
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Håkon Kristian Lem Mardal

Mímir: a Norwegian Question
Answering System
for Searching Wikidata

Master’s thesis in Informatics
Supervisor: Trond Aalberg
June 2022

M
as

te
r’s

 th
es

is

Håkon Kristian Lem Mardal

Mímir: a Norwegian Question
Answering System
for Searching Wikidata

Master’s thesis in Informatics
Supervisor: Trond Aalberg
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Mímir: a Norwegian Question Answering System
for Searching Wikidata

Håkon Kristian Lem Mardal

June 13, 2022

Abstract

Semantic Web Knowledge Bases contains massive amounts of information which
can be easily accessed by creating natural language interfaces. Question Answer-
ing systems are an extension to natural language interfaces with the goal of an-
swering questions a user can conceive. A problem with such semantic web in-
terfaces is that they usually require that the user knows the English language.
However, some Knowledge Bases include multi-linguistic support such as Wikidata
which we can take advantage of. The over-arching goal of this thesis is therefore to
leverage the Norwegian data available in Wikidata to create a simple Norwegian
specific question answering system over Wikidata and illuminate the challenges
of implementing a Norwegian specific system.

The accuracy tests and system analysis performed shows the validity of the
presented approach. The inverted indexes provided also open up the path for
further development using them and lay the footwork towards Norwegian specific
solutions for Question answering systems over Knowledge Bases.

iii

Sammendrag

Semantiske web kunnskapsbaser inneholder veldig store datamengeder av in-
formation som kan lett bli aksessert gjennom naturlig språk grensesnitt. Systemer
for å svare på spørsmål er en utvidelse til naturlig språk grensesnitt med målet å
svare på alle spørsmål en kan ha. Et problem med slike semantisk web grensesnitt
er at de vanligvis bare er tilgjengelige på engelsk. Det finnes noen kunnskapsbaser
i dag som støtter flere språk sånn som Wikidata som vi kan ta fordel av. Hoved-
målet for denne masteroppgaven er derfor å bruke de norske dataene tilgjengelig
i Wikidata til å lage et enkelt norsk spesifikt system for å svare på brukerspørsmål
og belyse utfordringer ved å implementere et slikt norskt system.

Nøyaktighetstestene og systemanalysen utført viser validiteten til den presen-
terte metoden. De norske inverterte indeksene kan bli brukt for videre utvikling av
norske systemer og viser fram veien mot norsk-spesifikke løsninger for systemer
for spørsmåls-svaring over kunnskapsbaser.

v

Preface

This Master Thesis was submitted to the Norwegian University of Science and
Technology (NTNU), Department of Computer Science(IDI) as part of the course
IT3920 - Informatics Postgraduate Thesis: Database Management and Search.

I would like to thank my advisor Trond Aalberg for his guidance, ideas and
feedback during the course. I also want to thank my friends and family for their
relentless support throughout the whole period of my studies.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Purpose . 1
1.2 Research Goal . 3
1.3 Contributions . 3
1.4 Thesis Structure . 4

2 Background and Related Work . 5
2.1 Background Theory . 5

2.1.1 Semantic Web . 5
2.1.2 Querying SPARQL VS Querying SQL 9
2.1.3 Natural Language Interfaces and the Question Answering

Task . 9
2.1.4 Knowledge Base Question Answering 10
2.1.5 Four Natural Language Processing Approaches 12
2.1.6 Available Norwegian NLP Tools and Resources 16

2.2 Review of Related Work . 17
2.2.1 SINA . 17
2.2.2 Athena . 19
2.2.3 FREyA . 21
2.2.4 Querix . 23
2.2.5 Aqqu . 24

3 Method . 27
3.1 Research Methodology . 27
3.2 Approach . 28

3.2.1 Pre-processing the Question . 29
3.2.2 Entity Matching . 30
3.2.3 Triple Candidate Generation . 31
3.2.4 Relation Matching . 32
3.2.5 Ranking . 33

ix

x H.K.L.Mardal: Mímir

3.2.6 Template Mapping and Answer SPARQL Execution 33
3.3 Evaluation Methods . 34

4 Implementation . 35
4.1 Python and Python Libraries . 35
4.2 Wikidata SPARQL Endpoint . 36
4.3 Qlever Query Engine and SPARQL Endpoint 36

4.3.1 Official Written Languages Bokmål and Nynorsk 36
4.3.2 Norwegian Alias Entity Index 37
4.3.3 Norwegian Alias Relation Index 37
4.3.4 Answer format . 38

4.4 Simple Norwegian Questions for Wikidata 38
4.5 Architecture Overview . 39

5 Evaluation and Discussion . 41
5.1 Datasets . 41
5.2 Evaluation . 42

5.2.1 Results . 42
5.3 Analysis . 44

5.3.1 Error Analysis . 44
5.4 Discussion . 46

5.4.1 RDF Graph Data Structure and Norwegian 46
5.4.2 Norwegian Methods . 46
5.4.3 Available Norwegian NLP Tools 46
5.4.4 Limitations of KB Datasets . 46
5.4.5 Limitations of Testsets . 47
5.4.6 Findings . 48

6 Conclusion . 49
6.1 Conclusion . 49
6.2 Further Work . 50

6.2.1 User Feedback . 50
6.2.2 Complex Norwegian Question Answering 50
6.2.3 Norwegian Testsets . 50
6.2.4 Norwegian Knowledge Base Expansion 50
6.2.5 Norwegian Entity recognition and Linking tools 50

Bibliography . 51

Figures

2.1 Wikidata Entity page for the United States of America including
labels and aliases for English and Norwegian. 7

2.2 Wikidata Predicate/property page for the nationality relation in-
cluding labels and aliases for English and Norwegian. 8

2.3 Example simple question answering over Wikidata in Norwegian . . 10
2.4 Example complex question answering over Wikidata in Norwegian 11
2.5 Overview over the SODA Approach. Source: [3] 12
2.6 A visualization of the CoreNLP dependency parse of a sentence . . . 14
2.7 Financial Domain Ontology applied in Athena. Source: [15] 15
2.8 Example grammar rules present in TR Discover 15
2.9 Overview of the SINA engine . 18
2.10 Overview of the Athena engine . 20
2.11 Example use of the Athena Ontology Evidence Annotator 20
2.12 Freya: Validation process of potential ontology concepts through

user interaction. Source:[20] . 22
2.13 Aqqu: query templates and example candidates with corresponding

questions . 25

3.1 Overview of the Mímir Pipeline . 28
3.2 Simple question answering over wikidata in Norwegian using Mímir

approach . 34

4.1 Overview of the Mímir Implementation 39

xi

Tables

3.1 Table showing different N-grams of a Norwegian question sentence
which are used to link entity mentions to entities in the KB 29

3.2 Table showing example linked entity aliases to N-grams entity men-
tions in the question. 31

3.3 Table showing example linked relation aliases to lemmatized rela-
tion mentions in the question. 33

5.1 Table showing accuracy results for the two evaluation testsets used
in this project. 42

5.2 A split table showing 5 example results from the Norwegian trans-
lated SimpleQuestions for Wikidata. 43

5.3 A split table showing 5 example results from the Mímir analysis
testset. 43

xiii

Chapter 1

Introduction

This chapter provides an introduction to the purpose of this research project, the
planned contribution of this work and an overview to the structure of the thesis.

1.1 Purpose

When I was growing up in the 90s and 2000s, the Internet was a useful tool when
searching for answers to questions one might have. As I grew older, structured
information resources such as the Wikipedia (a online encyclopedia) became fre-
quently utilized when querying information for school related projects. Natural
language interfaces provided by Google or Wikipedia to search such resources are
easy to use because they only require the user to have some notion of the exist-
ing semantic information contained in the database. If Wikipedia did not provide
a natural language interface, one would have to learn complex query languages
like SQL or SPARQL, and learn the schema of the Wikipedia database to be able
to retrieve such information.

With the introduction of the Semantic Web which is a vast, machine readable
and highly interconnected web of data, there is a growing need for natural lan-
guage interfaces for databases (NLIDB) that can answer queries of semantic web
data/Linked Data1. These interfaces also serve as means to give common users ac-
cess to the Semantic Web, in a similar way as it has existed for the document-based
web for the duration of the Internet’s history.

A prerequisite for using such interfaces is to learn the English language as
large amount of the interfaces to the semantic web are only made available in
English. Most of the advanced language technology - even today is only available
in English or in other languages with sizable amount of users. However there
are efforts made today towards supporting more languages. The latest Question
Answering over Linked Data challenge (QALD-9) [1], which is a state of the art
benchmark for evaluating open-domain Question Answering systems over Linked

1Linked data is the data storing structure used in the Semantic Web

1

2 H.K.L.Mardal: Mímir

Data, includes multilingual support for 11 different languages such as English,
Spanish, German, Italian, French, Dutch, Romanian or Farsi.

Norwegian is an example of a language with relatively few users with a popula-
tion of 5,4 million. 2 The Norwegian Language Council [2] advised that Norwegian
versions of advanced language technology products should be made available in
Norwegian to protect and ensure the usage of Norwegian in the future. The prob-
lem is that there exists few Natural Language Processing resources and tools with
Norwegian support. However there exist research interest groups such as NLP
Norway 3 that keep track of available NLP tools and resources with Norwegian
support at their Github Page4.

Even though Semantic Web search engines and Question Answering systems
of Semantic Web databases has existed for a long time now, and this field has en-
joyed large quantities of present research such as [3–8], there still does not exist
- to the best of my knowledge a Norwegian specific Question Answering system
for Semantic Web data. This master thesis is an attempt to illuminate general ap-
proaches used in creating natural language interfaces and Question Answering
systems, present a Norwegian Question Answering System and display the chal-
lenges implementing such a system.

2Population Statistics reported by Statistisk sentral byrå, updated 19th of May, 2022. Link: ht-
tps://www.ssb.no/en/befolkning/folketall/statistikk/befolkning

3NLP Norway Facebook Link: https://www.facebook.com/groups/nlpnorway
4NLP Norway Github Page: https://github.com/web64/norwegian-nlp-resources.

Chapter 1: Introduction 3

1.2 Research Goal

Goal Investigate how to implement a Norwegian Question Answering system for a
Knowledge Base with semantic data that translates Norwegian natural lan-
guage queries to SPARQL, querying the knowledge base for correct answers.

Hypothesis Question Answering systems over knowledge bases that store semantic
data with multilingual support can be adapted to answer simple natural lan-
guage questions in Norwegian by leveraging the topology of Linked Data, and
the Norwegian entity- and relation aliases present in the Knowledge Base to
match natural language to entities and relations.

Research Question 1 How can the data present in the Semantic Web Knowledge
Base be used to answer natural language queries in Norwegian?

Research Question 2 What challenges are present to answer user queries in Nor-
wegian over a Knowledge Base?

Research Question 3 How can we evaluate the performance of our Norwegian Ques-
tion Answering system?

1.3 Contributions

The project provides a Norwegian Question Answering system over Wikidata, and
presents how it can be used for answering simple natural language queries.

1. Provides a novel question answering system for translating simple Norwegian
natural language queries to SPARQL queries based on existing approaches in
English

2. Provides an entity index dataset for Norwegian linking Norwegian aliases to
entities present in Wikidata

3. Provides a relation index dataset for Norwegian linking Norwegian aliases to
properties present in Wikidata

4. Provides a Norwegian evaluation set of simple questions and wikidata answer
pairs, manually crawled and inspired by SimpleQuestions For Wikidata data-
set.

4 H.K.L.Mardal: Mímir

1.4 Thesis Structure

Chapter 2 Chapter 2 consist of background knowledge explaining basic concepts around
semantic web and NLP task of converting NL to database query language as
well as related work in the domain.

Chapter 3 Chapter 3 lays out the methodology and approach.

Chapter 4 Chapter 4 presents the implementation of the architecture and the different
technologies needed for building such a system.

Chapter 5 Chapter 5 lays out the evaluation settings and the different testing experi-
ments for the project as well as discusses the the merits of the work, sum-
marizes the findings and the limitations of the project.

Chapter 6 Chapter 6 concludes the work done and presents future work for further
improvements.

Chapter 2

Background and Related Work

This chapter contains the theoretical material needed to understand the project
and the different building blocks which are necessary to cover the theoretical
basis. The chapter starts with an overview over Semantic Web technologies, the
general task of creating natural language interfaces for databases (NLIDB), con-
tinuing to my specific Knowledge Base Question Answering task, natural language
processing approaches and reviews related work present in the literature.

2.1 Background Theory

Mímir is accounted as the wisest god in Norse mythology and a trusted advisor
to Odin. Mímir guarded the "Well of Knowledge", often named the "Well of Mímir"
from which he would drink wisdom from. My Question Answering system is named
Mímir to personify the system as a gateway between the users and the vast inform-
ation present in Semantic Web Knowledge Bases.

2.1.1 Semantic Web

The Semantic Web provides a semantic way of representing, storing and query-
ing information. Tim Bernes-Lee the creator of the World Wide Web, defined the
Semantic Web as “a web of data that can be processed directly and indirectly by ma-
chines”. The main idea of the Semantic Web is to support a distributed web at the
level of the data (entities, concepts) rather than at the level of the presentation
(documents). What this means is instead of storing web pages aka documents as
singular values on the web, the Semantic Web stores the underlying concepts, en-
tities and data as individual resources confined in the documents, making them
building blocks of semantic information. This way, links (hyperlinks) and relations
can exist between resources that explain how they are related semantically, and
the same resources can be linked and matched across the web.

The World Wide Web functions as a provider of documents (websites) using
hyperlinks (URLs), the Semantic Web provides resources using hyperlinks. These
resources are semantic in nature meaning they describe some entity which can

5

6 H.K.L.Mardal: Mímir

be physical or abstract concepts and are connected and point to one another by
using global references called Uniform Resource Identifiers (URI) . These entities
and concepts can be grouped, linked and expanded across heterogeneous websites
to get a consistent web of their meanings and relations. Such entities can be for
instance persons, organizations, objects, addresses, numbers. This way we can
retrieve and present consistent information on the internet based on its semantic
meaning.

To be able to represent and store machine-readable relations in the distributed
web of data, the data model Resource Description Framework (RDF) is used as a
format to create RDF triple-stores that describe how entities relate and together
constitute linked datasets. A RDF triple consists of a Subject, Predicate and Object1

that models machine-readable data relations. RDF triple can also be described in
graph terms as two nodes and an edge between them. An example triple describing
marriage;
< S > Bil l_Gates,< P > married_to,< O > Miranda_Gates.
An example triple statement using literals, aka property values like strings,

numbers, boolean, etc. In this case string type:
< S > Bil l_Gates,< P > nationali t y,< O > America.
To be able to define hierarchies to describe how these URIs are connected in

a certain subject or domain, ontologies are defined using Resource Description
Framework Schema (RDFS) and Web Ontology Language (OWL) which are used
as relation vocabularies in the Semantic Web technology stack. An ontology is
a machine-readable representation of a domain with concepts, entities and rela-
tions between them. The ontologies provides a way to recognize terms and its
surrounding domain environment in a natural language query which can then be
used to correctly map the input query to a database query language.

RDF literals can also be tagged with a language tag, for instance the literal
from the last example regarding Bill Gates, where "America@en" can be tagged
with corresponding English language tag, "@en" at the end of the string. A Norwe-
gian tag for the literal "America" can be "Amerika@nb" where "@nb" are initials
for the Norwegian standard written language "Norsk Bokmål". These language
tags can be used to filter database queries to return language specific literals.

DBpedia [9] and Wikidata [10] aim to create multilingual knowledge base
based on RDF-stores encompassing all general knowledge so that humans can
edit and machines can read on the Semantic Web. These knowledge bases contains
structured information from the general online encyclopedia Wikipedia. The term
"knowledge base" is often used as a synonym to the term "knowledge graph" which
describes a real world perception of entities and their interrelations organized
in a graph. These RDF-stores are multilingual in the sense that they store RDF
information for many languages. Entities aka RDF subjects or objects have many
linked triple statements linking them to information in many different languages.
Note that this also includes multiple synonyms/aliases in the respective languages.

1Objects can also be literals in a RDF triple

Chapter 2: Background and Related Work 7

Figure 2.1: Wikidata Entity page for the United States of America including labels
and aliases for English and Norwegian. Note that the table has not been expanded
to show other supported languages as well. RDF triple statements about the entity
can be found further down on the Wikidata webpage, which are not shown in this
figure.
Available at: https://www.wikidata.org/wiki/Q30

Wikidata relations aka RDF predicates are also stated using labels and aliases
for many different languages. A Wikidata Entity has many statements connected
to it, which are essentially connected RDF predicates and other Wikidata entities
or literals. Note that Norwegian has two official languages, Norwegian Bokmål
and Norwegian Nynorsk.

8 H.K.L.Mardal: Mímir

Figure 2.2: Wikidata Predicate/property page for the nationality relation includ-
ing labels and aliases for English and Norwegian. Note that the table has not been
expanded to show other supported languages as well.
Available at: https://www.wikidata.org/wiki/Property:P27

Chapter 2: Background and Related Work 9

2.1.2 Querying SPARQL VS Querying SQL

RDF query languages are based on querying graph patterns in the form of RDF
triples accessing a web of linked data. The triples consist of subject, predicate and
object resources. To query using a triple, you can replace a resource in any of the
positions with a variable indicated by the question mark character ?. If you want
to know who directed the movie "The Dark Knight", the graph pattern can look
like this:

1 ?director dir:directedMovie movie:TheDarkKnight.

Of course you can have multiple RDF triples to query a larger graph pattern.
A SPARQL query can look like this (ignoring prefixes) to find director and actor
where the actor name is Christian Bale:

1 SELECT ?director ?actor
2 WHERE {
3 ?director dir:directedMovie ?movie.
4 ?actor actor:actedInMovie ?movie.
5 ?actor actor:name "Christian Bale".
6 }

The general idea is that you can query sub-graphs using a set of RDF statements
(graph patterns) for the information you need.

SQL relies on the relational algebra of joins and primary key - foreign key ref-
erences between tables to answer queries. Example SQL query for querying similar
information as the SPARQL example defined previously:

1 SELECT Director.name, Actor.name
2 FROM Director
3 JOIN Movie
4 ON Director.ID = Movie.director_id
5 JOIN Actor
6 ON Movie.actor_id = Actor_id;
7 WHERE Actor.name = "Christian Bale"

So even though SPARQL and SQL share similar syntax such as SELECT, WHERE,
GROUP BY and ORDER BY, the underlying query structure is very different.

2.1.3 Natural Language Interfaces and the Question Answering Task

Natural language interface for databases (NLIDB) are interfaces that take some
natural language query, often keywords or sentences as input and automatically
produces results from a database by employing database query language like SQL
or SPARQL. The advantage of implementing such interfaces is that it eliminates
the need to learn complex querying languages and database schemas for the users.
The problem is of course to create decent implementations that can produce ad-
equate results from ambiguous natural language queries. Popular search engines
on the internet like Google, Bing and Duck Duck Go! all provide natural language

10 H.K.L.Mardal: Mímir

interfaces that allow queries through text fields. These search engines provides
mostly relevant documents, but also possess support for Knowledge Bases which
can supply individual data items as answers to query questions like the ones that
we are interested in this thesis.

The question answering task consists of automatically answering questions
and statements posed by users in a natural language format stating their inform-
ation need. By using natural language processing tools and methods to translate
natural language queries into machine readable database query languages, we
can retrieve answers from databases for users that does not know query languages
nor know how to query databases. The question answering task is used to test and
evaluate existing search engines by providing datasets of questions and expected
answers/database queries. These datasets are often structured with an increasing
level of difficulty.

2.1.4 Knowledge Base Question Answering

Question Answering over Knowledge Bases, often called Question Answering over
Knowledge Graphs is an extension to the general Question Answering task in-
volving using large Knowledge Bases such as DBPedia [9] or Wikidata [10] as
information hubs which are queried for possible answers. Querying such large
datasets present in these knowledge graphs poses additional challenges. Wikidata
contains > 90 million entities (nodes) and > 1150 million statements (edges)
which makes the lookup and ranking for candidate answers challenging.

Edvard Grieg
Q80621 ?

Hvilket instrument spilte Edvard Grieg?

instrument

P1303

Piano:Q5994

Figure 2.3: Simple question answering over Wikidata in Norwegian, resulting in
a wikidata entity Piano.

Figure 2.3 shows a simple question answering over Wikidata example in Nor-
wegian. By identifying the entity and the relation we want to query for, we can
execute a SPARQL query that finds object variables where the statement Edvard
Grieg -> instrument is true, resulting in the instrument entity we were looking for.

Chapter 2: Background and Related Work 11

The character "Q" in combination with a unique number constitute entities identi-
fication in Wikidata, in this example Edvard Grieg has the id "Q80621". Similarly
"P1303" identifies the edge statement "instrument" where "P" identifies it as a prop-
erty (predicate) relation. Note that all the entries from Wikidata in this example
are in Norwegian, as Wikidata is a multilingual supportive knowledge base.

Complex question answering begins when we ask questions that require more
than a single RDF triple to answer the question. In such a query you can have an
intermediate entity with relations that points to additional entities. An example
of such a question answering task is present in figure 2.4

Gesine Hagerup
Q111788979 ?

Hvilket instrument spilte sønnen til Gesine Hagerup?

Piano:Q5994

?instrument

P1303

barn

P40

Figure 2.4: Complex question answering over Wikidata in Norwegian, requiring
a sub-graph of additional entities and properties resulting in a Wikidata entity
Piano.

Entity Recognition and Entity Linking

To be able to produce answers from a knowledge base, entities (and predicates)
need to be recognized in the input query and linked to existing entities (and pre-
dicate relations) in the Knowledge Base. When linking the entities to the textual
mentions it is important to rank and disambiguate the candidate entities to re-
turn the most correct answer. Entity indexes, aka inverted indexes of the entities
can be applied to increase performance and speed-up the process of getting the
correct candidates, instead of executing time consuming SPARQL queries during
run-time. Inverted indexes can be built using the available aliases for entities from
Wikidata which are showcased in figure 2.1. For English there exists > 98 million
Wikidata entity aliases, while for Norwegian Bokmål there exists only > 7 mil-
lion entity aliases. For Norwegian Nynorsk there exists <6 million entity aliases.
The exact Wikidata SPARQL query for getting these numbers are shown in the
implementation chapter 4.

Externally trained entity annotator and entity linking systems can exist separ-

12 H.K.L.Mardal: Mímir

ately for entity retrieval such as TAGME [11] and ELR (Entity Linking incorporated
Retrieval) [12]. Such systems can be applied to solve the sub-problem of entity re-
cognition and linking in question answering systems over Knowledge Bases. The
problem is finding such systems that exist for Norwegian specifically.

2.1.5 Four Natural Language Processing Approaches

When looking at possible approaches in natural language for translating the actual
text, they can be characterized as four main categories that are either used alone
or in some combination. These four general approaches are based on keywords,
parsing, grammar and machine learning.

Keyword Approach

The simplest and the most common approach is the keyword-based approach. This
approach utilizes short keywords that can be mapped to entities and data values
present in the database and ranked according to likely matches. An inverted index
is created from the data and metadata, which is used to examine known terms in
this index to find a match. Simplicity and customization are big advantages when
applying this approach. Example input queries are short describing keywords for
instance "highest mountain world", rather than complete sentences like "what is
the highest mountain in the world called?".

SODA [3] is an example of a well-performing keyword approach that utilizes
a graph pattern matching algorithm to link keywords with a metadata model of
the data warehouse. The metadata model is used to map keywords to tables con-
taining wanted information by applying domain ontologies that classify keywords
to appropriate domains. The SODA pipeline is described in figure 2.5.

Figure 2.5: Overview over the SODA Approach. Source: [3]

Pattern-based approach is worth mentioning as it is an extension to the keyword

Chapter 2: Background and Related Work 13

approach. In an additional step the keywords are analyzed for predefined patterns
that are related to general categories of keywords. The found relations and pat-
terns in the keywords are then formulated into a database query.

14 H.K.L.Mardal: Mímir

Parsing Approach

In this approach systems parse the input query, often using existing natural lan-
guage processing tools such as NTLK [13] or Stanford CoreNLP [14]. These tools
provide Part of Speech (PoS) annotations which classify words with grammatical
properties in sentences. Then the tools can use the grammatically rich sentences
to produce graph trees, known as parse trees with information describing indi-
vidual words and grammatical relations. From analyzing the semantic meaning
these relations, corresponding rules (similar to patterns-based) can be mapped
from the parsed input query and used to generate valid database queries.

Figure 2.6: A visualization of the CoreNLP dependency parse of a sentence using
their web demo available at: https://corenlp.run.
PoS tags: WP=wh-pronoun, VBZ=Verb, DT=determiner, NN=noun singular or
mass, IN=preposition, NNP=proper noun singular.
Dependency tags: punct=punctuation, nsubj=nominal subject, cop=copula,
det=determiner, nmod=nominal modifier, case=case marking.

Some systems apply this methodology by relying solely on the parse trees like
NaLIR (Natural Language Interface for Relational databases) [5] which translates
natural language into SQL and is able to handle aggregation functions, nesting
and various types of joins.

Other systems combine parsing with some other element like Athena [15],
which is ontology driven NLI for relational databases. Athena interprets NLQ with
the domain specific ontology shown in figure 2.7 and relies on mappings between
the ontology and the SQL database in order to work.

Grammar Approach

Although the parsing approach has some usage of grammar, the grammar ap-
proach is distinctly different from the previously mentioned approaches. This ap-
proach applies a fixed set of grammar rules that constrains the types of questions
you can ask a database. Through these rules, a grammar system can guide the
user into creating their queries, and in the process also expose the user to more
of the database, making pretty accurate queries. The problem with this approach
is that the rules are extremely domain-specific and have to be created by hand
for each individual case, while other approaches can be generalized to encompass
more general queries. However it is important to stress that the other approaches
are to some degree also bound to this disadvantage.

An example of this approach is TR Discover [7] which creates a First Order

Chapter 2: Background and Related Work 15

Figure 2.7: Financial Domain Ontology applied in Athena. Source: [15]

Logic representation2 of the input query as an intermediate language. The system
uses the intermediate language to propose auto-completion and predictions to the
user while inputting the query. These suggestions are generated from the relation-
ships and entities present in the database. The rules which are still valid to the
input query are used to create a parsetree, which is then traversed and translated
either to SQL or SPARQL.

Figure 2.8: Example grammar rules present in TR Discover. Grammar rule G3
indicates that a verb phrase (VP) contains a verb (V) and a noun phrase (NP). The
Lexical entries Lex1-3 are used to map words to their database entity counterpart.
Source:[7]

Machine Learning Approach

Machine Learning approaches to NLI use very rudimentary schemas. They are
linguistically- or ontology-based, and can be made to work generally across the
board, fitted to any training/test case one can desire. The most common ones are
based on neural network models. In current research, more and more systems

2FOL representation is a concise way to represent natural language statements

16 H.K.L.Mardal: Mímir

include machine learning in their translation process as found in a comparative
study of recent NLIDBs [16]. Translation from NL to database query languages like
SPARQL and SQL can be formulated as a supervised machine learning problem,
giving advantages such as greater variability in query expressions, letting users
formulate flexible queries, compared to stiff and restricted queries present in the
previously described approaches.

An example of a state of the art approach using evolutionary algorithms lever-
aging ontologies named EvolNLQ, is presented in the PhD dissertation by Se-
bastian Schrage [17] which describes a general learning framework that creates
intelligent agents that learn to solve NLI to SPARQL translations.

2.1.6 Available Norwegian NLP Tools and Resources

As introduced in section 1.1 NLP Norway keeps track of available NLP tools and
resources at their Github page3. This section is a browsing of the different tools
and resources available that might be useful in our Question Answering system.
SpaCy is a NLP library with support for Norwegian Bokmål with components such
as parsers, lemmatizers, named entity recognition and more. Their implementa-
tion is based on the Norwegian Dependency Treebank [18] which is a syntactic
treebank for Norwegian Bokmål and Nynorsk. At the github page there also exists
different experimental models for different uses such as named entity recogni-
tion, Bert models, Norwegian Word vectors, sentiment analysis and more. As for
corpuses they include a Norwegian stop-word dataset and general purpose Nor-
wegian web corpus, but no datasets useful for Knowledge Base Question Answer-
ing - like an index for linking mentions to KB items. Even though Named Entity
recognition tools exists for Norwegian, these are trained on news corpuses and
are generally not compatible for a general Knowledge Base encompassing vast
amount of knowledge. The entity recognition tools do not solve the problem of
actually linking the mentions to the KB items.

3NLP Norway Github page: https://github.com/web64/norwegian-nlp-resources

Chapter 2: Background and Related Work 17

2.2 Review of Related Work

In this section comes a review of recent search engines for graph databases as
well as relational databases, and Question Answering systems that employ the
different approaches previously explained. Specifically, what other research has
been conducted in the area and how they motivate my work. All the presented
systems evaluate on some performance measures like recall, accuracy or precision.
This review was vital for me to decide which approaches was worth pursuing in
this project given that we want to create a Norwegian system.

2.2.1 SINA

SINA [6] is a keyword-based search engine that translates natural language ques-
tions into conjunctive SPARQL queries. In the query pre-processing step (2) shown
in figure 2.12, SINA reduces input question queries into representative term-
s/keywords before lookup in available Semantic Web resources. Similarly to an-
other keyword-based approach NLP-reduce [19], this reduction is done by apply-
ing NLP methods such as tokenization, stop-word removal and stemming/lem-
matization to the query, so that resources can easily be matched to the resulting
keywords. In the segment validation step (3), the keywords are segmented into
groups of varying length, fitting them to available resources. For instance, the
keywords "Fight" and "Club" would be grouped into "Fight Club" and be recog-
nized as the movie. (4) In the resource retrieval step, the fitted keywords are then
string matched to RDF labels in the resources. In the disambiguation step (5), the
appropriate subset of resources is retrieved by ranking. (6) The SPARQL query is
generated from the graph-structure present in the database for the selected re-
sources.

Contribution

SINA provides a novel approach for determining the most suitable resources for
a user-supplied query from different datasets by employing a Hidden Markov
Model4 with different distribution functions.

SINA also supplied a novel method for construction SPARQL queries by lever-
aging the linking structure of graph databases using a link traversal method for
creating a connected graph. However this approach also constraints the engine to
only be able to answer conjunctive queries resulting in a connected sub-graph.

Evaluation

SINA evaluate the accuracy of their approach using performance measures such as
precision, recall and F-measure on three interlinked datasets as well as DBPedia.

4Hidden Markov Models are a class of probabilistic graphical model that lets us predict sequences
of unknown variables from a set of observed variables

18 H.K.L.Mardal: Mímir

They also studied the runtime of their approach by implementing both a sequential
and a parallel implementation of the system.

Figure 2.9: Architecture of the SINA search engine. Source:[6]

Chapter 2: Background and Related Work 19

2.2.2 Athena

Athena [15] is a parsing-based search engine for relational databases, which handles
sentence input queries. Athena is ontology-driven which means that it relies on
mappings between a domain ontology and the relational database it uses. To be
able to mitigate linguistic variation it employs a set of synonyms to be associated
with each element in the given ontology. To be able to convert an input ques-
tion into SQL, an intermediate Ontology Query Language (OQL) is used before
translating input to SQL.

Firstly Athena uses an ontology evidence annotator which maps the input
query to ontology elements present in the graph. These types of matches are
metadata, synonyms and variations of entities, temporal expressions, numerical
expressions and dependencies. Secondly Athena creates a ranked list of the inter-
pretations which are ontology elements provided in the first step. The third step
is to generate the intermediate query using OQL which is able to express aggreg-
ation functions, unions and nested sub-queries. This is done by supporting trigger
words in the user query such as "by" for Group By function in SQL or Order By
clause which is triggered by words such as "least", "most", "ordered by" and more.
The generated OQL is then used by a translation algorithm which performs all
the execution tasks described in OQL for SQL. This includes executing unions of
individual OQL queries, performing attribute and join condition transformation.
A query that consists of directly translatable attributes and join conditions can be
directly translated into a SQL query. The reason for this is that the only database
tables accessed are the ones that correspond to the concepts present in the sets of
attributes and join conditions.

Contribution

Athena is the first ontology-based NLQ engine for relational databases. Athena
provides a novel two-stage approach that translates the input into an intermediate
ontology query language before translating to SQL. Athena can also handle more
complex queries that requires aggregation functions, unions and nesting.

Evaluation

Athena evaluate the accuracy of their approach using performance measures such
as precision, recall and mean reciprocal rank on three different workloads of dif-
ferent data types; geographical, financial and academic.

20 H.K.L.Mardal: Mímir

Figure 2.10: Architecture of the Athena search engine

Figure 2.11: Example use of the Athena Ontology Evidence Annotator.
Source:[15]

Chapter 2: Background and Related Work 21

2.2.3 FREyA

FREyA [20] is a parsing-based search engine for automatic SPARQL generation
that uses knowledge encoded in the ontologies as the primary source for under-
standing the user’s question and the syntactic parsing as a secondary source to
provide more precise answer. It does so by annotating the user input with onto-
logy concepts5 it is able to recognize by heuristic rules, and engages in clarification
dialogues with the user whenever there are ambiguous concepts. FREyA translates
a natural language question into a set of ontology concepts by combining the syn-
tactic parsing with an ontology reasoner in order to identify the user’s information
need correctly. Potential ontology concepts (POC) are identified by the syntactic
parse tree generated by the Stanford Parser tool, a precursor to the CoreNLP tool
[14] and ranked by string similarity to suggestion including synonym detection
by Wordnet [21], which is a synonym lexical resource.

Contribution

FREyA contributes with a model that can take advantage of user feedback to dis-
ambiguate concepts and find the right answer. In addition, the user feedback is
saved to improve FREyA’s performance over time. The drawback is that few quer-
ies can be answered without any clarification dialogues.

Evaluation

FREyA is evaluated using the performance measures precision and recall. They
also evaluated the performance of their ranking algorithm using mean reciprocal
rank. They tested the system on a geography dataset from Mooney containing 250
questions .

5Ontology concepts includes all ontology elements:classes, instances, properties and literals

22 H.K.L.Mardal: Mímir

Figure 2.12: Freya: Validation process of potential ontology concepts through
user interaction. Source:[20]

Chapter 2: Background and Related Work 23

2.2.4 Querix

Querix [4] is a parsing-based approach that lets users enter questions in natural
language to query an ontology. Similarly like FREyA [20], if the engine recognizes
ambiguous input tokens, it then uses clarification dialogues querying the user.
Querix also uses a syntax parse tree to extract the sequences of words and their
part of speech tags to create a query skeleton. Querix also applies Wordnet [21] to
supply synonyms to the query skeleton. The query skeleton is then used to match
RDF triple patterns in the ontology to possible subject - predicate - object triples
found in the user input query or its synonyms.

Contribution

Querix contributes with a simple model that is easy to use and portable as it does
not need any adaptation for new ontologies. However the simplicity also reduces
the number of questions that can be answered as it has to include the predefined
syntax.

Evaluation

Querix is evaluated using the performance measures precision and recall. They
tested the system on a knowledge base containing geographical information and
ran 215 queries.

24 H.K.L.Mardal: Mímir

2.2.5 Aqqu

Aqqu [8] is a template-based Question Answering System over Freebase6 which
focuses on "structurally simple" questions. Such questions contains a few know-
ledge base entities and relations where the natural language terms needs to be
correctly mapped to entities and relations(properties) present in the Knowledge
Base. Aqqu initially identifies the entities present in query by mapping mentions
to entities in the Freebase database. Aqqu delays the disambiguation step, and the
result of the entity identification step is a set of possibly overlapping entities men-
tions with attached confidence scores. Next, Aqqu matches the query question to
a template. The templates are predefined sub-graphs which in the end constitute
the sub-graph pattern in the resulting SPARQL query. Candidate predicates and
objects are found by executing ambiguous SPARQL queries where only the entity
is known, and placeholder variables are put in place for the rest of the template. In
the relation matching step the ambiguous query candidates are scored by having
their predicates matched to relations mentioned in the question. They do this by
string matching the name or description of the relation in the KB. Each of these
matches has a confidence score attached. Last step is the ranking step, where each
query candidate is enriched with information about which entities and relations
match which parts of the question. Candidates that cover most of the question is
intuitively ranked as the best.

Contribution

Aqqu contributes with a simple template model that performs surprisingly well.
By doing ranking in the final step, Aqqu has the benefit of jointly disambiguating
entities and relations at the same time. This way, a candidate can have a weak
entity match, but a strong relation match and still be highly ranked as a possible
candidate.

Evaluation

Aqqu is evaluated using the performance measures accuracy and average F1. They
tested the system on Freebase KB an evaluated using two established benchmarks:
Free917 containing 267 questions and WebQuestions containing 2032 questions.
These benchmarks contains a set of question and Freebase answer entity pairs as
their format.

6Precursor Knowledge Base to Wikidata

Chapter 2: Background and Related Work 25

Figure 2.13: Aqqu: Query templates and example candidates with corresponding
questions. A query template can consist of entity placeholders e, relation place-
holder r, and intermediate object m and the answer node t. Source:[8]

Chapter 3

Method

This chapter presents the research methods applied in this project, the limitations
to the chosen methods, the chosen approach to solve the research questions, re-
search goal and hypothesis.

3.1 Research Methodology

Finding Related Work

The first step of the research methodology was a phase of familiarization with
the domain, by finding previous work in the area by keyword search on Google
Scholar1 and DLBP2 as well as look-ups to unknown concepts or methods on
Google. General keywords used were for instance "Question Answering", "Natural
language interfaces", "Natural Language interface Knowledge Graph", "Question
Answering Knowledge Base". Comparative studies were useful resources to under-
stand what domain specific state of the art approaches were available. In addition,
look-ups in the references were applied to quickly gain access to relevant work in
the nested web of references. NTNU-Open3 contains other master’s theses and
PhD theses that were inspiring and beneficial to read through.

Developing a Question Answering System

To be able to answer the research questions, hypothesis and goal described in
section 1.2, a Question Answering system over Wikidata was developed with the
content of section 1.2 in mind.

1Google Scholar Link: https://scholar.google.com/
2DLBP is a computer science biblography: https://dblp.org/
3NTNU-Open available at: https://ntnuopen.ntnu.no/ntnu-xmlui/

27

28 H.K.L.Mardal: Mímir

3.2 Approach

When deciding the chosen approach, a several things was taken into consider-
ation. The available Norwegian specific NLP tools and dataset resources were
browsed. After realizing what resources and dataset were available it was also a
process of fitting the tools to the different approaches and related work presented
in chapter 2, to shape a method that could be compatible for Norwegian Ques-
tioning Answering over Wikidata. It was also decided to create entity and relation
indexes to link question entity and relation mentions to KB items as no such data-
set existed for Norwegian, which is vital for answering natural language queries
using a Knowledge Base. This predicament in particular had a lasting effect on
the chosen approach.

Our approach for creating the Question Answering System was based on the
approach Aqqu [8] explained in section 2.2.5 with a few tweaks:

• focuses on the simple query template with only 1 RDF triple required to
answer a question, skipping the template matching routine
• creating a Norwegian entity index as well as a Norwegian relation index for

faster look-ups
• replaces the learning-based ranking approach with a heuristic feature-based

ranking

This approach is mainly reliant on the Norwegian entity- and relation aliases
present in the KB (as well as the KB itself), in order to answer the user ques-
tion. In addition the approach uses the SpaCy library with Norwegian support for
Norwegian specific pre-processing of the question.

Question

Mimir System Overview

Preprocessing Entity
Matching

Candidate
Generation

Relation
Matching Ranking Template

Mapping
Result Query

Execution

Figure 3.1: Overview of the Mímir end-to-end pipeline.

Chapter 3: Method 29

3.2.1 Pre-processing the Question

Tokenization

Tokenization is the process of splitting each of the terms in the questions are split
into tokens. The tokens are single words split by white-space, and looks simil-
arly to the unigrams present in table 3.1. Tokenization is done to enable further
processing in later stages, such as PoS Tagging and Lemmatization.

N-gram Generation

To be able to match an alias of varying word length to an entity in the KB, the
question is split into N-grams. These N-grams are used to map entity mentions in
the question to entity aliases of varying term length present in the KB.

N-grams
Sentence Hvem er forfatteren av naiv super
Unigrams ’hvem’, ’er’, ’forfatteren’, ’av’, ’naiv’, ’super’
Bigrams ’hvem er’, ’er forfatteren’, ’forfatteren av’, ’av naiv’, ’naiv super’
Trigrams ’hvem er forfatteren’, ’er forfatteren av’, ’forfatteren av naiv’, ’av naiv super’
Four-grams ’hvem er forfatteren av’, ’er forfatteren av naiv’, ’forfatteren av naiv super’
Five-grams ’hvem er forfatteren av naiv’, ’er forfatteren av naiv super’

Table 3.1: Table showing different N-grams of a Norwegian question sentence
which are used to link entity mentions to entities in the KB. Note that it is the
Bigram ’naiv super’ which is the correct entity mention for this question.

Lemmatization

Lemmatization is the process of converting a token into its canonical form. For in-
stance a conjugated word is converted into its Infinitive. This is done to increase
the number of possibly matching relations in the relation step described in sub-
section 3.2.4.

POS Tagging

POS Tagging is useful as it tells us information about the grammatical structure
of each term. Each of the question terms is annotated with a POS-tag, classifying
terms as nouns, verbs, adjectives and more. This is extremely useful especially in
the relation matching step.

30 H.K.L.Mardal: Mímir

3.2.2 Entity Matching

Norwegian Alias Entity Index

The entity index is the result of a SPARQL query that retrieves all Norwegian
aliases and their linked entity URI. The actual SPARQL query can be found in
the implementation chapter 4.3.2. The query resulted in an entity-alias index of
over 7 million aliases and their connected entities. In particular for each entity we
retrieve fields which can be used as Norwegian aliases. Specifically these consist
of relations that return literals for:

• ’Familiy name’ - <http://www.wikidata.org/prop/direct/P734>
• ’Short name’ - <http://www.wikidata.org/prop/direct/P1813>
• ’Birth name’ - <http://www.wikidata.org/prop/direct/P1477>
• ’Nickname’ - <http://www.wikidata.org/prop/direct/P1449>
• ’Pseudonym’ - <http://www.wikidata.org/prop/direct/P742>
• ’Label’ - <http://www.w3.org/2004/02/skos/core#label>
• ’Alternative Labels’ -<http://www.w3.org/2004/02/skos/core#altLabel>

The literals had all their uppercase characters lowered and "unidecoded" to ensure
more matches to question terms where such things are not differentiated by the
user. The dataset was then grouped and aggregated by alias resulting in a dataset
of distinct aliases and their connected Wikidata entity URI where the aggregated
dataset consist of 3 million rows containing aliases and their set of connected
entities.

Entity Identification and Linking

To be able to recognize and link entities mentioned in the question, a mapping
step between the question terms and the entities in the KB is required. This is done
by looking up the inverted entity index of all Norwegian aliases for entities and
matching them to the N-grams of the input question. The results of this step is
a set of possibly overlapping entities matched from the different N-grams, as any
alias can have several connected entities. Each N-gram entity match is also marked
with a N-gram score, based on the number of words in the N-gram matched to
the entity.

Chapter 3: Method 31

N-gram matched Entity Alias Index
Alias Entity Links Description

’hvem’ http://www.wikidata.org/entity/Q504961 A 1927 film where
’hvem’ is the Norwegian
name.

’super’ http://www.wikidata.org/entity/Q66116090 American comedian
Glenn Super

’super’ http://www.wikidata.org/entity/Q37318743 Refers to the family
name Super

’super’ http://www.wikidata.org/entity/Q3027202 French musician named
Didier Super

’naiv super’ http://www.wikidata.org/entity/Q1767831 A novel by Erlend Loe
...

Table 3.2: Table showing example linked entity aliases to N-grams entity men-
tions in the question. The bold row is the correct match for retrieving the answer.

3.2.3 Triple Candidate Generation

We use the simple template pattern described as Template 1 in Aqqu [8] which
consists of a single Subject - Predicate - Object triple as our template for generat-
ing candidate triple statements. Because we only answer simple queries on this
template form, the template matching step present in Aqqu is omitted.

Let E be the set of all KB entities matched to a N-gram of the question as
described in previous subsection. For each entity e ∈ E, we generate all predicates
and objects related to that entity by executing a single SPARQL query for each e.
This gives us the full list of relation triples that any linked entity has.

• For each entity e ∈ E Query(e, ?P, ?O),
where ?P is an ambiguous predicate relation variable and
?O is an ambiguous object variable.

The result of this step is the ambiguous triple candidates which constitute the set
of all query candidates for the question.

32 H.K.L.Mardal: Mímir

3.2.4 Relation Matching

Norwegian Alias Relation Index

The relation index is the result of a SPARQL Query that retrieves all Norwegian
aliases and their linked relation URI. The actual SPARQL query can be found in
the implementation chapter 4.3.3. The query resulted in an alias - relation index
of over 11 000 aliases and their connected property relation. In particular for each
relation we retrieve labels which can be used as Norwegian aliases.

• ’Label’ - <http://www.w3.org/2004/02/skos/core#label>
• ’Alternative labels’ -<http://www.w3.org/2004/02/skos/core#altLabel>

The dataset was then grouped and aggregated by alias resulting in an inverted
index dataset of distinct aliases and their connected Wikidata property URI where
the aggregated dataset consist of 5000+ rows containing aliases and their set of
connected relation properties.

Relation Identification and Linking

The query candidates from the last step still miss important information about
which relations were actually mentioned and asked for in the query. By matching
the relation mentions in the question to any of the Norwegian aliases of the pre-
dicates present in the KB, it is possible to rank triple candidate statements (from
the last step) with the connected relations present in the question. Similarly to
the inverted entity index, this is done by using the inverted relation index which
consists of all predicates with Norwegian aliases present in the KB. For each term
in the question that are not already matched to an entity, and is marked as a re-
lation PoS tag (verbs, adjectives, numbers or nouns), we match the lemmatized
question terms to relation aliases in the inverted relation index. The matched re-
lation URI is then used to attach relation scores to the generated triple candidates
in the previous step. Each exact relation match was marked with a high relation
score on the triple candidate. Substring relation matches are marked with a lower
relation score on the triple candidate.

For the Question "hvem er forfatteren av naiv super?", the correct linking "for-
fatteren" - lemmatized "forfatter" is matched to the predicate URI
"http://www.wikidata.org/prop/P50" which describes the Author relation.

Chapter 3: Method 33

Matched Relation Alias Index
Alias Relation Links Match

’forfatter’ http://www.wikidata.org/prop/P50 Exact Match
’manusforfatter’ http://www.wikidata.org/prop/P58 Substring Match

’google-scholar forfatter-id’ http://www.wikidata.org/prop/P1960 Substring Match
...

Table 3.3: Table showing example linked relation aliases to lemmatized relation
mentions in the question. The bold row is the highest valued match for retrieving
the answer.

3.2.5 Ranking

We have now a collection of triple candidates for the answer query, where each
triple has information about how well it matches entities and relations in the ques-
tion query. The only thing left to do is to rank the triple candidates correctly, by
leveraging available features correctly. As a general notion, the candidate cover-
ing most words of the question is the best, similarly to the ranking in Aqqu [8].
Features used to rank each triple candidate consists of:

1. Number of entities of the candidate that were matched to words in the ques-
tion by alias.

2. Number of exact relation matches
3. Number of substring relation matches
4. Entity and Relation Coverage - number of matched entity and relation terms

in the candidate divided by number of terms in the question.

The candidate collection is then sorted by the highest combined score, which
will constitute the best triple candidate to answer the question.

3.2.6 Template Mapping and Answer SPARQL Execution

The last step is to map the best ranked candidate to a SPARQL query template,
where the candidate triple constitutes the sub-graph pattern for getting the correct
answer. We return in the template both the wikidata entity identification and label
(if it is present in the KB).

34 H.K.L.Mardal: Mímir

Edvard Grieg
Q80621 ?

Hvilket instrument spilte Edvard Grieg?

instrument

P1303

Piano:Q5994

NOUN VERB PNOUN NOUNDET

Figure 3.2: Visualization of simple question answering over Wikidata in Norwe-
gian using Mímir approach. The sentence terms are marked with PoS tags. The
Entities are marked in blue and the correct relation is marked in red. Note that
"spilte" in English "played" is also a valid semantic relation, but does not describe
the entity-instrument relation present in the KB.

3.3 Evaluation Methods

To evaluate Mímir, the performance metric accuracy was applied. Accuracy is the
fraction of the queries answered with the exact gold answer. The gold answer
refers to (in this case) the objective truth/answer to the query, which is present
by the gold query which is the correct SPARQL query triple to achieve the correct
result. To have a dataset to evaluate question answer pairs, we created a test
set of manually translated question answering pairs from Question Answering
Benchmarks for Wikidata [22] resulting in a dataset of 20 + question answer
pairs. We also created a test set of 20+ question-answer pairs inspired by Simple
Question Dataset, with the goal of testing the capabilities of the system.

Chapter 4

Implementation

This chapter gives an overview of the technology, tools and datasets used to im-
plement the methods described in chapter 3.

4.1 Python and Python Libraries

Python has been the programming language used to implement all parts of the
system, including the evaluation experiments. Python is a language with a large
collection of libraries for different purposes. The ones used in this project are listed
below.

SpaCy SpaCy1 is a natural language toolkit for processing text in natural languages,
like English or Norwegian. For Norwegian it is trained on 3 different news
datasets, where the largest is a file of 542MB2. It includes methods for token-
ization, lemmatization and PoS tagging among others, which are used in this
project.

Unidecode Unidecode3 is a library to normalize a text input to its nearest unicode rep-
resentation. To be able to find all matching entities with special characters
such as "Mímir", we use this library to normalize the entity mention to its
nearest unicode representation, namely "Mimir". This is done to account for
users that exclude inputting special characters in the question, as well as
increasing the number of matches. This is done both in the question pre-
processing step and the entity alias indexing step.

SPARQLWrapper SPARQLWrapper4 library is a python wrapper to easily query SPARQL ser-
vice endpoints and execute queries from python scripts. SPARQLWrapper
helps create query invocation and convert the results into manageable formats.

1https://spacy.io/
2https://spacy.io/models/nb#nb_core_news_lg
3https://pypi.org/project/Unidecode/
4https://sparqlwrapper.readthedocs.io/en/latest/main.html

35

36 H.K.L.Mardal: Mímir

Pandas Pandas5 is a fast and powerful data analysis and manipulation tool for py-
thon, that is used to store the data received from the SPARQL queries ex-
ecuted in this project and process the data. Pandas helps simplify working
with multidimensional arrays and matrices, including methods for operat-
ing and formatting the large datasets present in the indexation steps and
query candidate generation and ranking steps.

4.2 Wikidata SPARQL Endpoint

To be able to query the Wikidata Knowledge Base, we use the available Wikidata
SPARQL endpoint6 which allows us to execute queries towards their database in a
somewhat restricted environment. Wikidata has implemented limitations on the
amount of query or processing power allowed to do towards this endpoint in a
small time window. This is reasonable as it is detrimental for their endpoint to
break as a result of large, encumbering queries. Even with these restrictions it
works to query for the best ranked candidate and to some extent generate query
candidate. However for constructing the inverted indexes for entities amounting
to over 7 million Norwegian aliases, querying the Wikidata endpoint directly for
this information was not possible.

4.3 Qlever Query Engine and SPARQL Endpoint

QLever [23] is a fast SPARQL Query engine which was relatively easy to imple-
ment, given their tutorial available on their Github page7. QLever was a pos-
sible option for building our own back-end SPARQL endpoint which we could run
our extensive queries on. The last step missing was downloading and building a
Wikidata dump on top of our QLever implementation. The lastest Wikidata dump
was an> 100GB compressed file8 which took a week to download. However to be
able to build such a big query engine, it would require either a powerful computer
or a computer cluster, and even then it would take a long time to procure.

The solution was to use the externally available QLever SPARQL endpoint9

which had already build a Wikidata engine, that we could use to query for the
aliases. By implementing a indexing python script, the entity alias index and the
relation alias index were created for Norwegian aliases.

4.3.1 Official Written Languages Bokmål and Nynorsk

The Wikidata Knowledge Base contains multilingual support for many languages.
In the case of Norwegian there are 2 official languages, and Wikidata supports

5https://pandas.pydata.org/
6Available Wikidata query demo at: https://query.wikidata.org/
7https://github.com/ad-freiburg/qlever
8Available at: https://www.wikidata.org/wiki/Wikidata:Database_download
9QLever endpoint: https://qlever.cs.uni-freiburg.de/api/wikidata-proxy

Chapter 4: Implementation 37

both. "Bokmål", the written standard of Norwegian has the most aliases available
on Wikidata with >7 million entity - alias pairs, and therefore the highest chance
of linking question entities to KB items. "Nynorsk" or in English "New Norwegian"
has fewer aliases available at >6 million and is used by a minority of Norwegians.
For these reasons the implementation only supports Norwegian Bokmål.

4.3.2 Norwegian Alias Entity Index

Inverted Index Query:

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
3 PREFIX wd: <http://www.wikidata.org/entity/>
4 PREFIX wdt: <http://www.wikidata.org/prop/direct/>
5 SELECT ?entity ?alias WHERE {
6 ?entity wdt:P734?/(@nb@wdt:P1813|@nb@wdt:P1477|@nb@wdt:P1449|@nb@wdt:P742|@nb@skos:

altLabel|@nb@rdfs:label) ?alias .
7 MINUS {
8 # Ignoring internal items
9 ?entity wdt:P31/wdt:P279* wd:Q17442446 .

10 }
11 }
12 ORDER BY DESC(?entity) DESC(?alias)

This is the SPARQL/QLever query for getting all the entities and their connected
Norwegian aliases. Note that "@nb@" is a QLever filtering method, where "@nb"
is an RDF label that stands for "Norsk bokmål".To get the aliases for English one
can simple swap "@nb" with "@en". For English there exists >98 million Wikidata
entity - alias pairs using this query.

4.3.3 Norwegian Alias Relation Index

Inverted index Queries:

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
3 PREFIX wikibase: <http://wikiba.se/ontology#>
4 SELECT ?predicate ?alias WHERE {
5 {
6 SELECT ?predicate WHERE {
7 ?x ql:has-predicate ?predicate .
8 }
9 GROUP BY ?predicate

10 }
11 ?entity wikibase:claim ?predicate .
12 OPTIONAL {
13 ?entity @nb@rdfs:label|@nb@skos:altLabel ?alias .
14 }
15 }
16 ORDER BY ASC(?predicate) ASC(?alias)

38 H.K.L.Mardal: Mímir

This is the SPARQL/QLever query for getting all the relations and their connected
Norwegian aliases in the form of labels or alt labels. For Norwegian Bokmål there
exists >11 000 rows of alias - relation pairs. For English there are >25 000 us-
ing the same query. Both the Norwegian Alias Entity Index and Norwegian Alias
Relation Index are made publicly available at our github page10.

4.3.4 Answer format

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
2 SELECT DISTINCT ?result ?resultname
3 WHERE { ?entity_URI ?relation_URI ?result .
4 OPTIONAL { ?result rdfs:label ?resultname .
5 FILTER (lang(?resultname) = "nb") . } . }
6 LIMIT 10

The answer is found by executing a SPARQL Query with the highest ranked
candidate triple’s Entity and Relation URI, which then returns the URI and the
Norwegian label for the object in the sub-graph pattern. For results that return a
literal like numbers and dates (e.g not other entities) we return only the value,
as it does not have a label attached. Note that even though we return top 10 with
the LIMIT syntax we only really use the first result.

4.4 Simple Norwegian Questions for Wikidata

To be able to evaluate my Question Answering system, a dataset of 20+ questions
were translated from the Question Answering Benchmarks for Wikidata [22], spe-
cifically SimpleQuestions for Wikidata which consists of 21 957 questions deemed
answerable on Wikidata (in English). These questions had the potential issue that
of not existing with a Norwegian counterpart given the lack of labels used in the
entity and relation index, so some additional checks for answer-ability has to be
made.

Similarly for the analysis, a dataset of 20+ questions were created on the same
format as [22] to test the capabilities of the system. The questions were created
by asking general questions which should exist in the general wikidata corpus
for Norwegian, and were deliberately dissimilar as a means to analyse different
question arch-types the implementation should be able to answer.

10Norwegian Question Answering dataset github: https://github.com/hakon0809/Norwegian-
Question-Answering

Chapter 4: Implementation 39

4.5 Architecture Overview

Sentence

Question

Mímir System Architecture

Processed Tokens and N-grams

Preprocessing

Matched Entities

Entity
Matching

Candidate
Generation

Relation
Matching Ranking

Highest ranked Entity and Relation Query

Template
Mapping

Result Query
Execution

Entity
Index

Relation
Index

Wikidata
Knowledge Base

Result
Presentation

Relation
IndexEntity

Index

Wikidata
Knowledge Base

Query Query

Inverted Indexes Creation

Tokenization
N-gram Generation
Lemmatization

PoS Tagging

Matching Entity N-grams

List Candidate Triples
Subject - Predicate - Object

Q1767831 - P21 - Q42

......

Query for each entity

Matching Relation Tokens

Query Entity and Relation Pattern

Entity Rank

Rank

Relation
Index

"Hvem er forfatteren av naiv super?" Entity: Q278285 Label: "Erlend Loe"@nb

Entity: Q1767831 Relation : P50

"naiv super" =
 Q1767831, ...

"forfatter" = P50, ...

Sorted Candidate Triples
Subject - Predicate - Object

Q1767831 - P50 - Q278285

......

Entity(S) - Relation(P) - Variable(?O)

Figure 4.1: Overview of the Mímir implementation. It shows the pipeline of ask-
ing a Norwegian simple question "Hvem er forfatteren av naiv super?" translated to
English "Who is the author of naiv super?". The system relies on identifying aliases
from the KB and mapping them to terms in the question sentence.

Mímir is only usable by terminal, and prompts the user for a question to be
processed in the pipeline described in figure 4.1. Although a online demo was
planned, it was ultimately discarded given time limitations.

Chapter 5

Evaluation and Discussion

In this chapter we present the datasets used to setup our testing experiment and
review the results gathered through testing and evaluation. The results are then
used in the analysis, followed by a discussion about the project as a whole and its
limitations.

5.1 Datasets

Our evaluation and experiments done are performed using the dataset available
in the Wikidata Knowledge Base by SPARQL Queries to SPARQL endpoints such
as the endpoint provided by Wikidata and QLever. In addition we also use the
inverted indexes for entities and relations.

For actually testing the system we looked at different datasets. The problem
with selecting a testing dataset is that there still does not exist a Norwegian spe-
cific question answering testset for knowledge bases - to the best of my knowledge.
Even though QALD 9 [1] challenge focuses on provides testing sets for Question-
ing Answering over Knowledge Bases with multilingual support, the challenge
dataset contains support for 11 languages of large amounts of speakers like Eng-
lish, Spanish, and German. QALD challenges are unlikely to cover Norwegian in
the near future as has is a rather small amount of speakers. In addition these
question answer pairs are tuned for complex SPARQL queries which my simple
implementation cannot answer anyways (for now).

Question Answering Benchmarks for Wikidata [22] provides a dataset of simple
question-answer pairs for Wikidata named SimpleQuestions for Wikidata. Simple-
Questions for Wikidata was created from a dataset originally made for Freebase1.
The Freebase dataset is described in the paper SimpleQuestions [24]. The Free-
base SimpleQuestions dataset provided 108 442 questions annotated with a Free-
base triple such that one of the acceptable answers to the question is the subject
of the triple. SimpleQuestions for Wikidata [22] consists of 49 202 questions on
which 21 957 are answerable over Wikidata. It is from these simple questions

1Freebase is another Knowledge Base.

41

42 H.K.L.Mardal: Mímir

that we create our Norwegian test set amounting to 25 question-answer pairs.
Note that we have to manually translate each question to admissible Norwegian
Bokmål, making this a tedious and time-consuming task. It is for this reason that
we are limited to translating and creating a small subset of the answerable Simple-
Questions for Wikidata. To make the Norwegian testset somewhat representable
of the much larger English counterpart, the 25 chosen questions are selected ran-
domly. However, this effort does not make the small subset comparable to the
SimpleQuestions for Wikidata testset.

In addition we also create a small Mímir analysis testset of Norwegian Ques-
tions amounting to 30 question-answer pairs catered to Norwegian, which gen-
erally should be answerable by our system. This testset is used to analyse the
capabilities and limitations of the implementation based on our knowledge of
Norwegian, as well as compare it to the Norwegian translated SimpleQuestions
testset.

5.2 Evaluation

We evaluate our implementation and method by the performance metric accur-
acy. Accuracy is the fraction of questions answered with the correct answer. We
only include small evaluation sets as these are self-implemented. The goal of this
evaluation is not to compare our implementation to state of the art models or out-
perform them, but rather show Mímir’s potential as a proof of concept and validity
as a simple Norwegian Question Answering System over Wikidata.

5.2.1 Results

Testset Accuracy Number of Questions

SimpleQuestions Wikidata to Norwegian 48% 25

Mímir Analysis Testset 73% 30

Table 5.1: Table showing accuracy results for the two evaluation testsets used in
this project.

Unsurprisingly, the manually translated SimpleQuestions Wikidata testset man-
aged to correctly answer fewer questions than the Mímir analysis testset. This is
mainly due to the fact that there exists fewer Norwegian aliases than English,
thus having a smaller chance of linking mentions to correct KB items for ques-
tions meant for English.

Chapter 5: Evaluation and Discussion 43

Best Ranked Entity and Relation for each Question
Entity Entity Label Relation/Property Relation Label @nb|@en
Q10280325 Fausto Fawscett P21 Kjønn | Gender
Q66832 Franz Roh P27 Nasjonalitet | Nationality
Q568123 Bram Stoker’s Dracula P136 Sjanger | Genre
Q168648 Sopron P421 tidssone | located in time zone
Q3393521 Joaquín Cardiel P264 platemerke | record label

Answer Object and Questions
Answer Object Entity Answer Label or Literal @nb|@en Norwegian Question English SimpleQuestion
Q6581097 Mann | Male hvilket kjønn er fausto fawscett? what is fausto fawcett’s gender?
Q183 Tyskland | Germany hva var nasjonaliteten til franz roh? What was the nationality of franz roh?
Q1054574 Romantisk Film | Romance Film hvilken sjanger er filmen dracula? what kind of movie is dracula?
Q25989 Sentraleuropeisk tid | Central European Time hvilken tidssone er sopron i? which time zone is sopron located in?
Q183412 EMI | EMI hvilket plateselskap er joaquin cardiel signert til? What label is joaquin cardiel signed to?

Table 5.2: A split table showing 5 example results from the Norwegian trans-
lated SimpleQuestions for Wikidata. Note that the first row of the first table-half
responds to the first row of the second table-half.

A subset of 5 correctly answered question-answer pairs from the Norwegian
SimpleQuestions for wikidata are presented in table 5.2. The first table-half con-
tains the best ranked recognized entity and relation in each question which is
then used as the triple pattern to produce the answer entity and label shown in
the second table-half.

Best Ranked Entity and Relation for each Question
Entity Entity Label Relation/Property Relation Label @nb|@en
Q30 United States of America P36 hovedstad | capital
Q66832 naiv super P50 forfatter | author
Q7251 Alan Turing P136 morsmål| native language
Q585 Oslo P1082 folketall | population
Q362 World War II P580 startdato | start time

Answer Object and Questions
Answer Object Entity Answer Label or Literal @nb|@en Norwegian Question English Equivalent Question
Q61 Washington, D.C.| Washington, D.C. hva heter hovedstaden i usa? what is the capital of USA?
Q278285 Erlend Loe | Erlend Loe hvem er forfatteren av naiv super? Who is the author of naiv super?
Q1860 Engelsk | English hva var morsmålet til alan turing? What was the native language of alan turing?
- 693494 hvor mange innbyggere er det i oslo? How many people live in oslo?
- 1939-09-01T00:00:00 når var starttidspunktet til andre verdenskrig? When did World War Two start?

Table 5.3: A split table showing 5 example results from the Mímir analysis testset.
Note that the first row of the first table-half responds to the first row of the second
table-half.

A subset of 5 correctly answered question-answer pairs from the Norwegian
SimpleQuestions for wikidata are presented in table 5.3. This table is on the same
format as table 5.2. Notice that the answer does not have to include an entity as
shown by the resulting literals in the two last questions: "How many people live in
oslo?" which results in the number people that live there, or the datetime answer
for the question "When did World War Two start?".

44 H.K.L.Mardal: Mímir

5.3 Analysis

The analysis is done using the self-implemented question answering pairs named
Mímir Analysis Testset. We evaluate the results by comparing the generated SPARQL
triple query pattern to the gold query. The analysis also includes comparison of the
gold answer (actual result) when analysing Mímir for capabilities. When looking
at the arch-types of questions which Mímir is able to answer we get this criteria
list:

• Requires the question to have a single gold answer. Lists of equally scored
results, have varying answerability.
• Requires the system to recognize at least one Norwegian entity and one

Norwegian relation to be able to answer a question. Candidate query triple
contains only one variable: S - P - ?O, where ?O is the unknown variable.
• Requires the question to be simple in nature. Complex queries requiring

multiple sub-graph triples are not answerable.

5.3.1 Error Analysis

Missing Norwegian relation aliases in Wikidata

when asking for "hvem er statsministeren i norge?" - in English "who is the prime
minister of Norway?" we get the correct response "Jonas Gahr Støre", where prime
minister is synonymous to the relation "head of government". The relation is also
time dependant in the sense that the information is updated for current head of
government, guaranteeing correct information without having to consider this on
our implementation side. Head of government is also synonymous to president,
however Mímir fails to answer the question "who is the president of USA?" as the
relation alias president is not available in Norwegian, even though it should be.
This is one of multiple examples of missing Norwegian aliases in the Knowledge
Base. Interestingly, it is then possible to ask "Who is the prime minister of USA?"
and get the correct answer "Joe Biden", even though the question is formulated a
bit weird.

Nuanced Incorrect Data

Note that when looking for a head of government type relation, like in the previ-
ous example, "ordfører" or "minister" in english is classified as a synonym to the
"head of government" relation which is not true. However when asking for head
of government in a municipality, this is partially true as the minister or "ordfører"
in the municipality holds the highest seat of governance for that particular entity.

False Positives and Ambiguity

When asking the question "hva er det offisielle språket i USA?", we get the correct
answer "Engelsk", but the connected subject entity is an American Album with the

Chapter 5: Evaluation and Discussion 45

connected relation being the work’s language "verkets språk" which also has the
misguiding alias "språk", making our model ranking this relation on equal ground
to the official language of country relation.

Norwegian Letters and Ambiguity

As a direct result to the "unidecoding" of the query as well as the indexed aliases,
the Norwegian letters "æ,ø,å" are decoded to their nearest unicode representation,
"ae, o, a". This increases ambiguity as for instance verbs such as "så" meaning
saw and "sa" meaning said, making it harder to resolve ambiguity for questions
including overlapping ambiguous relations.

Performance Issues

When asking questions involving the director George Lucas, the amount of entities
with alias "George" are so many that the candidate generation execution time is
too large, making the query fail - or take unreasonably long time to finish.

Missing Common Relation Labels

Even though there exists many relations with at least one label, the cases with just
one are often very formal and not necessarly compatible with common natural
language. For instance the relation "place of birth" has only one Norwegian alias
namely "fødested" which generally is not used in common speech or written form.
Usually when asking for the place of birth of a person, one would normally use the
terms "born" or "birth place" which are present aliases for English, but not even
the term "født" is present for Norwegian. This makes matching "født" to place of
birth relation difficult for Mímir.

Ambigious Relations

When asking the question "Where did Calvin Leavy die?", in Norwegian "Hvor
døde Calvin Leavy?", "death" refers both to "dødsdato" - "date of death" and "dødss-
ted" - "place of death". This makes Mímir sometimes return a datetime answer
instead of a location.

46 H.K.L.Mardal: Mímir

5.4 Discussion

5.4.1 RDF Graph Data Structure and Norwegian

It is interesting to see how the RDF data model structure allows us to answer
queries by linking the correct entity- and relation mention and solving the answer
by looking at the single unknown object variable in the graph pattern, similar to
an algebraic expression. it is even more interesting how Knowledge Bases with
multi-linguistic support can use the RDF filtering method on specific languages to
give us language specific answers. For relational databases based on SQL, multi-
linguistic support is not possible. For instance, Athena as introduced in 2.2.2 has
to convert the question into a complex intermediate ontology query language to
be able to leverage the graph data structure for answering questions.

5.4.2 Norwegian Methods

Even though my method was based on the Aqqu approach given the reasons given
in the chapter 3 and have been proved to function correctly, any of the approaches
presented in the background chapter 2 should theoretically be possible to apply
and be made to work with Norwegian. The only conundrum are the methods
that are reliant on other language specific datasets or NLP resources that are un-
available or experimental for Norwegian, and the chosen methods should cross-
examined with the NLP tools and resources available introduced in section 2.1.6.

Our method was simple in the sense that it only can answer simple Norwegian
questions over Wikidata which is quite limiting for the questions it can answer. It is
possible to create more advanced Norwegian methods by including the complex
query patterns and the template matching routine present in Aqqu or methods
from approaches for complex question answering.

5.4.3 Available Norwegian NLP Tools

Another limiting factor is the available Norwegian NLP Tools. Even though there
exists libraries like SpaCy which provides quality pre-processing components for
Norwegian which satisfies most of our NLP needs, there are only experimental
Norwegian named entity recognition available or named entity recognition trained
on a much smaller dataset than what is expected for a general Knowledge Base
encompassing all general knowledge. In addition, these are not able to link men-
tions to KB items on their own - which is why we built the alias indexes.

5.4.4 Limitations of KB Datasets

Despite the fact that 7 million Norwegian Bokmål entity aliases are present in
Wikidata, this is still a rather small amount considering that there exists 98 million
for English. In this context the Norwegian Bokmål aliases amounts to under 10%

Chapter 5: Evaluation and Discussion 47

of what is available for English. The Norwegian dataset needs to be expanded
massively to be able to be comparable to English.

The same can also be said for the Norwegian relation aliases. There exists
11 000 Norwegian aliases for Wikidata relations compared to the 25 000 available
English aliases. This is a gap where Norwegian aliases amounts to 44% of what is
available for English. This gap is not as large as the one for entity aliases, but still
substantial and harmful to the performance of our model.

5.4.5 Limitations of Testsets

The our 2 testsets of 25 and 30 question - answer pairs are small compared to the
simpleQuestions for Wikidata testset amounting to>22 000 answerable Wikidata
question-answer pairs. These are small as a result of having to translate the Eng-
lish question - answer pairs individually and manually. This makes our testsets
incomparable to simpleQuestions for Wikidata. Sizable Norwegian testsets also
needs to be developed to be able to compare Norwegian approaches to simple-
Questions for Wikidata and by extension to other state of the art approaches for
English. While it is possible to use translators like Google Translate - these often
return ambiguous results.

48 H.K.L.Mardal: Mímir

5.4.6 Findings

After collecting the results from the accuracy testsets, the research questions from
section 1.2 were re-examined. The qualitative results from the evaluation suppor-
ted the three research questions. However to state anything outside of the research
questions, more testing is required and a larger testset needs to be developed.

Research Question 1 How can the data present in the Semantic Web Knowledge Base be used to
answer natural language queries in Norwegian?

Findings By leveraging the aliases existing in the KB for entities and relations, and
using them in our method in the form of inverted indexes, we have showed
in the evaluation results that this is indeed possible. The low accuracy for
the English translated subset does not invalidate the approach because of
the reduced amount of aliases available in Norwegian, compared to English.
The Mímir analysis testset which is primed towards Norwegian answerable
questions shows that the method is applicable for answering Norwegian
questions.

Research Question 2 What challenges are present to answer user queries in Norwegian over a Know-
ledge Base?

Findings The challenges discovered are threefold: the limited available Norwegian
semantic web data, limited Norwegian specific NLP tools, and limited test-
sets. The results and analysis done shows that there are challenges regard-
ing the limited available Norwegian data in Wikidata and negatively impact
our system’s performance. The challenges to Norwegian NLP tools available
was discovered when browsing for applicable tools for our system. It was
discovered that no Norwegian specific test set for simple question answer-
ing over Knowledge Base exists, and this had to be manually created. It was
also discovered challenges in the analysis regarding performance issues for
generating large amounts of matching query candidates which is not scal-
able.

Research Question 3 How can we evaluate the performance of our Norwegian Question Answering
system?

Findings We have showed how we can evaluate the performance of our Norwegian
answering system by creating 2 Norwegian testsets measuring accuracy. The
Norwegian SimpleQuestions manually translated from the renowned Eng-
lish dataset and the Mímir analysis testset created manually for analysing
the approach, resulting in a suitable testset for data available in Norwe-
gian Wikidata. However further development of the testsets are required to
compare them to English, given their size.

Chapter 6

Conclusion

This chapter summarizes the project and work done with a conclusion, and defines
possible paths for future work.

6.1 Conclusion

Through a survey of related work in the domain, it was found that recent research
in question answering systems over Knowledge Bases are moving towards multi-
linguistic support for solving both simple and complex questions, with extensive
testing through benchmarks such as [1]. In addition a Norwegian specific question
answering system over Knowledge Base has not yet implemented and seemed like
a interesting project to undertake.

In this thesis a template-based approach for Norwegian Question Answering
system over Wikidata is proposed, combining sub-problems such as entity link-
ing, question answering and natural language interface creation. By leveraging
the vast amount of data available in the Semantic Web - especially Norwegian
synonyms for entities and relations in Semantic Web Knowledge Bases, The Nor-
wegian NLP tools and resources available, and applying existing NLP approaches,
we can answer simple Norwegian questions over such a Knowledge Base. We con-
tribute with the implementation of the Question Answering System Mímir itself,
the Norwegian specific challenges discovered in this project, the inverted Norwe-
gian indexes available for download1 and the small testsets for further develop-
ment of Norwegian specific Question Answering Systems.

1Github page for the Norwegian indexes, and the Norwegian question-answer pair datasets:
https://github.com/hakon0809/Norwegian-Question-Answering

49

50 H.K.L.Mardal: Mímir

6.2 Further Work

6.2.1 User Feedback

By combining the question answering system with user feedback features sim-
ilar to the ones available in Querix and FREyA can solve many of the ambiguity
problems faced in Norwegian Question Answering over Knowledge Bases through
clarifying user dialogues.

6.2.2 Complex Norwegian Question Answering

It is possible to expand our approach to involve answering complex questions
by applying the complex template patterns present in Aqqu. It is also possible to
apply other advanced NLI approaches like the ones presented in related work, on
top of the Norwegian inverted indexes we have created for Wikidata. By doing so
a state of the art Norwegian Answering System for complex question answering
over Wikidata is achievable.

6.2.3 Norwegian Testsets

To be able to compare Norwegian systems to other state of the art English mod-
els, larger Norwegian testsets needs to be developed. Language translation tools
like Google Translate can be used to translate questions fast and automatically,
however problems are to be expected around ambiguous translation or erroneous
translations.

6.2.4 Norwegian Knowledge Base Expansion

Knowledge Bases such as Wikidata needs to be actively expanded and developed
with more items made available in Norwegian. Given the discovery of the large
gap between available Norwegian semantic entity data compared to English on the
fraction of 1/10. Furthermore Norwegian synonym corpuses similar to Wordnet
[21] for Norwegian can be implemented and combined with Knowledge Bases to
provide even more data.

6.2.5 Norwegian Entity recognition and Linking tools

Norwegian specific entity recognition and linking tools can be developed to ac-
curately solve ambiguity problems with semantic data recognition and linking, by
creating high performing ranking routines based on approaches similar to TAGME
or ELR.

Bibliography

[1] A. Perevalov, D. Diefenbach, R. Usbeck and A. Both, ‘Qald-9-plus: A mul-
tilingual dataset for question answering over dbpedia and wikidata trans-
lated by native speakers,’ in 2022 IEEE 16th International Conference on
Semantic Computing (ICSC), IEEE, 2022, pp. 229–234.

[2] ‘Norsk i hundre! norsk som nasjonalspråk i globaliseringens tidsalder: Et
forslag til strategi.,’ Norwegian Language Council, 2005. [Online]. Avail-
able: https://www.sprakradet.no/upload/9832/norsk_i_hundre.pdf.

[3] L. Blunschi, C. Jossen, D. Kossman, M. Mori and K. Stockinger, ‘Soda: Gen-
erating sql for business users,’ arXiv preprint arXiv:1207.0134, 2012.

[4] E. Kaufmann, A. Bernstein and R. Zumstein, ‘Querix: A natural language
interface to query ontologies based on clarification dialogs,’ in 5th interna-
tional semantic web conference (ISWC 2006), Citeseer, 2006, pp. 980–981.

[5] F. Li and H. V. Jagadish, ‘Nalir: An interactive natural language interface
for querying relational databases,’ in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’14, Snow-
bird, Utah, USA: Association for Computing Machinery, 2014, pp. 709–712,
ISBN: 9781450323765. DOI: 10.1145/2588555.2594519. [Online]. Avail-
able: https://doi.org/10.1145/2588555.2594519.

[6] S. Shekarpour, E. Marx, A.-C. Ngonga Ngomo and S. Auer, ‘Sina: Semantic
interpretation of user queries for question answering on interlinked data,’
Journal of Web Semantics, vol. 30, pp. 39–51, 2015, Semantic Search, ISSN:
1570-8268. DOI: https : / / doi . org / 10 . 1016 / j . websem . 2014 . 06 .
002. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1570826814000468.

[7] D. Song, F. Schilder, C. Smiley, C. Brew, T. Zielund, H. Bretz, R. Martin, C.
Dale, J. Duprey, T. Miller et al., ‘Tr discover: A natural language interface
for querying and analyzing interlinked datasets,’ in International Semantic
Web Conference, Springer, 2015, pp. 21–37.

[8] H. Bast and E. Haussmann, ‘More accurate question answering on freebase,’
in Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, ser. CIKM ’15, Melbourne, Australia: Associ-
ation for Computing Machinery, 2015, pp. 1431–1440, ISBN: 9781450337946.

51

https://www.sprakradet.no/upload/9832/norsk_i_hundre.pdf
https://doi.org/10.1145/2588555.2594519
https://doi.org/10.1145/2588555.2594519
https://doi.org/https://doi.org/10.1016/j.websem.2014.06.002
https://doi.org/https://doi.org/10.1016/j.websem.2014.06.002
https://www.sciencedirect.com/science/article/pii/S1570826814000468
https://www.sciencedirect.com/science/article/pii/S1570826814000468

52 H.K.L.Mardal: Mímir

DOI: 10.1145/2806416.2806472. [Online]. Available: https://doi.org/
10.1145/2806416.2806472.

[9] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes,
S. Hellmann, M. Morsey, P. Van Kleef, S. Auer and C. Bizer, ‘Dbpedia -
a large-scale, multilingual knowledge base extracted from wikipedia,’ Se-
mantic Web Journal, vol. 6, Jan. 2014. DOI: 10.3233/SW-140134.

[10] D. Vrandečić and M. Krötzsch, ‘Wikidata: A free collaborative knowledge-
base,’ Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[11] P. Ferragina and U. Scaiella, ‘Tagme: On-the-fly annotation of short text
fragments (by wikipedia entities),’ in Proceedings of the 19th ACM interna-
tional conference on Information and knowledge management, 2010, pp. 1625–
1628.

[12] F. Hasibi, K. Balog and S. E. Bratsberg, ‘Exploiting entity linking in queries
for entity retrieval,’ in Proceedings of the 2016 acm international conference
on the theory of information retrieval, 2016, pp. 209–218.

[13] S. Bird and E. Loper, ‘Nltk: The natural language toolkit,’ Association for
Computational Linguistics, 2004.

[14] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard and D. Mc-
Closky, ‘The stanford corenlp natural language processing toolkit,’ in Pro-
ceedings of 52nd annual meeting of the association for computational lin-
guistics: system demonstrations, 2014, pp. 55–60.

[15] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. Mittal and F.
Özcan, ‘Athena: An ontology-driven system for natural language querying
over relational data stores,’ Proceedings of the VLDB Endowment, vol. 9,
pp. 1209–1220, Aug. 2016. DOI: 10.14778/2994509.2994536.

[16] K. Affolter, K. Stockinger and A. Bernstein, ‘A comparative survey of recent
natural language interfaces for databases,’ The VLDB Journal, vol. 28, no. 5,
pp. 793–819, 2019.

[17] S. Schrage, ‘Ontology-based transformation of natural language queries
into SPARQL queries by evolutionary algorithms,’ Ph.D. dissertation, Uni-
versity of Göttingen, Germany, 2022. [Online]. Available: https://nbn-
resolving.org/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-
59FC-9-8.

[18] P. E. Solberg, A. Skjærholt, L. Øvrelid, K. Hagen and J. B. Johannessen, ‘The
norwegian dependency treebank,’ 2014.

[19] E. Kaufmann, A. Bernstein and L. Fischer, ‘Nlp-reduce: A naive but domain-
independent natural language interface for querying ontologies,’ in 4th
European Semantic Web Conference ESWC, Springer Berlin, 2007, pp. 1–
2.

https://doi.org/10.1145/2806416.2806472
https://doi.org/10.1145/2806416.2806472
https://doi.org/10.1145/2806416.2806472
https://doi.org/10.3233/SW-140134
https://doi.org/10.14778/2994509.2994536
https://nbn-resolving.org/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-59FC-9-8
https://nbn-resolving.org/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-59FC-9-8
https://nbn-resolving.org/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0008-59FC-9-8

Bibliography 53

[20] D. Damljanovic, M. Agatonovic and H. Cunningham, ‘Natural language in-
terfaces to ontologies: Combining syntactic analysis and ontology-based
lookup through the user interaction,’ in ESWC, 2010.

[21] G. A. Miller, ‘Wordnet: A lexical database for english,’ Communications of
the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[22] D. Diefenbach, T. P. Tanon, K. D. Singh and P. Maret, ‘Question answer-
ing benchmarks for wikidata,’ in Proceedings of the ISWC 2017 Posters &
Demonstrations and Industry Tracks co-located with 16th International Se-
mantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to -
25th, 2017., 2017. [Online]. Available: http://ceur-ws.org/Vol-1963/
paper555.pdf.

[23] H. Bast and B. Buchhold, ‘Qlever: A query engine for efficient sparql+ text
search,’ in Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 2017, pp. 647–656.

[24] A. Bordes, N. Usunier, S. Chopra and J. Weston, ‘Large-scale simple ques-
tion answering with memory networks,’ CoRR, vol. abs/1506.02075, 2015.
[Online]. Available: http://arxiv.org/abs/1506.02075.

http://ceur-ws.org/Vol-1963/paper555.pdf
http://ceur-ws.org/Vol-1963/paper555.pdf
http://arxiv.org/abs/1506.02075

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Håkon Kristian Lem Mardal

Mímir: a Norwegian Question
Answering System
for Searching Wikidata

Master’s thesis in Informatics
Supervisor: Trond Aalberg
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Purpose
	Research Goal
	Contributions
	Thesis Structure

	Background and Related Work
	Background Theory
	Semantic Web
	Querying SPARQL VS Querying SQL
	Natural Language Interfaces and the Question Answering Task
	Knowledge Base Question Answering
	Four Natural Language Processing Approaches
	Available Norwegian NLP Tools and Resources

	Review of Related Work
	SINA
	Athena
	FREyA
	Querix
	Aqqu

	Method
	Research Methodology
	Approach
	Pre-processing the Question
	Entity Matching
	Triple Candidate Generation
	Relation Matching
	Ranking
	Template Mapping and Answer SPARQL Execution

	Evaluation Methods

	Implementation
	Python and Python Libraries
	Wikidata SPARQL Endpoint
	Qlever Query Engine and SPARQL Endpoint
	Official Written Languages Bokmål and Nynorsk
	Norwegian Alias Entity Index
	Norwegian Alias Relation Index
	Answer format

	Simple Norwegian Questions for Wikidata
	Architecture Overview

	Evaluation and Discussion
	Datasets
	Evaluation
	Results

	Analysis
	Error Analysis

	Discussion
	RDF Graph Data Structure and Norwegian
	Norwegian Methods
	Available Norwegian NLP Tools
	Limitations of KB Datasets
	Limitations of Testsets
	Findings

	Conclusion
	Conclusion
	Further Work
	User Feedback
	Complex Norwegian Question Answering
	Norwegian Testsets
	Norwegian Knowledge Base Expansion
	Norwegian Entity recognition and Linking tools

	Bibliography

