Vanek (2011) states that only tectonical breccias and mylonite can be

addressed with hard rock behavior, and that regular breccias, fault gouge, and cataclasis

can only be attributed with soft rock and/or soil behavior. By assuming a weakness zone

consisting of mostly fault gouge will therefore imply that the zone material can be regarded

as a soil-like material, with little to no cohesion, and where the friction of the soil

parameters. According to Brady and Brown (2012), the Mohr-Coulomb failure criterion is

applicable, since the failure envelope most likely show linear behavior. The MC criterion

assumes that the failure mode of the material is sheer, and that there is no dilation. It is

therefore assumed no dilation in the material. According to ISRM (2014), the tensile stress

must be assumed to be zero, if not, the assumption of inner friction is meaningless.

Vermeer and De Borst (1984) states that it is normal to assume linear elastic–perfectly

plastic rheology of soils. This is assumed to be the case of the assumed fault gouge of the

weakness zone defined in the thesis.

It was hard to find literature on measured values of strength and stiffness parameters of

weakness zone material (Kaasbøll Andresen, 2021). Therefore, the choice of strength of

the fault gouge was based on triaxial tests done on fault gouge containing swelling clay

(Høien et al., 2020). This article consisted of values regarding: (a) stiffness of the gouge,

(b) cohesion of the gouge, (c) friction angle of the gouge, and (d) density of the gouge.

The final values are presented in Table 3. Note that the residual values are the same as

the peak values, due to the assumption of linear elastic–perfectly plastic rheology.

The poisons ratio was assumed to be 0.3.

 127

6.6 Stress-inducing forces

It was assumed only gravity induced stresses in the models of the thesis. It was also

assumed that the stress ratio 𝑘 = 1 for all overburdens. The reason for these assumptions

is elaborated in section 6.1.

Since it is assumed 𝑘 = 1, it sets a limitation of which overburdens that can be modelled.

Sheorey (1994) developed an equation based on the field measurements presented by

Brown and Hoek (1978) which resembled that the k-value behaved asymptotic in where

the k-value converged to 1 as the depth increased. Especially high k-values was attributed

to near-surface conditions. Høien et al. (2019) made a chart based on equation (2.50)

(Sheorey), in where the stiffness of the rock mass was varied. In the thesis, the stiffness

of the granitic gneiss is 20000 MPa. Thus, it can be seen that it is possible to assume 𝑘 = 1

for overburdens from 100 meters and below. The same assumption can be made of the

weakness zone which has a stiffness of 300 MPa.

6.7 Symmetry – reducing number of models

The symmetry of the combination of circular tunnel, homogenous and isotropic rock mass,

and hydrostatic stress field is evident. There are defined two models with material behavior

as, tunnel geometry, and outer boundary as defined in the models of the experiments of

the thesis. Both models have: (a) overburden of 100 meters, (b) zone thickness of 2

meters, (c) shortest distance from tunnel center to weakness zone of 1 meter. They only

differ in the zone angle, in where the model of Figure 65 has zone angle of 22.5o, and the

model of Figure 64 has a zone angle of 67.5o. The symmetry of the deformation envelopes

is striking when comparing Figure 65 and Figure 64. Thus, it was decided to model angles

Figure 64: Deformation distribution of a model with overburden of 100
meters, zone thickness of 2 meters, zone angle of 67.5o, and shortest
distance from tunnel center to zone of 1 meter.

 128

between 45 and 90o and with only positive shortest distances between tunnel center and

weakness zone.

Figure 65: Deformation distribution of a model with overburden of 100 meters, zone
thickness of 2 meters, zone angle of 22.5o, and shortest distance from tunnel center to
zone of 1 meter.

 129

 130

In this chapter, the results given by the charts of Figure 42 to Figure 45 is discussed.

It was chosen to plot the total strain ϵtot against the normalized shortest distance between

tunnel center and weakness zone Γnorm = Γ/rt. The benefit of this is that both are normalized

by the radius of the tunnel rt. This makes the charts independent of the tunnel size, which

can be useful for later comparisons in where sensitivity studies on tunnels with other radii

is done.

A first notion when examining the charts is that each angle cluster is quite similar to the

other clusters contained in the same chart. Thus, this implies that zone angle (Θ) has little

significance in the contribution on the stability for any Η, 𝛵 or Γ𝑛𝑜𝑟𝑚. Indeed, there are

differences for lower values of Η, but the differences rapidly vanquish with an increase of

𝛵. Looking thoroughly, it can be seen that there is a slight proportionality between Θ and

Η for all Γ𝑛𝑜𝑟𝑚 and 𝛵, in where there is bigger variance between the angle clusters for

increasing Η. However, when comparing all the charts, it does seem random which angle

cluster that shows the greatest increase. It is therefore believed that these variations are

due to numerical noise.

By comparing each of the charts it is seen that they all show the same pattern, depicting

two different exponential curves which meets in a singular point where Γnorm = 1.1. Also, in

all charts, a rapid decrease in ϵtot is observed when Γnorm > 1.1. This indicates that the

weakness zone quite fast stops influencing the tunnel stability, where it is out of influence

when Γnorm >≈ 2. For all charts, except of 𝛵=1, ϵtot(Γnorm = 0) ≈ 0.5 ∗ ϵmax. Also, it can be

observed severe differences in heights of the clusters, severe differences of starting points

of the clusters, but not in the width of the clusters. The similar widths are due to the fact

that the zone fast leaves the influence distance of the zone.

For low overburdens the effect of zone thickness (𝛵) is less severe. In fact,

𝜖𝑚𝑎𝑥(Η = 100, 𝛵 = 8) − 𝜖𝑚𝑎𝑥(Η = 100, 𝛵 = 1) ≈ 0,007, in comparison to 𝜖𝑚𝑎𝑥(Η = 1200, 𝛵 = 8) −

𝜖𝑚𝑎𝑥(Η = 1200, 𝛵 = 1) ≈ 0,5. Thus, the difference in distribution of 𝜖𝑡𝑜𝑡 increases

exponentially with an increase of Η for all 𝛵. There is also observed that Η and 𝛵

proportionally enhances their effect in where max (𝜖max) = 𝜖𝑚𝑎𝑥(Η = 1200, 𝛵 = 8). For an

increase of 𝛵, the exponential growth of Η increases rapidly. The difference

𝜖𝑚𝑎𝑥(Η = 1200, 𝛵 = 1) − 𝜖𝑚𝑎𝑥(Η = 100, 𝛵 = 1) ≈ 0,045, in where the difference 𝜖𝑚𝑎𝑥(Η = 1200,

𝛵 = 8) − 𝜖𝑚𝑎𝑥(Η = 100, 𝛵 = 1) ≈ 0,55.

Also, it is observed that the maximal total strain of the models 𝜖𝑚𝑎𝑥 peaked when the

normalized distance Γ/𝑟𝑡=1.1 for all four thicknesses. This does, however, not necessarily

resemble the true peak. There were tested for 22 different Γ. Thus, it can only be concluded

that the peak happens somewhere between Γnorm ∈ [1, 1.25]. There are reasons to believe

that the graph gets smoother with an increase in sampling frequency.

It is important to note that there was a severe difference in the strength of the zone and

the strength of the host rock. Using the critical strain concept proposed by (Sakurai, 1981),

and comparing the total strains of the charts with Figure 28 created by (Hoek & Diederichs,

2006) over 70% of the models show some extent of squeezing behavior in where the

7 Discussion of results

 131

severity increases with both overburden and thickness, and can be further enhanced for

certain positions of the zone.

A last note, the symmetry shown in the charts created by the automation resembles a

symmetry that leads to thoughts that there has been found something fundamental

regarding weakness zones affect the tunnel stability. A hypothesis has been made, that it

could be possible to create a dimensionless constant, analogous to the Reynolds number

in fluid mechanics, in where the purpose of this number would be to predict when a

weakness zone no longer afflicts the stability. If this was to be done, a more thorough

study should be initiated, in where the tunnel radius and material parameters also should

be included. Also, the lines of the charts are not very smooth, which implies a need for a

higher sampling frequency.

 132

In the thesis it was successfully developed a method to automize the model creation

process of the 2D finite element program RS2. This automation script was used to create

the total number of 3696 models to be used in an extensive sensitivity analysis on which

weakness zone-defining parameters that affects tunnel stability, and in what extent each

parameter contributes to this instability. Four parameters were investigated: (a) zone

thickness, (b) overburden, (c) zone angle, (d) distance between zone and tunnel center.

An important finding was that the zone angle Θ did not have any significance on the tunnel

stability for any zone thicknesses 𝛵, overburdens Η, and normalized shortest distances

between tunnel center and weakness zones Γ𝑛𝑜𝑟𝑚. Another important insight was that

maximum strain 𝜖𝑚𝑎𝑥 = 𝜖𝑡𝑜𝑡(Γ𝑛𝑜𝑟𝑚 = 1.1)∀Τ, Η . A third curiosity was that the weakness zone

was out of the influence zone of the tunnel when Γnorm >≈ 2. The exponential increase of

𝜖𝑡𝑜𝑡 with increasing Η is severely primed when also Τ is increased.

The following suggestions are made for further work with this script

• By varying tunnel radius and material parameters, it can be possible to develop a

“Reynolds number” with the purpose of predict the distance when the weakness

zone is out of the influence zone of the tunnel. It is believed that this study would

be quite extensive, but quite rewarding.

• A more complex definition of weakness zones could be implemented, to get a more

realistic approach, in where zone with damage zone and fault cores is investigated.

• Development of an equation to better quantify the true sensitivity of each

parameter. It should be possible to use regression to define an equation that

describes the results of the model. With this done it would be possible to define a

more mathematical approach regarding a parameter study.

• In section 6.2, it was suggested a method to capture the skewness of the

deformation distributions of the models created. This would be interesting to

investigate, to see if the approach is useful.

8 Conclusion

 133

 134

Aksoy, C. (2008). Review of rock mass rating classification: historical developments,

applications, and restrictions. Journal of mining science, 44(1), 51-63.

Amadei, B., & Stephansson, O. (1997). Rock stress and its measurement. Springer Science

& Business Media.

Bagheripour, M. H., Rahgozar, R., Pashnesaz, H., & Malekinejad, M. (2011). A complement

to Hoek-Brown failure criterion for strength prediction in anisotropic rock.

Geomechanics and Engineering, 3(1), 61-81.

Balsamo, F., Storti, F., Salvini, F., Silva, A., & Lima, C. (2010). Structural and petrophysical

evolution of extensional fault zones in low-porosity, poorly lithified sandstones of

the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32(11), 1806-

1826.

Barton, N. (1976). The shear strength of rock and rock joints. International Journal of Rock

Mechanics and Mining Sciences & Geomechanics Abstracts, 13(9), 255-279.

https://doi.org/10.1016/0148-9062(76)90003-6

Barton, N., Lien, R., & Lunde, J. (1974). Engineering classification of rock masses for the

design of tunnel support. Rock mechanics, 6(4), 189-236.

Basarir, H. (2008). Analysis of rock–support interaction using numerical and multiple

regression modeling. Canadian Geotechnical Journal, 45(1), 1-13.

https://doi.org/10.1139/t07-053

Berg, S. S., & Skar, T. (2005). Controls on damage zone asymmetry of a normal fault

zone: outcrop analyses of a segment of the Moab fault, SE Utah. Journal of

Structural Geology, 27(10), 1803-1822.

Bieniawski, Z. (1973). Engineering classification of jointed rock masses. Civil Engineering

= Siviele Ingenieurswese, 1973(12), 335-343.

Bieniawski, Z. T. (1974). Estimating the strength of rock materials. Journal of the Southern

African Institute of Mining and Metallurgy, 74(8), 312-320.

Bieniawski, Z. T. (1989). Engineering rock mass classifications : a complete manual for

engineers and geologists in mining, civil, and petroleum engineering. Wiley.

Blenkinsop, T. G. (2008). Relationships between faults, extension fractures and veins, and

stress. Journal of Structural Geology, 30(5), 622-632.

https://doi.org/10.1016/j.jsg.2008.01.008

Bobet, A., Fakhimi, A., Johnson, S., Morris, J., Tonon, F., & Yeung, M. R. (2009). Numerical

models in discontinuous media: review of advances for rock mechanics applications.

Journal of Geotechnical and Geoenvironmental Engineering, 135(11), 1547-1561.

Brace, W., & Martin Iii, R. (1968). A test of the law of effective stress for crystalline rocks

of low porosity. International Journal of Rock Mechanics and Mining Sciences &

Geomechanics Abstracts, 5(5), 415-426.

Brady, B. H., & Brown, E. T. (1993). Rock mechanics: for underground mining. Springer

science & business media.

Brady, B. H. G., & Brown, E. T. (2012). Rock Mechanics: For Underground Mining. Springer.

Bray, J. (1967). A study of jointed and fractured rock. Rock mechanics and engineering

geology, 5(2-3), 117-136.

Brown, E. T., & Hoek, E. (1978). Trends in relationships between measured in-situ stresses

and depth. International Journal of Rock Mechanics and Mining Sciences &

Geomechanics Abstracts, 15(4), 211-215. https://doi.org/10.1016/0148-

9062(78)91227-5

Bruland, A. (2016). Anleggsteknikk GK.

Byerlee, J. (1978). Friction of Rocks. In (pp. 615-626). Birkhäuser Basel.

https://doi.org/10.1007/978-3-0348-7182-2_4

9 References

https://doi.org/10.1016/0148-9062(76)90003-6
https://doi.org/10.1139/t07-053
https://doi.org/10.1016/j.jsg.2008.01.008
https://doi.org/10.1016/0148-9062(78)91227-5
https://doi.org/10.1016/0148-9062(78)91227-5
https://doi.org/10.1007/978-3-0348-7182-2_4

 135

[Record #161 is using a reference type undefined in this output style.]

Cai, M. (2008). Influence of stress path on tunnel excavation response–Numerical tool

selection and modeling strategy. Tunnelling and Underground Space Technology,

23(6), 618-628.

Cai, M., & Kaiser, P. (2006). Visualization of rock mass classification systems. Geotechnical

& Geological Engineering, 24(4), 1089-1102.

Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability

structure. Geology, 24(11), 1025-1028.

Chapple, W. M. (1987). Strength of rocks. In Structural Geology and Tectonics (pp. 746-

748). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-31080-0_106

Coulomb, C. A. (1773). Essai sur une application des regles de maximis et minimis a

quelques problemes de statique relatifs a l'architecture (essay on maximums and

minimums of rules to some static problems relating to architecture).

Crowder, J., & Bawden, W. (2004). Review of post-peak parameters and behaviour of rock

masses: current trends and research. Rocnews, fall.

Deere, D. U., & Miller, R. P. (1966). Engineering classification and index properties for

intact rock (Vol. 65-116). University of Illinois.

Donath, F. A. (1972). Effects of cohesion and granularity on deformational behavior of

anisotropic rock. Studies in mineralogy and precambrian geology, 135, 95-128.

Drucker, D. C., & Prager, W. (1952). Soil mechanics and plastic analysis or limit design.

Quarterly of applied mathematics, 10(2), 157-165.

Edelbro, C. (2003). Rock mass strength: a review. Teknisk rapport - Luleå tekniska

universitet, 92.

Einstein, H. H. (1996). Tunnelling in difficult ground: Swelling behaviour and identification

of swelling rocks. Rock Mechanics and Rock Engineering, 29(3), 113-124.

https://doi.org/10.1007/bf01032649

Elliott, G. M. (1982). An investigation of a yield criterion for porous rock [Doctoral thesis,

University of London]. London.

https://spiral.imperial.ac.uk/bitstream/10044/1/36259/2/Elliott-GM-1983-PhD-

Thesis.pdf

Fasching, F., & Vanek, R. (2011). Engineering geological characterisation of fault rocks and

fault zones/Ingenieurgeologische Charakterisierung von Störungsgesteinen und

Störungszonen. Geomechanics and Tunnelling, 4(3), 181-194.

Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley,

C. A. J., & Withjack, M. O. (2010). A review of recent developments concerning the

structure, mechanics and fluid flow properties of fault zones. Journal of Structural

Geology, 32(11), 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009

Gercek, H. (2007). Poisson's ratio values for rocks. International Journal of Rock Mechanics

and Mining Sciences, 44(1), 1-13. https://doi.org/10.1016/j.ijrmms.2006.04.011

Goel, R. K., & Singh, B. (2011). Engineering Rock Mass Classification.

https://doi.org/10.1016/C2010-0-64994-7

Goodman, R. E. (1989). Introduction to rock mechanics (Vol. 2). Wiley

Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical

transactions of the royal society of london. Series A - mathematical, physical and

engineering sciences, 221(582-593), 163-198.

Grimstad, E., Kankes, K., Bhasin, R., Magnussen, A. W., & Kaynia, A. (2002). Rock mass

quality Q used in designing reinforced ribs of sprayed concrete and energy

absorption. Report, Norwegian Geotechnical Institute, 19.

Haimson, B., & Cornet, F. (2003). ISRM suggested methods for rock stress estimation—

part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures

(HTPF). International Journal of Rock Mechanics and Mining Sciences, 40(7-8),

1011-1020.

Hast, N. (1958). The measurement of rock pressure in mines. Generalstabens Litografiska

Anstalts Förlag.

Hatheway, A. W., & Kiersch, G. A. (1986). Engineering properties of rocks. In R. S.

Carmichael (Ed.), Handbook of physical properties pf rocks. (Vol. 2, pp. 289-331).

CRC press.

https://doi.org/10.1007/3-540-31080-0_106
https://doi.org/10.1007/bf01032649
https://spiral.imperial.ac.uk/bitstream/10044/1/36259/2/Elliott-GM-1983-PhD-Thesis.pdf
https://spiral.imperial.ac.uk/bitstream/10044/1/36259/2/Elliott-GM-1983-PhD-Thesis.pdf
https://doi.org/10.1016/j.jsg.2010.06.009
https://doi.org/10.1016/j.ijrmms.2006.04.011
https://doi.org/10.1016/C2010-0-64994-7

 136

Herget, G. (1988). Stresses in rock. Balkema Rotterdam.

Hoek, E. (1983). Strength of jointed rock masses. Geotechnique, 33(3), 187-223.

Hoek, E. (1999). Support for very weak rock associated with faults and shear zones.

Routledge.

Hoek, E. (2001). Big tunnels in bad rock. Journal of Geotechnical and Geoenvironmental

Engineering, 127(9), 726-740.

Hoek, E., & Brown, E. T. (1980a). Empirical strength criterion for rock masses. Journal of

the geotechnical engineering division, 106(9), 1013-1035.

Hoek, E., & Brown, E. T. (1980b). Underground excavations in rock. CRC Press.

Hoek, E., & Brown, E. T. (1997). Practical estimates of rock mass strength. International

Journal of Rock Mechanics and Mining Sciences, 34(8), 1165-1186.

https://doi.org/10.1016/s1365-1609(97)80069-x

Hoek, E., & Brown, E. T. (2019). The Hoek–Brown failure criterion and GSI – 2018 edition.

Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445-463.

https://doi.org/10.1016/j.jrmge.2018.08.001

Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown failure criterion-2002

edition. Proceedings of NARMS-Tac, 1(1), 267-273.

Hoek, E., & Diederichs, M. S. (2006). Empirical estimation of rock mass modulus.

International Journal of Rock Mechanics and Mining Sciences, 43(2), 203-215.

Hoek, E., Kaiser, P. K., & Bawden, W. F. (1995). Support of underground excavations in

hard rock (1 ed.). CRC Press.

Hoek, E., & Marinos, P. (2000). Predicting tunnel squeezing problems in weak

heterogeneous rock masses. Retrieved 14.11.2021, from

https://www.rocscience.com/assets/resources/learning/hoek/Predicting-Tunnel-

Squeezing-Problems-in-Weak-Heterogeneous-Rock-Masses-2000.pdf

Hudson, J. A., & Harrison, J. P. (1997). Engineering Rock Mechanics: An Introduction to

the Principles (1st ed. ed.). Amsterdam: Elsevier Science & Technology.

Huston, R. L., & Josephs, H. (2009). Practical stress analysis in engineering design (3rd

ed. ed.). CRC Press.

Høien, A. H. (2018). Applicability of reinforced ribs of sprayed concrete in sections of poor

quality and swelling rock mass [Doctoral thesis, Norwegian University of Science

and Tecnology]. Trondheim. https://ntnuopen.ntnu.no/ntnu-

xmlui/handle/11250/2584189

Høien, A. H., & Nilsen, B. (2019). Analysis of the stabilising effect of ribs of reinforced

sprayed concrete (RRS) in the Løren road tunnel. Bulletin of Engineering Geology

and the Environment, 78(3), 1777-1793. https://doi.org/10.1007/s10064-018-

1238-1

Høien, A. H., Nilsen, B., & Olsson, R. (2019). Main aspects of deformation and rock support

in Norwegian road tunnels. Tunnelling and Underground Space Technology, 86,

262-278. https://doi.org/10.1016/j.tust.2019.01.026

Høien, A. H., Nilsen, B., Vistnes, G., & Olsson, R. (2020). Experimental triaxial testing of

swelling gouge materials. Bulletin of Engineering Geology and the Environment,

79(1), 355-370. https://doi.org/10.1007/s10064-019-01547-6

Ismael, M., Chang, L., & Konietzky, H. (2017). Behaviour of anisotropic rocks. Retrieved

05.01.2022, from https://tu-freiberg.de/sites/default/files/media/professur-

felsmechanik-32204/E-book/24_behaviour_of_anisotropic_rocks_0.pdf

ISRM. (1978). International society for rock mechanics commission on standardization of

laboratory and field tests: Suggested methods for the quantitative description for

discontinuities in rock masses. International Journal of Rock Mechanics and Mining

Sciences & Geomechanics Abstracts, 15(6), 319-368.

https://doi.org/10.1016/0148-9062(78)91472-9

ISRM. (2014). The ISRM suggested methods for rock characterization, testing and

monitoring: 2007-2014. Springer.

Jaeger, J. C., Cook, N. G., & Zimmerman, R. (2009). Fundamentals of rock mechanics.

John Wiley & Sons.

Jing, L., & Hudson, J. (2002). Numerical methods in rock mechanics. International Journal

of Rock Mechanics and Mining Sciences, 39(4), 409-427.

https://doi.org/10.1016/s1365-1609(97)80069-x
https://doi.org/10.1016/j.jrmge.2018.08.001
https://www.rocscience.com/assets/resources/learning/hoek/Predicting-Tunnel-Squeezing-Problems-in-Weak-Heterogeneous-Rock-Masses-2000.pdf
https://www.rocscience.com/assets/resources/learning/hoek/Predicting-Tunnel-Squeezing-Problems-in-Weak-Heterogeneous-Rock-Masses-2000.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2584189
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2584189
https://doi.org/10.1007/s10064-018-1238-1
https://doi.org/10.1007/s10064-018-1238-1
https://doi.org/10.1016/j.tust.2019.01.026
https://doi.org/10.1007/s10064-019-01547-6
https://tu-freiberg.de/sites/default/files/media/professur-felsmechanik-32204/E-book/24_behaviour_of_anisotropic_rocks_0.pdf
https://tu-freiberg.de/sites/default/files/media/professur-felsmechanik-32204/E-book/24_behaviour_of_anisotropic_rocks_0.pdf
https://doi.org/10.1016/0148-9062(78)91472-9

 137

Kalender, A., Sonmez, H., Medley, E., Tunusluoglu, C., & Kasapoglu, K. (2014). An

approach to predicting the overall strengths of unwelded bimrocks and bimsoils.

Engineering geology, 183, 65-79.

Kirsch, C. (1898). Die theorie der elastizitat und die bedurfnisse der festigkeitslehre.

Zeitschrift des Vereines Deutscher Ingenieure, 42, 797-807.

Krauland, N., Söder, P., & Agmalm, G. (1989). Determination of rock mass strength by

rock mass classification—Some experiences and questions from Boliden mines.

International Journal of Rock Mechanics and Mining Sciences & Geomechanics

Abstracts, 26(1), 115-123. https://doi.org/10.1016/0148-9062(89)90531-7

Kulhawy, F. H. (1975). Stress deformation properties of rock and rock discontinuities.

Engineering Geology, 9(4), 327-350. https://doi.org/10.1016/0013-

7952(75)90014-9

Kaasbøll Andresen, E. (2021). A literature review on important factors considering a

numerical sensitivity study on weakness zones (Specialization project, Issue.

Lamuta, C. (2019). Elastic constants determination of anisotropic materials by depth-

sensing indentation. SN Applied Sciences, 1(10), 1263.

https://doi.org/10.1007/s42452-019-1301-y

Li, C. C. (2018). TGB4210 Rock Mechanics Compendium.

Luenberger, D. G., & Ye, Y. (1984). Linear and nonlinear programming (Vol. 2). Springer.

Mao, D., & Nilsen, B. (2013). Numerical analysis of effects of weakness zones on tunnel

stability 2D versus 3D. Advances in underground space development. Research

publishing service, 388.

Marinos, V., & Carter, T. G. (2018). Maintaining geological reality in application of GSI for

design of engineering structures in rock. Engineering Geology, 239, 282-297.

Matsukura, Y., Hashizume, K., & Oguchi, C. (2002). Effect of microstructure and

weathering on the strength anisotropy of porous rhyolite. Engineering Geology,

63(1-2), 39-47.

McClay, K. R. (1987). The mapping of geological structures. John Wiley & Sons.

McCutchen, W. (1982). Some elements of a theory for in-situ stress. International Journal

of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,

McGrath, A. G., & Davison, I. (1995). Damage zone geometry around fault tips. Journal of

Structural Geology, 17(7), 1011-1024.

METU. (1989a). Investigation on the determination of rock mechanics and design

parameters for coal and coal measure rocks at Asma Mine. Report prepared for TTK,

Department of Mining Engineering, Ankara.

METU. (1989b). Investigation on the determination of rock mechanics and design

parameters for coal and coal measure rocks at Gelik Mine. Report prepared for TTK,

Department of Mining Engineering, Ankara.

METU. (1989c). Investigation on the determination of rock mechanics and design

parameters for coal and coal measure rocks at Kandilli Mine. Report prepared for

TTK, Department of Mining Engineering, Ankara.

Mitchell, T. M., & Faulkner, D. R. (2009). The nature and origin of off-fault damage

surrounding strike-slip fault zones with a wide range of displacements: A field study

from the Atacama fault system, northern Chile. Journal of Structural Geology,

31(8), 802-816. https://doi.org/10.1016/j.jsg.2009.05.002

Mogi, K. (1967). Effect of the intermediate principal stress on rock failure. Journal of

Geophysical Research, 72(20), 5117-5131.

Mohr, O. (1882). Über die Darstellung des Spannungszustandes und des

Deformationszustandes eines Körperelementes und über die Anwendung derselben

in der Festigkeitslehre. Der Civilingenieur, 28(2), 113-156.

Myrvang, A. M. (2001). Bergmekanikk. Institutt for geologi og bergteknikk, NTNU.

NGI. (2015). Bruk av Q-systemet. Norges Geotekniske Institutt.

https://www.ngi.no/Tjenester/Fagekspertise/Ingenioergeologi-og-bergteknikk/Q-

systemet

Nilsen, B. (2016). Ingeniørgeologi Berg Grunnkurskompendium (3 ed.). Akademika.

Onah, H. (2012). Different element methods in engineering practice. Nigerian Journal of

Technology, 31(3), 288-292.

https://doi.org/10.1016/0148-9062(89)90531-7
https://doi.org/10.1016/0013-7952(75)90014-9
https://doi.org/10.1016/0013-7952(75)90014-9
https://doi.org/10.1007/s42452-019-1301-y
https://doi.org/10.1016/j.jsg.2009.05.002
https://www.ngi.no/Tjenester/Fagekspertise/Ingenioergeologi-og-bergteknikk/Q-systemet
https://www.ngi.no/Tjenester/Fagekspertise/Ingenioergeologi-og-bergteknikk/Q-systemet

 138

Palmstrom, A. (1996). RMi-a rock mass characterization system for rock engineering

purposes. Journal of Rock Mechanics and Tunnelling Technology, 1, 69-108.

Palmstrom, A., & Broch, E. (2006). Use and misuse of rock mass classification systems

with particular reference to the Q-system. Tunnelling and underground space

technology, 21(6), 575-593.

Palmström, A., & Stille, H. (2010). Rock Engineering. London: Institution of Civil Engineers.

Perras, M. A., & Diederichs, M. S. (2014). A review of the tensile strength of rock: concepts

and testing. Geotechnical and geological engineering, 32(2), 525-546.

Riedmüller, G., Brosch, F. J., Klima, K., & Medley, E. W. (2001). Engineering geological

characterization of brittle faults and classification of fault rocks. Felsbau, 19(4), 13-

19.

RocScience. (1989-2021). Stress Analysis Verification Manual. Retrieved 02.04.2022 from

https://www.rocscience.com/help/rs2/verification-theory

RocScience. (2021). Preliminaries on Constitutive Models. Retrieved 10.12.2021 from

https://static.rocscience.cloud/assets/verification-and-theory/RS2/1-

Preliminaries-on-Constitutive-Models.pdf

Roylance, D. (2001). Transformation of Stresses and Strains. Retrieved 15.10.2021, from

https://web.mit.edu/course/3/3.11/www/modules/trans.pdf

Sakurai, S. (1981). Direct strain evaluation technique in construction of underground

opening. The 22nd US Symposium on Rock Mechanics (USRMS),

Sakurai, S. (1984). Displacement measurements associated with the design of

underground openings. Field measurements in geomechanics. International

symposium,

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk analysis, 22(3),

579-590.

Saroglou, H., & Tsiambaos, G. (2008). A modified Hoek–Brown failure criterion for

anisotropic intact rock. International Journal of Rock Mechanics and Mining

Sciences, 45(2), 223-234.

Savage, H., & Brodsky, E. (2010). Collateral damage: capturing slip delocalization in

fracture profiles. Journal of Geophysical Research.

Scholz, C. H. (1987). Wear and gouge formation in brittle faulting. Geology, 15(6), 493-

495.

Sheorey, P. R. (1994). A theory for In Situ stresses in isotropic and transverseley isotropic

rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics

Abstracts, 31(1), 23-34. https://doi.org/10.1016/0148-9062(94)92312-4

SINTEF. (2016). Rock Mechanic Properties of Rocks Tested in SINTEF Rock Mechanics

Laboratory Infrastructure, S.B.a. (Ed.).

SVV. (2022). N500 Vegtunneler.

https://viewers.vegnorm.vegvesen.no/product/859938/nb

Sweigart, A. (2014). PyAutoGUI. In (Version 0.9.53)

https://github.com/asweigart/pyautogui/commits/master/docs/index.rst

Sæter, H. S. B. (2005). Kompendium: Innføringskurs i strukturgeologi.

Saabye Ottosen, N., & Petersson, H. (1992). Introduction to the finite element method.

Pearson Prentice Hall.

Terzaghi, K. (1923). Die Berechnung der Durchlassigkeitsziffer des Tones aus Dem Verlauf

der Hidrodynamichen Spannungersheinungen Akademie der Wissenschaften in

Wien, 132, 13.

Terzaghi, K. (1946). Introduction to tunnel geology. Rock tunnelling with steel supports,

17-99.

Terzaghi, K., & Richart Jr, F. (1952). Stresses in rock about cavities. Geotechnique, 3(2),

57-90.

Trinh, Q. N., Myrvang, A., & Sand, N. S. (2010). Rock Excavation And Support For a

Crusher Hall At Rana Gruber, Norway. 44th U.S. Rock Mechanics Symposium and

5th U.S.-Canada Rock Mechanics Symposium,

Ullemeyer, K., Siegesmund, S., Rasolofosaon, P. N., & Behrmann, J. H. (2006).

Experimental and texture-derived P-wave anisotropy of principal rocks from the

https://www.rocscience.com/help/rs2/verification-theory
https://static.rocscience.cloud/assets/verification-and-theory/RS2/1-Preliminaries-on-Constitutive-Models.pdf
https://static.rocscience.cloud/assets/verification-and-theory/RS2/1-Preliminaries-on-Constitutive-Models.pdf
https://web.mit.edu/course/3/3.11/www/modules/trans.pdf
https://doi.org/10.1016/0148-9062(94)92312-4
https://viewers.vegnorm.vegvesen.no/product/859938/nb
https://github.com/asweigart/pyautogui/commits/master/docs/index.rst

 139

transalp traverse: an aid for the interpretation of seismic field data. Tectonophysics,

414(1-4), 97-116.

Vermeer, P. A., & De Borst, R. (1984). Non-associated plasticity for soils, concrete and

rock. HERON, 29(3), 1-64.

Vincent, C. P. (2017). Program Arcade Games - with Python And Pygame

http://programarcadegames.com/

Voight, W. (1928). Lehrbuch der kristallphysik. Teubner, Leipzig.

Vutukuri, V. S., Lama, R. D., & Saluja, S. S. (1974). Handbook on mechanical properties

of rocks (Vol. 1). Trans Tech Publications.

Wahlstrom, E. E. (1973). Tunneling in rock (Vol. 3). Elsevier.

Walton, G., Labrie, D., & Alejano, L. R. (2019). On the Residual Strength of Rocks and

Rockmasses. Rock Mechanics and Rock Engineering, 52(11), 4821-4833.

https://doi.org/10.1007/s00603-019-01879-5

Wawersik, W., Carlson, L., Holcomb, D., & Williams, R. (1997). New method for true-

triaxial rock testing. International Journal of Rock Mechanics and Mining Sciences,

34(3-4), 1-14.

Wawersik, W. R. (1968). Detailed analysis of rock failure in laboratory compression tests.

University of Minnesota.

Wei, Z. (1988). A fundamental study of the deformability of rock masses [Doctoral Thesis,

University of London]. London.

Wilson, J., Chester, J., & Chester, F. (2003). Microfracture analysis of fault growth and

wear processes, Punchbowl Fault, San Andreas system, California. Journal of

Structural Geology, 25(11), 1855-1873.

Wong, L. N. Y., Maruvanchery, V., & Liu, G. (2016). Water effects on rock strength and

stiffness degradation. Acta Geotechnica, 11(4), 713-737.

Woodcock, N., & Mort, K. (2008). Classification of fault breccias and related fault rocks.

Geological Magazine, 145(3), 435-440.

Zuo, J.-p., Li, H.-t., Xie, H.-p., Ju, Y., & Peng, S.-p. (2008). A nonlinear strength criterion

for rock-like materials based on fracture mechanics. International Journal of Rock

Mechanics and Mining Sciences, 45(4), 594-599.

Zuo, J., Liu, H., & Li, H. (2015). A theoretical derivation of the Hoek–Brown failure criterion

for rock materials. Journal of Rock Mechanics and Geotechnical Engineering, 7(4),

361-366.

http://programarcadegames.com/
https://doi.org/10.1007/s00603-019-01879-5

 140

A1: Summary of uniaxial stress-strain parameters.

10 Appendix

"""
Import of modules created for this project is the ones starting with from.
Important note, these modules is again using modules created by others in conjunction with own modules etc.
So, thanks to all that contributes with useful tools on an open-source basis!!!! Without the python community
this project would not have been possible.
"""
import time

import pandas as pd

from Automatisering_RS2 import module_calculate as mcal, module_execute_model_alteration as mema, mouse_tracker
as mt
from Automatisering_RS2 import module_create_mesh as mcm
from Automatisering_RS2 import module_execute_data_processing as medp
from Automatisering_RS2 import module_main_functions as mmf
from Automatisering_RS2 import module_plan_experiment as mpe
from Automatisering_RS2 import module_store_data as msd

"""
This is the main file of the automation script made automize the modelling process of the 2-dimensional FEM programme
RS2 by RocScience Inc.

It was created as an integral part of the master thesis: "" written by Eirik Kaasbøll Andresen the spring 2022. This
Thesis is available at NTNU Open. Rweading of the thesis will give the context of this script and may give the reader
new ideas thqat can maker use of this script and lead to further developments. You can get the script from my github
account.

The main file works as a hub and is putting togehter the contribution of several scripts developed in this project. The
scripts is categorized and is developed to face certain needs.

If a certain script or module is not used for a paricular reason, it is commented out.
The script is designed with a memory storage solution. If one part of the script is finnished, all information is needed
stop the script, for then to comment out certain blocks and keep on from the point the script was stopped.

However, this script is not optimized for being userfriendly. So, feel free to contact me if there are any questions.

BR
Eirik Kaasbøll Andresen - the developer of this script.

PS
All communinication through monitor and some variables are written in Norwegian, so have fun with google translate
and enjoy some words and sentences of this beautful language!

"""

"""
This is the controll panel stearing which operations to be done when running the script. If all is False, this
script does nothing. If no changes is made to input parameters defining the models there is no need to go further.

#1 is True if the project is moved over to another screen. If there are difference from the new screen compared to old
this will mean that the mouse coordinates must be updated.

#2 is True if thwe mouse coordinates must be redefined

#3 is True if a new project is to be made. This will set up the folder strucure needed

#(4 to 10) with name bool_shall_execute_... is used to turn on and of different operations of the script in where all

main.py

Automation of RS2

A2 - The automation script

seqence through all models of the experiment and does different tasks.

#4 True turns on the model alteration process
#5 True True turns on the create mesh process
#6 True turns on the calculation process
#8 True turns on the data storing process
#10 True turns on the first data processing process, in where the second data processing is done using Excel,
see thesis.

#7 If true, the function calculate pauses after the creation of the log file analysis, so that the user can
check the quality.

#9 is False if data storing is done a second time or more. This is due to how rs2 interpret works. The second time it is
run, it opens directly wit total deformation as parameter. However, the first parameter stored must be sigma 1.

NB!!! If there are done any changes to the template files on which all the models is based, all the parameters
between #4 - 10 must set to True. This is all from changing the parameters defining the calculation
(iteration, tolerance), mesh, material parameterers and more.

Another important note. If the script must be stopped after for instance mesh creation this is fine. Just turn the
processes already executed to False and the scripts run from where you stopped.

Furthermore, let say there was something going wrong with the mouse operations of the data storage after completing
overburden 100, 200, and 500, where the bug happened when overburden 800. It is not necessary to do the entire
data storage process again. Using files_to_skip enables the user to controll which clusters of files to be operated
by refering to overburdens, which is the coarsest sorting defined in this thesis.
An example; files_to_skip = [0,1,2] skips the overburdens 100, 200, 300 of the list
overburdens = [100, 200, 300, 500, 800, 1200]. overburdens is allocated in line 220.

However, files_to_skip cannot be used on the function calculate from module_calculate. This is not as big issue since
calculate for the most case uses rs2's own batch functionality. Just set #4,5 and 6 to false. Open rs2 calculate and
choose the files that needs to be calculated. And then run the rest when the calculations are finnished. It is
adviced to check the file containing log-files exceeding the given tolerance, to see if the calculations are reliable by
setting #7 to true.

For yes, the calculate operation ends with analysing all the log-files created by rs2 compute after each completed
calculation. If there is found tolerances greater than a certain error set by the user, it stores the path of these
log-files, and the user can check if the differences are problematic.
"""
1
bool_know_size_monitor = False
2
bool_shall_reedit_mouse_coordinates = False
3
bool_create_new_project = False

4 to 10 Settings for the operations
bool_shall_execute_model_alteration = False

bool_shall_execute_create_mesh = False

bool_shall_execute_calculate = False
bool_stop_to_check_logs = False

bool_shall_execute_data_store = False
bool_is_first_time_execute_data_store = False

main.py

Automation of RS2

bool_shall_execute_data_processing = False

11 skip overburdens
files_to_skip = []

"""NB!!!!!!!!!!!
It two functions in the modules created that must be updated if there are changes in
the setup of the sensitivity experiment. The functions are:

which_overburden and get_ob_index in module_plan_experiment.py, in where changes in overburden values
must be implemented.

"""

"""
It will be calculated computation time of each operation seperatly, due to the script is forced to take break
two times.

The first break is when the quality of the models is to be checked. There are some few bugs in the material allocation
which must be attoned for. It is only necessary to check the models of overburden 100 and 200. The rest is based
on the model of overburden 200 in where the only difference is the overburden. The differnece betweeen overburden 100
and 200 is the outerboundary. Thus, the two models experience differneces in their bugs. It is not knwon why the bugs
exist, however it does not affect many models.

The second break is under calculations. The reason for this is that there appeared some complications with rs2 compute.
It must be implemented the path of where rs2 compute finds its data. It is not done now due not having time, but it is
not a complicated thing to implement.

Also, due to symmetry reasons it was only necessary to caclulate for angles between 45 to 90 degrees. So, the problems
faced with the material allocations is more severe if the angles are not between this range. If the script is to be
used for more complex purposes, this problem must be resolved. It is not known why this occur at this stage.
"""

"""
This aks the user if the programme should be run. If not true, the script is exited.
"""

command = mmf.procede_script()

if command == 'j':
"""
This starts the timer used to calculate the running time of the entire script.
This will include the time used to check models and the delay if the user do not detect early enough that the
calculation is over.
"""
time_start = time.time()

"""
Settings for displaying panda dataframes is set. This helped the workflow quit a bit.
"""
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', -1)

"""
Do you want to know the size of the monitor, set bool_know_size_monitor = True in controll panel line 86.

main.py

Automation of RS2

This must be known to check if the mouse coordinates must be redefined if a ne sreen is to be used.
"""
mmf.get_screen_width(bool_know_size_monitor)

"""
liste_stier_PycharmProjects_automatisering contains the paths of the csv containing all paths used for a range
of purposes of this script, and a path to
"""
"""
main_stringobjects consist all paths necessary to be defined for the script to run given by a list
of paths with metadata taken from liste_stier_PycharmProjects_automatisering
"""
main_stringobjects = pd.read_csv(r'C:\temp\thesis\eksperimenter\mektighet_1'

r'\base_modeler\Pycharm_automatisering'
r'\liste_stier_PycharmProjects_automatisering.txt',
sep=';')

"""
mt.mouse_tracker updates mouse operations if neccessary, if that the case,
bool_shall_reedit_mouse_coordinates = True
"""
mt.mouse_tracker(main_stringobjects['object'][7], bool_shall_reedit_mouse_coordinates)

"""
This part defines the input parameters used in the numerical models.

the plan_experiment module (shortened: pe) detects which defined parameters that is to be static and which that is
to be dynamic.

Then it creates the ranges of each parameter. These parameters is later used to define the material behaviour and
geometry of the models.
"""

defines some general aspects regarding calculation behaviour used by rs2 compute,
tolerance = 0.001
maxiter = 10000

defines parameters regarding the output values to be stored in store_data function
ant_parametere_interpret = 2
parameter_navn_interpret = ['sigma 1:', 'total deformasjon:', 'end'] # also used in execute_data_processing

defines two parameters regarding the dynamic parameters of this experiment
parameters_varied = ['od', 'v', 'x'] # used in execute_data_processing
list_change_fieldstress = [300, 500, 800, 1200] # used in execute_model_alteration

"""
These parameters defines the most central parameters describing geometry, stress situation and material parameters
In this script, the shape of tunnel and material parameters is equal for all models, so these parameters is only
set in the template files in which the models of the experiment is based. Thus, it is only stress, thickness of
zone, angle of zone, and translation of zone that are implemented here. It would be possible to include material
changes in the script at a later stage.

Also, in the thesis, the thickness is only changed when a new experiment is done, just to reduce the size of each
dataset.

The filenames of the fea files is defined by the parameters below.
The filenames are central in the implementation of the script for two reasons:
1: To make it easy to differ the files from each other

main.py

Automation of RS2

2: To let the script know which values needed to construct the varied geometry and stress

The structure of the filenames is as follows (NB! Norwegian acronyms):
S_bm80_ss1_k1_od500_m4_v22.5_x0_y0. In where,

S (sirkulær): circular tunnel shape,
bm (bergmassekvaliteten): rock mass quality given by GSI
ss (svakhetssone): material quality of zone given by GSI (in the thesis it is given by mohr-columb parameters

, so the name is somewhat misleading)
k: constant for the isotropic ratio of vertical to horizontal stress,
od (overdekningen): the overburden,
m (mektigheten): thickness of zone,
v (vinkel): angle of zone,
x: horizontal translation of zone,
y: the vertical translation of zone.

NB!!!!!!
The y_attributes is not used. It was, during the method development of the thesis, realised that the
radial distance was the most practical to use, not x and y.
Thus, y is 0 because it is not used, and x_attributes will be normalised later in script. For instance,
x = [0, 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 4.5, 5, 5.5, 5.75, 6, 7, 8, 9, 10, 11, 13, 15, 20], is the magnitude
of the radial lengths, to be normalized later.
Normalized:
It is the shortest distance from tunnel centre to zone we want to define, it is a radial vector which has the same
magnitude for all angles of the zone, and is same for all thicknesses too since it is the lineament closest to the
zone we are measuring from. Pythagoras is used to express this radial distance with its x-value,
which can be done since the shortest distance is the normal normal to the lineamnet of the zone intersecting the
tunnel centre.

To conclude, the x-values is later normalised using pythagoras to transform the radial distance.
And y is kept to zero.
This is done in set_model_csv_attributes_batch from module_plan_experiment, where all the model names of the
experiment is defined. Thus the x-value will be dependent on the zone angle.
"""

rock_mass_material, weakness_zone_material, stress_ratio, overburdens, thickness_attributes, angle_attributes, \
y_attributes, x_attributes = 80, 1, 1, [100, 200, 300, 500, 800, 1200], \
4, [45, 52.5, 60, 67.5, 75, 82.5, 90], 0, \
[0, 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 4.5, 5, 5.5, 5.75, 6, 7, 8, 9, 10, 11, 13, 15, 20]

True lengths is the magnitude of distance between tunnel centre and zone centre
true_lengths = [x + thickness_attributes / 2 if i > 0 else x for i, x in enumerate(x_attributes)]

list contains the length of the sides of the quadratic outer boundary
ytre_grenser_utstrekning = [100, 150, 150, 150, 150, 150]

the number of points defining the tunnel boundary of the model. For the script to function properly,
it must be possible to divide it by 4. The high number is due to it increases the accuracy around tunnel
periphery.
n_points_tunnel_boundary = 360

this list defines the values for material allocation. 15 is weakness zone material and 16 is the rock mass
the smallest lsit element refers to one geometrical element of a model, and the two numbers refers to before exc
and after excavation respectively.
there are four scenarios:

main.py

Automation of RS2

1:The zone do not cross tunnel at all. -> 4 geometrical elements, excavation throug rock mass
2:The zone is thicker than tunnel diameter and completely submerges the tunnel -> 4 geometrical elements,
excav through weaknes zone
3:Part of the zone cross tunnel -> 5 elements
4:whole zone cross tunnel but is thinner than tunnel diameter -> 7 elements
list_which_material = [[[[15, 15], [15, 15], [16, 16], [16, 0]], [[15, 15], [15, 15], [16, 16], [15, 0]]],

[[15, 15], [15, 15], [15, 0], [16, 0], [16, 16]],
[[15, 15], [15, 15], [15, 0], [15, 0], [16, 16], [16, 16], [16, 0]]]

the names of the columns of the parameters written to the csv containing the first round processed data, see
discussion in thesis for what this means
valnavn = ['file_name', 'true_lengths', 'od', 'v', 'x', 'sigma 1, max', 'totaldeformasjon, max',

'quad_high - sigma 1, inbetween', 'quad_high - totaldeformasjon, inbetween',
'quad_low - sigma 1, inbetween', 'quad_low - totaldeformasjon, inbetween']

list_valnavn = []
list_valnavn += 7 * [valnavn]

this parameter contains the path to csv containing the descripton of variables of each model, as discussed in
line 217.
path_csv_parameter_verdier_fil = main_stringobjects['object'][0]

set_model_csv_attributes_batch interprets the values given in line 267 and creates a csv file describing
the definition of each model of the experiment.
number_of_files = mpe.set_model_csv_attributes_batch(path_csv_parameter_verdier_fil, rock_mass_material,

weakness_zone_material, stress_ratio, overburdens,
thickness_attributes, angle_attributes, y_attributes,
x_attributes)

"""
In this section rest of paths given in main_stringobjects is allocated. They are explained as they come up.
"""

this path points to the csv containing the parameters describing the foldernames in where the results are stored,
categorized regarding overburden. The experiments are categorized regarding thickness of zone
path_csv_parameter_verdier_mappe = main_stringobjects['object'][1]

shell for the fea models and the csv containg the results repectively.
paths_shell_rs2 = main_stringobjects['object'][2]

paths of the programmes to be executed in the script:
path_rs2 = main_stringobjects['object'][3]
path_rs2_compute = main_stringobjects['object'][4]
path_rs2_interpret = main_stringobjects['object'][5]

path to csv containing mouse coordinates
sti_koordinater_mus = main_stringobjects['object'][6]

path for folder to conmtain the fea files
sti_til_mappe_for_arbeidsfiler = main_stringobjects['object'][7]
path for folder to contain the folders that containes the categorized result files
sti_til_mapper_endelige_filer = main_stringobjects['object'][8]

sti_csv_gamle_rs2stier og sti_csv_gamle_csvStier:
is the paths for the csv's containing the paths of the fea files and result csv files from the last run.
sti_csv_gamle_rs2stier = main_stringobjects['object'][9]
sti_csv_gamle_csvstier = main_stringobjects['object'][10]

main.py

Automation of RS2

sti_list_variables_2lines_calculations: a list containing the paths of the geometrical data needed for the
script to work without defining the geometri of all files each time.
sti_list_variables_2lines_calculations = [main_stringobjects['object'][11], main_stringobjects['object'][12],

main_stringobjects['object'][13], main_stringobjects['object'][14],
main_stringobjects['object'][15], main_stringobjects['object'][16],
main_stringobjects['object'][17], main_stringobjects['object'][18],
main_stringobjects['object'][19]]

sti_tolerance_too_high: path to csv containing the list of log-files with tolerance exceeded
sti_tolerance_too_high = main_stringobjects['object'][21]

sti_values_toplot: paths containing the first round of processed data as described in the thesis.
sti_values_toplot = main_stringobjects['object'][22]

storage_calculation_times contains the path in where the caclulation times of the entire script and each
operation is stored. It is emptied for each run, so, if the calculation time of each run is to be stored, do
that in another file
storage_calculation_times = main_stringobjects['object'][23]

"""
the coordinates of the mouse operations is fetched here. The colnames is also defined.
"""
df_koordinater_mus = pd.read_csv(sti_koordinater_mus, sep=';')
navn_kol_df_koord_mus = ['Handling', 'x', 'y']

"""
paths to the template files is defined
"""
sti_kildefil_rs2, sti_kildefil_csv = mmf.get_file_paths_batch(paths_shell_rs2, path_csv_parameter_verdier_fil)

"""
create_work_and_storage_folders
"""
mmf.create_work_and_storage_folders(sti_til_mappe_for_arbeidsfiler, sti_til_mapper_endelige_filer)

"""
mappenavn_til_rs2/csv: containes the column names of df_stier_rs2/csvfiler
"""
mappenavn_til_rs2, mappenavn_til_csv = mmf.get_name_folders(sti_til_mapper_endelige_filer)
df_filnavn_rs2, df_filnavn_csv = mmf.make_file_name(path_csv_parameter_verdier_fil)

"""
get file paths of fea-files and csv to store ecxcavation query data. If bool_create_new_project True, old content is
deleted and new files and folder system is created, if False the olde ystem is kept and the file paths is fetched.
The fea files, if bool_create_new_project True, is created by copying the template files.
"""

df_stier_rs2filer, df_stier_csvfiler = \
mmf.get_paths_df(sti_til_mappe_for_arbeidsfiler, sti_til_mapper_endelige_filer, sti_kildefil_rs2,

sti_kildefil_csv, sti_csv_gamle_rs2stier, sti_csv_gamle_csvstier,
path_csv_parameter_verdier_mappe, ytre_grenser_utstrekning,
bool_create_new_project)

"""
df_endrede_attributter_rs2filer is dataframe containing the values defining all the models used in the geometry
construction. The columns are given by the overburdens.
"""

main.py

Automation of RS2

df_endrede_attributter_rs2filer = mmf.get_changing_attributes(df_stier_rs2filer, mappenavn_til_rs2)

"""
used by autogui processes to define how long the script shall wait before next operation is initiated. Given in
seconds. Important to ensure that one command is completed before the next arrives. See, thesis for a more
thorough description.
"""
time0 = [0, 0.7, 1, 2, 5]

"""
the geometries of fea models is created, or if bool_shall_execute_model_alteration is False, necessary
geometry data is fetched from pickle-files
"""

list_of_df_2lines_info, colnames_of_dfs_2lines_info = \

mema.execute_model_alteration(ytre_grenser_utstrekning, n_points_tunnel_boundary, overburdens,
list_change_fieldstress,
mappenavn_til_rs2, mappenavn_til_csv, df_stier_rs2filer,
df_stier_csvfiler, df_endrede_attributter_rs2filer, list_which_material,
sti_list_variables_2lines_calculations, x_attributes.copy(),
len(angle_attributes), bool_shall_execute_model_alteration, files_to_skip,
storage_calculation_times)

geometrical data used in execute_data_storage and execute_data_processing
list_0lines_inside, list_1line_inside, list_2lines_inside, list_excluded_files_2linescalc, list_points_to_check, \

list_iternumber_0, list_iternumber_1, list_iternumber_2, ll_inner_points = \
list_of_df_2lines_info[0], list_of_df_2lines_info[1], list_of_df_2lines_info[2], list_of_df_2lines_info[3], \
list_of_df_2lines_info[4], list_of_df_2lines_info[5], list_of_df_2lines_info[6], list_of_df_2lines_info[7], \
list_of_df_2lines_info[8]

"""
her lages diskretisering og mesh til alle modellene
"""

mcm.create_mesh(mappenavn_til_rs2, mappenavn_til_csv, df_stier_rs2filer, df_stier_csvfiler, path_rs2, time0,
files_to_skip, bool_shall_execute_create_mesh, storage_calculation_times)

"""
her kjøres alle kalkulasjonene, med en dynamisk while-løkke slik at når alle kalkulasjonene er ferdig,
så fortsetter scriptet. Det er viktig å sørge for at rs2_compute allerede finner den mappen som filene ligger i.
"""

mcal.calculate(path_rs2_compute, time0, df_filnavn_rs2, sti_til_mappe_for_arbeidsfiler, sti_tolerance_too_high,
tolerance, number_of_files, bool_shall_execute_calculate, df_koordinater_mus, navn_kol_df_koord_mus,
bool_stop_to_check_logs, storage_calculation_times)

"""
åpner interpret, der alle resultater som skal benyttes hentes ut og lagres i csv-format
"""

msd.store_data(mappenavn_til_rs2, mappenavn_til_csv, df_stier_rs2filer, df_stier_csvfiler, path_rs2_interpret,
df_koordinater_mus, navn_kol_df_koord_mus, ant_parametere_interpret,
parameter_navn_interpret, time0, ll_inner_points, bool_is_first_time_execute_data_store,
bool_shall_execute_data_store, files_to_skip, storage_calculation_times)

"""

main.py

Automation of RS2

here the first processing of data, as explained in the thesis in page , is executed and the fetched data is stored
in csv-files
"""

medp.execute_data_processing(parameter_navn_interpret, mappenavn_til_rs2, mappenavn_til_csv,
df_stier_csvfiler, list_points_to_check, sti_til_mapper_endelige_filer,
list_excluded_files_2linescalc, list_valnavn, sti_values_toplot, list_0lines_inside,
list_1line_inside, parameters_varied, true_lengths, bool_shall_execute_data_processing,
files_to_skip, storage_calculation_times)

category = 'end of script'
this will only be calculated if the script is not interrupted
mmf.calculate_computation_time(time_start, category, storage_calculation_times)
if so, add the time used for each operation, which will give a good estrimate of the total computation time.

main.py

Automation of RS2

import pandas as pd
import pyautogui as pag

"""
This script tracks mouse coordinates, adds metadata to the coordinate, and stores it to a csv-file

"""

def mouse_tracker(path, bool_shall_reedit_mouse_coordinates):
navn_kolonne = ['Handling', 'x', 'y']
command = 'n' # spore musas koordinater
while bool_shall_reedit_mouse_coordinates:

try:
command = input("Vil du spore musas koordinater? j for ja og n for nei: ")
if command == 'j':

while True:
try:

command = input('Plasser mus over ønsket felt og press j: ')
if command == 'j':

break
else:

print('j for ja og n for nei, prøv igjen!')
except NameError:

print("Oppstod en feil!")
continue

break
elif command == 'n':

break
else:

print('j for ja og n for nei, prøv igjen!')
except NameError:

print("Oppstod en feil!")
continue

if command == 'n':
print('Ingen posisjon ble lagret!')

else:
teller = 0
liste = [[], [], [], []]
while command == 'j':

x, y = pag.position()
liste[0].append(input('Gi beskrivelse av handling: '))
liste[1].append(x)
liste[2].append(y)

while True:
try:

command2 = input('Ønsker du å slette lagret punkt? j for ja og n for nei: ')
if command2 == 'j':

del liste[0][-1]
del liste[1][-1]
del liste[2][-1]
break

elif command2 == 'n':
teller += 1

mouse_tracker.py

Automation of RS2

break
else:

print('j for ja og n for nei fjompenisse!')
except NameError:

print('Det er et eller anna som har gått gæli!')

while True:
try:

command = input('Plasser mus over ønsket posisjon og press j for å lagre, eller n for å avslutte: ')
if command == 'j':

break
elif command == 'n':

break
else:

print('j for ja og n for nei, prøv igjen!')
except NameError:

print("Oppstod en feil!")
continue

data = {navn_kolonne[0]: liste[0], navn_kolonne[1]: liste[1], navn_kolonne[2]: liste[2]}
df = pd.DataFrame(data)
df.to_csv(path, mode='a', sep=';', index=False, header=False)

return

mouse_tracker.py

Automation of RS2

import itertools
from csv import writer
from sys import exit

import numpy as np

"""
This modulet is made to detect which defined parameters that is to be static and which to be dynamic, create the
ranges of each parameter, for then to create a set of values defining each model which is stored in a csv-file.

This script is called by the main file

"""

"""
This function gets the range of each parameter. If the range is greater than two it is dynamic, is it one it is static,
and is it zero it is not included. This is the function that is doing the detection work.
It is called in the function set_model_csv_attributes below
"""

def get_shape_matrix(rock_mass_material, weakness_zone_material, stress_ratio, overburden,
thickness_attributes, angle_attributes, y_attributes, x_attributes):

"""

@param rock_mass_material:
@param weakness_zone_material:
@param stress_ratio:
@param overburden:
@param thickness_attributes:
@param angle_attributes:
@param y_attributes:
@param x_attributes:
@return:
"""
iter_list = [rock_mass_material, weakness_zone_material, stress_ratio, overburden,

thickness_attributes, angle_attributes, y_attributes, x_attributes]
shape_matrix_list = []
for iter_object in iter_list:

if isinstance(iter_object, (int, float, str)):
shape_matrix_list.append(1)

else:
shape_matrix_list.append(len(iter_object))

return shape_matrix_list

"""
This function gets the ranges of the variables consisting of minimum a non-zero value. With one value this value is
put into a vector with length 1. If two or more values a list is created out of the iter_object which must consist of
three values: (a)start value, (b) end value, and (c) the incremental step.
It is calles in the function set_model_csv_attributes below
"""

def get_range_changing_attributes(rock_mass_material, weakness_zone_material, stress_ratio, overburden,
thickness_attributes, angle_attributes, y_attributes, x_attributes):

"""

module_plan_experiment.py

Automation of RS2

@param rock_mass_material:
@param weakness_zone_material:
@param stress_ratio:
@param overburden:
@param thickness_attributes:
@param angle_attributes:
@param y_attributes:
@param x_attributes:
@return:
"""
iter_list = [rock_mass_material, weakness_zone_material, stress_ratio,

thickness_attributes, angle_attributes, y_attributes, x_attributes]
for idx, iter_object in enumerate(iter_list):

if not isinstance(iter_object, (list, float, int, tuple, str)) or (isinstance(iter_object, (list, tuple)) and
len(iter_object) != 3):

print(
"Advarsel!!!!! Input må være enten type int, float, list eller tupple. Dessuten må list eller tuple ha "
"lengde 3 og være på formen [start_element, slutt_element, steg for element]")

exit()
elif isinstance(iter_object, (int, float, str)):

iter_list[idx] = [iter_object]
else:

iter_list[idx] = np.arange(iter_object[0], iter_object[1], iter_object[2]).tolist()
iter_list.insert(3, overburden)

return iter_list[0], iter_list[1], iter_list[2], iter_list[3], iter_list[4], iter_list[5], iter_list[6], \
iter_list[7]

"""
The two functions below is intertwined. Together they provide an integer that represents an overburden(ob) value.
0 is ob 25m and 6 is ob 1200m.

!!!!!!!!!!Thus, this must be updated if there are changes in which overburdens to be modelled!!!!!!!!!!!!!!!

get_ob_index is included in the function set_model_csv_attributes below
"""

def which_overburden(element):
if element == 25:

return 'ob_25'
elif element == 100:

return 'ob_100'
elif element == 200:

return 'ob_200'
elif element == 300:

return 'ob_300'
elif element == 500:

return 'ob_500'
elif element == 800:

return 'ob_800'
elif element == 1200:

return 'ob_1200'
else:

return None

module_plan_experiment.py

Automation of RS2

def get_ob_index(element):
switcher = {

'ob_25': 0,
'ob_100': 1,
'ob_200': 2,
'ob_300': 3,
'ob_500': 4,
'ob_800': 5,
'ob_1200': 6,

}
return switcher.get(which_overburden(element), None)

"""
Add it is an iterator class. Purpose: iterate over list containing the distance between centre zone and
centre of tunnel and add the half of the thickness of zone such that the lineament closest to tunnel centre is
always on the same spot of a given distance for any thicknesses. Used by get_x_distance below.

Important:
Sentinel: marks end of object and is allocated sentinel = object() if nothing else is defined. Do not change this if
not being sure about it.
"""

class AddIt:

def __init__(self, iter_object, mektighet, sentinel=object()):
self.count = 0
self.len_iter_object = len(iter_object)
self.iter_object = iter_object
self.mektighet = mektighet
self.sentinel = sentinel

def __iter__(self):
return self

def __next__(self):
if self.count >= self.len_iter_object:

return self.sentinel
if self.count == 0:

ret = self.iter_object[self.count]
else:

ret = self.iter_object[self.count] + self.mektighet / 2
self.count += 1
return ret

__call__ = __next__

"""get_x_distance uses add it class to iterate over the distances given from the experiment setup, leading to proper
changes. The reason is given in the description of the class. This function is used by set_model_csv_attributes_batch
below.
"""

module_plan_experiment.py

Automation of RS2

def get_x_distance(normalized_distance_list, zone_angle, mektighet):
zone_angle = np.deg2rad(zone_angle)
sentinel = object()
ai = AddIt(normalized_distance_list, mektighet, sentinel)
x_distance_list = []
for i in iter(ai, sentinel):

x_distance_list.append(round(i / np.sin(zone_angle), 2))
return x_distance_list

"""
This function writes the set of values defining each modeland writes it to a specified csv-file.
"""

def set_model_csv_attributes_batch(path_csv_attributes, rock_mass_material, weakness_zone_material, stress_ratio,
overburden, thickness_attributes, angle_attributes, y_attributes, x_attributes):

rmm, wzm, sr, ob, m, v, y, x = get_range_changing_attributes(rock_mass_material, weakness_zone_material,
stress_ratio,
overburden, thickness_attributes, angle_attributes,
y_attributes, x_attributes)
rmm, wzm, sr, ob, m, v, y, x = [rock_mass_material], [weakness_zone_material], [stress_ratio], overburden, \

[thickness_attributes], angle_attributes, [y_attributes], x_attributes
shape_matrix_list = get_shape_matrix(rmm, wzm, sr, ob, m, v, y, x)
number_of_files = 0
with open(path_csv_attributes, 'w', newline='') as file:

writer_object = writer(file, delimiter=";")
list_data = [['bm', 'ss', 'k', 'od', 'm', 'v', 'y', 'x']]
for idx in itertools.product(*[range(s) for s in shape_matrix_list]):

rmm_i, wzm_i, sr_i, ob_i, m_i, v_i, y_i, x_i = idx
x_true = get_x_distance(normalized_distance_list=x.copy(), zone_angle=v[v_i], mektighet=m[m_i])
list_data.append(['{}'.format(rmm[rmm_i]), '{}'.format(wzm[wzm_i]),

'{}'.format(sr[sr_i]), '{}'.format(ob[ob_i]),
'{}'.format(m[m_i]), '{}'.format(v[v_i]),
'{}'.format(y[y_i]), '{}'.format(x_true[x_i])])

number_of_files += 1
writer_object.writerows(list_data)
file.close()

return number_of_files

module_plan_experiment.py

Automation of RS2

import os
import re
import shutil as st
import time
from datetime import timedelta
from subprocess import check_call

import numpy as np
import pandas as pd
import psutil
import pyautogui as pag
from colorama import Fore
from colorama import Style

"""
Two purposes of this module.

1) To stor functions that are general and can be used by several of the other modules
2) To contain functions that prepare the main file to conduct the automation operations. Most of these functions

are os-based functions.

"""

"""
get_screen_width gets screen size and monitors it
"""

def get_screen_width(bool_know_size_monitor):
if bool_know_size_monitor is False:

return
screenwidth, screenheight = pag.size() # the size of main monitor
print("the size of the main monitor is [" + str(screenwidth) + ", " + str(screenheight) + "].")
return

"""
get_time_increments returns a list of time-increments used to make artificial breaks when any pag.'function'
is to be used. It is commented in my thesis the reason for this at page 78.
The full name of the thesis is given in the head of the main file.
"""

def get_time_increments():
time_list = [0, 0.5, 1, 2, 5]
return time_list

"""
pause_script is used whenever it is handy to force the script to wait. When j is given as a command in python console
the scripts continues.
"""

def procede_script():

module_main_function.py

Automation of RS2

while True:
try:

command = input('fortsette script? j for ja: ')
if command == 'j' or command == 'n':

return command
else:

print('j for ja din nisse!')
except NameError:

print('implementert verdi ukjent')
continue

return

"""make_file_empty deletes the content of a file"""

def make_file_empty(file):
with open(file, 'w'):

pass
return

"""
calculate_computation_time, calculates the computation time when called, monitored in python console
used after each bigger operation in main, such as after calculation of the models
"""

def calculate_computation_time(time_start, category, storage_calculation_times):
if is_file_empty(storage_calculation_times):

mode = 'w'
else:

mode = 'a'
time_mid = time.time()
time_diff_in_seconds = time_mid - time_start
time_diff_in_hours_min_sec = timedelta(seconds=time_diff_in_seconds)
line = "Tid brukt for kjøring av script etter {}: {}. (#hours#:#minutes#:#seconds#)\n" \

.format(category, time_diff_in_hours_min_sec)
print(line)
with open(storage_calculation_times, mode=mode) as file:

file.writelines(line)
return

"""
Checks if process has started to run
"""

def check_if_process_running(process_name):
"""
Check if there is any running process that contains the given name processName.
"""
Iterate over the all the running process
for proc in psutil.process_iter():

try:
Check if process name contains the given name string.

module_main_function.py

Automation of RS2

if process_name.lower() in proc.name().lower():
return True

except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass

return False

"""
gets the PID number of
"""

def get_pid(procname):
for proc in psutil.process_iter():

if proc.name() == procname:
return proc.pid

return None

"""
this function copies a variable to clipboard
"""

def copy2clip(txt):
cmd = 'echo ' + txt.strip() + '|clip'
return check_call(cmd, shell=True)

"""
separates parameters of the sensitivity study that are lists from the parameters that are single values. Used in main
line 119
"""

def separate_lists_and_values(list_attributes):
checker = ['bm', 'ss', 'k', 'od', 'm', 'v', 'y', 'x']
res = [elem for elem in zip(list_attributes, checker) if (isinstance(elem[0], list) and elem[1] not in

['bm', 'ss', 'k', 'od'])]
res = list(zip(*res))
return list(res[0]), list(res[1])

"""
is_file_empty check if a specific file is empty
"""

def is_file_empty(file_path):
""" Check if file is empty by confirming if its size is 0 bytes"""
Check if file exist and it is empty
return os.path.exists(file_path) and os.stat(file_path).st_size == 0

"""
get_file_paths_batch gets the paths of the template models used to create the fea models of the experiment, and the

module_main_function.py

Automation of RS2

path to the csv where the model definition of each model is stored.
"""

def get_file_paths_batch(paths_shale_rs2, path_csv):
overburdens = [25, 100, 200, 300, 500, 800, 1200]
sti_kildefil_rs2 = []
sti_kildefil_csv = []
for i in overburdens:

sti_kildefil_rs2.append(
paths_shale_rs2.format(i, i, i))

sti_kildefil_csv.append(path_csv)
return sti_kildefil_rs2, sti_kildefil_csv

"""get file paths of already existing fea-files"""

def get_old_paths_df(sti_csv_gamle_rs2stier, sti_csv_gamle_csvstier):
df_gamle_rs2filer/csvfiler:
er en dataframe som inneholder stiene lest fra sti_csv_gamle_rs2stier
df_gamle_stier_rs2filer = pd.read_csv(sti_csv_gamle_rs2stier, sep=';')
df_gamle_stier_csvfiler = pd.read_csv(sti_csv_gamle_csvstier, sep=';')
Tomme elementer får verdien None.
df_gamle_stier_rs2filer = df_gamle_stier_rs2filer.fillna(np.nan).replace([np.nan], [None])
df_gamle_stier_csvfiler = df_gamle_stier_csvfiler.fillna(np.nan).replace([np.nan], [None])
df_stier_rs2filer = df_gamle_stier_rs2filer.copy()
df_stier_csvfiler = df_gamle_stier_csvfiler.copy()
return df_stier_rs2filer, df_stier_csvfiler

"""
get file paths of fea-files and csv to store ecxcavation query data. If bool_create_new_project True, old content is
deleted and new files and folder system is created, if False the olde ystem is kept and the file paths is fetched.
The fea files, if bool_create_new_project True, is created by copying the template files.
"""

def get_paths_df(sti_til_mappe_for_arbeidsfiler, sti_til_mapper_endelige_filer, sti_kildefil_rs2, sti_kildefil_csv,
sti_csv_gamle_rs2stier, sti_csv_gamle_csvstier, parameter_verdier_mappenavn,
ytre_grenser_utstrekning, bool_create_new_project):

if bool_create_new_project:
I create_folders:
vil mapper fra forrige prosjekt eventuelt bli slettet og mappene
til det nye prosjekt blir laget hvis dette er tilfelle
delete_and_create_folders(sti_til_mappe_for_arbeidsfiler, sti_til_mapper_endelige_filer,

parameter_verdier_mappenavn)
mappenavn_til_rs2, mappenavn_til_csv = get_name_folders(sti_til_mapper_endelige_filer)
copy_and_store:
lager alle kopiene av kildefilene og lagrer filene i rett mappe.
Dette gjøres ved å bruke mappenavn og filnavn som markør.
df_nye_stier_rs2filer, df_nye_stier_csvfiler = copy_and_store(sti_kildefil_rs2,

sti_til_mappe_for_arbeidsfiler,
sti_til_mapper_endelige_filer,
sti_kildefil_csv,
ytre_grenser_utstrekning)

to_csv:

module_main_function.py

Automation of RS2

Her blir alle stiene til de nylagete rs2-filene lagret.
df_nye_stier_rs2filer.to_csv(alternate_slash([sti_csv_gamle_rs2stier])[0], sep=';')
df_nye_stier_csvfiler.to_csv(alternate_slash([sti_csv_gamle_csvstier])[0], sep=';')
df_stier_rs2filer = df_nye_stier_rs2filer.copy()
df_stier_csvfiler = df_nye_stier_csvfiler.copy()

else:
df_stier_rs2filer, df_stier_csvfiler = get_old_paths_df(sti_csv_gamle_rs2stier, sti_csv_gamle_csvstier)

return df_stier_rs2filer, df_stier_csvfiler

"""
create_work_and_storage_folders creates the folders for storing the fea-files to be created and its results
is they do not exist.
"""

def create_work_and_storage_folders(sti_til_mappe_for_arbeidsfiler, sti_til_mapper_endelige_filer):
hvis mapper for arbeidsfiler og lagring av resultater ikke eksisterer så lages dette
if not os.path.exists(alternate_slash([sti_til_mappe_for_arbeidsfiler])[0]):

os.mkdir(alternate_slash([sti_til_mappe_for_arbeidsfiler])[0])
if not os.path.exists(alternate_slash([sti_til_mapper_endelige_filer])[0]):

os.mkdir(alternate_slash([sti_til_mapper_endelige_filer])[0])
return

"""make_file_name har til hensikt å lage de filnavn tilhørende RS2-prosjekter
funksjonen skal returnere en liste med alle filnavn på denne formen her:

Input:

parameter_navn:
er en liste av strenger som inneholder de parametere som er definert i excel-fila anvist over, foruten
geometri som ikke har en tallverdi knyttet til seg.
parameter_verdier_excel:
er en streng som inneholder pathen til excel-fila der verdiene til de tilhørende parameternavnene er lagret.
geometri:
inneholder informasjon om tunnelens geometri: s for sirkulær og hs for hestesko. Denne er satt deafult til sikrulær

Andre parametere: df_verdier: dataframe som inneholder verdiene som tilhører de ulike parameternavnene
file_name_liste: liste som tilslutt inneholder alle filnavnene tilhørende rs2-prosjektene som skal opprettes. path:
er variabelen som brukes til å bygge opp hver enkelt streng som tilsammen resulterer i et filnavn for et gitt
rs2-prosjekt.

returnerer:
file_name_list"""

def make_file_name(parameter_verdier_csv, geometri='S'):
df_verdier = pd.read_csv(parameter_verdier_csv, sep=';')
parameter_navn = df_verdier.columns.values.tolist()
file_name_rs2_list = []
file_name_csv_list = []
for i in range((df_verdier.shape[0])):

path = ''
path += (geometri + "_")

module_main_function.py

Automation of RS2

for navn in parameter_navn:
path += (navn + str(df_verdier[navn][i]) + "_")

path = path[:-1]
path1 = path
path += '.fea' # denne er eneste forskjellen mellom make_folder_name og make_file_name
path1 += '.csv'
file_name_rs2_list.append(path)
file_name_csv_list.append(path1)

return file_name_rs2_list, file_name_csv_list

"""beskrivelsen for denne er identisk med den over bare at denne er tilpasset for mappenavn
parameter_verdier_excel har en annen sti og det blir ikke lagt til .fea i enden av navnet."""

def make_folder_name(parameter_verdier_mappenavn, geometri='S'):
df_verdier = pd.read_csv(parameter_verdier_mappenavn, sep=';')
parameter_navn = df_verdier.columns.values.tolist()
folder_name_list = []
for i in range((df_verdier.shape[0])):

path = ''
path += (geometri + "_")
for navn in parameter_navn:

path += (navn + str(df_verdier[navn][i]) + "_")
if navn == 'y' or navn == 'x':

if df_verdier[navn][i] == 0:
path = path.replace((navn + str(df_verdier[navn][i]) + "_"), "")

path = path[:-1]
folder_name_list.append(path)

return folder_name_list

"""
delete_and_create_folders asks if the user wants to delete content already stored in the working directory. If yes,
it deletes the old and creates
"""

def delete_and_create_folders(storage_path, storage_final_folders, parameter_verdier_mappenavn):
storage_path = alternate_slash([storage_path])[0]
storage_final_folders = alternate_slash([storage_final_folders])[0]
folder_names = make_folder_name(parameter_verdier_mappenavn)
folder_paths = folder_names
for i in range(len(folder_names)):

folder_paths[i] = (storage_final_folders + '/' + folder_names[i] + '/')
while True:

try:
x = input('Vil du slette mapper/filer på denne stien? ')
if x == 'j':

if os.path.exists(storage_path):
st.rmtree(storage_path, ignore_errors=True) # folder_paths[i]
os.mkdir(storage_path)

if os.path.exists(storage_final_folders):
st.rmtree(storage_final_folders, ignore_errors=True)
os.mkdir(storage_final_folders)

for folder in folder_paths:
os.mkdir(os.path.join(storage_final_folders, folder))

module_main_function.py

Automation of RS2

os.mkdir(os.path.join(folder, folder + '/csv/'))
os.mkdir(os.path.join(folder, folder + '/rs2/'))

break
elif x == 'n':

if not os.path.exists(storage_final_folders):
for folder in folder_paths:

os.mkdir(os.path.join(storage_final_folders, folder))
os.mkdir(os.path.join(folder, folder + '/csv/'))
os.mkdir(os.path.join(folder, folder + '/rs2/'))

break
else:

print('j for ja din fjomp!')
except NameError:

print('implementert verdi ukjent')
continue

return

"""hensikten med get_path_folders er å hente stier på de mapper som RS2-filene skal bli lagret i
mappenavn kommer til å være definert utifra de parametere som til en hver tid holdes konstant/skiftes sjeldent,
samt en hovedsti.

parametere:
main_path:
er en streng og er pathen til der hvor de ulike mappene og filene skal lagres. Må sørge for at det er en
backslash i slutten av strengen
list_folders:
liste som inneholder navnene til alle mapper som er relevante for lagring av de produserte RS2-filer

returnerer:
list_folders"""

def get_name_folders(path_storage_files):
path_storage_files = alternate_slash([path_storage_files])[0]
list_folders = os.listdir(path_storage_files) # henter de mappenavn som ligger i main_path
list_folders.pop(0)
list_folders.pop(0)
list_folders.sort(key=len) # sørger for at mappenavnene blir sortert i stigende rekkefølge
list_csv_folders, list_rs2_folders = [s + '/csv/' for s in list_folders], [s + '/rs2/' for s in list_folders]
må endres hvis mappestrukturen endres!!!!!!
return list_rs2_folders, list_csv_folders

"""copy_and_store:
er en funksjon som tar get_path_folders, make_file_name og alternate_slash i bruk.
Hensikten er å gjøre klar alle filer som skal igjennom sine respektive endringer i RS2.
Gi de tenkte RS2-filene navn som tilsvarer hvordan modellen i et gitt tilfelle skal se ut,
så bestemme i hvilken mappe en gitt fil tilhører for tilslutt å kopiere kildefila n ganger, der hver kopi blir
tilordnet hver sin sti. Mao. ingen av filene er klargjort etter å ha kalt på denne funksjonen
Denne funksjonen oppretter også et excel ark til hver enkelt fil. Der skal lister med resultater lagres.

input:
de som er gitt i funksjonene over.

module_main_function.py

Automation of RS2

path_file0 viser til kildefilens sti

andre parametere:
list_name_folders:
Liste av navnene til mappene som RS2_fil_stiene skal lagres i
list_rs2_file_names:
Liste over alle stiene til RS2_filene
df_name_files:
En pandas dataframe som er en 2-dimensjonal matrise med mange tillegsfunksjoner.
I denne er rs2_fil-lagret lagret i de mappene de hører hjemme ved at rs2_filnavnet blir tilordnet den kolonne
som har den rette label gitt av mappenavnet.
df_list_path_files:
Er eksakt lik som df_name_files bare at denne inneholder stien til RS2-fila.

returnerer:
navnet til mappene og dataframe med filplasseringene, samt dataframe med filnavnene."""

def copy_and_store(path_file0_rs2, path_storage_files, path_final_folders, parameter_verdier_csv,
ytre_grenser_utstrekning, geometri='S'):

path_file0_rs2 = [alternate_slash([path])[0] for path in
path_file0_rs2] # alternate_slash kun laget for å funke på lister

name_rs2_folders, name_csv_folders = get_name_folders(path_final_folders)
path_storage_files = alternate_slash([path_storage_files])[0]
df_name_rs2_files = pd.DataFrame(columns=name_rs2_folders)
df_name_csv_files = pd.DataFrame(columns=name_csv_folders)
for rs2, csv, attributes in zip(name_rs2_folders, name_csv_folders,

parameter_verdier_csv): # sammenlikner mappenavn med RS2-fil-navn.
list_rs2_file_names, list_csv_file_names = make_file_name(attributes, geometri)
rs21 = rs2.replace('/rs2/', '')
res_rs2 = [i for i in list_rs2_file_names if rs21 in i] # Når det matcher blir filnavnet lagret i kolonna til
csv1 = csv.replace('/csv/', '') # mappenavnet. Lagres i en dataframe.
res_csv = [i for i in list_csv_file_names if csv1 in i]
df_name_rs2_files.loc[:, rs2] = pd.Series(res_rs2, dtype=str)
df_name_csv_files.loc[:, csv] = pd.Series(res_csv, dtype=str)

df_name_rs2_files = df_name_rs2_files.fillna(np.nan).replace([np.nan], [None]) # Tomme elementer får verdien None.
df_name_csv_files = df_name_csv_files.fillna(np.nan).replace([np.nan], [None])
df_list_path_rs2 = df_name_rs2_files.copy()
df_list_path_csv = df_name_csv_files.copy()
i = 0
for k, (rs2, csv, ytre_grense) in enumerate(zip(name_rs2_folders, name_csv_folders, ytre_grenser_utstrekning)):

tilordner filnavn sine stier og copierer mal. Tomme elementer forblir tomme.
for file in df_list_path_rs2.index.values:

if df_name_rs2_files[rs2][file] is not None and df_name_csv_files[csv][file] is not None:
df_list_path_rs2.loc[file, rs2] = path_storage_files + '/' + df_name_rs2_files[rs2][file]
df_list_path_csv.loc[file, csv] = path_storage_files + '/' + df_name_csv_files[csv][file]
if ytre_grense == ytre_grenser_utstrekning[i - 1]:

continue
else:

st.copyfile(path_file0_rs2[i], df_list_path_rs2[rs2][file])
pd.DataFrame({}).to_csv(df_list_path_csv[csv][file])

i += 1
return df_list_path_rs2, df_list_path_csv

module_main_function.py

Automation of RS2

"""get_changing_attribute:
henter ut de attributter som skal endres i RS2-fila, disse blir returnert som en streng

input:
df_name_files:
en dataframe som inneholder alle filnavn kategorisert etter mappe. Hver mappe har sin egen kolonne
Tomme celler har verdien None.
folder_names:
innehar navnene på hver enkelt mappe

andre parametere:
df_marker_of_change:
dataframe som til slutt kun innehar informasjonen om hvordan hver enkelt fil skal endres.
Denne informasjonen er selv lagret i en dataframe. 1. kolonne inneholder type-informasjon
og 2. kolonne inneholder verdien til denne typen. Tilsammen beskriver en rad i df hvilken endring
som gjelder for en bestemt type.

returnerer:
df_marker_of_change"""

def get_changing_attributes(df_path_files, folder_names):
df_marker_of_change = df_path_files.copy() # copy for at lhs blir uavhengig av rhs
for folder in folder_names:

for file in df_path_files.index.values:
if df_path_files[folder][file] is None: # hoppe over tomme plasseringer

continue
y = df_path_files[folder][file].rsplit('/', 1)[0] + '/' + folder.replace('/rs2/', '') + '_'
x = df_path_files[folder][file].replace(y, '')
x = x.replace('.fea', '')
num = []
char = []
while len(x) != 0:

x = x.partition('_')
q = str(x[0])
num1 = re.findall(r'[+-]?\d+\.?\d*', q)[0]
char.append(q.replace(num1, ''))
num.append(num1)
x = x[2]

attributes = pd.Series(data=num, name='values', index=char)
df_marker_of_change.at[file, folder] = attributes

return df_marker_of_change

"""alternate_slash bytter ut alle bakstreker i hver streng av en liste med strenger og gjør dem om til skråstreker
og omvendt.
hensikt: formatet til stiene som skiller mappenavn med bakstreker blir ikke forstått av python som forstår skråstreker

Derfor er det nødvendig med en kornvertering.
Hvis input ikke kun består av stier der mappenavn blir kun skilt av bakstreker eller skråstreker,
så stopper funksjonen å kjøre og ingen endring blir oppnådd.

input:
list_path:

module_main_function.py

Automation of RS2

liste over stier til gitte objekter.

andre parametere:
find_backslash:
for hver sti som inneholder bakstrek blir et nytt element lagt til i denne lista.
find_frontslash:
for hver sti som inneholder skråstrek blir et nytt element lagt til i denne lista.

returnerer:
-1 hvis en feil har oppstått
list_path hvis alt gikk bra"""

def alternate_slash(list_path):
try:

backslash = r"\ "
backslash = backslash[:-1]
find_backslash = [i for i in list_path if backslash in i]
find_frontslash = [j for j in list_path if '/' in j]
if len(find_backslash) == len(list_path) and len(find_frontslash) == 0: # kjører kun hvis inputfiler

find_backslash = [sub.replace(backslash, '/') for sub in find_backslash] # er i rett format (se over)
list_path = find_backslash
for i in range(len(list_path)):

if list_path[i][-1] == ' ': # sørger for at formatet til strengen blir rett etter konverteringen
list_path[i] = list_path[i][:-1] # python klarer ikke å lese filplasseringer som er delt med en

if path[-1] != '/': # enkelt bakstrek.
path += '/'

elif len(find_backslash) == 0 and len(find_frontslash) == len(list_path): # kjører kun hvis inputfiler
find_frontslash = [sub.replace('/', backslash) for sub in find_frontslash] # # er i rett format (se over)
list_path = find_frontslash

else:
print(f'{Fore.RED}Feil! Listen av stier er ikke ensartet med skråstrek eller ensartet med bakstrek, eller '

f'så er det ikke en liste. Funksjonen ble derfor stoppet '
f'stoppet{Style.RESET_ALL}') # Fore og style sørger for feilmelding med rød skrift

return -1
except TypeError:

print(f'{Fore.RED}Feil! Input er enten ikke en liste, eller en liste av strenger.{Style.RESET_ALL}')
return -1 # Fore og style sørger for feilmelding med rød skrift

return list_path

module_main_function.py

Automation of RS2

import re
import shutil as st
import time

import numpy as np
import pandas as pd

from Automatisering_RS2 import module_main_functions as mmf, module_model_construction_rs2 as mmcr

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)

"""
This module does two things. First of all, it creates the geometry and material allocation of a given model and stores
the geomtrical data of this model needed for later operations in the main file.

Second of all, if called it returnes lists of the stored geometrical data needed in later operations of the main file.
This makes it possible to reuse experiments without doing all the geometry and material allocations.
"""

"""
alter_geometry executes all alterations to be made for each .fea-file. It reads the respective filenames
which consists of the information of the value of each parameter which defines the file. After this, it implements these
values into the respective fea file by the Open-constructor.

zone is used interchangably with weakness zone
"""

def alter_geometry(zone_angle, x_translation_zone, y_translation_zone, thickness_zone, path_of_rs2_file,
list_which_material, _0lines_inside, _1line_inside, _2lines_inside,
_excluded_files_2linescalc, iterationnumber, _points_to_check, path_of_csv_file,
l_inner_points, _iternumber_0, _iternumber_1, _iternumber_2, x_attribute, num_outerpoints_zone=4,
num_lines_zone=2, tunnel_diameter=10, n_points_tunnel_boundary=360, extension_outerboundary=150):

"""

@param zone_angle:
@param x_translation_zone:
@param y_translation_zone:
@param thickness_zone:
@param path_of_rs2_file:
@param list_which_material:
@param _0lines_inside:
@param _1line_inside:
@param _2lines_inside:
@param _excluded_files_2linescalc:
@param iterationnumber:
@param _points_to_check:
@param path_of_csv_file:
@param l_inner_points:
@param _iternumber_0:
@param _iternumber_1:
@param _iternumber_2:
@param x_attribute:
@param num_outerpoints_zone:
@param num_lines_zone:

module_execute_model_alteration.py

Automation of RS2

@param tunnel_diameter:
@param n_points_tunnel_boundary:
@param extension_outerboundary:
@return:
"""

"""
Data from the .fea gile is extracted and prepared for the alternation proccess.
"""

fetches the content of .fea file and store it as a list.
with open(path_of_rs2_file, 'r') as file:

data = file.readlines()

fetches the key-elements to be used to navigate in the list data. These keywords were found by examining the
fea file using notepad++.
index_material_mesh = data.index("materials mesh start:\n") + 3
index_boundary1 = data.index(" boundary 1 start:\n") + 6
points_tunnel_boundary0 = data[index_boundary1:index_boundary1 + n_points_tunnel_boundary].copy()

making list of the points defining the tunnel stored as float:
points_tunnel_boundary = mmcr.prep_points_tunnel_boundary(points_tunnel_boundary0, data, index_boundary1)

defines which points in tunnel boundary that belongs to a specific mathematical quadrant. There are four in trotal
fourth_quad = points_tunnel_boundary[0:int(n_points_tunnel_boundary / 4)]
first_quad = points_tunnel_boundary[int(n_points_tunnel_boundary / 4):int(n_points_tunnel_boundary / 2)]
second_quad = points_tunnel_boundary[int(n_points_tunnel_boundary / 2):int(n_points_tunnel_boundary * (3 / 4))]
third_quad = points_tunnel_boundary[int(n_points_tunnel_boundary * (3 / 4)):n_points_tunnel_boundary]

saves the categorized points in a list called quad
quad = (fourth_quad, first_quad, second_quad, third_quad)

"""
In this section the change in thickness, rotation and translation is executed
"""

thickness of weakness zone is changed before translation and rotation of the zone.
defines the weakness zone based on thickness and on the intersection between the zone and the outer boundary.
the zone is horizontal at first.
x_right_def_zone = extension_outerboundary
x_left_def_zone = -extension_outerboundary
y_top_def_zone = thickness_zone / 2
y_bot_def_zone = -thickness_zone / 2

defines the four points defining the zone. They work as pairs where each pair defines a line. Together, the two
lines spans out the zone. In the script they are systemized based on the sequence of points defining the tunnel.
There point zero is the point at the bottom of the circle and the sequence goes counter-clockwise.
Also, the third value of the lists is set to 1, to include the translation in the matrix equation.

point_bot_right = [x_right_def_zone, y_bot_def_zone, 1]
point_top_right = [x_right_def_zone, y_top_def_zone, 1]
point_top_left = [x_left_def_zone, y_top_def_zone, 1]
point_bot_left = [x_left_def_zone, y_bot_def_zone, 1]

instability occurs if the zone angle is too close [90,180,270,360] for some reason.
mmcr.prepare_angel solves that issue by making the angle close to the wanted value.
See modules_model_construction line 10 for more.

module_execute_model_alteration.py

Automation of RS2

zone_angle = mmcr.prepare_angel(zone_angle)
converts the zone angle to radians
zone_angle_rad = np.deg2rad(zone_angle)

defines the conjoined translation and rotation matrix in where rotation happens first, then translation, or else,
no translation would happen.
rottrans_matr = np.array([[np.cos(zone_angle_rad), -np.sin(zone_angle_rad), x_translation_zone],

[np.sin(zone_angle_rad), np.cos(zone_angle_rad), y_translation_zone]])

the rotation of the zone and translation is done simultaniously.
After rotation and translation the zone must be extended to intersect the outer boundary.
if zone_angle != 0:

the rotation and translation of zone is done using np.matmul which does matrix product of two arrays
outerpoint_bot_right0 = np.matmul(rottrans_matr, np.array(point_bot_right))
outerpoint_top_right0 = np.matmul(rottrans_matr, np.array(point_top_right))
outerpoint_top_left0 = np.matmul(rottrans_matr, np.array(point_top_left))
outerpoint_bot_left0 = np.matmul(rottrans_matr, np.array(point_bot_left))

the finnished transformed points is categorised into the two line segments
points_top = [outerpoint_top_right0, outerpoint_top_left0]
points_bot = [outerpoint_bot_right0, outerpoint_bot_left0]

check if zone exeeds the outer boundary, which crashes RS2. If so the code is stopped.
if mmcr.OuterBoundary.check_points_ob(points_top, points_bot, extension_outerboundary):

print('Advarsel: svakhetssonen er utenfor de ytre grensene tilhørende modellen. Scriptet ble stanset.')
quit()

the extension of the zone is executed
outerpoint_top_right, outerpoint_top_left = \

mmcr.OuterBoundary.find_points_on_outer_boundary(outerpoint_top_right0, outerpoint_top_left0,
extension_outerboundary, num_lines_zone)

outerpoint_bot_right, outerpoint_bot_left = \
mmcr.OuterBoundary.find_points_on_outer_boundary(outerpoint_bot_right0, outerpoint_bot_left0,

extension_outerboundary, num_lines_zone)
checking if the extension is succesfull
len_topp = np.sqrt(

(outerpoint_bot_left[0] - outerpoint_bot_right[0]) ** 2 +
(outerpoint_bot_left[1] - outerpoint_bot_right[1]) ** 2)

len_bunn = np.sqrt(
(outerpoint_top_left[0] - outerpoint_top_right[0]) ** 2 +
(outerpoint_top_left[1] - outerpoint_top_right[1]) ** 2)

if len_topp < 5 or len_bunn < 5:
print('Advarsel: svakhetssonens utstrekning er for liten, prøv igjen. Scriptet ble stanset.')
quit()

else:
defining zone if no rotation, only thickness is changed and true length is added to y,
the reason for this is that this situation can not be normalized since an x translation is not possible when
zone has no angle. See explaination for the term normalized in main file, line 244.
outerpoint_bot_right = [x_right_def_zone, y_bot_def_zone + x_attribute]
outerpoint_top_right = [x_right_def_zone, y_top_def_zone + x_attribute]
outerpoint_top_left = [x_left_def_zone, y_top_def_zone + x_attribute]
outerpoint_bot_left = [x_left_def_zone, y_bot_def_zone + x_attribute]

check if zone exeeds the outer boundary, which crashed RS2. If so the code is stopped.
if outerpoint_bot_right[1] < -extension_outerboundary or outerpoint_top_right[1] > extension_outerboundary:

print('Advarsel: svakhetssonen er utenfor de ytre grensene tilhørende modellen. Scriptet ble stanset.')
quit()

module_execute_model_alteration.py

Automation of RS2

the outer points of weakness zone is stored in a list
outer_points = [outerpoint_bot_right, outerpoint_top_right, outerpoint_top_left, outerpoint_bot_left]

"""
It must also be defined inner points of the weakness zone if the zone intersects the tunnel periphery. It will be
zero, two or four points defined, depending if the none, one or two lineaments defing the zone are intersecting.

The reason for this is due to RS2. If this is not defined, the material allocation will not work.
"""

an object is constructed containing all functions and variables needed to define the inner intersectionpoints
of a model. If there are innerpoints, theese are created and implemented in the fea-file in the section regarding
the specification of the tunnel boundary. See, the class mmcr.InnerBoundary in modules_model_construction_rs2.py
line 38 # for details.
ib = mmcr.InnerBoundary(num_lines_zone, quad, outer_points, data, n_points_tunnel_boundary,

index_boundary1, tunnel_diameter, zone_angle, points_tunnel_boundary,
extension_outerboundary)

if ib.inner_points:
inner_points = ib.get_points_on_circular_boundary_2()
ib.set_inner_boundary()

else:
inner_points = ib.get_points_on_circular_boundary_2()

"""
In this section, the outerpoints defining the weakness zone is implemented into the.fea-file in the section
regarding the defintion of the outerboundary.
"""

the tokens needed to navigate the list data to implement the changes is defined.
index_boundary1 = data.index(" boundary 1 start:\n") + 6
index_boundary2 = data.index(" boundary 2 start:\n") + 6
index_boundary3 = data.index(" boundary 3 start:\n") + 6
index_boundary4 = data.index(" boundary 4 start:\n") + 6

creation of the object implements the changes. The details are given in modules_model_construction.py in the class
OuterBoundary in line 344.
mmcr.OuterBoundary(outer_points, data, index_boundary2, zone_angle, num_outerpoints_zone,

extension_outerboundary)

"""
In this section, the outerpoints defining the weakness zone is implemented into the.fea-file in the section
regarding the defintion of the weakness zone. See modules_model_construction class BoundaryLines line 474
for details.
"""
bl = mmcr.BoundaryLines(outer_points, inner_points, index_boundary3, index_boundary4, data, num_lines_zone)
bl.set_weakness_points()

"""
In this section the material allocations is done. See modules_model_construction class Materials line 752
for details.
"""

the updated list of the points defining the tunnel boundary is needed due to creation of new points above.
points_tunnel_boundary0 = data[index_boundary1:index_boundary1 + ib.n_points_ib].copy()
making list of points stored as float:
points_tunnel_boundary = mmcr.prep_points_tunnel_boundary(points_tunnel_boundary0, data, index_boundary1)

module_execute_model_alteration.py

Automation of RS2

allocating the materials.
mls = mmcr.Materials(index_material_mesh, inner_points, extension_outerboundary,

num_lines_zone, quad, outer_points, data, n_points_tunnel_boundary, index_boundary1,
tunnel_diameter, zone_angle, points_tunnel_boundary, y_translation_zone, x_translation_zone,
list_which_material)

mls.setmaterialmesh()

"""
In this section the alterations is written into the given models fea-file
"""

with open(path_of_rs2_file, 'w') as file:
file.writelines(data)

"""
in this section, the geometry data needed in later operations of the main file is stored in lists later to be stored
in csv or pickle format
"""
if all(points is None for points in inner_points):

_0lines_inside.append([path_of_rs2_file, path_of_csv_file])
_iternumber_0.append(iterationnumber)
_excluded_files_2linescalc.append(iterationnumber)
_points_to_check.append(None)

elif any(points is None for points in inner_points):
_1line_inside.append([path_of_rs2_file, path_of_csv_file])
_excluded_files_2linescalc.append(iterationnumber)
_iternumber_1.append(iterationnumber)
_points_to_check.append(None)

else:
_2lines_inside.append([path_of_rs2_file, path_of_csv_file])
_points_to_check.append(inner_points)
_iternumber_2.append(iterationnumber)

l_inner_points.append(inner_points)
return

"""
create_pickle_2lines_info stores the necessary geometry data used by operations succeding ea.execute_model_alteration
It is called from ea.execute_model_alteration in experiment_actions in line 109.

A pickle is a file format created to store python objects in the format of the python language. For example, pandas
datdaframes must be stored in this format if to be used later in another run or other scripts. If the dataframe was
stored in the csv format, the dataframe was altered in a awy that the information was destroyed.
"""

def create_pickle_2lines_info(list_0lines_inside, list_1line_inside, list_2lines_inside, list_excluded_files_2linescalc,
list_points_to_check, sti_list_variables_2lines_calculations, mappenavn_til_rs2,
list_iternumber_0, list_iternumber_1, list_iternumber_2, ll_inner_points):

iterable = [list_0lines_inside, list_1line_inside, list_2lines_inside, list_excluded_files_2linescalc,
list_points_to_check, list_iternumber_0, list_iternumber_1, list_iternumber_2, ll_inner_points]

list_of_df_2lines_info, colnames_of_dfs_2lines_info = [], []

for sti_variables, it in zip(sti_list_variables_2lines_calculations, iterable):
list_of_df_2lines_info.append([]), colnames_of_dfs_2lines_info.append([])
d = {navn.replace('/rs2', ''): i for navn, i in zip(mappenavn_til_rs2, it)}
df = pd.DataFrame({k: pd.Series(v) for k, v in d.items()})

module_execute_model_alteration.py

Automation of RS2

df.to_pickle(path=sti_variables)
list_of_df_2lines_info.append(df), colnames_of_dfs_2lines_info.append(df.head())

return list_of_df_2lines_info, colnames_of_dfs_2lines_info

"""
gets values of material parameters and geometry for a rs2-model extracted from its filename and calls
alter_geometry
"""

def alter_model(extension_outerboundary, n_points_tunnel_boundary,
path_of_rs2_file, path_of_csv_file, df_changing_attributes_rs2files,
foldername_of_pathcategory, list_which_material, _0lines_inside, _1line_inside, _2lines_inside,
_excluded_files_2linescalc, _points_to_check, i, j, _iternumber_0, _iternumber_1, _iternumber_2,
l_inner_points, x_attributes):

"""

@param extension_outerboundary:
@param n_points_tunnel_boundary:
@param path_of_rs2_file:
@param path_of_csv_file:
@param df_changing_attributes_rs2files:
@param foldername_of_pathcategory:
@param list_which_material:
@param _0lines_inside:
@param _1line_inside:
@param _2lines_inside:
@param _excluded_files_2linescalc:
@param _points_to_check:
@param i:
@param j:
@param _iternumber_0:
@param _iternumber_1:
@param _iternumber_2:
@param l_inner_points:
@param x_attributes:
@return:
"""
fetching which values to be changed for a specific model
angle = df_changing_attributes_rs2files[foldername_of_pathcategory[i]][j]['v']
angle = float(angle)
x_attribute = x_attributes[j]
y_translation_zone = float(df_changing_attributes_rs2files[foldername_of_pathcategory[i]][j]['y'])
x_translation_zone = float(df_changing_attributes_rs2files[foldername_of_pathcategory[i]][j]['x'])
thickness_zone = float(df_changing_attributes_rs2files[foldername_of_pathcategory[i]][j]['m'])

function which executes the alterations by changing certain lines of the .fea-files using the Open-constructor
alter_geometry(angle, x_translation_zone, y_translation_zone, thickness_zone, path_of_rs2_file,

list_which_material, _0lines_inside, _1line_inside, _2lines_inside,
_excluded_files_2linescalc, i, _points_to_check, path_of_csv_file,
_iternumber_0, _iternumber_1, _iternumber_2, l_inner_points, x_attribute,
extension_outerboundary=extension_outerboundary,
n_points_tunnel_boundary=n_points_tunnel_boundary)

return

module_execute_model_alteration.py

Automation of RS2

"""
get_parameters_2lines_inside is called if there there are going to be done operations on files that already have their
geometry been defined in an earlier run of the script. For example, if the mesh of the models must be refined, leading
to new calculations and fetching of values with interpret, this function can be called. The geometrical data needed
in the comming operations is stored in pickle-files in the end of alter_geometry.
"""

def get_parameters_2lines_inside(sti_list_variables_2lines_calculations):
list_of_df_2lines_info = []
colnames_of_dfs_2lines_info = []
for sti_variables_2lines in sti_list_variables_2lines_calculations:

df = pd.read_pickle(filepath_or_buffer=sti_variables_2lines)
list_of_df_2lines_info.append(df)
colnames_of_df = df.head()
colnames_of_dfs_2lines_info.append(colnames_of_df)

return list_of_df_2lines_info, colnames_of_dfs_2lines_info

"""
execute_model_alteration either sequence through each model and creates them based opn the content of their filenames
calling alter_model, or it retrieves the necessary geometry data for the rest of the operations of the main file calling
get_parameters_2lines_inside.
"""

def execute_model_alteration(ytre_grenser_utstrekning, n_points_tunnel_boundary, overburdens, list_change_fieldstress,
mappenavn_til_rs2, mappenavn_til_csv, df_stier_rs2filer,
df_stier_csvfiler, df_endrede_attributter_rs2filer, list_which_material,
sti_list_variables_2lines_calculations, x_attributes, len_angle_attributes,
bool_shall_execute_model_alteration, files_to_skip, storage_calculation_times):

"""

@param ytre_grenser_utstrekning:
@param n_points_tunnel_boundary:
@param overburdens:
@param list_change_fieldstress:
@param mappenavn_til_rs2:
@param mappenavn_til_csv:
@param df_stier_rs2filer:
@param df_stier_csvfiler:
@param df_endrede_attributter_rs2filer:
@param list_which_material:
@param sti_list_variables_2lines_calculations:
@param x_attributes:
@param len_angle_attributes:
@param bool_shall_execute_model_alteration:
@param files_to_skip:
@param storage_calculation_times:
@return:
"""
if bool_shall_execute_model_alteration is True:

time_operation = time.time()
category = 'geometri'

x_attributes is used if zone angle is zero and must be repeated as defined under, to work with alter_model
x_attributes = len_angle_attributes * x_attributes

module_execute_model_alteration.py

Automation of RS2

lists to contain geometry data later to be used in data_storage and data_processing
list_0lines_inside, list_1line_inside, list_2lines_inside, list_iternumber_0, list_iternumber_1, \

list_iternumber_2, list_excluded_files_2linescalc, list_points_to_check, ll_inner_points = \
[], [], [], [], [], [], [], [], []

q = 0
for k, (navn_rs2, navn_csv, utskrekning, overdekning) in enumerate(zip(mappenavn_til_rs2, mappenavn_til_csv,

ytre_grenser_utstrekning, overburdens)):
if k in files_to_skip:

continue
list_0lines_inside.append([]), list_1line_inside.append([]), list_2lines_inside.append([]),
list_excluded_files_2linescalc.append([]), list_points_to_check.append([]),
list_iternumber_0.append([]), list_iternumber_1.append([]), list_iternumber_2.append([]),
ll_inner_points.append([])
p = 2
if utskrekning == ytre_grenser_utstrekning[k - 1]:

q += 1
overburden = list_change_fieldstress[q - 1]
if q == 1:

print('ferdig å undersøke filer?')
mmf.procede_script()

list_0lines_inside[k], list_1line_inside[k], list_2lines_inside[k], \
list_excluded_files_2linescalc[k], list_points_to_check[k], list_iternumber_0[k], \
list_iternumber_1[k], list_iternumber_2[k], ll_inner_points[k] = \
list_0lines_inside[p], list_1line_inside[p], list_2lines_inside[p], \
list_excluded_files_2linescalc[p], list_points_to_check[p], list_iternumber_0[p], \
list_iternumber_1[p], list_iternumber_2[p], ll_inner_points[p]

list_0lines_inside[k] = [[paths[0].replace('od200', 'od{}'.format(overdekning)),
paths[1].replace('od200', 'od{}'.format(overdekning))]

for paths in list_0lines_inside[k]]
list_1line_inside[k] = [[paths[0].replace('od200', 'od{}'.format(overdekning)),

paths[1].replace('od200', 'od{}'.format(overdekning))]
for paths in list_1line_inside[k]]

list_2lines_inside[k] = [[paths[0].replace('od200', 'od{}'.format(overdekning)),
paths[1].replace('od200', 'od{}'.format(overdekning))]

for paths in list_2lines_inside[k]]
for j in range(df_stier_rs2filer.shape[0]):

path_fil_rs2 = df_stier_rs2filer[navn_rs2][j]
path_fil_csv = df_stier_csvfiler[navn_csv][j]
if isinstance(path_fil_rs2, str):

path_to_copy_rs2 = df_stier_rs2filer['S_bm80_ss1_k1_od200/rs2/'][j]
path_to_copy_csv = df_stier_csvfiler['S_bm80_ss1_k1_od200/csv/'][j]
st.copyfile(path_to_copy_rs2, path_fil_rs2)
st.copyfile(path_to_copy_csv, path_fil_csv)

key_word = 'field stress:\n'
for j in range(df_stier_rs2filer.shape[0]):

path_fil_rs2 = df_stier_rs2filer[navn_rs2][j]
if isinstance(path_fil_rs2, str):

with open(path_fil_rs2, 'r') as file:
data = file.readlines()
index_fieldstress = data.index(key_word) + 1
data[index_fieldstress] = re.sub(r'^(\s*(?:\S+\s+){5})\S+', r'\1 '

+ str('{}'.format(overburden)), data[index_fieldstress])
with open(path_fil_rs2, 'w') as file:

file.writelines(data)

module_execute_model_alteration.py

Automation of RS2

else:
for j in range(df_stier_rs2filer.shape[0]):

path_fil_rs2 = df_stier_rs2filer[navn_rs2][j]
path_fil_csv = df_stier_csvfiler[navn_csv][j]
print(path_fil_rs2)
print(path_fil_csv)
if isinstance(path_fil_rs2, str) and isinstance(path_fil_csv, str):

alter_model(utskrekning, n_points_tunnel_boundary,
path_fil_rs2, path_fil_csv, df_endrede_attributter_rs2filer,
mappenavn_til_rs2, list_which_material, list_0lines_inside[k],
list_1line_inside[k], list_2lines_inside[k], list_excluded_files_2linescalc[k],
list_points_to_check[k], k, j, list_iternumber_0[k], list_iternumber_1[k],
list_iternumber_2[k], ll_inner_points[k], x_attributes)

else:
ll_inner_points[k].append(None)

list_of_df_2lines_info, colnames_of_dfs_2lines_info = \
create_pickle_2lines_info(list_0lines_inside, list_1line_inside, list_2lines_inside,

list_excluded_files_2linescalc, list_points_to_check,
sti_list_variables_2lines_calculations, mappenavn_til_rs2,
list_iternumber_0, list_iternumber_1, list_iternumber_2, ll_inner_points)

mmf.calculate_computation_time(time_operation, category, storage_calculation_times)
else:

list_of_df_2lines_info, colnames_of_dfs_2lines_info = \
get_parameters_2lines_inside(sti_list_variables_2lines_calculations)

return list_of_df_2lines_info, colnames_of_dfs_2lines_info

module_execute_model_alteration.py

Automation of RS2

import re

import numpy as np
from sympy import Point, Segment, Circle, geometry, Line

def prepare_angel(angel):
if not -1 < angel / 360 < 1:

if angel % 360 != 0:
angel = angel % 360

else:
angel = 0

if 89.999 < angel < 90.111 or -89.999 > angel > -90.111:
angel = 89.99

elif 179.9 < angel < 180.1 or -179.9 > angel > -180.1:
angel = 179

elif 269.9 < angel < 270.1 or -269.9 > angel > -270.1:
angel = 269

elif angel in [10, -10, 170, -170]:
angel = angel + 1

return angel

def prep_points_tunnel_boundary(points_tunnel_boundary0, data, index_boundary1):
points_tunnel_boundary = []
for index, points in enumerate(points_tunnel_boundary0):

data[index_boundary1 + index] = re.sub(r'^(\s*(?:\S+\s+){0})\S+', r'\1 ' + str(index) + ':',
data[index_boundary1 + index])

points_string = re.findall(r"[-+]?(?:\d*\.\d+|\d+\b(?!:))", points)
points = [float(points_string[0]), float(points_string[1])]
points_tunnel_boundary.append(points)

return points_tunnel_boundary

class InnerBoundary:
inner boundary er en class der hensikten er å tilordne korrekt plassering for de indre punktene som beskriver
svakhetssonen i rs2. Dette skal kun inntreffe hvis sonen treffer tunnelen. Med andre ord, denne classen må ta
høyde for situasjon der enten 0, 1, 2 etc. linjeelement treffer tunnelåpningen.
def __init__(self, ant_linjer, nth_quad, punkter_ytre, data, number_points_inner_boundary, index_boundary1,

diameter, vinkel, points_tunnel_boundary, ytre_grenser_utstrekning):
self.nth_quad = nth_quad
self.punkter_ytre = punkter_ytre.copy()
self.data = data
self.n_points_ib = number_points_inner_boundary
self.index_boundary1 = index_boundary1
self.ant_linjer = ant_linjer
self.diameter = diameter
self.vinkel = vinkel
self.points_tunnel_boundary = points_tunnel_boundary.copy()
self.ytre_grenser = ytre_grenser_utstrekning
circle = self.get_tunnel_esc_circle_sympy()
seg1, seg2 = Segment(self.punkter_ytre[0], self.punkter_ytre[3]), \

Segment(self.punkter_ytre[1], self.punkter_ytre[2])
seg_check = [seg1, seg2]
inside = [self.is_line_inside_circle_sympy(seg, circle) for seg in seg_check]
if any(inside):

self.inner_points = True

module_model_construction.py

Automation of RS2

else:
self.inner_points = False

def get_middle_points(self):
p = []
for i in range(self.ant_linjer):

k = [3, 1]
p.append(((self.punkter_ytre[i][0] + self.punkter_ytre[i + k[i]][0]) / 2,

(self.punkter_ytre[i][1] + self.punkter_ytre[i + k[i]][1]) / 2))
return p

@staticmethod
def which_quad(punkt):

if punkt[0] > 0 and punkt[1] >= 0:
return '1st quad'

elif punkt[0] <= 0 and punkt[1] > 0:
return '2nd quad'

elif punkt[0] < 0 and punkt[1] <= 0:
return '3rd quad'

elif punkt[0] >= 0 and punkt[1] < 0:
return '4th quad'

else:
return None

def get_quad_index(self, punkt):
switcher = {

'4th quad': 0,
'1st quad': 1,
'2nd quad': 2,
'3rd quad': 3,

}
return switcher.get(self.which_quad(punkt), None)

@staticmethod
def which_outer_boundary_point(element):

if element == 0 or element == 3:
return 'nedre grense'

elif element == 1 or element == 2:
return 'ovre grense'

else:
return None

def get_indices_outer_boundary(self, element):
switcher = {

'nedre grense': (0, 3),
'ovre grense': (1, 2),

}
index_point = switcher.get(self.which_outer_boundary_point(element), None)
return index_point

def get_index_lowest_diff_points(self, quad_index, punkt):
diff_nth = [abs(np.sqrt(

(punkt[0] - float(point[0])) ** 2 + (punkt[1] - float(point[1])) ** 2)) for
point in self.nth_quad[quad_index]]

sorted_diff_nth = sorted(diff_nth)
index_lowest_diff = [diff_nth.index(sorted_diff_nth[1]),

diff_nth.index(sorted_diff_nth[0])]

module_model_construction.py

Automation of RS2

return index_lowest_diff

def get_linfunc_outer_boundary(self, element):
indices_points_outer_boundary = self.get_indices_outer_boundary(element)
a_line = (self.punkter_ytre[indices_points_outer_boundary[0]][1] -

self.punkter_ytre[indices_points_outer_boundary[1]][1]) / (
self.punkter_ytre[indices_points_outer_boundary[0]][0] -
self.punkter_ytre[indices_points_outer_boundary[1]][0])

b_line = self.punkter_ytre[indices_points_outer_boundary[0]][1] - a_line * \
self.punkter_ytre[indices_points_outer_boundary[0]][0]

return a_line, b_line

def get_tunnel_esc_circle_sympy(self):
rad = self.diameter/2
circle = Circle((0, 0), rad)
return circle

def get_outerboundary_line_seg_sympy(self, element):
indices_points_outer_boundary = self.get_indices_outer_boundary(element)
point_left = Point(self.punkter_ytre[indices_points_outer_boundary[1]][0],

self.punkter_ytre[indices_points_outer_boundary[1]][1])
point_right = Point(self.punkter_ytre[indices_points_outer_boundary[0]][0],

self.punkter_ytre[indices_points_outer_boundary[0]][1])
seg = Segment(point_left, point_right)
return seg

@staticmethod
def is_line_inside_circle_sympy(seg, circle):

if circle.intersection(seg):
return True

else:
return False

def is_line_inside_circle(self, a_line, b_line):
epsilon = 10 ** -13
a = a_line ** 2 + 1
b = 2 * a_line * b_line
c = b_line ** 2 - self.diameter ** 2 / 4
test = b ** 2 - 4 * a * c
if test > epsilon:

return True
else:

return False

@staticmethod
def float_of_rational(rational):

_float = rational.p/rational.q
return _float

def calculate_inner_points_sympy(self, seg, circle):
a, b = geometry.intersection(circle, seg)
a, b = a.evalf(), b.evalf()
a, b = [float(a[0]), float(a[1])], \

[float(b[0]), float(b[1])]
return b, a

def calculate_inner_points(self, a_line, b_line):

module_model_construction.py

Automation of RS2

a = a_line ** 2 + 1
b = 2 * a_line * b_line
c = b_line ** 2 - self.diameter ** 2 / 4
x_pos = (-b + np.sqrt(b ** 2 - 4 * a * c)) / (2 * a)
x_neg = (-b - np.sqrt(b ** 2 - 4 * a * c)) / (2 * a)
y_pos = a_line * x_pos + b_line
y_neg = a_line * x_neg + b_line
point_pos = [x_pos, y_pos]
point_neg = [x_neg, y_neg]
return point_pos, point_neg

def get_theoretical_inner_points(self, element):
a_line_nedre, b_line_nedre = self.get_linfunc_outer_boundary(element)
point_pos, point_neg = self.calculate_inner_points(a_line_nedre, b_line_nedre)
points = [point_pos, point_neg]
return points

def get_theoretical_inner_points_sympy(self, element):
seg = self.get_outerboundary_line_seg_sympy(element)
circle = self.get_tunnel_esc_circle_sympy()
point_pos, point_neg = self.calculate_inner_points_sympy(seg, circle)
points = [point_pos, point_neg]
return points

def calculate_intersection(self, punkt, element):
quad_index = self.get_quad_index(punkt)
index_lowest_diff = self.get_index_lowest_diff_points(quad_index, punkt)
a_circ = (self.nth_quad[quad_index][index_lowest_diff[1]][1] - self.nth_quad[quad_index][index_lowest_diff[0]][

1]) / (
self.nth_quad[quad_index][index_lowest_diff[1]][0] -
self.nth_quad[quad_index][index_lowest_diff[0]][0])

b_circ = self.nth_quad[quad_index][index_lowest_diff[1]][1] - a_circ * \
self.nth_quad[quad_index][index_lowest_diff[1]][0]

a_line, b_line = self.get_linfunc_outer_boundary(element)
x = (b_circ - b_line) / (a_line - a_circ)
y = (b_circ * a_line - b_line * a_circ) / (a_line - a_circ)
point = [x, y]
return point

def calculate_intersection_sympy(self, punkt, element):
seg_line = self.get_outerboundary_line_seg_sympy(element)
quad_index = self.get_quad_index(punkt)
index_lowest_diff = self.get_index_lowest_diff_points(quad_index, punkt)
p_circ00 = Point(self.nth_quad[quad_index][index_lowest_diff[3]][0],

self.nth_quad[quad_index][index_lowest_diff[3]][1])
p_circ01 = Point(self.nth_quad[quad_index][index_lowest_diff[2]][0],

self.nth_quad[quad_index][index_lowest_diff[2]][1])
p_circ10 = Point(self.nth_quad[quad_index][index_lowest_diff[0]][0],

self.nth_quad[quad_index][index_lowest_diff[0]][1])
p_circ11 = Point(self.nth_quad[quad_index][index_lowest_diff[1]][0],

self.nth_quad[quad_index][index_lowest_diff[1]][1])
seg_circ0 = Segment(p_circ00, p_circ01)
seg_circ1 = Segment(p_circ01, p_circ11)
seg_circ2 = Segment(p_circ11, p_circ10)
check_circ = [seg_circ0, seg_circ1, seg_circ2]
point = [seg_circ.intersection(seg_line)[0] for seg_circ in check_circ if seg_circ.intersection(seg_line)]
point = point[0]

module_model_construction.py

Automation of RS2

point = point.evalf()
point = [float(point[0]), float(point[1])]
return point

def get_points_on_circular_boundary_2(self):
points = []
path = mplt_path.Path(self.points_tunnel_boundary)
for i in range(self.ant_linjer):

inside = path.contains_point(((self.punkter_ytre[i][0] + self.punkter_ytre[i + k[i]][0]) / 2,
(self.punkter_ytre[i][1] + self.punkter_ytre[i + k[i]][1]) / 2))
a, b = self.get_linfunc_outer_boundary(i)
if self.is_line_inside_circle(a, b):

points_theoretical = self.get_theoretical_inner_points(i)
point = self.calculate_intersection(points_theoretical[0], i)
point1 = self.calculate_intersection(points_theoretical[1], i)
points.append(point)
points.append(point1)

else:
point, point1 = None, None
points.append(point)
points.append(point1)

p = points.copy()
points = [p[0], p[2], p[3], p[1]]
return points

def get_points_on_circular_boundary_sympy(self):
points = []
circle = self.get_tunnel_esc_circle_sympy()
for i in range(self.ant_linjer):

seg = self.get_outerboundary_line_seg_sympy(i)
if self.is_line_inside_circle_sympy(seg, circle):

points_theoretical = self.get_theoretical_inner_points_sympy(i)
point = self.calculate_intersection_sympy(points_theoretical[0], i)
point1 = self.calculate_intersection_sympy(points_theoretical[1], i)
points.append(point)
points.append(point1)

else:
point, point1 = None, None
points.append(point)
points.append(point1)

p = points.copy()
points = [p[0], p[2], p[3], p[1]]
return points

def get_start_quad(self, punkt):
switcher = {

'4th quad': 0,
'1st quad': int(self.n_points_ib/4),
'2nd quad': int(self.n_points_ib/2),
'3rd quad': int(self.n_points_ib*(3/4)),

}
return switcher.get(self.which_quad(punkt), None)

def sort_boundary_points(self):
points = self.get_points_on_circular_boundary_2()
points = [value for value in points if value is not None]
i_data_list = []

module_model_construction.py

Automation of RS2

for i in range(len(points)):
quad_index = self.get_quad_index(points[i])
index_lowest_diff = self.get_index_lowest_diff_points(quad_index, points[i])
index_lowest_diff.sort()
i_data_list.append(self.index_boundary1 + self.get_start_quad(points[i]) + index_lowest_diff[1])

i_data_list, points = (list(t) for t in zip(*sorted(zip(i_data_list, points))))
self.n_points_ib = self.n_points_ib + len(points)
return i_data_list, points

def remove_neighbour(self, i_data, point):
point_string1 = re.findall(r"[-+]?(?:\d*\.\d+|\d+\b(?!:))", self.data[i_data - 1])
point_string2 = re.findall(r"[-+]?(?:\d*\.\d+|\d+\b(?!:))", self.data[i_data + 1])
point_check1 = [float(point_string1[0]), float(point_string1[1])]
point_check2 = [float(point_string2[0]), float(point_string2[1])]
len1 = np.sqrt((point[0] - point_check1[0]) ** 2 + (point[1] - point_check1[1]) ** 2)
len2 = np.sqrt((point[0] - point_check2[0]) ** 2 + (point[1] - point_check2[1]) ** 2)
if len1 < len2:

self.data.pop(i_data - 1)
else:

self.data.pop(i_data + 1)
return

def set_inner_boundary(self):
i_data_list, points = self.sort_boundary_points()
p = 0
for i_data, point in zip(i_data_list, points):

self.data.insert(i_data, " {}: ".format(0) + str(point[0]) + ', ' + str(point[1]) + '\n')
self.remove_neighbour(i_data, point)
p += 1

self.data[self.index_boundary1 - 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + str(self.n_points_ib),
self.data[self.index_boundary1 - 1])
rette opp i nummerering av punkter
for index in range(self.n_points_ib):

self.data[self.index_boundary1 + index] = re.sub(r'^(\s*(?:\S+\s+){0})\S+', r'\g<1>' + str(index) + ':',
self.data[self.index_boundary1 + index])[1:]

self.data[self.index_boundary1 + self.n_points_ib + 10 + index] = \
re.sub(r'^(\s*(?:\S+\s+){1})\S+', r'\g<1>' + str(index), self.data[self.index_boundary1 +

self.n_points_ib + 10 + index])
return

def get_index_inner_points(self, tunnel_boundary_points):
points = self.get_points_on_circular_boundary_2()
points = [value for value in points if value is not None]
indices = []
for point in points:

idx = tunnel_boundary_points.index(point)
indices.append(idx)

return indices

class OuterBoundary:
def __init__(self, punkter_ytre, data, index_boundary2, vinkel, ant_pkt_ytre, ytre_grenser_utstrekning):

self.punkter_ytre = punkter_ytre.copy()
self.data = data
self.index_boundary2 = index_boundary2
self.ant_pkt_ytre = ant_pkt_ytre
self.ytre_grenser = ytre_grenser_utstrekning

module_model_construction.py

Automation of RS2

if vinkel != 0:
self.del_points()
self.set_points_outer_boundary()

@staticmethod
def get_linfunc(punkter):

a_line = (punkter[0][1] - punkter[1][1]) / (punkter[0][0] - punkter[1][0])
b_line = punkter[0][1] - a_line * punkter[0][0]
return a_line, b_line

@staticmethod
def find_points_on_outer_boundary(point_r, point_l, ytre_grenser, ant_linjer):

point_r = np.array(point_r)
point_l = np.array(point_l)
test = [ytre_grenser, -ytre_grenser]
a = (point_r[1] - point_l[1]) / (point_r[0] - point_l[0])
b = point_r[1] - a * point_r[0]
point = []
finder hvilken begrænsning som gjelder for de to punkter som bæskriver linja og lagrer den ferdige
beskrivelsen i en vector
for i in range(ant_linjer):

y = a * test[i] + b
x = (test[i] - b) / a
if abs(y) <= ytre_grenser:

point.append(np.array([test[i], y]))
if abs(x) <= ytre_grenser:

point.append(np.array([x, test[i]]))
sørger for at det endrede punkt til høyre er lagret i første element av vektoren
v = np.sqrt(np.dot(np.linalg.norm(point[0] - point_r), (np.linalg.norm(point[0] - point_r))))
v2 = min(np.sqrt(np.dot(np.linalg.norm(point[0] - point_r), (np.linalg.norm(point[0] - point_r)))),

np.sqrt(np.dot(np.linalg.norm(point[1] - point_r), (np.linalg.norm(point[1] - point_r)))))
if v != v2:

point = [point[1], point[0]]
return point[0].tolist(), point[1].tolist()

@staticmethod
def check_points_ob(punkter_over, punkter_under, ytre_grenser):

a, b = OuterBoundary.get_linfunc(punkter_over)
c, d = OuterBoundary.get_linfunc(punkter_under)
func1 = [-abs(a), abs(b)]
func2 = [-abs(c), abs(d)]
check = [abs(func1[0] * ytre_grenser + func1[1]), abs((ytre_grenser - func1[1]) / func1[0]),

abs(func2[0] * ytre_grenser + func2[1]),
abs((ytre_grenser - func2[1]) / func2[0])]

if any(z <= ytre_grenser for z in check[0:2]) and any(z <= ytre_grenser for z in check[2:4]):
return False

else:
return True

def which_line(self, element):
if self.punkter_ytre[element][1] == -self.ytre_grenser and \

-self.ytre_grenser < self.punkter_ytre[element][0] <= self.ytre_grenser:
return '1st line'

elif self.punkter_ytre[element][0] == self.ytre_grenser and \
-self.ytre_grenser < self.punkter_ytre[element][1] <= self.ytre_grenser:

return '2nd line'
elif self.punkter_ytre[element][1] == self.ytre_grenser and \

module_model_construction.py

Automation of RS2

-self.ytre_grenser <= self.punkter_ytre[element][0] < self.ytre_grenser:
return '3rd line'

elif self.punkter_ytre[element][0] == -self.ytre_grenser and \
-self.ytre_grenser <= self.punkter_ytre[element][1] < self.ytre_grenser:

return '4th line'
else:

return None

def get_boundary_index(self, element):
switcher = {

'1st line': 1,
'2nd line': 2,
'3rd line': 3,
'4th line': 4,

}
return switcher.get(OuterBoundary.which_line(self, element), None)

def del_points(self):
self.data.pop(self.index_boundary2 + 7)
self.data.pop(self.index_boundary2 + 6)
self.data.pop(self.index_boundary2 + 3)
self.data.pop(self.index_boundary2 + 2)

def key_sorter(self, item):
if item[0] == -self.ytre_grenser and -self.ytre_grenser <= item[1] < self.ytre_grenser:

return item[1] * -1
elif item[1] == self.ytre_grenser and -self.ytre_grenser <= item[0] < self.ytre_grenser:

return item[0] * -1
elif item[0] == self.ytre_grenser and -self.ytre_grenser < item[1] <= self.ytre_grenser:

return item[1]
elif item[1] == -self.ytre_grenser and -self.ytre_grenser < item[0] <= self.ytre_grenser:

return item[0]
else:

return False

def sort_ob_points(self, item):
item, self.punkter_ytre = (list(t) for t in zip(*sorted(zip(item, self.punkter_ytre), reverse=True)))
for i in range(4, 0, -1):

indices = [j for j, x in enumerate(item) if x == i]
if len(indices) > 1:

to_sort = self.punkter_ytre[indices[0]:indices[-1] + 1]
self.punkter_ytre[indices[0]:indices[-1] + 1] = sorted(to_sort, key=self.key_sorter)

return item

def set_points_outer_boundary(self):
placement_new_point = []
for i in range(self.ant_pkt_ytre):

placement_new_point.append(self.get_boundary_index(i))
placement_new_point = self.sort_ob_points(placement_new_point)
dummy = placement_new_point.copy()
k = 1
for i in range(0, self.ant_pkt_ytre):

if i > 0 and placement_new_point[i] == dummy[i - 1]:
placement_new_point[i] += k
k += 1

else:
k = 1

module_model_construction.py

Automation of RS2

self.data.insert(placement_new_point[i] + self.index_boundary2,
" {}: ".format(0) + str(self.punkter_ytre[i][0]) + ', ' + str(

self.punkter_ytre[i][1]) + '\n')
for index in range(len(self.data[self.index_boundary2:(self.index_boundary2 + 8)])):

self.data[self.index_boundary2 + index] = re.sub(r'^(\s*(?:\S+\s+){0})\S+', r'\g<1>' + str(index) + ':',
self.data[self.index_boundary2 + index])

return

class BoundaryLines:
def __init__(self, punkter_ytre, punkter_indre, index_boundary3, index_boundary4, data, ant_linjer):

self.index_boundary3 = index_boundary3
self.index_boundary4 = index_boundary4
self.punkter_ytre = punkter_ytre
self.punkter_indre = punkter_indre
self.data = data
self.ant_linjer = ant_linjer

@staticmethod
def inner_points_cleanup(punkter):

for i in range(2):
v3 = np.sqrt(np.dot(np.linalg.norm(np.array(punkter[0]) - np.array(punkter[1])),

(np.linalg.norm(np.array(punkter[0]) - np.array(punkter[1])))))
v4 = np.sqrt(np.dot(np.linalg.norm(np.array(punkter[0]) - np.array(punkter[2])),

(np.linalg.norm(np.array(punkter[0]) - np.array(punkter[2])))))
if v3 > v4:

x = punkter.copy()
punkter[2] = x[1]
punkter[1] = x[2]

return punkter

def sort_weakness_points(self):
punkter = []
p = [3, 1]
for i in range(len(p)):

punkt = [self.punkter_ytre[i], self.punkter_indre[i], self.punkter_indre[i + p[i]],
self.punkter_ytre[i + p[i]]]

if punkt[1] is not None:
punkt = self.inner_points_cleanup(punkt)

punkter.append(punkt)
return punkter

def set_weakness_points(self):
punkter = self.sort_weakness_points()
if all(elem is None for elem in self.punkter_indre):

self.set_weakness_exl_inner_points()
elif all(elem is not None for elem in self.punkter_indre):

self.set_weakness_with_inner_points(punkter)
else:

self.set_weakness_with_inner_point(punkter)
return

def set_weakness_with_inner_points(self, punkter):
punkter_under = punkter[0]
punkter_over = punkter[1]
for i in range(len(punkter_over)):

self.data[self.index_boundary3 + i] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',

module_model_construction.py

Automation of RS2

r'\g<1>' + str(punkter_under[i][0]) + ',',
self.data[self.index_boundary3 + i])

self.data[self.index_boundary3 + i] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + str(punkter_under[i][1]),
self.data[self.index_boundary3 + i])

self.data[self.index_boundary4 + i] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(punkter_over[i][0]) + ',',
self.data[self.index_boundary4 + i])

self.data[self.index_boundary4 + i] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + str(punkter_over[i][1]),
self.data[self.index_boundary4 + i])

return

def set_weakness_with_inner_point(self, punkter):
index_boundary = [self.index_boundary4, self.index_boundary3]
support_points = self.weaknesszone_prep()
support points bidrar til at svakhetsoner nær periferi blir detektert av rs2. Dette er punkter som ligger
på svakhetssonen på halveispunktene mellom midtpunktet til hvert linjeelement og hvert enkelt ytterpunkt.
p = [3, 1]
for i in range(len(punkter)):

if punkter[i][1] is not None:
for j in range(len(punkter[i])):

self.data[index_boundary[i] + j] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(punkter[i][j][0]) + ',',
self.data[index_boundary[i] + j])

self.data[index_boundary[i] + j] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(punkter[i][j][1]),
self.data[index_boundary[i] + j])

self.data.insert(index_boundary[i] + 2 + 15, self.data[index_boundary[i]+15+2])
self.data.insert(index_boundary[i] + 3, self.data[index_boundary[i]])
self.data[index_boundary[i] + 3] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',

r'\g<1>' + str(support_points[i][1][0]) + ',',
self.data[index_boundary[i] + 3])

self.data[index_boundary[i] + 3] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(support_points[i][1][1]),
self.data[index_boundary[i] + 3])

for idx in range(len(punkter[i])+1):
self.data[index_boundary[i] + idx] = re.sub(r'^(\s*(?:\S+\s+){0})\S+',

r'\g<1>' + '{}:'.format(idx),
self.data[index_boundary[i] + idx])

self.data[index_boundary[i] + 15 + idx] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + '{}'.format(idx),
self.data[index_boundary[i] + 15 + idx])

self.data[index_boundary[i] - 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' +
'{}'.format(len(punkter[i])+1),
self.data[index_boundary[i] - 1])

else:
self.data.pop(index_boundary[i] + 17)
self.data.pop(index_boundary[i] + 2)
self.data[index_boundary[i]] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',

r'\g<1>' + str(self.punkter_ytre[i][0]) + ',',
self.data[index_boundary[i]])

self.data[index_boundary[i]] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(self.punkter_ytre[i][1]),
self.data[index_boundary[i]])

self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(support_points[i][1][0]) + ',',
self.data[index_boundary[i] + 1])

module_model_construction.py

Automation of RS2

self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(support_points[i][1][1]),
self.data[index_boundary[i] + 1])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(self.punkter_ytre[i + p[i]][0]) + ',',
self.data[index_boundary[i] + 2])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(self.punkter_ytre[i + p[i]][1]),
self.data[index_boundary[i] + 2])

self.data[index_boundary[i] - 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + '3',
self.data[index_boundary[i] - 1])

for idx in range(3):
self.data[index_boundary[i] + idx] = re.sub(r'^(\s*(?:\S+\s+){0})\S+',

r'\g<1>' + '{}:'.format(idx),
self.data[index_boundary[i] + idx])

return

def get_middle_points(self):
p = []
for i in range(self.ant_linjer):

k = [3, 1]
p.append(((self.punkter_ytre[i][0] + self.punkter_ytre[i + k[i]][0]) / 2,

(self.punkter_ytre[i][1] + self.punkter_ytre[i + k[i]][1]) / 2))
return p

def set_weakness_exl_inner_points0(self):
index_boundary = [self.index_boundary4, self.index_boundary3]
middlepoints = self.get_middle_points()
p = [3, 1]
for i in range(len(index_boundary)):

self.data.pop(index_boundary[i] + 17)
self.data.pop(index_boundary[i] + 2)
self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){0})\S+', r'\g<1>' + '1:',

self.data[index_boundary[i] + 1])
self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',

r'\g<1>' + str(middlepoints[i][0]) + ',',
self.data[index_boundary[i] + 1])

self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(middlepoints[i][1]),
self.data[index_boundary[i] + 1])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){0})\S+', r'\g<1>' + '2:',
self.data[index_boundary[i] + 2])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(self.punkter_ytre[i + p[i]][0]) + ',',
self.data[index_boundary[i] + 2])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(self.punkter_ytre[i + p[i]][1]),
self.data[index_boundary[i] + 2])

self.data[index_boundary[i]] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(self.punkter_ytre[i][0]) + ',',
self.data[index_boundary[i]])

self.data[index_boundary[i]] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + str(self.punkter_ytre[i][1]),
self.data[index_boundary[i]])

self.data[index_boundary[i] - 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + '3',
self.data[index_boundary[i] - 1])

return

module_model_construction.py

Automation of RS2

def set_weakness_exl_inner_points(self):
index_boundary = [self.index_boundary4, self.index_boundary3]
support_points = self.weaknesszone_prep()
support points bidrar til at svakhetsoner nær periferi blir detektert av rs2. Dette er punkter som ligger
på svakhetssonen på halveispunktene mellom midtpunktet til hvert linjeelement og hvert enkelt ytterpunkt.
p = [3, 1]
for i in range(len(index_boundary)):

self.data.pop(index_boundary[i] + 17)
self.data.pop(index_boundary[i] + 2)
self.data[index_boundary[i]] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',

r'\g<1>' + str(self.punkter_ytre[i][0]) + ',',
self.data[index_boundary[i]])

self.data[index_boundary[i]] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + str(self.punkter_ytre[i][1]),
self.data[index_boundary[i]])

self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(support_points[i][0][0]) + ',',
self.data[index_boundary[i] + 1])

self.data[index_boundary[i] + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(support_points[i][0][1]),
self.data[index_boundary[i] + 1])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(support_points[i][1][0]) + ',',
self.data[index_boundary[i] + 2])

self.data[index_boundary[i] + 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(support_points[i][1][1]),
self.data[index_boundary[i] + 2])

self.data[index_boundary[i] + 3] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(self.punkter_ytre[i + p[i]][0]) + ',',
self.data[index_boundary[i] + 3])

self.data[index_boundary[i] + 3] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(self.punkter_ytre[i + p[i]][1]),
self.data[index_boundary[i] + 3])

self.data[index_boundary[i] - 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+', r'\g<1>' + '4',
self.data[index_boundary[i] - 1])

for idx in range(4):
self.data[index_boundary[i] + idx] = re.sub(r'^(\s*(?:\S+\s+){0})\S+',

r'\g<1>' + '{}:'.format(idx),
self.data[index_boundary[i] + idx])

return

def weaknesszone_prep(self):
middlepoints = self.get_middle_points()
p = []
for i in range(self.ant_linjer):
k = [3, 1]
p1 = ((self.punkter_ytre[i][0] + middlepoints[i][0])*(2/4),
(self.punkter_ytre[i][1] + middlepoints[i][1])*(2/4))
p2 = ((self.punkter_ytre[i + k[i]][0] + middlepoints[i][0])*(2/4),
(self.punkter_ytre[i + k[i]][1] + middlepoints[i][1])*(2/4))
p1 = ((p1[0] + middlepoints[i][0]) * (2 / 4),
(p1[1] + middlepoints[i][1]) * (2 / 4))
p2 = ((p2[0] + middlepoints[i][0]) * (2 / 4),
(p2[1] + middlepoints[i][1]) * (2 / 4))
p.append([p1, p2])

module_model_construction.py

Automation of RS2

return p

def weaknesszone_prep(self):
middlepoints = self.get_middle_points()
p = []
p1 = ((self.punkter_ytre[0][0] + middlepoints[0][0])*(2/4),

(self.punkter_ytre[0][1] + middlepoints[0][1])*(2/4))
p2 = ((self.punkter_ytre[3][0] + middlepoints[0][0])*(2/4),

(self.punkter_ytre[3][1] + middlepoints[0][1])*(2/4))
for i in range(2):

p1 = ((p1[0] + middlepoints[0][0]) * (2 / 4),
(p1[1] + middlepoints[0][1]) * (2 / 4))

p2 = ((p2[0] + middlepoints[0][0]) * (2 / 4),
(p2[1] + middlepoints[0][1]) * (2 / 4))

p1 = ((p1[0] + self.punkter_ytre[0][0]) * (2 / 4),
(p1[1] + self.punkter_ytre[0][1]) * (2 / 4))
p2 = ((p2[0] + self.punkter_ytre[3][0]) * (2 / 4),
(p2[1] + self.punkter_ytre[3][1]) * (2 / 4))
p3 = self.get_closest_point_on_line(self.punkter_ytre[1], self.punkter_ytre[2], p1)
p4 = self.get_closest_point_on_line(self.punkter_ytre[1], self.punkter_ytre[2], p2)
p.append([p1, p2])
p.append([p3, p4])
return p

@staticmethod
def get_closest_point_on_line(p_line1, p_line2, outer_point):

x1, y1 = p_line1
x2, y2 = p_line2
x3, y3 = outer_point
dx, dy = x2 - x1, y2 - y1
det = dx * dx + dy * dy
a = (dy * (y3 - y1) + dx * (x3 - x1)) / det
return x1 + a * dx, y1 + a * dy

class Materials(InnerBoundary):
def __init__(self, index_materials, punkter_indre, ytre_grenser_utstrekning, ant_linjer, nth_quad, punkter_ytre,

data,
number_points_inner_boundary, index_boundary1,
diameter, vinkel, points_tunnel_boundary, forflytning_y_sone, forflytning_x_sone, list_which_material):

super().__init__(ant_linjer, nth_quad, punkter_ytre, data, number_points_inner_boundary, index_boundary1,
diameter, vinkel, points_tunnel_boundary, ytre_grenser_utstrekning,)

self.index_materials = index_materials
self.punkter_indre = punkter_indre.copy()
self.forflytning_y_sone = forflytning_y_sone
self.forflytning_x_sone = forflytning_x_sone
self.list_which_material = list_which_material

def calculate_inner_points_sympy(self, seg, circle):
a, b = geometry.intersection(circle, seg)
a, b = a.evalf(), b.evalf()
a, b = [float(a[0]), float(a[1])], \

[float(b[0]), float(b[1])]
return b, a

def setmaterialmesh(self):
if all(points is None for points in self.punkter_indre):

module_model_construction.py

Automation of RS2

self.__setmaterialmesh0_sympy()
elif any(points is None for points in self.punkter_indre):

self.__setmaterialmesh1_sympy()
else:

self.__setmaterialmesh2_sympy()
return

def __setmaterialmesh0(self):
del self.data[self.index_materials + 36:self.index_materials + 63]
i_material = self.index_materials
mid_points = self.get_middle_points()
normaler = self.get_normal_lines(mid_points)
ytre_punkt_under, ytre_punkt_over = self.checker_ob_exl_innerb(normaler)
list_material = self.list_which_material[0]
list_iterate, list_iterate1 = self.__get_material_list0(ytre_punkt_under, ytre_punkt_over, list_material)
self.data[i_material - 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',

r'\g<1>' + str(4),
self.data[i_material - 2])

for i in range(4):
for j in range(3):

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(list_iterate[i][j][0]) + ',',
self.data[i_material + j + 1])

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate[i][j][1]),
self.data[i_material + j + 1])

self.data[i_material + 5] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][0]),
self.data[i_material + 5])

self.data[i_material + 6] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][1]),
self.data[i_material + 6])

i_material += 9
return

def __get_material_list0(self, ytre_punkt_under, ytre_punkt_over, list_material):
list0 = [[self.punkter_ytre[0], self.punkter_ytre[3], ytre_punkt_under],

[self.punkter_ytre[1], self.punkter_ytre[2], ytre_punkt_over],
[self.punkter_ytre[3], self.punkter_ytre[2], self.punkter_ytre[1]],
[self.points_tunnel_boundary[0], self.points_tunnel_boundary[int(self.n_points_ib / 2)],
self.points_tunnel_boundary[int(self.n_points_ib * (3 / 4))]]]

if self.forflytning_x_sone == 0 and self.forflytning_y_sone == 0:
list1 = list_material[0]

else:
list1 = list_material[1]

return list0, list1

def __setmaterialmesh0_sympy(self):
del self.data[self.index_materials + 36:self.index_materials + 63]
i_material = self.index_materials
ytre_punkt_under, ytre_punkt_over = self.checker_ob_sympy() # sympy Point2D er formatet
ytre_punkt_under, ytre_punkt_over = list(ytre_punkt_under), list(ytre_punkt_over)
list_material = self.list_which_material[0]
list_iterate, list_iterate1 = self.__get_material_list0(ytre_punkt_under, ytre_punkt_over, list_material)
self.data[i_material - 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',

r'\g<1>' + str(4),
self.data[i_material - 2])

module_model_construction.py

Automation of RS2

for i in range(4):
for j in range(3):

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(list_iterate[i][j][0]) + ',',
self.data[i_material + j + 1])

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate[i][j][1]),
self.data[i_material + j + 1])

self.data[i_material + 5] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][0]),
self.data[i_material + 5])

self.data[i_material + 6] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][1]),
self.data[i_material + 6])

i_material += 9
return

def __setmaterialmesh1_sympy(self):
del self.data[self.index_materials + 45:self.index_materials + 63]
if self.vinkel == 0:

ytre_punkt_over = [0, self.ytre_grenser]
ytre_punkt_under = [0, -self.ytre_grenser]
if self.punkter_indre[0] is not None:

punkt_i_sone, punkt_u_sone = [0, 5], [0, -5]
else:

punkt_i_sone, punkt_u_sone = [0, -5], [0, 5]
else:

ytre_punkt_under, ytre_punkt_over = self.checker_ob_sympy() # sympy Point2D er formatet
if self.punkter_indre[0] is not None:

punkt_i_sone, punkt_u_sone = self.checker_ib_sympy(0)
else:

punkt_i_sone, punkt_u_sone = self.checker_ib_sympy(1)
list_iterate = self.__get_material_list1(ytre_punkt_under, ytre_punkt_over, punkt_i_sone, punkt_u_sone)
list_iterate1 = self.list_which_material[1]
i_material = self.index_materials
self.data[i_material - 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',

r'\g<1>' + str(5),
self.data[i_material - 2])

for i in range(5):
for j in range(3):

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(list_iterate[i][j][0]) + ',',
self.data[i_material + j + 1])

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate[i][j][1]),
self.data[i_material + j + 1])

self.data[i_material + 5] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][0]),
self.data[i_material + 5])

self.data[i_material + 6] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][1]),
self.data[i_material + 6])

i_material += 9
return

def __setmaterialmesh1(self):
del self.data[self.index_materials + 45:self.index_materials + 63]

module_model_construction.py

Automation of RS2

if self.vinkel == 0:
ytre_punkt_over = [0, self.ytre_grenser]
ytre_punkt_under = [0, -self.ytre_grenser]
if self.punkter_indre[0] is not None:

punkt_i_sone, punkt_u_sone = [0, 5], [0, -5]
else:

punkt_i_sone, punkt_u_sone = [0, -5], [0, 5]
else:

middlepoints = self.get_middle_points()
normaler = self.get_normal_lines(middlepoints)
under, over = middlepoints[0], middlepoints[1]
if self.origo_is_between(under, over):

ytre_punkt_under = self.checker_ob(normaler[0], 0)
ytre_punkt_over = self.checker_ob(normaler[1], 1)

else:
ytre_punkt_under, ytre_punkt_over = self.checker_ob_exl_innerb(normaler)

if self.punkter_indre[0] is not None:
punkt_i_sone, punkt_u_sone = self.checker_ib(normaler[0], 0)

else:
punkt_i_sone, punkt_u_sone = self.checker_ib(normaler[1], 1)

list_iterate = self.__get_material_list1(ytre_punkt_under, ytre_punkt_over, punkt_i_sone, punkt_u_sone)
list_iterate1 = self.list_which_material[1]
i_material = self.index_materials
self.data[i_material - 2] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',

r'\g<1>' + str(5),
self.data[i_material - 2])

for i in range(5):
for j in range(3):

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',
r'\g<1>' + str(list_iterate[i][j][0]) + ',',
self.data[i_material + j + 1])

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate[i][j][1]),
self.data[i_material + j + 1])

self.data[i_material + 5] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][0]),
self.data[i_material + 5])

self.data[i_material + 6] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][1]),
self.data[i_material + 6])

i_material += 9
return

def __get_opposite_circb_point(self):
q = [elem for elem in self.punkter_indre if elem is not None]
r = [round(q[0][0], 17), round(q[0][1], 17)]
r = self.points_tunnel_boundary.index(r)
s = [round(q[1][0], 17), round(q[1][1], 17)]
s = self.points_tunnel_boundary.index(s)
u = round((r + s) / 2)
point = self.points_tunnel_boundary[u]
return point

def __get_material_list1(self, ytre_punkt_under, ytre_punkt_over, punkt_i_sone, punkt_u_sone):
q til u, finne et punkt på tunnel boundary som gjør at materialmeshet for dette materialet blir veldefinert
p = [3, 2]
if self.punkter_indre[0] is not None:

module_model_construction.py

Automation of RS2

i = 0
else:

i = 1
_list = [[self.punkter_ytre[0], self.punkter_ytre[3], ytre_punkt_under],

[self.punkter_ytre[1], self.punkter_ytre[2], ytre_punkt_over],
[self.punkter_indre[i], self.punkter_indre[p[i]], punkt_i_sone],
[self.punkter_indre[i], self.punkter_indre[p[i]], punkt_u_sone],
[self.punkter_ytre[3], self.punkter_ytre[2], self.punkter_indre[p[i]]]]

return _list

def get_middle_point(self, element):
k = [3, 1]
middlepoint = ((self.punkter_ytre[element][0] + self.punkter_ytre[element + k[element]][0]) / 2,

(self.punkter_ytre[element][1] + self.punkter_ytre[element + k[element]][1]) / 2)
return middlepoint

def get_middle_points_inner(self):
p = []
k = [3, 1]
for i in range(self.ant_linjer):

p.append(((self.punkter_indre[i][0] + self.punkter_indre[i + k[i]][0]) / 2,
(self.punkter_indre[i][1] + self.punkter_indre[i + k[i]][1]) / 2))

return p

@staticmethod
def get_normal_line(a0, midpoint):

a, b = -(1 / a0), midpoint[1] + (midpoint[0] / a0)
return [a, b]

@staticmethod
def origo_is_between(middlepoint_under, middlepoint_over):

origo = [0, 0]
epsilon = 10 ** -13
crossproduct = (origo[1] - middlepoint_under[1]) * (middlepoint_over[0] - middlepoint_under[0]) - (

origo[0] - middlepoint_under[0]) * (middlepoint_over[1] - middlepoint_under[1])
compare versus epsilon for floating point values, or != 0 if using integers
if abs(crossproduct) > epsilon:

return False
dotproduct = (origo[0] - middlepoint_under[0]) * (middlepoint_over[0] - middlepoint_under[0]) + (

origo[1] - middlepoint_under[1]) * (middlepoint_over[1] - middlepoint_under[1])
if dotproduct < 0:

return False
squaredlengthba = (middlepoint_over[0] - middlepoint_under[0]) ** 2 + (

middlepoint_over[1] - middlepoint_under[1]) ** 2
if dotproduct > squaredlengthba:

return False
return True

def get_normal_lines(self, mid_points):
a0, b0 = self.get_linfunc_outer_boundary(0)
normal_under = self.get_normal_line(a0, mid_points[0])
c0, d0 = self.get_linfunc_outer_boundary(1)
normal_over = self.get_normal_line(c0, mid_points[1])
return [normal_under, normal_over]

@staticmethod
def key_checker(elem):

module_model_construction.py

Automation of RS2

return abs(elem[0])

def checker_ob(self, normal, element):
middlepoint = self.get_middle_point(element)
points = [[self.ytre_grenser, normal[0] * self.ytre_grenser + normal[1]],

[(self.ytre_grenser - normal[1]) / normal[0], self.ytre_grenser],
[-self.ytre_grenser, normal[0] * -self.ytre_grenser + normal[1]],
[(-self.ytre_grenser - normal[1]) / normal[0], -self.ytre_grenser]]

check = [np.sqrt((points[0][0] - middlepoint[0]) ** 2 + (points[0][1] - middlepoint[1]) ** 2),
np.sqrt((points[1][0] - middlepoint[0]) ** 2 + (points[1][1] - middlepoint[1]) ** 2),
np.sqrt((points[2][0] - middlepoint[0]) ** 2 + (points[2][1] - middlepoint[1]) ** 2),
np.sqrt((points[3][0] - middlepoint[0]) ** 2 + (points[3][1] - middlepoint[1]) ** 2)]

check, point = [list(t) for t in zip(*sorted(zip(check, points)))]
point = point[0]
return point

def checker_ob0(self, normal):
under = 0
over = 1
middlepoint_under = self.get_middle_point(under)
middlepoint_over = self.get_middle_point(over)
points_under = [[self.ytre_grenser, normal[under][0] * self.ytre_grenser + normal[under][1]],

[(self.ytre_grenser - normal[under][1]) / normal[under][0], self.ytre_grenser],
[-self.ytre_grenser, normal[under][0] * -self.ytre_grenser + normal[under][1]],
[(-self.ytre_grenser - normal[under][1]) / normal[under][0], -self.ytre_grenser]]

points_over = [[self.ytre_grenser, normal[over][0] * self.ytre_grenser + normal[over][1]],
[(self.ytre_grenser - normal[over][1]) / normal[over][0], self.ytre_grenser],
[-self.ytre_grenser, normal[over][0] * -self.ytre_grenser + normal[over][1]],
[(-self.ytre_grenser - normal[over][1]) / normal[over][0], -self.ytre_grenser]]

check_under = [np.sqrt(
(points_under[0][0] - middlepoint_under[0]) ** 2 + (points_under[0][1] - middlepoint_under[1]) ** 2),

np.sqrt((points_under[1][0] - middlepoint_under[0]) ** 2 + (
points_under[1][1] - middlepoint_under[1]) ** 2),

np.sqrt((points_under[2][0] - middlepoint_under[0]) ** 2 + (
points_under[2][1] - middlepoint_under[1]) ** 2),

np.sqrt((points_under[3][0] - middlepoint_under[0]) ** 2 + (
points_under[3][1] - middlepoint_under[1]) ** 2)]

check_over = [
np.sqrt((points_over[0][0] - middlepoint_over[0]) ** 2 + (points_over[0][1] - middlepoint_over[1]) ** 2),
np.sqrt((points_over[1][0] - middlepoint_over[0]) ** 2 + (points_over[1][1] - middlepoint_over[1]) ** 2),
np.sqrt((points_over[2][0] - middlepoint_over[0]) ** 2 + (points_over[2][1] - middlepoint_over[1]) ** 2),
np.sqrt((points_over[3][0] - middlepoint_over[0]) ** 2 + (points_over[3][1] - middlepoint_over[1]) ** 2)]

check_under, points_under = [list(t) for t in zip(*sorted(zip(check_under, points_under)))]
check_over, points_over = [list(t) for t in zip(*sorted(zip(check_over, points_over)))]
p, q, r, s = [], [], [], []
for i in range(len(points_under)):

if abs(points_under[i][0]) <= self.ytre_grenser and abs(points_under[i][1]) <= self.ytre_grenser:
p.append(points_under[i])
q.append(check_under[i])

if abs(points_over[i][0]) <= self.ytre_grenser and abs(points_over[i][1]) <= self.ytre_grenser:
r.append(points_over[i])
s.append(check_over[i])

points_under, check_under, points_over, check_over = p, q, r, s
if self.origo_is_between(middlepoint_under, middlepoint_over):

point_under = points_under[0]
point_over = points_over[0]

else:

module_model_construction.py

Automation of RS2

if check_under[0] < check_over[0]:
point_under = points_under[0]
point_over = points_over[1]

else:
point_under = points_under[1]
point_over = points_over[0]

return point_under, point_over

def checker_ob_exl_innerb(self, normal):
under = 0
over = 1
middlepoint_under = self.get_middle_point(under)
middlepoint_over = self.get_middle_point(over)
points_under = [self.ytre_grenser, normal[under][0] * self.ytre_grenser + normal[under][1]], [

-self.ytre_grenser, normal[under][0] * -self.ytre_grenser + normal[under][1]]
points_over = [self.ytre_grenser, normal[over][0] * self.ytre_grenser + normal[over][1]], \

[-self.ytre_grenser, normal[over][0] * -self.ytre_grenser + normal[over][1]]
check_under = [np.sqrt(

(points_under[0][0] - middlepoint_under[0]) ** 2 + (points_under[0][1] - middlepoint_under[1]) ** 2),
np.sqrt((points_under[1][0] - middlepoint_under[0]) ** 2 + (

points_under[1][1] - middlepoint_under[1]) ** 2)]
check_over = [

np.sqrt((points_over[0][0] - middlepoint_over[0]) ** 2 + (points_over[0][1] - middlepoint_over[1]) ** 2),
np.sqrt((points_over[1][0] - middlepoint_over[0]) ** 2 + (points_over[1][1] - middlepoint_over[1]) ** 2)]

check_under, points_under = [list(t) for t in zip(*sorted(zip(check_under, points_under)))]
check_over, points_over = [list(t) for t in zip(*sorted(zip(check_over, points_over)))]
if check_under[0] < check_over[0]:

point_under = points_under[0]
point_over = points_over[1]

else:
point_under = points_under[1]
point_over = points_over[0]

return point_under, point_over

def checker_ob_sympy(self):
under = 0
over = 1
list_p_under, list_p_over = [], []
seg_ob_bunn, seg_ob_topp, seg_ob_hoyr, seg_ob_vens = self.get_ob_segments_sympy()
list_check = [seg_ob_bunn, seg_ob_topp, seg_ob_hoyr, seg_ob_vens]
weak_seg_under, weak_seg_over = self.get_weakness_lines_sympy(under), self.get_weakness_lines_sympy(over)
middlepoint_under, middlepoint_over = self.get_middle_point_sympy(under), self.get_middle_point_sympy(over)
normal_seg_under = self.get_normal_line_sympy(middlepoint_under, weak_seg_under)
normal_seg_over = self.get_normal_line_sympy(middlepoint_over, weak_seg_over)
self.get_intersections_ob_sympy(list_check, normal_seg_under, normal_seg_over, list_p_under, list_p_over)
point_under = list(self.get_nearest_intersection_under_sympy(list_p_under, middlepoint_under))
point_over = list(self.get_nearest_intersection_over_sympy(list_p_over, middlepoint_over, middlepoint_under))
return point_under, point_over

def get_intersections_ob_sympy(self, list_check, normal_seg_under, normal_seg_over, list_p_under, list_p_over):
for check in list_check:

point_under = self.get_normal_intersection_sympy(normal_seg_under, check)
if point_under:

list_p_under.append(point_under)
point_over = self.get_normal_intersection_sympy(normal_seg_over, check)
if point_over:

list_p_over.append(point_over)

module_model_construction.py

Automation of RS2

if len(list_p_over) == 1:
list_p_over.append([Point(-list_p_over[0][0][0],

-list_p_over[0][0][1], evaluate=False)])
if len(list_p_under) == 1:

list_p_under.append([Point(-list_p_under[0][0][0],
-list_p_under[0][0][1], evaluate=False)])

return

def get_nearest_intersection_under_sympy(self, list_intersection_points, midpoint):
if (self.forflytning_x_sone == 0 and self.forflytning_y_sone == 0) and \

(self.vinkel == 45 or self.vinkel == 225 or self.vinkel == -135 or self.vinkel == -315):
p1 = Point(-self.ytre_grenser, self.ytre_grenser)
p2 = Point(self.ytre_grenser, -self.ytre_grenser)
seg1 = Segment(p1, midpoint)
seg2 = Segment(p2, midpoint)
if seg1.length > seg2.length:

point = p1
else:

point = p2
elif (self.forflytning_x_sone == 0 and self.forflytning_y_sone == 0) and \

(self.vinkel == -45 or self.vinkel == -225 or self.vinkel == 135 or self.vinkel == 315):
p1 = Point(self.ytre_grenser, self.ytre_grenser)
p2 = Point(-self.ytre_grenser, -self.ytre_grenser)
seg1 = Segment(p1, midpoint)
seg2 = Segment(p2, midpoint)
if seg1.length > seg2.length:

point = p2
else:

point = p1
else:

seg1 = Segment(list_intersection_points[0][0], midpoint)
seg2 = Segment(list_intersection_points[1][0], midpoint)
if seg1.length > seg2.length:

point = list_intersection_points[1][0]
else:

point = list_intersection_points[0][0]
return point

def get_nearest_intersection_over_sympy(self, list_intersection_points, midpoint_over, midpoint_under):
if (self.forflytning_x_sone == 0 and self.forflytning_y_sone == 0) and \

(self.vinkel == 45 or self.vinkel == 225 or self.vinkel == -135 or self.vinkel == -315):
p1 = Point(-self.ytre_grenser, self.ytre_grenser)
p2 = Point(self.ytre_grenser, -self.ytre_grenser)
seg1 = Segment(p1, midpoint_over)
seg2 = Segment(p2, midpoint_over)
if seg1.length > seg2.length:

point = p1
else:

point = p2
elif (self.forflytning_x_sone == 0 and self.forflytning_y_sone == 0) and \

(self.vinkel == -45 or self.vinkel == -225 or self.vinkel == 135 or self.vinkel == 315):
p1 = Point(self.ytre_grenser, self.ytre_grenser)
p2 = Point(-self.ytre_grenser, -self.ytre_grenser)
seg1 = Segment(p1, midpoint_over)
seg2 = Segment(p2, midpoint_over)
if seg1.length > seg2.length:

point = p2

module_model_construction.py

Automation of RS2

else:
point = p1

elif Segment(midpoint_under, midpoint_over).contains(Point(0, 0)):
seg1 = Segment(list_intersection_points[0][0], midpoint_over)
seg2 = Segment(list_intersection_points[1][0], midpoint_over)
if seg1.length > seg2.length:

point = list_intersection_points[1][0]
else:

point = list_intersection_points[0][0]
else:

seg1 = Segment(list_intersection_points[0][0], midpoint_over)
seg2 = Segment(list_intersection_points[1][0], midpoint_over)
if seg1.length > seg2.length:

point = list_intersection_points[0][0]
else:

point = list_intersection_points[1][0]
return point

def get_weakness_lines_sympy(self, element):
indices_points_outer_boundary = self.get_indices_outer_boundary(element)
p1 = Point(self.punkter_ytre[indices_points_outer_boundary[0]][0],

self.punkter_ytre[indices_points_outer_boundary[0]][1], evaluate=False)
p2 = Point(self.punkter_ytre[indices_points_outer_boundary[1]][0],

self.punkter_ytre[indices_points_outer_boundary[1]][1], evaluate=False)
weak_seg = Segment(p1, p2)
return weak_seg

def get_ob_segments_sympy(self):
pkt_ytre_4 = Point(self.ytre_grenser, -self.ytre_grenser)
pkt_ytre_1 = Point(self.ytre_grenser, self.ytre_grenser)
pkt_ytre_2 = Point(-self.ytre_grenser, self.ytre_grenser)
pkt_ytre_3 = Point(-self.ytre_grenser, -self.ytre_grenser)
seg_ob_bunn = Segment(pkt_ytre_4, pkt_ytre_3)
seg_ob_topp = Segment(pkt_ytre_1, pkt_ytre_2)
seg_ob_hoyr = Segment(pkt_ytre_4, pkt_ytre_1)
seg_ob_vens = Segment(pkt_ytre_2, pkt_ytre_3)
return seg_ob_bunn, seg_ob_topp, seg_ob_hoyr, seg_ob_vens

def get_middle_point_sympy(self, element):
k = [3, 1]
middlepoint = Point((self.punkter_ytre[element][0] + self.punkter_ytre[element + k[element]][0]) / 2,

(self.punkter_ytre[element][1] + self.punkter_ytre[element + k[element]][1]) / 2,
evaluate=False)

return middlepoint

@staticmethod
def get_normal_line_sympy(midpoint, weak_seg):

normal_line = weak_seg.perpendicular_line(midpoint)
return normal_line

@staticmethod
def get_normal_intersection_sympy(normal_line, boundary_line_seg):

intersection_point = normal_line.intersection(boundary_line_seg)
return intersection_point

def checker_ib(self, normal, element):
middlepoint = self.get_middle_point(element)

module_model_construction.py

Automation of RS2

middlepoints = self.get_middle_points()
point_pos, point_neg = self.calculate_inner_points(normal[0], normal[1])
points = [point_pos, point_neg]
q = self.calculate_intersection_ib(point_pos, normal)
p = self.calculate_intersection_ib(point_neg, normal)
check = [np.sqrt((q[0] - middlepoint[0]) ** 2 + (q[1] - middlepoint[1]) ** 2),

np.sqrt((p[0] - middlepoint[0]) ** 2 + (p[1] - middlepoint[1]) ** 2)]
check, point = [list(t) for t in zip(*sorted(zip(check, points)))]
if self.origo_is_between(middlepoints[0], middlepoints[1]):

point_weakness = point[1]
point_exl_weakness = point[0]

else:
point_weakness = point[0]
point_exl_weakness = point[1]

return point_weakness, point_exl_weakness

@staticmethod
def unrationalize_point(point):

point = Point(point[0], point[1], evaluate=False)
return point

def checker_ib_centered_sympy(self):
under, over = 0, 1
circle = Circle(Point(0.0, 0.0, evaluate=False), self.diameter / 2, evaluate=False)
weak_seg_under, weak_seg_over = self.get_weakness_lines_sympy(under), self.get_weakness_lines_sympy(over)
middlepoint_under, middlepoint_over = self.get_middle_point_sympy(under), self.get_middle_point_sympy(over)
normal_seg_under = self.get_normal_line_sympy(middlepoint_under, weak_seg_under)
normal_seg_over = self.get_normal_line_sympy(middlepoint_over, weak_seg_over)
point_pos_under, point_neg_under = self.calculate_inner_points_sympy(normal_seg_under, circle)
point_pos_over, point_neg_over = self.calculate_inner_points_sympy(normal_seg_over, circle)
points_under = [point_pos_under, point_neg_under]
points_over = [point_pos_over, point_neg_over]
q = self.calculate_intersection_ib_sympy(points_under[0], normal_seg_under)[0]
p = self.calculate_intersection_ib_sympy(points_under[1], normal_seg_under)[0]
r = self.calculate_intersection_ib_sympy(points_over[0], normal_seg_over)[0]
s = self.calculate_intersection_ib_sympy(points_over[1], normal_seg_over)[0]
origo = Point(0, 0)
point_check11 = Point(q[0], q[1])
point_check12 = Point(p[0], p[1])
point_check21 = Point(r[0], r[1])
Point_check22 = Point(s[0], s[1])
seg_middle = Segment(middlepoint_under, middlepoint_over)
seg_check11 = Segment(origo, point_check11)
seg_check12 = Segment(origo, point_check12)
seg_check21 = Segment(origo, point_check21)
seg_check22 = Segment(origo, Point_check22)

if self.origo_is_between(middlepoint_under, middlepoint_over):
point_under = points_under[0]
point_over = points_over[0]
if seg_check11.contains(seg_middle) or seg_check12.contains(seg_middle):

point_under = points_under[0]
point_over = points_over[1]

else:
point_under = points_under[0]
point_over = points_over[1]

return point_under, point_over

module_model_construction.py

Automation of RS2

def checker_ib_sympy(self, element):
circle = Circle(Point(0.0, 0.0, evaluate=False), self.diameter/2, evaluate=False)
weak_seg = self.get_weakness_lines_sympy(element)
middlepoint = self.get_middle_point_sympy(element)
if element == 0:

middlepoint_other = self.get_middle_point_sympy(1)
else:

middlepoint_other = self.get_middle_point_sympy(0)
normal_seg = self.get_normal_line_sympy(middlepoint, weak_seg)
point_pos, point_neg = self.calculate_inner_points_sympy(normal_seg, circle)
points = [point_pos, point_neg]
q = self.calculate_intersection_ib_sympy(points[0], normal_seg)[0]
p = self.calculate_intersection_ib_sympy(points[1], normal_seg)[0]
origo = Point(0, 0)
point_check11 = Point(q[0], q[1])
point_check12 = Point(p[0], p[1])
seg_middle = Segment(middlepoint, middlepoint_other)
seg_check11 = Segment(origo, point_check11)
seg_check12 = Segment(origo, point_check12)
seg_check21 = Segment(origo, point_check21)
seg_check22 = Segment(origo, Point_check22)

if self.origo_is_between(middlepoint_under, middlepoint_over):
point_under = points_under[0]
point_over = points_over[0]
if seg_check11.contains(seg_middle) or seg_check12.contains(seg_middle):

point_weakness = points[0]
point_exl_weakness = points[1]

else:
point_weakness = points[1]
point_exl_weakness = points[0]

return point_weakness, point_exl_weakness

def checker_ib_centered(self, normal):
under, over = 0, 1
middlepoints = self.get_middle_points_inner()
middlepoint_under, middlepoint_over = middlepoints[0], middlepoints[1]
point_pos_under, point_neg_under = self.calculate_inner_points(normal[under][0], normal[under][1])
point_pos_over, point_neg_over = self.calculate_inner_points(normal[over][0], normal[over][1])
points_under = [point_pos_under, point_neg_under]
points_over = [point_pos_over, point_neg_over]
q = self.calculate_intersection_ib(points_under[0], normal[under])
origo = Point(0, 0)
mid_under = Point(middlepoint_under[0], middlepoint_under[1])
mid_over = Point(middlepoint_over[0], middlepoint_over[1])
point_check11 = Point(q[0], q[1])
seg_middle = Segment(mid_under, mid_over)
seg_check11 = Segment(origo, point_check11)

if seg_check11.contains(seg_middle):
point_under = points_under[1]
point_over = points_over[0]

else:
point_under = points_under[0]
point_over = points_over[1]

return point_under, point_over

module_model_construction.py

Automation of RS2

def calculate_intersection_ib(self, punkt, normal):
quad_index = self.get_quad_index(punkt)
index_lowest_diff = self.get_index_lowest_diff_points(quad_index, punkt)
a_circ = (self.nth_quad[quad_index][index_lowest_diff[1]][1] - self.nth_quad[quad_index][index_lowest_diff[0]][

1]) / (
self.nth_quad[quad_index][index_lowest_diff[1]][0] -
self.nth_quad[quad_index][index_lowest_diff[0]][0])

b_circ = self.nth_quad[quad_index][index_lowest_diff[1]][1] - a_circ * \
self.nth_quad[quad_index][index_lowest_diff[1]][0]

x = (b_circ - normal[1]) / (normal[0] - a_circ)
y = (b_circ * normal[0] - normal[1] * a_circ) / (normal[0] - a_circ)
point = [x, y]
return point

def calculate_intersection_ib_sympy(self, punkt, normal_line):
quad_index = self.get_quad_index(punkt)
index_lowest_diff = self.get_index_lowest_diff_points(quad_index, punkt)
p_circ0 = Point(self.nth_quad[quad_index][index_lowest_diff[1]][0],

self.nth_quad[quad_index][index_lowest_diff[1]][1])
p_circ1 = Point(self.nth_quad[quad_index][index_lowest_diff[0]][0],

self.nth_quad[quad_index][index_lowest_diff[0]][1])
seg_circ = Line(p_circ0, p_circ1)
point = seg_circ.intersection(normal_line)
return point

def __get_material_list2(self, ytre_punkt_under, ytre_punkt_over, indre_punkt_under, indre_punkt_over):
list0 = [[self.punkter_ytre[0], self.punkter_ytre[3], ytre_punkt_under],

[self.punkter_ytre[1], self.punkter_ytre[2], ytre_punkt_over],
[self.punkter_indre[0], self.punkter_indre[3], indre_punkt_under],
[self.punkter_indre[1], self.punkter_indre[2], indre_punkt_over],
[self.punkter_ytre[3], self.punkter_ytre[2], self.punkter_indre[2]],
[self.punkter_ytre[0], self.punkter_ytre[1], self.punkter_indre[1]],
[self.punkter_indre[3], self.punkter_indre[2], self.punkter_indre[1]]]

return list0

def __setmaterialmesh2_sympy(self):
if self.vinkel == 0:

ytre_punkt_under = [0, -self.ytre_grenser]
ytre_punkt_over = [0, self.ytre_grenser]
indre_punkt_under = [0, -5]
indre_punkt_over = [0, 5]

else:
ytre_punkt_under, ytre_punkt_over = self.checker_ob_sympy()
indre_punkt_under, indre_punkt_over = self.checker_ib_centered_sympy()

list_iterate = self.__get_material_list2(ytre_punkt_under, ytre_punkt_over, indre_punkt_under,
indre_punkt_over)

list_iterate1 = self.list_which_material[2]
i_material = self.index_materials
for i in range(7):

for j in range(3):
self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){1})\S+',

r'\g<1>' + str(list_iterate[i][j][0]) + ',',
self.data[i_material + j + 1])

self.data[i_material + j + 1] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate[i][j][1]),
self.data[i_material + j + 1])

module_model_construction.py

Automation of RS2

self.data[i_material + 5] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][0]),
self.data[i_material + 5])

self.data[i_material + 6] = re.sub(r'^(\s*(?:\S+\s+){2})\S+',
r'\g<1>' + str(list_iterate1[i][1]),
self.data[i_material + 6])

i_material += 9
return

def get_indices_periphery(points_tunnel_boundary, points_wb_3, points_wb_4):
indices = []
to_check = [points_wb_3, points_wb_4]
for check in to_check:

for point in check:
idx = [i for i, e in enumerate(points_tunnel_boundary)

if e == [round(point[0], len(str(e[0]).replace('-', '')) - 2),
round(point[1], len(str(e[1]).replace('-', '')) - 2)]]

if not idx:
continue

indices.append(idx[0])
indices.sort()
return indices

module_model_construction.py

Automation of RS2

from subprocess import Popen
from time import sleep

import pandas as pd
import pyautogui as pag

from Automatisering_RS2 import module_main_functions as mmf

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)

"""
create mesh opens rs2 of each file and creates the mesh, defined by the settings given in the template files,
succesively.
"""

def create_mesh(mappenavn_til_rs2, mappenavn_til_csv, df_stier_rs2filer, df_stier_csvfiler, path_rs2, time,
files_to_skip, bool_shall_execute_create_mesh, storage_calculation_times):

"""

@param mappenavn_til_rs2:
@param mappenavn_til_csv:
@param df_stier_rs2filer:
@param df_stier_csvfiler:
@param path_rs2:
@param time:
@param files_to_skip:
@param bool_shall_execute_create_mesh:
@param storage_calculation_times:
@return:
"""

if bool_shall_execute_create_mesh is False:
return

time_operation = time.time()
category = 'mesh'

mmf.procede_script()
for k, (navn_rs2, navn_csv) in enumerate(zip(mappenavn_til_rs2, mappenavn_til_csv)):

if k in files_to_skip:
continue

for j in range(df_stier_rs2filer.shape[0]):
path_fil_rs2 = df_stier_rs2filer[navn_rs2][j]
path_fil_csv = df_stier_csvfiler[navn_csv][j]
if isinstance(path_fil_rs2, str) and isinstance(path_fil_csv, str):

Popen([path_rs2, path_fil_rs2])
sleep(5)

chooses the rs2 window so hotkeys can be used
pag.leftClick(927, 490, interval=time[1])
create discretization and mesh
pag.hotkey('ctrl', 'm', interval=time[1])
save
pag.hotkey('ctrl', 's', interval=time[1])

module_create_mesh.py

Automation of RS2

close window
pag.hotkey('alt', 'f4', interval=time[1])

mmf.calculate_computation_time(time_operation, category, storage_calculation_times)
return

module_create_mesh.py

Automation of RS2

import re
from subprocess import Popen
from time import sleep

import pandas as pd
import psutil
import pyautogui as pag

from Automatisering_RS2 import module_main_functions as mmf

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)

"""
get_files_unsuc_tolerance iterates over the log files created after each calculated fea-file, and stores the filenames
of log-files in where the tolerance is not below the limit set by the user. These filenames is stored in a csv file
set by the user. It is used by the function ea.calculate in experiment_actions line 148.
"""

def get_files_unsuc_tolerance(path_arbeidsfiler, list_navn_modell, path_store_unsuc_tol_models, tolerance):
path_arbeidsfiler = mmf.alternate_slash([path_arbeidsfiler])[0]
file_suffix = '.log'
list_unsucsesful_tolerance = []
subs_tol = 'Tolerance:'
for navn in list_navn_modell:

navn = navn.replace('.fea', '')
check_path = path_arbeidsfiler + '/' + navn + file_suffix
with open(check_path, 'r') as file:

data = file.readlines()
list_tol = [line for line in data if subs_tol in line]
plist = []
for line in list_tol:

p = re.findall(r"([-+]?(\d*\.\d+[Ee]?[+-]?\d*\b(?!:))|[-+]?(\d*[Ee]?[+-]?\d*\b(?!:)))", line)[1]
plist.append(p)

list_tol = plist.copy()
list_tol = [float(tol) for tol in list_tol if float(tol) > tolerance]
if list_tol:

list_unsucsesful_tolerance.append(check_path)

with open(path_store_unsuc_tol_models, 'w') as file:
file.writelines([f"{var1}\n" for var1 in list_unsucsesful_tolerance])

return

"""
The three next functions is used to automize the calculation process. When the calculations is over, the main file
is allowed to continue with the next line.
"""

"""RS2 Calculate, with filename 'feawin.exe', used to get its process data."""

"""
This function opens RS2 Compute, opens the files to be calculated in RS2 Compute, executes calculations, and lastly,
tracks the cpu usage; when below 5 percent it lets the main script continue whit the next line
"""

module_calculate.py

Automation of RS2

def automation_actions_calculation(number_of_files, sti_til_mappe_for_arbeidsfiler, coordinate_rs2_compute,
name_col_df_mouse, time=None, i=0):

if there is not defined a vector of time increments it is set to be time_list which is allocated on top of this
file.
if time is None:

time = mmf.get_time_increments()

sends the path of the workfolder to clipboard
mmf.copy2clip(sti_til_mappe_for_arbeidsfiler)

For some reason rs2 can only add roughly 600 files at a time, thus since the thesis has 924 models for one
thickness, the process must be done twice. If the models for one experiment exceeds 1200 this function must
be reedited.
num_first_batch = round(number_of_files / 2)
num_second_batch = number_of_files - num_first_batch + 1

opening the workfolder
pag.hotkey('alt', 'd', interval=time[2])
pag.hotkey('ctrl', 'v', interval=time[2])
the first opening of files begin
sleep(5)
pag.press('enter', interval=time[1])
sleep(5)
pag.press('tab', presses=4, interval=time[2])
pag.keyDown('shiftleft')
pag.keyDown('shiftright')
pag.press('down', presses=num_first_batch)
pag.keyUp('shiftleft')
pag.keyUp('shiftright')
sleep(5)
pag.press('enter', interval=time[1])
the first openings of files end
sleep(60)
second openings of files begin
pag.press('enter', interval=time[3])
pag.keyDown('shiftleft')
pag.keyDown('shiftright')
pag.press('tab', presses=2, interval=time[1])
pag.keyUp('shiftleft')
pag.keyUp('shiftright')
pag.press('down', presses=num_first_batch)
pag.keyDown('shiftleft')
pag.keyDown('shiftright')
pag.press('down', presses=num_second_batch)
pag.keyUp('shiftleft')
pag.keyUp('shiftright')
second openings of files end
sleep(15)
pag.press('enter', interval=time[1])
kjĂ¸re kalkulasjon
sleep(60)
pag.press('tab', presses=2, interval=time[2])
pag.press('space', interval=time[2])

if there is experienced trouble whith the automated calculation setup, uncomment below, and do it the hardway!

module_calculate.py

Automation of RS2

or solve the bug, up to you :))))
pause_script()

the last part checks the cpu-percentage used to the calculation operations. When it is below a limit of 5 percent
the while loop is exited and the script continues with the next step. Also, if there are problems with the file
fetching described above, this section can be commented out.
procname = 'feawin.exe' # feawin is the filename of RS2 Compute
bool_proc = mmf.check_if_process_running(procname)
sleep(5)
while bool_proc:

pid = mmf.get_pid(procname)
process_compute = psutil.Process(pid)
this makes sure that the screen do not go to powersave mode for PCs lacking admin controll or lacking
controll over the functionality of the lock and sleep beaviour.
pag.click(coordinate_rs2_compute[name_col_df_mouse[1]][i],

coordinate_rs2_compute[name_col_df_mouse[2]][i], interval=time[0])
if process_compute.cpu_percent(interval=15) > 5.0:

bool_proc = True
else:

bool_proc = False
return

"""
calculate calls the Auto.automation_actions_calculation
when calculation finnished it calls get_files_unsuc_tolerance to get files that is exceeding allowed tolerance.
"""

def calculate(path_rs2_compute, time, df_filnavn_rs2, sti_til_mappe_for_arbeidsfiler, path_store_unsuc_tol_models,
tolerance, number_of_files, bool_shall_execute_calculate, coordinate_rs2_compute, name_col_df_mouse,
bool_stop_to_check_logs, storage_calculation_times):

"""

@param path_rs2_compute:
@param time:
@param df_filnavn_rs2:
@param sti_til_mappe_for_arbeidsfiler:
@param path_store_unsuc_tol_models:
@param tolerance:
@param number_of_files:
@param bool_shall_execute_calculate:
@param coordinate_rs2_compute:
@param name_col_df_mouse:
@param bool_stop_to_check_logs:
@param storage_calculation_times:
@return:
"""
if bool_shall_execute_calculate is False:

return
time_operation = time.time()
category = 'calculation'
Popen([path_rs2_compute])
sleep(5)
automation_actions_calculation(number_of_files, sti_til_mappe_for_arbeidsfiler, coordinate_rs2_compute,

name_col_df_mouse)
lukke RS2 Compute

module_calculate.py

Automation of RS2

pag.hotkey('alt', 'f4', interval=time[2])
get_files_unsuc_tolerance(sti_til_mappe_for_arbeidsfiler, df_filnavn_rs2, path_store_unsuc_tol_models, tolerance)
mmf.calculate_computation_time(time_operation, category, storage_calculation_times)
if bool_stop_to_check_logs is True:

mmf.procede_script()
return

Automation of RS2

module_calculate.py

from subprocess import Popen
from time import sleep

import pandas as pd
import pyautogui as pag

from Automatisering_RS2 import module_main_functions as mmf

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)

"""
The four functions beneath is used to store the excavation query line values fetched from a specific file
"""
"""
This function should be used the first time the storing process is initiated.

It sets the stage to the excavation stage.
"""

def store_results_csv_prep_init(df_koordinates_mouse, name_col_df, i=1, time=None):
if time is None:

time = mmf.get_time_increments()
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # velg excavation stage
i += 1
pag.hotkey('f6', interval=time[1])
pag.leftClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],
interval=time[1]) # change type
i += 1
pag.leftClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],
interval=time[1]) # choose tot sigma
i += 1
pag.rightClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],
interval=time[1]) # choose sig1
i += 1
pag.hotkey('ctrl', 'e', interval=time[1]) # generates excavation query line
return i

"""
Same as function over, but:

This function should be used if there happened some complications during the calculation process and the operation
must be repeated. This function sets the interpreter into showing stress which is the first parameter to be stored. If
this was not done, the interpreter is saved to show total deformation.
"""

def store_results_csv_prep(df_koordinates_mouse, name_col_df, i=1, time=None):
if time is None:

time = mmf.get_time_increments()
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # choose stage 2
i += 1

module_store_data.py

Automation of RS2

pag.hotkey('f6', interval=time[1])
pag.leftClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # change type
i += 1
pag.leftClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # choose tot sigma
i += 1
pag.rightClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # choose sig1
i += 1
pag.hotkey('ctrl', 'e', interval=time[1]) # generates excavation query line
return i

"""
saves the content of excavation line to clipboard, later to be saved in csv-file
"""

def interpret_resultat_til_clipboard(time=None):
if time is None:

time = mmf.get_time_increments()
pag.press('f6', interval=time[2])
pag.click(754, 527, interval=time[1], button='right')
pag.click(846, 666, interval=time[1])
return

"""
the function stores the content given in a excavation query of a model in a specific csv file
"""

def store_results_in_csv(df_koordinates_mouse, name_col_df, path_fil_csv, navn_parameter, i=1, time=None):
if time is None:

time = mmf.get_time_increments()
if i == 4:

sr = pd.DataFrame([navn_parameter])
sr.to_csv(path_or_buf=path_fil_csv, mode='w', sep=';', header=False, index=False)
pag.rightClick(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # choose boundary 1st time, right click
i += 1
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1]) # velg copy data
i += 1
data = pd.read_clipboard() # fetch content stored in clipboard, see full description in
Logg - Mastergradsoppgave_Modellering, 10.08.2021
data.to_csv(path_or_buf=path_fil_csv, mode='a', sep=';', header=False, index=True) # data stored in a given csv

else:
sr = pd.DataFrame([navn_parameter])
sr.to_csv(path_or_buf=path_fil_csv, mode='a', sep=';', header=False, index=False)
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1], button='left') # change parameter
i += 1
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1], button='left') # choose deformation
i += 1

module_store_data.py

Automation of RS2

pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],
interval=time[1], button='left') # choose total deformation

i += 1
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1], button='right') # choose boundary 2nd time, rightclick
i += 1
pag.click(df_koordinates_mouse[name_col_df[1]][i], df_koordinates_mouse[name_col_df[2]][i],

interval=time[1], button='left') # choose copy data
i += 1
data = pd.read_clipboard() # fetch content stored in clipboard, see full description in
Logg - Mastergradsoppgave_Modellering, 10.08.2021
data.to_csv(path_or_buf=path_fil_csv, mode='a', sep=';', header=None, index=True) # data stored in a given csv

return i

"""
store_data sequences through each model and to store each query line
"""

def store_data(mappenavn_til_rs2, mappenavn_til_csv, df_stier_rs2filer, df_stier_csvfiler, path_rs2_interpret,
df_koordinater_mus, navn_kol_df_koord_mus, ant_parametere_interpret, parameter_navn_interpret, time,
ll_inner_points, bool_is_first_time_execute_data_store, bool_shall_execute_storedata, files_to_skip,
storage_calculation_times):

"""

@param mappenavn_til_rs2:
@param mappenavn_til_csv:
@param df_stier_rs2filer:
@param df_stier_csvfiler:
@param path_rs2_interpret:
@param df_koordinater_mus:
@param navn_kol_df_koord_mus:
@param ant_parametere_interpret:
@param parameter_navn_interpret:
@param time:
@param ll_inner_points:
@param bool_is_first_time_execute_data_store:
@param bool_shall_execute_storedata:
@param files_to_skip:
@param storage_calculation_times:
@return:
"""
if bool_shall_execute_storedata is False:

return
time_operation = time.time()
category = 'store_data'

i = 1
for k, (navn_rs2, navn_csv, (colname_innerpoints, l_inner_points)) in enumerate(zip(

mappenavn_til_rs2, mappenavn_til_csv, ll_inner_points.iteritems())):
if k in files_to_skip:

continue
for j, innerpoints in enumerate(l_inner_points):

path_fil_rs2 = df_stier_rs2filer[navn_rs2][j]
path_fil_csv = df_stier_csvfiler[navn_csv][j]
if isinstance(path_fil_rs2, str) and isinstance(path_fil_csv, str):

module_store_data.py

Automation of RS2

Popen([path_rs2_interpret, path_fil_rs2])
sleep(5)
if there is a window open in addition to rs2 interpret, this removes it
pag.press('tab', interval=time[1])
pag.press('enter', interval=time[2])
if bool_is_first_time_execute_data_store is True:

i = store_results_csv_prep_init(df_koordinater_mus, navn_kol_df_koord_mus, i)
else:

i = store_results_csv_prep(df_koordinater_mus, navn_kol_df_koord_mus, i)
for q in range(ant_parametere_interpret):

navn_parameter = parameter_navn_interpret[q]
i = store_results_in_csv(df_koordinater_mus, navn_kol_df_koord_mus, path_fil_csv,

navn_parameter, i)
markere slutten pĂĽ fila
sr = pd.DataFrame(['end'])
sr.to_csv(path_or_buf=path_fil_csv, mode='a', sep=';', header=False, index=False)
lukke interpret
pag.hotkey('ctrl', 's', interval=time[1])
pag.hotkey('alt', 'f4', interval=time[1])
i = 1

mmf.calculate_computation_time(time_operation, category, storage_calculation_times)
return

module_store_data.py

Automation of RS2

import os
import re
import time

import numpy as np
import pandas as pd

from Automatisering_RS2 import module_main_functions as mmf

pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pd.set_option('display.width', None)

def get_values_quad(to_plot, points, query_positions):
if not (to_plot is not None and points is not None):

return None
value_intersect, indices_max_value = [], []
points = [[round(point[0], 3), round(point[1], 3)] for point in points]
for k, (data_sep, q_pos_sep) in enumerate(zip(reversed(to_plot), reversed(query_positions))):

values, indices = [], []
for point in points:

for i, (value, q_pos) in enumerate(zip(data_sep, q_pos_sep)):
if q_pos == point:

values.append(value[1])
indices.append(i)

idx_a = indices[0]
idx_b = indices[1]
idx_c = indices[2]
idx_d = indices[3]
if k == 0:

max_value_h, max_val_with_arc_h = get_max_totdef(idx_a, idx_b, data_sep)
max_value_l, max_val_with_arc_l = get_max_totdef(idx_c, idx_d, data_sep)
index_max_value_h = data_sep.index(max_val_with_arc_h)
index_max_value_l = data_sep.index(max_val_with_arc_l)
list_append = [values[0], values[1], max_value_h, values[3], values[2], max_value_l]
for a in list_append:

value_intersect.append(a)
indices_max_value.append(index_max_value_h),

indices_max_value.append(index_max_value_l)
else:

max_value_h = data_sep[indices_max_value[0]][1]
max_value_l = data_sep[indices_max_value[1]][1]
list_append = [values[0], values[1], max_value_h, values[3], values[2], max_value_l]
for a in list_append:

value_intersect.append(a)
return value_intersect

def get_max_totdef(idx_a, idx_b, data_sep):
if idx_a < idx_b:

indices = [i for i in range(idx_a, idx_b + 1, 1)]
else:

l1 = [i for i in range(0, idx_b + 1, 1)]
l2 = [i for i in range(idx_a, len(data_sep), 1)]
indices = l1 + l2

module_execute_data_processing.py

Automation of RS2

data = [data_sep[idx] for idx in indices]
data_exl_arc = [data_sep[idx][1] for idx in indices]
max_def = max(data_exl_arc)
idx = data_exl_arc.index(max_def)
max_def_with_arc = data[idx]
return max_def, max_def_with_arc

def make_container_diff(mappenavn_rs2):
container = []
for i in range(len(mappenavn_rs2)):

container.append([])
return container

def get_parameter_values(navn_allines, params_varied):
regex_shale = r'(?<=_{})\d*\.*\d*'
param_values = []
for param in params_varied:

reg_pat = regex_shale.format(param)
param_value = float(re.findall(reg_pat, navn_allines)[0])
param_values.append(param_value)

return param_values

def get_corrupted_file_paths(file_paths, elements_corrupted_files):
if elements_corrupted_files is None:

corrupted_paths = ['']
else:

corrupted_paths = [path for i, path in enumerate(file_paths) if
elements_corrupted_files.count(i) > 0]

return corrupted_paths

def get_paths_zone2lines(file_paths, elements_corrupted_files, twolines_inside):
corrupted_paths = get_corrupted_file_paths(file_paths, elements_corrupted_files)
paths = [iteration for iteration in twolines_inside if iteration[0] not in corrupted_paths]
return paths

def get_paths_without_corrupted(file_paths, elements_corrupted_files):
corrupted_paths = get_corrupted_file_paths(file_paths, elements_corrupted_files)
paths = [iteration for iteration in file_paths if iteration not in corrupted_paths]
return paths

"""

"""

def create_csv_max_values(foldername_csv, list_values, parameternavn_interpret, paths_fil_csv,
path_data_storage, elements_corrupted_files, val_navn,
sti_values_toplot, parameters_varied, list_true_lengths):

if all(path is None for path in paths_fil_csv):
return None, None

t = path_data_storage

module_execute_data_processing.py

Automation of RS2

 t = mmf.alternate_slash([t])[0]
 p = parameternavn_interpret.copy()
 p.pop()
 # fjerner de paths som er korruperte
 paths = get_paths_without_corrupted(paths_fil_csv, elements_corrupted_files)
 list_navn_allines = [name.replace('.csv', '') for name in paths]
 list_varied_param_values = [get_parameter_values(navn, parameters_varied) for navn in
list_navn_allines]
 # lager paths til der hvor verdiene skal lagres
 path_all = t + '/' + foldername_csv + 'max_values.csv'
 list_to_df = []
 for navn, values, varied_param_values, true_len in zip(list_navn_allines, list_values,
list_varied_param_values,
 list_true_lengths):
 list_to_df.append([navn] + [true_len] + varied_param_values + values)
 df_values = pd.DataFrame(list_to_df, columns=val_navn)
 df_values.to_csv(path_or_buf=path_all, sep=';', mode='w', index=False)
 df_values.to_csv(path_or_buf=sti_values_toplot, sep=';', mode='a', index=False)
 return

"""
these functions
"""

def get_size_file(filepath):
 size = os.path.getsize(filepath) / 1000 # gives answear in kilobytes
 return size

def get_list_size_files(filepaths):
 file_sizes = []
 for path in filepaths:
 size = get_size_file(path)
 file_sizes.append(size)
 return file_sizes

def get_average(list0):
 return sum(list0) / len(list0)

def get_elements_small_files(file_sizes):
 mean = get_average(file_sizes)
 elements = [i for i, file_size in enumerate(file_sizes) if file_size < (mean - mean / 4)]
 return elements

def get_elements_corrupted_files(file_paths):
 if all(path is None for path in file_paths):
 return [None for _ in file_paths]
 file_sizes = get_list_size_files(file_paths)
 elements = get_elements_small_files(file_sizes)
 if not elements:
 elements = [None for _ in file_paths]
 return elements

module_execute_data_processing.py.py

Automation of RS2

"""
get_elements_corrupted_files_2lines
"""

def get_elements_corrupted_files_2lines(file_paths):
 if all(path is None for path in file_paths):
 return None
 file_sizes = get_list_size_files(file_paths)
 elements = get_elements_small_files(file_sizes)
 if not elements:
 elements = None
 return elements

"""
skewness
"""

def calculate_skewness(_listoflists_values, tolerance, _listoflists_archlength):
totdef_list = _listoflists_values[1]
arclength_list = _listoflists_archlength[0]
list_index = [index for val, index in enumerate(totdef_list)]
list_index = list_index[90::] + list_index[0:90]
list_bool = []
indices_momentum = []
find indices to define ranges for momentum calculation
for i in list_index:
if i == list_index[-1]:
delta = np.abs(totdef_list[i] - totdef_list[0])
else:
delta = np.abs(totdef_list[i] - totdef_list[i + 1])
if delta > tolerance:
_bool = True
else:
_bool = False
list_bool.append(_bool)
for i in range(len(list_index)):
if i == len(list_index) - 1:
if (list_bool[0] is True and list_bool[i] is False) or (list_bool[0] is False and list_bool[i] is
True):
indices_momentum.append(list_index[i])
else:
if (list_bool[i] is True and list_bool[i + 1] is False) or (
list_bool[i] is False and list_bool[i + 1] is True):
indices_momentum.append(list_index[i])
defining the ranges, both counterclockwise and clockwise for both intersections
range_top_med_klokka = [indices_momentum[0], indices_momentum[1]]
range_top_mot_klokka = [indices_momentum[1], indices_momentum[0]]
range_bot_med_klokka = [indices_momentum[2], indices_momentum[3]]
range_bot_mot_klokka = [indices_momentum[3], indices_momentum[2]]
#
totdef_top_cclockwise = totdef_list[range_top_mot_klokka[0]:range_top_mot_klokka[1]:1]
totdef_top_clockwise = totdef_list[range_top_med_klokka[0]:range_top_med_klokka[1]:-1]

module_execute_data_processing.py.py

Automation of RS2

totdef_bot_cclockwise = totdef_list[range_bot_mot_klokka[0]:range_bot_mot_klokka[1]:1]
totdef_bot_clockwise = totdef_list[range_bot_med_klokka[0]:range_bot_med_klokka[1]:-1]
iter_totdef = [totdef_top_cclockwise, totdef_top_clockwise, totdef_bot_cclockwise,
totdef_bot_clockwise]
momentum = []
for list_def, ist_arc in zip(iter_totdef, iter_arc):
#
\n mĂĽ legges til hver rad der hver rad lagres som streng
return momentum

def numerical_momentum_per_meter(list_def, list_arc, radius, youngs_modulus):
 momentum = 0
 for i in range(len(list_def) - 1):
 strain0, strain1 = list_def[i] / radius, list_def[i + 1] / radius
 arc0, arc1 = list_arc[i], list_arc[i + 1]
 momentum = momentum + calculate_momentum_i_per_meter(youngs_modulus, strain0,
strain1, arc0, arc1)
 return

def calculate_momentum_i_per_meter(youngs_modulus, strain0, strain1, arc0, arc1):
 delta_strain = strain1 - strain0
 delta_arc = arc1 - arc0
 delta_arc2 = arc1 ** 2 - arc0 ** 2
 delta_arc3 = arc1 ** 3 - arc0 ** 3

 momentum_i_per_meter = (youngs_modulus / 2) * ((delta_arc2 - arc0 * delta_arc) * strain0 +
 (1 / 12) * ((2 * delta_arc3 - 3 * arc0 * delta_arc2) /
 delta_arc) * delta_strain)
 return momentum_i_per_meter

def prep_parameter_navn(parameter_navn):
 p = []
 for navn in parameter_navn:
 navn = navn + '\n'
 p.append(navn)
 return p

def prep_strings_to_float(data):
 prepped_data = []
 for index, points in enumerate(data):
 if index < 2:
 continue
 points_string = re.findall(r"[-+]?(?:\d*\.\d+|\d+\b(?!:))", points)
 points = [float(point) for point in points_string]
 prepped_data.append(points)
 return prepped_data

def get_query_values(path_to_csv, parameternavn):
 if path_to_csv is None:
 data_split = None
 return data_split
 with open(path_to_csv, 'r') as file:

module_execute_data_processing.py.py

Automation of RS2

 data = file.readlines()
 data_split = []
 for i in range(len(parameternavn) - 1):
 index_start = data.index(parameternavn[i])
 index_slutt = data.index(parameternavn[i + 1])
 p = data[index_start:index_slutt].copy()
 p = [_list for _list in p if 'UNDEFINED' not in _list]
 p = prep_strings_to_float(p)
 data_split.append(p)
 return data_split

def get_query_positions(query_values):
 positions = []
 for i, query in enumerate(query_values):
 positions.append([])
 for value in query:
 positions[i].append(value[3:5])
 return positions

def get_values_to_plot(query_values):
 arclengths = []
 values = []
 for i, query in enumerate(query_values):
 arclengths.append([])
 values.append([])
 for value in query:
 arclengths[i].append(value[5])
 values[i].append(value[6])
 return arclengths, values

def get_values_to_plot_arc_and_val(query_values):
 to_plot = []
 for i, query in enumerate(query_values):
 to_plot.append([])
 for value in query:
 to_plot[i].append(value[5:])
 return to_plot

"""

"""

def execute_data_processing(parameter_navn_interpret, mappenavn_til_rs2, mappenavn_til_csv,
 df_stier_csvfiler, list_points_to_check, sti_til_mapper_endelige_filer,
 list_excluded_files_2linescalc, list_valnavn, sti_values_toplot,
 list_0lines_inside, list_1line_inside, parameters_varied, true_lengths,
 bool_shall_execute_data_processing, files_to_skip,
 storage_calculation_times):
 """

 @param parameter_navn_interpret:
 @param mappenavn_til_rs2:

module_execute_data_processing.py.py

Automation of RS2

 @param mappenavn_til_csv:
 @param df_stier_csvfiler:
 @param list_points_to_check:
 @param sti_til_mapper_endelige_filer:
 @param list_excluded_files_2linescalc:
 @param list_valnavn:
 @param sti_values_toplot:
 @param list_0lines_inside:
 @param list_1line_inside:
 @param parameters_varied:
 @param true_lengths:
 @param bool_shall_execute_data_processing:
 @param files_to_skip:
 @param storage_calculation_times:
 @return:
 """
 if bool_shall_execute_data_processing is False:
 return
 time_operation = time.time()
 category = 'data_processing'

 list_values = make_container_diff(mappenavn_til_rs2)

 # list_momentum_values = make_container_diff(mappenavn_til_rs2)
 parameter_navn_interpret0 = prep_parameter_navn(parameter_navn_interpret)

 for k, (navn_rs2, navn_csv, excluded_files,
 (points_check_colname, points_to_check), valnavn, (zerolines_colname, _0lines_inside),
 (oneline_colname, _1line_inside)) in \
 enumerate(zip(mappenavn_til_rs2, mappenavn_til_csv, list_excluded_files_2linescalc,
 list_points_to_check.iteritems(),
 list_valnavn, list_0lines_inside.iteritems(), list_1line_inside.iteritems())):
 if k in files_to_skip:
 continue
 # element_files_corrupted er definert mtp en treshold for filstĂ¸rrelse, da de filer hvor
feilklikking inntreffer
 # viser ca 1/3 mindre stĂ¸rrelse.
 elements_files_corrupted = get_elements_corrupted_files(df_stier_csvfiler[navn_csv])
 idx0, idx1, idx2 = 0, 0, 0
 true_lengths_copy = true_lengths.copy()
 list_true_lengths = []
 for z, (csv_sti, corrupted) in enumerate(zip(df_stier_csvfiler[navn_csv],
elements_files_corrupted)):
 if true_lengths_copy:
 true_len = true_lengths_copy.pop(0)
 else:
 true_lengths_copy = true_lengths.copy()
 true_len = true_lengths_copy.pop(0)
 if corrupted is not None:
 continue
 list_true_lengths.append(true_len)
 query_values = get_query_values(csv_sti, parameter_navn_interpret0)
 # her kan jeg legge inn for mentberegninger
 arclengths_to_plot, values_to_plot = get_values_to_plot(query_values)
 to_plot = get_values_to_plot_arc_and_val(query_values)
 query_positions = get_query_positions(query_values)
 if csv_sti == _0lines_inside[idx0][1]:

module_execute_data_processing.py.py

Automation of RS2

 max_val_def = max(values_to_plot[1])
 idx_max_val_def = values_to_plot[1].index(max_val_def)
 # arclen_max_val_def = arclengths_to_plot[1][idx_max_val_def]
 sig1_max_val_def = values_to_plot[0][idx_max_val_def]
 values = [max_val_def, sig1_max_val_def, None, None, None, None]
 list_values[k].append(values)
 _0lines_inside.pop(idx0)
 idx0 += 1
 elif csv_sti == _1line_inside[idx1][1]:
 max_val_def = max(values_to_plot[1])
 idx_max_val_def = values_to_plot[1].index(max_val_def)
 # arclen_max_val_def = arclengths_to_plot[1][idx_max_val_def]
 sig1_max_val_def = values_to_plot[0][idx_max_val_def]
 values = [max_val_def, sig1_max_val_def, None, None, None, None]
 list_values[k].append(values)
 _1line_inside.pop(idx1)
 idx1 += 1
 else:
 points = points_to_check.pop(idx2)
 idx2 += 1
 values_to_plot_2lines = get_values_quad(to_plot, points, query_positions)
 values = [None, None, values_to_plot_2lines[2], values_to_plot_2lines[5],
values_to_plot_2lines[8],
 values_to_plot_2lines[11]]
 if all(value is not None for value in values_to_plot_2lines):
 list_values[k].append(values)
 paths_fil_csv = df_stier_csvfiler[navn_csv]
 create_csv_max_values(navn_csv, list_values[k], parameter_navn_interpret, paths_fil_csv,
 sti_til_mapper_endelige_filer,
 elements_files_corrupted, valnavn,
 sti_values_toplot, parameters_varied, list_true_lengths)

 mmf.calculate_computation_time(time_operation, category, storage_calculation_times)
 return

module_execute_data_processing.py.py

Automation of RS2

Sensitivity analysis using Finitie Elem
ent M

ethod
Eirik Kaasbøll Andresen

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e
an

d
Pe

tr
ol

eu
m

Eirik Kaasbøll Andresen

Development of an automation
method to conduct sensitivity
analysis on weakness zones using
Finite Element Modelling

with focus on total deformations

Master’s thesis in Tekniske Geofag
Supervisor: Alexandre Lavrov
Co-supervisor: Are Håvard Høien
July 2022

M
as

te
r’s

 th
es

is

