
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ottar Passano Hellan

Riemannian Optimization for Deep
Learning

Master’s thesis in MTFYMA - Industrial Mathematics
Supervisor: Brynjulf Owren
July 2022

M
as

te
r’s

 th
es

is

Ottar Passano Hellan

Riemannian Optimization for Deep
Learning

Master’s thesis in MTFYMA - Industrial Mathematics
Supervisor: Brynjulf Owren
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING

OTTAR PASSANO HELLAN

Abstract. Central concepts and structures of Riemannian optimization are pre-
sented and discussed to give a self-contained treatment of the Riemannian gradient
descent method (RGD). Properties of RGD are discussed and compared with those
of euclidean gradient descent, which RGD is a generalization of.

Possible applications of Riemannian optimization and RGD in the �eld of deep
learning are discussed along with considerations one must make in implementations
of such methods. Proof-of-concept computational experiments are made using RGD
for the �xed-rank matrix manifold and the orthogonal group on CIFAR-10 image
classi�cation and a long time-dependence recurrent neural network problem.

Contents

1. Introduction 1
2. Background 2
2.1. Deep Learning 2
2.2. Riemannian Optimization 3
3. Manifolds 4
3.1. Smooth Manifolds 5
3.2. The Tangent Bundle 7
3.3. Riemannian Manifolds 9
4. Riemannian Deep Learning 12
5. Riemannian Gradient Descent 13
6. Manifolds Used 16
6.1. Stiefel Manifold 16
6.2. Low-rank Matrix Manifold 19
7. Numerical Tests 21
7.1. Copying Memory Problem 21
7.2. CIFAR-10 Image Classi�cation 24
8. Conclusion 25
References 27

1. Introduction

Riemannian optimization is a growing �eld of study with many applications in
scienti�c computation and data analysis, for instance in matrix approximations and
independent component analysis[1, Ch. 2.2].
Deep learning algorithms are these days the subject of much research and are

showing impressive and progressively better results on a wide range of applications,
for instance in image recognition, natural language processing, and biomedical re-
search[2]. These developments have been made possible by improvements in com-
puter hardware, parallelization, improved understanding of the principles of deep

1

2 OTTAR PASSANO HELLAN

learning, and development of application-speci�c network architectures[2]. With ever
more research on the structures that underlie deep learning problems[3], one might
wonder if Riemannian manifold structures can be bene�cially exploited for solving
hard problems.
In this work, we describe central de�nitions and results on Riemannian manifolds

essential to Riemannian optimization, and try to motivate why they are so necessary.
Thereafter, we treat the Riemannian gradient descent method, comparing it with the
euclidean gradient descent method. Then, we collect results and operations over two
speci�c manifolds and perform some simple computational experiments using them,
to illustrate the use of and some possibilities of Riemannian optimization for deep
learning.

2. Background

2.1. Deep Learning. Deep learning is a collection of methods where a model solu-
tion to a problem is stated by the composition of many instances of simple parame-
terized models. Deep refers to the many layers of simpler models that are used and
learning refers to the process of adapting the parameters of the model to obtain an
optimal solution. Deep learning has found excellent results in a wide variety of �elds,
including computer vision and natural language processing, and their power is �
amongst other reasons � thought to stem from the di�erent layers of the network
learning di�erent levels of abstraction in the data[2].
Deep learning models, also called networks, are often stated in the form

Nθ(x) = yN ,(2.1a)

yn+1 = Fn
θn(y

n) for n = 0, ..., N − 1, y0 = x,(2.1b)

where each Fn
θn

is a parameterized function of a predetermined form. The functions
used can vary between the N layers in the model and the canonical example is the
fully connected layer

yn+1 = σ (W nyn + bn) ,

where σ is some predetermined, often sigmoid-like, non-linear activation function
applied elementwise and the tensors (W n, bn) contain the parameters of the layer.
Another ubiquitous layer model is the two-dimensional convolutional layer, in con-
stant use in computer vision applications, which performs a local, discrete convolution
of an image-like tensor. State of the art models are today extremely complex with a
high number of variables and layers. For instance, in 2015 He et al.[4] obtained state
of the art results for the time on the ImageNet classi�cation dataset using a network
of 152 layers with several million parameters.
A deep learning problem is typically stated as an optimization problem

(2.2) min
θ

J (θ) = min
θ

1

|D|

|D|∑
i=1

C(Nθ(xi), yi),

where the cost function J is de�ned by summing the loss function C(z, y) over the
training dataset

(2.3) D = {(xi, yi) : i = 1, ..., |D|} .

The cost function used determines how you measure the accuracy of a given prediction
Nθ(x) and is chosen according to the type of problem and the properties of the

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 3

network you wish to encourage. Problems of this form, where you have a dataset
consisting of both inputs xi and targets yi, are called supervised learning.
Networks are typically trained, meaning the process of �nding solutions to (2.2), by

the backpropagation algorithm, where the gradient of the cost function J is found by
propagating reverse-mode automatic di�erentiation through the layers of the model
(2.1) after a prediction has been made and the parameters are thereafter updated
with a gradient descent step, or some variation. This process is computationally
heavy for a number of reasons. For one, the models are deep and composed of a huge
amount of parameters and the datasets are typically very large to obtain optimal
results. In addition, reverse-mode automatic di�erentiation requires the intermediate
results yk, k = 1, ..., N, to be stored for computing the reverse pass, increasing memory
requirements.
The subject of deep learning is an active �eld of research, with much activity and

many results in the type of layers Fθ used, how to best use the datasets D by data
augmentation, and how to solve the optimization problem (2.2), to name a few areas
of focus.
A more in depth introduction to the subject of deep learning is given in [5].

2.2. Riemannian Optimization. Riemannian optimization is the study of opti-
mization problems posed on smooth manifolds. Smooth and Riemannian manifolds
are de�ned concretely in later sections, but a serviceable working intuition for smooth
manifolds is that of (high-dimensional) surfaces living in Rn with entirely smooth
curves. Riemannian manifolds (M, g) are smooth manifolds M with an additional
structure g that de�nes angles and distances on the manifold.
An optimization problem is stated as

(2.4) min
x∈Ω

f(x),

where f : Ω → R is a cost function to be minimized and Ω is the feasible set. The
goal is to identify a feasible point x∗ ∈ Ω giving the lowest possible value of the cost
function f(x∗). The feasible set Ω is often expressed as a topological space X along
with a number of constraints a feasible point x needs to ful�ll, typically expressed
by constraint functions as u(x) = 0. Problems where a function are to be maximized
instead of minimized are stated as (2.4) with the negative of the original function f .
Optimization problems seldom have analytical solutions, so they are in general solved
by numerical algorithms, of which there are a great many, each suited to di�erent
types of optimization problems. There is a massive amount of problems that can be
stated as optimization problems, so the �eld of optimization has vast applications.
A comprehensive introduction to the well studied �eld of optimization over real

variables using numerical algorithms is given in the book of Nocedal and Wright[6].
A central concept is the distinction between global and local solutions. A feasible
point x∗ ∈ Ω is a global solution if

f(x∗) ≤ f(x), ∀x ∈ Ω,

and a local solution if there exists a neighborhood U of x such that

f(x∗) ≤ f(x), ∀x ∈ U.

Obviously, we would always like to �nd a global solution, but this is often not possible
and in most cases a local solution is the most we can hope for. An exception to this
is the class of convex optimization problems, where every local solution is a global

4 OTTAR PASSANO HELLAN

solution. Also important is the concept of optimality conditions. For instance, for
f : Rn → R a necessary �rst-order optimality condition is that the gradient ∇f(x∗) is
the zero-vector for all solutions of (2.4). A su�cient second-order optimality condition

is that all feasible points with positive-de�nite Hessian matrix Hij =
∂2

∂xi∂xj are local
minima. Standard algorithms for solving real-valued optimization problems are the
well known gradient descent method and Newton's method. Both of these algorithms
as well as su�cient and necessary optimality conditions have analogs in the manifold
optimization setting, see e.g. [1].
To state a Riemannian optimization problem we specify a Riemannian manifold

(M, g) to take the place of our feasible set Ω and a cost function f to minimize over
the manifold. With the di�erentiability structures given by the smooth manifold M,
central optimization concepts like directional derivatives and descent directions are
well de�ned. The added structure of a Riemannian metric allows local approximations
using gradients and Hessians, with which we can use local information of the cost
function f to build algorithms such as Riemannian gradient descent, trust region,
Newton's, and conjugate gradient methods, see e.g.[1], [7].
Riemannian optimization is a fairly young �eld that has seen increased attention

in the last decades. An early development came in 1972 with Luenberger's work on
the projected gradient method, where he restated the method as an approximation
to a gradient �ow over the manifold determined by the problem constraints[8]. This
restatement is a continuous analog of the method we today call Riemannian gradient
descent and was intended for theoretical use, not computations. The 1994 book of
Udri³te gives an early treatment of many methods of Riemannian optimization, like
the Riemannian gradient descent method and a Riemannian Newton's method[9].
The 1998 paper of Edelman et al. presents some Riemannian methods on the much
used Stiefel manifold and discusses the geometry of the manifold and e�cient oper-
ations on it in detail[10].
Much work has been done in the last two decades for Riemannian optimization

problems de�ned over matrix manifolds, that is, manifolds contained nicely in a
matrix space Rm×n, as these already have a rich theory from both abstract algebra
and numerical linear algebra, as well as the many applications from research and
industry. The numerical tests in this work are all performed on matrix manifold
optimization problems. The subject of optimization over matrix manifolds is covered
in great detail in the book [1].
Today, there are several software frameworks in development and available for use

o�ering interfaces to de�ne and solve Riemannian optimization problems featuring a
variety of di�erent manifolds, such as Manopt, PyManopt, which features integrated
automatic di�erentiation support for deep learning, and Manopt.jl[11][12][13]. In
these frameworks, one chooses a manifold along with a set of manifold operations
over it and a solver, all prebuilt or custom, and then one lets the program take care
of the rest. No such software has been used in this work, all manifolds and algorithms
have been implemented by hand in the deep learning framework PyTorch[14].

3. Manifolds

We now explore the central object of Riemannian optimization, namely Riemannian
manifolds. We start with de�ning smooth manifolds, which is a structure Riemann-
ian manifolds build upon, along with properties and results that are important for
de�ning optimization methods. Thereafter, we de�ne the tangent bundle of smooth

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 5

manifolds and try to motivate the fairly abstract de�nition of it. Finally, we present
the Riemannian manifolds as smooth manifolds along with a Riemannian metric,
and explain how it leads to important objects such as geodesics and the Riemannian
gradient.
The content of this section is mainly a summary of material from the books of Absil

et al. and Lee, with adaptations to focus on the parts necessary for optimization and
with an attempt at a conceptually simpler presentation[1][15][16].

3.1. Smooth Manifolds. A smooth manifold is de�ned by a set M along with a
collection of mappings, called charts, satisfying some requirements allowing di�eren-
tiability to be well de�ned. The sets that allow such a structure are those that locally
resemble euclidean space in some sense. For a set to resemble euclidean space locally,
we would at least want there to be a one-to-one correspondence between points on a
subset of the manifold and points in a subset of euclidean space which respects the
nice euclidean topology. Mappings de�ning such correspondences gives rise to topo-
logical manifolds. If we in addition require the mappings to respect di�erentiability
by being smooth, we obtain smooth manifolds.
A d-dimensional chart of a set M is a continuous bijection φ from a subset U of

M to an open subset φ(U) of Rd, whose inverse is also continuous. We write (U,φ)
for the chart, or simply φ when the domain is not of interest. For x ∈ U , we say that
the coordinates of x in the chart (U,φ) are

φ(x) = (φ1(x), ..., φd(x))T

We call the set U the coordinate domain of the chart.
For two charts φ and ψ with overlapping coordinate domains U and V , the change

of coordinates between the two charts is given by

ψ ◦ φ−1 : φ(U ∩ V) → ψ(U ∩ V).

If the change of coordinates and its inverse are smooth as euclidean functions and
both φ(U ∩V) and ψ(U ∩V) are open in Rd, we say that the charts (U,φ) and (V, ψ)
overlap smoothly. In this work, a function is smooth, di�erentiable, or C∞, if it has
continuous derivatives of all degrees.
An atlas of M into Rd is a set of d-dimensional charts (Uα, φα) such that the charts

cover M, meaning ⋃
α

Uα = M,

and all charts (Uα, φα), (Uβ, φβ) with Uα ∩ Uβ ̸= ∅ overlap smoothly. An atlas is
maximal if it contains all equivalent atlases. Two atlases A1 and A2 of a set M are
equivalent if their charts overlap smoothly. A maximal atlas of M is also called a
di�erentiable structure on M. For a given atlas A over M, a maximal atlas can be
de�ned by adding any chart over M which overlaps smoothly with the charts of A
and two atlases are equivalent if and only if they give rise to the same maximal atlas
in this manner[1, p. 19].
A di�erentiable structure A+ on M generates a topology over M in the following

way[1, Ch. 3.1.2]. A subset V of M is open if and only if for any chart (U,φ) in A+,
the set φ(U ∩ V) is open in the standard topology on Rd. This de�nes convergence
and continuity on the manifold in a natural way.
To prevent smooth manifolds being pathological in some senses, for instance not

having unique limit points, two additional conditions on the topology generated by

6 OTTAR PASSANO HELLAN

the di�erentiable structure of M are required. These are that the topology generated
is both Hausdor� and second-countable. All manifolds considered in this work satisfy
these conditions and no further attention will be given to the subject, however these
topological properties are de�ned in the appendix of [1] as well as standard textbooks
on topology.
We can now de�ne smooth manifolds as follows:

De�nition 3.1 (Smooth manifolds). A d-dimensional smooth manifold is a tuple
(M,A+) where M is a set and A+ is a maximal atlas of M into Rd, such that the
topology induced by A+ is Hausdor� and second-countable. If an atlas A of the set
M has maximal atlas A+, then A is called an atlas of the manifold (M,A+). Charts
in the maximal atlas A+ are called charts of the manifold (M,A+).

With a di�erentiable structure on a manifold, we can de�ne di�erentiability of
functions and directional derivatives on the manifold. In this work we are interested in
optimizing real-valued functions f : M → R, so we present a simpler de�nition of real-
valued di�erentiable functions, instead of di�erentiable functions between arbitrary
smooth manifolds.

De�nition 3.2 (Di�erentiable real-valued functions). A function f : M → R de�ned
on a smooth manifold M is smooth at x ∈ M if the composition

f ◦ φ−1 : φ(U) → R

is smooth over φ(U) ⊂ Rd in the standard euclidean sense for any chart (U,φ) with
x ∈ U . A function is smooth over M if it is smooth at every x ∈ M.

Remark 3.3. Since for any charts (U,φ) and (V, ψ) in the di�erentiable structure
of a smooth manifold with overlapping coordinate domains it holds that φ ◦ ψ−1 is
smooth over ψ(U ∩ V), if f is di�erentiable at x through φ, then

f ◦ ψ−1 = f ◦ φ−1 ◦ φ ◦ ψ−1 = (f ◦ φ−1) ◦ (φ ◦ ψ−1)

is the composition of smooth maps φ ◦ ψ−1 : ψ(U ∩ V) → φ(U ∩ V) and f ◦ φ−1 :
φ(U ∩V) → R and is therefore smooth. Thus, if f is di�erentiable at x for one chart,
f is di�erentiable at x for any other chart. This is an important property of smooth
manifolds, that di�erentiability of a function is the same for all charts in the atlas.

A particular form of smooth manifolds is often both practical and conceptually
simple, namely embedded submanifolds of Rn[1, Ch. 3.3]. Let (M,A+) and (N ,B+)
be two manifolds such that N is a subset of M. If the topology over N generated by
B+ coincides with the subspace topology induced from the topology over M given
by A+, then (N ,B+) is an embedded submanifold of (M,A+). The topology over a
set Y ⊆ X is the subspace topology induced from the topological space X, if a set
V ⊂ Y is open in Y if and only if there exists a set U ⊂ X open in X such that
V = U ∩Y . If a set N ⊂ M allows a di�erentiable structure making it an embedded
submanifold, then this di�erential structure is unique. If a function f : M → R is
smooth according to 3.2, it is also smooth on any embedded submanifolds of M.
By the Whitney embedding theorem, every smooth n-dimensional manifold can be

smoothly embedded into R2n[15, Thm. 6.19]. That is, the manifold can be realized as
an embedded submanifold of R2n. Therefore, every smooth manifold we view can be
worked with in real coordinates, which is often easier to implement computationally.

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 7

3.2. The Tangent Bundle. The tangent space TxM of a manifold M is in a sense
the local euclidean approximation of M around x. Tangent spaces are vector spaces
and can therefore be seen as local �rst-order approximations of the manifold. Another
interpretation is that tangent spaces are the set of directions it is possible to move
along. The de�nition of tangent spaces is non-obvious, however, and is inspired by
directional derivatives.
To do optimization on manifolds, an important concept to develop is directional

derivatives. In euclidean optimization, directional derivatives de�ne whether or not
a search direction is a descent direction, one which reduces the objective function,
and this is a concept we would like to have in Riemannian optimization. However, it
is not immediately clear what these directions are that de�ne directional derivatives
on manifolds. We would like that each smooth curve on M through x de�nes such a
direction and that the direction gives rise to a directional derivative.
Directional derivatives for C1 functions over Rd can be seen as a certain class of

linear functionals. For

(3.1) Df(x)[v] = lim
t→0

1

t
[f(x+ tv)− f(x)] ,

we can consider the operator

vx : C1(Rd) → R, f 7→ Df(x)[v],

which is linear over R in the argument f and obeys the Leibniz rule

(3.2) vx(fg) = vx(f)g + fvx(g).

We use mappings satisfying these properties to de�ne tangent vectors on a manifold.
In de�ning directional derivatives on a manifold, since vector addition is not de�ned

over a general manifold M, we cannot use the de�nition (3.1). However, if we switch
out x + tv for a parameterized smooth curve γ : [−1, 1] → M with γ(0) = x, we
obtain the function

f ◦ γ : [−1, 1] → R,
for which the de�nition of the standard derivative

(3.3)
d

dt

∣∣∣∣
t=0

f(γ(t)) = lim
t→0

1

t
[f(γ(t))− f(x)]

poses no problem. By smooth curve, we mean here that the coordinate representation
φ ◦ γ is smooth in the euclidean sense for any chart covering γ, implying the curve is
smooth through all charts in the same way as in remark 3.3. Each smooth curve γ
can be parameterized in coordinates by

γ = φ−1 ◦ g = φ−1 ◦ φ ◦ γ

for any chart (U,φ) covering x, at least for some segment (a, b) of the curve including
t = 0. Then g is a smooth curve in φ(U), meaning

f ◦ γ = f ◦ φ−1 ◦ g

is smooth (a, b) → R and the directional derivative (3.3) exists. By the same reasoning
as in remark 3.3, this is independent of the chart used and an intrinsic quantity.
A derivation at x on a manifold M is a mapping from the set of di�erentiable

real-valued functions at x to R that is linear over R and obeys the Leibniz rule (3.2).

8 OTTAR PASSANO HELLAN

Derivations at x become a vector space with the operations

(3.4)
(ux + vx)(f) = ux(f) + vx(f),

(αux)(f) = αux(f), ∀α ∈ R.

For a smooth curve γ : [−1, 1] → M, γ(0) = x, let γ̇(0) denote the mapping

(3.5) γ̇(0)f =
d

dt

∣∣∣∣
t=0

f(γ(t))

for real-valued f di�erentiable at x. Now, γ̇(0) de�nes a derivation at x. Every such
smooth curve γ de�nes a derivation at x and it turns out that for every derivation
at x there is an equivalence class of curves over M through x giving rise to such
a derivation. Two curves, γ1 and γ2, through x on M are here equivalent if the
euclidean derivatives coincide, that is

d

dt

∣∣∣∣
t=0

φ(γ1(t)) =
d

dt

∣∣∣∣
t=0

φ(γ2(t)),

for any chart (U,φ) covering x. By considering the functions

(f ◦ φ−1) ◦ (φ ◦ γi) = f ◦ γi, i = 1, 2,

with the de�nition (3.3) of directional derivatives along curves on manifolds and
the euclidean chain rule, it is clear that these curves result in the same directional
derivatives.
We de�ne the tangent vectors of M at x as the derivations at x and identify them

with the directions that coincide in the equivalence classes. We write TxM for the
tangent space at x with the vector space structure (3.4) and vx ∈ TxM for individual
tangent vectors, or simply v if x is obvious or not important. Each tangent vector
γ̇(0) de�nes a directional derivative at x by

Df(x) : TxM → R, v 7→ Df(x)[v] =
d

dt

∣∣∣∣
t=0

f(γ(t)).

By the linearity (3.4) of derivations, it is clear that these mappings are linear, as is
the case for euclidean directional derivatives.
By taking the disjoint union of all tangent spaces over M, we obtain the tangent

bundle

TM =
⊔
x∈M

TxM,

which is also a smooth manifold. Here, the insistence of disjoint union gives the useful
identi�cation of any tangent vector to the tangent space of a uniquely determined x.
This reinforces the fact that the tangent spaces are distinct vector spaces and tangent
vectors of di�erent points in M can not be directly compared or added.
We can de�ne a basis for TxM in the following way[1, p. 35]. For a chart (U,φ)

covering x, let

γi(t) = φ−1(φ(x) + tei),

with ei being the i-th coordinate vector of Rd. Then (γ̇1(0), ..., γ̇d(0)) forms a basis
of TxM, where γ̇i(0) is de�ned as in (3.5). This also shows that the dimension of the
tangent space of a d-dimensional manifold is d.
For embedded submanifolds of Rn, there is a simple construction of tangent spaces

using curves in Rn that stay on the manifold M[1, Ch. 3.5.7]. By viewing each

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 9

tangent vector as embedded in a subspace of Rn, we can de�ne the tangent space of
M at x simply as

TxM =

{
d

dt

∣∣∣∣
t=0

γ(t) : γ ∈ Γx

}
,

where Γx is the set of smooth curves passing through x at t = 0. For matrix manifolds,
this construction is typically simplest and allows an obvious way of storing tangent
vectors digitally for numerical computations. However, these vectors are then stored
with much higher dimensionality than the underlying manifold, sacri�cing e�ciency
for practicality.

3.3. Riemannian Manifolds. A Riemannian manifold is a smooth manifold along
with an inner product over the tangent bundle, de�ning angles and distances, called
a Riemannian metric. All smooth manifolds admit a Riemannian metric, but not
uniquely[16, Prop. 2.4].
A Riemannian metric is a smoothly varying inner product over the tangent bundle.

For each x ∈ M,

gx : TxM× TxM → R
is an inner product over TxM and the restriction of the Riemannian metric g onto
TxM. We write this inner product as either gx(v1, v2) or ⟨v1, v2⟩x, for v1, v2 ∈ TxM.
Given a basis (ξ1, ..., ξd) of TxM, we represent each tangent vector as v = (v1, ..., vd)
and the Riemannian metric gx as a symmetric, positive-de�nite matrix G = gij. Then
we can write gx(u, v) in terms of our basis as

gx(u, v) =
∑
i,j

giju
ivj = giju

ivj,

with the last expression written using the Einstein summation-convention[17]. We
say that g is smoothly varying in the sense that each component gij of the matrix
G is a di�erentiable real-valued function over x, as de�ned in de�nition 3.2, for the
entirety of the manifold M.
The Riemannian metric g induces a norm over TxM by

∥v∥x =
√
gx(v, v).

Along with this norm and the inner product over the tangent bundle, the Riemannian
metric de�nes the length of a curve γ : [0, 1] → M by

L(γ) =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt,

which in turn de�nes the Riemannian distance between two connected points x, y ∈
M by

dist(x, y) = inf {L(γ) : γ(0) = x, γ(1) = y} .
For connected Riemannian manifolds, dist ful�lls the requirements of a metric and
thus de�nes a metric space[1, p. 46]. Note that metrics and Riemannian metrics
are di�erent types of objects and only similarly named. Metrics measure distances
between points of a set and Riemannian metrics de�ne lengths of and angles between
tangent vectors of a manifold.
If N is an embedded submanifold of a Riemannian manifold (M, gM), then N

inherits a Riemannian metric from (M, gM) by the restriction of gM to the tangent

10 OTTAR PASSANO HELLAN

bundle of N , as a subset of the tangent bundle of M. That is, gNx : TxN ×TxN → R
is an inner product given by

gNx (v1, v2) = gMx (v1, v2), ∀v1, v2 ∈ TxN .

Such a Riemannian manifold (N , gN) is called a Riemannian submanifold of (M, gM).
On Riemannian manifolds, there is a family of curves that are in a sense the most

natural curves in the direction of a given tangent vector. These are called geodesic
curves, or geodesics for short. In euclidean space the most natural curves to follow
are the straight line, curves through x ∈ Rn of the form

γ(t) = x+ tv

for v ∈ TxRn ≃ Rn. We cannot immediately de�ne these curves over a general
manifold M, but we can try to generalize some properties of straight lines, namely
that straight lines are the shortest curves between two points and that straight lines
have zero acceleration.
In generalizing the property of zero acceleration, we might want to say that the

tangent γ̇(t) is constant for a geodesic curve γ, but since Tγ(t)M are not the same
vector space for di�erent values of t, they are not immediately comparable. To
continue with this notion we need a way to compare vectors of di�erent tangent
spaces and this is done with a structure called a connection, speci�cally the Levi-
Civita-connection. The theory and formulation of connections is too complicated to
include in this work, so we simply state that for a given coordinate frame (x1, ..., xd),
the Riemannian metric g de�nes a tensor Γk

ij called the Christo�el symbols, which
allows the statement of the geodesic equation

(3.6)
d2

dt2
xk(t) + Γk

ij(x(t))
d

dt
xi(t)

d

dt
xj(t) = 0,

the solution curves of which are geodesic curves. The book by Lee gives a thor-
ough treatment of connections and geodesics, including the derivation of the geodesic
equation[16].
For Riemannian submanifolds of Rn, we can de�ne the tangential acceleration of a

curve γ : [a, b] → M to be the orthogonal projection of the acceleration at each time
t to the local tangent space Tγ(t)M. Geodesic curves over M are then those curves
that have zero tangential acceleration. That is, geodesic curves are solutions of the
second order di�erential equation

(3.7) πTγ(t)M

(
d2

dt2
γ(t)

)
= 0,

where πTxM is the orthogonal projection onto TxM.
Through classical theorems of ordinary di�erential equations (ODE) like the Picard-

Lindelöf theorem, both initial value problems of (3.6) and (3.7) have unique solutions
at least locally, see e.g. [18].
We can also generalize the concept of straight lines being the shortest curves be-

tween two points. It can be shown that all solutions of the calculus of variations
problem

(3.8) min
γ:[0,1]→M

L(γ) such that γ(0) = x, γ(1) = y, γ is smooth,

are geodesic curves satisfying (3.6) and that all geodesic curves are local solutions of
(3.8) [16, Ch. 6]. A curve is a local solution of (3.8) if L(γ) increases if γ is changed
to another smooth curve arbitrarily alike, to put it roughly.

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 11

The geodesic curves de�ne a mapping over Riemannian manifolds called the expo-
nential mapping. This mapping takes tangent vectors vx ∈ TM and returns a point
y ∈ M such that y = x(1) for a geodesic curve with the initial conditions

(3.9) x(0) = x,
d

dt
x(t) = v.

By ODE-theory there is a neighborhood U ⊂ TxM of the zero tangent 0x ∈ TxM
where such a solution exists for time t = 1.

De�nition 3.4. The exponential mapping at x is given by

(3.10) expx : Ux → M, expx(vx) = x(1),

where x is a solution of (3.6) with initial conditions (3.9) and Ux ⊂ TxM is a neigh-
borhood of the zero tangent 0x where such a solution exists for all vx ∈ Ux. The
exponential mapping over TM is taken to be

(3.11) exp :
⊔
x∈M

Ux → M, exp(vx) = expx(vx).

It can be shown that the exponential mapping is smooth, meaning that tangent
vectors close to each other are mapped to points close to each other[1, Ch. 5.4].
Many Riemannian metrics can be de�ned over each smooth manifold and the choice
of metric determines the solution of the geodesic equation (3.6). Thus, the choice
of Riemannian metric determines which curves over the manifold are the natural
extensions of straight lines.
Another important concept allowed by the existence of a Riemannian metric is the

Riemannian gradient. In euclidean space, the gradient of a real-valued function f is
usually de�ned in terms of partial derivatives as the vector

∇f(x) =
(
∂f

∂x1
(x), ...,

∂f

∂xn
(x)

)T

,

a de�nition which does not make sense for a Riemannian manifold. However, an
equivalent de�nition is that the gradient of a real-valued function f at x ∈ Rn is the
vector ∇f(x) for which directional derivatives are given by the inner product

Df(x)[v] = ∇f(x)Tv.

This is to say that ∇f(x) is the vector in TxRn ≃ Rn to which the corresponding
linear functional v 7→ ∇f(x)Tv is the operation of taking directional derivatives. This
is simple to generalize to Riemannian manifolds, since with the Riemannian metric
over TxM we have an inner product that allows us to de�ne the directional derivative
functional with a tangent vector in TxM. The tangent space is �nite-dimensional and
therefore a Hilbert space, so by the Riesz representation theorem for Hilbert spaces,
see e.g. [19], there is a unique element of the TxM representing any bounded, linear
functional over TxM. Since linear functions on �nite-dimensional vector spaces are
continuous, we can thus de�ne the Riemannian gradient as follows:

De�nition 3.5. Let (M, g) be a Riemannian manifold and f : M → R be di�eren-
tiable around x according to de�nition 3.2. Then the Riemannian gradient of f at x
is the unique element ∇f(x) of TxM such that

(3.12) Df(x)[v] = gx(∇f(x), v), ∀v ∈ TxM.

12 OTTAR PASSANO HELLAN

It is simple to see that the de�nition of the Riemannian gradient coincides with
the euclidean gradient when the Riemannian manifold in question is Rn with the
standard euclidean metric. In addition, we can see by the Cauchy-Schwarz inequality,
considering unit-norm tangent vectors, that

|Df(x)[v]| = |gx(∇f(x), v)| ≤ ∥∇f(x)∥x =
∣∣∣gx(∇f(x), ∇̂f(x))∣∣∣ = ∣∣∣Df(x)[∇̂f(x)]∣∣∣ ,

where ∇̂f(x) = ∇f(x)/ ∥∇f(x)∥x, so the Riemannian gradient gives the direction
of steepest descent and the rate of steepest descent, just like the euclidean gradient
does in Rn.
For Riemannian submanifolds of Rn, there is a simple way to compute Riemannian

gradients using the euclidean gradient. If f̂ : Rn → R is a smooth extension of
f : M → R, and by [15, Lemma 5.34] such a smooth extension exists, then the
Riemannian gradient ∇f(x) is given by

(3.13) ∇f(x) = πTxM∇E f̂(x),

where ∇E denotes the euclidean gradient and πTxM is the orthogonal projection of
Rn into TxM with regard to the euclidean metric ⟨·, ·⟩E. This holds since ∇f(x) =
πTxM(∇E f̂(x)) + r with r ⊥ TxM, so

Df(x)[v] = Df̂(x)[v] = ⟨∇E f̂(x), v⟩E = ⟨πTxM(∇E f̂(x)) + r, v⟩E

= ⟨πTxM(∇E f̂(x)), v⟩E + ⟨r, v⟩E = ⟨πTxM(∇E f̂(x)), v⟩E

= gx(πTxM∇E f̂(x), v),

making πTxM∇E f̂(x) the Riemannian gradient of f at x. In our numerical exper-
iments, the manifolds and tangent vectors are stored embedded in Rm×n with cost
functions de�ned for any X ∈ Rm×n, so we use this method of computing Riemannian
gradients.

4. Riemannian Deep Learning

The use of Riemannian optimization in deep learning is a fairly new �eld and not yet
well explored. With the high computational cost of modern deep learning algorithms
combined with the generally higher scaling complexity of Riemannian optimization
algorithms, this is maybe not so strange, as such methods might struggle to compete
with other promising research directions. On the other hand, with the scale of modern
deep learning networks, using the geometry of problems in a smart way might have
great potential. If this is the case, Riemannian optimization is a natural tool to
explore.
While there has been much work in developing algorithms that respect the geom-

etry and symmetries of a problem, not much has been done with manifold structures
in mind. In 2016, Arjovsky et al. proposed addressing the vanishing/exploding gradi-
ents problem by constraining a recurrent neural network to have a unitary hidden-to-
hidden matrix, achieving great results on several di�cult tasks compared to the much
used long short-term memory model[20]. The approach was here to use euclidean
optimization over a speci�c factorization of the matrix, not using manifold-based
algorithms over the required parameter manifold. Massart et al. present a way to op-
timize this same model using a coordinate-descent variation of Riemannian gradient
descent method, a method intrinsic to the geometry of the search space[21]. With an

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 13

aim to develop more e�ective momentum-based methods for unitary-constrained ma-
trices, Li et al. develop e�cient Cayley retraction-based stochastic gradient descent
and Adam methods[22].
Many models in deep learning can be stated as having parameters constrained to

Riemannian manifolds, for instance fully connected linear layers of �xed, low rank,
or two-dimensional convolutional layers, which are parameterized over a space of
Toeplitz-like matrices[23]. Such models are seldom trained with Riemannian opti-
mization techniques however. The application of Riemannian optimization to such
models is an interesting topic to investigate. It is clear that the computational over-
heads of Riemannian algorithms do not always justify the added bene�t of their use,
but if a problem is well suited to a given manifold, and the manifold has nice opera-
tions that are not prohibitively expensive, then it should be possible to bene�t from
applying Riemannian methods to the problem.
It is also worth noting, that Riemannian optimization algorithms are de�ned in

terms of operations on Riemannian manifolds, and these can not be immediately
implemented in computations[1, p. 22]. We only have hardware to work with real
numbers and integers and only trivial, euclidean manifolds can be accurately rep-
resented by these. Thus, all operations we build our algorithms on will have to be
carefully designed to lessen the impact of such concerns. For instance, a point on an
embedded submanifold of Rn can in general not be represented as lying exactly on
the manifold, due to the limits of machine precision in �oats. By representing our
manifolds in ways that minimize such problems, for instance by appropriate matrix
factorizations or quotient manifolds, we can obtain more e�cient algorithms where
we have to compensate less for the errors we cause.

5. Riemannian Gradient Descent

Riemannian gradient descent (RGD) is a �rst-order method used to solve the op-
timization problem

(5.1) min
x∈M

f(x),

where M is a Riemannian manifold and f : M → R is di�erentiable over M. RGD is
a generalization of gradient descent from the euclidean to the Riemannian optimiza-
tion setting. Gradient descent is the simplest iterative gradient-based optimization
algorithm and has in recent years found success in optimizing deep neural network
parameters through the backpropagation algorithm[2].
In gradient descent, we optimize a variable x in the euclidean space Rd by succes-

sively translating it some distance ηk in the direction of steepest descent by vector
addition. The direction of steepest descent is given by the negative of the standard
euclidean gradient,

∇Ef(x) =
(

∂f
∂x1 (x), ... ∂f

∂xd (x)
)T
,

resulting in the sequence
xk+1 = xk − ηk∇Ef(xk),

for some starting point x0 ∈ Rd, converging to a stationary point of the problem.
More details on gradient descent and other numerical optimization algorithms in Rd

can be found in [6].
This algorithm depends on the geometry of Rd in several ways, the most important

of which is the ability to move along straight lines using the vector addition operation.
In the Riemannian manifold setting, this is not possible, so we have to �nd some other

14 OTTAR PASSANO HELLAN

way to update our search variable x. The natural generalization of straight lines on
Riemannian manifolds is geodesic curves, which we can parameterize with the tangent
bundle TM using the exponential mapping. However, the computation of geodesic
curves is non-trivial, such that in most cases only approximations of geodesic curves
are feasible. In general, computing a geodesic curve involves solving either a second
order ODE or a calculus of variations problem over the constraint manifold.
In addition, we need an alternative de�nition of the direction of steepest descent.

For a general manifold, the de�nition of the euclidean gradient does not make sense,
since we do not have a global basis {x1, ..., xd} and the partial derivatives are de�ned
using euclidean vector subtraction, which is not de�ned over M. For embedded
submanifolds M of Rd and objective functions f that are smoothly extensible to Rd,
we can use the euclidean gradient to �nd a descent direction in the ambient space M
is contained in. However, this will generally not give a tangent vector representing an
allowed direction of movement along the manifold, making the sequence (xk)k∈N leave
the search manifold. We therefore use the Riemannian gradient of f , see de�nition
3.5, which de�nes a unique tangent vector ∇f(x) ∈ TxM as an allowable descent
direction.
We can now de�ne RGD as follows:

De�nition 5.1 (Riemannian gradient descent). Let M be a Riemannian manifold
with metric g and f : M → R a function to be minimized, which is di�erentiable
over M. Denote by expx(v) : TxM → M the exponential mapping of M at x, as
de�ned in 3.4. For a sequence {η0, η1, ...} ⊂ R of stepsizes and initial guess x0 ∈ M,
Riemannian gradient descent is de�ned by the recursion

(5.2) xk+1 = expxk
(−ηk∇f(xk)),

where ∇f(x) denotes the Riemannian gradient of f at x.

To alleviate the computational burden of computing the exponential mapping
expxk

(−ηk∇f(xk)), we can allow ourself to use curves that only approximate geodesics.
The curves we are interested in are given by retraction mappings. Though retrac-
tions are an established tool of topology, we use in this work a narrower de�nition
which is more suitable for Riemannian optimization, in the vein of Absil, Mahony,
and Sepulchre[1]. We state the de�nition used in [24], which �ts our needs well.

De�nition 5.2 (Retraction). A retraction on a manifold M is a smooth mapping
R : TM → M with the following properties. Let Rx : TxM → M denote the
restriction of R to TxM.

(i) Rx(0x) = x, where 0x is the zero vector in TxM;
(ii) The di�erential of Rx at 0x is the identity map.

Retractions approximate the exponential mapping of a Riemannian manifold in
the sense that

dist(expx(v), Rx(v)) = O
(
||v||2

)
,

where dist and ∥·∥ denotes the distance and norm induced by the Riemannian met-
ric[25]. In this way, retractions can be viewed as �rst order approximations of the
exponential mapping.
We can now de�ne a generalized form of gradient descent, where the choice of

retraction also de�nes the iterates produced.

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 15

De�nition 5.3 (Riemannian gradient descent with retractions). Let M be a smooth
manifold, R : TM → M a retraction over M, and f : M → R a function to be
minimized, which is di�erentiable over M. For a sequence {η0, η1, ...} of stepsizes
and initial guess x0, Riemannian gradient descent with retractions is de�ned by the
recursion

(5.3) xk+1 = Rxk
(−ηk∇f(xk)),

where ∇f(x) denotes the Riemannian gradient of f at x.

The choice of retraction is not always obvious, but for some cases the question is
simpler. Retractions do not need a Riemannian metric to be de�ned, but the Rie-
mannian metric de�nes the exponential mapping uniquely, which is itself a retraction.
If the computational cost of the exponential mapping is reasonable, it should be the
preferred retraction for RGD, as it is fully intrinsic to the Riemannian manifold we
optimize over.
If the manifold in question, M, is a submanifold of euclidean space, Rd, an intuitive

retraction can be de�ned by

Rx(v) = PM(x+ v),

where PM denotes the projection operator onto M minimizing euclidean distance.
This retraction is locally well de�ned[25]. These retractions can be practical for
matrix manifolds, on which much work has been done and which is covered in detail
in[1]. Note that the embedding of M into Rd is not unique, and the choice of
embedding will determine the behaviour of such retractions.
The convergence of the sequence (xk)k∈N of RGD iterates can be stated in both a

local and a global sense.
Global convergence of RGD to stationary points has been shown, in the sense that

the method will converge to a stationary point regardless of initialization. If f is
bounded from below on M and for all iterates xk the Lipschitz-like condition

|f(Rxk
(v))− [f(xk) + ⟨v,∇f(xk)⟩]| ≤ C ∥v∥2 , ∀v ∈ Txk

M,

holds, then there is a constant step size η for which the method will produce a point
xN ∈ M with which f(xN) ≤ f(x0) and ∥∇f(xN)∥ < ε in O

(
1
ε2

)
iterations, regard-

less of initial guess x0[24]. This asymptotic bound also holds for euclidean gradient
descent and other step size selection strategies, and is tight[26], which means better
global convergence than O

(
1
ε2

)
for RGD is impossible without further restrictions on

f , since euclidean gradient descent coincides with RGD when M is Rd.
Euclidean gradient descent can at most be guaranteed to �nd a stationary point of

f , not a minimum, for general non-linear optimization[27, p. 32]. Thus, convergence
to a stationary point on the manifold M is the most we can be sure of, and �nding
a local minimum can not be guaranteed. This does not mean the method is useless,
only that one must consider the possibility of the algorithm returning saddle points
that are not solutions. Since saddle points are non-stable equilibrium points of the
gradient descent iterative system, it has been shown that the use of stochastic gradient
descent can help escape saddle points in certain situations[28].
Locally, RGD has linear convergence rate around strict local minima[1, Thm.

4.5.6]. That is, if (xk)k∈N are converging to a strict local minimum x∗ and f is
twice continuously di�erentiable, then there exists r < 1 and K ∈ N such that

f(xk+1)− f(x∗) ≤ r(f(xk)− f(x∗))

16 OTTAR PASSANO HELLAN

for all k > K. This local convergence rate is the same as for euclidean gradient
descent[27, p. 35], but holds there also in terms of distance from the minimizer
∥xk − x∗∥. An almost complete proof of the corresponding result for RGD is given
in [9, p. 266].
These results hold when RGD is performed with any retraction, not just the expo-

nential mapping. Therefore, computationally competitive methods avoiding prohibi-
tive exponential mappings are theoretically grounded.
The use of RGD in the stochastic setting has also been studied. Under mild

conditions, RGD has been shown[29] to converge almost surely in both function value
and gradient norm to stationary points, that is

Pr
(
lim
n→∞

f(xn) = f ∗
)
= Pr

(
lim
n→∞

∥∇f(xn)∥ = 0
)
= 1.

This holds for RGD with the exponential mapping and with other retractions. Con-
vergence in the stochastic case is bene�cial for Riemannian deep learning for the same
reasons stochastic gradient descent is used in deep learning in general, for instance
the gradient noise introduced by random selection of mini-batches.

6. Manifolds Used

6.1. Stiefel Manifold. The Stiefel manifold is well developed and has many retrac-
tions available in the literature. We base our experiments over the Stiefel manifold on
expressions presented by Edelman et al.[10]. We present results from this paper on
the structure of the manifold and some retractions, along with derivations of select
results to illustrate how Riemannian manifolds can be approached. We also present
some more Cayley transform-based retractions.
The Stiefel manifold is the set of matrices

(6.1) St(m, r) =
{
X ∈ Rm×r : XTX = Ir

}
.

This de�nes the set of orthonormal r-frames. This de�nition of the Stiefel manifold
is sometimes called the compact Stiefel manifold, the non-compact Stiefel manifold
being

Rm×r
∗ =

{
X ∈ Rm×r : X has full rank

}
.

The Stiefel manifold gains a di�erentiable structure as an embedded submanifold
of Rm×r. The most common Riemannian metrics on the Stiefel manifold are the
standard euclidean inner product inherited from Rm×r, given by

g(v1, v2) = ⟨v1, v2⟩F = tr(vT1 v2),

and the canonical metric, which is very similar, but is changed slightly to give equal
weight to all degrees of freedom on the manifold.
Several special cases of the Stiefel manifold are interesting manifolds in themselves.

For instance,
St(m, 1) =

{
x ∈ Rm : xTx = 1

}
= Sm−1,

the m− 1-dimensional hypersphere. We also have

St(m,m) =
{
X ∈ Rm×m : XTX = I

}
= O(m),

the set of orthogonal matrices of size m×m. This manifold also has a group structure
with standard matrix multiplication and is ubiquitous in numerical linear algebra, for
instance in QR-factorization and in orthonormalization of algorithms for numerical
stability.

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 17

By the simple expression for St(m, r) given byXTX = Ir, we can �nd an expression
for the tangent space of M = St(m, r) in a simple way by considering the curves
over M through x embedded in Rm×r. For γ(t) = X(t) ⊂ M, we must have that
d
dt

(
X(t)TX(t)

)
= 0 at all times, so

0 =
d

dt

∣∣∣∣
t=0

X(t)TX(t) = Ẋ(t)TX(t) +X(t)T Ẋ(t)

implies
TXM =

{
Y ∈ Rm×r : (XTY)T = −XTY

}
.

For any X ∈ St(m, r) we can choose an orthogonal completion X⊥ ∈ St(m,m− r) of
X and have the decomposition

(6.2) Rm×r = XRr×r +X⊥Rm−r×r,

which is an orthogonal decomposition with the Riemannian metric

ge(A,B) = ⟨A,B⟩F = tr(ATB) =
∑
i,j

AijBij

over euclidean space Rm×r. We can then write any Y ∈ TXM as Y = XA + X⊥B
and �nd

XTY = XTXA+XTX⊥B = XTXA = A,

so

(6.3) TXM = X
{
A ∈ Rr×r : AT = −A

}
+X⊥Rm−r×r.

It can be shown that the orthogonal complement of TXM, called the normal space
of M at X and written NXM, is given by

NXM = X
{
A ∈ Rr×r : AT = A

}
and that

πNX
(Y) = X sym(XTY)

de�nes an orthogonal projection onto NXM[10, p. 5]. Here, sym denotes the sym-
metric part of an n× n-matrix

(6.4) A = sym(A) + skew(A) =
1

2

(
A+ AT

)
+

1

2

(
A− AT

)
.

Thus, an orthogonal projection onto TXM, with the Frobenius metric, is given by

(6.5) πTX
(Y) = X −X sym(XTY).

With the orthogonal decomposition (6.2), we can write the euclidean metric as

ge(Y, Z) = tr
(
Y TZ

)
= tr

(
(XA+X⊥B)T (XC +X⊥D)

)
= tr

(
ATC +BTD

)
= tr(ATC) + tr(BTD).

However, the matrices A and C are skew-symmetric, so

tr(ATC) = 2
∑
i<j

AijCij

and each degree of freedom in the �rst part of the decomposition (6.3) is counted
twice. The canonical metric is de�ned as

gc(Y, Z) =
1

2
tr(ATC) + tr(BTD), where Y = XA+X⊥B, Z = XC +X⊥D,

18 OTTAR PASSANO HELLAN

to address this concern of double-weighting. It can be shown[10, Ch. 2.4.1] that the
above expression is equivalent to

(6.6) gc(Y, Z) = tr

(
Y T (I − 1

2
XXT)Z

)
.

In the case of the orthogonal group O(m) = St(m,m) the X⊥ factor falls away and
the two metrics are merely scaled versions of each other.
The geodesics of the Stiefel manifold can be expressed using the matrix exponential.

Using the euclidean metric, an expression for the geodesic curves is given by

X(t) =
(
X(0) Ẋ(0)

)
e
t

A −S(0)
I A

I2r,re

−At,

where A = X(0)T Ẋ(0), S(0) = Ẋ(0)T Ẋ(0), and I2r,r =

(
Ir
0

)
∈ R2r×r. The matrix

exponential Rn×n → Rn×n is de�ned by using the power series representation of ex

to allow matrix-valued arguments, by

(6.7) eX =
∞∑
k=0

1

k!
Xk.

Computing the matrix exponential by the in�nite sum (6.7) is not possible and the
question of how to best implement the mapping is complicated. In this work we use
the implementation of Scipy[30], which is based on a scaled Padé-approximation[31].
In the case of the orthogonal group O(m) = St(m,m), a simpler expression is given

by

X(t) = X(0)eAt,

where A = X(0)T Ẋ(0), allowing us to formulate the exponential mapping as

(6.8) expX(Y) = XeX
TY = eY XT

X.

We use this expression in our tests with the orthogonal group.
The matrix exponential is very heavy to compute accurately and therefore retrac-

tions over the Stiefel manifold have been developed, for instance ones using the Cayley
transform

X 7→ cay(X) =

(
I − 1

2
X

)−1(
I +

1

2
X

)
.

With the Neumann series (I −X)−1 =
∑∞

k=0X
k we have that(

I − 1

2
X

)−1(
I +

1

2
X

)
=

∑
k=0

(
1

2
X

)k (
I +

1

2
X

)
=

(
1

2
X

)0

+ 2
∞∑
k=1

(
1

2
X

)k

= I +X +
1

2
X2 +O

(
∥X∥3

)
,

so

eX − cay(X) = O
(
∥X∥3

)
.

Therefore, a retraction over St(m, r) can be de�ned by

(6.9) R(X, Ẋ) = cay(W)X,

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 19

where W ∈ Rm×m is a skew-symmetric matrix such that WX = Ẋ. In the special
case of the orthogonal group O (m) = St(m,m), the matrix W can be determined by

(6.10) W = ẊXT =⇒ WX = ẊXTX = Ẋ.

This retraction can also be computed by a solving for Y the �xed-point system

(6.11) Y = X +
1

2
W (X + Y)

to avoid performing costly matrix inversion[22].

6.2. Low-rank Matrix Manifold. The set of matrices X ∈ Rm×n of rank r is
a useful structure in many applications in both computing and theory. This set
also admits a manifold structure as an embedded submanifold of Rm×n of dimension
(m+ n− r)r. We present some results from the survey paper of Absil and Oseledets
on retractions over this manifold, for our use in experiments in this work[32].
The set of matrices X ∈ Rm×n of rank r is an embedded submanifold of Rm×n of

dimension (m+ n− r)r and is a Riemannian submanifold with the euclidean metric
gX(A,B) = tr(ATB) inherited from Rm×n. We denote this manifold as

(6.12) Mr =
{
X ∈ Rm×n : rank(X) = r

}
and name it the low-rank manifold or �xed-rank manifold. This manifold is non-
compact as it is unbounded in Rm×n.
There are several ways to represent this manifold, based on the theory of power

manifolds and quotient manifolds. A power manifold is a product

M×N = {(m,n) : m ∈ M, n ∈ N}

of two manifolds M,N , and the manifold structure comes in a simple way through
charts of the form

φ = (φ1, φ2) : U1×U2 → Rd1×Rd2 , (m,n) 7→
(
φ1(m)1, ..., φ1(m)d, φ2(n)

1, ..., φ2(n)
d
)
.

Quotient manifolds are more complicated, but are based on quotient sets

X/ ∼= {[x] : x ∈ X} , [x] = {y ∈ X : x ∼ y} ,

for some equivalence relation ∼ over X, typically de�ned by group actions over X.
These formulations are useful for instance when a cost function is invariant under
some group action, such that solutions are not isolated. An example of this is the
maximum-eigenvalue problem

max
x∈Rd\{0}

xTAx

xTx
,

where the cost function is invariant under scalar multiplication of non-zero real num-
bers. This motivates a formulation over

(Rd \ {0})/(R \ {0}) ≃ Sd−1,

where (R \ {0}) de�nes the equivalence relation x ∼ y ⇐⇒ x = λy, λ ∈ (R \ {0}).
The theory and use of quotient manifolds is described in detail in the book of Absil
et al., with focus on matrix quotient manifolds[1].
One practical way of representing Mr is as the quotient manifold

(6.13) Mr ≃ (St(m, r)×GL(r)× St(n, r)) / (O(r)×O(r)) ,

20 OTTAR PASSANO HELLAN

along with the Riemannian metric inherited from Rm×n[32]. This corresponds to the
decomposition

X = USV T , U ∈ St(m, r), S ∈ GL(r), V ∈ St(n, r),

for which

X = (UQ1)(Q
T
1 SQ2)(V Q2)

T = USV T , ∀Q1, Q2 ∈ O (r) .

This factorization is used in experiments with Mr in this work.
The tangent space TXMr can be given implicitly by the orthogonal projection onto

the tangent space given by

(6.14) πTXMZ = ZV V T + UUTZ − UUTZV V T ,

for X = USV T factorized according to (6.13).We can also factorize the TXMr as

(6.15) TXMr =
{
UṠV T + UpV

T + UV T
p :

Ṡ ∈ Rr×r, Up ∈ Rm×r, UTUp = 0, Vp ∈ Rn×r, V TVp = 0
}
.

Many retractions over this manifold are given in [32]. For instance the projective
retraction

(6.16) R(X, Ẋ) = argmin
Y ∈Mr

∥∥∥Y − (X + Ẋ)
∥∥∥
F
,

solved into a computationally feasible expression using linear algebra, or a quotient-
based retraction

R(X, Ẋ) = RSt(U, U̇)(S + Ṡ)RSt(V, V̇)T ,

with an appropriate retraction RSt that respects the O (r)-invariance. In this work
we use the projective retraction, other retractions are left for future work.
The method of computing the projective retraction (6.16) of [32] is based on having

the tangent vector Ẋ by the factors (Ṡ, Up, Vp) according to (6.15). First we use a
QR-factorization to �nd

(6.17) Up = QuSu, Vp = QvSv.

Thereafter, based on

(6.18) X + Ẋ =
(
U Qu

)(S + Ṡ Su

ST
v 0

)(
V T

QT
v

)
,

�nd the unique SVD (Us,Σs, Vs) of the center matrix

(
S + Ṡ Su

ST
v 0

)
with decreasing

singular values. Then the projective retraction is given by

(6.19) R(X, Ẋ) = U+S+V
T
+ ,

where U+, S+, V+ are given by

U+ =
(
U Qu

)
Us(:, 1 : r),(6.20)

V+ =
(
V Qv

)
Vs(:, 1 : r),(6.21)

S+ = Σs(1 : r, 1 : r).(6.22)

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 21

The notation of A(a : b, c : d) means the (b− a)× (d− c)-matrix obtained from the
entries of A with a ≤ i ≤ b and c ≤ j ≤ d. This retraction is also a second-order
retraction, meaning that

dist
(
expX(Ẋ), R(X, Ẋ)

)
= O

(∥∥∥Ẋ∥∥∥3

X

)
.

7. Numerical Tests

We run some experiments to test the Riemannian gradient descent algorithm on
some manifolds. We run one experiment on a memory-problem with the orthogonal
group O (m) = St(m,m) and one experiment on image-classi�cation over the CIFAR-
10 dataset with the manifold of low-rank matrices Mr. Due to time limitations, we
were unable to properly analyze the performance of the algorithms we present, these
experiments are therefore only proofs of concept, though �t for illustration of the
concepts described in this work and as a sandbox to experiment in. The focus in this
work has been more about exploring the framework of Riemannian optimization and
its potential application to deep learning, than developing competitive methods and
algorithms to e�ciently solve problems. More close analysis of the methods can be
left for future work.
The experiments are run in Python code using the PyTorch deep learning frame-

work with manifold operations written by hand from the results gathered. Though
many deep learning networks use single-precision �oats for increased e�ciency in
training these days, all experiments in this work were performed with double-precision
�oats. This is because with our approach of having manifold quantities embedded in
euclidean space, single-precision �oats forced quantities to be too far from the mani-
fold they were supposed to stay on, contributing to drift away from the manifold.
The experiments are written in Jupyter notebooks collected in a zip-archive at-

tachment to the thesis.

7.1. Copying Memory Problem. We solve a memory-copying problem with a re-
current neural network with orthogonally constrained hidden-to-hidden matrix. This
is the same test problem as in [20] and [21]. We use the Riemannian gradient descent
method, whereas Massart and Abrol use a Riemannian coordinate descent algorithm
and Arjovsky et al. use euclidean methods on a factorization of the manifold.
A recurrent neural network (RNN) is a deep learning architecture for e�ciently

learning from data with a temporal relation. RNNs are often used for problems in
speech and language processing[2]. We use the model as described in [21]. Inputs of
the model are sorted vectors

(x(t), t = 0, ..., N) ⊂ Rnin ,

and produces an equally long list of output vectors

(y(t), t = 0, ..., N) ⊂ Rnout .

At each time t the model has an internal state h(t) ∈ Rnh which is a�ected by all
previous inputs x(τ), 0 ≤ τ ≤ t, but no future ones. The model is de�ned by

h(t+ 1) = σ (Winx(t) +Whh(t)) ,(7.1a)

y(t) = Wouth(t+ 1) + bout,(7.1b)

22 OTTAR PASSANO HELLAN

where σ is a non-linear activation function, Win ∈ Rnh×nin , Wh ∈ Rnh×nh , Wout ∈
Rnh×nout , and b ∈ Rnout . We let the hidden vector be initialized by

(7.2) h(0) = 0,

to ensure in a simple way that the network is unbiased before information from the
speci�c x has entered the system. The matrix Wh is called the hidden-to-hidden
matrix and the mapping y 7→ Wouth + bout is called the output layer. An RNN
working on inputs of length N is said to be an RNN of depth N .
When the depth of an RNN grows, the repeated multiplication with the hidden

matrix can cause the hidden vector h to either grow very large in magnitude or shrink
to zero in magnitude, if the magnitude of the eigenvalues of the hidden matrix are far
from 1. If the hidden vector grows the system becomes unstable, and if the hidden
vector decays the information from the �rst inputs are lost when the later inputs
are used. Thus, by constraining the eigenvalues of Wh to be ±1 by making Wh be
an element of the orthogonal group O (nh), the model might better be able to learn
patterns of long time-dependence. This approach has also been suggested for dealing
with the classical problem of vanishing / exploding gradients in RNN training, for
much the same reasons[20].
We attempt to solve the copying memory problem. An alphabet of eight symbols

(0, ..., 7), is provided along with two special symbols. The �rst ten entries of an input
chain (x(0), ..., x(N)) are symbols from (0, ..., 7), which the model should be trained
to be able to remember. After this follows T−1 instances of the �rst special symbol 8,
signifying wait and keep remembering, after which comes the second special symbol
9, telling the model to repeat the symbols the model were to remember. The target
output of the RNN is a chain of T + 10 entries of 8 followed by the �rst ten input
entries in order. An example input and target output might look like

x = (2, 6, 7, 2, 2, 6, 4, 3, 5, 4, 8, 8, ..., 8, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8)(7.3a)

y = (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, ..., 8, 8, 8, 2, 6, 7, 2, 2, 6, 4, 3, 5, 4)(7.3b)

Thus, each input and target output is a chain of T + 20 entries of the alphabet
(0, ..., 9).
We create a dataset of such chains (7.3) by drawing the �rst ten symbols uniformly

from (0, ..., 7) for D independent chains and �lling in the rest of the uniquely deter-
mined entries, creating a dataset of size |D| = D. Each entry is preprocessed before
running through the network by one-hot encoding them, such that x(t) ∈ R10 is the
vector with all zeroes except for a one in the n-th component for symbol n. The
outputs y(t) ∈ R10 of the network are taken to signify some learned con�dence for
each component that the correct symbol should be the corresponding symbol. We
make predictions with the network by predicting the symbol whose corresponding
component has the largest entry.
We constrain the hidden-to-hidden matrixWh to be orthogonal to address stability

and vanishing / exploding gradients concerns. The activation function used is the
recti�ed linear-unit

σ(x) = ReLU(x) = max{0, x}.
The model is trained by performing RGD onWh ∈ O (nh) and gradient descent on the
other parameters. The Cayley retraction (6.9)-(6.10) is used. Due to �nite-precision
arithmetic, the solution of the retractions drifts from the manifold over time and this
is addressed by regularly performing an orthogonal projection back to the manifold.

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 23

We use the cross entropy loss function

log
exp(y(t)z(t))∑nout

i=1 exp(y(t)i)
,

where y(t) is the t-th entry produced by the chain x and z(t) is its target output, and
summing over all x(t), t = 0, ..., T + 19. This loss function is common in problems
with categorical targets.
Figure 1 shows the convergence history of one running of the experiment along

with the learning rates used for both the Riemannian and euclidean gradient descent.
We use a dataset of D = 103 chains of length T + 20 = 40 + 20 = 60, with 30% of
this being reserved as a test set. We choose a hidden size of nh = 100 and choose the
activation function σ = ReLU, the recti�ed linear-unit.

Figure 1. Convergence history of a running of the copying memory
problem with orthogonal hidden-to-hidden matrix. On the left is plot-
ted the cost function over the test set as a function of training epochs.
On the right is plotted the learning rates that were used for each epoch
in training.

According to �gure 1, we can conclude that the model is able to learn for problems
of this large time-dependence. The network learns to output the symbol 8 for the
�rst T + 10 entries, as it should, and thereafter outputs some other symbols. The
accuracy of these predicted symbols are not great however, and it seems like they are
mostly representative of how often the symbols show up in the initial ten entries of
x. As an example, for one input of the test set, the model gave the prediction

(8, 8, 8, ..., 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 1, 1)

for a sample with target vector

(8, 8, 8, ..., 8, 8, 0, 0, 4, 1, 1, 1, 1, 4, 0, 7),

the skipped symbols are all 8. Still, this shows that the model is able to learn
something about the structure of the problem and can make some progress on the
hard part of the problem.
The method shows some instability to the learning rate used. If the learning rate

was too high, the retractions were prone to produce NaN-values. This could be due
to instability in the implementation of the matrix exponential or due to the inverse
of the matrix I − 1

2
W not existing for all W with large magnitudes.

In early development of the experiment, the exponential retraction (6.8) with the
Scipy-implementation of the matrix exponential was used, but this took much longer

24 OTTAR PASSANO HELLAN

to compute, showed more drift from the manifold, and gave no more e�ective cost
function decrease per iteration than the Cayley retraction. That the iterates drifted
more from the manifold might be due to the implementation used being meant for
general computations, also in completely non-manifold based applications. Such a
general implementation would not be optimized to prevent manifold drift speci�-
cally. A more taylored implementation could therefore be more e�ective in this case.
Other interesting work would be to use the �xed-point based computation (6.11),
but we suspect this would be too inaccurate and again cause too much drift from the
manifold.

7.2. CIFAR-10 Image Classi�cation. We solve an image classi�cation problem
over the CIFAR-10 dataset using a residual convolutional network with low-rank
constrained fully connected �nal layers.
The CIFAR-10 dataset is a collection of 60000 32×32 color images, each belonging

to one of ten classes[33]. This dataset is often used for testing computer vision
architectures and is a considerably harder problem than the canonical MNIST digit
classi�cation-problem. In tests on the MNIST problem we have achieved results of
90% accuracy and above, but such results are available with almost any network with
the scale of computations available today.
We use a convolutional neural network (CNN) with a convolutional block followed

by a classi�cation network of fully connected layers. The �rst part of the network
consists of two convolutional layers, each followed by a ReLU-activation and then a
max pool layer. Each of the convolutional layers uses a �lter of size 5 × 5 and the
max pool is of size 2× 2. After the convolutional block, the produced �ltered image
is �attened and run through the classi�cation network. This network consists of �ve
fully connected layers, the middle three include residual connections and the �rst and
last layers change the dimension of the propagated vector to make the hidden layers
have width w. Residual connections are thought to improve learning dynamics of
neural networks and were �rst proposed for use in convolutional networks for image
classi�cation, but now see wider use[4]. This classi�cation network can be written as

N class
θ (x) = y5

y1 = σ
(
W 0x+ b0

)
, W 0 ∈ Rdim(x)×w, b0 ∈ Rw

yk+1 = yk + σ
(
W kyk + bk

)
, W k ∈ Rw×w, bk ∈ Rw for k = 1, 2, 3

y5 = σ
(
W 4y4 + b4

)
, W 4 ∈ Rw×nout , b0 ∈ Rnout .

There are ten classes of images in the dataset, so nout = 10. We train the network
to have the entry of the output vector corresponding to the known target as large as
possible compared to the other entries. We use the cross entropy loss function again
as it is suitable for general classi�cation tasks.
We constrain all the weight matrices W l to the �xed-rank matrix manifold Mr

for a choice of r, except for the �nal layer which has full rank equal to 10. We
train the network with Riemannian gradient descent using the projection retraction
(6.17)-(6.22) for the �xed-rank constrained matrices, and gradient descent for all
other parameters.
In one run of the experiment, we obtain the convergence shown in �gure 2 and �nish

with a test-accuracy of about 46%. In this run we chose to use constrained matrices
of rank r = 40 and network width w = 120. These are not great results, well-trained
networks can achieve accuracies of well over 90%, see for instance [4]. Still, it shows

RIEMANNIAN OPTIMIZATION FOR DEEP LEARNING 25

that the model is able to optimize for classifying images by some learned features
using the manifold-constraints and Riemannian gradient descent.

Figure 2. Convergence history of a running of the CIFAR-10 image-
classi�cation problem with �xed-rank constrained fully connected lay-
ers. On the left is plotted the cost function over the test set as a
function of training epochs. On the right is plotted the learning rates
that were used for each epoch in training.

Figure 3 shows an example sequence of four CIFAR-10 images that the model
predicted to be of the classes frog, frog, plane, and horse, from left to right. The
correct classes are dog, cat, plane, and horse, getting half of the predictions right,
as is about what is expected with a model trained to an accuracy of 46%.

Figure 3. An example sequence of four CIFAR-10 images that a
model trained to 46% accuracy predicted to be of the classes frog,
frog, plane, and horse, from left to right. The correct classes are
dog, cat, plane, and horse.

8. Conclusion

The topic of Riemannian optimization has been discussed with presentations of
central de�nitions and results, with a focus kept on conceptual clearness and ap-
plication to the speci�c algorithms used, as well as to concerns of practical use and
implementation. The Riemannian gradient descent algorithm has been presented and

26 OTTAR PASSANO HELLAN

we have compared the properties of this Riemannian algorithm with the well known
euclidean gradient descent method it generalizes.
In view of recent interest in Riemannian methods for deep learning, the application

of Riemannian optimization and Riemannian gradient descent to deep learning prob-
lems and the bene�ts it might provide has been discussed, as well as some potential
problems that might arise.
Simple experiments have been performed with the orthogonal group manifold ap-

plied to a recurrent neural network-problem and with the �xed-rank matrix manifold
applied to an image classi�cation problem using the CIFAR-10 dataset. The exper-
iments show that neural network models with manifold-constrained parameters can
solve non-trivial deep learning problems and that Riemannian gradient descent can
be used to train these parameters.

REFERENCES 27

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix
Manifolds. Princeton, NJ: Princeton University Press, 2008, pp. xvi+224. isbn:
978-0-691-13298-3.

[2] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. �Deep learning�. en. In:
Nature 521.7553 (May 2015), pp. 436�444. issn: 0028-0836, 1476-4687. doi: 10.
1038/nature14539. url: http://www.nature.com/articles/nature14539
(visited on 12/01/2021).

[3] Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges. 2021. doi: 10.48550/ARXIV.2104.13478. url: https:
//arxiv.org/abs/2104.13478.

[4] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv:
1512.03385 [cs.CV].

[5] Catherine F. Higham and Desmond J. Higham. �Deep Learning: An Intro-
duction for Applied Mathematicians�. en. In: SIAM Review 61.3 (Jan. 2019),
pp. 860�891. issn: 0036-1445, 1095-7200. doi: 10 . 1137 / 18M1165748. url:
https://epubs.siam.org/doi/10.1137/18M1165748 (visited on 01/03/2022).

[6] Jorge Nocedal and Stephen J. Wright. Numerical optimization. 2nd ed. Springer
series in operations research. OCLC: ocm68629100. New York: Springer, 2006.
isbn: 9780387303031.

[7] Nicolas Boumal. An introduction to optimization on smooth manifolds. To ap-
pear with Cambridge University Press. Apr. 2022. url: http://www.nicolasboumal.
net/book.

[8] David G. Luenberger. �The Gradient Projection Method along Geodesics�. In:
Management Science 18.11 (1972), pp. 620�631. issn: 00251909, 15265501. url:
http://www.jstor.org/stable/2629156 (visited on 07/09/2022).

[9] C. Udriste. Convex Functions and Optimization Methods on Riemannian Man-
ifolds. Mathematics and Its Applications. Springer Dordrecht, 1994. isbn: 978-
94-015-8390-9. doi: 10.1007/978-94-015-8390-9.

[10] Alan Edelman, Tomás A. Arias, and S.T. Smith. �The Geometry of Algorithms
with Orthogonality Constraints�. In: SIAM J. Matrix Anal. Appl. 20 (1998),
pp. 303�353.

[11] Nicolas Boumal et al. �Manopt, a Matlab Toolbox for Optimization on Mani-
folds�. In: Journal of Machine Learning Research 15.42 (2014), pp. 1455�1459.
url: http://jmlr.org/papers/v15/boumal14a.html.

[12] James Townsend, Niklas Koep, and SebastianWeichwald. �Pymanopt: A Python
Toolbox for Optimization on Manifolds using Automatic Di�erentiation�. In:
Journal of Machine Learning Research 17.137 (2016), pp. 1�5. url: http :
//jmlr.org/papers/v17/16-177.html.

[13] Ronny Bergmann. �Manopt.jl: Optimization on Manifolds in Julia�. In: Journal
of Open Source Software 7.70 (2022), p. 3866. doi: 10.21105/joss.03866.

[14] Adam Paszke et al. �PyTorch: An Imperative Style, High-Performance Deep
Learning Library�. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024�8035. url:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf.

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.nature.com/articles/nature14539
https://doi.org/10.48550/ARXIV.2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1512.03385
https://doi.org/10.1137/18M1165748
https://epubs.siam.org/doi/10.1137/18M1165748
http://www.nicolasboumal.net/book
http://www.nicolasboumal.net/book
http://www.jstor.org/stable/2629156
https://doi.org/10.1007/978-94-015-8390-9
http://jmlr.org/papers/v15/boumal14a.html
http://jmlr.org/papers/v17/16-177.html
http://jmlr.org/papers/v17/16-177.html
https://doi.org/10.21105/joss.03866
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

28 REFERENCES

[15] John M. Lee. Introduction to smooth manifolds. 2nd ed. Graduate texts in math-
ematics 218. OCLC: ocn800646950. New York: Springer, 2013. isbn: 978-1-4419-
9982-5.

[16] J.M. Lee. Introduction to Riemannian Manifolds. Graduate Texts in Math-
ematics. Springer International Publishing, 2019. isbn: 9783319917542. doi:
10.1007/978-3-319-91755-9.

[17] Christopher Stover and Eric W. Weisstein. Einstein Summation. url: https:
//mathworld.wolfram.com/EinsteinSummation.html.

[18] E. Hairer, S. P. Nørsett, and Gerhard Wanner. Solving ordinary di�erential
equations I: nonsti� problems. 2nd rev. ed. Springer series in computational
mathematics 8. OCLC: ocn620251790. Heidelberg ; London: Springer, 2009.
isbn: 9783540566700.

[19] Christopher Heil. Metrics, Norms, Inner Products, and Operator Theory. Ap-
plied and numerical harmonic analysis. Springer International Publishing, 2018.
isbn: 9783319653235. doi: 10.1007/978-3-319-65322-8.

[20] Martin Arjovsky, Amar Shah, and Yoshua Bengio. �Unitary Evolution Recur-
rent Neural Networks�. In: Proceedings of The 33rd International Conference
on Machine Learning. Ed. by Maria Florina Balcan and Kilian Q. Weinberger.
Vol. 48. Proceedings of Machine Learning Research. New York, New York, USA:
PMLR, 20�22 Jun 2016, pp. 1120�1128. url: https://proceedings.mlr.
press/v48/arjovsky16.html.

[21] Estelle Massart and Vinayak Abrol. �Coordinate Descent on the Orthogonal
Group for Recurrent Neural Network Training�. In: Proceedings of the AAAI
Conference on Arti�cial Intelligence 36.7 (June 2022), pp. 7744�7751. doi: 10.
1609/aaai.v36i7.20742. url: https://ojs.aaai.org/index.php/AAAI/
article/view/20742.

[22] Jun Li, Fuxin Li, and Sinisa Todorovic. �E�cient Riemannian Optimization on
the Stiefel Manifold via the Cayley Transform�. In: International Conference on
Learning Representations. 2020.

[23] Jiayun Wang et al. �Orthogonal Convolutional Neural Networks�. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2020.

[24] Nicolas Boumal, P-A Absil, and Coralia Cartis. �Global rates of convergence for
nonconvex optimization on manifolds�. In: IMA Journal of Numerical Analysis
39.1 (Feb. 2018), pp. 1�33. doi: 10.1093/imanum/drx080. url: https://doi.
org/10.1093%2Fimanum%2Fdrx080.

[25] P.-A. Absil and Jérôme Malick. �Projection-like Retractions on Matrix Mani-
folds�. In: SIAM Journal on Optimization 22.1 (2012), pp. 135�158. doi: 10.
1137/100802529. url: http://link.aip.org/link/?SJE/22/135/1.

[26] C. Cartis, N. I. M. Gould, and Ph. L. Toint. �On the Complexity of Steep-
est Descent, Newton's and Regularized Newton's Methods for Nonconvex Un-
constrained Optimization Problems�. In: SIAM Journal on Optimization 20.6
(2010), pp. 2833�2852. doi: 10.1137/090774100. eprint: https://doi.org/
10.1137/090774100. url: https://doi.org/10.1137/090774100.

[27] Yurii Nesterov. Lectures on Convex Optimization. 2nd. Springer Publishing
Company, Incorporated, 2018. isbn: 978-3-319-91578-4.

[28] Hadi Daneshmand et al. �Escaping Saddles with Stochastic Gradients�. In: Pro-
ceedings of the 35th International Conference on Machine Learning. Vol. 80.

https://doi.org/10.1007/978-3-319-91755-9
https://mathworld.wolfram.com/EinsteinSummation.html
https://mathworld.wolfram.com/EinsteinSummation.html
https://doi.org/10.1007/978-3-319-65322-8
https://proceedings.mlr.press/v48/arjovsky16.html
https://proceedings.mlr.press/v48/arjovsky16.html
https://doi.org/10.1609/aaai.v36i7.20742
https://doi.org/10.1609/aaai.v36i7.20742
https://ojs.aaai.org/index.php/AAAI/article/view/20742
https://ojs.aaai.org/index.php/AAAI/article/view/20742
https://doi.org/10.1093/imanum/drx080
https://doi.org/10.1093%2Fimanum%2Fdrx080
https://doi.org/10.1093%2Fimanum%2Fdrx080
https://doi.org/10.1137/100802529
https://doi.org/10.1137/100802529
http://link.aip.org/link/?SJE/22/135/1
https://doi.org/10.1137/090774100
https://doi.org/10.1137/090774100
https://doi.org/10.1137/090774100
https://doi.org/10.1137/090774100

REFERENCES 29

Proceedings of Machine Learning Research. PMLR, Oct. 2018, pp. 1155�1164.
url: https://proceedings.mlr.press/v80/daneshmand18a.html.

[29] Silvère Bonnabel. �Stochastic Gradient Descent on Riemannian Manifolds�. In:
IEEE Transactions on Automatic Control 58.9 (2013), pp. 2217�2229. doi: 10.
1109/TAC.2013.2254619.

[30] Pauli Virtanen et al. �SciPy 1.0: Fundamental Algorithms for Scienti�c Com-
puting in Python�. In: Nature Methods 17 (2020), pp. 261�272. doi: 10.1038/
s41592-019-0686-2.

[31] Awad H. Al-Mohy and Nicholas J. Higham. �A New Scaling and Squaring Al-
gorithm for the Matrix Exponential�. In: SIAM Journal on Matrix Analysis
and Applications 31.3 (2010), pp. 970�989. doi: 10.1137/09074721X. eprint:
https://doi.org/10.1137/09074721X. url: https://doi.org/10.1137/
09074721X.

[32] P.-A. Absil and I. V. Oseledets. �Low-rank retractions: a survey and new re-
sults�. In: Computational Optimization and Applications (2014). accepted for
publication. url: http://sites.uclouvain.be/absil/2013.04.

[33] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech.
rep. 2009.

https://proceedings.mlr.press/v80/daneshmand18a.html
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1109/TAC.2013.2254619
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
https://doi.org/10.1137/09074721X
http://sites.uclouvain.be/absil/2013.04

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ottar Passano Hellan

Riemannian Optimization for Deep
Learning

Master’s thesis in MTFYMA - Industrial Mathematics
Supervisor: Brynjulf Owren
July 2022

M
as

te
r’s

 th
es

is

	1. Introduction
	2. Background
	2.1. Deep Learning
	2.2. Riemannian Optimization

	3. Manifolds
	3.1. Smooth Manifolds
	3.2. The Tangent Bundle
	3.3. Riemannian Manifolds

	4. Riemannian Deep Learning
	5. Riemannian Gradient Descent
	6. Manifolds Used
	6.1. Stiefel Manifold
	6.2. Low-rank Matrix Manifold

	7. Numerical Tests
	7.1. Copying Memory Problem
	7.2. CIFAR-10 Image Classification

	8. Conclusion
	References

