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Abstract
In many real-world applications, only a restricted range of the lithium-ion bat-
tery’s entire state of charge range is utilized. This is done to preserve the state
of health of the battery. Most current research on state of health estimation is
not accounting for this fact. Therefore, this thesis is aimed at exploring how the
operational state of charge window affects machine learning models for state of
health estimation.

In the thesis, a structured literature review that investigates how state of charge
impacts state of health estimation is provided. From the findings in the literature
review, research questions aimed at expanding the knowledge on this topic were
formulated. A methodology for obtaining lithium-ion battery data that can be
used to attempt to answer the research questions is presented. Next, two machine
learning models capable of predicting state of health parameters were created.
These models were analyzed in the context of the state of charge windows the
data was extracted from. The results indicated that the state of charge operation
window impacts the predictions of the machine learning models. Specifically, a
connection between the state of charge operation window and the accuracy of the
predictions was observed.



ii

Sammendrag
I mange applikasjoner blir bare en begrenset mengde av litium-ionbatteriers ut-
ladnings kapasitet brukt. Dette gjøres for å bedre bevare helsetilstanden til bat-
teriene. Mye av den nåværende forskningen på estimering av helsetilstanden til
litium-ionbatterier tar ikke hensyn til dette. Hensikten med denne avhandlingen
er å utforske hvordan utladnings mengden til batteriet påvirker maskinlæring
modellers evne til å estimere helsetilstanden til batterier.

Avhandlingen inneholder en litteraturstudie med hensikt å identifisere hvordan
utladnings tilstanden til batterier påvirker estimering av helsetilstanden. Funnene
i litteraturstudiet ble brukt til å formulere forskningsspørsmål. En metode for
å anskaffe litium-ionbatteri data som kan brukes med hensikt å svare på forskn-
ingsspørsmålene blir presentert. Videre ble to maskinlæring modeller lagd med
den hensikt å predikere viktige helseparametere. Disse modellene ble analysert
med tanke på hvilke utladnings vinduer batteriene som dataene ble hentet fra
var utsatt for. Resultatene indikerte at utladnings vinduet hadde betydning for
prediksjonene til modellene. Mer spesifikt ble en sammenheng mellom oppnådd
nøyaktighet og utladnings vindu observert.
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Chapter 1

Introduction

Today battery cells are in everyday use as energy storage systems, including
mobile applications like cars and stationary applications in electricity grids. De-
mand for battery cells is expected to rise in the future as battery cells can help
decarbonize the transport sector. Decarbonization is an efficient way to combat
climate change. In order to use batteries more efficiently, an understanding of
battery cells is needed. This understanding is captured in an advanced Battery
Management System (BMS). The task of any BMS is to monitor the battery
pack and disconnect it from the load in case of an emergency. A sophisticated
BMS can also estimate more advanced internal battery parameters and limit the
charge and discharge rate. Accurate estimation of these parameters can enhance
performance, safety, and durability. Therefore it is important to understand and
be able to predict the internal parameters of battery cells. Specifically, knowing
the State of Health (SoH) of a battery in operation can be used to improve both
safety and durability.

1.1 Background and Motivation
A short review of the SoH estimation topic is provided in [Grytten, 2021] as
part of the course TDT39. This discussion is built upon and extended in this
section. Currently, SoH estimation is a hot topic in both battery and machine
learning research. A review of the most common SoH estimation techniques is
given in [Noura et al., 2020]. The publication divides the SoH estimation methods
into experimental-based methods and model-based methods. Figure 1.1 provides
a overview of the different SoH estimation categories. Experimental methods
are based on data collection and analysis of the collected data. This process
is often time-consuming and requires specialized equipment. In addition, the

1



CHAPTER 1. INTRODUCTION 2

experiments are most likely not possible to conduct in an application of a battery
cell. Therefore these methods are not fit for SoH estimation in applications. On
the other hand, the experimental methods give a good understanding of the SoH
of the test object. The most important parameters can be measured accurately,
and good conclusions can be drawn. The model-based methods describe the
internal parameters of the target battery under operation. The model’s estimates
of a selected number of internal parameters are used to estimate the battery’s
SoH. The most common model-based methods are electrochemical models and
equivalent circuit models [Noura et al., 2020]. These methods can be combined
with different filters, most commonly a Kalman filter, to increase the estimation
accuracy.

Figure 1.1: Overview of SoH estimation models (adapted from [Noura et al.,
2020])
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It is common to categorize machine learning methods for LIB SoH estimation
as a combination of experimental and model-based methods [Noura et al., 2020].
The source of the data used by the machine learning algorithms can be data
from the lab or a real-world application, or it can be data from the battery
models. Standard machine learning methods used for state of health estimation
are, as discussed in [Grytten, 2021] as part of the course TDT39: "support vector
regression [Tan et al., 2020], fuzzy logic [Singh et al., 2004], decision trees, and
different types of neural networks like back-propagation neural networks [Yang
et al., 2020] and long short term memory neural networks [Li et al., 2020]."
From [Grytten, 2021] as part of the course TDT39: "It is well known that the
SoC range a LIB operates in influences its lifetime [Wikner, 2019]. Therefore as a
preemptive measure, many devices limit the allowed SoC range before the battery
management system disconnects the battery pack from the load. Currently, the
most important application where this is done is in battery electric vehicles [Lee
et al., 2019]. From the existing literature on battery SoH estimation, it is difficult
to say anything about how such particular, but widespread use affects the SoH
estimation algorithms compared to most algorithms in the literature, which are
created by data from LIB cycled at the complete SoC range."

1.2 Goals and Research Questions
A draft of the research questions has also been discussed in [Grytten, 2021] as
part of the course TDT39:

Goal Provide a better understanding of the SoC window of operation impact on
LIB SoH estimation.

Research question 1 How does data from a LIB cycled at a specific SoC win-
dow affect the accuracy of SoH estimates?

Research question 2 Which features are most important for estimating the
SoH and does the SoC window impact feature importance?

1.3 Research Method
The research method used in this thesis has been previously discussed in [Gryt-
ten, 2021] as part of the course TDT39: "The research method is a combination
of experiments, data analysis, and machine learning model exploration. The
experiments are designed to create data that can help answer the research ques-
tions. These experiments are relatively simple to set up. Still, they allow us to
extract data tailored to help answer the research questions, which is impossible
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or difficult to find online. Data analysis is conducted to detect faults in the data
and help guide the model exploration. The machine learning models are created
to help answer the research questions."



Chapter 2

Background Theory and
Motivation

This chapter provides the necessary background theory to understand LIB basic
operation and aging. The framework for the working principles of the machine
learning model and feature importance attribution technique is described. An
overview of the literature review methodology is given. Lastly, the most impor-
tant findings of the review are identified, and the research objectives are derived
from the literature review results.

2.1 Introduction to Lithium-ion Batteries
This section explains the working principles of a LIB. It also covers the main
terminology related to LIBs used in this thesis. The section covers the most sig-
nificant mechanisms behind aging in LIBs. Lastly, different SoH characterization
techniques used in this thesis are explained.

2.1.1 Working Principles of Lithium-ion Batteries
A LIB consists of electrodes, a separator, an electrolyte, and current collectors.
The positive electrode, during discharge, is defined as the cathode, and the neg-
ative electrode is defined as the anode. The separator isolates the cathode and
the anode and prevents them from reacting with each other. Ideally, only lithium
ions can pass the separator. The current collectors connect the multiple layers of
cathodes in parallel and the multiple layers of anodes in parallel. When a load
is applied to the current collectors, electrons flow from the anode to the cath-
ode providing power to the load. Lithium atoms are removed from the anode,

5



CHAPTER 2. BACKGROUND THEORY AND MOTIVATION 6

become positively charged, and release an electron each. This process is called
deintercalation. The electrolyte conducts the lithium ions through the separator
to the cathode. At the cathode, during intercalation, lithium is inserted into
the cathode structure while obtaining an electron. During charging, the reverse
process occurs.

Figure 2.1: Working principles of a LIB (adapted from [Roy and Srivastava,
2015])

2.1.2 Lithium-ion Battery Terminology
This subsection introduces common LIB terminology. These terms are frequently
used in the rest of this thesis.

State of Charge

The SoC tells us how much electrical charge is left as a percentage of the LIB’s
total capacity. At a high SoC, the concentration of lithium in the anode is large.
When the SoC lowers, the lithium concentration increases in the cathode and
decreases in the anode. The change in lithium concentration lowers the electrical
potential of the cathode and increases it in the anode.

State of Health

SoH is a term that describes cell deterioration. A new cell has a 100% SoH.
As the cell deteriorates, the SoH is given relative to the original SoH. There is
no standard definition of which cell parameters the term SoH refers to, and it
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is often chosen depending on the application of the cell. Standard performance
parameters to consider are the internal resistance and the cell’s capacity.

C-rate

The C-rate is defined as the current out of the cell divided by the nominal capacity
of the cell. The C-rate is the term used to describe the current we are applying to
the cell. A positive C-rate means that we are discharging, and a negative C-rate
means that we are charging. For instance a C-rate of 2 specifies that the LIB is
discharged in 30 minutes.

Full Cycle Equivalent

In this thesis a LIB discharge from 100% SoC to 0% SoC and charge back to 100%
SoC is referred to as one full cycle. In many instances, LIBs are only partially
charged and discharged. The Full Cycle Equivalent (FCE) can be calculated
from multiple partial discharges and charges. It is common to use the nominal
capacity of the LIB to calculate the FCE. This provides a method to compare
LIBs cycled in different SoC ranges.

Constant Current Constant Voltage

Constant Current Constant Voltage (CCCV) is a technique often used during
charge or discharge of a LIB when the goal is to end up at a specific open-circuit
voltage. A constant current is applied at the start to reach the voltage setpoint
quickly. When the target voltage is reached, the current is controlled, either
increasing or reducing the LIB’s overpotential to keep the measured voltage at
the voltage set point. The absolute value of the current necessary to control the
overpotential decreases until the current cutoff threshold is reached. The LIB
will then approximately have the open-circuit voltage that was targeted.

Solid-Electrolyte Interphase

In LIBs the electrolyte is not stable in the voltage range of the graphite [Pinson
and Bazant, 2012]. Therefore the electrolyte decomposes and forms a Solid-
Electrolyte Interphase (SEI) layer between the negative electrode and the elec-
trolyte. The SEI layer is created in production during the first few cycles of
the LIB. The creation of the SEI layer consumes lithium, and the layer itself in-
creases the LIB’s impedance. Therefore, a durable SEI layer that hinders further
electrolyte decomposition is crucial for the SoH development of the cell.
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2.1.3 Open Circuit Voltage and Overpotentials
The LIB’s Open-Circuit Voltage (OCV) is defined as the difference in electrical
potential between the cathode and the anode when no load is connected to the
LIB, and the cell is in equilibrium. The OCV is dependent on temperature,
but most importantly, the state of charge. When current is applied or drawn
from a LIB, the LIB experiences overvoltages. These overvoltages are due to the
impedance of the LIB. Equation 2.1 gives a typical model of overvoltages, from
[Burheim, 2017]:

v(t) = OCV (SoC(t))− i(t)rohmic − ηch(t)− ηdiff (t) (2.1)

The most important term in equation 2.1 is OCV (SoC(t)) and it is the only term
that does not directly depend on the direction of the current. When current is
drawn from the LIB, there is an instantaneous voltage drop over the cell caused
by the ohmic resistance of the LIB. This is modeled by the term i(t)rohmic. The
ohmic resistance is mostly due to resistance in the electrolyte and resistance
in other elements such as the current collectors. The ohmic resistance in the
electrolyte decreases close to linearly with increasing concentration and decreases
close to exponentially with increasing temperature. The ηch in equation 2.1
describes the overvoltage due to electron intercalation and deintercalation in the
electrodes. The net current density j of the cell is given by subtracting the
cathode reaction, jc, from the anode reaction ja:

j = ja − jc (2.2)

At equilibrium electrons are intercalated as quickly as they are deintercalated.
From equation 2.2 we observe that at equilibrium ja equals jc. The Butler-Volmer
equation describes the net current, j, due to intercalation processes:

j = j0

(
exp

(
(1− aa) z F

R T
ηch

)
− exp

(
−ac z F

R T
ηch

))
(2.3)

j0 is the exchange current density and is equal to the current density at equilib-
rium. R is the universal gas constant, F is the Faraday constant, and z is the
number of electrons involved in the electrode reaction. aa is the anode symmetry
coefficient, and ac is the cathode symmetry coefficient. These symmetry coeffi-
cients tell us which fraction of the potential between the electrode and electrolyte
is used to lower the free energy barrier, allowing reactions, and which fraction
influences the current density. The sum of aa and ac is by definition always equal
to one. The charge transfer overpotential, nch, occurs because there is a slight
resistance, rct, in the intercalation and deintercalation processes. Therefore, if A



CHAPTER 2. BACKGROUND THEORY AND MOTIVATION 9

is the surface area of the electrode where electrons can enter and leave, then nch

is given by:

nch(t) = A j(t) rct (2.4)

ηdiff accounts for overpotentials due to the diffusion of lithium ions. Fick’s
first law of diffusion gives us the rate, J , at which lithium ions are transported:

J = −D
∂c

∂x
(2.5)

In equation 2.5 D is the diffusion coefficient and ∂c
∂x is the concentration gradient.

The diffusion rate and the current created is related by 2.6:

J = −zFj (2.6)

Combining 2.5 and 2.6 we obtain:

∂c

∂x
=

zFj

D
(2.7)

From 2.7 we observe that the concentration gradient changes linearly in both the
electrode and electrolyte, including the interface between them. Therefore, when
current is applied to the cell, the lithium concentration decreases at the interface,
increasing the overpotential ηdiff .

2.1.4 Lithium-ion Battery Ageing Mechanisms
The SoH of a LIB decreases both with use and time [Wikner, 2019]. Aging over
time is referred to as calendar aging, and aging by usage is referred to as cycling
aging. When the SoH of a LIB decreases, both the maximum available power
and energy are reduced. This is caused by an increase in internal resistance and a
decrease in available capacity [Spitthoff et al., 2021]. This subsection presents the
most important LIB degradation modes, the mechanisms causing the degradation
and the tools used to identify the different degradation modes.

Lithium-ion Battery Degradation Modes

Studying degradation modes of LIBs greatly simplify aging analysis [Sun et al.,
2021]. Degradation modes are usually grouped into Loss of Lithium Inventory
(LLI), Loss of Active Material (LAM), and Conductivity Loss (CL) [Pastor-
Fernández et al., 2017].
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Degradation mode Important Aging Mechanism

CL Reduced conduction in the electrolyte
current collectors.

LLI SEI and lithium plating.
LAM Particle cracking and loss of electrical contact.

Table 2.1: Degradation modes adapted from [Sun et al., 2021]

CL is related to increased ohmic resistance in LIBs. It is caused by a reduced
conduction ability in important components of the LIB, such as the electrolyte
and current collectors [Sun et al., 2021]. LLI occurs when lithium ions, which are
usually transported between the negative and positive electrodes, are consumed
by side reactions in the cell. The most important side reactions are lithium
plating, formation of metallic lithium, and growth in SEI [Birkl et al., 2017].
LAM refers to the loss of active material which is structures that can intercalate
or deintercalate lithium ions. The processes causing LAM differ in the cathode
and the anode. LAM in the anode is due to particle cracking, loss of electrical
contact, and buildup of resistive surfaces blocking active locations [Birkl et al.,
2017]. In the cathode, LAM can be caused by structural disordering, particle
cracking, and loss of electrical contact [Birkl et al., 2017].

2.1.5 Lithium-ion Battery Degradation Characterization
Incremental Capacity Analysis

Incremental capacity analysis is an experimental method used to determine the
SoH of LIBs. The incremental capacity of a LIB is defined as [Krupp et al., 2020]:

IC =
∂Q

∂V
. (2.8)

DQDV plots are used to visualize the incremental capacity of LIBs. The incre-
mental capacity is plotted along the y-axis, and the voltage against the x-axis.
Figure 2.2 is an illustrative example of a DQDV plot.
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Figure 2.2: DQDV plot

The DQDV plot transforms plateaus in the OCV curve, into clearly separable
peaks [Krupp et al., 2020]. This makes is possible to identify the different degra-
dation modes CL, LLI and LAM. CL is related to a shift of the curve toward
the lower voltages. LLI manifest itself as lower peaks and peaks shifted either to
higher or lower voltages. LAM is observable through decreased high of the peaks,
but without the peaks shifting in any direction [Pastor-Fernández et al., 2017],
[Dubarry et al., 2012].

Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy (EIS) is a technique that measures
the frequency response of the impedance of an electrochemical system. The
impedance of a LIB depends on, among other factors, the SoC, temperature,
and the SoH of the cell. Different frequency intervals of the battery’s impedance
response can be related to different internal aging processes. EIS works by apply-
ing a sinusoidal fixed amplitude and frequency perturbation signal and measuring
the response. Given a linear time-invariant system the response will be sinusoidal
and phase-shifted with the same frequency as the perturbation signal. Batteries
are not linear time-invariant systems, but if the perturbation signal is small, the
battery will behave quasi-linearly. This simplification usually gives good results.
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The perturbation signal is normally applied multiple times to obtain measure-
ments in a given frequency range. The perturbation signal can be either current
or voltage. The galvanostatic mode uses current, and the potentiostatic mode
uses voltage as the perturbation signal. The LIB’s impedance response at dif-
ferent frequencies can be related to different internal reactions. This enables us
to identify different degradation modes during the LIB’s aging processes [Pastor-
Fernández et al., 2017].

Nyquist Plots

It is common to plot the impedance response obtained from EIS in Nyquist plots.
The reason behind this is that the Nyquist plot allows us to easily identify the
impedance caused by the negative overpotential terms in equation 2.1. In the
Nyquist plot the real part of the impedance response is plotted on the x-axis and
the imaginary part is plotted on the y-axis. For the purpose of EIS data analysis
we invert the y-axis of the Nyquist plot, simplifying the process of identifying
the characteristic shapes of the impedance caused by the different overpotential
reactions. The frequency of the impedance response is a sweep parameter where
the frequency decreases from left to right. Figure 2.3 is a Nyquist plot of an
example impedance response of a LIB. The faster processes inside the LIB are
captured at the highest frequencies and appear to the left in the Nyquist plot.
The slower internal process are captured by the lower frequency perturbation
signals and can be identified to the right in the Nyquist plot. Concretely the
ohmic resistance is located in the leftmost part of the plot where the graph of
the impedance response crosses the x-axis. The charge transfer process causes
the half-circle in the impedance response. The tail of the impedance response at
the lowest frequency points is due to the diffusion process.
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Figure 2.3: Nyquist plot of an example impedance response of a LIB (source
[Waag et al., 2013])

Equivalent Circuit Models

We can model the impedance response of a LIB by an Equivalent Circuit Model
(ECM). In this thesis, an Adapted Randles Equivalent Circuit Model (AR-ECM)
is used. The AR-ECM consists of multiple building blocks connected in series or
in parallel. A quick overview of the different components and how they work in
relation to each other is given, before the AR-ECM is explained in more detail.
Nyquist plots are used to plot the impedance of the different building blocks as
it builds a good intuition for how the elements work within the AR-ECM.

Resistors

The impedance of an ideal resistor only contains a real component and is inde-
pendent of frequency. The impedance is given in equation 2.9 and plotted as a
single point on the x-axis in the Nyquist plot in figure 2.4.

Z = R (2.9)
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Figure 2.4: Nyquist plot of an ideal resistor

Capacitors

The impedance of capacitors are frequency dependent, as can be seen from equa-
tion 2.10. The absolute value of the impedance decreases with frequency. Figure
2.5 plots the impedance of an ideal capacitor.

Z(ω) =
1

Cjω
(2.10)
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Figure 2.5: Nyquist plot of an ideal capacitor

Resistor and Capacitor in Parallel

By combining a resistor and a capacitor in parallel, more advanced impedance
responses can be created. Equation 2.13 gives the impedance of this configuration.
It can be observed that the impedance response approaches R as ω −→ 0 and 0
when ω −→ ∞. In figure 2.6 the impedance response of a resistor and capacitor
in parallel is plotted.

Z(ω) =
1

1
R + 1

1
Cjω

(2.11)

1

Z(ω)
=

1

R
+ Cjω (2.12)

Z(ω) =
R

1 + CjωR
(2.13)
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Figure 2.6: Nyquist plot of an ideal resistor and ideal capacitor in parallel

Constant Phase Element and Warburg Element

Equation 2.15 gives the impedance response of a Constant Phase Element (CPE).
The impedance is dependent on the frequency ω, in addition to α which deter-
mines the phase shift of the CPE. The phase shift of the CPE is given by equation
2.14.

φ = −πα

2
(2.14)

Setting a equal to one gives a phase shift of −π
2 and the CPE behaves as an ideal

capacitor. If α equals zero, we obtain an ideal resistor. The Warbug element is
common in ECMs fitted to EIS data. This is a special case of the CPE where α
is equal to 0.5. Figure 2.7 shows the impedance response of a Warburg element.

CPE(ω, α) =
1

Q(jω)α
(2.15)
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Figure 2.7: Nyquist plot a CPE with α equal to 0.5

Adapted Randles Equivalent Circuit Model

The AR-ECM models impedance of a LIB and can be used to fit a curve to EIS
data [Pastor-Fernández et al., 2017], [Zhang and Wang, 2009]. Different com-
ponents of the AR-ECM models the impedance at different frequency intervals.
Specifically the impedance caused by the aging mechanisms SEI, charge transfer
and diffusion. These aging mechanisms can be related to the degradation modes
CL, LLI and LAM. The growth in percentage metric is introduced in [Pastor-
Fernández et al., 2017]:

CLk =
Rohm,k −Rohm,1

Rohm,1
· 100 (2.16)

LLIk =
Rsei,k −Rsei,1 +Rct,k −Rct,1

Rsei,1 +Rct,1
· 100 (2.17)

LAMk =
Rw,k −Rw,1

Rw,1
· 100 (2.18)

Rohm represents the impedance caused by ohmic resistance, Rsei is the resistance
cause by SEI, Rct represents the impedance caused by charge transfer, Rw is the
impedance caused by diffusion. These equations can be used to calculate the
percentage increase in CL, LLI and LAM. The first subscript indicate which
AR-ECM component is used to calculate the degradation mode. The second
subscript is specifies which EIS experiment is used to calculate the value of the
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AR-ECM component. It should be noted that the growth in percentage method is
experimental and that there is no trivial one to one way to convert internal aging
mechanisms to degradation modes. Figure 2.8 shows the schematics for a AR-
ECM. The AR-ECM is composed of resistors, CPEs and a Warburg element. The
subscripts in the figure indicate which internal aging mechanism the components
are related to. The green components are related to charge transfer, the blue
resistor is related to CL, the red components are related to SEI and the yellow
Warburg element is related to diffusion according to [Pastor-Fernández et al.,
2017].

Figure 2.8: AR-ECM (adapted from [Pastor-Fernández et al., 2017])

2.2 Machine Learning
This section gives a quick introduction to time series, which is format of the col-
lected data in this thesis. Basic theory on gradient boosted decision trees and the
open source gradient boosting library Catboost is presented. Additionally basic
theory on Support Vector Regression (SVR) is provided. Lastly an explanation
on how SHAP values can be used to increase the explainability of both gradient
boosted decision trees and SVR is given in the respective subsections.

2.2.1 Time Series
This subsection covers the data format of a time series and operations that are
useful tools for time series analyses. Lastly Holt’s linear method, which is a
simple method used for time series prediction, is presented.
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Introduction to Time Series

A time series is a set of data points which are ordered in the time domain. There
can be many complex patterns in a time series, but some important ones are the
trend, the cyclic and the seasonal patterns. A time series has a trend if there
is a long-term increase or decrease in the data points over time. Seasonality in
the time series is likely to have a fixed and known frequency and its effect on
the data is caused by seasonal factors. A cycle is fluctuations that do not have
a fixed frequency [Hyndman and Athanasopoulos, 2018]. To better understand
to which extent a time series contains trend and seasonality we can analyze the
autocorrelation of the time series. The autocorrelation measures the linear de-
pendence between two lagged data points. The autocorrelation in a trended time
series should be larger for data points close in time and decrease with increasing
time. For seasonal time series, the absolute value of the autocorrelation between
data points at a multiple of the seasonal frequency should be large [Hyndman
and Athanasopoulos, 2018].

Time Series Decomposition

It is possible to decompose a time series into the described patterns of trend,
cycles and seasonality in two ways:

y = T + S +R (2.19)
y = T · S ·R (2.20)

y represents the entire time series, T is a combination of the trend and cycle
patterns, S denotes the seasonality component, and R represents the remainder
of the time series. Equation 2.19 is an additive decomposition and equation 2.20
is a multiplicative decomposition. If the level of the time series do not influence
the magnitude of the fluctuations caused by the trend-cycle component or the
seasonal component, an additive decomposition is prefered over the multiplica-
tive [Hyndman and Athanasopoulos, 2018].

Holt’s Linear Trend Method

Holt’s linear trend method is a relatively simple time series forecasting method.
The method uses two equations to estimate the level and trend of the time series:

lt = αyt + (1− α)(lt−1 + bt−1) (2.21)
bt = β(lt − lt−1) + (1− β)bt−1 (2.22)
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The subscript t indexes the time series at a specific time t. Equation 2.21 is
referred to as the level equation. lt is the estimated level of the time series. a is
a tunable parameter and determines how responsive lt is to recent change in the
observed data. yt is the observed value at time t. lt−1 is the last estimated trend
and bt−1 is the last estimated level. The trend equation 2.22 gives the estimated
trend of the yt. β is a tunable parameter which determines how responsive the
trend equation is to change in recently observed data. The forecasting equation
is used to predict the time series development:

ŷt+h|t = lt + hbt (2.23)

The forecasting equation 2.23 uses both the level equation and the trend equation
in order to make a prediction h time steps ahead of the time index t. The resulting
forecast, is composed of the most recent level lt and a multiple of the most recent
trend bt. Thus the prediction assumes a linear trend development.

2.2.2 Decision Trees
This section introduces the basics of decision trees and uses theory presented in
[Mitchell, 1997]. Decision trees are a supervised machine learning method. They
are primarily used in solving classification tasks, but can also solve regression
problems with great success. Decision trees can be visualized as nodes connected
by edges in a tree structure. The input of decision trees is represented as tabular
data where each column represents a feature, and each row represents a data
point. When solving a classification problem, a specific attribute of the input
data is tested at each node in the tree. The result of the test decides the next
edge and, therefore, also which attribute is tested next. The algorithm always
starts at the root node. It tests attributes and selects a unique path to a leaf
node where the input data receives its classification.

The decision tree is built in the learning phase. A statistical test is used to
decide which attribute is tested at each node in the tree. The idea is that we
want to test the attribute that is most helpful in classifying the input data. To
achieve this we use the concept of information entropy. Information entropy is a
measure of uncertainty about the possible outcomes of a random variable. The
entropy H of our input data X with n different classifications where P (Xi) is the
proportion of X belonging to i is given as:

H(X) = −
v∑

i=0

P (xi) log2 P (xi) (2.24)

This gives us a measure of the minimum number of bits needed to encode one
arbitrary classification. To select which attribute to test next in our decision
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tree, we use the concept of information gain. Information gain is the expected
reduction in entropy obtained by splitting the input data X by an attribute A.
It is defined as:

G(X,A) = H(X)−
∑

v∈V (A)

|Xv|
|X|

H(Xi) (2.25)

where v(A) are the possible values of attribute A, and |Xv| represents the number
of elements in the subset of X with a value v and |X| is the number of input data
points. We observe that the second term gives us the expected entropy value
after selecting a given attribute to use for partitioning. Every split is done on
the feature that maximizes the information gain at that point in the tree.

2.2.3 CatBoost
CatBoost is an open-source python library for gradient boosting using deci-
sion trees. Gradient boosting is a machine learning technique that can han-
dle heterogeneous features, noisy data, and complex dependencies in the data
[Prokhorenkova et al., 2018]. The algorithm works by iteratively adding weak
learners into an ensemble. CatBoost uses binary decision trees as the weak learn-
ing model. The idea of gradient boosting is to find a model F that minimizes a
loss function L(F ). A data set, D, consisting of n training examples is defined
as:

D = (xi, yi)i=1...n⊂X × Y (2.26)

where the input space, consisting of m input features, is defined as X = Rm and
the output space is defined to be Y = R. Then we can define the loss function
as the expected loss of L:

L(F ) = E(L(y, F (x))) (2.27)

Here L is any differentiable loss function, and the sets y and x consist of indepen-
dent observations which are identically distributed according to some unknown
distribution. This allows the use of an arbitrary smooth loss function which is an
improvement over other boosting methods. We build ensemble models F indexed
by j by adding weak learners, denoted as w and also indexed by j, in a step by
step fashion:

F j = F j−1 + αwj (2.28)

α is the step size of the model and is a tunable parameter. We choose the weak
learner wj from the space of weak learners W , by minimizing the loss function:

f j = argmin
wEW

L(F j−1 + w) (2.29)
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2.2.4 Support Vector Regression
SVR is a machine learning method used to solve regression problems. The com-
putational complexity of SVR is not dependent on the dimensions of the input
space and the method has good capabilities to generalize to unseen data [Awad
and Khanna, 2015]. Given a training data set D, as defined in equation 2.26, the
objective of SVR is to find a function f ∈ R that deviates at most ϵ from every
target in (yi)i=1...n while being as "flat" as possible [Smola and Schölkopf, 2004].
Flatness is desirable because it makes the predictions less sensible to noise in the
input.
It is possible for f to be a linear or non linear model. This introduction will be
limited to the case where f is a linear function:

f(xi) = ⟨a, xi⟩+ b where a ∈ X ∧ b ∈ R (2.30)

For this linear model, a small a would make the model less sensitive to perturba-
tions in the input features and thus more flat. We therefore wish to minimize the
norm of a: ⟨a, a⟩. The constraint should be symmetrical in that they do not allow
deviations above or below ϵ. This yields the following optimization problem:

minimize ⟨a, a⟩ (2.31)
subject to yi − ⟨a, x⟩ − b ≤ ϵ (2.32)

⟨a, x⟩+ b− yi ≤ ϵ (2.33)

This optimization problem is not always feasible, because there is not necessarily
a function f satisfying the constraints. Two variables ξ and ξ∗ are added to the
constraint equations making the problem feasible. A term penalizing large ξ and
ξ∗ is also added to the objective function. The resulting feasible optimization
problem is:

minimize ⟨a, a⟩+ C

n∑
i=1

(ξi + ξ∗i ) (2.34)

subject to yi − ⟨a, x⟩ − b ≤ ϵ+ ξi (2.35)
⟨a, x⟩+ b− yi ≤ ϵ+ ξ∗i (2.36)
ξi ≥ 0 (2.37)
ξ∗i ≥ 0 (2.38)
C > 0 (2.39)
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A tunable constant C is introduced in the objective function 2.34. C determines
to which extent deviations larger than ϵ are penalized and, on the other hand,
how flat the resulting function f is.

2.2.5 Shapley Values
Shapley values originate from game theory and can be used in cooperative games
to distribute the total payoff among the players, considering each players indi-
vidual contribution to the payoff. A game has M players. Let F be the set of all
players:

F = {1, 2, ...,M} (2.40)

A coalition is a set of players. For every cooperate game we define a function,
named the characteristic function, v. The characteristic function assigns a real
number to a coalition S, which represents the worth of the coalition S. One
must be careful when applying v on a coalition to evaluate the contribution of
individual players towards the total gain. This is because the worth increase
caused by adding a player i to a coalition can differ depending on which players
are already in the coalition. This should not be confused with the worth of
a coalition, which only depend on which players are in the coalition, not their
order. To determine the contribution of a player i, it is possible to iterate all
permutations of F , and find the value i adds to coalitions S, where every player
permutated before i in F is a member of S. Let ϕi be the contribution of player
i:

ϕi =
1

|F |!
∑
P

(v(S ∪ {i})− v(S)) (2.41)

It can be observed that there are multiple permutations with the same contri-
bution, because the order of the members within S does not matter. There are
|S|! permutations of S and there are (|F | − |S| − 1) elements left in F when the
elements in (S ∪ {i}) are excluded. Therefore there are |S|!(|F | − |S| − 1)! per-
mutations of elements from F where {i} comes after S and the remaining players
comes after i. We can rewrite equation 2.41 using these observations:

ϕi =
∑

S⊆F−{i}

|S|!(|F | − |S| − 1)!

|F |!
(v(S ∪ {i})− v(S)) (2.42)

ϕi in 2.42 is the Shapley value of the player i and gives the average contribution
of i in all permutations of F and therefore the contribution player i contributes
to the gain of F . Shapley values have some important properties:
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1. Efficiency: The total gain equals the sum of all players contribution:

|F |∑
i=1

ϕi = v(F ) (2.43)

2. Symmetry: If v(S ∪ {i}) = v(S ∪ {j}) ∀{S\{i,j}} then ϕi = ϕj

3. Dummy: If v(S) = v(S ∪ {i}) for every coalition S where {i} is not a
member, then ϕi = 0.

4. Additivity: There are two games, one with characteristic function u and
one with v. The contribution of i is ϕi(u) in the first game, and ϕi(v) in
the second game. Because ϕ are Shapley values: ϕi(u+ v) = ϕi(u) + ϕi(v).

2.2.6 Shapley Additive Explanations
SHAP is a framework proposed in [Lundberg and Lee, 2017b], that aims to im-
prove the explainability of complex models. SHAP views the input features of
the complex model as players in a cooperative game. The framework tries to
fairly attribute the prediction of an input instance x made by the complex model
to the different input features.

Every distinct feature in the data set is assigned an importance value which
tells us to which degree that feature influences the predictions. It works by
using multiple simple explanation models. A simple explanation models tries to
approximate the output of the complex model F given a single input instance.
An additive feature attribution model, g, is defined in [Lundberg and Lee, 2017b]:

g(z′) = ϕ0 +

M∑
i=0

ϕiz
′
i (2.44)

where z′i ∈ {0, 1} indicates if a feature is observed in the input instance z′ ∈
{0, 1}M , M is the number of features, and ϕi ∈ R gives each feature an im-
portance value. We know from [Lundberg and Lee, 2017b] that for each input
instance x there is always a unique additive feature attribution model g with the
three properties local accuracy, missingness, and consistency.

Local accuracy guarantees that given the same input instance z′ that g was
built from, then g(z′) = F (x). Missingness ensures that a missing feature, that
is z′i = 0, is given no importance. The consistency property makes it impossible
to change a model to increase the impact of a feature while also decreasing the
importance the feature is attributed. To illustrate, let z′\i denote setting feature
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i of the input instance z′ to zero, hx be a function that maps additive feature
attribution model inputs, z′, to full model inputs x′ and ϕi(F, x) denote the
feature importance of i in a model F and given an input x. Then, according to
[Lundberg and Lee, 2017b]:
If

F ′(hx(z
′))− F ′(hx(z

′\i)) ≥ F (hx(z
′))− F (hx(z

′\i)) ∀z′ ∈ {0, 1}M (2.45)

it follows

ϕi(F
′, x) ≥ ϕi(F, x) (2.46)

[Lundberg and Lee, 2017b] shows that the unique additive feature attribution
model g must use Shapely values for feature importance attribution to satisfy the
properties of local accuracy, missingness and consistency. Therefore the feature
importance of feature i in a model F given input x is:

ϕi(F, x) =
∑
z′⊂x′

∣∣z′∣∣!(M −
∣∣z′∣∣− 1)!

M !
(f(hx(z

′))− f(hx(z
′\i))) (2.47)

∣∣z′∣∣ is the number of non-zero entries in z′, and z′ ⊂ x′ are all the vectors of z′
with non-zero entries that are a subset of the non-zero entries of x′.

Shapley values are the feature importance attribution method that satisfies
the consistency property and is preferred over other methods. This example
illustrates the importance of the consistency property. Figure 2.9 depicts two
decision tree models, model A and model B. The feature "wind" is more critical
in model B than in model A. However, a feature importance attribution method
lacking the consistency property can assign greater importance to the "wind"
feature in model A than in model B. Therefore, it would be problematic to
compare the feature importance attributions between the models without the
consistency property.
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Figure 2.9: Decision tree feature importance comparison (adapted from [Lund-
berg and Lee, 2017a]).

2.3 Structured Literature Review
A structured literature review was carried out to create research questions and
find relevant literature. Some of the work presented in this section has also been
discussed in the course TDT39 as part of the research plan [Grytten, 2021]. The
literature review was conducted in the Autumn of 2021. The work revealed that
there was much research related to both SoH and SoC estimation. Most of this
research used equivalent circuits and different state estimation methods. How-
ever, there was also a large amount of research in machine learning approaches
for estimation of both SoC and SoH. From the literature review, it was clear
that there has been much work conducted that tries to relate different operating
SoC ranges to different aging mechanics. There is a general agreement that the
working SoC range has a large effect on SoH [Wikner, 2019] [Wikner et al., 2021],
[Vetter et al., 2005] and [Keil and Jossen, 2016]. Initially, there was not found
research about how cycling batteries at constant limited SoC ranges effect SoH
estimation for machine learning algorithms. Therefore the focus of the structured
literature review was to obtain more information about how the SoC cycle inter-
val affect aging and aging estimation. This led to the search terms given in table
2.3.
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2.3.1 Identification of Research
The search engines used and the number of results reviewed in this literature
review are listed in table 2.2. Table 2.3 lists the four different search terms
and the synonyms that was used for identifying relevant research. There were
relatively many results when only search term one, two, and three were employed.
Adding the fourth term reduced the number of results in Scopus, IEEE Xplore,
and CiteSeerX dramatically and which resulted in much more relevant literature.
On the other hand, ScienceDirect continued to give about 100 000 results. Most
of these were found not to be relevant, and therefore only the first 100 were
included.

Search Engine Results reviewed
Scopus Every result

IEEE Xplore Every result
CiteSeerX Every result

ScienceDirect First 100 results

Table 2.2: Search Engines

Synonym 1 Synonym 2 Synonym 3 Synonym 4
Term 1 State of Health SoH - -
Term 2 Battery Cell Accumulator -
Term 3 Estimation Regression Approximation -
Term 4 SoC range Cycle range Range Interval

Table 2.3: Key search terms

2.3.2 Problem, Constraint and Solution Definitions
To concretize the information that was searched for during the literature search,
a problem, P, constraints, C and a solution, S, were defined. The definitions are
given in table 2.4. This table defines the problem, P, as the estimation of the SoH
of any battery cell. The constraint, C, on S is that a limited SoC range should be
used in solving P. An algorithm or solution S should be able to give reasonable
SoH estimates and be a machine learning method. These definitions were later
used to create key search terms and define inclusion criteria and quality criteria.
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P Estimation of the SoH of any battery cell
C A limited SoC range should be used in solving P
S A machine learning method should be used in SoH estimation.

Table 2.4: Problem, constraint and solution definitions

2.3.3 Inclusion Criteria and Quality Criteria
The relevant research was identified using the method and parameters given
above, but the number of results was too large to handle. Therefore filtering
of the results was done. The first filter was that the title of the papers needed to
be related to P. The papers that met this criterion are listed in the appendix in
table A.5. Next, the selected paper’s abstract was scored according to the inclu-
sion criteria. A paper obtained one point for each inclusion criteria it fulfilled.
The inclusion criteria were defined using table 2.4 with the goal of narrowing the
search and obtaining literature examining SoH estimation using machine learn-
ing methods while also taking the SoC window of the data into consideration.
Table 2.5 displays the different inclusion criteria. Six of the papers in table A.5
obtained a score of three, indicating that they were highly relevant.

Criteria Description
IC 1 The study is concerned with P.
IC 2 S is constrained by C.
IC 3 The study provides an S and an evaluation of how S performs.

Table 2.5: Inclusion criteria

The last filter that was applied was the quality criteria. The quality criteria
are given in table 2.6. These criteria are a form of quality control with regards to
the scientific value of the study. All the papers which scored three points based on
the inclusion criteria also fulfilled the quality criteria. Lastly, if selection between
any obtained studies that were duplicates or appeared in multiple search engines
had to be made, the decision was to keep the source with the most quotations.
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Criteria Description
QC 1 The goal of the study is clearly stated.
QC 2 The experiments and results are reproducible.
QC 3 The results of the experiments are analyzed.
QC 4 The paper is written in English.

Table 2.6: Quality criteria

2.4 Previous Work and Research Questions
This section provides a review of related previous work, specifically the highest
scoring papers found through the structured literature review: [Lai et al., 2020],
[Qu et al., 2019], [Feng et al., 2019], [Lee et al., 2019], [Guo et al., 2021], [Chen
et al., 2018] and [Guo et al., 2021]. Afterward, the research questions are de-
scribed in the context of the previous work. Some of the work presented in this
section is also presented in [Grytten, 2021] as part of the TDT39 course.

2.4.1 Review of [Lai et al., 2020]
[Lai et al., 2020] aimed to use machine learning methods to identify the operating
SoC windows and temperature of different LIBs. Training and validation data
was created in the lab by cycling battery cells at different temperatures and
SoC ranges. The extracted features were the incremental capacity curve and the
shifts in the curve. The paper concluded that temperature affected the shift in
the incremental capacity curve to a larger extent than the SoC range did. On
the other hand, the SoC range could in most cases be identified. In this study
the accuracy was 67%. It should be noted that the cells were not cycled to
end of life, which is typically defined as 80% of the original capacity. Increased
aging should, in theory, make it easier to distinguish the cells SoC window and
potentially increase the 67% accuracy.

2.4.2 Review of Qu et al. [2019]
A fast online state of health estimation method for LIBs based on incremental
capacity curves was developed in [Qu et al., 2019]. The incremental capacity
curves were used at the SoC range [0.3−0.8] to estimate SoH. This gave, according
to the authors, satisfactory results. The method depended on a linear relationship
between the DQDV curve and SoH of the cell. Therefore, the authors found that
it was important that the SoC interval used for estimation was in the range of
[0.3− 0.8].
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2.4.3 Review of Feng et al. [2019]
In this paper, a support vector machine model was created for online estimation
of SoH. The model used incremental capacity curves from partial charging data
as input. The particular method which was used in the paper was susceptible to
the input SoC. The authors did not investigate to which degree this was due to
the underlying aging characteristics of the LIB, or because the method developed
required the measured voltage to be monotonic. The authors suggested that an
investigation on how the non-uniform aging of the LIB affects the accuracy of
the SoH estimation is an exciting topic that requires further study.

2.4.4 Review of Chen et al. [2018]
[Chen et al., 2018] investigated SoH estimation of LIBs using fixed-size least
squared support vector machines. The model took discharge time within a given
SoC range as input. The paper selected the voltage range [3.19, 3.25] as the op-
timal SoC range for SoH. The selection process involved comparing the pseudo-
OCV curve of three LiFeP04 cells with different SoH. Different SoC ranges were
analyzed to determine in which pseudo-OCV plot the cells were easiest to dif-
ferentiate. LiFeP04 is a cell chemistry that stands out from other lithium-ion
chemistries in that the OCV curve of the LiFeP04 chemistry contains a plateau.
The voltage range was selected such that the highest voltage was the start of
this plateau. This made it easier to separate cells with different SoH in that SoC
area. The results stated that the SoH estimation accuracy in general increased
with increasing SoC range. [Chen et al., 2018] also found that if the input data
contained the upper voltage of the start of the plateau section in the pseudo-
OCV curve, it was much easier to obtain good SoH estimates. These results were
very specific to the LiFeP04 chemistry, and the authors suggested that other
chemistries should also be investigated.

2.4.5 Review of Guo et al. [2021]
[Guo et al., 2021] is mostly application-focused. Paraphrasing from [Grytten,
2021]: "The authors have created a feature extraction technique aimed at im-
proving SoH estimation in battery applications. The method used only data
from the last stage of the charging process where the battery was close to its
upper voltage limit. In this stage, the current was applied to control the over-
potential caused by the charging current to not exceed the upper voltage limit.
This data was much less complex than the discharge data when the battery was
used in an application. The authors took advantage of this by training an algo-
rithm and predicting SoH using this algorithm. Multiple features were extracted
from the data set, and multiple support vector regression models were trained
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using different numbers of features. The models with more features were shown
to outperform the models with fewer features in estimating SoH. The data used
in this paper was extracted from the end of a charge cycle, and it belonged to
a limited and very high SoC range. There was no discussion in the paper about
how this affects the extracted features and their relative importance. There was
also no mention of how the limited and very high SoC range used for training
and estimation could impact performance."

2.4.6 Review of Lee et al. [2019]
This publication is also discussed in [Grytten, 2021] and this review can be con-
sidered as an extension of the previous review. [Lee et al., 2019] used data from
a limited SoC window to create a SoH estimation algorithm. More specifically, a
pseudo-OCV curve was extracted from a limited charging cycle. The paper as-
sumed that the pseudo-OCV data of each of the electrodes were available. That
is, both potentials were measured relative to common ground. This is an im-
portant simplification that allowed a nonlinear least-squares fit of both of the
electrode SoH related parameters. In this case, the chosen parameters were elec-
trode capacity and maximum electrode lithiation. These parameters were tracked
as the LIB aged and could be related to LLI and LAM. Multiple models were
trained by using different SoC windows as training data. It was not specified in
which SoC ranges the LIBs, which the data is extracted from, were cycled. The
models were tested on noisy data and compared. The Cram'ser-Rao bound was
used as the comparison metric. It provided a best-case lower bound on the vari-
ance of the different models. The results showed that the models trained with
data from the larger SoC window outperformed models trained on data from
smaller SoC windows. It was also evident that data which contained peaks in the
DQDV curve and data which contained faster changes in the OCV curve of the
electrodes were beneficial for SoH estimation, and thus the SoC operating range
was important.

2.4.7 Research Questions
The reviewed papers, specifically [Lee et al., 2019] and [Chen et al., 2018], ex-
emplified that the SoC range has an impact on SoH estimation. The review also
indicated that the SoC range of the input data was a significant factor in data-
driven models. This was the case in [Chen et al., 2018] where the SoC ranges
from the extracted data of the LiFeP04 cell was crucial for the accuracy, but
the results were deemed limited to this type of chemistry due to its special char-
acteristics. [Guo et al., 2021], [Feng et al., 2019] and [Qu et al., 2019] also used
limited SoC ranges as input data and concluded that with the specific feature
selection conducted in their approaches, the created model accuracy depended on
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the input SoC range. They did not however, analyze if the differences in degra-
dation caused by limited SoC windows, had an impact on accuracy. The method
described in [Lee et al., 2019] also used data from a limited SoC range. However,
it did not take into consideration how this limited SoC range would impact the
SoH estimates. The focus of research question one is, therefore, to investigate
how different SoC windows impact the accuracy of the machine learning model’s
SoH estimates by causing various types of degradation: "How does data from a
LIB cycled at a specific SoC window affect the accuracy of SoH estimates?"
The findings from the review indicated that an analysis of which extracted fea-
tures from cycling data depend on the SoC for effectiveness is interesting to
investigate. Researching the relative feature importance of different extracted
features in the context of SoC windows could also yield knowledge about which
features are most beneficial for SoH estimation in a given SoC range for machine
learning models. This is the motivation behind research question two: "How
does data from a LIB cycled at a specific SoC window affect the accuracy of SoH
estimates?"
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Methodology

This chapter presents the methodology behind the creation of the data used in
this thesis. Specifically, the equipment used is described and the aging schedules
of all the LIBs are given. In addition, the methods used to characterize SoH are
also given.

3.1 Data Acquisition
The data needed to answer the research questions is very specific. The LIBs used
needed to be cycled within a certain SoC window. It was also necessary to run
an extensive characterization of the cycled LIB at given intervals. This data was
not easily obtainable from public databases. Therefore a data-set tailored to this
project was created by aging four LG-Chem JP3 LIBs. The cells are numbered
from one to four and their corresponding SoC range is given in table 3.4.

3.1.1 Equipment Specification
LG-Chem JP3 is 64 Ampere hour LIB with 3.0V lower cutoff and 4.2V upper
cutoff voltage. A battery cycler, a temperature chamber, and a potentiostat
were utilized for cycle aging and SoH characterization of the LIB. The battery
cycler was an Arbin Instruments MitsPro8. This instrument can deliver large
currents while still having a high current and voltage measurement accuracy. Two
channels of the Arbin Instruments MitsPro8 were used for each cell and connected
in parallel. This enabled charge and discharge rates of 60 amperes and allowed
faster aging than what a single channel would achieve. A low accuracy auxiliary
temperature measurement device provided ambient temperature measurements
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and was an important safety feature. The specifications of the Arbin Instruments
MitsPro8 are given in table 3.1.

Specification Type Specification
Max channel current ± 30 A

Current measurement accuracy ± 0.012 A at 30 A
± 0.002 A

Voltage measurement accuracy ± 0.002 V

Table 3.1: Arbin Instruments MitsPro8 Specifications

The potentiostat was used for SoH characterization and was a Gamry Interface
5000. Table 3.2 gives the specifications and measurement accuracy of the Gamry
Interface 5000 using the galvanostatic mode.

Specification Type Specification
Max voltage measurement error 8.9 mV
Max current measurement error 12.5 mA

Table 3.2: Gamry Interface 5000 Specifications

As the temperature impacts the parameters of LIBs, it was important to
control the ambient temperature. Therefore the four LG-Chem JP3 LIBs were
cycled in two temperature chambers from VWR. The temperature chamber model
was IL 68R. Table 3.3 gives the specifications of the temperature chambers used.

Specification Type Specification
Temperature range 3 - 70◦C

Temperature accuracy ± 0.1 ◦C at 37 ◦C

Table 3.3: VWR IL 68R

3.1.2 State of Charge Windows
In this project, the LIBs were cycled in different SoC ranges. The four different
SoC windows were 10-90%, 35-65%, 20-50% and 65-95% and are illustrated in
figure 3.1. These ranges allow comparison of the aging at different limited voltage
ranges, in addition to one cell aging at almost the full range. At the start of the
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project, a pseudo-OCV curve was found by discharging the batteries at a rate of
C / 30 . By using this data, the upper and lower voltages of the different SoC
windows were calculated. These points are given in table 3.4.

Figure 3.1: SoC windows

Cell number SoC window Lower voltage Upper voltage
Cell 1 10-90% 3.457 V 4.032 V
Cell 2 20-50% 3.535 V 3.659 V
Cell 3 35-65% 3.779 V 3.607 V
Cell 4 65-95% 4.092 V 3.779 V

Table 3.4: Cell Identifiers and Voltage Windows

3.1.3 Lithium-ion Battery Ageing Schedule
An aging schedule for each of the four LIBs cycled in this project was created.
During aging, the temperature chambers were set at 35◦C. It is important to
keep the LIBs SoC working range within the specified limits. Therefore, to reach
the upper SoC limit when charging, CCCV charging mode was utilized until the
upper voltage limit was reached, as defined in 3.4. At discharge, constant current
was used for a specified duration in order to reach the lower SoC limit. Data from
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this part of the aging schedule is plotted in figure 3.2. Every tenth aging cycle
is special. During discharge, at each 10% SoC interval, an internal resistance
measurement was conducted automatically by the Arbin Instruments MitsPro8
battery cycler. Before an internal resistance measurement, the scheduler paused
for 10 minutes, allowing the LIB to be closer to equilibrium. Typical voltage and
current data from this step is plotted in figure 3.3.

Aging Schedule

1. Discharge with constant current for a specified duration at 0.9375 C.
2. Rest 10 minutes at the lower SoC limit.
3. CCCV charge at 0.9375 C to the upper voltage limit with cutoff at 0.1
C.
4. Rest 10 minutes at the upper voltage limit.
5. Increment the cycle counter.
6. Go to step 1 if the cycle counter is divisible by 10. Else go to step 7.
7. Measure the internal resistance.
8. Discharge 10% of the total LIB SoC window with 1 C constant current.
9. Rest for 10 minutes.
10. Measure the internal resistance.
11. Go to step 3 if the lower SoC limit is reached. Else go to step 8.

(a) Voltage from cycling in the 10%-90%
SoC range

(b) Current from cycling in the 10%-90%
SoC range

Figure 3.2: Aging schedule data
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(a) Voltage from internal resistance
characterization cycling in the 10%-90%
SoC range

(b) Current from internal resistance
characterization cycling in the 10%-90%
SoC range

Figure 3.3: Internal resistance measurements

3.1.4 Lithium-ion Battery State of Health Characteriza-
tion Schedule

Once a month, a SoH characterization was conducted. This was done with the
temperature chamber at 25◦C. During characterization, multiple capacity tests
were run at different C-rates. In addition EIS was conducted. The schedule for
the EIS and capacity tests is given in the tables below.

Electrochemical Impedance Spectroscopy

1. CCCV charge to 100% SoC at 60C/64 with cutoff current of C/10.
2. The potentiostat mode to galvanostatic mode.
3. The frequency range is 0.1 MHz to 0.1 Hz.
4. The number of points per frequency decade is 100.
5. The perturbation current amplitude is 3A.
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Capacity tests

Capacity Test C/10:
1. Discharge at C/10 constant current until 0% SoC is reached.
2. CCCV charge at C/10 with cutoff current of 6.3

64 C.
3. Rest 10 minutes after charge.

Capacity Test C/3:
1. Discharge at C/3 constant current until 0% SoC is reached.
2. CCCV charge at C/3 with cutoff current of C/10.
3. Rest 10 minutes after charge.

Capacity Test C/2:
1. Discharge at C/2 constant current until 0% SoC is reached.
2. CCCV charge at C/2 with cutoff current of C/10.
3. Rest 10 minutes after charge.

Capacity Test C/1:
1. Discharge at 60C/64 constant current until 0% SoC is reached.
2. CCCV charge at 60C/64 with cutoff current of C/10.
3. Rest 10 minutes after charge.



Chapter 4

Battery Aging Results and
Discussion

This chapter presents the results from the LIB aging schedule. Raw data is
presented, in addition to some analysis that attempts to capture the different
degradation modes of the individual LIBs. Lastly, the obtained results are dis-
cussed and compared between the different LIBs.

4.1 Aging Results
The results of the aging of the four tested cells is presented in this section. The
results originates from the discharge tests, internal resistance measurements and
the EIS experiments.

4.1.1 Capacity Degradation
This subsection contains results from the capacity tests described in 3.1.4. Table
4.1 gives the calculated capacity degradation obtained from the C/2 tests of all
the 4 tested cells. Figure 4.1 plots the discharge curves used to calculated the
values in table 4.1.
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Characterization 10-90% SoC 20-50% SoC 35-65 SoC 65-95% SoC
1 100% 100% 100% 100%
2 97.2% 99.9% 98.7% 97.5%
3 94.9% 99.3% 97.7% 95.7%
4 92.7% 98.7% 97.0% 94.5%
5 90.7% 98.3% 96.5% 93.5%
6 89.2% 97.8% 95.9% 92.8%

s

Table 4.1: Capacity decrease from C/2 discharge tests

(a) Cell 1 2C discharge. (b) Cell 2 2C discharge.

(c) Cell 3 2C. (d) Cell 4 2C discharge.

Figure 4.1: 2C discharge curves

Table 4.2 contains the calculated capacity degradation obtained from the C/10



CHAPTER 4. BATTERY AGING RESULTS AND DISCUSSION 41

Characterization 10-90% SoC 20-50% SoC 35-65 SoC 65-95% SoC
1 100% 100% 100% 100%
2 97.5% 97.7% 97.3% 95.7%
3 96.7% 98.4% 97.7% 95.8%
4 94.5% 97.7% 96.8% 94.5%
5 91.3% 96.1% 95.2% 92.3%
6 89.6% 95.7% 94.6% 91.6%

Table 4.2: Capacity decrease from C/10 discharge tests

tests of all the 4 tested cells. Figure 4.2 displays the discharge curves used to
calculate the values in table 4.2.

(a) Cell 1 10C discharge. (b) Cell 2 10C discharge.

(c) Cell 3 10C discharge. (d) Cell 4 10C discharge.

Figure 4.2: 10C discharge curves
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4.1.2 Internal Resistance
This subsection contains results from the internal resistance tests as described
in subsection 3.1.3. The tests were automated and ran multiple times a day by
the Arbin Instruments MitsPro8. As explained in subsection 3.1.3, the internal
resistance at every 10% SoC interval was measured every tenth aging cycle. For
simplicity, figure 4.3 plots the average of the measurements taken at 10% SoC
intervals over the entire test period.

(a) Cell 1 internal resistance. (b) Cell 2 internal resistance.

(c) Cell 3 internal resistance. (d) Cell 4 internal resistance.

Figure 4.3: Measured internal resistance

4.1.3 Degradation Modes Characterization
The aim of this subsection is to characterize the degradation modes, CL, LAM and
LLI of the tested LIBs. The general trend of the degradation modes is considered.
Therefore, for simplicity, the first successful experiments conducted in November
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2021 and the last experiments conducted in March 2022 are compared. The
following subsections utilizes AR-ECMs to model the impedance responses of all
the tested LIBs. The AR-ECMs are created and the results are plotted using the
python package "impedance.py" [Murbach et al., 2020]. As described in 2.1.5,
the percentage increase of the degradation modes are calculated from the models.
The DQDV curves obtained in November 2021 and March 2022 are also analyzed
to provide more information on the evolution of the different degradation modes.
In this subsection, all the data plotted in blue originates from November 2021,
and all the data plotted in orange originates from March 2022.

Cell 1 Degradation Modes

Figure 4.4a shows the curve fit of the impedance response in November and 4.4b
plots the curve fit of the impedance response in March. The calculated change
in degradation modes from these curve fits are given in table 4.3.

(a) EIS measurement cell 1 November 2021 (b) EIS measurement cell 1 March 2022

Figure 4.4

Table 4.3 shows a small increase in CL, a small decrease in LAM and a quite
large increase in LLI. Figure 4.5 plots the DQDV curves from November 2021
and March 2022. There is no significant voltage shift towards lower voltages,
indicating no significant change in CL. The peak of the curve is reduced quite
a lot, in addition to some reduction at approximately 3.45[V]. This indicates
LAM. The relative minimum at approximately 3.75[V] is shifted to the right
from November 2021 to March 2022. This change is most likely due to LLI.

Characterization Time CL[%] LLI[%] LAM [%] Curve fit MASE [%]
November 2021 0 0 0 0.39

March 2022 0.8 92.7 11.3 0.45

Table 4.3: Percentage change in degradation mode for Cell 1
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Figure 4.5: Incremental capacity curves for cell 1

Cell 2 Degradation Modes

Figure 4.6a shows the curve fit of the impedance response in November 2021 in
a Nyquist plot. Figure 4.6b shows the curve fit of the impedance response in
March. We observe that, over time and aging, the tail of the graph, typically
related to diffusion, changes direction. The AR-ECM is not suited to handle this
development, and the curve fit is therefore a bit off in this section of the graph.

(a) EIS of Cell 2 November 2021 (b) EIS measurements Cell 2 March 2022

Figure 4.6

Table 4.4 shows the percentage growth of the different degradation modes for
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cell 2. We observe that there is a small decrease in CL and small increases in LLI
and LAM over the cycle time of the cell.

Characterization Time CL[%] LLI[%] LAM [%] Curve fit MASE [%]
November 2021 0 0 0 0.42

March 2022 -4.5 12.5 4.3 0.36

Table 4.4: Percentage change in degradation mode for Cell 2

Figure 4.7: Incremental capacity curves for cell 2

Figure 4.7 plots the DQDV curves from November 2021 and March 2022.
There is no significant shift towards lower or higher voltages indicating no sig-
nificant increase or decrease in CL. At about 3.75[V] there is a small shift and
decrease in the DQDV curve, indicating some LLI. There is a small decrease in
the DQDV curve at approximately 3.6[V] indicating a small decrease in active
material.
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Cell 3 Degradation Modes

Figure 4.8a plots the EIS measurements in black and curve fit in blue from Novem-
ber 2021 in a Nyquist plot. Figure 4.8b shows the curve fit of the impedance
response in March. As with cell 2, we observe that the tail of the graph, typically
related to diffusion, changes direction. The AR-ECM is not suited to handle
this development, and the curve fit is therefore not optimal in this section of the
graph.

(a) EIS measurement cell 3 November 2021 (b) EIS measurement cell 3 March 2022

Figure 4.8

Table 4.5 shows that there is not to much change in the estimated degradation
modes CL, LLI and LAM. This agrees with the DQDV plot in figure 4.9. The
DQDV plot does not show any significant left shift, which would indicate CL.
There is however some indication of LAM due to the right shift of the relative
minimum at about 3.7[V]. The decrease peak at about 3.6[V] indicates some
LAM.

Characterization Time CL[%] LLI[%] LAM [%] Curve fit MASE [%]
November 2021 0 0 0 0.26

March 2022 -2.8 15.3 9.6 0.43

Table 4.5: Percentage change in degradation mode for Cell 3



CHAPTER 4. BATTERY AGING RESULTS AND DISCUSSION 47

Figure 4.9: Incremental capacity curves for cell 3

Cell 4 Degradation Modes

Figure 4.10a and 4.10b plots the EIS measurements and curve fits from November
2021 and March 2022. Figure 4.10b shows the curve fit of the impedance response
in March. Table 4.6 gives the percentage change in the degradation modes from
the first to last measurement. A small increase in CL and LAM can be observed,
in addition to a relative larger percentage increase in LLI.

(a) EIS measurement cell 4 November 2021 (b) EIS measurement cell 4 March 2022

Figure 4.10
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Characterization CL[%] LLI[%] LAM [%] Curve fit MASE [%]
1 0 0 0 0.34
5 1.8 17.1 6.1 0.39

Table 4.6: Percentage change in degradation mode for cell 4

Figure 4.11: Incremental capacity curves for cell 4

The DQDV plot in figure 4.11 does not display any significant left shift, which
would indicate CL. The peak observable at about 3.45[V] is actually larger in the
aged cell, then when the cell was new. The next peak at about 3.6[V] and the
relative minima at about 3.7[V] is lowered and shifted which indicate LLI.

4.2 Result Discussion
The following subsection discuss the first EIS attempt, which failed due to noise
in the data. The measures taken to improve the data quality are described.
Next, the observed capacity loss, the internal resistance measurements and the
degradation modes obtained by the LIB characterization techniques are discussed.
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4.2.1 Failed EIS Attempt
During the project, a total of six EIS measurements were done. Only five of these
experiments were successful. This subsection covers the failure in the first EIS
measurements and the actions taken to improve the measurements. Figure 4.12
plots the measured impedance from this first characterization in a Nyquist plot.
The measurements were very noisy. It was difficult to identify the reason for
the noisy data, and it was probably caused by a combination of issues. Firstly
the EIS equipment was tested and verified using a much smaller LIB of 6.55 Ah
rated capacity. Smaller cells typically have more impedance than larger cells
because fewer electrodes are connected in parallel internally. This means that
the root mean square value of the perturbation signal can be less for the smallest
cell. A smaller perturbation signal reduces the electromagnetic noise during the
experiment. The possible impact of electromagnetic interference was not well
understood by the author at the time of the first EIS characterization. Therefore
the signal cable and the measurement cable of the EIS were not separated at all.
Secondly, the perturbation signal was increased when measuring the impedance
of the larger cells, but probably not enough. In addition, by inspecting figure
4.12, it is clear that the ohmic resistance, along the x-axis, is about a hundred
times higher than the actual internal resistance of the cells. This indicates that
there may have been a bad electrical connection between the LIB and the test
equipment.

Figure 4.12: Failed EIS attempt

The second EIS characterization gave usable data. Figure 4.13 plots one of
the impedance responses of one LIBs in a Nyquist plot. The shape of the curves is
comparable to the shape of the Nyquist plot in 2.3. Measures taken from the first
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attempt to the second attempt were to separate the signal and measurement ca-
bles of the EIS equipment as much as possible, ensure good electrical connection,
increase the number of sampling points and increase the perturbation current
from 0.5A to 3A.

Figure 4.13: Usable electrochemical impedance spectroscopy measurement

4.2.2 Capacity Discussion
The results from both the C/2 discharge test and C/10 discharge test are given in
subsection 4.1.1. The calculated capacity degradation given in tables 4.1 and 4.2
are within the variation we can expect. We observe that cells 1 and 4, which were
cycled at higher SoC ranges, are subject to a larger amount of capacity decrease
when compared to cells 2 and 3 which were cycled at lower SoC ranges. This is
expected according to [Gao et al., 2018]. By looking at the capacity degradation
from both cell 1 and cell 4, it is evident that cell 1 experienced a larger capacity
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decrease. On the surface this is a bit unexpected, as the upper SoC range should
effect capacity decrease more than lower SoC ranges. However the charge and
discharge time of cell 1 was longer than the charge and discharge time of cell 4.
The reason is that cell 1 was cycled in the 10%-90% SoC range and cell 4 was
cycled in the 65%-95% SoC range. Since the rest time, 10 minutes, was equal for
both cells, this led to cell 1 having more FCE than cell 4 in addition to cells 2
and 3. This can explain the increased capacity loss of cell 1.

4.2.3 Internal Resistance Discussion
LG-Chem JP3 is a 64 Ampere hour LIB with many internal cathodes and anodes
connected in parallel. This results in a LIB with very low internal resistance. As
the resistance decreases, obtaining accurate measurements becomes more diffi-
cult and effects that are negligible in other LIBs becomes increasingly important.
Looking at the measured internal resistance of the 4 LIBs in figure 4.3, it is clear
that the Arbin Instruments MitsPro8 was unable to accurately determine the
internal resistance. We can assume that all the internal resistances were between
about 0.3 and 0.4 m[Ω], but the data is not good enough to be useful. By inspect-
ing the plot in figure 4.3, it is clear that in many measurements there were a bias
that changed with a period of about one month. This matches the time of when
the SoH characterization schedule was executed. During this procedure, the cells
were disconnected from the cycler to obtain the EIS measurements, before they
were reconnected. It is reasonable to assume that the change in internal resis-
tance is negligible before and after the SoH characterization schedule. Therefore
the periodically changing bias, which seems to have been the most important
factor in ruining the measurements, was probably due to tiny differences in the
electrical wiring connecting the cells to the cycler.

4.2.4 Degradation Modes Discussion
Two methods were utilized to characterize the degradation modes of the cells. The
method of analyzing DQDV curves is more established than the EIS approach
where the AR-ECM is utilized. Therefore, if there are any discrepancies, the
DQDV curve is likely to be more accurate. Common for all 4 LIBs was that
there seemed to be little change in CL. By looking at the AR-ECM results it
seems that the dominating degradation mode for all 4 cells is LLI. Inspection of
the DQDV curves indicates that this is a good assumption for cell 2, 3 and 4. For
cell 1 on the other hand, it seems that LAM also was a significant degradation
mode.



Chapter 5

Machine Learning Models

This chapter describes the objective of the machine learning models used in this
thesis. A quick description of the two selected model designs is given. The input
features of the models are explained. Next, the methodology used to train and
validate the two models is elaborated. Lastly, the method for calculating SHAP
is given.

5.1 Model Objective
The models are built to investigate research question 1, how the SoC windows
affects the SoH estimates, and research question 2, how the SoC windows in-
fluences feature selection for the SoH estimation, as defined in section 1.2. To
achieve this, the models, in general, need to be accurate at predicting the SoH,
and it should also be possible to infer to which degree the different input features
influence the predictions. One challenge with this problem description, as ex-
plained in 2.1, is that there is no standardized definition of the concept of a SoH
in LIBs. However, resistance and capacity degradation are common parameters
used when evaluating SoH. Unfortunately, the Arbin Instruments MitsPro8 was
not able to measure the development of the resistance during testing. Therefore
the models are limited to predicting the capacity degradation of LIBs.

5.2 Models
For comparison reasons, this thesis uses two machine learning models to make
SoH predictions. Model 1 is based on Holt’s linear method combined with the
open-source library Catboost. Model 2 utilizes Holt’s linear method in combi-
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Model Architecture
Model 1 Holt’s linear + Catboost
Model 2 Holt’s linear + SVR

Table 5.1: Model architecture

nation with scikit-learn’s implementation of SVR [Pedregosa et al., 2011]. Table
5.1 list the models and their respective architecture.

Hybrid models increase model complexity, but in both cases, increased model
performance was achieved by Holt’s linear method. This result is expected in
the case of model 1, as gradient boosted decision trees are inherently inefficient
at predicting time series with a trend. The accuracy increase is a bit more
unexpected in the case of model 2 since SVR is better equipped to handle trends.
A data set D, as defined in equation 2.26, is needed to train the models. Both
models train by decomposing the target input training data (yi)i=1..n in D using
Holt’s linear method. The result is two-time series l and t, where l represents the
level, and t represents the trend of the target. In model 1, a "CatboostRegressor"
is fitted with the level series l as the target. Likewise, in model 2, a support vector
regressor is fitted to l. When making predictions with both models, an equation
similar to the forecasting equation 2.23 in Holt’s linear is used:

ŷt+h|t = mh + hbt (5.1)

ŷt+h|t represents the forecast h time steps ahead. The term hbt predicts a linear
trend where bt is the estimated trend of Holt’s linear method. In model 1, mh

represents the predicted output of the "CatboostRegressor" at index h. In model
2, mh represents the predicted output of the SVR at time step h.

5.3 Feature Extraction
The features used in the models in this thesis are selected based on their predictive
ability. In [Severson et al., 2019], a simple but accurate predictive model was built
using features extracted from discharge curves and their derivatives. Therefore,
many of the features extracted in this thesis are also based on this approach. From
the DQDV curve of the discharge step in the aging schedule, the peaks from the
DQDV curve are extracted using the function "argrelextrema" from [Virtanen
et al., 2020]. In addition, the relative time between the peaks is calculated. In
figure 5.1, an example DQDV curve is plotted. The green dots represent the local
maximums of the DQDV curve, and the red dots represent the local minimums.
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Figure 5.1: DQDV features

The number of local maximums and minimums found depends on the SoC interval
used and will therefore differ for the LIBs in this project.

Based on LIB domain knowledge, other features like temperature and data ex-
tracted from the CCCV charging phase are used. Table 5.2 lists all the extracted
features.

Feature Description
Maximum DQDV value. Local maximum value from the DQDV discharge curve.
Minimum DQDV value. Local minimum value from the DQDV discharge curve.

Maximum DQDV time. Relative timestamp of the local
maximum value of the DQDV discharge curve.

Minimum DQDV time Relative timestamp of the local
minimum value of the DQDV discharge curve.

CCCV charging time The time used to complete CCCV charging phase.
CCCV minimum current The minimum current used in the CCCV charging phase.

Average temperature The average temperature during the discharge phase.

Table 5.2: Extracted Features
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5.4 Model Training and Validation
Different data sets are needed to tune hyperparameters and validate the models.
First, the whole data set is split into two, one data set for hyperparameter tuning
and one for validation. The data set selected for hyperparameter tuning was
temporally ordered earlier than the data selected for model validation to avoid
data leakage. Both the hyperparameter data set and the validation data set
are split again into multiple pairs of training and test data sets. To prevent
overfitting, the training data is always temporally ordered ahead of the test data.
Additionally, the validation data needs to be temporally ordered to relate the
LIB aging to the different machine learning model’s behavior. In the validation
data set, there are 18 or 19 training and testing pairs, depending on from which
cell the data is obtained. Only one set is used for tuning hyperparameters. This
was deemed sufficient because the goal is to explore the change in accuracy and
feature importance under the time series development, not to create the most
accurate models. Figure 5.2 illustrates how the data is split into different sets.

Figure 5.2: Training and validation set split illustration

The performance of the models is evaluated using the model’s test data pre-
dictions. Since the value of the target changes over time in individual time series
and between time series, a scale invariant error metric must be used. Mean Ab-
solute Scaled Error (MASE) is selected as it is scale invariant, penalizes both
positive and negative forecast errors, and is easy to interpret. The formula for
MASE is:

MASE =
1
H

∑H
h |eh|

1
H−1

∑H
h+1|Yt − Yt−1|

(5.2)

H is the horizon of the prediction. |eh| is the absolute value of the error between
the observed value and forecast at time step h. |Yt − Yt−1| is the absolute error
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of the forecast from the naïve forecast method. The simple naïve forecasts are
created by setting the forecast equal to the last observed value in the time series.
The target of the predictions is the LIB capacity. As explained in subsection
4.2.2, it is clear that the target has a trend. The naïve forecast needs to account
for this to be somewhat accurate. Therefore the recent trend is calculated from
the last 20 time steps. The calculated trend is then added to the predictions,
yielding the formula for a naïve prediction h time steps ahead:

YT+h|T = Yt + h
Yt − yT−20

T − 1
(5.3)

It is simple to interpret the calculated MASE values. A MASE smaller than
1 indicates that the created model outperformed the naïve method. A MASE
greater than 1, indicates that the naïve method made better predictions than our
model.

5.5 SHAP Values
After model training, the SHAP for each prediction in the test set is calculated.
The SHAP values are estimated using the "shap" python package [Lundberg and
Lee, 2017c]. Specifically, the "KernelExplainer" class, which is model agnostic,
is used to estimate the SHAP values of both model 1 and model 2.



Chapter 6

Model Analysis

This chapter presents the obtained results from the models and analysis of these
results. First, the performance of the models are analyzed to ensure that they
have some predictive power. Next the SHAP values of the models with satisfac-
tory performance are analyzed. These can provide insight into which features are
important at specific SoC ranges, and if the importance of the features change
over time.

6.1 Model Performance
The performance results of the models are evaluated using the MASE metric,
as explained in section 5.4. The MASE is calculated for the whole validation
set. Next the relationship between the obtained performance results and the
degradation of the LIBs is explored.

6.1.1 Performance Results of Model 1
Figure 6.1 plots a typical capacity prediction created by model 1. The prediction
is 100 cycles ahead.
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Figure 6.1: Model 1 capacity prediction example

Table 6.1 gives the average MASE of the validation set for model 1 for all
4 cells. We observe that model 1 outperforms the naïve forecasts for every cell.
The worst forecasts, according to MASE, is obtained from the forecasts created
for cell 1. The validation set of cell 4 gives the next worst MASE. The best and
second best MASE is obtained in the validation sets for cell 3 and 4 respectively.

Cell Number Model MASE
1 0.78
2 0.57
3 0.45
4 0.59

Table 6.1: Model 1 average mean absolute scaled error
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6.1.2 Performance Results of Model 2
Figure 6.2 plots a 100 step capacity prediction made by model 2.

Figure 6.2: Model 2 capacity prediction example

Table 6.2 gives the average MASE of the validation set for model 2 for all 4
cells. Every MASE is below 1 and model 2 outperforms the naïve forecasts for
every cell. The validation set of cell 1 gives the worst MASE, cell 4 gives the
second worst MASE. The best MASE is obtained when evaluating the forecasts
of the capacity of cell 3 and the second best is obtained when evaluating cell 2.
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Cell Number Model MASE
1 0.92
2 0.58
3 0.52
4 0.64

Table 6.2: Model 2 average Mean absolute scaled error

6.1.3 Model Performance and LIB Degradation
Both model 1 and model 2 have the least success in predicting the capacity
degradation of cell 1. A possible explanation could be the increased capacity loss
of cell 1 when compared to cell 2 and cell 3, as discussed in subsection 4.2.2. On
the other hand, the MASE is significantly larger for cell 1 than for cell 4 for both
model 1 and model 2, and cell 4 experiences close to the same capacity loss as
cell 1. From 4.2.4 it is clear that cell 1 has more LLI and LAM when compared
to the three other cells. The explanation to why both model 1 and model 2 have
more difficulty in predicting the behavior of cell 1 could be the increased LLI
and LAM in cell 1. Faster change in degradation mode could manifest itself as
more non-stationary elements in the input features of the models. This could
also explain why the MASE for cell 2, cell 3, and cell 4 are comparable, as their
degradation modes are also comparable.

6.2 SHAP Results and Discussion
The following subsections list all the calculated estimates of SHAP for all the
input features for both model 1 and model 2. A discussion on the obtained SHAP
results is also provided. The features from the previous section, 5.3, are renamed
in this section in order to fit them in the tables given below. The minimum
CCCV charging current is renamed to "current". The time interval spent in
CCCV charging mode is named "interval". The DQDV local maximums are
sorted in ascending order according to the time they are observed. To illustrate,
the first local max DQDV feature is labeled "DQDV 1". Likewise, the feature
representing the timestamp of the first local maximum DQDV value is renamed
to "Max time 1". The renaming of the local minimums is done in the same
way as the local maximums. Lastly, the average temperature feature is renamed
to "T". The features are sorted after their importance where the features in
column "1" have the greatest importance and the features in the last column
have least importance. Each prediction has a horizon of 100 and the average
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feature importance of the horizon is listed. For cell 1, 18 sets from the validation
set was used to test the feature importance, because of limitations in the amount
of data points. For cell 2, cell 3 and cell 4, 19 test were executed.

6.2.1 SHAP for Cell 1
Table 6.3 lists the feature importance for all predictions of model 1 and table 6.4
lists the feature importance in the predictions of model 2. It can be observed
that model 1 and model 2 agree on which features are most important in every
prediction. In addition, the feature importance does not differ in any of the dif-
ferent predictions, from one to eighteen.

From the 10%-90% SoC window that cell 1 is cycled in, we obtain two local
minimum DQDV values and one maximum DQDV value. Since the "Min 1"
feature is always sampled at time 0, the "Min time 1" feature is dropped and 8
features remain.

Prediction number 1 2 3 4 5 6 7 8
1 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
2 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
3 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
4 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
5 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
6 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
7 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
8 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
9 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
10 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
11 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
12 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
13 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
14 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
15 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
16 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
17 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
18 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T

Table 6.3: Sorted feature importance for model 1 when predicting data from cell
1
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Prediction number 1 2 3 4 5 6 7 8
1 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
2 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
3 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
4 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
5 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
6 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
7 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
8 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
9 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
10 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
11 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
12 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
13 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
14 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
15 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
16 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
17 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
18 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T

Table 6.4: Sorted feature importance for model 2 when predicting data from cell
1

6.2.2 SHAP for Cell 2
Table 6.5 gives the feature importance for all predictions of model 1. Table 6.6
lists the average feature importance in the predictions of model 2. For model 1
the feature importance does not change throughout the validation set, except for
prediction number five, where "Interval" and "Current" exchange place. The fea-
ture importance in model 2 is also mostly constant over all the predictions. There
are some exceptions mostly due to "Interval" and "Min time 2" switching place.
There are some deviations, but it can be noted that model 1 and model 2 on av-
erage mostly agree on which features are most important in nearly all predictions.

Cell 2 is cycled in the 20%-50% SoC window. From this SoC window, two
local minimum DQDV values and one maximum DQDV value are obtained. As
the "Min 1" is always sampled at time 0, there are 8 features left.
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Prediction number 1 2 3 4 5 6 7 8
1 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
2 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
3 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
4 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
5 Interval Current Min time 2 Max time 1 Min 2 Min 1 Max 1 T
6 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
7 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
8 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
9 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
10 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
11 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
12 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
13 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
14 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
15 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
16 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
17 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
18 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
19 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T

Table 6.5: Sorted feature importance for model 1 when predicting data from cell
2

Prediction number 1 2 3 4 5 6 7 8
1 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
2 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
3 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
4 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
5 Interval T Min 2 Max 1 Min 1 Max time 1 Min time 2 Current
6 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
7 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
8 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
9 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
10 Current Min time 2 Interval Max time 1 Min 2 Min 1 Max 1 T
11 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
12 Current Min time 2 Interval Max time 1 Min 2 Min 1 Max 1 T
13 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
14 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
15 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
16 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T
17 Current Min time 2 Interval Max time 1 Min 2 Min 1 Max 1 T
18 Current Min time 2 Interval Max time 1 Min 2 Min 1 Max 1 T
19 Current Interval Min time 2 Max time 1 Min 2 Min 1 Max 1 T

Table 6.6: Sorted feature importance for model 2 when predicting data from cell
2
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6.2.3 SHAP for Cell 3
Table 6.7 gives the feature importance for all predictions of model 1 and table
6.8 gives the importance of the features in model 2. For model 1, there are many
fluctuations in the feature importance. "Current", "Interval" and "Max time 1"
are often listed as important, while "T", "Max 1" and "Min 1" are frequently
listed as less important. There is no obvious pattern developing throughout the
series of predictions, meaning there is no feature that consistently gains or losses
importance. By inspecting table 6.8, it can be observed that the importance of
the features also fluctuate in model 2. Generally, the features "Current, "T"
and "Max time 1" are often given high importance while the features "Interval",
"Max 1" and "Min 1" are attributed less importance. Likewise as for model 1,
there is no clear pattern where any feature climbs or sinks in importance over
time.

The SoC window of cell 3, is 35%-65%. From this SoC window, one minimum
DQDV value and one maximum DQDV value are obtained. As the "Min 1" is
always sampled at time 0, there are only 6 features left.

Prediction number 1 2 3 4 5 6
1 Interval T Max 1 Current Max time 1 Min 1
2 Current Max time 1 Interval Min 1 Max 1 T
3 Current Interval Max time 1 Min 1 T Max 1
4 Current Interval T Max time 1 Min 1 Max 1
5 Interval T Current Max 1 Max time 1 Min 1
6 Current Interval Max time 1 T Min 1 Max 1
7 Current Max time 1 Min 1 Interval Max 1 T
8 Current Interval Max time 1 Min 1 T Max 1
9 Current Max time 1 Min 1 Interval Max 1 T
10 Current Interval Max time 1 Min 1 T Max 1
11 Interval T Current Max time 1 Max 1 Min 1
12 Interval Current T Max time 1 Max 1 Min 1
13 Current Max time 1 Min 1 Interval Max 1 T
14 Interval T Current Max time 1 Max 1 Min 1
15 Interval T Current Max time 1 Min 1 Max 1
16 Current Max time 1 Min 1 Interval Max 1 T
17 Current Max time 1 Min 1 Interval Max 1 T
18 Current Interval Max time 1 Min 1 Max 1 T
19 Interval Current T Max time 1 Min 1 Max 1

Table 6.7: Sorted feature importance for model 1 when predicting data from cell
3
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Prediction number 1 2 3 4 5 6
1 T Max 1 Min 1 Max time 1 Current Interval
2 Current Max time 1 Min 1 Max 1 Interval T
3 Current Max time 1 Min 1 Interval Max 1 T
4 Current Max time 1 Min 1 T Interval Max 1
5 Current Max time 1 Interval Min 1 Max 1 T
6 T Max 1 Max time 1 Interval Min 1 Current
7 Current Max time 1 Min 1 Interval Max 1 T
8 T Max 1 Current Interval Max time 1 Min 1
9 Current Max time 1 Min 1 Interval Max 1 T
10 Current T Max 1 Min time 1 Interval Min 1
11 Current T Max time 1 Min 1 Interval Max 1
12 Current T Max time 1 Min 1 Max 1 Interval
13 Current Max time 1 Min 1 Interval Max 1 T
14 Current T Max time 1 Interval Min 1 Max 1
15 Current Max time 1 Min 1 Interval Max 1 T
16 Current Max time 1 Interval T Min 1 Max 1
17 T Max time 1 Max 1 Interval Current Min 1
18 Current Max time 1 Interval Min 1 T Max 1
19 Current T Max time 1 Interval Min 1 Max 1

Table 6.8: Sorted feature importance for model 2 when predicting data from cell
3

6.2.4 SHAP for Cell 4
The feature importance of model 1 is given in table 6.9 and table 6.10 lists the
importance of the features in model 2. There are many variations in the feature
importance for model 1. However "T", "Interval" and "Max 1" are frequently
listed as important, while "Max time 1", "Min time 1", "Current", and "Min
1" are frequently listed as less important. It is not easy to distinguish any clear
trends where a feature gains or looses importance over time. By inspecting table
6.10, it is clear that the importance of the features also fluctuate in model 2. The
features "T, "Interval" and "Min 1" are often attributed high importance while
the features "Max time 1", "Min time 1", "Current" and "Max 1" are given less
importance. There is no clear pattern where any feature importance increases or
decreases over time for model 2.

The SoC window of cell 4, is 65%-95%. From this SoC window, one minimum
DQDV value and one maximum DQDV value are obtained. This yields a total
of 6 features.



CHAPTER 6. MODEL ANALYSIS 66

Prediction number 1 2 3 4 5 6 7
1 T Interval Max 1 Max time 1 Min 1 Current Min time 1
2 Interval T Min 1 Current Max 1 Max time 1 Min time 1
3 T Max 1 Current Min 1 Min time 1 Max time 1 Interval
4 T Interval Current Min time 1 Min 1 Max 1 Max time 1
5 T Interval Min time 1 Current Min 1 Max time 1 Max 1
6 T Interval Max time 1 Max 1 Current Min time 1 Min 1
7 Min 1 Interval Min time 1 T Max time 1 Current Max 1
8 T Interval Current Min time 1 Min 1 Max time 1 Max 1
9 T Current Min time 1 Max 1 Max time 1 Min 1 Interval
10 T Interval Max time 1 Min 1 Min time 1 Max 1 current
11 Interval Max 1 T Current Min 1 Max time 1 Min time 1
12 T Min 1 Max 1 Max time 1 Min time 1 Interval Current
13 Interval T Max 1 Min 1 Current Max time 1 Min time 1
14 T Interval Max 1 Min 1 Min time 1 Current Max time 1
15 Interval Min 1 T Min time 1 Max 1 Max time 1 Current
16 T Max 1 Min time 1 Current Min 1 Interval Max time 1
17 T Max time 1 Current Interval Min 1 Min time 1 Max 1
18 Min time 2 Interval Max time 1 Min 2 Min 1 Max 1 T
19 T Interval Min time 1 Min time 1 Min 1 Max 1 Current

Table 6.9: Sorted feature importance for model 1 when predicting data from cell
4

Prediction number 1 2 3 4 5 6 7
1 Min 1 Interval T Min time 1 Current Max time 1 Max 1
2 T Interval Min 1 Current Max time 1 Max 1 Min time 1
3 Interval Min 1 T Current Max time 1 Max 1 Min time 1
4 Min 1 Interval Max 1 Current Max time 1 Min time 1 T
5 Interval T Min 1 Max 1 Max time 1 Min time 1 Current
6 Interval Min 1 T Max 1 Current Min time 1 Max time 1
7 Min 1 T Interval Current Min time 1 Max time 1 Max 1
8 Min 1 Interval Max time 1 Min time 1 Max 1 T Current
9 T Min 1 Interval Max time 1 Max 1 Min time 1 Current
10 T Interval Max 1 Current Min 1 Min time 1 Max time 1
11 T Interval Max 1 Current Max time 1 Min 1 Min time 1
12 T Min 1 Interval Min time 1 Max time 1 Current Max 1
13 Interval Min 1 Max time 1 Max 1 Min time 1 T Current
14 T Min 1 Interval Max 1 Max time 1 Min time 1 Current
15 Min 1 T Interval Max 1 Current Min time 1 Max time 1
16 Interval T Min 1 Current Max 1 Min time 1 Max time 1
17 T Interval Max time 1 Min 1 Max 1 Current Min time 1
18 T Interval Max time 1 Min 1 Max 1 Current Min time 1
19 T Interval Min 1 Max time 1 Min time 1 Current Max 1

Table 6.10: Sorted feature importance for model 2 when predicting data from
cell 4
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6.2.5 SHAP Relation to LIB Degradation and SoC Win-
dows

By observing the feature importance of cell 1, which is the cell that ages the
most, it is clear that the feature importance is constant for the duration of the
project for both model 1 and model 2. By inspecting the importance of the input
features of cell 2, cell 3, and cell 4, there is no clear trends where any feature
gains or looses importance in both model 1 and mode 2. These results indicate
that the feature importance does not change, at least in the machine learning
models used in this thesis, due to the LIBs aging, in any significant way.

The SoC window the LIBs are cycled in, impacts which features are extracted
from the DQDV curve. How the number of input features affects the model
accuracy is difficult to answer using the obtained data. Intuitively one would
think that more information would result in better performing models. But the
models predicting the capacity of cell 3, which has only 6 input features, are
the best performing models with the lowest MASE. In "Data-driven prediction
of battery cycle life before capacity degradation" [Severson et al., 2019], three
models predicting capacity degradation was compared. The models differ in the
number of input features. The results indicate, although the prediction error
decreased with increasing number of features, that selecting the correct features
are more important than selecting a large number of features. This explanation
seems to be consistent with the results obtained in this thesis. It is difficult
to infer anything about which features are most important in the different SoC
windows by inspecting the SHAP. Especially since model 1 and model 2 do not
completely agree in feature importance when predicting the capacities of cell 3
and cell 4. In general it seems like the features, "Current" and "Interval" which
are extracted from the CCCV phase are powerful predictors, in all SoC windows.



Chapter 7

Conclusion and Future Work

This chapter explains the work conducted to attempt to achieve the goal of the
thesis as defined in section 1.2. A discussion on the obtained results and how they
can answer the research questions is provided. Next, the limitations of the work
is discussed, the contributions are listed and suggestions for future extensions of
the work are made.

7.1 Conclusion
As stated in section 1.2, this thesis aims to provide a better understanding of
the effect of the SoC window on machine learning models for estimation of the
SoH in LIBs. To achieve this, a special data set of LIBs cycled in specific SoC
windows was created. The data was analyzed to highlight the differences in aging
caused by the distinct SoC windows. Two models capable of predicting SoH
parameters using the created data set were made. Both model’s predictive power
was analyzed and the SHAP of the respective input features of both models were
calculated and compared. The discussion illustrated that cell 1, which is the cell
with the largest SoC cycle window and, as expected according to [Wikner, 2019],
experienced the most aging, also gave a larger prediction MASE when compared
to the cells cycled at smaller SoC windows. This result can help answer research
question one as defined in section 1.2: "How does data from a LIB cycled at a
specific SoC window affect the accuracy of SoH estimates?" More data is needed
and more machine learning methods need to be tested on the data to conclude,
but the results in this thesis indicate that the increased degradation of cells cycled
in large SoC windows decreases the estimation accuracy of SoH for machine
learning methods. Next an attempt was made to answer research question two,
defined in section 1.2: "Which features are most important for estimating the
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SoH and does the SoC window impact feature importance?" The SHAP of both
model’s predictions were calculated and analyzed from the start of the LIB aging
to the end. From the discussion it is clear that the results did not indicate that
the importance of features increased or decreased depending on the different SoC
windows. Which features are important in the different SoC ranges was also
difficult to answer from the analysis. In conclusion more data is needed to infer
anything meaningful on research question 2.

7.2 Limitations
The main limitation in the conducted work was the amount of obtained data. To
conclude anything with certainty more cells must be tested. In addition, more
machine learning models must be created and tested. Due to limited time, the
LIBs used in this thesis were not aged to their end of life. Therefore, by in-
creasing the time frame of the project, other interesting relations between SoC
and machine learning SoH estimation could be found. Unfortunately, a lot of
internal resistance data was rendered useless because of measurement difficulty.
The internal resistance of a LIB is important in SoH characterization. Unfortu-
nately this dimension was lost in this project. Another, more general problem, is
that there is no obvious and common agreed upon way to define SoH. Therefore,
different work will have different definitions of SoH. This makes reasoning about
the research questions in this thesis more challenging.

7.3 Contributions
1. Two machine learning models capable of predicting capacity degradation of

LIBs.

2. A methodology for creating data which can be used to study SoC impact on
machine learning estimation of SoH in LIBs.

3. A data set which can be used to study SoC impact on machine learning
estimation of SoH in LIBs.

4. Indications that increased degradation caused by large SoC windows impact
SoH estimation accuracy in machine learning models.

7.4 Future Work
To increase the certainty of the results in this thesis, the number of tested LIBs
in all SoC windows, should be increased. To further increase the generality of the
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results, more models should be created, tested and compared. In addition, more
effort should be put into increasing the accuracy of the models. Due to limited
time, this was not a first priority in this work. Moreover, the data used in this
thesis differ from data that a realistic use case, like an electric vehicle, would
create. An interesting task could be to alter the aging methodology to closer
mimic real world examples, while still containing monthly SoH characterizations.
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Appendices
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Appendix A

Literature Review

Synonym 1 Synonym 2 Synonym 3 Synonym 4
Term 1 State of Health SoH - -
Term 2 Battery Cell Accumulator -
Term 3 Estimation Regression Approximation -
Term 4 SoC range Cycle range Range Interval

Table A.1: Key search terms

Criteria Description
IC 1 The study is concerned with P.
IC 2 S is constrained by C.
IC 3 The study provides an S and an evaluation of how S performs.

Table A.2: Inclusion criteria

P Estimation of the SoH of any battery cell
C A limited SoC range should be used in solving P
S A machine learning method should be used in SoH estimation.

Table A.3: Problem, constraint and solution definitions
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Search Engine Results reviewed
Scopus Every result

IEEE Xplore Every result
CiteSeerX Every result

ScienceDirect First 100 results

Table A.4: Search Engines
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Paper title Search engine Search term Criteria Score
Performance mutation mechanism and Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
parametric characterization method of T3 ∧ T4
high-capacity lithium-ion battery.
How the utilised SOC window in commercial Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
Li-ion pouch cells influence battery ageing. T3 ∧ T4
Investigation of capacity fade for Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
18650-type lithium-ion batteries cycled in T3 ∧ T4
different state of charge (SoC) ranges.
Multi-Level Model Reduction and Data-Driven Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
Identification of the Lithium-Ion Battery. T3 ∧ T4
Combining machine learning algorithms and an Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 ∧ 3
incremental capacity analysis on 18650 cell under T3 ∧ T4 IC 3
different cycling temperature and SOC range.

A Fast Online State of Health Estimation Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 ∧ 3
Method for Lithium-Ion Batteries Based T3 ∧ T4 IC 3
on Incremental Capacity Analysis.
Effect of State of Charge Constraints on Fuel Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
Economy and Battery Aging when Using the T3 ∧ T4
Equivalent Consumption Minimization Strategy.
Performance mutation mechanism and Scopus T1 ∧ T2 ∧ IC 1 1
parametric characterization method of T3 ∧ T4
high-capacity lithium-ion battery
Investigation on Cell Performance and Scopus T1 ∧ T2 ∧ IC 1 1
Inconsistency Evolution of Series and T3 ∧ T4
Parallel Lithium-Ion Battery Modules
Research on Capacity Difference Identification Scopus T1 ∧ T2 ∧ IC 1 1
Method of Lithium-ion Battery Pack T3 ∧ T4
Multi-Level Model Reduction and Data-Driven Scopus T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
Identification of the Lithium-Ion Battery T3 ∧ T4
Leveraging cell expansion sensing in state of Scopus T1 ∧ T2 ∧ 0
charge estimation: Practical considerations T3 ∧ T4
Parameter sensitivity analysis and simplification Scopus T1 ∧ T2 ∧ IC 1 1
of equivalent circuit model for the state of T3 ∧ T4

charge of lithium-ion batteries.
Available discharge capacity estimation according Scopus T1 ∧ T2 ∧ IC 1 1
to crate variation of second-used battery. T3 ∧ T4

Long short term memory-based state-of-health Scopus T1 ∧ T2 ∧ IC 1 1
prediction algorithm of a rechargeable T3 ∧ T4
lithium-ion battery for electric vehicle.

Using SoC online correction method based on Scopus T1 ∧ T2 ∧ 0
parameter identification to optimize the operation T3 ∧ T4
range of NI-MH battery for electric boat.
State of health of lithium ion battery IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
estimation based on charging process. T3 ∧ T4
Novel method to Estimate SoH of IEEE Xplore T1 ∧ T2 ∧ IC 1 1
Lithium-Ion Batteries. T3 ∧ T4
A Flexible State-of-Health Prediction Scheme IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
for Lithium-Ion Battery Packs With Long T3 ∧ T4
Short-Term Memory Network and Transfer Learning.
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Paper title Search engine Search term Criteria Score
Development of Fast SoH Estimation of IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
Li-Ion Battery Pack/Modules Using Multi T3 ∧ T4
Series-Parallel based ANN Structure.
Online State-of-Health Estimation for IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 2 ∧ 3
Li-Ion Battery Using Partial Charging T3 ∧ T4 IC 3
Segment Based on Support Vector Machine.
A Hierarchical and Flexible Data-Driven IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
Method for Online State-of-Health T3 ∧ T4
Estimation of Li-Ion Battery.
State-of-Health Estimation and IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
Remaining-Useful-Life Prediction for Lithium-Ion T3 ∧ T4
Battery Using a Hybrid Data-Driven Method.
An Ensemble Learning-Based Data-Driven IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
Method for Online State-of-Health T3 ∧ T4
Estimation of Lithium-Ion Batteries.
Charge analysis for Li-ion battery pack IEEE Xplore T1 ∧ T2 ∧ IC 1 1
state of health estimation for electric T3 ∧ T4
and hybrid vehicles.
A multiscale data-driven framework for IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 2 2
lithium-ion battery on-line state estimation. T3 ∧ T4
Estimation Error Bound of Battery Electrode IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 2 ∧ 3
Parameters With Limited Data Window. T3 ∧ T4 IC 3
Fuzzy logic estimation of SOH of 125Ah IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
VRLA batteries. T3 ∧ T4
Model-Based Lithium-Ion Battery IEEE Xplore T1 ∧ T2 ∧ IC 1 1
Resistance Estimation From T3 ∧ T4
Electric Vehicle Operating Data.
Solving Limited Data Challenges in IEEE Xplore T1 ∧ T2 ∧ 0
Battery Parameter Estimators by Using T3 ∧ T4
Generative Adversarial Networks.
An adaptive battery capacity estimation IEEE Xplore T1 ∧ T2 ∧ 0
method suitable for random charging T3 ∧ T4
voltage range in electric vehicles.
A Novel Big Data Modeling Method IEEE Xplore T1 ∧ T2 ∧ 0
for Improving Driving Range T3 ∧ T4
Estimation of EVs.
Lithium-ion Battery State of Health IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
Monitoring Based on Ensemble Learning. T3 ∧ T4
State of Health Estimation of Lithium-Ion IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 2 ∧ 3
Batteries Based on Fixed Size LS-SVM. T3 ∧ T4 IC 3
Battery aging estimation for eco-driving IEEE Xplore T1 ∧ T2 ∧ IC 1 1
strategy and electric vehicles sustainability. T3 ∧ T4
Fuzzy logic-based state-of-health IEEE Xplore T1 ∧ T2 ∧ IC 1 1
determination of lead acid batteries. T3 ∧ T4
Online Data-based Cell State IEEE Xplore T1 ∧ T2 ∧ 0
Estimation of a Lithium-Ion Battery. T3 ∧ T4
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Paper title Search engine Search term Criteria Score
Online Li-ion battery state of health IEEE Xplore T1 ∧ T2 ∧ 0
implementation for grid-tied applications. T3 ∧ T4
Self-learning state-of-available-power IEEE Xplore T1 ∧ T2 ∧ IC 1 1
prediction for lithium-ion batteries T3 ∧ T4
in electrical vehicles.
On-line parameter, state-of-charge and IEEE Xplore T1 ∧ T2 ∧ 0
aging estimation of Li-ion batteries. T3 ∧ T4
Diagnosis of Electric Vehicle IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
Batteries Using Recurrent Neural Networks. T3 ∧ T4
Prognostics of remaining useful life for lithium-ion IEEE Xplore T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
batteries based on a feature vector selection and T3 ∧ T4
relevance vector machine approach.
Health monitoring and remaining IEEE Xplore T1 ∧ T2 ∧ IC 1 1
useful life estimation of lithium-ion T3 ∧ T4
aeronautical batteries.
Diagnosis of Performance Degradation IEEE Xplore T1 ∧ T2 ∧ IC 1 1
for Lithium-Ion Battery Module in T3 ∧ T4
Electric Vehicle.
On-line measurement of battery impedance CiteSeerX T1 ∧ T2 ∧ 0
using motor controller excitation. T3 ∧ T4
Article On-Board State-of-Health CiteSeerX T1 ∧ T2 ∧ IC 1 1
Estimation at a Wide Ambient Temperature T3 ∧ T4
Range in Lithium-Ion Batteries.
Fuzzy LogicBased State-of-Health Determination. CiteSeerX T1 ∧ T2 ∧ IC 1 ∧ IC 3 2

T3 ∧ T4
Electrochemical-based Battery SOC/SOH Estimation. CiteSeerX T1 ∧ T2 ∧ 0

T3 ∧ T4
State-of-health estimation for lithium-ion batteries ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
by combining model-based incremental capacity T3 ∧ T4
analysis with support vector regression.
A multi-feature-based multi-model fusion ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
method for state of health estimation T3 ∧ T4
of lithium-ion batteries
Online state-of-health estimation of lithium-ion ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
battery based on dynamic parameter identification T3 ∧ T4
at multi timescale and support vector regression.
Machine learning in state of health and remaining ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
useful life estimation: Theoretical and technological T3 ∧ T4
development in battery degradation modelling.
A data-fusion framework for lithium battery ScienceDirect T1 ∧ T2 ∧ IC 1 1
health condition Estimation Based on T3 ∧ T4
differential thermal voltammetry.
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Paper title Search engine Search term Criteria Score
State of health estimation of lithium-ion ScienceDirect T1 ∧ T2 ∧ IC 1 1
battery in wide temperature range via T3 ∧ T4
temperature-aging coupling mechanism analysis.
Efficient linear predictive model with ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
short term features for lithium-ion T3 ∧ T4
batteries state of health estimation.
State of health estimation for Li-ion ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
battery via partial incremental capacity T3 ∧ T4
analysis based on support vector regression.
Sparse data machine learning for battery ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
health estimation and optimal design T3 ∧ T4
incorporating material characteristics.
Online estimation of battery model parameters ScienceDirect T1 ∧ T2 ∧ IC 1 1
and state of health in electric and hybrid T3 ∧ T4
aircraft application.
A flexible method for state-of-health ScienceDirect T1 ∧ T2 ∧ IC 1 1
estimation of lithium battery energy T3 ∧ T4
storage system.
A health indicator extraction and optimization ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
for capacity estimation of Li-ion battery T3 ∧ T4
using incremental capacity curves.
State of health estimation of ScienceDirect T1 ∧ T2 ∧ IC 1 1
lithium-ion batteries based on T3 ∧ T4
the regional frequency.
On-line state-of-health estimation ScienceDirect T1 ∧ T2 ∧ IC 1 1
of Lithium-ion battery cells using T3 ∧ T4
frequency excitation.
A state-of-health estimation method of ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 2 ∧ 3
lithium-ion batteries based on multi-feature T3 ∧ T4 IC 3
extracted from constant current charging curve.
State of health estimation for lithium-ion ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
battery based on the coupling-loop nonlinear T3 ∧ T4
autoregressive with exogenous inputs neural network
State-of-health estimation of batteries ScienceDirect T1 ∧ T2 ∧ IC 1 1
in an energy storage system based on T3 ∧ T4
the actual operating parameters.
An end-to-end neural network framework for ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
state-of-health estimation and remaining useful life T3 ∧ T4
prediction of electric vehicle lithium batteries.
On the feature selection for battery ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
state of health estimation based on T3 ∧ T4
charging-discharging profiles.
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Paper title Search engine Search term Criteria Score
State of health estimation of lithium-ion ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
battery based on an adaptive tunable T3 ∧ T4
of lithium-ion battery using charging curve.
An optimized ensemble learning framework ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
for lithium-ion Battery State of Health T3 ∧ T4
estimation in energy storage system.
State-of-health estimation of lithium-ion ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
batteries based on semi-supervised transfer T3 ∧ T4
component analysis.
Lithium-ion battery state of health estimation ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
using the incremental capacity and wavelet T3 ∧ T4
neural networks with genetic algorithm.
A novel deep learning framework for state ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
of health estimation of lithium-ion battery. T3 ∧ T4
A uniform estimation framework for state of ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
health of lithium-ion batteries considering T3 ∧ T4
feature extraction and parameters optimization.
Small sample state of health estimation ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
based on weighted Gaussian process regression. T3 ∧ T4
A novel Gaussian process regression ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
model for state-of-health estimation T3 ∧ T4
hybrid radial basis function network.
State-of-health estimation and remaining useful ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
life prediction for the lithium-ion battery based T3 ∧ T4
on a variant long short term memory neural network.
A partial charging curve-based data-fusion-model ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
method for capacity estimation of Li-Ion battery. T3 ∧ T4
State of health forecasting of Lithium-ion batteries ScienceDirect T1 ∧ T2 ∧ IC 1 ∧ IC 3 2
applicable in real-world operational conditions. T3 ∧ T4

Table A.5: Reviewed papers
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