
188 © 2020 The Authors Hydrology Research | 51.2 | 2020

Downloaded fr
by NTNU user
on 27 April 202
Can model-based data products replace gauge data as

input to the hydrological model?

K. Sivasubramaniam, K. Alfredsen, T. Rinde and B. Sæther
ABSTRACT
Hydrological models require accurate and representative meteorological inputs for better prediction of

discharge and hence, the efficient management of water resources. Numerical weather prediction

model-based reanalysis data products on the catchment scale are becoming available, and they could

be an alternative input data for hydrological models. This study focuses on the applicability of a set of

model-based data as input to hydrological models used in inflow predictions for operational

hydropower production planning of three hydropower systems in middle Norway. First, the study

compared the data products with gauge measurements. Then, Hydrologiska Byråns

Vattenbalansavdelning (HBV) models of the three catchments were calibrated with three different

meteorological datasets (model-based, gauge and observational gridded) separately using a Monte

Carlo approach. It was found that the correlation between the model-based and gauged precipitation

was highly variable among stations, and daily values showed a better correlation than hourly. The

performance of model-based input data with daily timestep was nearly as good as the gauge or

gridded data for the model calibration. Further, the annual simulated flow volume using the model-

based data was satisfactory as similar to the gauge or gridded input data, which indicate that model-

based data can be a potential data source for long-term operational hydropower production planning.
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INTRODUCTION
Today, precipitation-runoff models are employed as stan-

dard tools and routinely used for various hydrological

applications (e.g. flood estimation, real-time flood forecast-

ing, prediction of design flood and investigation of climate

change and land use variability) (Wagener et al. ).

Hydrological models combined with meteorological fore-

casts can provide a quantitative forecast of inflow to

reservoirs and power plants, and it helps increase power

production by reducing water spill and improving water
management. Such models have been in operational use by

hydropower companies in Norway since the 1970s, and

they have proved to be cost-effective tools for hydropower

operation and optimization (Killingtveit & Sælthun ).

Calibration and updating of the states in a model are required

before the model is used in an operational inflow forecast.

The primary input data for precipitation-runoff models are

typically time series of precipitation and air temperature

with daily or hourly temporal resolution. Traditionally,

in situ gauge observations are used as inputs for the models.

Hydrological models require accurate and representa-

tive meteorological inputs for better prediction and hence,

the efficient management of water resources (Kirchner

; Beven ).
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Precipitation is an intermittent variable and various

difficulties exist in obtaining quantitative precipitation

precisely (Hwang et al. ). The measurements of precipi-

tation using in situ gauges are subject to several error

sources, such as wind-induced undercatch, wetting and

evaporation losses (Førland et al. ; Taskinen &

Söderholm ). The gauge measurement of solid precipi-

tation (snow) in high latitudes and mountainous areas

exhibits significant undercatch due to high wind conditions

(Wolff et al. ). Further, the traditional in situ gauge

observations represent point measurements and require a

dense network of gauges to measure representative input

on the catchment scale. However, in many areas, dense

gauge networks are not common. In cases where existing

sparse gauges do not capture the local precipitation distri-

bution, the measured precipitation is not representative of

the concerned catchment. Errors in the air temperature

measurements are normally smaller, and the spatial vari-

ation of air temperature is also less; hence, air temperature

observations from a station are generally more representa-

tive than precipitation (Ledesma & Futter ).

In some places (e.g. natural reserves, sanctuaries and

remotemountainous areas), there are also restrictions and diffi-

culties in operating in situ gauges. The Børgefjell national park

in Norway which is located within the present study area is a

typical example. Water draining from a 700 km2 natural catch-

ment is exploited for hydropower production. The power

company is not able to install gauges within the nature reserve,

and the hydrological model for inflow forecasting for Børgefjell

is based on a single gauge located outside the area. Moreover,

the operation and maintenance of precipitation gauges in

remote mountainous areas incur considerable expenses.

Due to various challenges associated with the tra-

ditional approach of obtaining meteorological input data

for hydrological models used in inflow predictions for oper-

ational hydropower production planning, hydropower

companies in Norway seek alternative data sources for

these purposes. Observational gridded datasets, remote sen-

sing (weather radar and satellite) and numerical weather

prediction (NWP)-based meteorological reanalysis data on

the catchment scale can be potential alternative data

sources to overcome challenges associated with traditional

station data (Te Linde et al. ; Oke et al. ; Vu

et al. ; Lauri et al. ; Ledesma & Futter ).
://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
Observational gridded datasets are increasingly obtain-

able from the national and regional institutes (Haylock

et al. ; Lussana et al. ; Lussana et al. ). Several

studies have evaluated the observational gridded precipi-

tation and air temperature datasets as model input

compared to station data for medium- and large-scale river

basins (Photiadou et al. ; Vaze et al. ; Essou et al.

a) and for small catchments (Ledesma & Futter ).

Even though the gridded datasets have a continuous spatial

coverage over the catchment and relatively fewer missing

data compared to gauges, these datasets are generally

derived from the available gauge measurements by spatial

interpolation, and they have little additional information

other than elevation (Essou et al. a). Further, limitations

in different interpolation techniques can also be a source of

uncertainty (Vu et al. ; Lauri et al. ).

Precipitation measurements using remote sensing tech-

niques (weather radar and satellite) are existing with high

spatio-temporal resolution; however, these measurements

of precipitation are indirect and subject to many sources

of errors and uncertainties (Oke et al. ; Villarini &

Krajewski ). Because of errors and uncertainties, the

data from remote sensing techniques have not been widely

used in operational hydrology so far (Berne & Krajewski

). Errors in the remote sensing are often corrected

using ground-based gauge observations (Hasan et al. ;

Sivasubramaniam et al. ); however, such corrections

can only be possible in densely gauged regions.

In recent years, NWP model-based data products on

the catchment scale with the increasing spatio-temporal

resolution are becoming increasingly available as free and

site-specific commercial products. The first guess forecasts

from the NWP model are assimilated with the available

past observations to make initial conditions for the next

forecast. The same analysis for a fixed period produces

meteorological reanalysis datasets with high spatio-temporal

resolution (Talagrand ; Takahashi et al. ). Reanaly-

sis datasets have been used in weather and climate studies

(Takahashi et al. ) and used as atmospheric forcing

data in hydrological models (Essou et al. b). Compared

with gridded data, the advantage of reanalysis data is that

the dataset is updated regularly and available almost near

real time (Essou et al. b). However, errors and uncer-

tainties related to reanalyses have not been understood
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well enough compared to those associated with gauge

measurements (Parker ).

Previous studies have assessed the global and regional

reanalysis datasets from different institutes and evaluated

the use of them with hydrological models for runoff simu-

lation (Te Linde et al. ; Lorenz & Kunstmann ;

Vu et al. ; Lauri et al. ; Yang et al. ; Essou

et al. b; Roth & Lemann ). The focus of these studies

was to use the reanalysis dataset as an alternative atmos-

pheric forcing where the lack of gauge measurements

exists. This study investigates the use of model-based data

as input to hydrological models used in inflow predictions

for operational hydropower production planning.

A typical inflow forecasting chain consists of the follow-

ing components: (1) historical data to calibrate the models,

(2) real-time data to update the current model states and (3)

meteorological forecasts to generate inflow forecasts. Hydro-

power companies are involved in short-term and long-term

operational planning. For short-term inflow forecasting, a

calibrated and updated model is forced by 1–10 days of

meteorological forecasts. Long-termpredictions are normally

run on average precipitation values taken from historical

years to simulate a range of likely outcomes for the coming

season or hydrological year. While short-term inflow fore-

casting is important for hydropower systems with low

regulation capacity (runoff river schemes), long-term oper-

ational planning is required for well-regulated hydropower

systems that consist of reservoirs with large volume relative

to annual inflow, and snow-fed catchments where inflow pre-

diction depends on snow storage in the catchments.

Hydropower companies usually buy the meteorological

forecast data, used for daily inflow forecasting, from

commercial weather service providers. The use of a gauge

calibrated hydrological model with spatially defined progno-

sis data can also provide uncertainties in the predicted

flow. The same providers now also produce meteorological

reanalysis data as commercial products, and it is, therefore,

of particular interest for hydropower companies to use them

as a substitute for traditional gauge measurements since the

model will be calibrated on data with the same spatial

representation as the prognosis data.

The present study aims to answer two main research

questions. First, can NWP model-based meteorological

reanalysis datasets (precipitation and air temperature)
om http://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
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replace traditional gauged precipitation and air temperature

in the context of inflow predictions? Second, how do the

model parameter and simulation uncertainty due to input

data vary for the model-based data compared to the gauge

and observational gridded data? To answer these questions,

the study compares the time series of model-based data pro-

ducts with gauge observations at available gauge locations.

Then, the study evaluates the performance of data products

as an input to the hydrological model compared to the gauge

and observational gridded datasets as an input. Further, the

study analyses the uncertainty in the model parameters and

the model response with the three forcing datasets.
STUDY AREA AND DATA

Study area

The model-based data were assessed over the Trøndelag

region of central Norway. A Norwegian power company,

Nord-Trøndelag Elektrisitetsverk (NTE) owns and operates

more than 20 hydropower stations in this region, and its

annual production is nearly 4,500 GWh. Three test catch-

ments (Namsvatn, Follavatn and Tevla) with areas of 700,

200 and 350 km2, respectively, are used in the setup of the

Hydrologiska Byråns Vattenbalansavdelning (HBV) model

in order to evaluate the performance of model-based data

as an input. These are the major catchments in the NTE pro-

duction system. The three catchments are shown in Figure 1,

and their basic characteristics are presented in Table 1.

Based on the climatology for the period from 1961 to

2017, the mean annual precipitation in the study region is

2,000–4,000 mm along the coast and 750–2,000 mm

inland. The annual mean temperature is in the range of

2–8 �C along the coast, and it is �4 to 2 �C in the inland

mountainous areas (http://www.senorge.no/).

Data

Gauge, observational gridded and model-based precipitation

and air temperature data and river flow records from January

2010 to December 2016 were used in the present study.

NTE operates its own meteorological stations and uses

the data (precipitation and air temperature) from them for

http://www.senorge.no/
http://www.senorge.no/


Table 1 | Characteristics of the study catchments (source – http://nevina.nve.no/)

Description Namsvatn Follavatn Tevla

Area (km2) 701.5 202.7 345.9

Elevation range (m.a.s.l) 439–1,675 180–660 110–343

River slope (m km�1) 9.5 12.5 24.2

Forest (%) 19.0 37.2 42.3

Wetland (%) 6.0 14.1 24.8

Agriculture (%) 0.1 0.9 0.7

Bare mountain (%) 62.2 34.3 27.3

Lake (%) 12.5 13.5 4.7

Glacier (%) 0.2 0 0

Urban (%) 0 0 0.2

Figure 1 | The weather stations operated by met.no (green circles), NTE (blue circles) and

grid points of model-based data and three catchments (purple polygons) used

in the study. The weather station (NTE), used for hydrological modelling of each

catchment, is marked with a filled blue circle. Please refer to the online version

of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2020.076.
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inflow simulations. Within the study area, there are 12 NTE

stations with the available hourly observations for the study

(Figure 1). Besides, observations from the 14 weather

stations operated by the Norwegian Meteorological Institute

(met.no) were also used for the comparison with model-

based data. Out of the 14 met.no stations, two of them are
://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
available with hourly precipitation and four with hourly

temperature, and the rest are with daily observations.

The hourly time series of inflow data for the three

catchments were obtained from NTE. The discharge

values are back calculated. NTE calculated the net outflow

draining from the catchments using the measurements of

water level in the reservoirs and intake and transfer of

water from and to the catchments. It can be noted that

NTE has used these flow data in its operational HBV model.

StormGeo (http://www.stormgeo.com) commercially

distributes meteorological forecasts to hydropower compa-

nies including NTE in Norway. Currently, StormGeo

generates and distributes NWP model-based meteorological

reanalysis using the MESAN (Mesoscale analysis model)

(Häggmark et al. ) from the Swedish Meteorological

and Hydrological Institute (SMHI) to its customers as site-

specific end-user data products. MESAN assimilates NWP

with ground observations (gauge and weather radar) to gen-

erate a meteorological reanalysis dataset. Here, NWP from

the High-Resolution Limited Area Model (HIRLAM) were

used. HIRLAM uses NWP from the European Centre for

Medium-Range Weather Forecasts (ECMWF) as boundary

conditions. The MESAN analysis model provides a dataset

with 11 km × 11 km spatial resolution.

From MESAN analysis, StormGeo provided model-

based hourly precipitation and air temperature data on the

representative grid locations that spatially covers each of

the catchments (Figure 1). It can be noted that StormGeo

has distributed daily meteorological forecasts to NTE at

these grid locations for operational model runs for the

study catchments. In addition, StormGeo derived hourly

precipitation and air temperature at the nearest model

grids to the 26 meteorological stations (Figure 1) in order

to compare the time series of model-based data with gauge

observations in this study.

The Norwegian Meteorological Institute spatially interp-

olated the past observed precipitation and air temperature

records from meteorological stations to develop the daily

gridded (1 km × 1 km) precipitation (Lussana et al. )

and hourly and daily gridded air temperature (Lussana

et al. ) datasets covering Norway. These datasets are

freely available to the public through met.no’s thredds

server (http://thredds.met.no/thredds/catalog.html). The

gridded precipitation and air temperature were downloaded

http://www.stormgeo.com
http://www.stormgeo.com
http://thredds.met.no/thredds/catalog.html
http://thredds.met.no/thredds/catalog.html
http://nevina.nve.no/
http://nevina.nve.no/
http://dx.doi.org/10.2166/nh.2020.076
http://dx.doi.org/10.2166/nh.2020.076
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for each study catchment. Hereafter, the NWP model-based

reanalysis dataset from StormGeo is referred to as ‘model-

based’ and observational gridded data as ‘gridded’ through-

out the study.
METHODS

Data comparison

At each gauge location, the time series of model-based

hourly precipitation and air temperature data were com-

pared with the available hourly gauged observations. In

addition, model-based hourly datasets were aggregated to

daily and then compared with daily gauged data.

HBV model

The HBV precipitation-runoff model is a semi-distributed

conceptual model. A detailed description of the HBV

model structure can be found in the literature (Bergström

; Bergström ; Killingtveit & Sælthun ; Sælthun

). The HBV model has been widely used in the

Nordic region and other parts of the world for various

hydrological studies (Steele-Dunne et al. ; Te Linde

et al. ; Lawrence & Haddeland ). Most of the

hydropower companies in Norway use a version of the

HBV model for inflow forecasting.

In this study, PINEHBV (Rinde ), a variant of HBV,

was used. The PINEHBV is in a structure similar to the

model used by NTE. The model consists of four main

storage components such as snow and soil moisture routines

and two linear response tanks, upper and lower. The upper

and lower zones generate the surface runoff and base flow,

respectively. An illustration of the structure of the HBV

model is added to Supplementary Figure S1 in Supplemen-

tary Materials. In the snow routine, the catchment is

divided into ten elevation zones in order to account for

the elevation-dependent variability in the type and amount
Table 2 | Monthly values of daily potential evaporation

Month January February March April

Daily potential evaporation (mm/day) 0.1 0.2 0.7 1.0

om http://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf

2

of precipitation and snow storage. Further, among the ten

zones, the lowest zones below the forest line based on the

topography are defined as forested, and the remaining

zones are non-forested. Determining the type of precipi-

tation (snow or rain) and calculation of snowmelt and

snow accumulation in each of the ten zones are the main

processes in this component. The processes in the rest of

the storage components are lumped at the catchment

scale. Input to the PINEHBV model is the time series

(daily or hourly) of precipitation and air temperature and

monthly average potential evaporation.

Performance evaluation of datasets

HBV uses a single input series of areal precipitation and

temperature. We spatially averaged the model-based data

from StormGeo grid points (Figure 1), and areal precipi-

tation was estimated for each catchment. The operational

HBV model at NTE uses observations from a single gauge

for each catchment, and the same gauges (Figure 1) were

used in this study and considered as the reference model.

In addition, a spatial average of daily observational gridded

precipitation of a regular grid (1 km × 1 km) was computed

and used as a third input alternative.

For all three catchments, the same monthly average

potential evaporation values were used, as shown in Table 2.

For each of three catchments, the HBV model was

calibrated separately using gauge, observational gridded and

model-based precipitation, and air temperature datasets.

Since the study catchments are snow-fed, the start of the simu-

lation was set to September to ensure no initial snow storage.

Four years of data from September 2010 to August 2014 was

used for the model calibration, and the model performance

was evaluated for the three forcing datasets using a two-year

verification period (September 2014–August 2016).

The Nash–Sutcliffe efficiency (NSE) (Nash & Sutcliffe

) was used as an objective performance criterion to

evaluate model performance. The NSE is the most

commonly used performance measure in hydrology (Essou
May June July August September October November December

2.3 3.5 3.5 2.3 1.0 0.7 0.2 0.1



Table 3 | Parameter ranges used in MC calibration

Parameter Description Unit Minimum Maximum

RCORR Precipitation correction factor, rainfall – 0.3 1.6

SCORR Precipitation correction factor, snowfall – 0.3 2.5

TX Threshold temperature for rain/snow �C �4.0 8.0

CX Melt index (degree day factor) mm/�C day 0.3 25.0

CXN Melt index – forest zones mm/�C day 0.3 25.0

TS Threshold temperature for melt/freeze �C �4.0 8.0

TSN Threshold temperature for melt/freeze – forest zones �C �4.0 8.0

FC Field capacity mm 5.0 1,500.0

BETA Relative contribution to upper zone from soil storage – 0.1 12.0

FCDEL Threshold value for potential evapotranspiration in soil moisture – 0.1 1.0

KUZ2 Upper recession coefficient, upper zone mm/day 0.1 5.0

KUZ1 Middle recession coefficient, upper zone mm/day 0.1 1.0

KUZ Lower recession coefficient, upper zone mm/day 0.01 0.6

KLZ Recession coefficient, lower zone mm/day 0.001 0.15

UZ2 Upper threshold, upper zone mm 5.0 500.0

UZ1 Lower threshold, upper zone mm 5.0 100.0

PERC Percolation constant upper to lower zone mm 0.0 5.0
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et al. a). In addition, accumulated flow difference

(AccDiff) was used as an additional measure.

It is often shown that many different parameter sets can

give similar good NSE (Beven & Binley ), and it is not

given that the parameter set with the best NSE during

the calibration provides good performance outside the

calibration period (Seibert ). Therefore, a Monte Carlo

(MC) approach of the model calibration was used to investi-

gate how the uncertainty of the HBV model parameters

varies for the three forcing datasets. The advantage of the

MC is that the resulting parameter sets are not only a basis

for investigating the model parameter uncertainty but also

the simulated flow, and other model responses can be pro-

vided as a range instead of a single value (Steele-Dunne

et al. ). Using the MC approach, Ledesma & Futter

() assessed the observational gridded data product com-

pared to gauge measurements as the hydrological model

input. Steele-Dunne et al. () applied the MC method

to generate an ensemble of simulated flows to assess the

impacts of climate change on hydrology.

Each of the free parameters (17 parameters) in the

PINEHBV model was given a range of reasonable values,

as suggested in earlier studies (Killingtveit & Sælthun ;
://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
Sælthun ; Rinde ) and shown in Table 3. An MC

model calibration with uniform sampling (Seibert ;

Seibert ; Steele-Dunne et al. ; Ledesma & Futter

) was undertaken to generate an ensemble of 100,000

parameter sets for each of the three catchments using the

three forcing datasets separately. From the 100,000 par-

ameter sets, the best 100 parameter sets with the highest

NSE were chosen, and then, from those 100 parameter

sets, the best 50 parameter sets which also give the highest

NSE during the verification period were finally selected.

An ensemble of the 50 simulated model responses with

the 50 best parameter sets were used for the analysis.
RESULTS

Data comparison

For comparing model-based precipitation and temperature

with gauge observations, a linear regression analysis was

carried out. Pearson correlation coefficient between

model-based and gauge data was calculated at each gauge

location. Figure 2 shows the box plot of the estimated



Figure 2 | Box plot of the correlation coefficient between model-based and gauge pre-

cipitation and air temperature data with an hourly and daily resolution,

estimated at gauge locations. The values outside 1.5 × IQR are represented by

the whiskers.

Figure 3 | Scatter plot of model-based and gauge precipitation data, pooled from all

gauge locations. The dashed line denotes the perfect fit 45-degree line, and

the red solid line shows the regression.

Figure 4 | Annual precipitation from the gauge, gridded and model-based precipitation

input data for the three catchments during the calibration (September 2010–

August 2014) and verification period (September 2014–August 2016).
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correlation coefficient between the model-based and gauge

datasets.

Looking at Figure 2, the model-based hourly precipi-

tation shows a poor correlation with the gauge

observations. For the two met.no stations available with

hourly measurements, the correlation is relatively high

(shown as outliers in Figure 2). For all NTE stations, the

hourly precipitation data show a poor correlation. However,

daily precipitation data show a reasonably good correlation

with a few exceptions. For all gauge locations, the hourly

model-based temperature correlated well with the gauge

measurements.

We prepared scatterplots and compared the model-

based and gauged datasets at each gauge location. Figure 3

shows a single scatterplot of all data pooled together. Look-

ing at Figure 3, it is particularly seen that the model-based

data in most cases underestimate high-intensity daily pre-

cipitation events observed by gauges.

To investigate how the precipitation volume of the three

forcing datasets vary and how this variation influences the

model performance, we compared the accumulated annual

precipitation of the three forcing datasets over the three

catchments. Figure 4 shows that the model-based and
om http://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
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gridded precipitation are similar in volume for Namsvatn.

It is also seen that for the Namsvatn catchment, the
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model-based and gridded precipitation are lower than the

gauge precipitation, while for Follavatn and Tevla catch-

ment, they are higher than the gauge value, and the

model-based yielded the highest annual volume for almost

all years for these two catchments.

Performance in simulating the hydrological response

The performance of flow simulation (NSEs) of the three

forcing datasets (gauge, gridded and model-based) is

shown in Figure 5. The NSE value above 0.6 is generally

considered as an acceptable model by hydrologists (Essou

et al. b). As presented in Figure 5, the NSEs for the 50

optimum parameter sets during the calibration and verifica-

tion period for all three forcing datasets were mostly above

0.6 in this study except for model-based data on the Folla-

vatn catchment (NSEs during the verification period in the

range of 0.52–0.66). Looking at Figure 5, the performance

of gauge and gridded during the calibration period is

higher than model-based for Namsvatn and Follavatn,

while the performance of model-based was superior to that

of the gauge and gridded for the Tevla catchment. The

best NSEs for the gridded dataset during the calibration
Figure 5 | Box plot summary of the NSEs of 50 optimum parameter sets for the three

forcing datasets (gauge, gridded and model-based) for the three catchments

during the calibration and verification period.

://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
period for Namsvatn resulted in a relatively lower NSE

during the verification period. It was found that a parameter

set with the best NSE during the calibration did not give the

best NSE during the verification; a parameter set slightly

lower NSE than the best one gave a better NSE during the

verification.

While Figure 5 presents a summary of NSEs for daily

flow, Table 4 presents the median values of NSEs, estimated

from the simulated flows with daily and weekly timescale

using the 50 optimum parameter sets. Looking at Table 4,

the performance (NSE) on a weekly temporal scale is

higher than the daily, and it is over 0.67 for all three data-

sets. Like daily timescale, the performance of the three

forcing datasets showed a nearly similar variation on the

weekly timescale.

An ensemble of 50 simulated flows using the 50 opti-

mum parameter sets for each of the forcing datasets for

the three catchments is shown in Figure 6. Here, the verifi-

cation period is presented to illustrate the responses for

the three forcing datasets; a plot for the calibration period

(Supplementary Figure S2) is added to the supplementary

material. In Figure 6, three colour bands represent the

ensemble of simulated flows for the three forcing datasets.

If blue or yellow are not visible, they are within the model-

based simulation (green). A subplot of Figure 6, where a

shorter period is zoomed, is added to Supplementary

Figure S3.
Table 4 | Median values of calculated NSEs of the simulated flow (daily and weekly) using

the 50 optimum parameter sets for the three forcing datasets (gauge, gridded

and model-based) for the three catchments during the calibration (a) and

verification (b) period

Daily Weekly

Gauge Gridded
Model-
based Gauge Gridded

Model-
based

a) Calibration period

Namsvatn 0.87 0.87 0.84 0.90 0.91 0.87

Follavatn 0.65 0.64 0.60 0.76 0.73 0.71

Tevla 0.62 0.63 0.64 0.70 0.73 0.73

b) Verification period

Namsvatn 0.84 0.64 0.80 0.89 0.73 0.86

Follavatn 0.69 0.64 0.56 0.79 0.71 0.67

Tevla 0.66 0.69 0.67 0.74 0.81 0.72

Maximum NSE among the three forcing datasets is marked in bold.



Figure 6 | Ribbon plot showing three colour bands of maximum and minimum of the 50 simulated flow ensembles for three different forcing datasets for the three catchments during the

verification period. Observed runoff is denoted by a red dashed line. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.

2020.076.
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Looking at Figure 6, it is visible that the observed runoff

mostly falls within the band of maximum and minimum for

all three datasets except a few extremes. The bandwidth

denotes the uncertainty in the simulated daily river flow

due to model parameter uncertainty. A visual inspection of

Figure 6 shows that the uncertainty in the simulated flow

for the three datasets is generally in the same extent.

Looking at Figure 7, the average simulated annual

runoff volume for all three forcing datasets are nearly the

same as the observed annual runoff volume, and the differ-

ence is less than 15% of the observed runoff volume

except for Namsvatn in the year 2012 for model-based

data (24%) and Tevla in the year 2014 for gauge data

(17%). Further, except Namsvatn in the year 2012 for

model-based data, the observed runoff volume falls within

the lower and upper value of the simulated flow volume

from the 50 parameter sets for all three datasets for all

three catchments.

The gridded dataset yielded the best-simulated flow

volume compared to observed runoff. The percentage

mean absolute error for the annual simulated flow volume
om http://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
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with reference to the observed runoff volume is 4–6% for

gridded and 5–10% for model-based, while it is 5–9% for

gauge dataset.

In Figure 7, the range of 50 simulated flow volumes is

shown using the error bar, which represents the uncertainty

in the simulated flow volume due to the model parameter

uncertainty.

The length of the error bars is between 20 and 30% of

observed runoff for Namsvatn and Follavatn, while it is

35–55% for Tevla. Looking at Figure 7, the size of the

error bar does not differ largely for the three forcing data-

sets. The error bars for the gridded dataset are relatively

smaller for Namsvatn and Tevla catchments, and they are

smaller for model-based data for Follavatn catchment.

Parameter uncertainty

We investigated the HBV model parameter values of the 50

optimum parameter sets to see how they vary with the

forcing dataset. Apart from precipitation correction

factor – rainfall (PCORR) and precipitation correction

http://dx.doi.org/10.2166/nh.2020.076
http://dx.doi.org/10.2166/nh.2020.076
http://dx.doi.org/10.2166/nh.2020.076


Figure 7 | Bar plot of the average simulated annual runoff volume of the 50 best MC

parameter sets for the three forcing datasets (gauge, gridded and model-

based) and observed runoff for the three catchments during the calibration

(September 2010–August 2014) and verification period (September 2014–

August 2016). The error bar denotes the lower and upper value of the simu-

lated volume from the 50 parameter sets. The simulated volume using the

parameter set with the best NSE during the calibration period is denoted by a

black diamond point.

Figure 8 | Summary of the resulting range of values for the HBV model parameters of the

50 optimum parameter sets for the three forcing datasets for the three

catchments. Here, the parameters which showed variation with forcing data-

sets are only displayed.
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factor – snowfall (SCORR), parameters in the snow routine,

threshold temperature for rain/snow (TX), degree day

factor (CX), degree day factor – forest zones (CXN), threshold

temperature for melt/freeze (TS) and threshold temperature

for melt/freeze – forest zones (TSN) showed differences in

the range of values depending on the forcing dataset for a

given catchment, and these parameters are shown in Figure 8.

The rest of the calibration parameters assumed a similar

range of values for three different forcing datasets.

The calibration parameters, such as PCORR and

SCORR, correct the rainfall and snowfall input to the

HBV model. This correction for the precipitation input

covers several factors, including catch errors and lack of

representativeness of gauges (Sælthun ). For observa-

tional gridded and model-based datasets, a need for the

correction can also be due to under/overestimation by the

interpolation techniques and data assimilation in NWP

models.

In Figure 8, PCORR and SCORR for model-based and

gridded data for Namsvatn catchment are similar, and
://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
they are higher than the values associated with gauge data.

This agrees with the underestimation of model-based and

gridded precipitation input compared to gauged precipi-

tation for Namsvatn catchment, as shown in Figure 4. For

the Follavatn catchment, PCORR and SCORR for model-

based assumed a considerably different range of values to

the gauge and gridded dataset, while they were similar to

the gauge data for the Tevla catchment, but here different

compared to the gridded dataset.

To check whether the estimates of actual evapotran-

spiration in the model influence the variation of PCORR

and SCORR, we plotted the ratio of actual evapotranspira-

tion to precipitation input for the three forcing datasets for

the three catchments during the calibration for the best 50

parameter sets (Supplementary material Figure S4). It

appears that the ratio of actual evapotranspiration to pre-

cipitation is almost the same for all three datasets. It

shows that PCORR and SCORR were not influenced by

the estimation of actual evapotranspiration in the model,

and they vary depending on the forcing dataset.

PCORR and SCORR are of primary concern when a

different source of precipitation input is used. The results

show that snow routine parameters also highly depend on
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the forcing dataset. Looking at Figure 8, TX, TS and TSN

values for the model-based data were higher than the

gauge and gridded for Follavatn and Tevla catchments. It

can be seen that CX assumed relatively higher values

(10–20) for all three forcing datasets, compared to the tra-

ditional range of values for CX (1–5) in the literature

(Killingtveit & Sælthun ; Lawrence & Haddeland ).

Kuczera & Williams () demonstrated that the par-

ameter uncertainty increases with the uncertainty in the

areal precipitation input. Looking at Figure 8, the uncer-

tainty (size of the range) in the parameters associated with

model-based data is nearly similar in extent to the gauge

and gridded datasets.

The calibrated models for each catchment using the three

input datasets (50 optimal parameter sets of each atmos-

pheric forcing) were forced with model-based data during

the verification period, and the computed NSE is shown in

Figure 9. The HBV model calibrated with model-based data

performed noticeably better than the model calibrated with

gauge or gridded dataset for all three catchments.

With reference to Figure 8, for the Namsvatn catchment,

parameters ‘PCOR’ and ‘SCOR’ are nearly the same for the
Figure 9 | Box plot of NSE computed for the simulated flow during the verification period

(2014–2016) using model-based dataset as input but using three different sets

of the 50 optimal parameters calibrated using the three forcing datasets

(gauge, gridded and model-based).
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gridded and model-based datasets. When the model cali-

brated with gridded was forced with the model-based

dataset, the performance is nearly as good as the model cali-

brated using the model-based dataset. In contrast, for

Follavatn and Tevla, ‘PCOR’ and ‘SCOR’ associated with

model-based dataset are different from the values obtained

using the gauge and gridded datasets and the performance

was poorer as shown in Figure 9. This underlines the impor-

tance of using the same dataset for the model calibration as

is later used in the operational forecasting of inflow.
DISCUSSION

This study investigated the potential of NWP model-based

meteorological reanalysis as an alternative to traditional

gauge observations for hydrological modelling. In this

paper, we showed that the performance of the model-

based data was nearly as good or even better than the

gauge and observational gridded dataset.

For this assessment, we adopted an MC approach to

model calibration (Seibert ; Seibert ; Steele-Dunne

et al. ; Ledesma & Futter ). Even though the MC

method with uniform random sampling (100,000 runs in

this study) is time and resource consuming, the approach

can map most of the feasible parameter combinations;

hence, it provides a solid basis for investigating the uncer-

tainty in the model parameter and the response. In this

study, we found that the model parameter uncertainty and

the uncertainty in the simulated flow using the model-based

data as an input was comparable to or even lower than

those associated with the gauge and gridded dataset.

Several studies (Te Linde et al. ; Lauri et al. ;

Essou et al. b; Roth & Lemann ) assessed the use

of reanalysis dataset as an alternative input data for hydrolo-

gical modelling. This study extends current work with the

evaluation of model-based data as an alternative input to

hydrological models used in inflow predictions for oper-

ational hydropower production planning. In addition, a

few studies (Steele-Dunne et al. ) in the literature

focussed on the investigation of model parameter uncer-

tainty depending on different forcing datasets and its

consequence in the model response as presented in this

paper.
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Essou et al. (b) tested the global and regional reana-

lysis dataset as an input to a hydrological model in 370

catchments in the United States comparing the output

with observational gridded data. Their results showed that

the regional reanalysis dataset, which is assimilated using

ground-based precipitation observations, produced simu-

lated river flow similar to observed flows. Even though the

performance of the global reanalysis was also similar to

observed flows, they found that performance was degraded

by precipitation seasonality biases.

For well-regulated hydropower schemes, long-term pre-

dictions are generally more important than short-term

forecasts. Vice versa, poorly regulated schemes are in

higher need of short-term inflow forecasts. Such schemes

risk flood-spill, when inflow exceeds through flow capacity.

Among the three hydropower systems investigated in this

study, Namsvatn consists of a large reservoir with high regu-

lation capacity, while the other two catchments have a

relatively small regulation capacity. Further, it can be

noted that all catchments are snow-fed. Hence, long-term

operational planning is required to predict the long-term

volume and seasonal distribution based on snow storage in

the catchments of all three hydropower systems. In this

study, the model-based data simulated the flow volume as

well as the observed; hence, it can be a potential alternative

to gauge measurements for long-term operational hydro-

power planning. However, the comparison of model-based

data with gauge observations showed that model-based

data underestimate the daily extreme precipitation. More-

over, the HBV model that is based on model-based data

failed to simulate some of the observed high peaks. This is

probably of less importance for the hydropower systems,

which consist of large reservoirs with high regulation

capacity, than for systems with low regulation capacity.

NWP is an evolving field with the advancement of data

science and computer technology (advanced data assimila-

tion techniques). The quality of model-based data products

will further improve in the future. Hence, the performance

of hydrological model simulations using model-based data

products can be foreseen to become better than today in

the future.

The calibrated models will be forced by meteorological

forecasts (1–10 days) to predict the inflow for short-term

hydropower operational planning. We did a verification
://iwaponline.com/hr/article-pdf/51/2/188/682050/nh0510188.pdf
test on calibrated models using three different forcing data-

sets and found a clear advantage of using a dataset for

calibration which is similar to the source of the dataset

being used for the operational simulation. This result implies

that the model-based data could be a better alternative for

calibrating and updating hydrological models used for

inflow forecasting when the forecasting dataset and the

model-based dataset come from the same NWP model.

Model-based data derived from the same NWP model,

which is used to generate meteorological forecasts, will be

provided on the same grids and derived using the same

methods. Consequently, the data structure of the model-

based historical data and the meteorological forecasts

would be similar, and the model parameter uncertainty

would be similar in the calibration period and in the forecast

period. The use of the past records of meteorological fore-

casts to evaluate predicted flow from models calibrated

using the three forcing datasets used in this study is rec-

ommended as a future study for this work.
CONCLUSIONS

The evaluation of model-based input data for hydrological

modelling in this study showed that model-based precipi-

tation and air temperature can be a potential alternative to

those obtained from gauge measurements and observational

gridded data.

The correlation between model-based and gauge data

was varying among gauge locations, and the median value

of correlation for daily precipitation was 0.8. However, the

performance of model-based input data with daily timestep

was nearly as good or even better than the gauge or gridded

data for the model calibration. It was found that the model

parameter uncertainty and simulation uncertainty associ-

ated with model-based data appeared as similar to gauge

and gridded datasets. Further, the annual simulated flow

volume using the model-based data as an input was nearly

the same as the observed annual runoff volume.

These results indicate that model-based data can be a

potential alternative input to the hydrological models used

for inflow predictions for long-term operational hydropower

planning. This could be very useful in remote catchments

with few gauges and in areas where installing gauges is
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impossible. Further, results also imply that model-based data

can be a promising data source for calibrating hydrological

models used for short-term inflow predictions as meteorolo-

gical forecasts would then have similar sources and similar

data structure to the dataset used for the model calibration.
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