Displaced Signed Distance Fields for Additive Manufacturing

ALAN BRUNTON, Fraunhofer IGD, Germany

LUBNA ABU RMAILEH, Fraunhofer IGD, Germany and Norweg. Univ. of Sci. and Tech. NTNU, Norway

N\

Fig. 1. Displaced signed distance fields provide an efficient way to address multiple challenges in additive manufacturing. Robust sign estimation allows 3D
printing of open surfaces resulting directly from 3D scanning (left). Displaced signed distance fields allow the inclusion of meso-scale surface topography
in the form of a displacement map (center) at virtually no extra cost, and the direct fabrication at device resolution of curved triangles (right). The same
80-primitive input (inset) allows the fabrication of a 3cm and a 5cm sphere without subdivision or further tessellation.

We propose displaced signed distance fields, an implicit shape representation
to accurately, efficiently and robustly 3D-print finely detailed and smoothly
curved surfaces at native device resolution. As the resolution and accuracy
of 3D printers increase, accurate reproduction of such surfaces becomes
increasingly realizable from a hardware perspective. However, representing
such surfaces with polygonal meshes requires high polygon counts, resulting
in excessive storage, transmission and processing costs. These costs increase
with print size, and can become exorbitant for large prints. Our implicit
formulation simultaneously allows the augmentation of low-polygon meshes
with compact meso-scale topographic information, such as displacement
maps, and the realization of curved polygons, while leveraging efficient,
streaming-compatible, discrete voxel-wise algorithms. Critical for this is
careful treatment of the input primitives, their voxel approximation and the
displacement to the true surface. We further propose a robust sign estimation
to allow for incomplete, non-manifold input, whether human-made for on-
screen rendering or directly out of a scanning pipeline. Our framework is
efficient both in terms of time and space. The running time is independent of
the number of input polygons, the amount of displacement, and is constant
per voxel. The storage costs grow sub-linearly with the number of voxels,
making our approach suitable for large prints. We evaluate our approach for
efficiency and robustness, and show its advantages over standard techniques.

CCS Concepts: « Computing methodologies — Shape modeling.

Additional Key Words and Phrases: 3D printing, distance field, robust vox-
elization, displacement

ACM Reference Format:

Alan Brunton and Lubna Abu Rmaileh. 2021. Displaced Signed Distance
Fields for Additive Manufacturing. ACM Trans. Graph. 40, 4, Article 179
(August 2021), 13 pages. https://doi.org/10.1145/3450626.3459827

Authors’ addresses: Alan Brunton, alan.brunton@igd.fraunhofer.de Fraunhofer IGD,
Darmstadt, Germany; Lubna Abu Rmaileh, lubna.abu.rmaileh@igd.fraunhofer.de Fraun-
hofer IGD, Darmstadt, Germany Norweg. Univ. of Sci. and Tech. NTNU, Gjevik, Norway.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/8-ART179 $15.00

https://doi.org/10.1145/3450626.3459827

1 INTRODUCTION

This paper presents a unified framework for 3D printing highly
detailed and smooth surfaces from compact representations by ro-
bustly and efficiently computing displaced signed distance fields,
which represent the shape implicitly as the composition of a dis-
crete signed distance field and a displacement field. The displace-
ment field encodes the offset from a discrete voxel approximation
to the true surface. We show how this formulation allows the use
of efficient, streaming algorithms operating on discrete voxel grids
while maintaining sub-voxel accuracy, and show how to use this
framework to 3D print coarse tessellations with displacement maps
encoding mesoscopic detail, curved surfaces, and incomplete or
self-overlapping surfaces.

As the resolution and accuracy of 3D printers increase, accu-
rate reproduction of finely detailed and smoothly curved surfaces
becomes increasingly realizable from a hardware perspective. Rep-
resenting surfaces with polygonal meshes to an accuracy on the
order of modern 3D printers requires a large number of polygons,
correspondingly increasing requirements for storage and bandwidth
for transmission. Further, the same approximation accuracy requires
different levels of tessellation for different print sizes.

With increasing use of graphical 3D printing in the entertainment
sector, for films or 3D printing content from game engines, auto-
mated and efficient processing of graphical 3D content from these
applications becomes increasingly important. Such models often
reduce polygon counts by encoding mesoscopic geometric detail in
displacement maps, topographic textures or height maps applied
to a low-poly mesh. Thus, it is advantageous to directly support
this type of input (Fig. 1, center) without computationally demand-
ing tessellation, which can introduce further errors in the form of
self-intersections and inverted surfaces. Since they are designed for
on-screen display, not physical fabrication, such models are often
composed of open, overlapping surfaces and decals. The mesh in
Fig. 1 (center) is comprised of disjoint patches with small gaps in
between. Thus, robust processing is key to automation.

Over half of parts produced by additive manufacturing are ei-
ther functional parts or functional prototypes [Wohlers et al. 2020].
These are often designed and represented by parametric patches,

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459827
https://doi.org/10.1145/3450626.3459827

179:2 « Alan Brunton and Lubna Abu Rmaileh

rather than polygonal meshes. The typical workflow still involves
tessellating these surfaces into polygonal meshes, which in general
introduces a discretization error. Tessellation into meshes of curved
triangles is an alternative, which scales much better in terms of
making the approximation error significantly less sensitive to the
scale of the printed part. Existing approaches to fabrication with
curved triangles are based on subdivision, again requiring different
amounts of subdivision for different print sizes. This paper shows
how displaced signed distance fields can realize curved triangle-
based shapes to printer resolution without tessellation (Fig. 1, right).

Making a 3D copy of a real object involves scanning that object,
the output of which often comes in the form of a point cloud, and
typically there are portions of the surface which cannot be scanned,
resulting in an incomplete surface (Fig. 1, left). Directly processing
such data for 3D printing can also streamline workflows.

For applications in graphical 3D printing, including rapid pro-
totyping and entertainment, the build volumes and resolutions of
modern devices mean any method needs to scale up to nearly 1012
voxels [Mimaki 2017; Stratasys 2016]. This constrains us to algo-
rithms that have complexity linear in the number of voxels, or con-
stant time per voxel. More restrictively, it constrains us to so-called
streaming compatible algorithms, which require a peak storage less
than 1 byte per voxel for large prints. We define such algorithms
formally in Section 3.

In this paper, our primary technical contribution is a unified im-
plicit formulation and resulting algorithmic framework to robustly
and efficiently

e produce highly detailed surfaces from low-polygon meshes
with an attached displacement map,

e produce smooth surfaces from low-polygon meshes of higher
order primitives.

We further propose a technique for representing surface structures
with local feature size on the order of, and even below, the voxel
size. Our formulation gives rise to algorithms with the following
advantages:

e it combines the efficiency of discrete voxel distance com-
putations, running in O(1) time per voxel, with sub-voxel
accuracy and bounded error w.r.t. the true signed distance;

e it is streaming compatible, requiring less than 1 byte per voxel
for large prints;

e it supports unbounded displacement and performs no further
tessellation or refinement;

e and it robustly handles incomplete, non-manifold and self-
overlapping input.

In particular, if we consider as an alternative computing the true
signed distance field (SDF), we would encounter the following prob-
lems. In the case of displacement maps or curved higher-order prim-
itives, we would need to first tessellate to a desired tolerance (thus
introducing some error anyways), along with the associated prob-
lems of potential self-intersection. Doing this on-the-fly within a
streaming context would require bounded displacements. To com-
pute the exact distance field w.r.t. the tessellation would need a
bounding volume hierarchy (BVH) or similar space partitioning,
resulting in running time logarithmic in the number of primitives,

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

which would be large in the case of refined tessellation. Our dis-
placed SDF provide an good approximation of the true SDF, and
allows more efficient and robust processing.

2 RELATED WORK
2.1 Robust Voxelization

For sufficiently clean data, i.e. watertight and manifold, conversion
to a solid voxel representation can be done very efficiently, in par-
ticular leveraging parallelism on the GPU [Eisemann and Decoret
2008; Schwarz and Seidel 2010].

The more challenging problem of converting surface data that
does not represent the boundary of a volume, whether corrupt,
incomplete, or intentionally designed so by an artist, has also been
studied. Nooruddin and Turk [Nooruddin and Turk 2003] propose
a “ray-stabbing" technique to convert a polygonal model to voxels.
This technique is limited to a small voxel grid as it requires the full
voxel grid in memory simultaneously.

The generalized winding number [Jacobson et al. 2013] provides
a way to robustly determine whether a point lies inside or outside a
curve of surface by extending the winding number to open curves
and surfaces. This inherits the winding number’s natural handling of
self-overlapping surfaces, behaves smoothly in holes, and degrades
gracefully in the presence of noise or inconsisten surface orienta-
tion. Barill et al. [2018] provided a fast approximate evaluation for
triangle soups and point clouds based on a multipole expansion, and
showed some robust voxelization examples.

Schmidt [2019] describes converting an unsigned distance field
into a SDF using a flood fill approach, starting at one or more voxels
known to be outside the surface and stopping at inversions of the
gradient. It is not clear that this technique can work for large holes,
or is practical for large voxel grids. Another technique [Stevens and
McKenna 2018] computes a SDF of a polygon mesh by generating
multiple layered depth images [Shade et al. 1998], and using them
to resolve tessellation inconsistencies to compute signed distances.
Krayer and Miiller [2019] propose a GPU-based approach based on
ray-maps, which is both fast and robust, but does not appear to scale
well to large voxel grids.

2.2 Surface Repair

There are many existing methods for surface repair, both those
specifically targeting 3D printing and those targeting more gen-
eral application areas. Most of these operate directly on a mesh.
Such methods benefit from local operations and are therefore quite
efficient. Difficulties arise in simultaneously handling holes, non-
manifold edges and vertices, islands (disconnected pieces), and self-
intersection. Most methods to convert arbitrary collections of poly-
gons into surfaces do not robustly handle self-intersection [Guéziec
et al. 2001; Hoppe et al. 1993; Kraevoy et al. 2003; Podolak and
Rusinkiewicz 2005] in that they do not guarantee a watertight out-
put. Methods that do offer guarantees typically fall into two cate-
gories: those that globally remesh the surface [Bischoff et al. 2005;
Ju 2004] and those that remove parts of the mesh that are difficult
to handle, either creating holes and refilling them [Attene 2010] or
specifically removing parts causing self-intersections [Yamakawa
and Shimada 2009]. In our application, global remeshing would be

acceptable, and our surface voxelization stage can be seen as an
approximate resampling of the surface. However, we are interested
in obtaining an implicit representation, which we can combine with
mesoscopic detail information.

2.3 Surface Reconstruction and Meshing

Our approach is also related to surface reconstruction from point
cloud data, although we do not propose our algorithm as a solution
for surface reconstruction. We view our work as complementary,
since the reconstructed mesh can also serve as an input to our frame-
work. Berger et al. provide a comprehensive recent survey [2017].
We discuss the most closely related methods here.

Poisson [Kazhdan et al. 2006] and screened Poisson [Kazhdan and
Hoppe 2013] surface reconstruction solve for an indicator or charac-
teristic function, which can be seen as equivalent to our sign func-
tion, by observing that its gradient at the surface should align with
the surface normal. For efficiency, they discretize using an octree to
obtain a sparse linear system and to simultaneously avoid computa-
tions away from the surface. Implicit moving least squares [Kolluri
2005], its variant based on robust estimation [Oeztireli et al. 2008],
and others, follow the gradient of an implicit function to the surface.
These techniques reduce computational effort by evaluating only
in the vicinity of the surface. To apply displacement, we need to
consider possibly large distances from the surface, and for this rea-
son we must compute a signed distance, and therefore a sign, at all
voxels in our bounding volume. Given this restriction, sophisticated
regularization, such as solving a PDE, is too costly.

2.4 Deep Learning Methods

Recently a slew of new techniques propose to use deep neural net-
work architectures to learn object-specific representations, which
allow the approximate reconstruction of a SDF for that object. Erler
et al. [2020] show robustness to severe noise levels by learning a
global sign function and a local distance function, exploiting the
generalizing power of local patches and the low complexity of sign
information. Sign agnostic learning [Atzmon and Lipman 2020]
provides indifference to errors in surface orientation, at the cost
of limited detail preservation and robustness to thin structures. In-
cluding an Eikonal constraint in the loss improves reconstruction
of sharp features and thin structures [Atzmon and Lipman 2021;
Gropp et al. 2020]. Davies et al. [2021] propose to use an overfit neu-
ral network as a compact implicit shape representation. Sitzmann
et al. [2020] also showed implicit shape encoding as an application.
While this line of work present exciting results, these methods are
too computationally intensive for our application. Even approaches
using offline training [Erler et al. 2020] require a forward pass per
signed distance evaluation, and shape representation/reconstruction
approaches require training per object.

2.5 Displacement Mapping

Displacement mapping [Cook 1984; Cook et al. 1987] is a common
technique in rendering, particularly ray tracing and ray marching,
with efficient GPU implementations [Szirmay-Kalos and Umenhoffer
2006]. A height field texture provides the meso-scale information

Displaced Signed Distance Fields for Additive Manufacturing « 179:3

about the surface, specifying the distance along the surface normal
of the tessellation to the true surface.

OpenFab [Vidimce et al. 2013] applies displacement maps by
first tessellating the models to facets on the order of the printer
resolution, displacing the resulting vertices, and then voxelizing.
For bounded displacements, by paying close attention to the order
in which facets are processed, such a tessellation approach can
be done on-the-fly within a streaming framework, and efficient
GPU implementations exist. In contrast, our approach can apply
unbounded displacements within a streaming computation, without
affecting performance, while replacing the geometric operations of
tessellation with sampling and writing of displacement values. We
show the performance of our framework under displacements of
various magnitudes in Section 8.2.

A non-streaming tessellation approach can be implemented in
widely available modeling software, e.g. Blender [2020], by first re-
fining the tessellation using subdivision, then displacing vertices.
Commercial 3D printing software also displaces the vertices of a
densely tessellated mesh [Stratasys 2020]. This leads to high polygon
counts and can introduce self-intersections and inverted surfaces,
particularly for larger displacements, as shown in Section 8.2. Our
approach does not suffer from these problems. While one could
leverage techniques from geographic information systems to con-
vert digital elevation maps to meshes [Garland and Heckbert 1995],
this would only provide a trade-off between approximation quality
and compactness, and would not address self-intersections.

2.6 Curved Triangles

Tessellating parametric surfaces to curved triangles instead of flat
ones allows better approximation with fewer primitives. Point-
normal (PN) triangles [Vlachos et al. 2001] are a subset of Bézier
triangles [de Casteljau 1959; Farin 1986], in which surface normals
specified at each vertex control how the triangle is curved (by deter-
mining the control points of the Bézier triangle). In finite element
analysis (FEM), Lagrange polynomials are the standard high-order
basis for shape functions [Zienkiewicz et al. 2013], and high-order
Lagrange polynomials on triangles [Berrut and Trefethen 2004]
allow for curved triangles. Like the Bézier basis on triangles, first
order Lagrange basis is equal to a barycentric basis.

Techniques exist [Gohari et al. 2018; Starly et al. 2005] to directly
slice NURBS surfaces. These are only practical for additive processes
based on path following, e.g. fused filament fabrication (FFF), as they
work by intersecting slicing planes with the NURBS surface.

2.7 Streaming Distance Field Computation

Recently, Brunton et al. [2018] proposed a technique for unsigned
distance field computation, which runs in O(1) time per voxel while
being streaming compatible, meaning the full voxel grid does not
need to be kept in memory; we reproduce their formal definition
in Section 3. Their technique involves pre-computing a sparse sur-
face voxelization, also constructed in O(1) per voxel with limited
memory, stored in ascending order of z for each xy-column. This
allows the unsigned distance to the surface voxels to be computed
in constant time per voxel when processing slices in order, storing
as little as a single slice in memory at once. Similar data structures

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

179:4 « Alan Brunton and Lubna Abu Rmaileh

have also been used for slice thickness optimization [Alexa et al.
2017] and morphological operations [Martinez et al. 2015]. While
we use this technique to compute unsigned distances and to identify
the nearest surface voxel to a given voxel, it does not address sign
estimation, sub-voxel accuracy or displacement. We further reduce
the memory footprint during construction by using a hash map on
the voxel coordinates, rather than storing dense slices. Our implicit
formulation, given in Section 3, makes possible the use of such fast,
streaming, voxel-wise techniques for robust and precise fabrication.

3 DISPLACED SIGNED DISTANCE FIELDS

Our framework exploits the relationship between implicit repre-
sentations of a given approximate surface and the true shape. We
consider how an incomplete approximation affects distance fields,
signed and unsigned, w.r.t. the input and the true surface. We further
consider that the approximation may be defined implicitly w.r.t. the
true surface, and vice versa, via a displacement field.

In the context of additive manufacturing, we work with implicit
representations sampled on a finite voxel grid partitioning the build
volume of the device. Let B c R? denote the build volume of the
3D printer, and partition it into W x H X D voxels of size Jx, 5y, 5,
along the x-, y- and z-axes of the build space, corresponding to the
native resolution of the printer. We further define C C 8B to be the
set of voxel centers, and V(u) C B to be the voxel containing u € 8.
Typically, the shape we wish to manufacture fills only a fraction of
the device’s build volume, and we restrict 8 to be a padded bounding
box of the input, reducing W, H and D accordingly.

The core of our method lies in composing implicit representations
of the approximate surface with implicit representations of the true
surface w.r.t. the approximation in a way that allows to robustly and
efficiently reproduce finely detailed and curved surfaces at device
resolution from a compact input. Fig. 2 shows these two scenarios
and how the quantities defined below relate to realize them.

Given the resolution and build volumes of modern 3D printers,
doing this without storing the full sampling grid is critical. There-
fore, in this paper, we concentrate on algorithms that are streaming
compatible, which we define as follows in the context of additive
manufacturing [Brunton et al. 2018]:

Definition 3.1. Since the manufacturing process builds the object
from bottom to top, we define streaming computation to proceed
in ascending order of z. We further define that for a given print
occupying a volume corresponding to a voxel grid of W X H X D
voxels, a streaming algorithm never exceeds O(WH + N) storage,
where N << WHD; i.e. a constant number of slices (2D array with
constant z-coordinate) plus small auxiliary storage, relative to the
size of the voxel grid.

Sections 4 and 7 give further details on how we robustly and
efficiently represent shapes at device precision or better within a
streaming compatible framework. However, the implicit formulation
presented below is key to enabling this, and Section 3.1 discusses
its advantages as an approximation versus computing the true SDF.

Given a shape S C R3 s.t. |S| < oo and its boundary a8 is a
closed manifold embedded in R3, let

d(u) = min [lu- 1
(u) vﬂélgéllll vl (1)

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

denote the unsigned distance of any point u € R to its nearest
point in aS and

_]-d(u) ueS
fluy= {d(u) ueR\S @

the signed distance of u w.r.t. S. That is, d(u) = |f(u)|.

In practice, we consider an approximation a8 of the true surface
dS, which may differ in several ways. One possibility is an incom-
plete version or a point sampling of the true surface, 08 C 48. Now,
our unsigned distance

d(u) = min [lu - v} ®)
veadS

gives us only an upper bound, d (u) > |f(u)|, on the distance to the
true surface. We can now compose the signed distance, f, to S, as

f(u) = s(u)d(u) ©)
where s : R? - [~1, 1] is a continuous sign function.

Further, 38 may be locally displaced w.r.t. dS. In particular, we
take S to be a sparse voxel representation constructed from a set of
input primitives $, which may be points or triangles. More precisely
S C C is the set of center points of those voxels. This introduces
quantization error due to finite voxel resolution, which we model
as the negative signed distance to the nearest point on a primitive
p € P of the center of a voxel, ¢gp : aS — R. The advantage of
working from voxel centers is that it enables efficient distance field
computation at low memory cost. Section 4 goes into more detail.

Additionally, the true surface may be displaced w.r.t. the input
primitives, e.g. due to the use of a coarse tessellation to approximate
a detailed or smooth surface. We model this displacement as an
offset along the outward normal n, of primitive p,

s=v+ds(V)np(v) : s€dS, vep (5)

where ¢g : P — R is a displacement map giving the signed dis-
tance of the true surface w.r.t. the primitives. The full displacement
field ¢ : S — R from 3S to 3S is combined as in Section 4.

Now we write our displaced SDF definition to be

f(w) = s(u)d(u) - $(T) 6)
where
U =arg min [[u-v|, (7)
veoS

is the nearest point on dS tou € RS,

3.1 Approximation Power of]?

In general, f # f, and is not a metric SDF satisfying the Eikonal
equation due to the high frequency content and discontinuities
potentially introduced by the term ¢ (u) in (6). This section shows
under what conditions it shares the same 0-level set as f,

fW)=0 = f(u)=0 ®

and gives bounds on the error of the 0-level of of f, € = f(u) for

u s.t. f(u) = 0. To simplify the analysis, we assume an isotropic
voxel grid with voxel size 6 = dx = 6y = J,.

When ¢ = ¢p captures just the distance from the voxel centers

to the primitives and $ C 98, then (8) holds for most orientations

Displaced Signed Distance Fields for Additive Manufacturing « 179:5

displaced signed distance

device
control

Fig. 2. An overview of our framework for two scenarios. In scenario (a), we are given a low-poly mesh with an albedo texture and a displacement map encoding
mesoscopic surface detail. In scenario (b), we are given a polygonal mesh comprised of curved triangles, in this case point-normal triangles [Vlachos et al.
2001] with per-vertex normals. See Section 3 for definitions of the quantities in the boxes.

of planar surfaces and nearly holds for piecewise planar surfaces
approximating smooth curved surfaces. For planar surfaces where
the normal is nearly aligned with one axis, so that the voxelization
is a single voxel thick, but not exactly aligned, we have a small
error €9 # 0. In Appendix A we show that surface orientations,
which result in surface voxels on both positive and negative sides
of the surface result in €9 = 0, and otherwise |ey| < 0.0296. This
bound also holds when a planar surface is endowed with a non-zero
displacement field ¢ 5. In Appendix A we also analyze the error for
voxels away from the surface.

For curved surfaces the analysis becomes more complex, but Fig.
3 shows empirically that the error of a surface extracted in this way
remains near zero for low curvature regions and increases only to a
small fraction of the voxel size for higher curvature regions.

We have shown that fprovides a high quality approximation of
the true SDF f, and in particular their 0-level sets are very close.
And this approximation allows us to use efficient, streaming com-
patible algorithms operating on discrete grids. Computing the “true"
SDF would require fine tessellation, followed by some kind of BVH
to compute distances. This would introduce the potential for self-
intersecting or inverted surfaces, complexity logarithmic in the
number of primitives (after fine tessellation), and restrictions on
the displacement magnitude. Displaced SDFs make a deliberate and
bounded error in return for efficiency and flexibility.

4 SUB-VOXEL BOUNDARY APPROXIMATION

We represent aS asa sparse set of voxels, per Brunton et al. [2018],
allowing O(1) per-voxel computation of d, and the nearest point
T € S Y u € C, which we reference with a globally unique index. A
surface voxelization pre-process generates our sparse surface voxels
aS from the input primitives #, which may be points or triangles.
Section 7.1 goes into more detail on this process. Important for the
present discussion is that we compute a conservative 26-separating
surface voxelization of triangles, registering every triangle-voxel in-
tersection. For background and terminology on surface voxelization,
please refer to Cohen-Or and Kaufman [1995].

Compensating for the quantization error introduced by working
on a discrete grid is important because the fine scale detail provided
by a displacement map is given relative to the primitives, and not
the surface voxel centers. We do so by storing the signed distance

Displaced SDF Input

W) ©
a4 0.26
‘ ©

Voxel SDF

(d)
Fig. 3. Effect of including sub-voxel offset as displacement. The Happy
Buddha model (c) voxelized and represented using (4) (a) and (6) (b) with
¢ computed as in (9). The absolute errors of (a) and (b) are visualized as a
fraction of the voxel size in (d) and (e), respectively.

of the voxel center relative to the primitives incident to that voxel

1
gp(w) = =— > -njcy(u) ©
Pl S 7

where u € 8, P(u) C P is the set of primitives with non-empty
intersection with V(u), n,, is the normal of primitive p, and ¢, (u)
is the centroid of the intersection p N V(u) of the primitive and the
voxel relative to u (i.e. shifted so that the voxel center u is at the
origin). We also average displacements from the primitives to the
true surface, such that

1
$) =gp(W)+ =— > pslcp(w)) (10)
P, S

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

179:6 « Alan Brunton and Lubna Abu Rmaileh

which can be combined in a single summation over in the incident
primitives. This allows us to compute ¢(u) incrementally as each
primitive is voxelized, independent of the order.

In the case where P C S, i.e. the flat input primitives are at least
a subset of the true surface, we have ¢(u) = ¢p (u). Fig. 3 shows
how this improves the precision of the voxel representation. Fig.
3a,b show iso-surfaces extracted from s(u)(; (u) and f(u), respec-
tively, with ¢(u) = ¢ (u). Fig. 3a shows clear quantization error,
whereas (b) closely matches the input (c). The respective errors €
are visualized in (d) and (e).

Human-created models and scaled versions of scanned objects
will in general include structures with local feature size below the
device resolution. While such features are not directly printable, we
wish to preserve them since techniques exist to make them printable
(see e.g. Reinhard [2017] and the references therein). Averaging
surface normals when multiple primitives intersect the same voxel
is numerically sensitive, and fails to properly model sharp edges
or corners, crevices, or tubular structures. One could compute]? at
a higher resolution, and downsample for printing, but this would
correspondingly increase the computation time, without solving the
problem for structures with feature size below the resolution of f

Instead, we propose to represent sub-voxel structures using a
weighted sum of signed distance gradients. Informally, we determine
whether each face of the voxel is “looking” out or in from the part
of the surface contained within the voxel. Our approach is similar
2D vector glyph rendering [Nehab and Hoppe 2008; Qin et al. 2006],
where multiple primitives are stored in a grid cell. One key difference
is the fixed storage length of our representation.

Formally, to model how the SDF will change as we move from the
voxel center along a given direction, we compute weighted averages
of gradients of the SDFs defined by the primitives. Each primitive
defines a linear SDF w.r.t. its plane, with its gradient defined by n,.
For a given direction o € S2, we define

o f(u) = wwp(u,) (11)

1 T
- - n
Zpe? wp (0,) p;) s
where the weights are defined by

wp (1,) = ap(u) exp (—(cp(u)Tw - 5w/2)2/02) (12)

where ap (u) is the area of p N V(u), and 8, = [6x §y 6.]w. The
term cp (w)Tw — 8,,/2 gives the distance of the centroid from the
boundary of the voxel along the direction w from its center, and
o is controls the fall-off rate of the weight as this term increases.
We set 0 = 0.1 || [Ox Sy 5Z]T||2. We treat point primitives as having
a constant area. Barill et al. [2018] recommend non-uniform areas
based tangent plane Voronoi cells, but we use this only for primitives
within a single voxel, not to influence queries at a distance.

This approach to representing the geometry inside a voxel has
the advantage that it disentangles geometric precision within the
voxel (¢p) and sign information for other voxels ({9, f}), which
reflects the notion that if the surface intersect a voxel, the sign of
that voxel is not unique. Further, this representation can be updated
incrementally as primitives are processed, is compact, has fixed-
length storage, and allows efficient sign evaluation.

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

5 ESTIMATING SIGN

Having constructed our boundary approximation dS as in Section 4,
we now turn to the problem of computing the sign s(u) for allu € C.
We proceed in two steps: initializing from the nearest boundary
voxel u, then regularizing based on the distance to boundary d ().

5.1 Initialization

For voxel centersu € (C \ :9:'9) away from the boundary we obtain
a sign value from the boundary as

N(l)
s(u) = sign ((u -0 witps ((u - E)Twi) aa,l.f(ﬁ)) (13)
i=1

where per (7) u is the nearest surface voxel to u, 1r+ is an indicator
function equal to 1 when its argument is > 0 and 0 otherwise, and
N, denotes the number of directions along which the gradients
are projected. According to (13), we sum up the projected gradients
©;0y, f (W), for which w; - (u —u) > 0. If the scalar product of the
sum with u — U is negative then s(u) = —1, otherwise s(u) = 1. For
voxel centers v € 38 intersected by P, we initialize s(v) = 0. Fig. 4
shows the quantities for sub-voxel structures (in 2D).

This approach allows surface
voxels containing thin walls or [
tubular structures to export dif-
ferent sign values in opposite di-
rections, while for voxels contain- @, 1 W
ing a single primitive it behaves
equivalently to sign(n};(u -u)).
In practice, we use N, = 6 with
1 and w3 being the negative and
positive x-axes, w3 and w4 the neg-
ative and positive y-axes, and ws
and wg the negative and positive z-axes, respectively. This greatly
simplifies the evaluation of (11) and (13).

Fig. 5 shows how this preserves geometric structures at or below
the size of a voxel. The input (a) contains a glasses frame, which
is sliced separately at the same scale and orientation in (e) and (f)
with a subset of slices shown. Due to the scale it is thin enough to
intersect single voxels and cause problems in resolving the sign for
adjacent voxels. The evaluation of s according to (13) preserves the
correct sign for voxels not intersected by the primitives (e), and this
is refined after applying sub-voxel displacement (f). This shows that
(13) successfully models complex geometry with local feature size
below the voxel size everywhere. Section 9 describes some limits
on how far below the voxel size we can take this, and how complex
the sub-voxel geometry can be.

Fig. 6¢ and 7 show how the binary sign estimation based on the
nearest surface voxel (13) extends sign information from incom-
plete surfaces to complete them. Note, however, the discontinuous
distance fields and jagged isosurfaces that it creates.

Fig. 4. Quantities for address-
ing sub-voxel structures.

5.2 Regularization

While the sign evaluation given in (13) is robust to sub-voxel struc-
tures, for open surfaces it will simply continue the surface linearly
from the nearest surface voxel. This results in jagged surfaces, as in

Input fz 0 j?z T Final
(@) (b) (© ()
/ B \ / \ - \

i N> D@,
\ d \ {

s according to (13) sign(f)
(e) (f)
Fig. 5. Preservation of sub-voxel structures and hidden surface removal. The
input (a) contains many overlapping parts and structures on the order of or
below the voxel size, such as the glasses frame, which is shown separately
with slice information in (e) and (f), where yellow is positive, blue negative
and grey 0.

Figs. 6¢ and 7. We wish to regularize s so that (4) is smooth and has
equally spaced iso-surfaces.

We experimented with a number of different regularization tech-
niques. For example, we found that Monte Carlo estimation of the
Laplace equation As(u) = 0; u ¢ a8, similar to [Sawhney and Crane
2020], to be effective in removing low-frequency discontinuities,
but converged far too slowly to sufficiently remove high-frequency
noise. Instead, we settled on the following efficient regularization.

Laplace regularization is equivalent to imposing the condition
s(u) = m fv eB(ur) s(v)dv, where B(u, r) denotes the ball cen-

tered on u of radius r. The distance field d gives us the maximum
radius we can use without encountering aS. Rather than impose the
mean value property over the full 3D ball B(u, d(u)), we do so over
the 1D axis aligned balls By (u, r;(u)), By(u, r;(u)) and B, (u, r;(u)),
where e.g.

Be(ur)={u+[x00]T : -r<x<r}. (14)

This amounts to applying a sequence of adaptive 1D mean filters
along the x-, y- and z-axes. We implement this using 1D integral
images, allowing O(1) computation at an additional storage of only
O(max{W, H, D}). We experimented with iterating each 1D mean
filter to approximate Gaussian filters, but this did not add much
benefit for the additional cost. Figs. 6 and 7 show the effect of this
regularization compared to the unregularized sign function (13) for
open surfaces. Fig. 8 shows how the regularization performs for
further degraded input.

While this does not provide the same level of regularization as
PDE-based methods [Barill et al. 2018; Kazhdan et al. 2006; Kazh-
dan and Hoppe 2013; Sawhney and Crane 2020] or neural architec-
tures [Atzmon and Lipman 2020, 2021; Erler et al. 2020; Gropp et al.

Displaced Signed Distance Fields for Additive Manufacturing « 179:7

>

Input Holes added

(@) (b)

With regularization Without regularization
@ (©
Fig. 6. The Armadillo model (a) with holes added (b). Computing f with

s computed as in (13) results in jagged completion (c), whereas applying a
sequence of 1D box filters results in a smoother completion (d).

{

No regularization Regularization

No regularization

Input, slice

Regularization

Fig. 7. The Armadillo with holes as in Fig. 6b with slices offwithout and
with regularization. The boxes highlight the effect of regularization.

2020], it is less computationally intensive to evaluate at every voxel,
which we require to allow for arbitrarily large displacements. We
found this regularization to work well when the hole diameter is
below the local feature size. In Section 8.1, we describe how intro-
ducing an additional minimum threshold for surface extraction can
help with larger holes and missing surface data. Appendix F shows
examples of the limits of this approach.

6 SURFACE EXTRACTION

We can directly use the displaced SDF slices, e.g. for a preview.
Figs. 3, 5, 6 and 8 show iso-surfaces extracted by marching cubes

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

179:8 « Alan Brunton and Lubna Abu Rmaileh

n

| e A s

As point cloud Noise added

f=0 f=0
Fig. 8. Further corruptions of the Armadillo model. On top of the holes in
Fig. 6b, we remove facet information to create a point cloud (left) and add
noise (right). The resulting 0-level sets of f are shown underneath.

[Lorensen and Cline. 1987] directly from slices of f However, to
pair the displaced SDF directly with a device, without generating an
intermediate high-poly mesh via marching cubes or other meshing
algorithm, we instead extract a sparse set of surface voxels.

From our displaced SDF (6), we extract the same ordered-column
surface representation [Brunton et al. 2018], which allows subse-
quent efficient slice-wise evaluation of the unsigned distance to
the nearest surface point. In Appendix B, we show how this can be
modified for direct slice-wise evaluation of the SDF. Formally, we
seek to extract the true surface as the 0 level set of (6),

aS = {ust. f(u) = 0}. (15)

We extract voxels containing dS to be those with]? < 0 that
have at least one neighboring voxel satisfying f > 0. We use a
6-neighborhood, which gives us a 6-separating voxel surface. This
ensures a thin and sparse surface.

To address self-overlapping surfaces, we apply a simple floodfill-
based hidden surface removal, which simultaneously identifies con-
tiguous regions marked as outside the object according to (6) and
(15), and labels those regions reaching the exterior of B, as exterior
regions. A lightweight post-process performs a pass over the surface
voxels and discards those not bordering on any exterior regions.

At self-intersections themsglves, it can occur that no voxel in the
immediate neighborhood has f(u) < 0, due to the discrete nature of
the distance computation and arbitrary tie-breaking in determining
u. To address this, we extract the surface at a small positive iso-level

dS; = {us.t. f(u) =7>0}. (16)

We found using 7 = max{Jx, (5y, d.} to be sufficient even for sur-
faces with many small multiply-overlapping components. To subse-
quently recover 08, we store f(u) with the extracted surface voxels,
which we can then use to displace the SDF. Fig. 5b—d shows iso-
surfaces j? =0, f: 7 and the re-displaced iso-surface after hidden
surface removal, respectively.

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

7 IMPLEMENTATION

We implement our framework in standard C++14, using tbb [Intel
2020] for multi-threading. Algorithms that are streaming compati-
ble according to definition 3.1 are scalable w.r.t. build size at high
resolution, but also very limited in the quantities they can store per
voxel and the number of dense slices of voxels they can store at once.
In our implementation, we store three 4-byte quantities in dense
slices of voxels: d, fand an index to look-up the nearest surface
voxel. The storage for fis initially used to store s for filtering before
composition (6), and following extraction of dS; the storage for d
is re-purposed for the floodfill-based hidden surface removal. We
processes small chunks of slices at a time; 16 is a typical chunk size,
though this is set based on the number of processing cores.

7.1 Sparse Surface Voxelization

To ensure we capture even geometric features below the voxel resolu-
tion, we perform a conservative, 26-separating surface voxelization,
registering every primitive-voxel intersection. This proceeds chunk
wise, incrementally computing the surface voxels for small range
along the z-axis. We do not store all voxels in this range, rather only
those intersected by a primitive, using a look-up based on a hash-
map of the voxel coordinates. Details on the surface voxelization
algorithm are given in Appendix C.

We batch primitive-voxel intersections, defined by voxel coordi-
nates u, primitive normal ny, ¢, (u), ap(u), along with quantities
interpolated between vertices such as texture coordinates or color,
together and upload the values to OpenGL textures. A fragment
shader runs on the batch and computes the displacement ¢, per
Sections 7.2 or 7.3, and performs additional processing, e.g., surface
color assignment. This is the only part of our implementation that
uses a GPU.

We then write the results to a sparse raster. For each slice within
the chunk, we use std: : unordered_map to compute a map (x, y) —
3, where X denotes a surface voxel element comprising the attributes
needed for a surface voxel

3 = (4 {0w,f : n=1,...,6},attribs) 17)

where attribs indicates other attributes that may be of interest, such
as color. For each primitive p that intersects a voxel, the map re-
trieves the corresponding X and updates d,,, f per (11).

7.2 Displacement Mapping

Displacement maps are topographic textures that specify a height
map relative to the tessellation geometry along the direction of the
surface normal vector. In contrast to bump maps or normal maps
used for shading, a displacement map alters the topography of the
object, adding detail to the tessellation. Adding detail by refining the
tessellation results in high polygon counts, increasing the storage,
transmission and processing costs. A displacement map is typically
a much more efficient representation for geometric detail. In this
section, we describe our implementation of applying a displacement
map to a low-poly mesh that is then printed with high surface detail.

Our surface representation stores displacement, along with other
attributes such as RGBA values, with each surface voxel; a unique
index per surface voxel allows access to these attributes. Using the

method of Brunton et al. [2018], we transfer this index to the discrete
Voronoi cell of each surface voxel.

So far we have described ¢ in infinite precision. In practice, dis-
placement maps are often given in fixed precision formats, with as
few as 8-bits per pixel being typical. We interpret such displacement
maps as ¢(t) € [0,1], t € RZ, and apply a per-object displacement
scale k to convert this value into a metric distance. Specifically,

Ps(vV) =kp(t(v)) : veP (18)
where t(v) are the texture coordinates interpolated at v within a
primitive, and k > 0 means dS lies within a dilation by x of aS. To
account for this dilation, we add a padding of sufficient voxels along
the x-, y-, and z-axes. To avoid aliasing when sampling ¢, which is
typically a high-frequency texture, we apply mipmapping.

7.3 Curved Surfaces

We implement curved triangles by computing the distance along
the normal of the flat triangle to the curved triangle during surface
voxelization, and store this as the displacement value of the surface
voxel created by the surface voxelization of the flat triangle. For PN
triangles, we convert them to general Bézier triangles [Vlachos et al.
2001], and evaluate the position of the Bézier triangle using the de
Casteljau algorithm [de Casteljau 1959].

Letu € S and n, be the normal of a primitive p intersecting the
V(u). We have

$s(v) =ny(q(v) - v) (19)
for v € p, where q(v) is the point on the curved primitive con-
structed from v. Combining with (9) gives

1
pw) = —=— > np(qlcp(w)). (20)
Pl &P

8 APPLICATIONS AND EVALUATION

In this section we apply our displaced SDFs to different tasks in
additive manufacturing, and evaluate its performance. To evaluate
the robustness and performance of our algorithm, we used a subset
of 50 models from the Thingi10K [Zhou and Jacobson 2016], chosen
to include large, intermediate and small triangle counts, and the
Armadillo, Happy Buddha and Asian Dragon from the Stanford
scanning repository [Stanford Computer Graphics Laboratory 2014].
To evaluate displacement mapping, we used a different set of four
texture-mapped models as described in Section 8.2.

We created printed examples by pairing our framework with the
implementation provided by the Cuttlefish SDK [IGD 2020] for color
gamut mapping, separation, halftoning, and printer-specific output.
We printed examples on a Mimaki 3DU]J-553 [Mimaki 2017].

8.1 Robust voxelization and fabrication

In this section, we evaluate the robustness of our approach to cor-
rupted data. We show some visual results for real-world data in Figs.
1a, 9 and 10. Fig. 1a shows an open surface as a result of a scan, which
our method is able to voxelize for printing. To obtain a near-constant
thickness, we set a minimum level set value, —0.8 cm, and extract a
surface at that iso-level in addition to the 0-level. Fig. 9 shows the
result of printing a multi-view stereo reconstruction [Waechter et al.

Displaced Signed Distance Fields for Additive Manufacturing « 179:9

2014] of a statue of Copernicus. Due to the many occluding surfaces,
the scan has many holes, small and large with complex boundaries,
and some floating triangles. The bottom of the model is completely
open, since it is the ground surrounding the statue. Our approach
preserves the detail of the textured surfaces and completes the model
without introducing extraneous surface features. Fig. 10 shows a
point cloud [Rodrigues et al. 2014] and the 3D printed result. The
model includes colors and normals at each point. Again, the model
is completely open on one side, and to print with a near-constant
thickness, we use a second iso-level of —0.8 cm.

Fig. 9. This scan of a statue of Copernicus has many holes (boundaries
highlighted in red), and is completely open on the bottom. The print on the
right is neither missing structures nor introducing extraneous structures.

Fig. 10. A 3D printed point cloud.

Figs. 6 and 8 show the robustness of our method w.r.t. incomplete
input and noise, with a ground truth for reference in Fig. 6a. Fig.
shows robustness w.r.t. self-intersection and geometric features
beyond the voxel resolution. We evaluated robustness quantitatively
by corrupting models in our test set with different numbers and
sizes of holes, removing facet information to create point clouds,
and adding Gaussian noise along the surface normal. Fig. 11 shows

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

179:10 « Alan Brunton and Lubna Abu Rmaileh

the Hausdorft distance for different numbers of holes, for an average
hole radius of 0.02 (left), and for different hole sizes for a 100 holes.
We see that the error increases gradually as the number of holes
increase, but that the variance also increases. A similar behavior can
be observed for increasing hole size. Additional results can be found
in Appendix E. All lengths (radii, Hausdorff distance) are given as a
fraction of the model’s bounding box diagonal.

°

°

Hausdorff distance
°
———
@
Hausdorff distance
°

o.

005 005
0 20 40 60 80 100 001 0.012 0014 0.016 0018 002

Number of holes Hole size

Fig. 11. Left: Hausdorff distance for different numbers of holes with an
average hole radius of 0.02. Right: Hausdorff distance for different holes
radii for 100 holes. All lengths are given as a fraction of the model’s bounding
box diagonal.

8.2 Displacement mapping

In this section, we compare the displacement mapping performance
of our approach to that of vertex displacement, which was performed
using Blender [2020]. A displacement map can be applied to a model
in Blender using the Subdivision Surface and Displace modi-
fiers to subdivide the surface and displace the vertices, respectively.
We compare this method to ours in terms of geometric compactness,
and processing efficiency. We also verify that with increasing subdi-
vision, vertex displacement converges toward our displaced result.
We use a test set of four models with displacement maps, shown in
Fig. 14 and in Appendix D.

Mesh triangles (millions)

3 @ 8
File parsing time (seconds)
3

50 °

L]

. ®— o o 8 o o

5 1 2 3 4 5
Number of surface subdivisions

. . H
1 2 3
Number of surface subdivisions

°

Fig. 12. Left: Increasing the number of surface subdivisions exponentially
increases the number of triangles and mesh file size in different models.
Right: Setup time, including reading from disk, parsing, and placing the
model in the printer’s build space, with increasing surface subdivisions for
different models. The 0-level subdivision refers to the original tessellation
with a displacement map applied to using our method.

Fig. 12 (left) shows the exponential increase in the number of
triangles for increasing subdivision levels. Fig. S6 in Supplemental
Appendix D shows the corresponding exponential increase in file
size. In Fig. 12 (right), we compare the time required to load and
parse the input mesh, and position it in the printer’s build space
for different subdivision levels, where level 0 indicates the original
mesh with displacement map. For higher subdivision levels the time

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

is dominated by file parsing. This is clearly dependent on the file
format; we used the OB] format, since it supports displacement
maps, and is more widely supported by 3D printing software than
other formats. Fig. 17a shows the processing time of our method
for different levels of subdivisions. Again, 0 indicates the original
mesh with displacement map. We see that the processing time for
a fixed number of voxels does not change significantly (note the
compressed range on the vertical axis). We choose this measure
since the different subdivision levels result in different numbers of
voxels to process (the object becomes bigger).

To compare the level of detail obtained using vertex displacement
vs. our method, we look at the Hausdorff distance dgy between our
method and the different levels of subdivision. Fig. 13a shows both
dp and the one-sided variant dy.. (D, T), measuring the distance of
D to T, such that dg (D, T) = max(dy+(D, T), dy«(T, D)), where D
denotes the surface generated using the original tessellation with
displacement map, and T denotes the surface generated by subdi-
vision. We can see that in general both decrease as the tessellated
versions are refined. Self-intersections created by vertex displace-
ment result in inside-out surfaces in some locations, which causes
dp to increase for higher subdivision levels. However, dgy, continues
to decrease showing that with higher subdivision, the vertex dis-
placed models approach the shape of applying displacement using
our method.

°
2
3

o Earth-g, % Earthog L4 © Flatinangles

® Curved triangles

°
=

o Teapot-d, % Toapot-d,,.
Venus de Mio -d,, Venus de Mio - d,,.

m,
°

o Pawn-d, x Pawn-d,,

°

E
g
5 w
2 2 10°
2 008 - 20 °
H []
g 0.0 s
2 o 10 o
g] ° .
£0.04 ® x *
- 107
0.02
]
o * - L) - 108 °
1 2 3 4 5 10% 10
Number of surface subdivisions Number of input triangles
() (b)

Fig. 13. Hausdorff distance between a low poly mesh with displacement and
high-poly meshes subdivided and displaced using the same displacement
map in Blender (a), and root mean squared error of a unit sphere represented
using displaced SDF generated from flat and curved triangles (b).

Fig. 14 gives a visual comparison between the two methods for
the teapot model, as does Fig. S1 in Appendix D for the earth model.
The left and middle prints use vertex displacement after 1 and 5 sub-
divisions, respectively. The prints on the right were displaced using
our method with the same displacement map. Our method attains
the quality of 5 subvisions with a smaller file size than 1 subdivi-
sion. Figs. 1 (center) and 15 (left) show the benefits of displacement
mapping in terms of visual realism.

8.3 Direct fabrication of curved surfaces

Fig. 16 shows a chess piece printed using flat and curved PN-triangles.
The tessellation is no longer visible in the case of curved triangles.
Fig. 1c shows how the same curved triangle tessellation scales to
different print sizes while maintain precision to the native resolution
of the device. No additional tessellation or subdivision is applied
to the 5cm print (right) versus the 3cm print. Fig. 13b shows the

@ © W

1382.75 MB

5.48 MB

Displaced Signed Distance Fields for Additive Manufacturing « 179:11

4.25 MB

Fig. 14. A printed 9-cm teapot with 1 surface subdivision (left), 5 surface subdivisions (center), and displacement map applied using our method (right). Under
each image we give the file size used to encode the geometry, including the displacement map for our method.

-

e

Fig. 15. A 13-cm teapot printed with a dishcloth displacement map (left) and without (right).

root mean squared error (RMSE) of a unit sphere represented using

our displaced SDF generated from flat and curved (PN) triangles.

The RMSE is measure on vertices extracted on the 0-set of f using
marching cubes. The same number of curved triangles produces

about two orders of magnitude lower error compare to flat triangles.

i1

Fig. 16. A chess piece printed with flat (left) and PN-triangles (right).

8.4 Performance

Our algorithm has asymptotic theoretical running time of O(1) per
voxel, or linear in the number of voxels. In this section, we show
experimentally its independence w.r.t. the number of primitives
|P], its run-time in practice as the print size changes, and its low
storage requirements, < 1 byte per voxel for moderate print sizes,
decreasing for larger prints. We conducted all performance evalua-
tions, including those for Section 8.2, on a laptop PC with an Intel i9
processor with 8 cores and 16 MB of cache, and 16 GB of memory.

To generate the data for Figs. 17b-d, we ran each of the 53 mod-
els from our test set at two print sizes chosen randomly from
{3 cm, 5 cm, 10 cm, 15 cm, 20 cm}, where the print size is measured
along the model’s longest axis.

We see from Fig. 17a that the running time is independent of the
number of primitives. Fig. 17b,c further shows that our implementa-
tion runs in constant time per voxel (linear in the number of voxels),
and independent of the number of primitives. Each figure shows
the running time, including surface voxelization, distance computa-
tion, sign estimation, evaluation of (6), surface voxel extraction and
hidden surface removal. Over all 106 trials, the mean running time
per million voxels was 0.0832 s.

Fig. 17d shows the peak storage per voxel of our framework for
our test set. Blue points show individual trials, while the orange
dots show the average peak storage for each print size. The peak

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

179:12 « Alan Brunton and Lubna Abu Rmaileh

0.082 0.18
, L]

8

S

S
°
=
.

g
P
(13
L]

°

.2

L Ty

g
3

Runtime (s/million voxels)
o

° 0.08

Rasterization and voxelization time
(s/million voxels)

S o
8 g
& 2

0,066 0.06
4 2 4 5 10° 10 10° 108 107
Number of surface subdivisions Number of mesh triangles

() (b)

°

=

.

o N ® ©
.

e

.o . .
o o o .o

. R AR L) ¢

.

RRLEL SNt

107 10° 10° 101 10"

Number of voxels

Runtime (s/million voxels)
o
.

Peak memory usage (bytes per voxel)

o - n oW &

10 1
Model print size (cm)

(©) (d)

Fig. 17. The running time is constant with respect to the number of mesh

o emas oo o

°
N
8

triangles (a,b), and linear in the number of voxels, or constant for a fixed
number of voxels (c). The per-voxel storage requirements decrease with
increasing print size (d). Note the logarithmic horizontal scale in (a-c).

storage per voxel is computed as

Buws = (max B (1))/(WHD) (21)

where t is wall time during program execution, B, () is total
storage in bytes allocated for our implementation at time ¢, and
W, H and D are the number of voxels along the x-, y- and z-axes,
respectively. The total storage B, () is the sum at time ¢ of storage
allocated for

e temporary storage for surface voxelization (including over-
head for hash maps),

o sparse surface voxel storage (including overhead and, e.g.,
RGBA values not specific to our approach), and

o dense voxel storage for a chunk of slices.

We compute B, (t) at the end of processing of each C slices in both
the surface voxelization process and the computation of]7 This
account misses some small 1D temporary stores O(max{W, H}),
which has a minimal effect on B,,.

9 LIMITATIONS

Our approach assumes an oriented surface as input, and does not
model errors or noise in normals (triangle vertex order). When such
problems occur on a small scale, our approach handles them with
only small artifacts, but will fail when large portions of a surface
are flipped, or there is significant noise in point normals. Appendix
F shows examples of the limits of our regularization scheme, w.r.t.
flipped triangles and large holes

Our modeling of sub-voxel +
structures is theoretically limited
to structures of non-zero wall
thickness. The inset shows how

for wall thickness 0, (13) results

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

in arbitrary sign on each side, with the result that fv (left) has a arbi-
trary error vs. f (right). We observed that for walls as thin as 10778
the sign is correctly assigned, whereas for a wall of thickness 10785
sign errors occur. Walls of 0 thickness are possible in artist-created
models, so this is something to address in future work. Appendix A
provides more analysis. Note that this discussion considers comput-
ing sign via (13) with no regularization.

The floodfill post-process for self-overlapping surfaces means
internal voids are not possible. This is a relatively minor problem
in the context of additive manufacturing. For processes that allow
for internal voids, such as FFF/FDM, voxel-compatible techniques
exist [Tricard et al. 2020] to generate internal support structures. For
polyjet processes used in graphical 3D printing, internal voids are
anyways filled with support material, and voxel-based hollowing or
lattice generation to save build material is likely advantageous.

While our approach avoids the pitfall of self-intersecting surfaces
that can arise with vertex displacement, it does not validate that the
combination of macroscopic and mesoscopic geometry constitute a
physically realizable shape. A large negative displace on a thin wall
can cause the wall to locally disappear, and a positive displacement
in a crevice can fill it in. Providing checks and feedback for such
invalid input is an avenue for future work.

Using a single displacement value per surface voxel creates a
problem for curved triangles when the corresponding flat triangles
induce large dihedral angles across the edges between them. This
results in a small bump along the edge.

10 CONCLUSION

We have presented an efficient framework based on displaced signed
distance fields for robust fabrication of finely detail and curved sur-
faces from compact representations. Our framework allows the
augmentation of low-polygon tessellations with displacement maps
for meso-scopic surface detail, and the direct fabrication of curved
triangle surfaces. In both cases it does this without subdivision and
the ensuing risk of creating self-intersecting surfaces. Our algo-
rithms run constant time per voxel. We have verified the robustness,
quality and performance qualitatively and quantitatively.

Looking forward, it would be interesting to combine our displaced
SDF with neural implicit representations such as Davies et al. [2021].
Currently, displacement maps will scale with the object as it is scale,
since the texture parametrization is fixed. Allowing the displacement
signal to have a fixed scale would allow the mesoscopic information
to maintain its frequency as the object changes in size. Including
support for other types of curved triangles, e.g. Lagrange simplices,
would simplify interfacing 3D printing with FEM analysis.

ACKNOWLEDGMENTS

We thank Philipp Urban, Marco Dennstadt, Johann Reinhard and
Mostafa Morsy for helpful discussions; Marketiger BV for printing;
and the anonymous reviewers for insightful feedback. Lubna Abu
Rmaileh was funded by EU Horizon 2020 ITN project ApPEARS no.
814158. Further information on the models and textures used in this
paper can be found in the supplemental material.

REFERENCES

M. Alexa, K. Hildebrand, and S. Lefebvre. 2017. Optimal Discrete Slicing. ACM TOG 36,
1, Article 12 (Jan. 2017), 16 pages. https://doi.org/10.1145/2999536

M. Attene. 2010. A lightweight approach to repairing digitized polygon meshes. The
Visual Computer 26, 11 (2010), 1393-1406.

M. Atzmon and Y. Lipman. 2020. SAL: Sign Agnostic Learning of Shapes from Raw
Data. In Proc. CVPR.

M. Atzmon and Y. Lipman. 2021. SALD: Sign Agnostic Learning with Derivatives. In
Proc. ICLR.

G. Barill, N. Dickson, R. Schmidt, D.LW. Levin, and A. Jacobson. 2018. Fast Winding
Numbers for Soups and Clouds. ACM TOG (Proc. SSGGRAPH) (2018).

M. Berger, A. Tagliasacchi, L.M. Seversky, P. Alliez, G. Guennebaud, J.A. Levineand A.
Sharf, and CT. Silva. 2017. A Survey of Surface Reconstruction from Point Clouds.
Computer Graphics Forum 36, 1 (2017), 301-329. https://doi.org/10.1111/cgf.12802

J.-P. Berrut and L.N. Trefethen. 2004. Barycentric Lagrange Interpolation. SIAM Rev.
46, 3 (2004), 501-517.

S. Bischoff, D. Pavic, and L. Kobbelt. 2005. Automatic restoration of polygonal models.
ACM TOG 24, 4 (2005).

Blender Online Community. 2020. Blender - a 3D modelling and rendering package.
http://www.blender.org

A. Brunton, C. A. Arikan, T. M. Tanksale, and P. Urban. 2018. 3D Printing Spatially
Varying Color and Translucency. ACM TOG (Proc. SSGGRAPH) 37, 4 (2018), 157:1—
157:13.

D. Cohen-Or and A. Kaufman. 1995. Fundamentals of Surface Voxelization. Graphical
Models and Image Processing 57, 6 (November 1995), 453-461.

R.L. Cook. 1984. Shade Trees. In Proc. SSGGRAPH 1984. 223-231.

R.L. Cook, L. Carpenter, and E. Catmull. 1987. The Reyes Rendering Architecture. In
Proc. SIGGRAPH 1987. 95-102.

T. Davies, D. Nowrouzezahrai, and A. Jacobson. 2021. On the Effectiveness of Weight-
Encoded Neural Implicit 3D Shapes. arXiv:2009.09808 [cs.GR]

P. de Casteljau. 1959. Outillage méthodes calcul. Technical Report.

E. Eisemann and X. Decoret. 2008. Single-pass gpu solid voxelization and applications.
In Proc. of Graphics Interface (GI). 73-80.

P. Erler, P. Guerrero, S. Ohrhallinger, N.J. Mitra, and M. Wimmer. 2020. Points2Surf
Learning Implicit Surfaces from Point Clouds. In Proc. ECCV. 108-124.

G. Farin. 1986. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design
3, 2(1986), 83—-127. https://doi.org/10.1016/0167-8396(86)90016-6

M. Garland and P.S. Heckbert. 1995. Fast polygonal approximation of terrains and height
fields. Technical Report CMU-CS-95-181.

H. Gohari, A. Barari, and H. Kishawy. 2018. An efficient methodology for slicing NURBS
surfaces using multi-step methods. International Journal of Advanced Manufacturing
Technology 95 (2018), 3111-3125.

A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman. 2020. Implicit Geometric
Regularization for Learning Shapes. In Proc. ICML.

A. Guéziec, G. Taubin, F. Lazarus, and B. Hom. 2001. Cutting and stitching: converting
sets of polygons into manifold surfaces. IEEE TVCG 7, 2 (2001).

H. Hoppe, T. Derose, T. Duchamp, J. McDonald, and W. Stuetzle. 1993. Mesh optimiza-
tion. In Proc. ACM SIGGRAPH.

Fraunhofer IGD. 2020. Cuttlefish SDK. https://www.cuttlefish.de/.

Intel. 2020. Intel Threading Building Blocks.
https://software.intel.com/content/www/us/en/develop/tools/threading-building-
blocks.html.

A. Jacobson, L. Kavan, and O. Sorkine-Hornung. 2013. Robust inside-outside segmen-
tation using generalized winding numbers. ACM TOG (Proc. SSIGGRAPH) 32, 4
(2013).

T. Ju. 2004. Robust repair of polygonal models. ACM TOG 23, 3 (2004).

M. Kazhdan, M. Bolitho, and H. Hoppe. 2006. Poisson Surface Reconstruction. In Proc.
SGP.

M. Kazhdan and H. Hoppe. 2013. Screened Poisson surface reconstruction. ACM TOG
32,3 (2013).

R. Kolluri. 2005. Provably Good Moving Least Squares. In Symposium on Discrete
Algorithms.

V. Kraevoy, A. Sheffer, and C. Gotsman. 2003. Matchmaker: constructing constrained
texture maps. ACM TOG 22, 3 (2003).

B. Krayer and S. Miiller. 2019. Generating signed distance fields on the GPU with
raymaps. The Visual Computer 35 (2019), 961-971.

W.E. Lorensen and H.E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163-169.
https://doi.org/10.1145/37402.37422

J. Martinez, S. Hornus, F. Claux, and Sylvain Lefebvre. 2015. Chained segment offsetting
for ray-based solid representations. Computers & Graphics 46 (2015), 36-47.

Mimaki. 2017. 3DUJ-553. https://mimaki.com/product/3d/3d-inkjet/3duj-553/.

D. Nehab and H. Hoppe. 2008. Random-Access Rendering of General Vector Graphics.
ACM TOG 27, 5, Article 135 (Dec. 2008), 10 pages. https://doi.org/10.1145/1409060.
1409088

Displaced Signed Distance Fields for Additive Manufacturing « 179:13

F.S. Nooruddin and G. Turk. 2003. Simplication and Repair of Polygonal Models Using
Volumetric Techniques. IEEE TVCG 9, 2 (2003), 191-205.

A.C. Oeztireli, G. Guenneband, and M. Gross. 2008. Feature Preserving Point Set
Surfaces based on Non-Linear Kernel Regression. Computer Graphics Forum (Proc.
Eurographics) (2008).

J. Podolak and S. Rusinkiewicz. 2005. Atomic volumes for mesh completion. In Proc.
SGP.

Z. Qin, M.D. McCool, and C.S. Kaplan. 2006. Real-Time Texture-Mapped Vector Glyphs.
In Proc. I3D 2006. 125-132. https://doi.org/10.1145/1111411.1111433

J. Reinhard. 2017. Discrete Medial Axis Transform and Applications for 3D Printing.
Bachelor Thesis. Technische Universitdt Darmstadt.

J. Rodrigues, M. Gazziro, N. Goncalves, O. Neto, Y. Fernandes, A. Gimenes, C. Alegre,
and R. Assis. 2014. The 12 prophets dataset. Technical Report ICMC-USP-400. ICMC,
University of Sao Paulo. 1-9 pages. www.aleijadinho3d.icmc.usp.br

R. Sawhney and K. Crane. 2020. Monte Carlo Geometry Processing: A Grid-Free Ap-
proach to PDE-Based Methods on Volumetric Domains. ACM TOG (Proc. SSGGRAPH)
39, 4 (2020).

M.-P. Schmidt. 2019. Additive Manufacturing of A 3D Part. Patent Application
US20190134915A1. https://patents.google.com/patent/US20190134915A1/

M. Schwarz and H.-P. Seidel. 2010. Fast Parallel Surface and Solid Voxelization on GPUs.
ACM Transaction on Graphics (Proc. SGGRAPH Asia) 29, 6 (2010).

J. Shade, S. Gortler, L.-W. He, and R. Szeliski. 1998. Layered Depth Images. In Proc.
SIGGRAPH 1998 (SIGGRAPH °98). 231-242. https://doi.org/10.1145/280814.280882

V. Sitzmann, J.N.P. Martel, AW. Bergman, D.B. Lindell, and G. Wetzstein. 2020. Implicit
Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.

Stanford Computer Graphics Laboratory. 2014. The Stanford 3D Scanning Repository.
https://graphics.stanford.edu/data/3Dscanrep/.

B. Starly, A. Lau, W. Sun, W. Lau, and T. Bradbury. 2005. Direct slicing of STEP based
NURBS models for layered manufacturing. Computer Aided Design 37 (2005), 387—
397.

J.P. Stevens and D.J. McKenna. 2018. Preparing a polygon mesh for printing. Patent
US10137646B2. https://patents.google.com/patent/US10137646B2/

Stratasys. 2016. J750. http://www.stratasys.com/3d-printers/production-
series/stratasys-j750.

Stratasys. 2020. Design for Additive Manufacturing with PolyJet. https:
//my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_
July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ- AM-
Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_
Additional_Resourcesbc-1&rhtocid=_1_0.

L. Szirmay-Kalos and T. Umenhoffer. 2006. Displacement Mapping on the GPU-State
of the Art. Computer Graphics Forum 25, 3 (2006), 1-24.

T. Tricard, F. Claux, and S. Lefebvre. 2020. Ribbed Support Vaults for 3D Printing
of Hollowed Objects. Computer Graphics Forum 39, 1 (2020), 147-159. https:
//doi.org/10.1111/cgf.13750

K. Vidim¢e, S.-P. Wang, J. Ragan-Kelley, and W. Matusik. 2013. OpenFab: A Pro-
grammable Pipeline for Multi-Material Fabrication. ACM TOG (Proc. SSGGRAPH) 32,
4 (2013).

A. Vlachos, J. Peters, C. Boyd, and J.L. Mitchell. 2001. Curved PN Triangles. In Pro-
ceedings of the 2001 Symposium on Interactive 3D Graphics (I3D "01). Association
for Computing Machinery, New York, NY, USA, 159-166. https://doi.org/10.1145/
364338.364387

M. Waechter, N. Moehrle, and M. Goesele. 2014. Let There Be Color! Large-Scale
Texturing of 3D Reconstructions. In Proc. ECCV. 836-850.

T. Wohlers, I. Campbell, O. Diegel, R. Huff, and J. Kowen. 2020. Wohlers Report 2020: 3D
Printing and Additive Manufacturing Global State of the Industry. Wohlers Associates,
Inc.

S. Yamakawa and K. Shimada. 2009. Removing self intersections of a triangular mesh
by edge-swapping, edge hammering, and face lifting. In Proc. IMR.

Q. Zhou and A. Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing Models.
arXiv:2009.09808 [cs.GR]

O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. 2013. Chapter 6 - Shape Functions, Deriva-
tives, and Integration. In The Finite Element Method: its Basis and Fundamentals
(seventh edition ed.), O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu (Eds.). Butterworth-
Heinemann, Oxford, 151 - 209. https://doi.org/10.1016/B978-1-85617-633-0.00006-
X

ACM Trans. Graph., Vol. 40, No. 4, Article 179. Publication date: August 2021.

https://doi.org/10.1145/2999536
https://doi.org/10.1111/cgf.12802
http://www.blender.org
https://arxiv.org/abs/2009.09808
https://doi.org/10.1016/0167-8396(86)90016-6
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/1409060.1409088
https://doi.org/10.1145/1409060.1409088
https://doi.org/10.1145/1111411.1111433
www.aleijadinho3d.icmc.usp.br
https://patents.google.com/patent/US20190134915A1/
https://doi.org/10.1145/280814.280882
https://patents.google.com/patent/US10137646B2/
https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0
https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0
https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0
https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0
https://my.stratasys.com/SupportCenter/HTML5UserGuides/Design_DFAM_Guide_July_2020/Responsive%20HTML5/index.html#t=DOC-01103_x_Design-PJ-AM-Guide-HTML%2FDfAM_Guide-Chapter%2FDfAM_Guide-Chapter.htm%23TOC_Additional_Resourcesbc-1&rhtocid=_1_0
https://doi.org/10.1111/cgf.13750
https://doi.org/10.1111/cgf.13750
https://doi.org/10.1145/364338.364387
https://doi.org/10.1145/364338.364387
https://arxiv.org/abs/2009.09808
https://doi.org/10.1016/B978-1-85617-633-0.00006-X
https://doi.org/10.1016/B978-1-85617-633-0.00006-X

	Abstract
	1 Introduction
	2 Related Work
	2.1 Robust Voxelization
	2.2 Surface Repair
	2.3 Surface Reconstruction and Meshing
	2.4 Deep Learning Methods
	2.5 Displacement Mapping
	2.6 Curved Triangles
	2.7 Streaming Distance Field Computation

	3 Displaced Signed Distance Fields
	3.1 Approximation Power of "0365f

	4 Sub-voxel Boundary Approximation
	5 Estimating Sign
	5.1 Initialization
	5.2 Regularization

	6 Surface Extraction
	7 Implementation
	7.1 Sparse Surface Voxelization
	7.2 Displacement Mapping
	7.3 Curved Surfaces

	8 Applications and Evaluation
	8.1 Robust voxelization and fabrication
	8.2 Displacement mapping
	8.3 Direct fabrication of curved surfaces
	8.4 Performance

	9 Limitations
	10 Conclusion
	Acknowledgments
	References

