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Sammendrag

Lennard-Jones-fluidet er en nøye utforsket enkel, men samtidig nyttig klassisk modell
for fluider. I denne masteroppgaven finner vi skjærviskositeten til Lennard-Jones-fluidet,
ved å ta utgangspunkt i Enskogs visositetsuttrykk fra kinetisk teori, sammen med ek-
sisterende uttrykk for fluidets Helmholtz frie energi. Vi finner viskositeten i tre steg.
Først avleder vi kompressibilitetsfaktoren (tilstandslikningen) og den indre energien til
Lennard-Jones-fluidet fra dets Helmholtz frie energi. Deretter finner vi den radielle tet-
thetsfunksjonen ved kontakt fra tilstandslikningen og indre energien. Til slutt benytter
vi den radielle tetthetsfunksjonen i Enskogs viskositetsuttrykk for å finne viskositeten.

Vi finner dermed et uttrykk for viskositeten – en ikke-likevektsegenskap – som kun er
avhengig av likevektsegenskapene til fluidet. Til sammen utforsker vi fem Helmholtz frie
energier for Lennard-Jones-fluidet som vi kombinerer med Enskogs viskositetslikning.
Dette gir fem ulike viskositetsuttrykk. Disse uttrykkene blir s̊a testet opp mot 336
molekylærdynamikksimuleringer. Simuleringene utforsker ulike superkritiske tilstander
for Lennard-Jones-fluidet, som varierer i temperatur og tetthet.
V̊are viskositetsuttrykk avviker fra simuleringsdata med oppimot 20 %, men ved å

introdusere én empirisk tilpasningsparameter, har denne feilen blitt redusert til mindre
enn 5 % for nær alle utforskede tetthets- og temperaturkonfigurasjoner. Tilpasningspa-
rameteren korresponderer med kollisjonsintegralet til Lennard-Jones-partikler, og kan
dermed rettferdiggjøres i henhold til kinetisk teori.
Dette arbeidet bidrar med ny innsikt til hvordan den innflytelsesrike Enskogs viskisotet-

slikning fungerer for myke og komplekse interaksjonspotensialer. Vi diskuterer videre
rollen til den radielle tetthetsfunksjonen ved kontakt, som opptrer i Enskogs uttrykk for
viskositet, og demonstrerer at den er tvetydig definert for myke interaksjonspotensialer.
Vi forventer at denne metoden kan utvides til å benyttes p̊a andre liknende potensialer.

Dermed kan den danne en allsidig tilnærming til å beregne viskositet med utgangspunkt
i likevektstilstander.
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Summary

The Lennard-Jones fluid is widely studied as a simple yet useful classical model for fluids.
In this thesis, we find an expression for the shear viscosity of the Lennard-Jones fluid.
This is done by using Enskog’s expression for viscosity from kinetic theory, along with the
Helmholtz free energy of the fluid. We find the viscosity in three steps. First, we obtain
the compressibility factor (equation of state) and the internal energy of the Lennard-
Jones fluid, from the Helmholtz free energy. Second, we find the radial distribution
function at contact from the equation of state and internal energy. Lastly, we use the
radial distribution function in Enskog’s viscosity expression, to get the viscosity.
We then arrive at an approximate expression for the viscosity – which is a non-

equilibrium property – dependent only on equilibrium properties. In total, five Helmholtz
free energies for the Lennard-Jones fluid have been explored and combined with Enskog’s
expression for viscosity to give five different viscosity predictions. These expressions were
then tested against 336 molecular dynamics simulations. The simulations explore differ-
ent states of a supercritical Lennard-Jones fluid, varying in temperature and density.
Our viscosity expression deviates from the simulation data by up to approximately

20 %, but introducing one empirical fitting parameter reduces this error to less than
5 %, for almost all explored density-temperature configurations. The fitting parameter
corresponds to the collision integral of Lennard-Jones particles, and thus has theoretical
justifications from kinetic theory.
This work contributes with new insight into how Enskog’s influential viscosity expres-

sion performs for soft, complex interaction potentials. We also discuss the role of the
radial distribution function within Enskog’s equation for the viscosity, and demonstrate
that its numerical definition is ambiguous for soft interaction potentials.
We expect that this method can be extended to other similar potentials, yielding a

versatile approach to computing viscosity only from equilibrium properties.
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1. Introduction

Friction is associated with loss of kinetic energy when there is relative motion between
different objects in a system. This phenomenon appears everywhere. Friction will both
slow down a car, and simultaneously give it traction so that it does not slide off of the
road.

Friction causes wear and tear in many everyday situations, as well as in engineering
applications. At the same time, it is necessary to keep most applications functional.
Without friction, we would not be able to walk around. Too much friction however, will
make many tasks highly energy-consuming, as many a cross-country skier has experi-
enced in poor weather.

Viscosity is most easily summarized as friction in a fluid – that is, friction in a gas or
a liquid. The resistance we feel when swimming in water, or walking upwind, is due to
friction. Certain fluids are more viscous than others. Honey flows slowly, while water
runs much more rapidly. We say that honey has a higher viscosity than water.

Several aspects can change a fluid’s viscosity as well. If honey is stored in the refrig-
erator, it will hardly flow at all. Drag resistance in air is much less noticeable than in
water, because air is much less dense. This means that viscosity often decreases with
the fluid’s temperature, and increases with its density.

We often wish to change the friction of some system. For example, we use wheels, ball
bearings and lubricants (and often so in combination) to reduce frictional resistance;
and we use rubber, groove patterns (as in car tires) and even glue to increase it.

There are many systems we associate with regular sliding friction (kinetic friction),
where viscosity is actually the ”star of the show”. In engineering applications where
we wish to reduce friction, lubricants are typically used. These lubricants are often –
though not always – liquid, meaning that their frictional properties are in fact viscous.
This is commonly the case in rotating shafts, where regular sliding friction would not
only wear out the shaft, but also cause huge amounts of resistance and noise. Perhaps
more unexpectedly, even skis do not glide atop of solid snow, but on a thin film of water,
melted by the frictional heat [1]. Note that this is a vastly complicated process.

Understanding viscosity is therefore an important part of understanding the friction
that surrounds us, and how it impacts our technology. This Master thesis attempts to
study viscosity as a transport phenomenon, as explained below.

1.1. An introduction to viscosity

If different parts of a fluid move with different velocities, momentum will be transferred
between the regions of the fluid – as described by Maxwell in 1867 [2]. This phenomenon

1



1. Introduction

is called viscosity. Unless external forces maintain the velocity profile of the fluid, the
viscosity will eventually cause every region of the fluid to move with a uniform velocity
– or to stop moving entirely. Since this process is a transport of momentum within a
system, we call it a transport phenomenon.

Transport phenomena refer to transport of properties such as momentum, temperature
and mass. The description of transport phenomena is a branch of statistical mechanics,
known as transport theory.

In this thesis, we will consider one particular branch of transport theory, known as
the kinetic theory of fluids – or simply kinetic theory. Kinetic theory allows us to
mathematically describe fluids as large groups of individual particles (of certain types),
and the fluid properties that arise from their behaviour.

We should discuss kinetic theory a bit further. How exactly can we describe viscosity
from a large collection of particles? The mathematics behind this – summarized in
section 3 – is severely complex, but the physics is somewhat intuitive.

Imagine a large amount of marbles, collected in a very spacious container. Now,
imagine that all the marbles have a velocity, and start to fly about in random directions.
This is (essentially) what we call temperature. The marbles now move around the
container, crashing into each other and the walls of the container. Whenever they crash,
they exchange a bit of energy and change directions, as marbles do. Now, let us take
a look at the bigger picture: Thousands of marbles flying around the container. The
group of marbles now exhibit some interesting behaviour – much of the same behaviour
as real-world gases and liquids do. This is no huge surprise. After all, ignoring some
details, gases and liquids do consist of vast collections of particles that ”fly” around and
bounce off of each other. Viewing gases and liquids (fluids) as such, allows us to derive
mathematical models to describe them.

How then, does viscosity arise from said collection of marbles? Imagine now that
the container is a box, and that the particles in the top half move with one velocity,
and the particles in the bottom half move with another. In the border between the top
and bottom half of the box, particles that move with different velocities will start to
collide. Through the collisions, they exchange momenta. After a number of collisions,
the velocity of the particles around the middle of the box will no longer have a clear
border. After a long time has passed, both halves of the gas will be moving with the
same velocity, at least if we ignore the random differences on the individual particle
level. The collisions have erased the large-scale velocity difference! This is how viscosity
works on a small scale.

In this project, we will not work with marbles. There are particle models that closer
resemble real atoms which we will use instead. Let ut briefly discuss how to find more
faithful representations of real atoms and molecules. First of all, atoms are not perfectly
hard. When they collide, they usually ”overlap” slightly1. We say that the particles are
soft. We can account for this softness by altering how the particle interact.

1Unambiguously defining the size (and thusly, the concept of overlapping) of a real atom is not trivial.
However, since this thesis is concerned entirely with classical physics, we can safely ignore this.
The difference between classical and quantum physics is part of the reason why the Lennard-Jones
potential exists in the first place.

2



1.2. The Lennard-Jones fluid

There are more complicating factors as well. A water molecule has a small charge
difference between its two sides, making it a weak electrical dipole. Oils and organic
molecules are often large collections of different atoms, which can hardly be modelled as
spheres. Several works on such complex fluids has been done, but in this thesis, we will
only consider one type of soft spheres. These spheres represent a more realistic approach
to fluids than simpler hard spheres, even though it is still a ”simple” model.

1.2. The Lennard-Jones fluid

In 1924, John Lennard-Jones [3] introduced what is now one of the most widely studied
particle interaction potentials [4]. His motivation was to create a description of the forces
that particles exert on each other. The description was supposed to capture the recent
development in quantum mechanics. Yet, it should not require doing the complicated
mathematics typically associated with quantum mechanics. He then proceeded to use
this force in relation to the kinetic theory of Maxwell, Chapman and Enskog (see section
2.1 and 3.1), to compute certain transport properties [3]. He saw this as a more efficient
path to precise descriptions of fluid properties than to wait for the quantum theory to
evolve. This motivation and use of the Lennard-Jones (LJ) potential remains relevant a
century later.

Originally, Lennard-Jones tried several exponents in the potential before eventually
settling on the form which is known as the Lennard-Jones potential today. This form
is motivated in part by physical theory, and in part by computational simplicity, as we
explain in section 3.2.2.

1.3. Description of the problem

We attempt to obtain an expression for the viscosity of the Lennard-Jones fluid, from
its pressure2 and potential energy, in combination with the Enskog equation for the
viscosity of fluids. Both pressure and potential energy are equilibrium properties, while
the viscosity is a non-equilibrium property. Both the pressure and the potential energy
will be obtained from the Helmholtz free energy of the LJ fluid.

The resulting viscosity expression is compared to computer simulations of the LJ fluid.
The simulations are molecular dynamics simulations, performed in LAMMPS [5], using
the Müller-Plathe algorithm [6]. In other words, we wish to investigate the following
research question.

Research question

Can we predict the viscosity of the Lennard-Jones fluid by combining Enskog theory for
hard spheres with equilibrium expressions for the radial distribution function, derived
from the Helmholtz free energy?

2More precisely, the compressibility factor Z, see section 3.3.

3



1. Introduction

1.4. Motivation

Viscosity is interesting from an engineering point of view because of how it determines
the efficiency of lubricants. In lubrication models, ”regular” gliding friction between
two lubricated surfaces in relative motion is dependent on three factors: The viscosity
– denoted with an η – of the lubricant, the sliding speed v, and the pressure or load p
that presses the surfaces together [7]. This relation is known as the Stribeck number

S = η
v

p
(1.1)

It turns out that the gliding friction is mostly proportional to this number, except that
it grows when S becomes very small. A model developed by Stribeck and Gumbel in
the early 1900s, describes how friction changes depending on the Stribeck number. The
gliding friction turns out to have a minimum at some optimal value of the Stribeck
number. Accordingly, one would often wish to keep the Stribeck number at this optimal
value to minimize the friction. One useful way to do this, is by changing the lubricant
to get a different viscosity.

The motivation for this work is to further our understanding of viscosity for complex
fluids. In particular, this work investigates Enskog’s important viscosity expression (see
section 3.1.3), which is commonly used as a foundation for more sophisticated viscosity
models. Although the Lennard-Jones potential is mainly theoretical, understanding it
is a key step towards understanding more realistic fluid models, and in turn, real fluids.

1.5. Structure of the thesis

The thesis is structured as follows. Chapter 3 introduces the main theoretical concepts,
including kinetic theory and the Lennard-Jones fluid. We also explain how we obtain
the appropriate viscosity equations for the Lennard-Jones fluid. Chapter 4 explains
molecular dynamics, and how we will compute the numerical viscosity of the Lennard-
Jones fluid. In chapter 5, we describe the methods used, and give details about the
particular implementation of the molecular dynamics simulation used in this work. Then,
we present the results of the computations in chapter 6, and compare them to the theory.
The results are then discussed in chapter 7, where we will focus on assessing how well the
theoretical descriptions of viscosity can predict the outcome of the simulations. Chapter
8 summarizes the findings.

1.6. To the examiner

This Master thesis builds upon a previous project by the same main author. Therefore,
some theory sections in the thesis consist mainly of information from the project report
[8], and are recounted here due to the high relevance. These sections should not con-
tribute to the amount of credits this thesis is worth. This is the case for the following
chapters and sections:

4



1.6. To the examiner

– Section 3.1

– Section 3.2.1

– Section 3.2.5

– Section 3.3.3

– Section 3.4 (but section 3.4.1 is original)

– Chapter 4

Note that every section has been reformulated and improved to suit the present problem
better than the hard sphere case which was the topic of [8]. In particular, chapter 4
contains more details than the corresponding sections in [8]. The remaining chapters are
original to this work.

All source code used, including LAMMPS scripts and analysis code, are available on
the main author’s GitHub account3.

3https://github.com/jonasbue/MD_viscosity.git
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2. Literature review

2.1. Transport theory

Physical models of fluids date back to the Euler equation of non-viscous flow, published
in 1757 [9]. The Navier-Stokes equations generalise the Euler equations, for example
by including viscosity. However, the Navier-Stokes equations do not treat the origin of
viscosity theoretically, but rather let viscosity be a phenomenological constant. This
constant must be measured experimentally, and inserted into the equations. Theoretical
descriptions of viscosity, as well as other transport properties, are possible in kinetic
theory. The foundation of kinetic theory is the Boltzmann equation, derived by Ludwig
Boltzmann in 1872. From the interactions of the individual particles that comprise a
fluid, the Boltzmann equation allows us to quantitatively describe transport properties
such as heat conduction, diffusion and viscosity. This gives us theoretical descriptions
of viscous flow that do not depend on experimental measurements, at least for certain
model fluids. In 1916–17, Chapman and Enskog developed a framework for doing this,
now known as Chapman-Enskog theory, or just Enskog theory [10]. We will explain the
most central elements of both Boltzmann and Enskog theory in section 3.1.

2.2. Viscosity

Viscosity is a complex phenomenon, and a variety of empirical, numerical and theoretical
approaches have been used to study it [11, 12, 13, 14]. From Enskog theory, Enskog’s
expression for shear viscosity is an important example. Enskog’s expression for viscosity
theoretically predicts the viscosity of a single-component fluid. The Enskog expression
has also been applied to complex fluids. These are fluids with for example long range
interaction potentials, non-isometric particle shapes, and multiple particle components.
We here mention a few examples.

The Enskog theory has been generalized to fluid mixtures [12]. The Enskog equation
for two components [10] is known as the Thorne equation. Tham and Gubbins have
further generalized the Thorne equation to an arbitrary number of components [15].

Boltzmann originally assumed that the fluid is very dilute – that its density approaches
zero – and that particles interact only at short range. Enskog then extended Boltzmann
theory to intermediate densities. These assumptions work very well with hard spheres
[12, 14], but grow less precise at high densities, as well as with more complex particle
interactions.

Some extensions of Enskog’s viscosity expression have been published. Umla and
Vesovic [13, 16] have published such an extension Enskog’s equation for the viscosity to

7
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soft potentials, by introducing two effective particle diameters. These diameters account
for two different parts of the particle dynamics, making the model more able to describe
softer potentials.

Pousaneh and de Wijn [17] have studied the shear viscosity of dipolar hard spheres.
Electric dipoles within the particles introduce new long-range Coulomb interactions.
Working from Enskog theory, they were able to describe the viscosity of such fluids. De
Wijn has furthermore studied the viscosity of fluids that consist of chain molecules [18].
This model aims to describe polymer fluids, which many lubricants are.

2.3. Viscosity, kinetic theory and molecular dynamics

Computer simulations form a link between theory and experiment, which is particularly
useful in the context of kinetic theory. Molecular dynamics allows us to represent arti-
ficial model systems that cannot be created in the real world. With this, approximate
theories can be tested individually, rather than to be compared to complex real-world
systems in which we need several approximations at once. Furthermore, MD allows
studies down to the level of individual particles, giving powerful analysis tools. This is
so useful in the field of molecular physics, that this field was one of the earliest to adopt
computer simulations at all [19].

A variety of published works exist on MD studies of viscosity, for several types of
fluids [17, 18, 20, 21]. For instance, Müller-Plathe [6] has studied how to obtain viscosity
estimates from an MD simulation, and Pousaneh and de Wijn [14], have studied how
hard spheres (HS) can be efficiently modelled in molecular dynamics.

2.4. The Lennard-Jones fluid

The Lennard-Jones (LJ) potential is named after John Lennard-Jones, who introduced
the potential in the 1920s [3]. The potential was developed in the early days of quantum
mechanics, following novel insight on the nature of the atomic structure. The notion
that the atom consists of a positively charged nucleus and a negatively charged electron
cloud implied the need for a new model of atomic interaction. Such a model had to
represent both the attractive and repulsive nature of the atom, and at the same time be
simple enough to allow extension to larger systems. A quantum mechanical approach
grows unmanageable with larger systems, so Lennard-Jones proposed a classical force
to approximate the quantum effects. The resulting Lennard-Jones interaction potential
is now a textbook example of simple atomic interactions that yields predictions of real-
world fluid behaviour.

2.4.1. Equilibrium properties of the Lennard-Jones fluid

Many studies of the equilibrium properties of the Lennard-Jones fluid have been pub-
lished. One of the central quantities used to describe these properties is the equation
of state (EOS). The EOS and particularly the Helmholtz free energy (which is often
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used to express EOSs), are powerful tools when describing the equilibrium properties of
physical systems. This is explained further in section 3.3.

A vast number of equations of state expressions for the LJ fluid exits. These differ
by for example derivation method, assumptions made, and the number of parameters
in the equation. Stephan et al. [4] has conducted a review of 20 different EOSs for the
LJ fluid. The EOSs were published between 1969 and 2019, and differ by derivation
method, validity range, precision order, and number of parameters.

The most widely used LJ EOS is that of Kolafa and Nezbeda [4, 22], which was
published in 1994. Shortly after, Mecke [23] (1996) published a similar EOS. In recent
years, Thol et al. [24] (2016) and Gottschalk [25] (2019) have published EOSs of much
higher orders. These four equations are all derived in an empirical manner. From an
initial function, they were fitted to numerical data, generated with Monte Carlo and
molecular dynamics simulations. One EOS that separates itself from these empirical
ones, is that of Hess [26]. This EOS was derived as an extension of the theoretical van
der Waals equation of state, with an empirical correction factor. All these EOSs are
described in section 3.3.4.

2.4.2. Transport properties of the Lennard-Jones fluid

There are not too many available studies on the transport coefficients of the LJ fluid that
systematically cover a wide range of states [21]. Considering the popularity of the LJ
potential, this can be somewhat surprising. Nevertheless, we here give a few examples
of studies of some LJ transport properties.

Heyes [27] compared simulation data of the LJ fluid’s shear viscosity, self-diffusion,
and thermal conductivity to the predictions of Enskog theory. For the shear viscosity,
”excellent agreement” was found. Meier et al. have published a study on the self-diffusion
[28] and the viscosity [29] of the LJ fluid. In both cases, the transport coefficients were
fitted to simulation data, giving empirical descriptions of the coefficients.

Dyer er al. [30] has studied the transport coefficients of the LJ fluid in several different
theoretical frameworks, not limited to kinetic theory.

Lautenschlaeger and Hasse [21] have performed correlations of the truncated and
shifted version (see section 4.2.3, as well as [21, 31]), but not the regular infinite-ranged
LJ potential.

Furthermore, Hellmann et al. [20] have computed several transport properties – namely
the shear viscosity, diffusion coefficient and the thermal conductivity – of a gas consisting
of Lennard-Jones chains. The chains were of lengths up to 16 particles, and all gases
were dilute. Their expressions agreed well with molecular dynamics simulation.

2.4.3. Applying the LJ potential to real fluids

Thol et al. [32] have studied how the LJ fluid performs as a model for the noble gases,
neon, argon, krypton and xenon. The results showed that the LJ potential is able to
represent all these noble gases well, with an error of 1–10 %, depending on equilibrium
property. There were also little difference between the different noble gases. Due to
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quantum effects from the low mass of neon, the LJ fluid was expected to perform worse
for neon than the other gases. This was not observed, although for neon, the LJ fluid
representation was more sensitive to the choice of the potential parameters σ and ϵ.
These parameters will be defined in section 3.2.2. Imprecisions due to the classical
nature of the LJ potential were also pointed out by Tchouar et al. [33]. They studied
the performance of the LJ liquid as a model for Helium, methane, neon and nitrogen.
The results showed overall good performance of the LJ potential, but that quantum
corrections are necessary close to the triple point
Wang et al. [34] has even applied the LJ potential to a collection of hydrocarbons.

They performed a fitting of experimental data to obtain values for the parameters in the
LJ potential. This allowed them to model the diffusion of hydrocarbons in an acetylene
flame.

2.5. Contribution of this work to the scientific field

As the above examples demonstrate, the LJ potential is able to reproduce certain proper-
ties of real-world fluids. This motivates the current study of the viscosity of the LJ fluid,
in an endeavour to further our understanding of the viscosity of real world complex flu-
ids. The goal of this study is to understand how Enskog’s viscosity expression performs
for the Lennard-Jones fluid, when combined with more recent and precise descriptions
of its equilibrium properties. This can contribute to understanding how models for more
complex fluids can be developed and improved.

10
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This chapter introduces the main theoretical concepts on which the current work builds.
Most importantly, transport theory is introduced, and a brief description of viscosity in
transport theory.

3.1. Transport theory

Transport theory is a theoretical description of how thermodynamical quantities are
transported through many-particle systems. These quantities are known as transport
properties. Some transport properties are viscosity, diffusion and thermal conductivity.

This work builds on the branch of transport theory which is known as the kinetic
theory of fluids, sometimes just known as kinetic theory. In kinetic theory, a fluid
system is described on a macroscopic level through the properties of its microscopic
particle components. The foundation of kinetic theory is the Boltzmann equation. It
describes the time development of a probability density distribution f(r⃗, p⃗, t) for a many
particle system. Three terms define this probability distribution: The external forces
on the system, the free-flight motion of particles in the system, and how the particles
interact (collide) with each other. The Boltzmann equation can be written [35]

df

dt
=

(
∂f

∂t

)
force

+

(
∂f

∂t

)
free

+

(
∂f

∂t

)
collision

, (3.1)

where f = f(r⃗, p⃗, t), and

f d3r⃗ d3p⃗ dt ≡ P (r⃗, p⃗, t) (3.2)

is the probability of finding a particle at a point (r⃗, p⃗ ) in phase space at a time t. The
three terms on the right hand side of the Boltzmann equation are the contribution from
external forces, diffusion and particle collisions.

The third term, the collision term, makes the equation particularly challenging to
solve. This calls for simplifying assumptions. One common way to simplify the collision
term is to assume that the particles collide elastically. Enskog theory is an important
analytical kinetic theory which uses this assumption. Notably, Enskog theory describes
the transport properties of hard sphere fluids accurately.

3.1.1. Assumptions of Boltzmann theory

The Boltzmann equation was derived from three fundamental assumptions/approximations,
that are partially interdependent. Understanding these assumptions is necessary in or-
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der to understand kinetic theory, and hence, the results of this work. The Boltzmann
equation applies to a fluid consisting of particles, provided that [35]

- the fluid is dilute;

- collisions last for an infinitesimally short time; and that

- the particles that collide are uncorrelated.

These assumptions require some extra attention. The first implies that the mean distance
between particles is much larger than the particle diameters. We note for later that, for
practical simulation purposes, this condition can be taken as valid when the combined
volume of the particles make up less than approximately 30% of the fluid volume [12,
14].

The second assumption means that the average time a particle spends travelling be-
tween two collisions, ⟨tfree⟩, is much larger than the average duration of a collision, ⟨tcoll⟩.
This is true if collisions are instantaneous, as for hard spheres, or if the fluid is dilute.
For soft interaction potentials and/or dense fluids however, this assumption is not valid.

The third assumption is known as the assumption of molecular chaos, or Boltzmann’s
stosszahlansatz [35]. It requires that colliding particles have no ”memory” of each other
when a collision occurs – any collision is independent of the previous one. This is not
true for dense fluids, where particles can be ”trapped” within groups of neighbouring
particles for extended periods of time.

The three assumptions of Boltzmann mechanics are interdependent, and if one is
invalid, the two others are likely to be as well, and vice versa.

3.1.2. Enskog theory

An important contribution to kinetic theory is the Enskog theory. This is an extension of
Boltzmann equation to intermediate densities. In this framework, transport coefficients
can be derived from the Boltzmann equation above the zero-density limit. Since Enskog
theory is built on Boltzmann theory, the three assumptions of section 3.1.1 must be valid
for Enskog theory to be applicable to a system, but the ”dilute system” requirement is
more relaxed. In addition, Enskog theory assumes that particles collide elastically. This
assumption simplifies the collision term of the Boltzmann equation.

Smooth, spherically symmetrical particles (such as atoms) undergo elastic collisions,
at least assuming deformation of the particles is impossible. This is because no energy
can be transferred into internal degrees of freedom. Such internal degrees of freedom are
however present in more complex molecules.

3.1.3. Viscosity

Shear viscosity, commonly denoted by η, is a transport property which can be under-
stood as friction in a fluid system. Viscosity is associated with a transport of momentum
through a system, due to a velocity gradient in the system [35]. That means, if different
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regions of a viscous fluid move at different velocities, some momentum will be trans-
ported between these regions until the fluid moves with a homogeneous velocity. On a
microscopic level, this momentum transport arises from collisions and momentum ex-
changes between particles [2]. This mechanic is described by the collision term of the
Boltzmann equation. In the following, we will use the word ”viscosity” about shear
viscosity. The bulk viscosity, which is related to compression or expansion of a fluid (as
opposed to shearing), will not be considered in this work.

Enskog’s expression for the viscosity

Enskog theory is one important framework which theoretically describes viscosity. En-
skog theory extends the Boltzmann equation to higher densities. From this work, Enskog
derived an analytical (yet approximate) expression for the viscosity of fluids. Enskog’s
expression for the viscosity of a fluid consisting of particles with diameter σ, and density
ρ is

η(ρ, T ) = η0
[
g−1(σ) + 0.8Vexcl ρ+ 0.776V 2

excl ρ
2g(σ)

]
. (3.3)

Here, Vexcl is the excluded volume per particle. This is the volume which is inaccessible
to a particle, due to other particles in the system, see figure 3.1. The excluded volume

A

B

C

Figure 3.1.: The figure illustrates the excluded volume, Vexcl, introduced in equation 3.3.
The excluded volume is the total volume in which no particle can be located, because it
would result in an overlap with other nearby particles. Three particles, A, B, and C are
drawn, along with their corresponding excluded volumes, the grey shaded areas. The
dark grey area is within the excluded volume of both particle A and B. Such ”shared”
excluded volumes are normally neglected. The figure is taken from [8].
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per particle equals half the volume of a particle of radius σ [14]

Vexcl =
1

2

4πσ3

3
, (3.4)

where the prefactor 1/2 is conventional. Next, g(σ) is the radial distribution function
(RDF) at contact. We will define it in section 3.4. The prefactor η0 = η0(T ) is the
viscosity in the zero-density limit

η0 = η(0, T ) =
5

16σ2Ω

√
mkBT

π
(3.5)

The Enskog expression for the viscosity applies to a one-component gaseous or liquid
system, provided that the assumptions of Boltzmann theory are valid.
Enskog’s viscosity expression has been demonstrated to work well with for example

hard sphere systems, as long as the density is low to intermediate [14, 36]. As long as the
particles of a fluid does not have rotational degrees of freedom, and interact only at short
ranges, we can expect the equation to provide reasonable approximations. Moreover, the
expression has also been demonstrated to be a sound starting point for modelling the
viscosity of more complex fluids. This can be the case, even when the assumptions of
Enskog are not fully satisfied [14]. We will discuss this further in section 3.5.
As stated in chapter 1, the goal of this project is to apply the Enskog expression for

viscosity to the Lennard-Jones fluid. The following sections will explain the required
theory. First, we introduce the LJ fluid in section 3.2.2. Once our system is defined,
we will work towards applying Enskog’s viscosity expression to it. What we need to do
this, is an expression for the RDF at contact, g(σ). To get this, we will make use of the
equation of state, and the internal energy. Both of these are derived from Helmholtz free
energy. We therefore introduce the EOS as well as the Helmholtz free energy in section
3.3, and the RDF (and internal energy) in section 3.4.

3.2. Interaction potentials

In many-particle physics, we study large systems of particles. To get non-trivial sys-
tems, we need to define particle interactions. This section will describe two important
interaction potentials – the simpler hard sphere (HS) potential, and the more complex
Lennard-Jones potential.

3.2.1. The hard sphere potential

A hard-sphere gas consists of finite-sized particles that interact through the interaction
potential

u(r) =

{
∞, r < σ

0, r > σ.
(3.6)

This interaction gives instantaneous, perfectly elastic collisions. The HS potential has
been widely studied in kinetic theory and in MD and MC simulations. Accurate (though
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not exact) expressions for the transport coefficients of HS fluids exist [10, 12, 15, 21, 27,
28, 29, 33].

3.2.2. The Lennard-Jones potential

The Lennard-Jones potential has historical significance in the field of physical chemistry,
and is considered a textbook example of a particle-to-particle interaction potential in
statistical physics and chemistry [4, 19, 37]. The Lennard-Jones potential is

uLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
, (3.7)

where ϵ denotes the depth of the potential at its minimum. The rest of the notation
is as in equation 3.6, although the size of the particles, represented by σ, is no longer
unambiguous. The particles are now soft, and can overlap slightly. The diameter σ
determines the size of the particles, but it also affects the softness of the potential. The
Lennard-Jones potential is illustrated in figure 3.2.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

−1

0

1

r∗

U
∗

Lennard-Jones potential

Figure 3.2.: The Lennard-Jones potential. The dashed lines represent r = 1 and U = 0.
At short ranges, the LJ potential is strongly repulsive. At intermediate ranges, it is
weakly attractive. Lastly, at long ranges, it approaches zero. The axis values are given
in Lennard-Jones reduced units (see section 3.2.5), so the particle diameter σ is where
r∗ = 1.

The Lennard-Jones potential contains an attractive and a repulsive part. These are,
respectively, the positive r−12-term and the negative r−6-term. The strong repulsive part
is dominating at short ranges, and causes particle overlap to be unlikely. This represents
the Pauli exclusion that prevents atomic nuclei from overlapping. The weaker attractive
part represents the attractive force caused by quantum mechanical fluctuations in the
electron charge distribution around the atom. This force is known as the London force,
and was demonstrated by London to be proportional to r−6 [38].
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The repulsive term in the LJ potential, however, does not have such a physical justifi-
cation. In fact, Lennard-Jones studied a number of other exponents in his original paper
on the subject [3]. While it does approximate the Pauli force, the precise number 12
was selected for computational convenience. It is faster to compute one exponential (the
(σ/r)6 term), and square it, rather than computing two exponentials separately. When
the LJ potential was established in the field, this difference in computational cost was
vast. The computational gain is less critical now, but efficiency is nevertheless useful.
The Lennard-Jones potential remains a very commonly studied potential in molecular
theory. It has been demonstrated to reproduce observations of real substances, particu-
larly the noble gases [32, 33].

3.2.3. Qualitative behaviour of the Lennard-Jones fluid

In order to understand the relevance of the mainly theoretical Lennard-Jones potential,
it is useful to describe its qualitative behaviour under different conditions. At very
long distances, the interaction between two particles will approach zero. At very close
ranges, they will strongly repulse each other, so that two particles will overlap only
by tiny amounts – relative to the average kinetic energy kBT . At intermediate ranges,
approximately 1 < σ < 2, particles are considerably attracted to each other. This
attraction can cause bonds between particles, which can be stable if the temperature is
low.

The Lennard-Jones substance can have several phases, as illustrated in the phase
diagram in figure 3.3. At low temperatures and/or high densities, it becomes a solid.
In this state, the particles are bound together by the attractive force, and do not have
the kinetic energy or the space to propagate individually. As the temperature increases,
particles gain more energy, so the bonds between them are weaker. This can correspond
to gas and liquid – fluid – states, which are the focus of this thesis. However, for certain
temperature-density ranges, gas and liquid states can coexist within a system. In these
cases, clusters or droplets of particles can form, giving local variations in the substance’s
properties.
Above its critical temperature Tc ≈ 1.31 [25], the fluid phases of the LJ substance

are identical. Here, the fluid behaves as a homogeneous substance. This region, as well
as the regions corresponding to purely liquid and purely gaseous phases, of the phase
diagram are better suited for viscosity estimates, see section 4.3 and 5. The critical
density is ρc ≈ 0.316 [4].

3.2.4. The effective diameter

Since the Lennard-Jones potential is soft, we have use for a way to define this softness.
We can do this with the effective diameter σeff. This is the diameter which we can use in
a hard-sphere fluid so that is closest resembles the soft-sphere fluid. If we assume that
two particles at a temperature T collide from initial positions infinitely far apart, then
the effective diameter can be estimated as the radius r where

uLJ(r) =
d

2
kBT (3.8)
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Figure 3.3.: A simplified phase diagram of the Lennard-Jones substance. Different phases
are marked with text, and the solid lines mark the coexistence lines – the borders between
the different phases. The critical point and the triple point are marked with a dot and
a circle respectively. For low temperatures and/or high densities, the fluid is a solid.
Below the gas/liquid coexistence line, above the critical point, both gas and liquid can
coexist. Above the same curve, there are three homogeneous fluid regions: Pure gas,
pure liquid and supercritical fluid. These are the regions in which the viscosity can be
unambiguously computed with the methods presented in section 4.3. The coexistence
lines are drawn with data from [25], which were computed from the Gottschalk EOS,
see section 3.3.4. Reduced units are used, see section 3.2.5.

Here, d is the number of dimensions, or the translational degrees of freedom in one
collision. The right side of this equation is the mean kinetic energy of a d-dimensional
gas [39]. We can solve this equation to obtain an expression for σeff. Starting with
equation 3.8, we have

d

2
kBT = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
= 4ϵ

(
x2 − x

)
, (3.9)

where x = σ/r. This is a standard quadratic equation,

x2 − x− d kBT

8ϵ
= 0, (3.10)

and solving for x yields

x =
1 +

√
1 + dkBT

2ϵ

2
(3.11)
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Inserting r = σeff, we get that the effective diameter is

σeff = σ

[
1

2

(
1 +

√
1 +

dkBT

2ϵ

)]−1/6

. (3.12)

At T = 0, the effective diameter is r = σ.
In a physical system, particles will not necessarily collide from infinitely far apart.

Therefore, we can estimate the effective diameter in a diffeent way, assuming that par-
ticles have initial positions close to each other. The particles are still at a temperature
T . If we assume that they collide from initial positions at the minimum of uLJ, 2

1/6σ,
the particles will have less energy than in the previous case. Their effective diameter is
where

uLJ(r) =
d

2
kBT + ϵ, (3.13)

with ϵ being the well depth of the potential. Solving the equation for σeff again yields

σeff = σ

[
1

2

(
1 +

√
dkBT

2ϵ

)]−1/6

, (3.14)

which is a larger diameter. The difference may be relevant, particularly at low tempera-
tures. This effective diameter serves as a lower bound of the effective diameter in a finite
system, while the previous definition is an upper bound. Assuming d = 1, its value for
T = 0 is 21/6σ ≈ 1.122σ, and this definition of the effective diameter is σ at T = 2.

3.2.5. Lennard-Jones reduced units

From the quantities in the Lennard-Jones potential, it is possible to define a set of
dimensionless units. These are known as the Lennard-Jones reduced units, or simply
Lennard-Jones units [19]. The basis units of this unit system are length σ, energy ϵ,
and mass m, all of which appear in the LJ potential, equation 3.7. Also, the Boltzmann
constant kB is 1 by definition in these units.
We denote quantities given in LJ units with an asterisk. For example, distance is

denoted r∗, and is the distance given in multiples of σ. Following is the definition of
some quantities in LJ units:

Distance r∗ =
r

σ
,

Time t∗ = t

√
ϵ

mσ2
,

Energy ϵ∗ =
E

ϵ
,

Temperature T ∗ =
kBT

ϵ
,

Density ρ∗ =
ρσ3

m
,

Viscosity η∗ = η
σ3

ϵt
.

(3.15)
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There are several reasons to use the Lennard-Jones units. One is that most physical
quantities are close to unity in this system. This makes computer calculations less prone
to rounding errors. Another reason is that one physical state in LJ units can correspond
to multiple states in SI units. For example, both argon at T = 60K with a density of
ρ = 840 kgm−3 and xenon at T = 112K and ρ = 1617 kgm−3 correspond to the same
state in reduced units, T ∗ = 0.5, ρ = 0.5 [19].

3.3. The equation of state

The equation of state relates the state of a thermodynamic system to quantities such as
pressure, volume and temperature. In this work, we will use the equation of state, along
with the internal energy to obtain viscosity predictions for the Lennard-Jones fluid. In
this section, we introduce the EOS, as well as the Helmholtz free energy. The latter is a
somewhat more versatile quantity, which is often used to express the EOS in literature.

To concretely explain the EOS, is is useful to start with the simple ideal gas model.
An ideal gas is a gas consisting of non-interacting particles. An ideal gas consisting of
N particles at volume V , pressure p and temperature T , obeys the ideal gas law

pV = NkBT, (3.16)

where kB is the Boltzmann constant. Rearranging, we can define the compressibility
factor

Z(ρ) :=
pV

NkBT
=

p

ρkBT
, (3.17)

where ρ = N/V is the number density, or simply the density of the system. The
compressibility factor is also known as the reduced pressure [24], as it is a dimensionless
pressure expression.
For an ideal gas, the compressibility factor is equal to one, by definition. The equation

of state for the ideal gas is therefore

Z =
pV

NkBT
= 1. (3.18)

Often, we will simply call the quantity Z for the equation of state.
For more advanced gas models, the compressibility factor is typically one only in the

zero-density limit, when particle-particle interactions are so rare they are negligible.
This is the case for the HS and LJ models, discussed in section 3.2.
For most practically relevant interaction potentials, no exact equation of state is known

for the corresponding many-particle systems. For example, the HS potential is not
particularly complex, but all existing EOSs for systems of HS fluids are approximate.
A common approach to approximating the EOS involves using the virial expansion – a
Taylor expansion in Z as a function of number density. The virial expansion generally
has the form

Z(ρ) ≈ c0 + c1ρ+ c2ρ
2 + c3ρ

3 + . . . =

n∑
i=0

ciρ
i, (3.19)
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where the coefficients ci can be obtained using theoretical and numerical methods, or a
combination thereof.

It is often useful to express the EOS as a function of packing fraction ξ, also known as
volume density, instead of number density ρ. The packing fraction is the total volume
occupied by particles of the system, divided by the volume of the system itself. Assuming
σ is the diameter of the particles, the packing fraction is

ξ =
Vparticles

V
=

πNσ3

6V
=

πσ3

6
ρ. (3.20)

3.3.1. Expressing the EOS in terms of Helmholtz free energy

A more versatile approach to the equation of state concept, is the Helmholtz free energy
F . Generally, F contains more information about a system than Z. Knowing the
Helmholtz free energy, any thermodynamical property can be derived from it. In general,
the compressibility factor Z can be expressed in terms of the Helmholtz free energy.
Therefore, we can express the equation of state in terms of F rather than Z. The
strength of this, is that all thermodynamic quantities are then given as derivatives in
temperature and density of F .

Later, in section 3.4, we will find expressions for the RDF at contact from F . In this
section, we will derive the relation between F and Z. We outline the derivation here,
but details can be found in standard textbooks on thermodynamics [39, 40].
The Helmholtz free energy is defined as

F = U − TS, (3.21)

where U is the internal energy (the potential energy) of the system, T is the temperature,
and S is the entropy. Inserting a standard definition for the internal energy [39], this
leads to an expression for the free energy, written in differential form as

dF = −SdT − pdV +
M∑
j=1

µjdNj . (3.22)

Here, p and V are pressure and volume, and µj is the chemical potential of particle j.
There is a total of M particles. dNj is a differential in the particle number – correspond-
ing to if we were to insert new particles to our system.
Rearranging, and assuming constant temperature and particle number (dT = dNj =

0), gives that the pressure is

p = −
(
∂F

∂V

)
T,N

=
ρ

V

(
∂F

∂ρ

)
T,N

. (3.23)

Now, we will express the pressure in terms of the reduced Helmholtz free energy, per
particle [24].

f :=
F

NkBT
(3.24)
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3.3. The equation of state

This reduced free energy is the quantity we will primarily use in the remaining text. It
is simply a redefinition, and using f instead of F does not change the physics in any
way. This gives the compressibility factor

pV

NkBT
≡ Z = ρ

(
∂f

∂ρ

)
T,N

, (3.25)

as a function of free energy, as required.

General Helmholtz free energy derivatives

More generally, we can express thermodynamical quantities as derivatives of F , which
take the form [4, 24, 25]

F̃nm =
ρm

Tn

∂n+mf

∂ (1/T )n ∂ρm
. (3.26)

In this notation, the compressibility factor is

Z = F̃01 =
p

ρkBT
= ρ

∂f

∂ρ
, (3.27)

as we have already proven. We will not make much use of the F̃nm derivatives in
this project. They are nevertheless highly noteworthy, as they are extensively used in
literature about LJ EOSs [4, 24, 25]. Such EOSs (expressed in terms of free energy) are
presented in section 3.3.4.

A remark about notation

In the context of Lennard-Jones equations of state, the symbol α is often used instead
of F to denote Helmholtz free energy. Here, we will use F exclusively. In addition,
there is often a large difference between notation used in different publications. To make
the F expressions as clear as possible in the following, we shall therefore strive to use
a consistent notation in every expression, unless convenience strongly compels us to do
otherwise. When explicitly discussing free energy expressions, we therefore – mainly –
give reduced Helmholtz free energy expressions f = F (ρ, T ), as defined in equation 3.24.
Furthermore, we will avoid rewriting the variables ρ and T to for example δ, τ or β,
even though this is commonly done in literature. This is to explicitly maintain clarity
and consistence between the equations. Thus, the expressions given in section 3.3.4 may
differ quite significantly from the original publications – though only by notation.

Lastly, note that the reduced Helmholtz free energy in Lennard-Jones units is F ∗

(total) or f∗ (per particle), defined as

f∗ =
f(ρ∗, T ∗)

ϵ
=

F

ϵNkBT
. (3.28)
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A remark about terminology

The term ”equation of state” is commonly used to reference the compressibility factor,
as explained above. However, in most of the publications about EOSs for the LJ fluid
considered here, the same term is used (somewhat loosely) to reference the Helmholtz
free energy instead. Some authors use the same term to describe both quantities, and
specify if necessary. Some use EOS only for one of them, be it Z or F .

We will attempt to make it as clear as possible which quantity we discuss, and use the
specific terms ”compressibility factor” (or reduced pressure), ”Helmholtz free energy”
(or just free energy), and their respective symbols F and Z if there may be any doubt.

The ”equation of state” term will be used when discussing the compressibility factor,
and when it is irrelevant which of the two we mean. For example, when discussing
publications about an EOS, it is not particularly relevant if the focus of said study was
F of Z (most studies give both), but when actually using the formulae, it is crucial to
mind the difference. We therefore use the term ”Thol EOS” to describe the free energy
expression of Thol [24] (see section 3.3.4), even though we in practice are more interested
in F than Z. When there is room for doubt, we also use the term ”EOS on Helmholtz
free energy form” – or some similar formulation – to refer to the free energy. This is to
maintain some consistency with the existing literature on which this work builds.

3.3.2. Theoretical, numerical and semi-numerical equations of state

In estimating the EOS (or free energy) and the virial coefficients, both theoretical and
numerical approaches are possible. Before we present actual EOS examples, it is useful
to briefly outline the difference. In the upcoming sections (3.3.3 and 3.3.4), we will
present examples of each type.

First, theoretical methods are equations derived from theory. The ideal gas law and
the Carnahan-Starling EOS (section 3.3.3) are examples of theoretical equations of state.

A numerical EOS is derived from simulation data. This can for example be done by
proposing some functional form, such as equation (3.19), and curve-fitting its parameters
to numerical estimates of Z. In section 3.3.4, we will see that this is very commonly
done in the case of the LJ fluid.

Semi-numerical approaches to EOS approximation are also common. This can involve
using some theoretical baseline, and adapting it with numerical correction factors.

3.3.3. Equations of state for HS fluids

Before studying the more complex Lennard-Jones fluid, it is useful to let the HS inter-
action be a starting point. In this section, we will present one widely used hard sphere
equation of state, namely the Carnahan-Starling (CS) EOS.

The Carnahan-Starling EOS is reported to give a precise prediction of the HS fluid
over a wide range of densities [8, 41]. The CS EOS [42] is theoretically derived, and is

ZCS =
1 + ξ + ξ2 − ξ3

(1− ξ)3
. (3.29)
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3.3. The equation of state

Recall that ξ is the packing fraction, defined in equation (3.20). The CS Helmholtz free
energy for hard spheres is [23]

f∗CS =
4ξ − 3ξ2

(1− ξ)2
(3.30)

3.3.4. Equations of state for Lennard-Jones fluids

As mentioned, no exact equation of state has been reported for the Lennard-Jones fluid.
Most available expressions are constructed from numerical data, or with numerical cor-
rections. They also typically contain a large number of fitted parameters [4]. Due to the
large number of available EOS expressions, a quick review is necessary. This section de-
scribes five relevant LJ EOSs – all of which are expressed as Helmholtz free energy. The
focus is to give a brief summary of their derivation, strengths and weaknesses. The orig-
inal papers give more details about this, along with actual derivations and tables of the
fitted parameters. Table 3.1 gives an overview of these EOSs, including their reported
validity ranges in T and ρ. Implementations of the EOSs, including all parameters from
the original publications, are available in the aforementioned GitHub repository1.

Table 3.1.: Validity ranges of the discussed free energy (usually referred to as equations
of state) expressions, as reported in the original publications. These numbers do not
take extrapolation into account, even though several of these EOSs aim to handle ex-
trapolations to high temperatures and densities. The Hess EOS contains one numerically
motivated factor, and has therefore been labelled ”semi-theoretical”, although it is close
to theoretical.

Author Year EOS-Type Density range Temperature range

Kolafa & Nezbeda 1994 semi-numerical 0 < ρ∗ < 1.25 0.68 < T ∗ < 10
Mecke et al. 1996 semi-numerical 0 < ρ∗ < 1.0 0.7 < T ∗ < 10

Hess 1999 semi-theoretical 0.1 < ρ∗ < 1.1 0.7 < T ∗ < 4
Thol et al. 2016 numerical 0 < ρ∗ < 1.08 0.661 < T ∗ < 9

Gottschalk et al. 2019 numerical 0.002 < ρ∗ < 1.41 0.4 < T ∗ < 25

There are several approaches to deriving an expression for the equation of state for
the LJ fluid. In Stephan et al. [4], 20 EOSs, derived with a variety of methods, are
presented and compared. Of these 20, five are briefly presented below. Four of these,
[22, 23, 24, 25], were chosen because they performed well in the meta study of Stephan
et al., and one, [26], was chosen for its simplicity, due to a lack of fitted parameters. We
here present the five selected EOSs. In section 6.1, our own numerical results will be
compared to these equations.

The following expressions are large and complex. Therefore, we omit the asterisks
on ρ∗ and T ∗, but maintain reduced units in every expression nevertheless. We denote
the free energy f∗ with asterisks as a reminder that the expressions do use LJ units.
Conversion to real units is a matter of insertion of the definitions of equation (3.15).

1https://github.com/jonasbue/MD_viscosity.git
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3. Theory

The Kolafa EOS

The EOS of Kolafa and Nezbeda [22] from 1994 is a widely used LJ EOS [4]. It is a
modified version of the Carnahan-Starling EOS (equation (3.29)) containing one hard-
sphere part, and one numerically fitted correction part. Kolafa and Nezbeda added a
20-termed power series to the CS EOS, and fitted 32 adjustable parameters to (mainly
MD) simulation data. They give the EOS on the Helmholtz free energy form. The
numerical quantities to which they fitted the EOS were pressure/compressibility factor,
and internal energy. The resulting equation has the form

f∗ = f∗
HS + e−γρ2ρT∆B2 +

j=6∑
j=2

i=4∑
i=0

Cij
ρ j

T i/2
, (3.31)

where γ and Cij are fitted parameters. ∆B2 = B2,LJ − B2,HS is the difference between
the second virial coefficient of the LJ and the HS fluid. These coefficients are also fitted
in the paper, to the functional form

B2 =
∑
i

Ci
1

T i/2
+ Cln lnT, (3.32)

with different coefficients Ci for each fluid. Note that other, newer computations exist
for these virial coefficients [25]. While there are 20 terms in this virial expansion, the
highest order term in ρ is j = 6.

The Mecke EOS

Mecke [23] (1995) used a similar method to Kolafa and Nezbeda, but with a different
corrective expansion series in ρ. The Mecke EOS also consists of a HS and a correction
part, expressed as Helmholtz free energy, and fitted to Z and U from Monte Carlo
simulations. The EOS has the form

f∗ = f∗
HS +

∑
i

ci

(
T

Tc

)mi
(

ρ

ρc

)ni

exp

[
pi

(
ρ

ρc

)qi]
, (3.33)

where ni,mi, pi and qi are data-fitted parameters. Tc and ρc are the critical temperature
and density for the LJ fluid, mentioned in section 3.2.3. There are 38 numerically fitted
parameters in total. The exponents ni of ρ are not given here, so we mention that this
f∗function has terms up to order O(ρ10).

The Thol EOS

Thol et al. [24] proposed an EOS in 2016 which does not build on a hard-sphere EOS,
but on the ideal gas EOS instead. The approach is otherwise similar to the procedures
for the above EOSs. Thol assumed that the EOS of an LJ fluid could be written as a
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3.3. The equation of state

series expansion in density and temperature, and correlated a total of 67 parameters to
MC simulation data. The resulting free energy has the form

f∗ = f∗
0 +

6∑
i=1

ni

(
ρ

ρc

)di (Tc

T

)ti

+
12∑
i=7

ni

(
ρ

ρc

)di (Tc

T

)ti

exp

[
−
(

ρ

ρc

)li
]

+
23∑

i=13

ni

(
ρ

ρc

)di (Tc

T

)ti

exp

[
−ηi

(
ρ

ρc
− ϵi

)2

− βi

(
Tc

T
− γi

)2
]
,

(3.34)

where ni, di, ti, li, ηi, βi, γi and ϵi are fitted parameters. f∗
0 is the Helmholtz free energy

of an ideal gas. The series is of order 5 in ρ. One difference between this EOS and the
previous two, is that Thol fitted the EOS to many more parameters than just the com-
pressibility factor and the internal energy. In total, nine different Helmholtz derivatives
were used, namely F̃00, F̃10, F̃20, F̃01, F̃11, F̃21, F̃02, F̃12, and F̃22.

The Gottschalk EOS

The largest EOS presented here is the Gottschalk EOS of 2019. Gottschalk postulated
an EOS similar to the Thol EOS (equation (3.34)), but with a virial expansion as a
starting point. The EOS therefore consists of two parts, a virial series with coefficients
Bi(T ); and a correction series with coefficients Ci(T ). Both parts form power series in
ρ, as in the three previous EOSs. The coefficients were fitted to MC simulation data of
the same nine quantities used in the Thol EOS. The full Gottschalk free energy has the
form

f∗ = f∗
0 +

6∑
i=2

ρi−1

i− 1
Bi(T ) +

16∑
i=7

ρi−1

i− 1
Ci(T ), (3.35)

where

Bi(T ) =

(
T

4

)− i−1
4

{
B̄SS

i +

ki∑
k=1

bi,k

[
exp (ci/

√
T )− 1

] 2k−1
4

}
, i ∈ {3, . . . 6}; and (3.36)

Ci(T ) =

(
T

4

)− i−1
4

{
C̄SS
i +

ki∑
k=1

ci,k

[
exp (di/

√
T )− 1

] 2k−1
4

}
, i ∈ {7, . . . , 16}. (3.37)

The parameters B̄SS
i , bi,k, ci as well as C̄SS

i , ci,k, and di are all fitted to data. In total,
the Gottschalk EOS has 167 such parameters, and is of order 15 in ρ. Again, f∗

0 is the
ideal gas free energy. For B2(T ), an exact analytical expression for the LJ fluid is used,
which is [25]

BLJ
2 =

√
2π2

3

e1/2T

T

[
I−3/4

(
1

2T

)
− I−1/4

(
1

2T

)
− I1/4

(
1

2T

)
+ I3/4

(
1

2T

)]
. (3.38)
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The Hess EOS

The final EOS which we consider here, is the Hess EOS of 1999 [26]. It is noteworthy for
having zero fitted parameters, making it significantly easier to implement. The Hess EOS
is a modified Van der Waals EOS, derived from the purely repulsive Weeks, Chandler,
Anderson (WCA) potential

uWCA(r) =

{
4ϵ
[(

σ
r

)12 − (σr )6]+ ϵ, r < 2
1
6σ

0, r > 2
1
6σ.

(3.39)

The WCA potential [43] is an LJ potential which is shifted upwards by ϵ and then cut off
at zero. This removes the attractive part without altering the softness of the potential.
The LJ potential can then be written uLJ = uWCA + udis, where udis is a ”distortion”
term. Hess then proceeds to compute the EOS for the WCA and the distortion potential
separately. Hess gives the EOS explicitly in pressure as well as free energy. As with the
above expressions, we will here use the free energy form

f∗ = f∗
WCA + f∗

dis

= T

{
ρBWCA

2 (T )

1− ρveff
+ 2

[
ρveff

1− ρveff

]2}
+ ρT

(
BLJ

2 −BWCA
2

)
,

(3.40)

where BLJ
2 and BWCA

2 are the second virial coefficients of the LJ and WCA fluid, respec-
tively. The first term of equation (3.40), fWCA, is a modified CS free energy, in which
the volume of the particles is replaced by an effective volume

veff(T
∗) =

πσ3

48

(
2

1 +
√
T ∗

)1/2

. (3.41)

This is just the volume of particles with diameter σeff instead of σ, as defined in section
3.2.4. We have given veff with asterisks on T ∗ to emphasise that we are still operating in
reduced units. The virial coefficient BLJ

2 is given by equation (3.38), and BWCA
2 is [44]

BWCA
2 ≈ 4π

√
2

6

(
0.19667T 2 + 10.56T + 1

)−3/24
. (3.42)

3.4. The radial distribution function

The radial distribution function is a useful tool in the study of many-particle systems.
It describes the density of the system, as a function of distance from some reference
particle within the system.
The RDF g(r) is the local density of the system at a distance r from the reference

particle, divided by the average density ρ. Assuming there are N → ∞ particles in a
system, at positions r0, r1, ..., we can mathematically define the RDF around a reference
particle r0 as

g(r) =
1

ρ

〈
N∑
i ̸=0

δ(r⃗ − r⃗i)

〉
. (3.43)
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This equals the average amount of particles within a spherical shell of radius r and
thickness dr. δ(r) is the Dirac delta function.

Assuming that the system is at thermal equilibrium, when r → ∞, g(r) approaches
1. This means that far away from the reference particle, the fluid simply has an average
density of ρ. Furthermore, assuming a repulsive potential, g(r) approaches zero for
r < σ. This is because overlapping particles have excess potential energy, which is
unlikely at equilibrium.
Of particular interest is the RDF at contact, g(σ). This is the radial distribution

function evaluated at the diameter of the particle, σ. It contains information about
the density of particles around one reference particle. This is linked to for example the
collision frequency, which affects the viscosity.

3.4.1. Radial distribution function of the Lennard-Jones fluid

In order to compute the viscosity, we need a value for the RDF at contact for the LJ
fluid, as explained in section 3.1.3. In this section, we will explain how to obtain this
value. The calculations in this section are original to this work and has not, to our
knowledge, been used for the LJ fluid before. The procedure has however been used for
other systems. In particular, Pousaneh and de Wijn [17] used this approach to get an
RDF at contact and an Enskog viscosity for a dipolar hard-sphere fluid. This is a major
motivation for this attempt to follow the same approach for the LJ fluid.
As for EOSs, no exact expression for the RDF of the Lennard-Jones fluid has been

published. Morsali et al. [45] has published a numerically correlated expression for g(r),
with 11 adjustable parameters. This RDF was derived in a similar fashion as the free
energies of section 3.3.4. The Morsali RDF is a functional

g(r∗, T ∗, ρ∗) =


1 + (r∗)−2 e−(ar∗+b) sin(cr∗ + d)

+ (r∗)−2 e−(gr∗+h) cos(kr∗ + l),
r > 1

s e−(mr∗+n)4 , r ≤ 1,

(3.44)

where {a, b, c, d, g, h, k, l,m, n} are all functions of density and temperature. Their ex-
pressions contain 65 adjustable parameters in total, which Morsali et al. fitted to simu-
lation data. For the full expression, we refer to the original source [45].
Another path to an RDF for the LJ fluid, is to derive it from the Helmholtz free

energy. This will not give the full g(r), but the RDF at contact, g(σ). As we saw in
section 3.1.3, g(σ) – and not g(r) – is part of the Enskog expression for viscosity, and is
therefore just as useful in this context.
The RDF at contact is related to the compressibility factor through the relation [12,

17, 46]

Z = 1 +
⟨Uint⟩
NkBT

+
2πρ

3
σ3g(σ), (3.45)

where Uint is the total internal energy of the system, as used in equation (3.21). Both
Z and Uint can be expressed in terms of Helmholtz free energy, meaning that, given an
F , we know the RDF at contact.
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The internal energy is given by the Helmholtz free energy derivative [17, 24]

⟨Uint⟩ =
−1

β

∂F

∂β
. = −T 2∂F/T

∂T
. (3.46)

We will prove this relation. To do this, we need to introduce the partition function

Q :=
∑
i

e−Ei/kBT , (3.47)

where Ei is the energy of a state j. The partition function is a standard tool in statistical
physics, so we refer to (for example) [35, 40] for details about it.

Now, we can express the probability pj of our system being in state j [40],

pj =
e−Ej/kBT

Q
. (3.48)

Knowing pj , the expected energy of the system is

⟨E⟩ = ⟨Uint⟩ =
N∑
j=1

pjEj

=
1

Q

N∑
j=1

Eje
−Ej/kBT

=
1

Q

N∑
j=1

Eje
−βEj ,

(3.49)

where we use β = 1/kBT to simplify notation. Now, we use that d ln(x)/dx = 1/x, and
reformulate to

⟨Uint⟩ = − 1

Q

(
∂Q

∂β

)
= −∂ lnQ

∂β
. (3.50)

We now use the Helmholtz free energy, which can be expressed as [40]

F = U − TS = −kBT lnQ = − lnQ

β
. (3.51)

Inserting lnQ = −βF in equation 3.50 gives the internal energy as a function of free
energy

⟨Uint⟩ =
∂βF

∂β
= −T 2∂F/T

∂T
. (3.52)

which is precisely what we need. Moving on, we insert the definition of the reduced
Helmholtz free energy f , and get that

⟨Uint⟩ = −NkBT
2 ∂f

∂T
. (3.53)

28



3.5. Viscosity of the Lennard-Jones fluid

Rearranging equation (3.45) now gives an expression for the RDF at contact,

g(σ) =
3

2πρσ3

[
Z − 1− ⟨Uint⟩

NkBT

]
=

3

2πρσ3

[
ρ
∂f

∂ρ
− 1 + T

∂f

∂T

]
.

(3.54)

If the Helmholtz free energy is known, we can obtain an expression for the RDF at
contact for the system.

3.5. Viscosity of the Lennard-Jones fluid

Armed with the free energies of section 3.3.4, as well as equation (3.54), we can obtain an
expression for the Lennard-Jones RDF. Thus, we know all entries of Enskog’s equation
for viscosity (3.3) for the LJ fluid.
Enskog theory requires short-ranged interactions (see section 3.1.1). As figure 3.2

shows, this is not the case for the LJ fluid. However, the LJ potential is very small
compared to ϵ at long ranges. Within certain limits, it is very plausible for Enskog
theory to give reasonable predictions also for the LJ fluid.
The Helmholtz free energies of section 3.3.4 all have one thing in common. They consist

of two parts, one much simpler than the other. The Thol and Gottschalk equations use
an ideal gas term F 0 plus a residual term F r. Kolafa and Mecke use a hard sphere
term FHS plus a residual term F r. Lastly, the Hess EOS has a purely repulsive (but
soft) WCA term, and a residual ”distortion” term. In every case, the residual term is
a perturbation supposed to capture the behaviour that separates the LJ potential from
simpler potentials. When using these EOSs (or rather, free energies) in the Enskog
equation, we are treating the LJ potential as a perturbation of a simpler potential (HS,
ideal gas, or WCA).
In the preceding sections, we have achieved an equation for the viscosity of the LJ

fluid – which is an out-of-equilibrium property – from the Helmholtz free energy, which
is an equilibrium property.
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4. Molecular dynamics

Molecular dynamics (MD) is a type of computer simulation in which a many-particle
system is modelled through a large number of individual particles – usually referred
to as atoms or molecules – that obey the Newtonian equations of motion. This gives
deterministic simulations, as opposed to stochastic Monte Carlo (MC) simulations.
Monte Carlo simulation is very useful to study systems at equilibrium, but the common

Metropolis MC methods are not designed to reproduce out-of-equilibrium mechanics. We
will not consider MC simulation any further in this project.

4.1. A simple description of an MD simulation

To explain the principles of molecular dynamics, we describe how a very simple MD
simulation works. Every element in this simple simulation will be present in all MD
simulations, though more advanced features are usually necessary for practical purposes.
To create an MD simulation, we must keep a list of coordinates, and a list of velocity

vectors. These lists give the positions and velocities of the particles that we simulate,
and are updated when the particles move. To start the simulation, we initialize the
system by giving every particle a unique position, so that they do not overlap1. These
positions are typically limited by the borders of some region, typically a box. The
particles are also given initial velocities. The velocities can be assigned corresponding
to some distribution around the desired temperature T ∝ ⟨v2⟩/kB. Then, the main part
of the simulation can begin. This is done in three steps:

1. The force acting on every particle is computed;

2. the particle positions are updated; and

3. the particle velocities are updated.

Every update in particle positions/velocities corresponds to an increase in time, by a
small finite time step dt. This is done by integrating the Newtonian equations of motion.
The integral is most commonly – and often most efficiently – solved with the velocity
Verlet algorithm [19].

The MD simulation runs by repeating the steps above any number of times, until a final
time tf is reached. The positions and velocities of the particles are updated according to
Newton’s classical equations of motion. With some optimization, this relatively simple
algorithm allows computational modelling of many-particle systems with millions of
particles.

1There are several ways to create initial positions, but the exact method is not important in this context.
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4.2. Details about molecular dynamics

While the algorithm presented in section 4.1 produces a simple simulation of a physical
system, some details should be mentioned. This section describes measures and functions
which will make an MD simulation more efficient and more faithful to the laws of physics.

Powerful and versatile MD software exists and is readily available for use. Some such
programmes are LAMMPS [5], GROMACS [47], DL POLY [48] and NAMD [49]. These
have a diverse set of functionalities, and are parallelised to be highly efficient at runtime.
These programmes can take care of many for the following details.

4.2.1. Periodic boundary conditions

An MD simulation can only handle a finite number of particles. While this number
can be large (more than O(106) [50]), the system will be nowhere close to macroscopic
orders of magnitude (O(1023)). However, we can improve this with periodic boundary
conditions. When a particle crosses a boundary of the simulation cell (the box), it
reappears on the other side of the cell. In these boundary conditions, two opposite edges
of the box represent the same place. In this way, we can approximate a system of infinite
size with a finite amount of particles [19].

While the system can behave as if spatially infinite, there is nevertheless a finite
number of particles. If there are only a few particles spread out in a relatively large box,
then the particles are likely to reach the edge of the box instead of colliding with each
other. If this is the case, particles are not uncorrelated at far sides of the simulation
cell. Such systems will show certain nonphysical behaviours, and might fail to reproduce
expected results. We can avoid this by making sure that the correlation length – the
distance at which particles are likely to be uncorrelated – is much shorter than the sides
of the box.

The fewer particles there are in a system, the longer the correlation length will be,
because particles are less likely to cross paths. Therefore, this type of finite size effect
is relevant at low densities. The issue can be avoided by increasing the particle number
at low densities. This, however, comes at a price of longer computation times.

4.2.2. Thermostat

The temperature is usually not constant in a simple MD simulation. Even when trying to
simulate a system at constant temperatures, the temperature will not remain perfectly
constant. One reason for this is that if two particles overlap, they will bounce back
due to the high potential energy they share. If we model such a situation with finite
time steps, the particles may end up slightly closer to each other than they would on
a continuous timeline. This gives them a slight increase in potential energy, compared
to the kinetic energy they had going into the collision. The particles will then leave the
collision with more energy than they had to begin with. This causes a small increase in
temperature. If many collisions happen, the temperature ”crawl” will be noticeable.

To counter the temperature increase, we can include a thermostat in the simulation.
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The thermostat is an algorithm that controls the average kinetic energy of the particles.
We can do this in simpler and more advanced ways, where the more advanced methods
have a stronger theoretical foundation. We will not discuss the details of how the ther-
mostats work here, but we give an overview of the most common methods. More details
about thermostats in MD are given in [19].

The simplest way to thermostat an MD simulation, is to compute the total kinetic
energy (temperature) of the system, and reduce or increase it by some factor to get
the desired temperature. This means (nonphysically) speeding up or slowing down the
particles, to mimic the effect of a heat bath in full contact with the system. This should
typically be done over multiple steps, rather than abruptly. We can then apply the
thermostat at periodic intervals, to maintain a constant temperature.

A more subtle example of implementing a thermostat is the method of Andersen [51]
and the Berentsen thermostat [52]. In these algorithms, the system is connected to an
external heat bath of a desired temperature, and particles can ”collide” with this heat
bath. Collisions happen at random, and the particle will gain a speed according to some
probability distribution around the desired temperature. These thermostats introduce
a stochastic process – a Markov process – to the simulation. The simulation is then no
longer deterministic, although they will give the same results if pseudo-random number
generators are used with the same seeds.

Another group of thermostats are derived from the Lagrangian of the system itself.
This group includes the Nosé-Hoover thermostat [19, 53, 54, 55], and the CSVR ther-
mostat [56], and the Hamiltonian-derived CSLR thermostat [57]. These thermostats are
theoretically more complex, but are deterministic due to the fact that they are derived
from Lagrangian dynamics.

4.2.3. Handling infinite potentials

For large collections of particles, an infinite-ranged interaction potential takes a very
long time to compute. With periodic boundary conditions (i.e. an infinite system size),
a näıve computation of the inter-particle interaction takes infinitely long time. There are
methods to solve this, see [19, chapter 12]. In the case of the Lennard-Jones potential,
however, it is appropriate to simply cut off the potential at some finite distance rc. Then,

ucut(r) =

{
u(r), r ≤ rc

0, r > rc.
(4.1)

where u(r) is our original interaction potential. This requires that the potential value is
negligible at rc, and that a tail correction is added, to correct for the missing potential
energy. Furthermore, MD simulations of the type discussed in 4.1 do not handle discon-
tinuous potentials. Therefore, we shift the cut-off potential ucut to make it zero at rc.
Correcting equation (4.1), the cut and shifted interaction potential is now

ucut-shifted(r) =

{
u(r) + u(rc), r ≤ rc

0, r > rc.
(4.2)
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In terms of potential values, the cut-and-shift modification is small. Yet, it makes the
MD simulation much more manageable.

4.2.4. Error estimates

To obtain any quantity from an MD simulation, we can take (or compute) the instan-
taneous value of that quantity from one time step of the simulation. Most quantities in
MD are fluctuating, however. To gain a good estimate of their value, we find the average
value from multiple time steps. Now, we also require an estimate of the uncertainty of
this average. We obtain such an error estimate by block averaging. This section briefly
explains block averaging. More details are given in [19].
Imagine that we have an MD simulation, and wish to compute the pressure p from it.

As mentioned, we compute and average pressure over n time steps,

p̄ =
1

n

n∑
i=1

pi, (4.3)

where pi is the pressure at time step i. If the time steps i are adjacent, all pressures pi will
be of (almost) exactly the same value, because the system is in (almost) the exact same
state. These time steps are correlated. If we use only correlated steps in our average, the
value p̄ will certainly gain a value close to the pressures pi that were included, but not
necessarily to the true pressure. Furthermore, since the pi are so similar, the variance

σ2
p =

1

nB

n∑
i=0

(pi − p̄)2 (4.4)

will be small. This means we have a poor estimate of the pressure p. To improve this
estimate, we compute several average values called block averages. Consider an average
pressure over a finite time tB

p̄B =
1

tB

∫ tB

0
A(t) dt =

1

nB

nB∑
i=1

pi, (4.5)

where nB is the number of time steps in tB. The variance of the block is

σ2
B =

1

nB

nB∑
i=0

(pi − p̄B)
2. (4.6)

To remove the correlation between different time steps, we must now find a good value
of tB. With increasing values of tB, the variance increases, until tB is much larger than
the correlation time tc. When tB >> tc, the variance becomes a constant. Hence, if we
know the correlation time of our simulated system, we can simply pick a block length
tB. Omitting some details, we can estimate the correlation time by finding out at what
block length the expression

tc ≃ P (tB) := tB
σ2
B

⟨p2⟩ − ⟨p⟩2 (4.7)

becomes constant [19].
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4.3. Viscosity in MD simulations: The Müller-Plathe algorithm

4.3. Viscosity in MD simulations: The Müller-Plathe
algorithm

Müller-Plathe [6] has described an algorithm to estimate the viscosity of a fluid in an MD
simulation. The basic idea is to create a velocity gradient in the simulated system, so a
momentum current associated with viscosity arises. Then the viscosity can be computed
from the momentum current. This section describes the Müller-Plathe algorithm, and
how the viscosity is extracted from the simulation data.
Assume we have an MD simulation of a box containing N particles. The box has edges

of length Lx, Ly, and Lz, where Lz > Lx = Ly. The box also has periodic boundary
conditions, so a particle that reaches the edge of the box will continue its trajectory on
the other edge. Now, we divide the box into two regions – we call them slabs. The slabs
lie on top of each other, separated by a plane at height z = Lz/2.
There are now two borders between the two slabs. One at z = Lz/2, and one at

z = Lz, which is the same height as z = 0, due to the periodic boundary conditions. We
wish to control the velocity of the particles in these two borders. To do this, we divide
the box further into m chunks. Two of these chunks lie at the slab borders, z = 0 and
z = Lz/2. In the z = 0-chunk, we wish to make the average velocity of the particles
as small as possible in the x-direction. In the z = Lz/2-chunk, we wish to make the
velocity as large as possible in the x-direction. To do this, we will perform a repeated
momentum swap, as follows.
In the z = 0-chunk, find the particle with the largest (most positive) velocity com-

ponent vx in x-direction. In the z = Lz/2-chunk, find the particle with the smallest
(most negative) vx-component. Once a particle in every chunk is selected, swap their
momenta px in the x-direction. Now, the particle in the z = 0-chunk is moving along
the −x-direction, and vice versa for the particle in the z = Lz/2-chunk. Next, repeat
this process at regular intervals through the MD simulation. With time, this will cause
a steady velocity profile in the box, positive around Lz/2, and negative around z = 0
and z = Lz. The velocity profile is illustrated in figure 4.1.
The momentum swap process is entirely unphysical. However, its consequences are

not. As stated in 3.1.3, viscosity is associated with a transport of momentum, as a
consequence of a velocity gradient in a system. The velocity gradient in x-direction,
imposed on the system by the Müller-Plathe algorithm, causes a momentum current Jz
in the z-direction. This current is a physical response to the swapping, and its magnitude
is proportional to the viscosity of the system

Jz = −η
∂ux
∂z

, (4.8)

where ∂ux/∂z is the slope of the velocity profile that we created.

4.3.1. Computing the viscosity

From the MD simulation, we get position and velocity data of every single particle. This
allows us to compute the value of Jz and ∂ux/∂z, and hence the viscosity.
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−Vx 0 Vx

0

Lz/2

Lz

Figure 4.1.: The simulation cell, and velocity profile, of the Müller-Plathe experiment.
The figure shows how the velocity increases linearly as z approaches Lz/2, and decreases
as z approaches z = 0, z = Lz. Around the edges of the cell (z = 0, Lz) and in the
middle (z = Lz/2), we perform momentum swaps at regular intervals to create the
velocity profile. One simulation cell is shown, as well as the periodicity of the box. The
region above the box is the same region as seen below the box. The figure is a modified
version of a corresponding figure in [8].

The momentum flux Jz is the z-momentum Pz that crosses through a plane perpen-
dicular to the z-axis, divided by the area of that plane, per time unit

Jz =
∆Pz

2A∆t
. (4.9)

The factor 2 comes from the fact that the momentum flows in two directions, due to the
periodic boundary conditions. The area of the box is known; A = LxLy.

Since the velocity gradient is linear, the momentum current Jz has the same magnitude
across the entire box. Now, we assume that the system is in steady state – meaning that
the velocity profile is constant in time. Then, the momentum transferred in z-direction
due to viscosity, is the same as the momentum transferred between the chunks in the
Müller-Plathe algorithm. The value of Pz is therefore just the total momentum trans-
ferred through the swapping process. Furthermore, in steady state, Pz grows steadily
with time

∆Pz

∆t
→ Pz

t
=⇒ Jz =

Pz

2At
. (4.10)
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4.3. Viscosity in MD simulations: The Müller-Plathe algorithm

To obtain the value of Jz, all we need is the final value of the total transferred momentum
Pz, and the final time tf .

The slope of the velocity profile ∂ux/∂z can be computed by a linear regression. Hence,
the viscosity of the simulated fluid is

η = − Pz

2At

(
∂ux
∂z

)−1

. (4.11)

4.3.2. Error estimate

The only source of error in the Müller-Plathe method comes from the regression of the
velocity gradient. The slope ∂ux/∂z is found by linear regression, and the error estimate
associated with it is given by the regression. With a standard error estimate, we can use
Gauss’ law of error propagation to get an uncertainty for the full viscosity expression.
The standard deviation ∆f of a function f with variables x1, . . . xn is

∆f(x1, . . . , xn) =

√(
∂f

∂x1
∆x1

)2

+ . . .+

(
∂f

∂xn
∆xn

)2

, (4.12)

where ∆xi is the standard deviations of the variables xi. To simplify the notation, we
now use ∂z := ∂/∂z to denote differentiation in the coordinate z. Given equation (4.12),
the error of the viscosity, as obtained by the Müller-Plathe method, is

∆η =
∂η

∂(∂zux)
∆(∂zux) =

Px

2tA

(
∂ux
∂z

)−1

∆(∂zux) = η∆(∂zux). (4.13)

Here, ∆∂zux is the standard error of the linear regression of the velocity slope. With
the error estimate included, our expression for the numerical viscosity becomes

η = − Pz

2At

(
∂ux
∂z

)−1 [
1±∆

(
∂ux
∂z

)]
. (4.14)

To reduce the error in the viscosity estimates, we can increase the number of particles
and the simulation time tf . The former measure will provide better velocity statis-
tics, and the latter will reduce the impact of statistical fluctuations in the estimated
quantities.
We now have a way to estimate viscosity in an MD simulation of a fluid. In chapter

5, we will describe how we set up the simulations.
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A large number of MD simulations have been performed, in order to estimate the vis-
cosity of an LJ fluid. Next, the results of the simulations were compared to the viscosity
expressions which were explained in section 3.5. The resulting viscosity estimates are
presented in section 6. This section describes choices made in the simulation setup, and
tests to ensure that the simulations were working as expected.

5.1. Simulation setup

In the simulations, we used the Müller-Plathe algorithm of section 4.3 to create a velocity
profile, and thereby compute the viscosity. The simulations were performed for densities
0.025 ≤ ρ∗ ≤ 0.5 and temperatures 1.3 ≤ T ∗ ≤ 4.0. All other parameters (ϵ, σ, . . .)
remain constant. Figure 5.1 shows all the points in (ρ∗, T ∗)-space at which a computation
was performed. The simulated systems contain N = 3000 particles, mass m = 1 and
diameter σ = 1. For low-density systems with ρ < 0.1, the particle number was increased
to N = 6000. This was done to reduce the finite-size effects which were mentioned in
section 4.3.

The MD simulations have some fluctuations in temperature, which is not unusual
even with a thermostat. By inspection of the LAMMPS output, a simulation with
temperature set to T = 2 will have fluctuations in temperature between T = 1.95 and
T = 2.05. This is why T was incremented in steps of ∆T = 0.1. The density was
incremented in steps of ∆ρ = 0.05, except for when ρ < 0.1, where ∆ρ = 0.025. The
reduced step length was intended to increase precision in the region where simulations
are more vulnerable to finite size effects.

The LJ potential was cut off at rc = 4.5σ. The cut-off distance was selected by
running a small number of simulations with different values of rc. These test runs were
then assessed by their ability to reproduce the expected EOSs of section 3.3.4. Around
4.5σ, we found that an increase in the cut-off distance did not contribute to more precise
simulation results. At the same time, increasing the cut-off to 5σ and beyond massively
slowed down the simulations.

The fluids are first initialized in a random state and equilibrated over teq = 1000
reduced time units. Then, the Müller-Plathe algorithm is applied to the fluid system,
imposing a velocity profile and a shear stress on the fluid. This is done over tvisc = 4000
reduced time units. The time step length was dt = 0.001, so the simulations lasted for
5 · 106 time steps.

The simulations were all done using the CSVR thermostat (see section 4.2.2) [56]. In
the equilibration period, t ≤ teq, a relatively low damping constant of 100 was used, to
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Figure 5.1.: The values of packing fraction ξ and temperature T ∗ used in the simulations
were distributed in a grid, as shown in the figure. Every circle represents a point in
(ξ, T )-space. The critical temperature Tc ≈ 1.311 is shown as a dashed line. Reduced
units are used.

reduce the equilibration time. While the Müller-Plathe algorithm was running, when
t > teq, a high damping constant of 10 000 was used. This was done to reduce the impact
of the thermostat on the simulations, while still avoiding a temperature increase due to
the finite time steps.

5.1.1. Simulation tests

Before viscosity computations are performed, we need to ensure that the simulations
work correctly. Several tests were done to ensure that the simulations behave as expected,
and that they reproduce the behaviour of a physical system. This gives an assurance
that the simulations are reliable. This section describes the tests.

First, we study the simulated systems at equilibrium, to check that they agree with
existing theory. The simulations were compared to the EOSs from section 3.3. The
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0 300 1,000 1,200

Create box

Create particles

Minimize energy

Equilibration

Start sampling

End equilibration

Start MP algorithm

Start sampling

t∗
5,000

End

Figure 5.2.: A simple timeline showing the different steps of the simulation. The system
is created and initialized with randomly placed particles. The potential energy is then
minimized, so that particles do not overlap. Then, the system is equilibrated for teq =
1000 time units. After equilibration, the Müller-Plathe algorithm runs for tvisc = 4000
time units. This induces a velocity profile in the system, as shown in figure 4.1.

RDFs at equilibrium were also plotted to assert that their shapes were as expected. The
RDF at contact was compared to the RDF of Morsali et al. [45].

It is useful to compare the equilibrium state of our simulations to equations from
literature, but simulation data of previous work provides an even better test. Thol et al.
[24] provides some simulation results for the compressibility factor of the LJ fluid. Our
simulations were tested against these data.

Once the simulations ability to produce physical equilibrium states has been verified,
we can proceed to evaluate the viscosity computations. As mentioned in section 4.3,
there are a few criteria that must be met for the Müller-Plathe algorithm to work. Most
importantly, the velocity profile in the box must be linear. This was tested simply by
plotting the velocity data, and then visually inspecting the curves.

5.2. Data analysis

Analysis of the simulation output follows the procedures described in chapter 4, but
some choices were made in the process. We briefly explain them here.

The simulation output contains data for a large number of time steps. In the equili-
bration phase, the earliest of these time steps correspond to non-equilibrated states. In
the Müller-Plathe phase, early time steps correspond to states without a steady state
velocity profile. To avoid systematic error, the first 30 % of time steps were therefore
discarded.

Next, measures were taken to avoid sampling correlated time steps. In computing
equilibrium quantities, block averaging was implemented as described in section 4.2.4.
In the Müller-Plathe phase, error estimate comes from the linear regression, and block
averaging is not necessary. However, care was taken to avoid including correlated time
steps in the simulation. Therefore, sampling was only done every 3 time units (or every
3000th time step).
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Velocity profiles are computed by linear regression, from the z coordinates and vx
components of every single particle, at the sampled time steps. Since non-physical
momentum swaps take place in the z = 0 and z = Lz/2 chunks, these are discarded from
the regression analysis, to avoid systematic error due high velocities in these chunks. The
regression analysis therefore samples only the regions where particle momenta are not
swapped by the Müller-Plathe algorithm.

5.3. Viscosity

In section 3.5, we discussed how to obtain viscosity expressions from the Helmholtz
free energy. For each of the five Helmholtz free energies in section 3.3.4, as well as the
Carnahan-Starling F , we compute the compressibility factor and the internal energy.
From these, we compute an RDF, and use this in Enskog’s equation for the viscosity.
This gives us six different viscosity expressions.
We assess each of these expressions, not only by the viscosity precision but also the

ability of the free energy functions to predict the compressibility factor. After assessing
the viscosity expressions, we attempt to expand our model by introducing a new param-
eter, which is numerically fitted to the data. We detail this process, and its motivation,
in section 6.4.1.
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This chapter presents the results of the LJ simulations, and compare them to the ex-
pressions from chapter 3. First, we show that the simulations reproduce the known
equilibrium properties of LJ fluids. Next, we assert that the simulations behave as re-
quired in chapter 5. We then proceed to compare the viscosity results for the simulated
fluids to the viscosity expression presented in chapter 3. We also attempt to improve the
viscosity expressions by introducing an empirical, physically motivated fitting parameter.

This chapter contains several large figures. A small summary of how to read them
can therefore be helpful. Most figures come in a two-column format, used throughout
the chapter. In these figures, the left column shows the ”true” value of the plotted data,
and the right column shows the same data, normalized by one of the theory functions.
Often, we normalize by hard-sphere functions, to illustrate the difference between LJ and
HS. In these figures, point markers show simulation results, and curves show predictions
from theory.

6.1. Compressibility factor

First of all, we present plots of the compressibility factor for the simulated systems. The
simulation compressibility factors are compared to the predictions for the Lennard-Jones
fluid, which are derived from the Helmholtz free energies of section 3.3.4. Both numerical
and theoretical Z-values are shown in figure 6.1 and 6.2. The former of which shows
Z(ξ), and the latter shows Z(T ∗). In the left column of these figures, we see the value
of the compressibility factor. In the right column, the same values are divided by the
hard-sphere Carnahan-Starling compressibility factor, equation (3.29). This normaliza-
tion is intended to make the curves more distinguishable, and simultaneously to clearly
illustrate the difference between the HS and LJ theory. This should give a relatively
clear indication of how well both the HS and the LJ equations do at explaining the
behaviour of the LJ fluid.

In figure 6.3, we see the internal energy of the simulated systems. As with the Z plots,
the figure includes the internal energy as obtained from the free energies of section 3.3
as well. We have omitted the internal energy corresponding to the CS EOS here, since
hard spheres (by definition) have no internal energy – they cannot overlap. Hence, we
have normalized the content in the right column of plots with the Thol free energy in
the absence of a hard sphere curve. This has consequences for the uncertainty, which
appears very large for low values of UThol. Also, because U is negative for all values of
ξ, the right column contains negative values as well. This is done so that the largest U
is at the top in both columns.
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Figure 6.1.: Compressibility factor of the simulated systems (dots), compared to the
equations of state from section 3.3 (curves). In the left column, the compressibility factor
Z is show. In the right column, all values are divided by the hard sphere Carnahan and
Starling compressibility, labelled ZHS. The values are plotted as functions of the packing
fraction.
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Figure 6.2.: Compressibility factor for the simulated systems (dots), compared to the
equations of state from section 3.3 (curves). The values are plotted as functions of
temperature. In the left column, the compressibility factor Z is shown. In the right
column, all values are divided by the Z derived from the Thol Helmholtz free energy. This
expression is used instead of Carnahan-Starling, because hard spheres are temperature
independent, and because visual inspection indicates that Thol is performing best.
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Figure 6.3.: The internal (potential) energy U∗ from simulations (dots), compared to
the internal energy from the Lennard-Jones Helmholtz free energy. Hard spheres have
no internal energy (by definition), so the CS expression is not included. The values are
shown in the right column. In the left column, all values are normalized by the internal
energy from the Thol F , multiplied by −1. The sign is flipped in the right column, so
that the largest values are largest in both columns, to increase readability. Reduced
units are used.
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Figure 6.4.: The radial distribution function of three simulated systems, for ξ = 0.3
at T ∗ = {1.5, 2.5, 3.5} (coloured in black, blue and red, respectively), shown in solid
lines. For each curve, the corresponding RDF curve from the Morsali RDF, is given as a
dashed line. The numerical RDF is computed at discrete intervals of 0.015σ. A vertical
line to mark r∗ = σ = 1 is included, as a reference to the steep slope of the RDFs.

6.2. Radial distribution function

Next, we take a look at the RDF of the simulated systems. There are two relevant
approaches to this: We can study the RDF at contact (as a function of for example
density), or the full RDF of r∗. The RDF at contact affects the Enskog viscosity more
directly, but the RDF of r∗ is a useful check that the system behaves as expected.
As a physicality check, we start with g(r∗), shown in figure 6.4. This figure shows the

RDF of three simulated systems as curves. For comparison, the Morsali RDF is plotted
alongside the numerical RDFs in dashed lines.
Next, figure 6.5 shows the RDF at contact, as a function of ξ, for three different

temperatures. The format of this figure is the same as the compressibility factor figures
that we presented earlier. Some things are important to note here. The numerical g(σ)
in this figure is defined as the maximum value of g(r∗), and not the value at r∗ = σ.
This is the same definition as used in [8, 17].

6.2.1. Definition of the numerical RDF at contact

With soft particles, the meaning of ”contact” is not immediately clear. Hard spheres
are in contact when separated by a distance r∗ = σ = 1, but this is not necessarily
where soft particles actually ”feel” the effect of a collision. Energetic particles may get
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Figure 6.5.: The RDF at contact as a function of density, for temperatures T ∗ =
{1.5, 2.5, 3.5}. The dots represent values from simulations, and the lines represent
values from the free energy functions, as well as the numerically correlated RDF of Mor-
sali et al. [45]. The numerical values in this figure are the peak values of g(r∗). The left
column of figures shows the RDF values, and the right column shows the same values
normalized by the HS prediction. Reduced units are used.
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much closer than σ, and particles that have close to no energy may stick together at
r∗ = 21/6σ.

In figure 6.5, we used the peak value of the full RDF as our RDF at contact. However,
defining the RDF at contact as max[g(r∗)] is not the only option. Considering that
hard-spheres have an effective diameter of one, it is relevant to define the numerical
RDF at contact as g(r∗ = σ = 1), as a comparison. We name this definition g(1), to
separate it from the previous one. We can mention that for soft LJ spheres, there is
no physical reason that distinguishes r∗ = 1 from other radii, but it is nevertheless a
convenient benchmark value.

More definitions are possible still. For non-zero temperatures, soft particles tend to
overlap. To describe this, the effective diameter σeff was introduced in section 3.2.4. The
effective diameter represents a natural point at which to define ”contact”. This leads
to another definition of the RDF at contact, which we name g(σeff). In section 3.2.4,
we introduced both an upper and a lower bound for the effective diameter. Even at low
temperatures, the difference between the definitions was smaller than the resolution of
our numerical RDF. In other words, no significant difference was bound between the two
definitions. We therefore use only the lower bound – which in practice is equivalent to
the upper in the present cases.

The last definition of the RDF at contact was already explored in section 3.4.1. This is
the RDF at contact obtained from the Helmholtz free energy (or directly, Z and U) with
equation (3.54). Due to the lack of a point at which this RDF definition is evaluated at,
we denote it as the functional g(F ) – g as a function of the Helmholtz free energy. This
to distinguish it from the remaining expressions.

We explore these four definitions of g(σ) in figure 6.6. Here, the point markers rep-
resent different definitions of g(σ). Some of the curves (RDFs derived from the free
energies of Gottschalk, Hess and Kolafa) are also omitted in this figure, to make it more
readable. Note that g(F ) does not give us any new information about the systems here,
since the numerical Z and U match the Thol-based functions so well in figure 6.1–6.3, it
is no surprise that g(F ) does as well. We include it to make the four definitions explicitly
visible.

We will discuss the definition of the RDF at contact further in chapter 7.

6.3. Velocity profiles

One last verification of the simulations is necessary before we move on to the viscosity.
The Müller-Plathe algorithm strictly requires that the velocity profile in the system be
linear. Figure 6.7 shows the time averaged velocity for 18 chunks of the simulation cell.
The bottom and middle chunk z = 0 and z = Lz/2 are where momentum swaps are
happening. These chunks are excluded from the regression analysis, and hence from the
plots as well. Additionally, regression lines for the velocities are also shown in the figure.
Recall form section 4.3 that the slope of these lines are used to compute the viscosity. A
steeper velocity profile is directly implying a higher viscosity. Three simulations, each at
temperature T ∗ = 1.5 with varying densities are included in the figure. Note that the y-
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Figure 6.6.: The RDF at contact, for simulated systems (point markers) as well as
from several free energy functions, as defined in equation (3.54) (curves). Here, several
definitions of the numerical RDF at contact is included. The black filled circles are
the maximum value of g(r∗), as used in figure 6.5. The empty circles represent the
RDF at r∗ = σ = 1. The triangles represent the RDF evaluated at σeff, which is
where uLJ(σeff) =

1
2kBT . The crosses denote the RDF obtained from Z and U from the

simulations, computed with equation 3.54. Reduced units are used.50
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Figure 6.7.: Velocity profile in the simulation cell, extracted from three simulations,
where T ∗ = 1.5 and ξ = {0.15, 0.4, 0.5}. The dots show the time average of the
velocities in every chunk. The lines come from linear regression of the velocity points.
Along the y-axis is the z-coordinate, the height of the particles within the box, divided
by the total box height Lz. A larger version of the bottom subplot (ξ = 0.5) is included
in appendix A, figure A.2.

axis shows the z-coordinate, and the x-axis shows the velocity component in x-direction.
All three subfigures share a common x-axis, making the profiles easier to compare. Some
additional figures are included in appendix A. Figure A.2 shows a larger version of the
ξ = 0.5 figure. Figure A.3 shows the velocity profile for three different temperatures,
T ∗ = {1.5, 2.5, 2.5}, at the same density ξ = 0.4. These last figures show the same
qualitative behaviour as figure 6.7.

6.4. Viscosity

We can now move on to present the viscosity of the simulations, and compare them
to the Enskog expression for the viscosity, obtained from the free energy functions of
section 3.3.

Figure 6.8 and 6.9 show the numerical viscosity of the simulated LJ fluids, as functions
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of temperature and packing fraction respectively. The structure of the figures is the
same as earlier, with the left column normalized by the hard-sphere Enskog viscosity
expression.

Lastly, we present another way to visualize the viscosity estimates. Figure 6.10 shows
grids of all simulation runs, similar to the grid from figure 5.1. Here, every cell of the grid
is coloured according to the discrepancy between the Enskog viscosity and simulation,
defined as

∆(η, ηEnskog) =
|η − ηEnskog|

η
. (6.1)

Larger discrepancies are marked with green/yellow, and smaller discrepancies are blue.
This means that, if the Enskog viscosity ηEnskog at some (ξ, T ∗) with some RDF differs
largely from the numerical viscosity, then the corresponding area in figure 6.10 will be
brighter and greener. If the theory agrees with simulation, the corresponding areas will
be bluer and darker. Only four versions of the Enskog equation are included in figure
6.10, namely those following from the Thol F , the Mecke F , the Morsali RDF and
the hard-sphere (Carnahan-Starling) F . The remaining three equations are omitted for
brevity, but they can be found in Appendix A, figure A.5.

6.4.1. The collision integral

Consider again figure 6.8 and 6.9. While the numerical viscosity differs in value, it shows
similar trends as the different Enskog viscosity expressions. Particularly, the viscosity
expressions based on the Thol and Mecke equations look similar in shape.

We now reintroduce the collision integral Ω, which we set to unity in section 3.1.3.
Recall that for hard spheres, Ω ≡ 1. For soft particles however, it is unequal to one.
In this section, we will attempt to find a value (presumably different than unity) for
the collision integral of the simulated LJ fluid. We will use this value to fit Enskog’s
viscosity expression for the LJ fluid, to see if we can improve the viscosity predictions
from figure 6.8–6.10.

We now let the collision integral Ω be an undetermined parameter, and curve-fit the
Enskog expressions to the simulation results, using a standard non-linear least squares
method1. This gives some empirical/numerical value for Ω, which can be used to adjust
the viscosity equations. From figure 6.8, we can expect that Ω ≈ 1.2, but also that the
value should increase slightly with temperature. We therefore compute one value for
Ω for each T ∗. We also fit the viscosity only at low densities, ξ ≤ 0.2, since Enskog’s
expression for the viscosity is expected to break down at high densities.

Firstly, we perform a curve-fitting only of Enskog with an RDF from the Thol F .
This gives us one set of numerical Ω values, shown in figure 6.11. It is immediately
clear that the newly adjusted equations (curves) fit the simulation data (points) better,
even though all curves are adjusted with the same collision integral. Note also that the
shapes of η(ξ) is unchanged, we have only affected the values. The Ω values used in this
figure, are shown in figure 6.11. We then divide the initial viscosity expressions by this

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Figure 6.8.: Viscosity of the simulated systems (dots), as well as the Enskog expression for
the viscosity (curves), plotted as a function of packing fraction. The Enskog expressions
use RDFs from the free energies of section 3.3, and the Morsali RDF, as noted in the
legend. The left column shows the viscosity value, and the right column shows the same
values normalized by the hard-sphere viscosity – Enskog’s viscosity expression with the
CS RDF. Reduced units are used.
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Figure 6.9.: Viscosity of the simulated systems (dots), as well as the Enskog expression
for the viscosity (curves), plotted as a function of reduced temperature. The Enskog
expression uses RDFs from the free energies of section 3.3, and the Morsali RDF, as
noted in the legend. The left column shows the viscosity value, and the right column
shows the same values normalized by the hard-sphere viscosity – Enskog’s expression
with the CS RDF. Reduced units are used.
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Figure 6.10.: The difference between the numerical viscosity and the predicted Enskog
viscosity, shown as a colour map. The figures illustrate the difference for all simula-
tions that were run. The x-axis shows packing fraction, and the y-axis shows (reduced)
temperature. The colours illustrate the difference between numerical viscosity and pre-
dicted viscosity for four RDFs, (Thol F , Mecke F , Morsali RDF and CS F ). A brighter
(green) colour suggests a larger deviation from theory, and a darker (blue) colour implies
a smaller deviance.

new curve-fitted collision integral. This results in new viscosity plots, shown in figure
6.12. As a remark, we mention that curve-fitting to obtain an estimate of σeff was also
attempted. This did not cause any noteworthy difference to just fitting Ω, and was not
investigated further.

Treating Ω as a numerical fitting parameter yields a semi-empirical way to obtain the
viscosity of the LJ fluid. We will explore the performance of this method further in
section 7.3.

6.4.2. Viscosity with numerically fitted collision integrals

To assess the results of the numerically adapted viscosity functions, a proper compari-
son of the viscosity predictions from the different free energies is due. This requires a
comparison of the viscosity expressions, curve-fitted individually for every single RDF,
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Figure 6.11.: Value of the collision integral Ω, as obtained by curve-fitting Enskog’s
expression for the viscosity for η(ξ) to the numerical viscosity, for each temperature. The
are fitted to the numerical viscosity Hence, we have one value for every temperature.

and not just the one from the Thol F . However, such plots turned out relatively difficult
to read, and do not contribute much to this discussion. Therefore, we refer to figure
A.4 in appendix A for a version of figure 6.12 where all curves have their own fitted Ω
parameter.
Here, we instead visualize the performance of the adjusted viscosity functions as a

colour plot, in the same way as in figure 6.10. Figure 6.13 shows such a colour plot,
now with collision integrals individually obtained for each RDF function. Comparing to
figure 6.10, we see that the discrepancies are now much smaller. For ηThol and ηMecke,
the discrepancies are steadily around 5 % or less for almost all configurations, except in
the high-density low-temperature region. Enskog’s expression for hard-sphere viscosity
(still using the CS RDF), is also fitted. A version of this figure with the remaining free
energies is included in appendix A, figure A.6.
Building on the results of this chapter, we proceed to discuss the results and the

behaviour of our equations and simulations in chapter 7.
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Figure 6.12.: Viscosity of the simulated systems (dots), compared to the Enskog expres-
sion for the viscosity (curves) with RDFs from the free energies of section 3.3 – plus
the Morsali RDF. Here, all the equations (the curves) are divided by a collision integral
Ω ̸= 1. The values of Ω are obtained from curve-fitting η∗Thol to the numerical viscosity
data. The curve-fitting is done individually for each temperature, explained in the text.
The values are shown in figure 6.11.
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Figure 6.13.: The difference between the numerical viscosity and the Enskog viscosity
with curve-fitted values for Ω The difference is shown as a colour map, in the same way
as in figure 6.10. The collision integral has been fitted individually for all four RDFs,
making them comparable. The figures illustrate the difference for all simulations. The
x-axis shows packing fraction, and the y-axis shows (reduced) temperature. The colours
illustrate the difference between numerical viscosity and predicted viscosity for four
RDFs, (Thol F , Mecke F , Morsali RDF and CS F ). A brighter (green/yellow) colour
suggests a larger deviation from theory, and a darker (blue) colour implies a smaller
deviance. Note that the colour bar is capped at 30 %, to maintain some resolution in
the top two figures. In other words, the HS RDF shows larger deviations than 30 %.
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In this chapter, we discuss the results of chapter 6. In particular, we evaluate the
performance of the viscosity model employed in this work. We discuss the definition of
the RDF and its role in the Enskog equation, and we discuss the numerical fitting of the
collision integral. These concepts were introduced in chapter 6. We use this to explain
the viscosity results. Lastly, we mention some possible directions of related research in
the future.

7.1. Assessing the validity of the simulations

As mentioned, we need to test the simulations to ensure that they behave as expected.
This involves checking the reduced pressure, the RDF, and the velocity profiles of the
simulations.

The simulations closely reproduce the EOS (compressibility factor) of Thol for nearly
all (ξ, T ∗)-configurations. Figure 6.1 and 6.2 demonstrate this. It is worth noting the
differences between the different Z curves. For EOSs that are created with different
methods (and with many years separating them), difference is expected. Precisely, we
expect recent EOSs to outperform old ones, even though all simulations are within the
validity range of the EOSs (table 3.1). It is also reasonable to expect that the numerical
EOSs are more accurate than the theoretical Hess EOS. The most recent EOSs are Thol
and Gottschalk. Not surprisingly, they perform better than Kolafa, Mecke and Hess for
most configurations.

For the purposes of this work, it strengthens the reliability of Thol’s EOS that the
internal energy U it predicts also matches the simulations. In addition, the shape of the
simulation RDFs (figure A.1) is in line with the Morsali RDF. When it comes to the
RDF at contact, there are more subtleties involved. This is discussed in detail in section
7.2.

We also note that the velocity profiles, shown in figure 6.7 are linear. For high densities
(ξ ≈ 0.5) and low temperatures (T ∗ ≤ 1.5), the velocity profiles start to show signs of
slight non-linearity, as well as more noise. However, we do not expect Enskog theory to
perform well in these regions, so, while noteworthy, this is not considered a major issue.
Nevertheless, some caution regarding the high-ξ–low-T ∗-simulations is well placed.

7.2. The RDF at contact

In section 6.2, figure we presented four definitions of the RDF at contact, and compared
them to the RDFs from chapter 3. Obviously, the g(F ) definition in figure 6.6 fits
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the Thol prediction best, since both g(F ) and the Helmholtz derived RDFs use this
very definition. What is more interesting, is that g(F ) does not resemble any of the
other definitions particularly well. At the same time, using g(F ) seems to reproduce the
viscous behaviour of the LJ fluid, at least with a numerically fitted Ω.

Studying figure 6.6, we see that g(σeff) is the smallest, and max[g(r)] the largest. No
reasonable estimate of the RDF at contact should be larger than the peak value of the
RDF, and we do not expect particles to be located at distances shorter than σeff, except
for in rare cases. We can therefore interpret max[g(r)] and g(σeff) as an upper and a
lower bound for the ”true” RDF at contact. The Helmholtz-derived RDF at contact,
g(F ) falls between these two definitions for all low to intermediate densities, which is
where we expect Enskog theory to work. When discussing the lower bound for the RDF
at contact, it is relevant to mention that the lower bound for σeff itself was used as
well (see section 3.2.4). We repeat that no significant difference between the two σeff
definitions was observed in the numerical RDFs.

In figure 6.6, we see that g(F ) has a different high-density limit than the other defini-
tions. At the same time, note that the viscosity at high densities is proportional to g(σ)
(see equation (3.3)). This implies that, because g(F ) is larger than the other definitions,
it will perform better at predicting the high-density viscosity than the other definitions.
Note that this does not necessarily represent any physical behaviour. Enskog’s equation
for the viscosity is expected to break down at higher densities, regardless of which RDF
we use.

Without numerical fitting, the Morsali RDF performs poorly at predicting the viscos-
ity, in large parts of the explored temperature and density ranges. This is illustrated
in figure 6.8–6.10. Interestingly, this RDF also performs significantly worse than most
F -based RDFs, even with curve-fitted values for Ω. This last point is seen in figure 6.13
and in figure A.6 in appendix A. With an RDF that was numerically fitted specifically
to the LJ fluid, this may be surprising. However, we can explain this behaviour from
the discussion of what ”contact” means. The Morsali RDF does predict the RDF of r
for the LJ system (figure 6.4), but without a proper definition of the particle radius, we
are not able to use the function well. Attempts were made at evaluating the Morsali
RDF at r∗ = σeff without any more success. This illustrates why deriving g(σ) from a
Helmholtz free energy is useful – it spares us the ambiguity of selecting an actual value
for σ.

Since we can clearly see that g(F ) in the Enskog equation succeeds at predicting the
viscosity, we should try to explain why. In section 3.4 we interpreted g(σ) as a description
of the collision rate. This is reasonable, since the RDF at contact does describe how many
particles are in contact with each other. To describe a viscosity however, what we need
is not only to know the collision rate, but also the amount of momentum transferred.
These quantities are of course tightly linked. Yet, given the success of our F -derived
RDF at contact, we can claim that g(F ) possibly explains the momentum transfer better
than the geometrically motivated RDF definitions.
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7.3. Viscosity

The first viscosity predictions (figure 6.8–6.10) differed from simulations by up to 25 %
(and even more for some of the EOSs). Still, by introducing the curve-fitted collision
integral, the results reproduce the numerical viscosity with more accuracy (less than 5 %
difference for most configurations). This is shown in figure 6.12 and 6.13. This means
that we can predict the viscous behaviour of the LJ fluid with accuracy, by only using
its equilibrium properties. The method is precise with only one theoretically motivated
fitting parameter.

In the high-density region, the viscosity predictions are less precise, even with fitted
values for Ω. As explained in section 3.1.1, this is to be expected. Notice also that
the difference is larger at low temperatures. At high temperatures, particles move more
vigorously, making them a bit more faithful to the assumptions of Enskog theory even
at slightly higher densities. In other words, high density breaks our model a bit later at
high temperatures than at low temperatures.

One relevant comparison to this work is the Enskog 2σ-model of Umla and Vesovic
[13, 16]. This model also showed an error in the range of 0–5 %, which is similar to
this model (but overall slightly smaller). The main difference between the 2σ-model
and our Helmholtz-based model, is that only one parameter – the collision integral – is
needed in our model, as opposed the 2σ-model’s two effective diameters. As mentioned,
an attempt was also made to introduce a second fitted parameter (σ), but this did not
cause noteworthy improvements to the results. We therefore do not discuss this second
parameter any further, and consider only the one-parameter model.

This work demonstrates that equilibrium properties of our specific fluid system are
sufficient to obtain an an RDF for use with the Enskog expression for viscosity. In other
words, the only fluid-specific parameters we use stem from the equilibrium properties of
the system. This is an interesting result, because it means that equilibrium properties
contain information about non-equilibrium properties – or at least, that equilibrium
properties are able to give approximate predictions of non-equilibrium properties. The
viscous behaviour of fluids in this model comes from theoretical work that is well studied.
Our contribution is that the theory can be applied to the LJ fluid, as long as we have a
good description of its Helmholtz free energy. While the free energy expressions used here
are mainly numerical, if an accurate theoretical expression were known, we would expect
it to give similar results. Furthermore, there is no reason to expect that this procedure
should fail to describe other model fluids that are similar to the Lennard-Jones fluid.
That would mean we are closer to a description of more realistic fluids, although real-
world fluids are often vastly more complex than the LJ fluid. Given a solid theoretical
description of other transport coefficients, it is even possible that similar approaches can
hold for other non-equilibrium properties than the shear viscosity. This certainly requires
further research, but if we are able to approach a number of transport coefficients from
the equilibrium properties of fluids, it would be a significant step forward in the field of
non-equilibrium statistical physics.
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7. Discussion

7.3.1. The collision integral

With the numerical Ω estimate, it is relevant to ask what the collision integral for LJ
particles actually is. Tables [58] give that Ω ≈ 1.198 for T ∗ = 1.5, which does not
match our estimate. Furthermore, Ω should decrease with T ∗ [59], and not increase,
as the estimate in figure 6.11 does. This is because the collision integral is related
to the scattering cross-section of the particles, and the scattering area decreases with
σoff and hence temperature. We offer no explanation for the unexpected behaviour of
the collision integral correlation here, and have to report it as a phenomenon. The
impact of the collision integral on the viscosity of soft-potential fluids therefore needs
some more investigation. Nevertheless, using it as a fitting parameter yields a successful
semi-empirical viscosity model, which is able to compete with existing ones.

We also point out that the fitting has been performed for each temperature, leaving
density-dependent viscosity expressions. A corresponding curve-fitting could be per-
formed in each separate density – or in both variables at once. This is a straightforward
question of implementation, and has not been done here due to time limitations.

For almost half of the simulated (ξ, T ∗)-space, the HS viscosity performs worse with a
curve-fitted collision integral than it did originally (figure 6.10 and 6.13). The other func-
tions perform significantly better in most parts of configuration space. This is because
the HS model shows a slightly different low-density behaviour than the other functions,
and curve-fitting to the low-density values enlarges the error at higher densities. Since
the collision integrals are intentionally fitted only at low densities, this should be re-
garded as somewhat deliberate. The theoretical motivation for curve-fitting in Ω was
that the collision integral is not unity for soft spheres. In this spirit, the curve-fitting
procedure is not intended for the HS model. Also note that without any curve-fitting,
the HS model outperforms many of the tested LJ-models. However, when comparing the
HS model with for example the Thol model, the LJ-EOSs perform considerably better
than the HS versions both with and without numerical fitting.

7.3.2. Answering the research question

In section 1.3, we defined the research question

”Can we predict the viscosity of the Lennard-Jones fluid by combining Enskog
theory for hard spheres with equilibrium expressions for the radial distribu-
tion function, derived from the Helmholtz free energy?”

Even with a numerical fitting parameter, our model is able to quantitatively predict
the viscosity of the Lennard-Jones fluid over the low to intermediate density range. At
higher densities, it is less precise, particularly at low temperatures – which, as we have
already explained (section 3.1.1), is expected for Enskog theory. We therefore indeed
have an approach to the shear viscosity of the LJ fluid, based on the Helmholtz free
energy and Enskog theory. This is what we set out to find. Under our procedure,
however, the expression is dependent on fitting to the low-density viscosity of the fluid.
This makes the method semi-empirical. Currently, the best available Helmholtz free
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7.4. Future work

energy expressions for the LJ fluid are semi-empirical or empirical as well. Yet, we stress
once more that the behaviour of the viscosity is reproduced by our expressions even in
the regions where no fitting was performed. This is why we can claim that the procedure
is successful.

7.4. Future work

This thesis leaves some questions unanswered, and several research topics are natural to
investigate following this.
As mentioned, the motivation for exploring this procedure was that Pousaneh and de

Wijn [17] used it to describe the shear viscosity of dipolar hard spheres. Dipolar particles
interact via the Coulomb potential, which is significantly stronger at long ranges than the
LJ potential. Seeing as Enskog’s viscosity expression combined with free energy-derived
equilibrium properties is able to predict the viscosity of fluids, it is natural to study more
interaction potentials using the same methods. In principle, we can expect this method
to work with a very large collection of interaction potentials. Being able to describe both
soft (Lennard-Jones-like) potentials and long-ranged (Coulomb-like) potentials on their
own – can they be combined? Extending this procedure to more complex fluids would
be a large step forward in the field of complex fluid viscosity.
We have seen that the RDF at contact is not defined without issue. The RDF at

contact which best predicts the viscosity behaviour disagrees with three different defi-
nitions that are all physically motivated and based on the shape of g(r). This suggests
that the RDF at contact is not perfectly understood, and that examining its definition is
necessary to obtain good estimates of transport coefficients. Nevertheless, we note that
the current work does not require a function (numerical of otherwise) for g(r), only a
value for g(σ). As this value is derived from the Helmholtz free energy, we do not – in
this context – need to know the shape of the full RDF at all.
This work intends to lay a foundation for further work on more complex interaction

potentials, or more complex particle structures. Viscosity is a complex phenomenon,
and much exploration is still needed in the progress towards a proper understanding of
how it behaves.
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8. Conclusion

This work combines Enskog’s expression for the viscosity from kinetic theory with equi-
librium properties of the Lennard-Jones fluid. Using these properties, which were derived
from Helmholtz free energy expressions from literature, we obtain an equation for the
shear viscosity of the LJ fluid. This means that we have found a non-equilibrium trans-
port property from equilibrium descriptions of a fluid. One numerically fitted parameter
had to be introduced to obtain accurate viscosity results. This parameter, the collision
integral Ω, corrects for the fact that our spheres do not interact as hard spheres. The
curve-fitting was only done at low densities – where the viscosity is closer to an analyti-
cally known limit – and we have demonstrated that this was sufficient in many cases to
describe the viscosity, even at high densities.
Comparing to a similar model, the Enskog 2σ-model, this work has demonstrated

similar error between prediction and simulation, with one less parameter. This model
does however require an expression for the Helmholtz free energy of the modelled system,
which is not required by the 2σ-model.
During the study, we have observed that the radial distribution function at contact,

which is a key quantity in Enskog’s viscosity expression, does not match the natural
interpretations from the full RDF of r. Deriving the RDF at contact from Helmholtz free
energy provides good viscosity predictions, but we have not clearly linked this quantity
to a specific value of r. This notion implies that we may not have a full understanding
of the true role the RDF at contact plays in Enskog’s viscosity equation, and propose
this as a future topic of research.

Even with relatively strict assumptions, Enskog’s viscosity expression continues to
prove itself a strong foundation for building sophisticated viscosity models. Moreover,
the Helmholtz free energy is already crucial to describing systems in statistical physics.
The model presented in this work can serve as a strong tool in studies of complex fluid
transport theory in the future. We suggest that this method should be tested for other
interaction potentials in the future, with hope that it may prove itself versatile.
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A. Additional figures

This appendix includes some figures that were omitted in the main text. These figures
are placed here because they do not show any qualitatively unique behaviour compared
to 6, but are nevertheless useful to reference as additional examples.
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Figure A.1.: The radial distribution function of three simulated systems, for ξ = 0.15
at T ∗ = {1.5, 2.5, 3.5}. For each curve, the corresponding Morsali RDF curve is also
shown as a dashed line of the same colour. The numerical RDF is computed at discrete
intervals of 0.015σ. A vertical line to mark r∗ = σ = 1 is included, as a reference to the
steep slope of the RDFs.
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A. Additional figures
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Figure A.2.: Velocity profile, extracted from one simulation with (ρ∗, T ∗) = (0.5, 1.5).
This is a larger version of the bottom plot in figure 6.7. The lines are regression lines
of the velocity gradient in the simulation cells. The points are time averaged velocity
values, for each chunk. Here, we see that the linearity is starting to break down.
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Figure A.3.: Velocity profile in the simulation cell, extracted from three simulations,
where ξ∗ = 0.4 and T ∗ = {1.5, 2.5, 2.5}. The dots show the time average of the
velocities in every chunk. The lines come from linear regression of the velocity points.
Along the y-axis is the z-coordinate, the height of the particles within the box, divided
by the total box height Lz.
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Figure A.4.: Viscosity of the simulated systems (dots), compared to Enskog’s expression
for the viscosity (curves) with RDFs from the free energies of section 3.3 – plus the
Morsali RDF. Here, all the equations (the curves) are divided by a collision integral
Ω ̸= 1. The values of Ω are obtained individually for each temperature, from curve-
fitting, as explained in the text. The values are shown in figure 6.11.
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Figure A.5.: The difference between the numerical viscosity and the predicted Enskog
viscosity, shown as a colour map. The figures illustrate the difference for all simula-
tions that were run. The x-axis shows packing fraction, and the y-axis shows (reduced)
temperature. The colors illustrate the difference between numerical viscosity and pre-
dicted viscosity for four RDFs, (Gottschalk EOS, Kolafa EOS, Hess EOS and CS RDF).
A brighter (green/yellow) colour suggests a larger deviation from theory, and a darker
(blue) colour implies a smaller deviance. The colour bar is capped at 40 %, meaning
that the true deviation in the yellow areas can be – and is – larger than indicated. This
is done to retain resolution at lower discrepancies.
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Figure A.6.: The difference between the numerical viscosity and the Enskog viscosity
with curve-fitted values for Ω The difference is shown as a colour map, in the same
way as in figure 6.10. The collision integral has been fitted individually for all four
RDFs, making them comparable. The figures illustrate the difference for all simula-
tions. The x-axis shows packing fraction, and the y-axis shows (reduced) temperature.
The colours illustrate the difference between numerical viscosity and predicted viscosity
for four RDFs, (Gottschalk EOS, Kolafa EOS, Hess EOS and CS RDF). A brighter
(green/yellow) colour suggests a larger deviation from theory, and a darker (blue) colour
implies a smaller deviance. Note that the colour bar is capped at 30 %, to maintain some
resolution in the top two figures. In other words, the HS RDF shows larger deviations
than 30 %.
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