
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Mustafe Kahin

Robot Telemanipulation for Remote
Maintenance

Master’s thesis in Mechanical engineering
Supervisor: Gunleiv Skofteland
Co-supervisor: Christian Holden
June 2022

M
as

te
r’s

 th
es

is

Mustafe Kahin

Robot Telemanipulation for Remote
Maintenance

Master’s thesis in Mechanical engineering
Supervisor: Gunleiv Skofteland
Co-supervisor: Christian Holden
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Acknowledgements

First and foremost, I would like to thank my supervisor Gunleiv Skofteland, and
co-supervisor Christian Holden, for guidance throughout this master’s thesis. The
assistance provided played a significant role, and is greatly appreciated. I am also
thankful for Adam Leon Kleppe, for providing great guidance in anything from
debugging and setup of hardware in the laboratory. I would also like to thank my
lab partner Irfan Suvalija, for interesting discussions and a good collaboration.
Last but not least, I would like to thank my friends and family for great support
and keeping me motivated during this master’s thesis.

Abstract

This master’s thesis investigates the possibility of conducting a filter change
through the means of teleoperation. Teleoperation is often referred to as re-
mote control of a robot and is mostly oriented towards inspection, repair, and
maintenance in industry-related applications.

The task investigated in this thesis relates to changing a filter unit located at a
gas dehydration skid on an oil and gas producing platform. The filter’s purpose
is to clean Triethylene glycol(TEG), used in the dehydration process. The filter
change is normally performed manually. In this thesis, the teleoperation task is
performed at the Norwegian Manufacturing Research Laboratory(MANULAB) at
NTNU in Trondheim. The assigned robot for the task has six degrees of freedom
and is named KUKA KR-16.

The teleoperation system allowed for end-effector control through MoveIts move_
group node, and was successfully configured in ROS, but complications with con-
nection to the joystick made it unsuccessful in the laboratory. Direct control
through the robots teach pendant was used in the laboratory to get the exact po-
sitions for the filter change, and the whole cycle was implemented with a Python
script. The implemented script, together with a computer mouse, allowed for
command input of the complete filter change and teleoperation of the robot in
RViz.

The tests showed that the filter change requires high precision when inserting and
extracting the filter. This led to using the developed python code to pick up the
old filter and place the new filter inside the container, while movements that did
not require any precision were teleoperated with a computer mouse. Teleoperation
with the joystick in ROS showed to be prone to delay when controlled in RViz.
This delay led to a “move-and-wait” strategy in order to perform the wanted
end-effector movements.

Sammendrag

Denne masteroppgaven undersøker muligheten for å utføre et filterskifte ved bruk
av teleoperasjon. Teleoperasjon blir ofte referert til som fjernstyring av en robot,
og er for det meste orientert mot inspeksjon, reperasjon og vedlikehold i indus-
trirelaterte applikasjoner.

Oppgaven som undersøkes i denne masteroppgaven er knyttet til å bytte en fil-
terenhet plassert ved en gassdehydreringsenhet på en olje-og gassproduserende
plattform. Formålet med filteret er å rense trietylenglykol(TEG), som brukes i de-
hydreringsprosessen. Filterbyttet utføres normalt manuelt. I denne oppgaven ut-
føres teleoperasjonsoppgaven på MANULAB ved NTNU Trondheim. Den tildelte
roboten for oppgaven har seks frihetsgrader og heter KUKA KR-16.

Teleoperasjonssystemet tillot endeffektor kontroll gjennom MoveIts move_group
node, og ble vellykket konfigurert i ROS, men komplikasjoner med tilkobling av
joysticken gjorde det mislykket i laboratoriet. Direkte kontroll gjennom robotens
håndkontroll ble brukt i laboratoriet for å få de nøyaktige posisjonene for filterbyt-
tet, og hele sykulusen ble implementert med et Python-skript. Det implementerte
skriptet sammen med en datamus tillot kommandoinngang for hele filterbyttet,
samt teleoperasjon av roboten i RViz.

Testene som ble utført viste at filterbyttet krever høy presisjon ved innsetting
og uttak av filteret. Dette førte til å bruke den utviklede pythonkoden for å
plukke opp det gamle filteret, og plassere det nye filteret inne i beholderen, mens
bevegelser som ikke krevde noen presisjon ble teleoperert med en datamus. Tele-
operasjon med joysticken i ROS viste seg å være utsatt for forsinkelser, når den
ble kontrollert i RViz. Denne forsinkelsen førte til en “flytt-og-vent” strategi for
å utføre de ønskede endeffektor bevegelsene.

Contents

Acknowledgements i

Abstract ii

Sammendrag iii

List of Figures vii

List of Tables ix

1. Introduction 1
1.1. Problem objectives . 2
1.2. Contributions . 3

1.2.1. Pick and Place . 3
1.2.2. Simulation . 4
1.2.3. Remote Maintenance . 4

1.3. Outline of the Thesis . 5

2. Theoretical Background 6
2.1. Teleoperation . 6

2.1.1. Time delay . 7
2.2. Use cases of teleoperation . 8

2.2.1. Hazardous operations . 8
2.2.2. Teleoperation in Space . 9
2.2.3. Telemedicine . 9
2.2.4. CERN . 9

2.3. Control architectures . 10
2.3.1. Direct control . 10
2.3.2. Supervised Control . 11
2.3.3. Shared control . 11

2.4. Robot Kinematics . 12
2.4.1. Pose of rigid body . 12
2.4.2. Rotation Matrix . 13

Contents v

2.4.3. Homogeneous transformation Matrix 14
2.4.4. Workspace . 15
2.4.5. Forward Kinematics . 15
2.4.6. Denavit-Hartenberg . 16
2.4.7. Inverse Kinematics . 17
2.4.8. Operational space & Joint space 18
2.4.9. Trajectory planning . 19
2.4.10. Path & Trajectory . 19
2.4.11. Joint space trajectories . 20
2.4.12. Trajectories for Point to Point 20
2.4.13. Sequence of points . 22

3. Programming Tools 23
3.1. ROS . 23

3.1.1. ROS Computation Graph 24
3.1.2. ROS control . 26
3.1.3. MoveIt . 26
3.1.4. RViz . 27
3.1.5. Gazebo . 27

3.2. URDF . 28
3.2.1. Xacro . 28

4. Method 29
4.1. Software Implementation . 29

4.1.1. MoveIt Configuration . 29
4.1.2. Kinematics Configuration 31
4.1.3. Simulation . 31
4.1.4. Nodes . 33
4.1.5. Summary . 35

4.2. Hardware setup . 37
4.2.1. Robot Hardware . 37
4.2.2. Gripper . 38
4.2.3. Filter Assembly . 39

4.3. Pick and place . 40
4.4. Testing . 42

5. Results 44
5.1. Teleoperation . 44
5.2. Trajectories . 45
5.3. Plots . 50

Contents vi

6. Discussion 53
6.1. Teleoperation . 53
6.2. Trajectories . 54
6.3. Plots . 55

7. Conclusions and Future Work 57
7.1. Conclusion . 57
7.2. Future work . 58

A. Digital Attachments 65
A.1. Running the teleoperation system in ROS 65

A.1.1. Teleoperation with a joystick 66
A.1.2. Setup in the laboratory . 67

A.2. Controllers . 67
A.3. Denavit Hartenberg implementation 69
A.4. Hierarchical graph . 70

B. Hardware 72
B.1. Gripper Machine Drawings . 72

List of Figures

1.1. Filter Assembly . 2
1.2. Filter . 2
1.3. Taurob-Inspector . 5

2.1. Bilateral teleoperation [17] . 7
2.2. Telemax . 10
2.3. Control architectures [50] . 12
2.4. Position & Orientation of a rigid body [5] 13
2.5. Workspace of KUKA KR-16 [12] 15
2.6. Relationship between Forward and Inverse Kinematics [23] 17

3.1. ROS Computational Graph Layer 24
3.2. Publisher&Subscriber model . 25
3.3. ROS Control . 26
3.4. MoveIt . 27

4.1. Folder layout and KUKA KR-16 Visualized in RViz 31
4.2. Pid tuning . 33
4.3. Control architecture . 36
4.4. Physical installation hardware . 37
4.5. The original gripper & Remodelled gripper mounted 39
4.6. Complete filter assembly . 40
4.7. Laboratory workstation . 41

5.1. Joystick teleoperation . 44
5.2. Communication of nodes . 45
5.3. Trajectories visualized in RViz & robot executing in the laboratory 48
5.4. Sequence of points visualized . 49
5.5. P8 to P9 position plot(directly) . 50
5.6. P8 to P9 velocity plot(directly) . 50
5.7. P8 to P9 acceleration plot(directly) 51
5.8. Position of joints from P8 to P9(sequence) 51
5.9. P8 to P9 velocity plot(sequence) 51

LIST OF FIGURES viii

5.10. P8 to P9 acceleration plot(sequence) 52

6.1. Failure due to precision error . 55

A.1. Hierarchical graph of KUKA KR-16 71

B.1. Gripper Machine Drawing(Opened) 72
B.2. Gripper Machine Drawing(Closed) 73

List of Tables

2.1. Workspace dimensions [12] . 15

4.1. Mappings from controller to robot [30] 35
4.2. Robot specifications [43] . 38
4.3. Filter& Filter container dimensions 40
4.4. Joint angles for pick-and-place . 43
4.5. Corresponding Cartesian points . 43

5.1. Sequence of new points(joint angles) 49
5.2. Sequence of new points(Cartesian) 49

A.1. KR16 URDF in table format . 70

Chapter 1.

Introduction

Offshore plants are faced with many challenges regarding their exposure to harsh
environments as they are installed in distant locations from the shore. The in-
stallations can be subject to toxic and corrosive atmospheres, which can pose a
challenge to the human operators. Production of fossil fuels in these conditions
has made the oil and gas industry one of the most heavily covered by safety,
international, and organizational standards [19]. The O&G industry focuses on
continuously reducing personnel risk and improving health, safety, and the envi-
ronment(HSE). Addressing the stated issues requires new solutions to the conven-
tional operation and maintenance of the installations.

Integrating robotic teleoperation is a possible solution for more efficiency and in-
creased safety for the operator. Teleoperation means “Operating at a distance”
and allows the human operator to perform tasks from a safe environment by the
use of a human-machine interface [28]. The capabilities of the human operator
are extended with this interface, making it a field of interest since it permits the
interaction of environments that can be difficult to access or hazardous environ-
ments that pose a challenge to the human operator [28]. The operation of robots
from a distance has the potential to solve the stated issues by using the robots on
dull, dirty, distant, and dangerous work tasks. The integration of robotics in the
industry is not something new, as there exist solutions for both inspection and
maintenance tasks using Remotely operated vehicles(ROVs). As for this thesis,
the use of a stationary robot is investigated.

The focus of this thesis is related to remotely operating a robot in order to conduct
a filter change. The filter is located at a Tri-Ethylene Glycol(TEG) skid, whose
primary purpose is to remove contaminants from the TEG. Today, the filter change
is done manually by personnel, but by using a robot, the maintenance will be more
automated and reduce the risk for personnel when it comes to hazardous work.
Using robots for such tasks will also improve efficiency, as the robot stays at a

Chapter 1. Introduction 2

given location, implying that relocation of personnel is needless. Since the filter
is remotely located, Equinor is investigating possible solutions to access the filter
for maintenance from a distance.

A CAD figure of both the filter and its container can be seen in Figure 1.2 and
Figure 1.1 respectively. The filter container can be divided into two parts, where
the top section can be unscrewed to fit the filter inside, which means that the robot
used must be able to conduct this motion. The assigned robot for this thesis is
the KUKA KR-16, which has six degrees of freedom(DOF), and a spherical wrist,
making it possible to solve the task at hand as it can replicate human motion.
As for the actual task of exchanging the TEG filter on an unmanned platform,
a mobile robot with a manipulator arm will be used e.g. the Taurob [20]. A
demonstration of the filter change will be conducted in the laboratory MANULAB
at NTNU, Gløshaugen.

The following objective in collaboration with NTNU Department of Mechanical
and Industrial Engineering is given:

Robot Telemanipulation for Remote Maintenance.

Since teleoperation is a wide subject within telerobotics, a specification of the
objectives in this thesis are presented in the next section.

Figure 1.1.: Filter Assembly Figure 1.2.: Filter

1.1. Problem objectives
The problem of remote operations of a robot is a subject that has been widely
researched and covers a great specter of control architectures. This thesis covers
the notion of investigating how the filter change can be conducted, which has led
to the different parts presented below.

Teleoperation in offshore installations differs from other applications as the envi-

Chapter 1. Introduction 3

ronment is cluttered, and failures can damage both equipment and the environ-
ment. This is why a simulation of the robot’s behavior to verify the interaction
between it and its environment is highly relevant for this thesis. The simulation
will be conducted using the 3D simulation program Gazebo, which can simulate
realistic physics and has additional features such as programmable and graphi-
cal interfaces. The software setup will be conducted using the Robot Operating
System(ROS) and tested at the laboratory, as mentioned in the previous section.

The main problem can be divided into smaller sections. In the first part of the
thesis, a theoretical background study of teleoperation and its main properties
is conducted. Further, the control architecture for remote operation of KUKA
KR-16 is investigated. The objectives that are focused on in this project are as
follows:

• Create a software setup of the KUKA KR-16

• Create a teleoperation control architecture

• Perform a pick and place of the filter in both simulation and in the laboratory

The filter change will be attempted with a PlayStation 4 controller, commonly
referred to as DualShock 4 since a haptic joystick is not accessible for this thesis.
Both the filter and filter container is deployed to the laboratory by Equinor, and
some changes regarding its structure have been applied, which is further explained
in section 4.2.

1.2. Contributions
This section presents some of the main contributions to this thesis.

1.2.1. Pick and Place

Remotely operating a robot for a pick-and-place task is presented by Love et al.
[25] and draws a relation to the investigated subject of this thesis. The authors
investigated robot control algorithm’s used for teleoperation with a long reach
manipulator, where the task consisted of remotely moving a payload of 6.8kg
between different stations. The pick-and-place cycle was initiated by having the
robot manipulator at its home position and the payload in a predefined position.
Following, the robot manipulator was moved to the object’s position, and picked
up before it was relocated to a new position. The paper’s authors concluded
that some form of trajectory or command filtering during task execution would
increase teleoperated pick-and-place tasks. Inspiration is drawn from the paper
when conducting the experiments in this thesis.

Chapter 1. Introduction 4

1.2.2. Simulation

Another essential part of teleoperation is the “situational awareness” provided to
the operator. A simulation of the performed tasks increases this aspect and can
be applied with the use of different software programs. Deng et.al [11] presented
a procedure on how to perform a simulation of a mobile manipulation task. The
authors used the Robot Operating System(ROS) in addition to the motion plan-
ning software MoveIt. An architecture that included the complete configuration of
the robot, ranging from kinematics to both control and visualization, was demon-
strated before implementing it on a mobile robot. The setup of this paper can be
related to the same architecture in this thesis, further presented in section 4.1.

1.2.3. Remote Maintenance

The three main activities in a maintenance task include: disturbance handling,
inspection, and planned maintenance [39]. The objective of this thesis falls in the
last-mentioned category, as the filter change follows a pre-determined schedule.
Teleoperation of robots for maintenance tasks referring to the oil and gas industry
differs from other applications as the environment is harsh and less predictable,
and considering the distance between the onshore operation center and the offshore
installation.

There already exist solutions for both inspection and maintenance in the oil and
gas industry, as mentioned previously in the introduction 1. The most common
are Remotely Operated Vehicles(ROVs) for underwater operations and pipe in-
spections. ROVs are suitable for harsh environments and are usually controlled
with a joystick along with video monitors [52] to perform tasks such as; repairing
pipelines, well heads, communications cables, and platforms [39]. ROVs are also
used for onsite inspections on platforms, such as the “Taurob-Inspector”, which
is the intended robot for the actual task of changing the filter. The ROV has a
robotic arm with 5 degrees of freedom, and is equipped with sensors that gather
data, detect gas leaks, and take high-definition photos [20]. The ROV can be seen
below in Figure 1.3. Other use cases of teleoperation are further presented in the
following chapter.

Chapter 1. Introduction 5

Figure 1.3.: Taurob Inspector[20]

1.3. Outline of the Thesis
This thesis will first present the theoretical background of teleoperation and robot
kinematics in Chapter 2 before presenting the programming tools essential for
developing the teleoperation control architecture in Chapter 3. The theory is
mainly gathered from the specialization project [21] written in the fall semester
of 2021, prior to this thesis. Chapter 4 presents the methodology part of the
thesis and includes both implementation in ROS and the laboratory, as well as
the developed control architecture. Chapter 5 and Chapter 6 present the results
from the tests conducted in the laboratory and discussions, respectively. Chapter
7 rounds off the thesis with conclusions and suggestions for the project’s future
work.

Chapter 2.

Theoretical Background

This chapter presents the theoretical background covering the aspects of teler-
obotics and robot kinematics necessary to develop a teleoperation control archi-
tecture. The theory is mostly based on previous work done in the specialization
project prior to this thesis [21], where some sections are gathered in its entirety.

2.1. Teleoperation
The term teleoperation derives from the Greek word tele(remote) and the Latin
word operatio(operation, something done), which means the operation of tasks
from some distance away [2]. This interface allows the human operator to per-
form tasks from a safe environment through a human-machine interface, and it is
commonly associated with controlling a robot from a place far from the robot’s
location. The capabilities of the human operator are extended with this interface,
which makes it a field of interest since it permits the interaction of environments
that can be difficult to access or hazardous environments that pose a challenge
to the human operator [28]. The application of teleoperation systems is wide and
can be found in many different industries today.

A teleoperation system consists of a master(local) device and a slave(remote)
device/robot, which are connected by a communication channel. The extension
of the operator’s capability is achieved by this system, and it can be divided into
two main processes [41]:

1. Interaction between the operator and the master device

2. Interaction between the slave device and the environment

Figure 2.1 depicts a teleoperation system. A human operator is interacting with a
master device which is located on the local side of the system. The master device
can take different forms, such as a mouse, a joystick, a robotic arm, or a kinematic

Chapter 2. Theoretical Background 7

replica of the slave robot. The desired commands are sent through this device to
the slave robot, which in turn interacts with the remote environment.

Information is exchanged between the local and remote sites through the com-
munication channel, such as a force or position signal and visual data. If the
slave device possesses force sensors such that force feedback can be transmitted
to the master device when a task is being performed, the system is said to be a
bilateral teleoperation system [17]. When no force feedback is present, the system
is referred to as a unilateral teleoperation system.

Figure 2.1.: Bilateral teleoperation [17]

Since teleoperation is usually used in the context of operating in an unstructured
environment, the main goal would be to have the control system in a “steady
state”, i.e, when the slave velocity and force is similar to the masters. This
type of control system is defined as transparent [28] and is often referred to as
Telepresence, and is still far from achieved in most practical applications according
to [4].

2.1.1. Time delay

A critical part of telerobotics is the issue of time delay that occurs because of the
distance between the operator and the robot or limitations in the communication
infrastructure. It can cause severe destabilizing consequences and poses a chal-
lenge when it comes to control. For bilateral systems where the objective is to let
the operator feel the contact force of the remote robot, two basic approaches to
solve the unstable consequences of time delay are available, which are based on

Chapter 2. Theoretical Background 8

passivity theory, which states that a system is stable if it always has to dissipate
and never increment its total energy, and control theory where a linear model of
each element is proposed and block diagrams are constructed [40]. Research ad-
dressing the issue of stability for bilateral teleoperation systems has shown that
passivity-based methods are widely accepted because of their robustness and ease
of applicability [18]. Implementation of bilateral teleoperation controllers on both
sides of the communication channel has also been proposed as this reduces the
effects of packet delay, loss, and jitter [18]. This section was gathered from [21]
in its entirety.

2.2. Use cases of teleoperation
Since its beginning of research in the nuclear fields, teleoperation systems have
been highly motivated by securing human safety, which in turn has made its usage
expand in many different applications. Teleoperation systems are used in many
different fields where the environment is dangerous and difficult for humans to
access, such as space exploration and underwater applications. Its use cases also
extend to manipulation of smaller objects in situations where the area is limited
such as in telerobotic surgery. This section presents early history of teleoperation
and some of its main use cases.

2.2.1. Hazardous operations

The separation between the human operator and the manipulated environment
is one of the main benefits of a teleoperation system, making it very desirable
to employ in hazardous environments. The accomplishment of tasks in these
environments depends on the nature and magnitude of the hazards, which may
present themselves in the form of radiation, toxic contamination, falling objects,
or potential explosions [55]. If human exposure to these hazards can cause life-
threatening or long-term health consequences, some forms of remote operations
that separate humans from the environment are highly relevant. An example of
such operations is within the nuclear industry, where the roots of teleoperation
can be traced back to research by Raymond C. Goertz in the 1940s and 1950s
[55].

Raymond C.Goertz developed the first modern-master slave teleoperated system
at Argonne National Laboratory [51]. The master(local) device represents the op-
erators’ environment and the slave(remote) device represents the operator at the
remote environment [41]. The system was intended for nuclear operations, where
the first system consisted of an array of on-off switches that activated motors and
various axes [14]. According to Goertz, the electrical system caused the manip-

Chapter 2. Theoretical Background 9

ulators to feel slow and awkward to operate, which led to Goertz building pairs
of mechanically linked robots [14, 15, 34]. The new system allowed the operator
to use natural hand motions where the forces and vibrations were transmitted
through the structure it was connected to [34].

The research and advances made in teleoperation were, in later years, used in
other areas as nuclear power activities began to decline in the 1980s and 1900s.
Nuclear remote operations experience with teleoperation has today influenced its
usage in other applications such as in space, medical systems, and other hazardous
environments [34].

2.2.2. Teleoperation in Space

The utilization of teleoperation in space is highly motivated by the issue of non-
breathable air, the risks and difficulties of sending a human to space, and the
expenses that follow. Numerous teleoperation systems are used in space missions,
such as Canadar, a remote manipulator system used to capture and redeploy
defective satellites. The issue of time delay is prominent for teleoperation systems
used for space applications. This is due to the distance between the information
sent from earth to the receiving station in space [2].

2.2.3. Telemedicine

In the mid-’80s, the first robotic systems were introduced in medicine and make
an impact today in various medical disciplines such as neurosurgery, surgery, and
orthopedic surgery [3, 6, 56, 16] [1]. The usage of teleoperated robotic systems
in medicine has the possibility to provide treatments across short or long dis-
tances, which eliminates the need of the physical presence of both the patient and
physician at the same location.

The first successful transatlantic telesurgery was demonstrated by Computer Mo-
tion1 in 2001 [34]. The operation was named “Lindberg”, where a laparoscopic
gall bladder operation was carried out by surgeons located in New York(USA) on
a patient located in Strasbourg(France). The operation was performed using a
Zeus robotic system, and it did not include force feedback which meant that the
surgeons had to rely on visual feedback.

2.2.4. CERN

The European Council for Nuclear Research(CERN) is one of the largest centers
for scientific research and is located in Geneva [8]. The primary research at CERN

1Computer Motion is a high-tech medical device company

Chapter 2. Theoretical Background 10

is focused on particle physics, and they provide particle accelerators which have
led to many international collaborations.

Teleoperated robots are used at CERN since some areas are prone to radiation
contamination. Instead of waiting for long periods of time for the radiation to
dissipate, humans are replaced by their counterparts, i.e., robots. This ensures
the safety of personnel and improves the availability of CERN’s accelerators, such
as the Large Hadron Collider(LHC). One of the robots used at CERN is called
“Telemax” and is mainly used for inspection and maintenance purposes. The robot
is equipped with a seven degrees of freedom manipulator and has great mobility
provided by tracked wheels. It is also equipped with cameras that ensure visual
feedback when it is teleoperated [49]. The ROV can be seen in Figure 2.2 below.

Figure 2.2.: Telemax [49]

2.3. Control architectures
The application of teleoperated robots has been concentrated on several operations
modes, facilitated by the increasing development of sensor technologies, control,
and computer technologies. The main operation modes are direct control, super-
vised control, and shared control [26]. The following sections are gathered from
the specialization project [21] in its entirety.

2.3.1. Direct control

Direct control implies that the operator controls the robot’s motion directly, which
means the system has no intelligence or autonomy. Some systems involve direct

Chapter 2. Theoretical Background 11

control where the operator commands are done via a joystick or a kinematic
replica of the slave-robot. The joystick can be considered a robot itself(master-
robot), and by providing direct control, difficulties in creating local autonomy in
the system can be avoided [35, 21].

2.3.2. Supervised Control

With supervised control, the robots can execute tasks at the remote environment
according to a predetermined program, where the operators only supervise the
task execution [26]. This allows for more autonomy and intelligence for the robot
system. Supervised control can deal with intermittent input, which also makes it
suitable for commanding multiple robots [18].

An implementation of supervised control is “telesensor programming”, which was
developed for space applications. Telesensor programming allows the operator
to test and adjust tasks while interacting with a robot simulation and remote
environment. To implement such a control system’s functionality, there exists a
need for necessary tools. For the operator to debug the job execution, he/she needs
to be provided with a simulation of the robot which includes sensory perception,
and an efficient interface to set up task descriptions. In this way, the operator
can configure the control parameters for the task, and decide the sensors and
algorithms which will be used to execute the task. The control algorithm has
advantages for significant time delays in the system, making it applicable for
undersea and space applications. Since the operators are due to delayed feedback,
a predictive simulation gives the advantage to teleoperating the robot [35, 21].

2.3.3. Shared control

Shared control systems combine the characteristics of direct and supervised con-
trol in the sense that the operator shares the control of the slave robot with an
autonomous controller to achieve a common goal [50]. In this way, some degree
of automated help is available to the human operator. Since some workload is
transferred to the robot, complexities such as time/communication delay can be
overcome by specifying gross path commands to the slave robot, which again can
fine-tune the information, such as correcting motion commands or regulating sub
tasks [50, 21].

.

Chapter 2. Theoretical Background 12

Figure 2.3.: Control architectures [50]

2.4. Robot Kinematics
The following sections present essential robot kinematics for the filter change. The
kinematics are based on theory from the books Robotics – Modelling, Planning
and Control by Siciliano et.al [5], Robot Dynamics and Control by Spong et.al
[53], and Robotics -Modelling, Planning and Control by Lynch et.al [22]. The
theory is gathered from [21] and modified, apart from Section 2.4.7 which is in its
entirety.

2.4.1. Pose of rigid body

In order to manipulate an object in space, it is necessary to mathematically define
the configuration of the robotic manipulator. In 3D space, this configuration is
represented by its position and orientation with respect to a reference frame.

In Figure 2.4, O-xyz is depicted as the reference frame, and x,y, z are the unit
vectors of the axes. A point O′ on the rigid body can then be expressed by (2.1)
with respect to frame O-xyz as.

o′ = o′
xx + o′

yy + o′
zz (2.1)

Chapter 2. Theoretical Background 13

The position of point O′ can also be written as a (3x1) matrix

o′ =

 o′
x

o′
y

o′
z

 (2.2)

The orientation of the rigid body can be found by attaching an orthonormal frame
O′ − x′y′z′ to the rigid body and expressing its unit vectors x′,y′,z′ with respect
to the reference frame O-xyz as

x′ = x′
xx + x′

yy + x′
zz

y′ = y′
xx + y′

yy + y′
zz

z′ = z′
xx + z′

yy + z′
zz

(2.3)

Figure 2.4.: Position & Orientation of a rigid body [5]

2.4.2. Rotation Matrix

The orientation of a frame can be described by a (3 × 3) matrix referred to as
a rotation matrix. By combining (2.3) into a (3 × 3) matrix we get the rotation
matrix R as follows.

R =
[

x′ y′ z′
]

=

 x′
x y′

x z′
x

x′
y y′

y z′
y

x′
z y′

z z′
z

 =

 x′T x y′T x z′T x
x′T y y′T y z′T y
x′T z y′T z z′T z

 (2.4)

Continuing with the reference frame O-xyz, if it is rotated by an angle α about
its z axis, the new rotated frame O − x′y′z′ vectors are described as

Chapter 2. Theoretical Background 14

x′ =

 cosα
sinα

0

 y′ =

 − sinα
cosα

0

 z′ =

 0
0
1

The rotation matrix of the new frame O − x′y′z′ can then be expressed as

Rz(α) =

 cosα − sinα 0
sinα cosα 0

0 0 1

 (2.5)

Similarly, if the original frame O-xyz is rotated by an angle β about its y axis,
and an angle γ about its x axis , they are respectively given by

Ry(β) =

 cosβ 0 sin β
0 1 0

− sin β 0 cosβ

 (2.6)

Rx(γ) =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (2.7)

These matrices are also referred to as the elementary rotation matrices, which
represent rotation operations about coordinate frame axes.

2.4.3. Homogeneous transformation Matrix

The combined orientation and position of a rigid body is represented by the homo-
geneous transformation matrix, T . It allows the expression of coordinate transfor-
mations between two frames in a compact form by combining the rotation matrix
R in the Special Orthogonal Group SO(3) and a translation vector p ∈ R3. The
homogeneous transformation matrices in R3, is the set of all 4 × 4 real matrices
T of the form

T =
[
R p
0 1

]
=

r11 r12 r13 p1
r21 r22 r23 p2
r31 r32 r33 p3
0 0 0 1

 (2.8)

The major uses of the homogeneous transformation matrix include:

• To represent the position and orientation of a rigid body

Chapter 2. Theoretical Background 15

• Change of reference frame in which a vector or a frame is represented

• The Displacement of a vector or a frame

2.4.4. Workspace

The reachable configurations of the robot’s end-effector is commonly referred to
as its workspace. The workspace depends on both the structure of the robot and
mechanical joint limits, but it is independent of the task. A robot’s workspace
can be distinguished by its dexterous workspace i.e., the volume of space the end-
effector can reach attaining different orientations, and its reachable workspace,
which is the reachable workspace attained by the end-effector with at least one
orientation. The workspace of KUKA KR-16 is shown in Figure 2.5. Marked in
turquoise is the reachable volume of the robot. On the contrary, the area marked
in white is unreachable for the robot. This can be due to mechanical limits of the
joints or robot control software that prevents the arm from colliding or intersecting
with other parts of the robot.

Figure 2.5.: Workspace of KUKA KR-16 [12]

Work envelope A B C D E F G Volume

KR 16 2026 mm 2412 mm 1611 mm 1081 mm 530 mm 1027 mm 670 mm 14.5m3

Table 2.1.: Workspace dimensions [12]

2.4.5. Forward Kinematics

The forward kinematics problem is referred to as the calculation of the robots
tool/end-effector position and orientation expressed by the robots joint variables.

Chapter 2. Theoretical Background 16

The joint variables are defined as the angle between the links in case of a revolute
joint, and the link extension in case of a prismatic joint [53], and the relationship
between these variables can be expressed by 4 × 4 homogeneous transformation
matrices, T . The degree of freedom of a robot can be determined by the number
of homogeneous transformation matrices, and by multiplying these matrices, the
final position of the end-effector can be located [23]. The forward kinematics of a
manipulator can be derived using different models such as the Denavit-Hartenberg
Convention presented in the following section.

2.4.6. Denavit-Hartenberg

The Denavit Hartenberg, or D-H convention, is a commonly used convention
for selecting reference frames and computing the transformation matrices. Each
rigid transformation has six degrees of freedom, three for rotation and three for
translation, but with the D-H convention , each homogeneous transformation Ai

is represented as a product of four basic transformations

Ai = Rotz,θi
Trans z,di

Trans x,ai Rotx,αi (2.9)

=

cθi

−sθi
0 0

sθi
cθi

0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1

1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1

=

cθi

−sθi
cαi sθi

sαi aicθi

sθi
cθi
cαi −cθi

sαi aisθi

0 sαi cαi di

0 0 0 1

The parameters ai, αi, di, and θi describe the relation between link i and joint i,
where

α and θ represent the rotations:

θi : is the angle between xi−1 and xi measured in a plane normal to zi−1

αi: is the angle between the axes zi−1 and zi measured in a plane normal to xi

If the joint is a revolute joint, the joint variable is included.
a and d represent linear distances of displacements.

a : is the link length, and is measured by the distance between axes zi−1 and zi

along the xi

di : is the distance between the origin O0 and the intersection of the xi axis with

Chapter 2. Theoretical Background 17

zi−1 measured along zi axis

The homogeneous transformation matrices Ai are then formed by substituting
the above parameters into (2.9), which are then used to derive the position and
orientation of the end-effector frame expressed in base coordinates

T 0
n = A1 · · ·An (2.10)

To apply the D-H conventions approach to the forward kinematics, a certain set
of rules needs to be followed, a more derived description can be found in [5].

2.4.7. Inverse Kinematics

As forward kinematics is about figuring out the end-effector position given joint
variables, the inverse kinematics problem is the opposite. Inverse kinematics de-
termines the joint variables corresponding to a given end-effector position and
orientation. The relationship between forward kinematics and the inverse kine-
matic problem can be seen in Figure 2.6.

Figure 2.6.: Relationship between Forward and Inverse Kinematics [23]

Solving the inverse kinematics problem can be more complex, the reason being
that the equations are, in general nonlinear, which means that it is not always
possible to find a closed-form solution. Multiple solutions may exist depending
on the number of DOFs of the manipulator and the number of non-null elements
in the DH parameter table. Infinite solutions may also exist in the case of a
kinematically redundant manipulator,i.e. when the number of DOFs is greater
than the variables that are necessary to describe a given task, or no solutions may
exist because of the manipulator’s kinematic structure [21].

The inverse kinematics of KUKA KR-16 can be solved by decoupling the problem
into position and orientation subproblems. The robot consists of an anthropo-
morphic arm where the initial θ− values of joints 1, 2, and 3 define the position

Chapter 2. Theoretical Background 18

of the end effector while the θ values for joints 4, 5, and 6 define the orientation
of the end-effector. The last three joints of the robot intersect at a common point
and form a spherical wrist. Solving the inverse kinematics analytically can be
done by the following:

1. Finding the wrist point pW (xw, yw, zw)

2. Calculate θ1, θ2, θ3 from pW

3. Calculate the transformation matrix T 3
0

4. Calculate the Euler angles θ4, θ5, θ6 which can be found from T 3
6 =

(
T 3

0

)T
T 0

6

A more derived description on how to solve the inverse kinematics problem for
manipulators with spherical wrist can be found in [5], as for this project, an
approximate solution from the motion planner(MoveIt) 3.1.3, is used.

2.4.8. Operational space & Joint space

Section 2.4.6 described how the forward kinematics of a robot manipulator could
be computed with the D-H convention, which describes the position and orienta-
tion of the end-effector frame expressed in base coordinates. It is also necessary to
assign this expression as a function of time i.e a trajectory, which can be described
in operational space and in joint space.

The end-effector pose can be expressed with a Rm vector, by describing the rota-
tion of the end-effector frame with respect to the base frame with Euler angles,
ϕ =

[
φ θ ψ

]T
, and the position with a minimal number of coordinates with

regard to the geometry of the manipulator [5]

xe =
[

pe

ϕe

]
∈ Rm (2.11)

where m ≤ n, pe is the end-effector position and ϕe describes the orientation.

The position and orientation of the end-effector is described by independent pa-
rameters, where the vector xe is defined in space, also referred to as the operational
space.

The joint space is denoted by the space in which the joint variables are defined
by a vector Rn

Chapter 2. Theoretical Background 19

q =

 q1
...
qn

 ∈ Rn (2.12)

where qi = θi if a joint is revolute and qi = di if a joint is prismatic. The forward
kinematics can then be written in another form than (2.10) as:

xe = k(q) (2.13)

where k is a non-linear vector function with dimension Rm , which allows the
calculation of operational space variables from the knowledge of the joint space
variables[5].

2.4.9. Trajectory planning

As a robot manipulator moves from its initial posture to its final posture, the
robot controller is provided with a stream of goal positions and velocities. These
positions as a function of time are referred to as trajectories, and in order to
ensure that the robot manipulator executes the planned trajectories smoothly,
it is necessary to use planning algorithms. The trajectories can be completely
specified by the task that needs to be executed, such as when the end-effector
is required to track a moving object, or in other cases where less constraints are
applied, more freedom to design the trajectories are given [22].

2.4.10. Path & Trajectory

The terms path and trajectory are frequently used when it comes to trajectory
planning, and they are often used synonymous, but different. Their differences is
explained in [5] where a path is described as “the locus of points in the joint space,
or in the operational space which the manipulator has to follow in the execution
of the assigned motion”. Which means that a path is a geometric description
of a motion. In mathematical terms, a path from qinit to qfinal is defined as
a continuous map, τ : [0, 1] → Q, with τ(0) = qinit and τ(1) = qfinal , where
Q is described as the set of all possible configurations of the robot(configuration
space), qinit is the robots initial position, and qfinal is the robots final position
[53].

A path is in some cases specified by a sequence of end-effector poses, and in
this case a inverse kinematics solutions must be used for the conversion to joint
configurations. The desired motion of an industrial robot is often achieved through

Chapter 2. Theoretical Background 20

the use of a teach pendant by specifying paths. In this case, the motion is recorded
as a set of joint angles, which means that the path will not serve as a trajectory
for the robot and that there is no need to calculate the inverse kinematics [53].

A trajectory on the other hand, is described by [5] as “a path on which a timing
law is specified, for instance in terms of velocities and/or accelerations at each
point”. This means that q (t0) = qinit and q (tf) = qfinal , where tf − t0 is the
amount of time it takes for the robot manipulator to execute its trajectory.

2.4.11. Joint space trajectories

Trajectory planning for a robot manipulator is typically done in the operational
space as it allows different constraints such as obstacles and forbidden areas of
the workspace to be accounted for. This is due to the fact that the constraints
are better described in this space as their corresponding points in the joint space
can be difficult to compute [5].

When trajectory planning is done in the joint space, the manipulators joint values
must first be obtained from the end-effector position and its orientation. An
inverse kinematics algorithm must then be used in order to find its corresponding
points in the operational space. There are some features that are required for this
type of planning algorithm cited from Siciliano [5] as:

• The joint positions and velocities should be continuous functions of time

• The generated trajectories should not be very demanding from a computa-
tional viewpoint

• undesirable effects should be minimized, e.g, nonsmooth trajectories inter-
polating a sequence of points on a path.

The following sections present cases where only the initial and final position of
the end-effector are given(point-to-point) and when points along the path are
specified(sequence of points).

2.4.12. Trajectories for Point to Point

In a point-to-point motion, a robot manipulator is planned with a trajectory
from q (t0) to q (tf), where its path is only dependent on its initial and final
configuration. This type of trajectory planning is often used in material handling
tasks, and in “pick and place tasks” where one object is picked from one location
and placed in another, and can be related to the filter change investigated in this
thesis. The point-to-point motion has infinitely many trajectories, stemming from
its finite constraint on the end point. A common way of dealing with this issue is

Chapter 2. Theoretical Background 21

to choose trajectories from polynomials of degree n, where n is dependant of the
number of constraints [53].

If we want to generate a smooth trajectory between two configurations qi(initial)
and qf (final) within a time tf , a cubic polynomial of the form

q(t) = a0 + a1t+ a2t
2 + a3t

3 (2.14)

can be chosen. It is imposed that q (t0) = q0, q (tf) = qf , q̇ (t0) = v0 and
q̇ (tf) = vf . Its velocity is then given by its derivative

q̇(t) = a1 + 2a2t+ 3a3t
2 (2.15)

the acceleration is then

q̈(t) = 2a2t+ 6a3t (2.16)

Combining Equation 2.14 and 2.15 gives the set of equations

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (2.17)

v0 = a1 + 2a2t0 + 3a3t
2
0 (2.18)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (2.19)

vf = a1 + 2a2tf + 3a3t
2
f . (2.20)

where the initial and final joint velocity values(q̇i and q̇f) are also specified. Solv-
ing these equations will then give a specified trajectory. These equations can also
be combined into a single matrix equation on the form

1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

a0
a1
a2
a3

 =

q0
v0
qf

vf

 (2.21)

In the case of assigning an initial value q̈i and q̈f for the acceleration, a polynomial
of degree n ≥ 5 is needed, since six degrees have to be satisfied . The polynomial
is then given by the following equation

Chapter 2. Theoretical Background 22

q(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0 (2.22)

2.4.13. Sequence of points

In a pick and place task it might also be suitable to assign more points other than
the initial and final point of the end-effector. For instance, by assigning suitable
points between the initial and final points, the object is imposed to reduced ve-
locities when transferred. Assigning a sequence of points can also certify better
monitoring of the trajectories executed [5].

Chapter 3.

Programming Tools

This chapter contains the most relevant ROS concepts and programming tools
used for this project. Parts of the theory are gathered from the specialization
project [21] and modified for this thesis, apart from sections that are taken in
their entirety and cited with [21]. Most of the theory regarding ROS is gathered
from the book Mastering ROS for Robotics Programming [24], as well as the
Roswiki pages online [46].

3.1. ROS
The robot operating system(ROS) is an open-source framework for developing
and building robotic applications. The framework is equipped with various tools
and libraries, making it advantageous when developing, which has led to high-
end robotics companies implementing their software through ROS [24]. The ROS
project was started in 2007 as part of a Stanford robot project and has gained a
vast community of researchers and developers since then. ROS allows for creation
applicable for broad classes of robot hardware and software pipelines [42] and
comes with “ready-to-use” capabilities, such as MoveIt, which can be used for
motion planning of robot manipulators.

ROS is also equipped with tools for both visualization and simulation of robots,
which has made it the framework of choice for this thesis. ROS comes with
different distributions and currently has two main versions, ROS1 and ROS2, the
latter being the newest. As for this thesis, ROS1 is the preferred version since it
has more available packages. The distribution of the used ROS1 is called Noetic
Ninjemys [48], which is the newest and recommended.

Chapter 3. Programming Tools 24

3.1.1. ROS Computation Graph

The computation in ROS is done through a network of processes, which together
construct the Computation graph as can be seen in Figure 3.1. The main ROS con-
cepts in the computation graph are; ROS Nodes, Master, Parameter Server,
messages, topics, services, and bags, all of which provide data to the compu-
tation graph in distinct ways.

Figure 3.1.: ROS Computational Graph Layer [24]

Nodes

Nodes are software processes that perform computations or tasks. Each node
usually has one single purpose and can perform its task independently, but it
can also communicate with other nodes. A robot system might consist of many
different nodes; for example, one node can calculate the end-effector’s position
while another node can perform path planning, and so on. By dividing code into
smaller sub-modules, it facilitates the communication between the different parts
of the robot system through nodes. Having more simple processes rather than
one extensive process is the aim of ROS nodes. This provides the benefit to the
overall system and makes it fault-tolerant as it isolates a fault in the system to
the node in question [24].

Topics

Nodes exchange messages through named buses called Topics [24]. When a node
sends a message through a topic, it is said to publish, while if a node receives a
message through a topic, it is said to subscribe to the topic. Each topic has its

Chapter 3. Programming Tools 25

unique name, and the publish/subscribe model is anonymous, i.e., one node does
not know whether another node is publishing or subscribing to the topic.

Messages

Each ROS node usually has one single purpose and can perform its task indepen-
dently, but it can also communicate with other nodes through Messages. Messages
hold a set of data and can be of different types, such as an integer, a floating-point,
and a boolean. Figure 3.2 shows an example of communication through messages.
From the left, a node publishes a message over the topic called /example. The
topic will define the type of messages sent, which in this case is a message of
type String. These transmitted messages are then received by two nodes that
subscribe to the /example topic [7].

Figure 3.2.: ROS Publisher & Subscriber model [27]

Services and Clients

Another way to pass data between nodes in ROS is through services. Services
allow for single direct communication between nodes, i.e. one node can call a
function that executes in another node. The inputs and outputs of the server
function are defined in the same way message types are defined. Service calls can
be used for quick actions such as turning on a sensor, taking a picture with a
camera, or enabling/disabling a robot actuator[42, 21]

ROS Parameter Server

The ROS master provides a parameter server used by nodes for configuration,
storing, and retrieving data. The nodes can access the stored data globally since
it is connected to the ROS master. Each parameter has a name and a data type,
and the command-line tool for the parameter server is called: rosparam[42, 21].

Chapter 3. Programming Tools 26

3.1.2. ROS control

ROS control is a package for hardware drivers used to implement and manage
robot controllers. It contains controllers and hardware interfaces and works as
a “bridge” between the software and hardware. ROS control allows for mix and
match of controllers since they are decoupled from the robot hardware structure,
which means that the controllers can be developed independently and in isolation.
There are many available controllers developed in the ros_controllers meta-
packages such as joint_position_controller, which receives a position input
and sends an effort output, using a PID controller [9]. The data flow of the ROS
controllers can be seen in Figure 3.3 [21].

Figure 3.3.: Dataflow of controllers [47]

3.1.3. MoveIt

Motion planning in robotics is often referred to as the problem of enabling a
robot to execute an assigned task in the presence of obstacles without colliding
with them[5]. In ROS, the main motion planning software is called MoveIt and is
the most widely used software for manipulation of robots. According to its main
website, MoveIt “incorporates the latest advances in motion planning, manipula-
tion, 3D perception, kinematics, control, and navigation”[54]. MoveIt has been
integrated with many robots, and its target application is industrial, commercial,
and research environments. Motion planning algorithms are not directly run;

Chapter 3. Programming Tools 27

instead, MoveIt uses plugins for most of its functionality, such as kinematic plu-
gins(KDL) for forward and inverse kinematics, motion planning plugins(OMPL),
and collision detection [10]. It also comes with a GUI tool called Setup Assistant,
which is used to configure a robot from its URDF.

MoveIt uses a concept called move_group which is the primary node. The move_group
provides actions and services which can be interfaced with the use of C++, Python
or through a GUI. The MoveIt architecture is depicted in Figure 3.4 below. It can
be seen that the move_group node collects information about the robot’s state in
the form of topics and services. It also collects the robot kinematic description
provided by the URDF through the ROS parameter server.

Figure 3.4.: MoveIt architecture [29]

3.1.4. RViz

ROS visualization, also referred to as RViz, is a 3D visualization tool for ROS and
provides a view of the robot model, sensor information, and algorithms. RViz can
be used for any robot and is a good tool for debugging a robot application [21].

3.1.5. Gazebo

Gazebo is a 3D simulation program integrated with ROS as its primary simula-
tion tool. Gazebo allows for the creation of a 3D environment for the robot and
uses a physical engine for gravity, inertia, illumination, etc. Gazebo provides a

Chapter 3. Programming Tools 28

realistic environment for the simulated robot, which allows testing the robot in
difficult or dangerous scenarios without harming the real robot. It has multi-
ple features and controllers. With gazebo_ros_control a lot of the underlying
control mechanisms of the robot can be achieved [21].

3.2. URDF
A Universal Robot Description Format(URDF) file describes a robot’s physical
description in ROS. The URDF is in XML format and includes the robot’s kine-
matics and dynamics and 3D models for visualization. The description of a robot
consists of joints and links. The joints describe the kinematics of the robot and
connect two links: a parent link and a child link. Different types of joints can be
represented, such as revolute, prismatic, continuous, and fixed. Torque, velocities,
and limits for the joints are also supported. The links in the URDF describe the
mass properties of the robot[22, 21]. The first joint of KUKA KR-16 is shown in
URDF format below.

Listing 3.1: First joint of KUKA KR16
<joint name="${prefix}joint_a1" type="revolute">

<origin xyz="0 0 0.675" rpy="0 0 0"/>
+ <parent link="${prefix}base_link"/>

<child link="${prefix}link_1"/>
<axis xyz="0 0 -1"/>
<limit effort="0" lower="${radians(-185)}" upper="${radians

(185)}" velocity="${radians(156)}"/>
</joint>

3.2.1. Xacro

Xacro is an XML macro language that extends the URDF. The xacro reduces
the code length in the URDF by creating and reusing macros inside the robot de-
scription, simplifying the URDF. It also supports simple programming statements
such as mathematical expressions, conditional statements, and variables [24].

Chapter 4.

Method

This chapter presents the methodology part of the thesis. It showcases both the
software as well as the hardware implementation to conduct the filter change. The
chapter also explains the control architecture developed and modifications made
to the filter assembly provided by Equinor.

4.1. Software Implementation
In this section, the software setup is presented. Implementations in ROS to get
a visualized model of the robot in RViz and a simulation in Gazebo are covered.
The implemented nodes and the control architecture are also presented.

4.1.1. MoveIt Configuration

The first step of the process is to create a configuration of the KUKA robot in
ROS. Packages for KUKA manipulators within ROS-industrial have already been
implemented and can be found in [44]. The packages include a complete descrip-
tion of the KUKA robot in addition to hardware interfaces, but for the sake of
motion planning, the setup assistant GUI provided by MoveIt is used. As men-
tioned in Section 3.1.3, the setup assistant is used to set up a robot configuration
in MoveIt. It semantically describes the robot by creating an SRDF file, configu-
ration files, launch files, and scripts from the robot’s URDF to use the move_group
node. After input of the KUKA robots URDF in the GUI, a set of variables that
describe the system are defined. The main variables include;

• Collision Matrix Generation

• Adding virtual joints

• Adding planning groups

Chapter 4. Method 30

• Gazebo Simulation

• ROS control

The collision matrix generation’s main objective is to decrease the motion planning
processing time. This is done by disabling collision checking for some links of the
robot, i.e., they are disabled when they are always in collision, never in collision,
in collision when in the manipulator’s default position, or when the links are
adjacent to each other on the kinematic chain [32]. The sampling density is also
declared where the default value of 10,000 collision checks is implemented. More
computation is required for higher densities, but it ensures that link pairs are not
disabled.

The purpose of adding a virtual joint is to establish a connection between the robot
base(base_link) to the world-frame and is done as shown in Listing 4.1. Further,
planning groups are added, which constitute the parts of the robot manipulator
and the end-effector. Another benefit of MoveIt setup assistant is the generation
of Gazebo files which are used to simulate the robot; although the default values
of the file are not enough to get a complete working simulation, it constitutes a
good starting point. This is further explained in section 4.1.3.

Listing 4.1: Attaching base_link to the world frame
<virtual_joint name="virtual_joint" type="floating" parent_frame="

world" child_link="base_link"/>

The setup of the generated workspace can be seen in Figure 4.1a. After completing
the setup, the robot can be launched in the visualization program RViz, depicted
in Figure 4.1b. The figure shows the robot with an interactive marker on its tool
link. This marker can be used to move the robot around with a joystick or mouse
in joint space. The visualization program also allows the joints to be specified in
the graphical user interface.

Chapter 4. Method 31

(a) Folder layout (b) KUKA KR-16 in RViz

Figure 4.1.: Folder layout and KUKA KR-16 Visualized in RViz

4.1.2. Kinematics Configuration

Configuration of kinematic parameters are done in the kinematics.yaml file found
in the config folder 4.1a. As mentioned in section 2.4.7, the inverse kinematics
for KUKA KR-16 is solved with MoveIt. MoveIt uses the package called Kine-
matic and Dynamics Library(KDL) and solves the inverse kinematics based on a
numerical Jacobian algorithm provided by OROCOS [38].

The parameters include:

• Kinematics_solver : Which is the kinematics solver plugin used, and in our
case is: kdl_kinematics_plugin/KDLKinematicsPlugin

• Kinematics_solver_search_resolution: The quality of searches in the re-
dundant space of the robot is specified, and is set to 0.005.

• Kinematics_solver_timeout: This is a timeout between each iteration of
inverse kinematics and is specified in seconds:0.005

• Kinematics_solver_attempts: This is the number of random restarts per-
formed.

4.1.3. Simulation

The Gazebo simulation files provided by the setup assistant are modified in order
to get a working simulation. It is intended that the robot manipulator’s motion

Chapter 4. Method 32

will be initialized with the move_group node, visualized in RViz, then simulated
in Gazebo. Actuating the robot joints is done through the use of ros_control
packages as mentioned in section 3.1.2. A controller is added to the config folder,
which allows manipulation of the robot, and can be found in Appendix(A.2).
The controller is of type position_controllers/JointTrajectoryController
which contains the joint names and PID parameters. It allows the execution of
joint-space trajectories, which can be specified as a set of waypoints consisting of
positions, velocities, and accelerations.

The controller also needs to be compatible with the hardware interface added in
the transmission tag of the robots URDF. The added transmissions models the
output of a motor and the joint it is attached to. The transmissions are empty
with a gear reduction of 1, where the transmission of the first joint can be seen in
Listing 4.2. A gazebo_ros_control plugin is also added, as this plugin identifies
which hardware interface to load. The plugin used is a position hardware which
also includes a list of controller_manager services used to stop, switch or start
controllers.

Listing 4.2: Attaching base_link to the world frame
<transmission name="a1_trans">

<type>transmission_interface/SimpleTransmission</type>
<joint name="joint_a1">

<hardwareInterface>hardware_interface/PositionJointInterface<
/hardwareInterface>

</joint>
<actuator name="shoulder_pan_motor">

<hardwareInterface>hardware_interface/PositionJointInterface<
/hardwareInterface>

<mechanicalReduction>1</mechanicalReduction>
</actuator>

</transmission>

In summary, the controller receives a desired joint angle and uses a control loop
feedback mechanism that adjusts the output that is sent to the actuators. In con-
trast, the hardware interface acts as a bridge between the controller and Gazebo.

The ROS setup includes the visualization in RViz and a simulation of the robot
movements in Gazebo. During the setup phase of a proper simulation, it was noted
that a bug with the feature PositionJointInterface for the joint transmission
hardware interface(Listing 4.2) made the robot unstable and fell due to gravity in
the simulator.

A configuration of the PID parameters shown in the controllers(A.2) was at-
tempted, such that the robot listens to the commands sent. The PIDs are a part

Chapter 4. Method 33

of the robot controllers file and are tuned with the use of rqt in ROS. Figure 4.2
shows the PID tuning. The blue graph represents a sinusoidal wave, and the red
graph represents the actual position of the joint. A sinusoidal wave was sent to the
base of the robot(joint_a1) to induce movement(back and forth), but as shown in
the graph(red), it does not correspond to the same signal. Several Hz values were
tested, resulting in the same slow movements. It was noted that the simulated
robot had almost no inertia, which can be seen from a snippet of its URDF in
Listing 4.3. This means the robot is massless and has no energy to move the
limbs. A quick fix was then introduced by turning off the gravity for each link of
the robot in Gazebo, such that the same movements from RViz with the motion
planner are shown in Gazebo. The PositonJointInterface is also changed to
a EffortJointInterface. Since gravity is turned off in the simulator, the focus
is more shifted towards visualization in RViz and is used as the main verification
tool.

Listing 4.3: Snippet of the inertia tag
<inertia ixx="0.01" ixy="0" ixz="0" iyy="0.01" iyz="0" izz="0.01"/>

Figure 4.2.: Pid tuning

4.1.4. Nodes

This section presents the primary nodes of the system. This is to get an overview
of the different nodes’ main functions and describe some of their properties.

Chapter 4. Method 34

Move_group node

The move_group node is considered the main node of the system, as it encompasses
most of the functionalities. As presented in Section 3.1.3, the move_group node
can also be interfaced through Python.

Jointspace node

This node encompasses the complete pick-and-place cycle. The node is imple-
mented in Python with the use of MoveIts Move Group Python Interface, where
the original code can be found on Github [33]. The move group interface includes
many functionalities, such as defining joint goals and creating objects in the RViz
environment.

Joint State Publisher

This nodes main function is to publish the joint states of the robot to the system as
sensor_msgs/JointState messages. It is complemented with the robot_state
_publisher node.

Robot State Publisher

The robot_state_publisher nodes main property is to publish the state of the
robot(from the Joint State Publisher) to tft2. This includes the position and
orientation of each coordinate frame of the robot, and it creates a kinematic
model.

Gazebo node

The gazebo_node is the node responsible for simulating the robot in Gazebo.
The robot’s motions are first planned with the motion planner in Rviz, which
generates a trajectory and communicates with the robot controller through the
FollowJointTrajectoryAction interface. This trajectory is then simulated in
Gazebo.

Joystick node

The “master” device used in this thesis is a PS4 controller also named “Dual-
Shock4”. This controller was picked as there were no other options for teleoper-
ating the KUKA robot. Although the controller does not have haptic functions
other than vibration, the benefits are that an implementation of the move_group

Chapter 4. Method 35

node with the controller is available through MoveIts webpages. The controller
mappings are presented below in Table 4.1.

Command PS4 Controller

+-x/y left analog stick
+-z L2/R2
+-Yaw L1/R1
+-Roll Left/Right
+-Pitch up/down
Change planning group Select/start
Change end effector Triangle/Cross
Plan Square
Execute Circle

Table 4.1.: Mappings from controller to robot [30]

Robot Sensor Interface

The KUKA_RSI_node is the node that is responsible for communication between
ROS and hardware setup. It has already been implemented and is a part of the
kuka_experimental packages available on Github [44].

4.1.5. Summary

This section presented the software architecture. The primary nodes have been
introduced and explained. Figure 4.3 shows an overview of how the communica-
tion between the different parts of the system occurs. The joystick node allows
for manipulation of the robot’s end-effector through the move_group node while
being visualized in RViz. The move_group node is considered the primary mode
of the system, as it consists of the most fundamental processes.

The current state of the robot is published by the KUKA_RSI node over the
/joint_states topic, where the move_group node subscribes to. In addition,
the move_group node monitors the different robot coordinate frames through the
tf library. The move_group also monitors the Planning Scene, which provides a
view of the current world in RViz. The planning scene includes the robot’s current
state as well as any objects added, such as a representation of the filter for the
pick and place task.

After a desired movement of the robot has been initiated, the motion planner
GUI in RViz is used to plan the specified motion, and collisions are checked.
The desired trajectory, which obeys the velocity and acceleration limits, is then

Chapter 4. Method 36

generated by the move_group, which in turn moves the robot arm. The visualized
movement in RViz is then simulated by Gazebo(gazebo_node). Communication
between ROS and the hardware is done through the RSI node, which is also used
for obtaining the robot’s current position.

It is noted that this is not a bilateral teleoperation system. Recall that in a
bilateral teleoperation system, the operator sends velocity, force, or position com-
mands from the master device to the slave device, and information is exchanged
bidirectionally in real-time. In our case, the master device does not directly actu-
ate the real robot and does not provide force feedback. The master device is used
to move the robot to its desired position in joint space; the motion is then planned
and executed in RViz, which in turn actuates the real robot; thus the system is
unilateral. It is also intended that the master device will be used for movements
that are large and do not require precision, while the joint_space_node contains
the actual and precise end-effector positions, which can be set in motion through
the computer.

Figure 4.3.: Control architecture

Chapter 4. Method 37

4.2. Hardware setup
This section presents an overview of the hardware used to perform the manipula-
tion tasks in the laboratory.

4.2.1. Robot Hardware

The robot used for the filter change is the KUKA KR-16, stationed at MANULAB.
This particular robot is used as it has the ability to reproduce the human motions
needed for the pick-and-place task, as mentioned in the problem description(1).

KUKA KR-16 is an industrial robot used in many applications such as assembly,
pick and place, material handling, and arc welding. The robot has six degrees
of freedom with a spherical wrist, implying that three of the revolute joints axes
intersect at a common point. This feature allows the decoupling of position and
orientation of the end-effector, where the manipulator arm positions the men-
tioned point and the wrist determines the end-effector orientation. Figure 4.4
shows the hardware that comes with the robot manipulator, and Table 4.2 shows
additional robot specifications. The hardware includes a teach pendant(4.4a), and
a robot controller(4.4b), apart from the robot manipulator(4.4c). Communication
between the robot controller(KRC4) and the external computer is done through
the Robot Sensor Interface(RSI). The exchanged data is transmitted via UDP/IP
or TCP/IP protocol as XML strings by connection to Ethernet. The data packets
sent from the KRC4 must be responded to within 12ms by the computer [13].

The teach pendant, also named KUKA Control Panel(KCP), is used for manual
control of the robot. It comes with a touch screen and is equipped with control
and display functions for operating and programming the KUKA robot. The
primary programming language used for KUKA robots is called KUKA Robot
Language(KRL) and runs on the KCP.

(a) Teach pendant (b) KRC4 (c) KUKA KR-16

Figure 4.4.: Physical installation hardware

Chapter 4. Method 38

Robot Specification
Description Value

Axes 6
Payload 16kg
H-Reach 1610 mm
Repeatability ±0.1 mm
Robot Mass 235kg
Structure Articulated
Mounting Floor

Table 4.2.: Robot specifications [43]

4.2.2. Gripper

The development of a suitable gripper for the pick and place task was not taken
into consideration in this thesis due to time restrictions. Fortunately, there was
an available gripper in the laboratory, but not intended for the task. Some ap-
propriate changes were made, which included;

1. Change of the gripper claw from its original sharp edges to a circular shape
to fit the filters.

2. Reducing the gripper’s open-close length.

A model of the gripper was also created in the CAD program Solidworks by
my lab partner. Solidworks has a convenient tool for exporting parts to URDF-
format and was used to attach the gripper to the robot tool link. It is also worth
mentioning that the gripper does not have a system to activate it. This means
that it is manually opened and closed when used in the experiments; this is further
explained in Section 4.3. The robot’s complete hierarchical structure, including
the gripper, can be found in Appendix A.4 and its machine drawing in Appendix
B.1. The original gripper can be seen in Figure 4.5a, and the new gripper is seen
mounted on the robot in Figure 4.5b.

Chapter 4. Method 39

(a) Original gripper (b) Gripper mounted on KR16

Figure 4.5.: The original gripper & Remodelled gripper mounted

4.2.3. Filter Assembly

The filter assembly used in the experiments was deployed by Equinor to the
robotics laboratory. The complete assembly consists of the following parts;

1. Four filters

2. Filter container

3. Two Filter rods

The complete assembly can be seen in Figure 4.6, with its dimensions in Table 4.3.
The filter rod is placed inside the filter and tightened at its top side before it is
placed inside the filter container. The filter container has threads on its top side
and consists of two parts that can be disassembled, as seen in the figure.

Some changes were also applied to the assembly for the filter container to main-
tain stable during the pick-and-place experiment. Construction of steel bars was
welded on the bottom and bolted on the container. This increases the stability
of the whole part during task execution. The bottom section was also sealed off
with a plate.

Chapter 4. Method 40

Figure 4.6.: Complete filter assembly

Filter Container Filter

Height 660mm 765 mm
Diameter 100 mm 75 mm

Table 4.3.: Filter& Filter container dimensions

4.3. Pick and place
As mentioned throughout the thesis, the main objective is to conduct a filter
change, and the cycle is presented as follows:

1. Perform end-effector movement towards the filter container

2. Unscrew the top lid of the filter container and place it at a specified location

3. Pick up the old filter and place it at a drop-off location

4. Pick up the new filter

5. Place the new filter inside the filter container

The gripper presented in section(4.2.2) is not intended for the filter change, im-

Chapter 4. Method 41

plying that point 3 presented in the pick-and-place cycle is disregarded. This
means that the top lid is taken off before the cycle is initiated. The gripper was
previously used with a pneumatic system prior to this thesis, as can be seen from
the blue cables attached to it in Figure 4.5a, but a new pneumatic system was
not developed for this thesis. This leads us to open the gripper manually, pre-
grasp of the filter, stop the cycle, and manually close the gripper before the robot
continues with the complete cycle.

The complete workstation is seen in Figure 4.7. It can be noted that the robot’s
workspace is slightly reduced and differs from the one presented in section 2.4.4.
The workspace is compromised on the robot’s left side, leading us to choose the
right side for the drop-off location. The filter container is positioned such that it
is capable of the movement needed to pick up the filter.

Other changes to the system also included the filter assembly, as mentioned in
the previous section. The idea was to keep the filter pole centered in the middle
of the filter container and insert the rod into a steel plate at the bottom, such
that the pole is stable and does not move through the process of the filter being
picked up and placed back again. Some miss understandings with the workshop
ended up with a fully sealed bottom. This means that the stability problem for
the filter still exists and causes the filter to lean towards one side of its container
as there is a 25mm gap.

Figure 4.7.: Laboratory workstation

Chapter 4. Method 42

4.4. Testing
Testing the control architecture presented in Section 4.1.5 consisted of a mixture
of ROS and tests in the laboratory. The implementation of the joint space
node included using the KCP(teach pad), as it can control the robot directly.
The KCP has different control modes: T1 and T2, where T1 is used for testing
new programs as it has reduced velocity(max 250mm/s) [13].

The KCP was used to get the right positions and orientations of the end-effector.
Ten positions were then gathered, which constitute the whole pick-and-place cycle.
The joint angles presented in Table 4.4 represent six joint values θn, where n =
1, . . . , 6, for each position of the cycle in degrees. The corresponding operational
space coordinates are presented in Table 4.5, in meters. The latter values are
provided by tf, where output is shown in the RViz GUI. The complete cycle can
then be presented as follows:

1. P0: The robot is at its home position(home)

2. P1: Movement towards old filter position(filter1)

3. P2: The old filter is picked up(filter1up)

4. P3: Movement towards drop location(filter1predrop)

5. P4: The old filter is dropped(filter1drop)

6. P5: Movement to position above the new filter(filter2up)

7. P6: New filter position(filter2)

8. P7: The new filter is lifted up(filter2up)

9. P8: Movement towards position above the filter container(home)

10. P9: New filter is placed inside the filter container(center + filter1)

11. P10: The robot moves back to home position(home)

The developed python code allows for executing robot movements towards the
different points presented. This is done by specifying the desired position in the
terminal, where the positions are shown in parentheses in the pick-and-place cycle
above. By typing home, the robot will move to its home position, etc.

An implementation of the Denavit Hartenberg convention was also performed, fol-
lowing the presented theory in Section 2.4.6. A parameter table consisting of the
four parameters was constructed from the robots URDF, and used to derive the
transformation matrices. This is to verify the different parameters, and the oper-
ational space coordinates provided. The transformation matrices for the complete
cycle, and a table version of the URDF can can be found in Appendix A.3.

Chapter 4. Method 43

Positions Joint angles
θ1 θ2 θ3 θ4 θ5 θ6

Home -4 -72 62 180 -99 -67
P1 -4 -51 95 180 -45 -67
P2 -4 -72 62 180 -99 -67
P3 -48 -75 65 180 -98 -67
P4 -48 -51 97 180 -44 -67
P5 -42 -48 21 180 -117 -61
P6 -42 -35 72 180 -53 -61
P7 -42 -48 21 180 -117 -61
P8 -4 -72 62 180 -99 -67
P9 -4 -51 95 180 -45 -67

Table 4.4.: Joint angles for pick-and-place

Positions Coordinates(m)
x y z

Home 1.13 0.08 1.40
P1 1.14 0.08 0.71
P2 1.13 0.08 1.40
P3 0.74 0.82 1.41
P4 0.75 0.84 0.70
P5 0.99 0.89 1.45
P6 0.99 0.89 0.63
P7 0.99 0.89 1.45
P8 1.13 0.08 1.40
P9 1.14 0.08 0.71

Table 4.5.: Corresponding Cartesian points

Chapter 5.

Results

This chapter presents the results from the experiments conducted in the labora-
tory.

5.1. Teleoperation
This section presents a visual representations of the teleoperation system in ROS.
The setup presented in Section 4.1.5 is run in ROS with the joint_space
_node which allows for commands as input in the terminal while teleoperating
the robot in RViz. Figure 5.1 shows a visualization of the robot in RViz and
simulated in Gazebo. The joystick is connected to the computer and allows for
manipulation of the end-effector, which can be seen as an interactive marker on
its tool link. The robot’s joints follow the end-effector position, and the motion
can be executed through the joystick. The implemented setup with the joystick
did not get tested in the laboratory; this is further discussed in Section 6.1. The
communication between the nodes can be seen from the node graph in Figure 5.2.

Figure 5.1.: Joystick teleoperation

Chapter 5. Results 45

Figure 5.2.: Communication of nodes

5.2. Trajectories
This section presents the generated trajectories from the tests conducted. The
trajectories are visualized in the visualisation tool RViz, where the figures pre-
sented are a representation of the filter change. It also shows the robot in the
laboratory performing the motions visualised. The transparent robot shows the
path followed, while the other robot shows when it is at the final position.

(a) Home to P1 (b) Home to P1 in the laboratory

Chapter 5. Results 46

(c) P1 to P2 (d) P1 to P2 in the laboratory

(e) P2 to P3 (f) P2 to P3 in the laboratory

(g) P3 to P4 (h) P3 to P4 in the laboratory

Chapter 5. Results 47

(i) P4 to P5 (j) P4 to P5 in the laboratory

(k) P5 to P6 (l) P5 to P6 in the laboratory

(m) P6 to P7 (n) P6 to P7 in the laboratory

Chapter 5. Results 48

(o) P7 to P8 (p) P7 to P8 in the laboratory

(q) P8 to P9 (r) P8 to P9 in the laboratory

(s) P9 to Home (t) P9 to Home in the laboratory

Figure 5.3.: Trajectories visualized in RViz & robot executing in the laboratory

Chapter 5. Results 49

Figure 5.4.: Trajectory generated with a sequence of points

The following points shown in Table 4.4, and Table 4.5, are new points added to
the cycle with reference to Figure 5.4.

New points
Positions θ1 θ2 θ3 θ4 θ5 θ6

new_point1 -4◦ -71◦ 82 180 -78 -68
new_point2 -4 -65 90 180 -65 -68
new_point3 -4 -54 95 180 -49 -68
new_point4 -4 -51 95 180 -45 -68

Table 5.1.: Sequence of new points(joint angles)

New points
Positions x y z

new_point1 1.13 0.08 1.16
new_point2 1.14 0.08 0.98
new_point3 1.14 0.08 0.76
new_point4 1.14 0.08 0.71

Table 5.2.: Sequence of new points(Cartesian)

Chapter 5. Results 50

5.3. Plots
The following plots show the position, velocity, and accelerations when the filter
is being inserted into its container. The plots are with reference to movement
from P8 to P9 directly, and with a sequence of points between P8 and P9, which
is seen on Figure 5.3q, and Figure 5.3r.

Figure 5.5.: Position of joints from P8 to P9(directly)

Figure 5.6.: Velocity from P8 to P9(directly)

Chapter 5. Results 51

Figure 5.7.: Acceleration from P8 to P9(directly)

Figure 5.8.: Position of joints from P8 to P9(sequence)

Figure 5.9.: Velocity from P8 to P9(sequence)

Chapter 5. Results 52

Figure 5.10.: Acceleration from P8 to P9(sequence)

Chapter 6.

Discussion

This chapter presents a discussion of the results showcased in the previous chapter.

6.1. Teleoperation
Teleoperation with the joystick in the laboratory did not get tested, unfortunately.
My lab partner and I had some issues connecting the joystick that we could not
resolve, which led us to focus more on the filter change directly. As the robot can
be moved with joystick and mouse in ROS, it was tested with the mouse in the
laboratory to check how the control of the robots end-effector would take place.
The end-effector was controlled with the computer mouse through RViz, and after
a position was confirmed, a visualisation of the movement could be seen in RViz
before it was executed on the real robot. This was done to investigate how close
we could get to the real positions, since we can monitor the joint values in the
RViz GUI. It was also done with the developed Python code, which includes all
the accurate positions of the pick-and-place cycle. This method resulted in a very
tedious process, since it is very cumbersome to control the robot only through its
end-effector. The other joints of the robot strictly follow the end-effector, making
it difficult to get a correct position of the individual joints.

Regarding the issue of time-delay in a teleoperation system, our system does not
have time-delay as it is directly connected to the robot, but when connected to the
joystick in ROS, the issue of time-delay occurs. A digital attachment is added to
this thesis, which shows a recording of the delay when the robot is controlled with
a joystick. The upper left terminal shows the joystick movements, while the lower
terminal shows the developed script running, and allows for commands input.
This delay indicates how the delay can occur over long distances between the
master device and remote robot. Since we are visualizing the robot’s movement
in RViz , we can display future movements of the robot before confirming the

Chapter 6. Discussion 54

motion. This acts as a predictive display where the operator can see how the
robots motion will take place, before it is initiated. This is a benefit regarding the
delay between the master device and the robot. A known strategy when the delays
are very noticeable is the “move-and-wait” strategy, where the operator moves the
robot, waits to see the response, then moves again. This solution takes a lot of
time to position the robot to its correct location since the operator must stop the
robot every time before moving it, and it also requires additional concentration
which can be very demanding.

6.2. Trajectories
With reference to the figures presented in Section 5.2, the joint_space node is
run through the terminal in ROS and shows the visualized trajectories the end-
effector follows during task execution, where MoveIt interpolates with a n ≥ 5
polynomial, as in (2.22). From 5.3c, it can be seen that the path the end-effector
follows when picking up the filter is curved. This is because two points are defined,
i.e., the end-effector’s initial and final position. The problem with predetermined
points is that the system becomes “stiff”, and small changes to the setup can cause
damage to the filter. Since the robot directly follows the joint angle configurations
specified in the node, it can be exposed to precision errors.

The first tests included only the set points shown in Table 4.4 to determine if the
filter can be withdrawn from its container without causing damage. As mentioned
in Section 4.2.3, the complete assembly includes a filter rod inserted inside the
filter. The filter rod is dependent on high accuracy when inserted inside the
container, but since the bottom of the container is sealed, it led to the filter rod
leaning towards the edge of the container after the first filter was picked up. This
can have severe consequences if the robot misses its target when inserting the new
filter. As the paths generated were first visualized in RViz, it indicated that the
filter would most likely hit the inside of the container. For these reasons, the filter
rod was excluded during the tests. Figure 6.1, shows an example of the mentioned
problem. The filter was not positioned correctly, which caused it to gently touch
the outer edge of its container, resulting in damaging the filter. The filter rod was
fortunately removed prior to this incident, but the same outcome would occur.

Another issue that caused precision error was the gripper. The gripper was re-
designed with a circular shape to fit the filters, but it did not grasp the filter
enough to keep it stable. It is also noted that it can be caused by too high ve-
locity, especially for movement from P7 to P8(Figure 5.3o), as this is the longest
travel distance and represents the position before the filter is placed inside its
container. This caused the bottom side of the filters to sway, which meant that
it had to be positioned manually right before it was taken down in the container

Chapter 6. Discussion 55

if the error was very noticeable.

Figure 6.1.: Failure due to precision error

A sequence of points was applied between the initial and final point of the end-
effector path in order for the filter to follow a linear path. The representation of
the path can be seen visualized in Figure 5.4. Four points were assigned between
the initial and final position, which can be seen in Table 4.4, and Table 4.5. By
asserting these points, it made it easier to see if the new filter would miss the filter
container, resulting in a more precise extraction of the old filter. These points
were applied for the most crucial motions, i.e., picking up the old filter(P1 to P2)
and inserting the new one(P8 to P9).

6.3. Plots
The plots presented in Section 5.3 show the movement of the joints(in radians),
their velocity, and acceleration from point P8 to P9. Only these plots were pre-
sented as this is considered the most critical part of the filter change and represents
the robot’s motion when inserting the new filter. The desired position of the joints
and the actual position of the joints were identical for all of the points in the cycle
when tested in the laboratory; hence these plots were not included.

The first three plots, Figure 5.5, Figure 5.6, and Figure 5.7, show the position,

Chapter 6. Discussion 56

velocity, and acceleration from Home directly to P9, when only initial and final
end-effector points are given. While the other three figures are related to the
same start position Home, but with the extra points from Table 4.4 asserted. It
can be observed that the maximum velocity when the robot moves directly to the
filter container is 0.47 m/s, while for a sequence of points between P8 and P9, it
is 0.54 m/s. The movement can be seen where the velocity increases towards the
point, stops and does the same for the remaining points. If something were to
happen between these points, it would be more noticeable as it stops and then
moves again.

When the program was tested in the laboratory, we had issues that led to the
robot stopping, and the program had to be rerun. The robots maximum velocity
in T1 mode is set to 250 mm/s, which is 0.25 m/s, and if the velocity exceeds
this maximum, the robot controller(KRC) will enter a protective stop. From
Figure 5.6 and Figure 5.9, it can be seen that the velocity is above the maximum
allowed velocity, which led us to switch from T1 mode to T2, as T2 has no velocity
limits. The filter change was easier to monitor after the new points were added
to the cycle since one of the points first aligns with the center of the container
before the filter is inserted more linear as opposed to the curved path.

Chapter 7.

Conclusions and Future Work

7.1. Conclusion
This thesis began by introducing teleoperation and its common architectures be-
fore presenting the kinematics and the software tools needed to implement a tele-
operation control architecture.

This thesis aimed to conduct a filter change through the means of teleoperation.
Chapter 4 presented the control architecture and the different nodes implemented
to get a simulation in Gazebo, as well as the possibility of teleoperating the KUKA
KR-16 robot in RViz. A schematic of the control architecture was also presented,
which shows the communication between the different nodes implemented. Using
the open-source motion planning framework MoveIt, simplified many of the un-
derlying processes to get a working setup of the robot. MoveIts setup assistant
was used to create a configuration of the robot together with the gripper made in
SolidWorks.

Direct control through the robot’s teach pad(KCP) was used in the laboratory to
get the exact positions for the filter change, and the whole cycle was implemented
with a Python script. The teleoperation system allowed for end-effector control
through MoveIts move_group node and was successfully configured in ROS, but
complications with connection to the joystick made it unsuccessful in the labo-
ratory. The implemented script, together with a computer mouse, allowed for
command input of the complete filter change and teleoperation of the robot in
RViz. Some elements led to simplifying the filter change, such as not including
the filter container’s top lid, since the gripper does not have the ability to grasp
it, and removal of the filter rod, which is initially placed inside the filter.

The test performed showed that the filter change requires high precision as there
is only a 25 mm gap between the filter and its container. Teleoperation of the
KUKA KR-16 robot was performed through the movement of the end-effector,

Chapter 7. Conclusions and Future Work 58

which leads to the other joints following as these are chained in the configuration
of the robot. This led to using the developed python code to pick up the old
filter and place the new filter inside the container, while movements that did not
require any precision were teleoperated with a computer mouse. Additional points
were added between the initial and final end-effector positions, which led to more
precise control of the insertion and extraction of the filter. Teleoperation with the
joystick in ROS was prone to delay when controlled in RViz. This delay led to a
move-and-wait strategy to perform the wanted end-effector movements.

Incorporating teleoperation for the filter change has the potential to increase both
health and safety for the remote operator, and the need to enhance the operator’s
awareness during task execution is evident. As the project is still in its very
early stage, some suggestions to further develop the system are presented in the
following section

7.2. Future work
The project of conducting the filter change includes many aspects that should
be further investigated to make the system more automated. One suggestion
is to implement a camera system to give the operator more feedback. Since
the developed script in this thesis moves the robot to a predetermined point, it
causes the system to be non-compliant and stiff. With a mounted camera on,
e.g., the robot gripper, the position of the filters can be obtained through object
detection. There are plenty of developed scripts for object detection through
the Open Source Computer Vision Library(OpenCV). OpenCV is a free open
source computer vision and machine learning software library that includes over
2500 algorithms[36]. ArUco markers[37] can be placed on the filters to detect
their position and orientation and will make the insertion of the new filter more
manageable.

The gripper used was not intended for this project, which makes developing a
new gripper highly recommended for the continuation of this project. The new
gripper should be able to include dismounting of the filter container’s top lid. This
motion will require the gripper to withstand the forces needed to unscrew the lid,
as well as the ability to pick it up by the cylinder hinge and place it at a drop-off
location. Grasping filters in the simulation was simplified since the gripper did
not have functionality in the laboratory. The simplification was done in ROS by
attaching the filter on the gripper, but with a new gripper, the moveit_grasping
[31] packages can be implemented to generate grasps of the filter.

The teleoperation aspect can be further developed by kinematically coupling the
joystick and the robot so that individual joints of the robot can be controlled, not

Chapter 7. Conclusions and Future Work 59

just the end-effector as in this thesis. The teleoperation of a stationary robot will
also differ from a mobile robot, which is the intended usage for the actual task on
an unmanned platform. The laboratory has mobile robots available, which can
be used to continue the project.

References

[1] Sotiris Avgousti, Eftychios G Christoforou, Andreas S Panayides, Sotos
Voskarides, Cyril Novales, Laurence Nouaille, Constantinos S Pattichis, and
Pierre Vieyres. “Medical telerobotic systems: current status and future trends”.
In: Biomedical engineering online 15.1 (2016), pp. 1–44.

[2] Luis Basañez and Raúl Suárez. “Teleoperation”. In: Springer Handbook of
Automation. Ed. by Shimon Y. Nof. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 449–468. isbn: 978-3-540-78831-7. doi: 10.1007/978-
3-540-78831-7_27. url: https://doi.org/10.1007/978-3-540-78831-
7_27.

[3] Ryan A Beasley. “Medical robots: current systems and research directions”.
In: Journal of Robotics 2012 (2012).

[4] Henri Boessenkool, David Abbink, Cock Heemskerk, Frans van der Helm,
and Jeroen Wildenbeest. “A Task-Specific Analysis of the Benefit of Hap-
tic Shared Control During Telemanipulation”. In: IEEE Transactions on
Haptics 6 (May 2012), pp. 2–12. doi: 10.1109/ToH.2012.22.

[5] Giuseppe Oriolo Bruno Siciliano Lorenzo Sciavicco Luigi Villani. Robotics,
Modelling planning and control. Springer, 2009. isbn: 978-1-84628-641-4.

[6] David B Camarillo, Thomas M Krummel, and J Kenneth Salisbury Jr.
“Robotic technology in surgery: past, present, and future”. In: The Ameri-
can Journal of Surgery 188.4 (2004), pp. 2–15.

[7] Dr. Thomas L. Harman Carol Fairchild. ROS Robotics By Example - Second
Edition. Last accessed 11 November 2021. 2017. url: https://subscription.
packtpub.com/book/hardware_and_creative/9781788479592/1/%5C%
5Cch01lvl1sec13/ros-nodes-topics-and-messages.

[8] Cern. What is cerns misson? Last accessed 20 May 2022. 2022. url: https:
//home.cern/about/who-we-are/our-mission.

[9] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo
Rodríguez Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Mag-
yar, Gennaro Raiola, Mathias Lüdtke, and Enrique Fernández Perdomo.
“ros_control: A generic and simple control framework for ROS”. In: The

https://doi.org/10.1007/978-3-540-78831-7_27
https://doi.org/10.1007/978-3-540-78831-7_27
https://doi.org/10.1007/978-3-540-78831-7_27
https://doi.org/10.1007/978-3-540-78831-7_27
https://doi.org/10.1109/ToH.2012.22
https://subscription.packtpub.com/book/hardware_and_creative/9781788479592/1/%5C%5Cch01lvl1sec13/ros-nodes-topics-and-messages
https://subscription.packtpub.com/book/hardware_and_creative/9781788479592/1/%5C%5Cch01lvl1sec13/ros-nodes-topics-and-messages
https://subscription.packtpub.com/book/hardware_and_creative/9781788479592/1/%5C%5Cch01lvl1sec13/ros-nodes-topics-and-messages
https://home.cern/about/who-we-are/our-mission
https://home.cern/about/who-we-are/our-mission

References 61

Journal of Open Source Software (2017). doi: 10.21105/joss.00456. url:
http://www.theoj.org/joss- papers/joss.00456/10.21105.joss.
00456.pdf.

[10] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. “Reducing
the barrier to entry of complex robotic software: a moveit! case study”. In:
arXiv preprint arXiv:1404.3785 (2014).

[11] Hao Deng, Jing Xiong, and Zeyang Xia. “Mobile manipulation task sim-
ulation using ROS with MoveIt”. In: 2017 IEEE International Conference
on Real-time Computing and Robotics (RCAR). 2017, pp. 612–616. doi:
10.1109/RCAR.2017.8311930.

[12] Eurobots. Kuka kr16-2. Last accessed 27 May 2022. 2022. url: https :
//www.eurobots.net/kuka-robots-kr-16-2-p233-en.html.

[13] KUKA Roboter GmbH. KUKA.RobotSensorInterface 2.3. KST RSI 2.3 V1
en. 2009.

[14] Raymond C Goertz. “Fundamentals of general-purpose remote manipula-
tors”. In: Nucleonics 10.11 (1952), pp. 36–42.

[15] Raymond C Goertz. “Mechanical master-slave manipulator”. In: Nucleonics
(US) Ceased publication 12 (1954).

[16] Mathias Hoeckelmann, Imre J Rudas, Paolo Fiorini, Frank Kirchner, and
Tamas Haidegger. “Current capabilities and development potential in sur-
gical robotics”. In: International Journal of Advanced Robotic Systems 12.5
(2015), p. 61.

[17] Peter F. Hokayem and Mark W. Spong. “Bilateral teleoperation: An his-
torical survey”. In: Automatica 42.12 (2006), pp. 2035–2057. issn: 0005-
1098. doi: https : / / doi . org / 10 . 1016 / j . automatica . 2006 . 06 .
027. url: https://www.sciencedirect.com/science/article/pii/
S0005109806002871.

[18] Thomas Hulin, Michael Panzirsch, Harsimran Singh, Andre Coelho, Ribin
Balachandran, Aaron Pereira, Bernhard M. Weber, Nicolai Bechtel, Cornelia
Riecke, Bernhard Brunner, Neal Y. Lii, Julian Klodmann, Anja Hellings,
Katharina Hagmann, Gabriel Quere, Adrian S. Bauer, Marek Sierotowicz,
Roberto Lampariello, Jörn Vogel, Alexander Dietrich, Daniel Leidner, Chris-
tian Ott, Gerd Hirzinger, and Alin Albu-Schäffer. “Model-Augmented Hap-
tic Telemanipulation: Concept, Retrospective Overview, and Current Use
Cases”. In: Frontiers in Robotics and AI 8 (2021), p. 76. issn: 2296-9144.
doi: 10.3389/frobt.2021.611251. url: https://www.frontiersin.org/
article/10.3389/frobt.2021.611251.

https://doi.org/10.21105/joss.00456
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
https://doi.org/10.1109/RCAR.2017.8311930
https://www.eurobots.net/kuka-robots-kr-16-2-p233-en.html
https://www.eurobots.net/kuka-robots-kr-16-2-p233-en.html
https://doi.org/https://doi.org/10.1016/j.automatica.2006.06.027
https://doi.org/https://doi.org/10.1016/j.automatica.2006.06.027
https://www.sciencedirect.com/science/article/pii/S0005109806002871
https://www.sciencedirect.com/science/article/pii/S0005109806002871
https://doi.org/10.3389/frobt.2021.611251
https://www.frontiersin.org/article/10.3389/frobt.2021.611251
https://www.frontiersin.org/article/10.3389/frobt.2021.611251

References 62

[19] Bahadur Ibrahimov. “A cost-oriented robot for the Oil Industry”. In: IFAC-
PapersOnLine 51 (July 2018), pp. 204–209. doi: https://doi.org/10.
1016/j.ifacol.2018.11.287.

[20] Taurob robotic inspector. Taurob. Last accessed 3 December 2021. 2021.
url: https://taurob.com/taurob-inspector/.

[21] Mustafe Kahin. “Robot Telemanipulation for Remote Maintenance”. In:
(Dec. 2021), pp. 1–39.

[22] Frank C. Park Kevin M. Lynch. Mechanics,Planning, and Control. Cam-
bridge Univeristy Press, 2017. isbn: 978-1-1071-5630-2.

[23] Serdar Kucuk and Z. Bingul. “The inverse kinematics solutions of industrial
robot manipulators”. In: July 2004, pp. 274–279. isbn: 0-7803-8599-3. doi:
10.1109/ICMECH.2004.1364451.

[24] Jonathan Cacace Lentin Joseph. Mastering ROS for Robotics Programming.
2nd. Packt, 2018. isbn: 9781788478953.

[25] Lonnie J Love, David P Magee, and Wayne John Book. “A comparison
of joint control algorithms for teleoperated pick and place tasks using a
flexible manipulator”. In: Proceedings of IEEE International Conference on
Systems, Man and Cybernetics. Vol. 2. IEEE. 1994, pp. 1257–1262.

[26] Jing Luo, Wei He, and Chenguang Yang. “Combined Perception, Control,
and Learning for Teleoperation: Key Technologies, Applications, and Chal-
lenges”. In: Cognitive Computation and Systems 2 (Mar. 2020). doi: 10.
1049/ccs.2020.0005.

[27] Mathworks. Exchange Data with ROS Publishers and Subscribers. Last ac-
cessed 11 November 2021. 2021. url: https://in.mathworks.com/help/
ros/ug/exchange-data-with-ros-publishers-and-subscribers.html.

[28] Claudio Melchiorri. “Robotic telemanipulation systems: an overview on con-
trol aspects”. In: IFAC Proceedings Volumes 36.17 (2003). 7th IFAC Sympo-
sium on Robot Control (SYROCO 2003), Wroclaw, Poland, 1-3 September,
2003, pp. 21–30. issn: 1474-6670. doi: https://doi.org/10.1016/S1474-
6670(17)33365- 7. url: https://www.sciencedirect.com/science/
article/pii/S1474667017333657.

[29] MoveIt. Concepts. Last accessed 20 May 2022. 2022. url: https://moveit.
ros.org/documentation/concepts/.

[30] MoveIt. Joystick Control Teleoperation. Last accessed 3 June 2022. 2022.
url: http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/
doc / joystick _ control _ %5C % 5Cteleoperation / joystick _ control _
teleoperation_tutorial.html.

https://doi.org/https://doi.org/10.1016/j.ifacol.2018.11.287
https://doi.org/https://doi.org/10.1016/j.ifacol.2018.11.287
https://taurob.com/taurob-inspector/
https://doi.org/10.1109/ICMECH.2004.1364451
https://doi.org/10.1049/ccs.2020.0005
https://doi.org/10.1049/ccs.2020.0005
https://in.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html
https://in.mathworks.com/help/ros/ug/exchange-data-with-ros-publishers-and-subscribers.html
https://doi.org/https://doi.org/10.1016/S1474-6670(17)33365-7
https://doi.org/https://doi.org/10.1016/S1474-6670(17)33365-7
https://www.sciencedirect.com/science/article/pii/S1474667017333657
https://www.sciencedirect.com/science/article/pii/S1474667017333657
https://moveit.ros.org/documentation/concepts/
https://moveit.ros.org/documentation/concepts/
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/joystick_control_%5C%5Cteleoperation/joystick_control_teleoperation_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/joystick_control_%5C%5Cteleoperation/joystick_control_teleoperation_tutorial.html
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/doc/joystick_control_%5C%5Cteleoperation/joystick_control_teleoperation_tutorial.html

References 63

[31] MoveIt. MoveIt grasps. Last accessed 29 May 2022. 2022. url: https://
ros- planning.github.io/moveit_tutorials/doc/moveit_grasps/
moveit_grasps_tutorial.html.

[32] MoveIt. MoveIt Setup Assistant. Last accessed 20 May 2022. 2022. url:
https://ros- planning.github.io/moveit_tutorials/doc/setup_
assistant/setup_assistant_tutorial.html.

[33] Moveit. Movegroup Python Interface Tutorial. Last accessed 20 May 2022.
2022. url: https://github.com/ros- planning/moveit_tutorials/
blob / master / doc / move _ group _ python _ interface / scripts / move _
group_python_interface_tutorial.py.

[34] Günter Niemeyer, Carsten Preusche, and Gerd Hirzinger. “Telerobotics”.
In: vol. 25. May 2008, pp. 741–757. doi: 10.1007/978-3-540-30301-5_32.

[35] Günter Niemeyer, Carsten Preusche, Stefano Stramigioli, and Dongjun Lee.
“Telerobotics”. In: Springer handbook of robotics. Springer, 2016, pp. 1085–
1108.

[36] OpenCV. About. Last accessed 29 May 2022. 2022. url: https://opencv.
org/about/.

[37] OpenCV. Detection of ArUco Markers. Last accessed 29 May 2022. 2022.
url: https : / / docs . opencv . org / 4 . x / d5 / dae / tutorial _ aruco _
detection.html.

[38] OROCOS. Orocos Kinematics and Dynamics. Last accessed 20 May 2022.
2022. url: https://www.orocos.org/kdl.html.

[39] Lynne E Parker and John V Draper. “Robotics applications in maintenance
and repair”. In: Handbook of industrial robotics 2 (1998), pp. 1023–1036.

[40] Luis F. Peñín and Kotaro Matsumoto. “Teleoperation with time delay: A
survey and its use in space robotics”. In: 2002.

[41] Péter Dr. Tamás Péter Dr. Korondi János Halas Krisztián Dr. Samu Attila
Bojtos. Internet based telemanipulation. Last accessed 14 May 2022. 2021.
url: https://mogi.bme.hu/TAMOP/robot_applications/ch04.html#ch-
4.2.

[42] Morgan Quigley, Brian Gerkey, and William D. Smart. Programming Robots
with ROS: A Practical Introduction to the Robot Operating System. 1st.
O’Reilly Media, Inc., 2015. isbn: 1449323898.

[43] RobotWorks. KUKA Low Payload Robot Series. Last accessed 27 May 2022.
2022. url: https://www.robots.com/robots/kuka-kr-16.

[44] ros-industrial. Kuka-experimental. Last accessed 30 April 2022. 2021. url:
https://github.com/ros-industrial/kuka_experimental.

https://ros-planning.github.io/moveit_tutorials/doc/moveit_grasps/moveit_grasps_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_grasps/moveit_grasps_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_grasps/moveit_grasps_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
https://github.com/ros-planning/moveit_tutorials/blob/master/doc/move_group_python_interface/scripts/move_group_python_interface_tutorial.py
https://github.com/ros-planning/moveit_tutorials/blob/master/doc/move_group_python_interface/scripts/move_group_python_interface_tutorial.py
https://github.com/ros-planning/moveit_tutorials/blob/master/doc/move_group_python_interface/scripts/move_group_python_interface_tutorial.py
https://doi.org/10.1007/978-3-540-30301-5_32
https://opencv.org/about/
https://opencv.org/about/
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://www.orocos.org/kdl.html
https://mogi.bme.hu/TAMOP/robot_applications/ch04.html#ch-4.2
https://mogi.bme.hu/TAMOP/robot_applications/ch04.html#ch-4.2
https://www.robots.com/robots/kuka-kr-16
https://github.com/ros-industrial/kuka_experimental

References 64

[45] ROS.org. Configuring and Using a Linux-Supported Joystick with ROS. Last
accessed 3 June 2022. 2022. url: http://wiki.ros.org/joy/Tutorials/
ConfiguringALinuxJoystick.

[46] Ros.org. Documentation. Last accessed 20 May 2022. 2022. url: http://
wiki.ros.org/ros_control.

[47] Ros.org. Ros control. Last accessed 11 November 2021. 2021. url: http:
//wiki.ros.org/ros_control.

[48] ROSwiki. ROS Noetic Ninjemys. Last accessed 26 May 2022. 2021. url:
http://wiki.ros.org/noetic.

[49] Clare Saliba, Marvin K Bugeja, Simon G Fabri, Mario Di Castro, Alessandro
Mosca, and Manuel Ferre. “A Training Simulator for Teleoperated Robots
Deployed at CERN.” In: ICINCO (2). 2018, pp. 293–300.

[50] M. Selvaggio, P. Robuffo Giordano, F. Ficuciello, and B. Siciliano. “Passive
Task-Prioritized Shared-Control Teleoperation with Haptic Guidance”. In:
2019 International Conference on Robotics and Automation (ICRA). 2019,
pp. 430–436. doi: 10.1109/ICRA.2019.8794197.

[51] T.B. Sheridan. “Telerobotics”. In: Automatica 25.4 (1989), pp. 487–507.
issn: 0005-1098. doi: https://doi.org/10.1016/0005-1098(89)90093-
9. url: https : / / www . sciencedirect . com / science / article / pii /
0005109889900939.

[52] Charlotte Skourup, John Pretlove, Neil Stembridge, and Mona Svenes. “En-
hanced awareness for offshore teleoperation”. In: Intelligent Energy Confer-
ence and Exhibition. OnePetro. 2008.

[53] Mark W Spong, Seth Hutchinson, and M Vidyasagar. “Robot Dynamics and
Control”. In: (2004).

[54] Ioan A. Sucan and Sachin Chitta. MoveIt. Last accessed 16 November 2021.
2021. url: https://moveit.ros.org/.

[55] James Trevelyan, William R. Hamel, and Sung-Chul Kang. “Robotics in
Hazardous Applications”. In: Springer Handbook of Robotics. Ed. by Bruno
Siciliano and Oussama Khatib. Cham: Springer International Publishing,
2016, pp. 1521–1548. isbn: 978-3-319-32552-1. doi: 10.1007/978-3-319-
32552-1_58. url: https://doi.org/10.1007/978-3-319-32552-1_58.

[56] Yulun Wang, Steven E Butner, and Ara Darzi. “The developing market for
medical robotics”. In: Proceedings of the IEEE 94.9 (2006), pp. 1763–1771.

http://wiki.ros.org/joy/Tutorials/ConfiguringALinuxJoystick
http://wiki.ros.org/joy/Tutorials/ConfiguringALinuxJoystick
http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
http://wiki.ros.org/ros_control
http://wiki.ros.org/noetic
https://doi.org/10.1109/ICRA.2019.8794197
https://doi.org/https://doi.org/10.1016/0005-1098(89)90093-9
https://doi.org/https://doi.org/10.1016/0005-1098(89)90093-9
https://www.sciencedirect.com/science/article/pii/0005109889900939
https://www.sciencedirect.com/science/article/pii/0005109889900939
https://moveit.ros.org/
https://doi.org/10.1007/978-3-319-32552-1_58
https://doi.org/10.1007/978-3-319-32552-1_58
https://doi.org/10.1007/978-3-319-32552-1_58

Appendix A.

Digital Attachments

The thesis includes three digital attachments:

1. A video of the filter change

2. A video of teleoperation in RViz

3. The specialization project written prior to this thesis [21]

A.1. Running the teleoperation system in ROS
The developed system is implemented with ROS Noetic and Ubuntu 20.04.4 LTS
(Focal Fossa). Follow the instructions to install ROS Noetic, and ensure that the
latest packages are installed.

Create a new catkin workspace :
$ source /opt/ros/noetic/setup.bash
$ mkdir -p ∼/catkin_ws/src
$ cd ∼/catkin_ws/
$ catkin_make

Clone the repository to the src folder:
$ cd /path/to/catkin_ws/src
$ git clone https://github.com/mustafekahin/Joystickteleop.git
Check dependencies :
$ cd ..
$ rosdep install --from-paths src --ignore-src
Build the workspace:
$ catkin_make

Appendix A. Digital Attachments 66

A.1.1. Teleoperation with a joystick

To run the implemented setup, open a new terminal and start an instance of
roscore:

$ roscore
Open another terminal and source your workspace:

$ cd /path/to/catkin_ws/
$ source devel/setup.bash
$ roslaunch kuka_kr16_moveit_config demo_gazebo.launch use_gui:=false

RViz and Gazebo will now show the robot. To manipulate the robot with a
mouse, simply change the planning group from gripper, to kr16_arm.

To use a joystick first follow the instructions to get a proper setup from the
ROS.org page [45]. In RViz, check off the External Comm, and open up a new
terminal.
In the new terminal:
$ cd /path/to/catkin_ws/
$ source devel/setup.bash
$ roslaunch kuka_kr16_moveit_config joystick_control.launch
dev:=/dev/input/js2

Be aware that specification of the joystick input dev:=/dev/input/js2 varies, in
my case, the joystick is input js2. The joystick can now be used to control the
robot in RViz, and the mappings from controller to robot can be seen in Table 4.1.

To use the joint_space_node open up a new terminal, and type the following :
$ cd /path/to/catkin_ws/
$ source devel/setup.bash
$ cd src/Joystickteleop/kr16_control/src
Create an executable of jointspace_node.py:
$ cd chmod +x jointspace_node.py
$ python3 joint_space_node.py

The code can be found in the kr16_control package, where all the inputs can
be seen. The complete system now allows for both teleoperation with the joy-
stick, and command input in the terminal.

Appendix A. Digital Attachments 67

A.1.2. Setup in the laboratory

The setup in the laboratory is ran on another workspace, and differs in the config-
uration. To run the setup in the laboratory, simply clone the following repository
in your workspace:

$ cd /path/to/catkin_ws/
$ git clone https://github.com/mustafekahin/Laboratory.git
Check dependencies :
$ rosdep install --from-paths src --ignore-src
Build the workspace:
$ catkin_make
Run the following:
$ source devel/setup.bash
$ roslaunch kuka_kr16_support start_robot.launch sim:=false
To add the robot in RViz, simply press add in the RViz GUI and in the pop-up
window select MotionPlanning.

To run the joint_space_node type the following in a new terminal:
$ cd /path/to/catkin_ws/
$ source devel/setup.bash
$ roslaunch kuka_kr_16_support code.launch

A.2. Controllers
Listing A.1: Main controllers

kr16_arm_controller:
type: position_controllers/JointTrajectoryController
joints:

- joint_a1
- joint_a2
- joint_a3
- joint_a4
- joint_a5
- joint_a6

gains:
joint_a1: {p: 1000.00, i: 0, d: 0}
joint_a2: {p: 1000.00, i: 0, d: 0}

Appendix A. Digital Attachments 68

joint_a3: {p: 1000.00, i: 0, d: 0}
joint_a4: {p: 1000.00, i: 0, d: 0}
joint_a5: {p: 1000.00, i: 0, d: 0}
joint_a6: {p: 1000.00, i: 0, d: 0}

constraints:
goal_time: 2.0

state_publish_rate: 25

gripper_controller:
type: position_controllers/JointTrajectoryController
joints:

- left_gripper_joint
- right_gripper_joint

gains:
left_gripper_joint: { p: 5, d: 3.0, i: 0, i_clamp: 1 }
right_gripper_joint: { p: 5, d: 3.0, i: 0, i_clamp: 1 }

state_publish_rate: 25

controller_list:
- name: kr16_arm_controller

action_ns: follow_joint_trajectory
type: FollowJointTrajectory
default: true
joints:

- joint_a1
- joint_a2
- joint_a3
- joint_a4
- joint_a5
- joint_a6

- name: gripper_controller
action_ns: follow_joint_trajectory
type: FollowJointTrajectory
default: true
joints:

- left_gripper_joint
- right_gripper_joint

Appendix A. Digital Attachments 69

A.3. Denavit Hartenberg implementation
By using the Denavit Hartenberg convention presented in Section 2.4.6, the follow-
ing matrices are computed. The matrices represent the final transformation(from
base to end-effector), where the last column shows the position of the end-effector
in operational space. T1 refers to the transformation of P1, which is the first
position of the pick-and-place cycle, and so on.

T1 =

−0.45 −0.89 0.01 1.14
−0.89 0.45 0 −0.07

0 −0.01 −1 0.71
0 0 0 1

 T2 =

−0.45 −0.89 0.01 1.13
−0.89 0.45 0 −0.07

0 −0.01 −1 1.40
0 0 0 1

T3 =

−0.94 −0.32 0.02 0.73
−0.32 0.94 −0.02 −0.81
−0.01 −0.03 −1 1.41

0 0 0 1

 T4 =

−0.94 −0.32 0 0.75
−0.32 0.94 0 −0.83

0 −0 −1 0.7
0 0 0 1

T5 =

−0.94 −0.32 0 0.98
−0.32 0.94 −0 −0.88

0 0 −1 1.45
0 0 0 1

 T6 =

−0.94 −0.32 0 0.98
−0.32 0.94 0 −0.88

0 −0 −1 0.63
0 0 0 1

T7 =

−0.94 −0.32 0 0.98
−0.32 0.94 −0 −0.88

0 0 −1 1.45
0 0 0 1

 T8 =

−0.90 −0.42 0.01 0.84
−0.42 0.90 −0.01 −0.76

0 −0.01 −1 1.40
0 0 0 1

T9 =

−0.45 −0.89 0.01 1.14
−0.89 0.45 −0 −0.07

0 −0.01 −1 0.71
0 0 0 1

 Thome =

−0.45 0.01 0.01 1.13
−0.89 0.45 0.0 −0.07

0 −0.01 −1 1.40
0 0 0 1

Appendix A. Digital Attachments 70

Joint name Parent Link Child Link x(m) y(m) z(m) roll pitch yaw
Joint 1 Base link Link 1 0 0 0.675 0 0 0
Joint 2 Link 1 Link 2 0.26 0 0 0 0 0
Joint 3 Link 2 Link 3 0.68 0 0 0 0 0
Joint 4 Link 3 Link 4 0.67 0 −0.035 0 0 0
Joint 5 Link 4 Link 5 0 0 0 0 0 0
Joint 6 Link 5 Link 6 0 0 0 0 0 0

Gripper joint Link 6 Gripper link 0.158 0 0 0 1.5707 0

Table A.1.: KR16 URDF in table format

A.4. Hierarchical graph

Appendix A. Digital Attachments 71

Figure A.1.: Hierarchical graph of KUKA KR-16

Appendix B.

Hardware

B.1. Gripper Machine Drawings

Figure B.1.: Opened gripper machine drawing

Appendix B. Hardware 73

Figure B.2.: Closed gripper machine drawing

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Mustafe Kahin

Robot Telemanipulation for Remote
Maintenance

Master’s thesis in Mechanical engineering
Supervisor: Gunleiv Skofteland
Co-supervisor: Christian Holden
June 2022

M
as

te
r’s

 th
es

is

	Acknowledgements
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Introduction
	Problem objectives
	Contributions
	Pick and Place
	Simulation
	Remote Maintenance

	Outline of the Thesis

	Theoretical Background
	Teleoperation
	Time delay

	Use cases of teleoperation
	Hazardous operations
	Teleoperation in Space
	Telemedicine
	CERN

	Control architectures
	Direct control
	Supervised Control
	Shared control

	Robot Kinematics
	Pose of rigid body
	Rotation Matrix
	Homogeneous transformation Matrix
	Workspace
	Forward Kinematics
	Denavit-Hartenberg
	Inverse Kinematics
	Operational space & Joint space
	Trajectory planning
	Path & Trajectory
	Joint space trajectories
	Trajectories for Point to Point
	Sequence of points

	Programming Tools
	ROS
	ROS Computation Graph
	ROS control
	MoveIt
	RViz
	Gazebo

	URDF
	Xacro

	Method
	Software Implementation
	MoveIt Configuration
	Kinematics Configuration
	Simulation
	Nodes
	Summary

	Hardware setup
	Robot Hardware
	Gripper
	Filter Assembly

	Pick and place
	Testing

	Results
	Teleoperation
	Trajectories
	Plots

	Discussion
	Teleoperation
	Trajectories
	Plots

	Conclusions and Future Work
	Conclusion
	Future work

	Digital Attachments
	Running the teleoperation system in ROS
	Teleoperation with a joystick
	Setup in the laboratory

	Controllers
	Denavit Hartenberg implementation
	Hierarchical graph

	Hardware
	Gripper Machine Drawings

