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for writing reports and help with finding relevant background literature. He also provided
me with the datasets I did not generate myself and helped me implement the Kalman filter.
I would also like to thank Kristoffer Gryte for helping me collect data from the UAV.

i



Abstract

This thesis describes the development of algorithms to perform time synchronization in
sensor fusion systems. These algorithms can be used in real-time and the increase in time
synchronization performance can result in a significant increase in sensor fusion accuracy.
In this thesis the use case of georeferencing from an unmanned aerial vehicle (UAV) is used
as an example to measure the effect of the increased time synchronization performance.
The datasets used in this thesis comes from different UAVs using georeferencing equip-
ment that were either stationary or in flight. A global navigation satellite system (GNSS)
receiver was used to get an accurate time source which was used to synchronize the other
sensors. Using this, four different algorithms, where one was a Kalman filter was im-
plemented to perform time synchronization. The algorithms were evaluated based on the
root mean square (RMS) of the synchronization error for the different sensors during the
entire dataset and the subsequent effect this had on the georeferencing accuracy. The best
performance was achieved using the Kalman filter, but the third algorithm using a moving
average had almost similar results. The synchronization error of the inertial measurement
unit (IMU), decreased by a factor of up to 25 000 when using the time synchronization al-
gorithms compared to no active synchronization. This resulted in a decrease in positional
georeferencing errors by a factor of up to 4000 with the system dynamics and sensor pre-
cision chosen in this thesis. These results were found by correcting the data after a flight
had been performed, so the real-time viability and actual performance in a real flight has
not been verified. However, the results show that reducing synchronization errors can have
a big impact on sensor fusion accuracy if the system dynamics are fast and the sensors are
accurate.
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Sammendrag

Denne masteroppgaven beskriver utviklingen av algoritmer som blir brukt til å utføre
tidssynkronisering i sensorfusjonssystemer. Disse algoritmene kan bli brukt i sanntid og
økningen i tidssynkronisering kan føre til en signifikant økning i nøyaktigheten til sensor-
fusjonen. Denne masteroppgaven bruker georeferering fra droner (UAV) som et eksempel
for å kvantifisere effekten av den forbedrede tidssynkroniseringen. Datasettene som blir
brukt i denne masteroppgaven kommer fra ulike droner som bruker utstyr for å utføre
georeferering som enten har vært stasjonære eller har flydd. En satellittbasert navigasjon-
ssystem (GNSS) mottaker ble brukt for å få en nøyaktig tidskilde som så ble brukt for å
synkronisere de andre sensorene. Ved å bruke dette som utgangspunkt ble fire ulike al-
goritmer utviklet, hvor en av disse var et Kalmanfilter. Algoritmene ble evaluert ved å
bruke det kvadratiske gjennomsnittet (RMS) av synkroniseringsfeilen på alle sensorene
over hele datasettet. Deretter ble det sett på effekten dette hadde på nøyaktigheten til geo-
refereringen. Det beste resultatet kom fra Kalmanfilteret, men den tredje algoritmen som
brukte et glidene gjennomsnitt hadde nesten like bra resultat. Synkroniseringsfeilen til
bevegelsessensoren (IMU), ble redusert med en faktor på opp til 25 000 når tidssynkro-
niseringsalgoritmene ble brukt, sammenlignet med ingen aktiv tidssynkronisering. Dette
resulterte i en reduksjon i posisjonsfeilen til georefereringen med en faktor på opp til 4000,
basert på den nøyaktigheten som var valgt for sensorene og hvordan dynamikken til sys-
temet var bestemt i denne oppgaven. Disse resultatene ble funnet ved å bruke data som ble
samlet inn etter en flyvning var fullført. Dermed så har ikke systemet blitt testet i sanntid
og den faktiske ytelsen i sanntid mens dronen er i luften kan avvike fra resultatene som er
presentert her. Resultatene viser fremdeles at det å redusere synkroniseringsfeilen kan ha
en stor påvirkning på nøyaktigheten til sensorfusjonen, spesielt hvis dronen beveger seg
fort og sensorene er nøyaktige.
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1
Introduction

More than 2500 maritime incidents are handled by the Norwegian Joint Rescue Coordina-
tion Centres (JRCC) each year [1]. Many of these involve search and rescue (SAR) which
is something that can be difficult on the open sea. With high winds and rough seas, detect-
ing small vessels or people in the water, can be challenging as the object being searched
for will continually move. Search and rescue units (SRU) must therefore use elaborate
models for estimating the search area and it can be time consuming to exhaustively search
a given area [2].

Unmanned aerial vehicles (UAVs) can be used for the search phase of the SAR mis-
sion to reduce the time required to search for the object. UAVs can cover a large area in a
short amount of time and are therefore ideal for monitoring areas such as the sea surface.
If an optical sensor is mounted to the UAV, it can be used to take images which can be
used to detect objects. These objects can then be related from the sensor frame to a geo-
graphic coordinate system. This process is called georeferencing. Direct georeferencing
is georeferencing that happens onboard the UAV in real-time, instead of post-mission.

If an SRU vessel is assisted by UAVs using direct georeferencing, it could get Global
Positioning System (GPS) coordinates of objects detected in the water and as such focus
on the rescue phase while the UAVs handle the search phase.

Performing direct georeferencing with a UAV is a complicated problem and the most
accurate solutions require reference points on the ground, something which is not avail-
able in the open sea. The accuracy of the georeferencing can be more dependent on the
calibration of misalignment errors and the time synchronization between sensors than the
quality of the navigation sensors [3]. This thesis will focus on errors due to a lack of time
synchronization.

The importance of time synchronization increases if the UAV is far from the surface,
the UAV has a high velocity, the UAVs attitude changes quickly, the object it is tracking
is moving quickly or the surface is changing rapidly. All these factors will be present if
the UAV is supposed to search a large area quickly in rough seas. The reason for this is
that the georeferencing relies on the position and attitude of the camera at the exact time
that the image is captured. If the UAV has a significant attitude motion when the image is

1



1 Introduction 1.1 Previous work

captured a small time synchronization error can lead to a large error in the georeferenced
position.

In order to have small time synchronization errors, high timestamping accuracy is
also necessary. To achieve this, dedicated hardware for sensor timing is often used. The
hardware used in this thesis is the Sensor Timing Board (SenTiBoard) [4]. In addition to
giving coordinates GPS satellites also provide time information which is highly accurate.
This timing information can be used in order to synchronize the other timing sources in
the system to the global GPS clock.

1.1 Previous work
This thesis combines the accurate timestamping hardware of the SenTiBoard [4] to get
very precise timestamps and the Syncline model [5] to evaluate the impact of time syn-
chronization on sensor fusion accuracy.

1.2 Scope of work
This thesis aims to implement different time synchronization strategies and measure their
timing accuracy. Doing this accomplishes multiple objectives. Firstly, it will quantify
the effect of the different time synchronization methods. Secondly, the increase in timing
accuracy can be used to see what impact increased time synchronization has on georef-
erencing accuracy. The main objectives of the thesis therefore consist of the following
tasks:

• Literature review of sensor time synchronization methods, timing errors in sensor
fusion systems and timing standards.

• Describing the current SentiBoard system and its limitations.

• Collecting data and measuring the timing accuracy of the different timestamping
methods.

• Implementing time synchronization algorithms for real-time use.

• Evaluation of the time synchronization performance of the real-time algorithms and
its effects on the georeferencing accuracy.

1.3 Outline of the thesis
Following the introduction, the theoretical background for this thesis which consists of rel-
evant sensors, georeferencing, time standards and time synchronization will be presented
in Chapter 2. Next, in Chapter 3 the UAV and the SenTiBoard is presented. After that
the current timestamping performance of the system without using time synchronization
is presented in Chapter 4. In Chapter 5 the different time synchronization algorithms that
were implemented to reduce the time synchronization errors and their results are presented.

2



1 Introduction 1.3 Outline of the thesis

In Chapter 6 an example of the effect the synchronization errors has on georeferencing er-
rors and suggestions for future work is discussed. Finally, Chapter 7 concludes the work
presented.

3



2
Preliminaries

2.1 Sensors

2.1.1 Inertial sensors
Gyroscope

Gyroscopes can measure angular rate by utilizing the Coriolis force. Two masses that are
vibrating linearly in opposite directions on a plane will be subjected to opposite forces
of the same magnitude if a rotation is applied perpendicular to the vibration axis due to
the Coriolis force. The implementation of the vibration and the measurement of the force
varies based on the specific implementation chosen. Usually the difference in displacement
of the two masses is converted into a difference in capacitance which is then used to find
the angular rate for that axis [6, pp. 142-149].

Accelerometer

Accelerometers can be used to measure linear motion without a fixed reference and mea-
sure acceleration relative to free fall. Typically, a mechanical accelerometer is designed
such that an electronic circuit will sense a small amount of motion of a mass. A force can
then be applied to make the mass return to its neutral position. This can be due to elec-
trostatic effects or for example an electromagnet. The displacement of the mass is then
often measured as a change in capacitance or electrical charge if piezoelectric materials
are used. This is then used to find the acceleration [6, pp. 139-142].

Inertial measurement unit

An inertial measurement unit (IMU) is an assembly of sensors that usually consists of
a gyroscope and an accelerometer. An IMU usually has one or more gyroscopes and
accelerometers that can measure the acceleration and angular velocity. A typical config-
uration has one gyroscope and one accelerometer per axis. Using these measurements,

4



2 Preliminaries 2.1.2 Global navigation satellite system

the attitude, position and velocity can be calculated using an inertial navigation system.
An IMU typically contains a hardware interface, measurement calibration software, error
handling and the possibility to retrieve computed measurements. Due to errors in the mea-
surements from the gyroscope and the accelerometer that accumulate over time a Kalman
filter is often used to filter and correct the measurement. In many applications using an
IMU by itself does not provide sufficient accuracy and therefore sensor fusion is needed
in order to obtain better results [6, pp. 149-151].

2.1.2 Global navigation satellite system
A global navigation satellite system (GNSS) is a system that uses satellites in orbit around
Earth to get the position of the receiver and the current time. A GNSS consists of three
segments, the satellites in space, the control system and the GNSS receivers. The satellites
in orbit broadcasts signals down to Earth. The satellites have atomic clocks to maintain
a stable time reference. The satellites broadcast data that allows the GNSS receivers to
determine the time that the received messages were transmitted and the position of the
satellites, by using information about their orbits. The control system consists of ground
stations that have precise locations and synchronized clocks. This allows them to calibrate
the orbits and the satellite clocks. The GNSS receiver processes the data from the satellites
and outputs position, velocity and time [6, pp. 299-311].

2.2 Airborne georeferencing
Georeferencing is the process of relating images from an optical sensors internal coordi-
nate system to a geographic coordinate system [7]. North east down (NED) is a geograph-
ical coordinate system that represents position using three axis with its origin fixed at an
aircraft or spacecraft. The north and east axis points along a longitude and along a lati-
tude curve respectively. The down axis points towards the Earth’s surface. An issue when
performing georeferencing is that NED coordinates have three degrees of freedom, while
pixel coordinates only have two degrees of freedom. One way of solving this problem is
to assume that all the pixels in the image are in a single plane. This is called the flat-earth
assumption and is necessary if no elevation map is available. This is not a problem when
georeferencing objects in the sea since the sea is flat. Using this assumption, the down
coordinate can be set to 0. Georeferencing of an object by UAV can then be performed by
first detecting the object using image processing, then using the position and attitude of
the UAV in addition to the angle of the camera to calculate the north and east coordinate of
the object [3]. This can be done in real time on the UAV if direct georeferencing is needed.

2.3 Timing

2.3.1 Time standards
There are many different time standards that are used for different purposes. Some of them
are theoretical ideals while others are physically realized. They are all related to each other
and conversions between them are mostly exact.

5



2 Preliminaries 2.3.2 Timestamping

Geocentric Coordinate Time (TCG) is a theoretical concept and is based on a clock at
rest at the center of the Earth, following the Earths movement. It is used as the time com-
ponent of spacetime coordinates centered at Earth. Terrestrial time (TT) is a linear scaling
of TCG and gives the time on the surface of the Earth at mean sea level [8]. International
Atomic Time (TAI) is a physical realization of TT. This is achieved by computing the
weighted average of over 450 atomic clocks in meteorological conditions in laboratories
around the world [9].

Universal Time (UT) has several different versions with UT1 being the principal form.
UT1 is based on the Earth’s rotation as it was in the mid-19th century such that one mean
solar day is 86400 seconds. The rotation of the Earth is slowly decreasing, but also varies
unpredictably and therefore has to be observed [10]. To avoid the mean solar day from
becoming desynchronized with the mean sun, Universal Coordinated Time (UTC) was
implemented. UTC is based on TAI, but is offset by an integer amount of seconds to
always be within 0.9 seconds of UT1. To achieve this leap seconds are added or removed
at the end of June or December to keep it synchronized. UTC is the time standard that
is used for civil time and most countries have a time system that differs from UTC by an
integer number of hours [8].

Global Positioning System (GPS) satellites use GPS time which was set to be equal to
UTC in 1980. GPS time is continuous and therefore does not implement leap seconds, but
each GPS satellite has an atomic clock that is synchronized by ground stations to be within
25 ns of UTC modulo 1 second [11]. GNSS receivers using GPS time compensates for
the difference between GPS time and UTC and can be used as a reliable source for correct
time in UTC [12, p. 18]. Time is stored within the GPS satellites as an integer week
number and time of week (TOW) in seconds. This is easier for digital systems to handle,
but it is converted to the conventional form using years, months, days, hours, minutes and
seconds at external interfaces, but it is still possible to access the TOW data [13].

2.3.2 Timestamping
When a sensor acquires a measurement and when the measurement arrives at the process-
ing unit is often at different points in time. The different points in time that are usually
of interest are as follows. Time-of-validity (TOV) is the time at which the measurement
was taken by the sensor and is the point in time that the measurement is considered valid.
Time-of-transport (TOT) is the time that the first part of the message from the sensor is
received by the receiver. Time-of-arrival (TOA) is when the full message from the sensor
has been received, which indicates when the message can be passed on to the systems that
will use the measurement [4].

The best of these timestamps is the TOV since that gives us the actual sensor measure-
ment at the correct time. This is however not always possible, as getting the TOV requires
both dedicated timestamping hardware and sensors that implement the TOV functionality.
The timestamping hardware needs a separate timer and precise input capture with inter-
rupts in order to get an accurate timestamp. It also needs a way to associate a TOV signal
with the measurement proceeding it [5]. The sensors need to have a separate data output
that is only used to communicate when the data is valid in the form of a short flank. If
this is not available, then usually TOA is the only option. This does not need any special
support from the sensors or the hardware receiving it, but the timestamp will vary from the
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sensors side based on the processing time and the size of the message. The timestamp will
also vary on the receiving side based on the hardware and the software running on it.

2.3.3 Clock synchronization
If a system uses multiple sensors which need to be synchronized with each other there
needs to be some form of synchronization primitive that is used. It does not matter if
the timestamps are accurate if the clocks of the different sensors drift at different speeds,
therefore causing the clocks to not be synchronized anymore.

One way of solving this problem is to use a pulse per second (PPS) signal from a very
accurate time source [12, p. 22]. The PPS is an electrical signal that accurately repeats a
rising or falling edge each second. Sensors that accept PPS signals expect a signal each
second and compares this with its internal clock to synchronize its clock with the one
sending the PPS signal. A good source for a PPS signal is a GNSS receiver as they have a
high level of accuracy as presented in Section 2.3.1.

Another way to solve this problem is to use network synchronization. This is possible
if the sensor has a microprocessor which can use the TCP/IP stack and that can support the
IEEE 1588 Precision Time Protocol (PTP) or the Network Time Protocol (NTP). These
protocols can be used to synchronize the sensor clock. NTP and PTP work based on the
same principle. Multiple devices are connected together and form a hierarchy of time
sources with the most accurate clock on top. In NTP a NTP client will receive timestamps
from all the available sources in the network and decide how to combine these measure-
ments to adjust the clock. In PTP each PTP client has a single master, and there is only one
grandmaster clock which synchronizes all the other clocks. PTP is the newer than NTP
and is more accurate, but PTP can only be used in local area networks (LANs) while NTP
can be used in both wide area networks (WANs) and LANs [12, p. 23].

Another method of synchronization is needed if a sensor does not send timing infor-
mation as an output, but can get timing information as an input. This can be the case in
for example cameras where the data acquired is much larger than the other sensors and
therefore needs to be stored separately. In this case the sensors are triggered by a signal
from a synchronizing unit. The synchronizing unit generates a trigger flank and associates
the next measurement from the sensor with the time the flank was generated.

2.4 Syncline
When using sensor fusion methods, they are usually developed and evaluated on data sets
that have synchronous measurements or perfect time information. In reality the sensors
are asynchronous and need to use some form of synchronization. The importance of the
synchronization precision on the accuracy of the sensor fusion is dependent on the dy-
namics of the system. The Syncline model is a model that quantifies the effects of sensor
accuracy compared to time synchronization precision in a visual way [5]. Synchronization
errors during sensor measurement leads to inaccurate timestamping as a sensor measure-
ment believed to be valid at time t is actually valid at time t+ ϵ. The consequence of this
synchronization error is dependent on the dynamics of the system as that affects how much
the measured states have changed between time t and t+ ϵ. Based on this the Syncline is
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Table 2.1: Definitions for the variables that are used in the Syncline model.

τ Mean value of the synchronization error
vmax Norm of the expected maximum linear velocity
ωmax Norm of the expected maximum angular velocity
d Typical distance between the object and the sensor
σp Standard deviation of the estimated position
σr Standard deviation of the estimated ranging
σΘ Standard deviation of the estimated attitude
σu Standard deviation of the estimated bearing

defined as:

δ∗sync(τ) := vmaxτ + d ∗ ωmaxτ (2.1)

δ∗sensor := σp + σr + (σΘ + σu) ∗ d (2.2)
δsyncline(τ) := δ∗sync(τ) + δ∗sensor (2.3)

where Table 2.1 shows the definition of the variables used in the syncline model.
Figure 2.1 shows how to read the Syncline plot. The vertical axis shows the estimation

accuracy, which is the inverse of the sensor fusion error while the horizontal axis shows
the synchronization accuracy which is the inverse of the synchronization error. The roof is
the maximum obtainable accuracy of the sensor fusion system and is limited by the sensor
accuracy. The slope shows how the accuracy of the sensor fusion system increases as the
timing synchronization improves. The critical synchronization precision is given as τcrit
and is defined by:

δ∗sync(τcrit) = δ∗sensor (2.4)

If the mean value of the synchronization error is less than τcrit then the overall system
accuracy is sensor-bound which means that the sensor accuracy is the limiting factor. If the
mean value of the synchronization error is more than τcrit then the system is sync-bound,
and the timing synchronization is the limiting factor for the systems accuracy.
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Sensor-boundSync-bound
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Figure 2.1: A plot showing the different regions and boundaries of the Syncline.
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2.5 Kalman filter
The Kalman filter is an optimal linear estimator that can be used for real-time applications
[14]. Given a general discrete linear state-space model:

xn = Φxn−1 +Gωn (2.5)
yn = Hxn + vn (2.6)

where x and y are the state vector and measurement vector respectively, Φ and H are the
state transition and measurement matrix respectively. G is the noise matrix and ω and v
are zero mean Gaussian noise. The Kalman filter consists of two steps, the prediction step,
and the update step. The prediction step is as follows:

x̂n = Φx̂n−1 (2.7)

Pn = ΦPn−1Φ
T +Q (2.8)

where x̂ is the state estimation, P is the error covariance matrix and Q is the process noise
covariance matrix. The update step is as follows:

Kn = PnH
T
n (HnPnH

T
n +Rn)

−1 (2.9)
x̂n = x̂n +Kn(yn −Hnx̂n) (2.10)
Pn = Pn −KnHnPn (2.11)

where K is the Kalman filter gain and R is the measurement noise covariance matrix. The
Kalman filter works by predicting what the next state will be based on a model of the
system. When a new measurement is available it is compared with the prediction and used
to adjust the new predictions. The adjustments are done using a weighted average where
measurements with a higher certainty is given a higher weight.
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3
The current system

3.1 UAV
The UAV used for this thesis is a multirotor and can be seen in Figure 3.1. The relevant
sensors for this thesis that are used in the UAV can be seen in Table 3.1. These sensors
are connected to the SenTiBoard [4] which is used for accurate timestamping. The SenTi-
Board is connected to the single board computer (SBC) Odroid XU4 [15]. The data from
all the sensors except the camera flows through the SenTiBoard to get timestamped before
going to the SBC. The camera is triggered by the SenTiBoard, but the data flows directly
to the SBC. Figure 3.2 shows an overview of the system. The SBC then uses the data
from the sensors in a sensor fusion algorithm. The SBC is also connected to the autopilot
system.

3.2 SentiBoard
The SenTiBoard is a dedicated hardware timing solution that is designed to be config-
urable. The SenTiboard uses a PIC32MZ microprocessor which runs at 200 MHz and has
a 32-bit timing counter that runs at 100 MHz which is used to reference the sensor read-
ings. The SenTiBoard can communicate with desktop or embedded computers by using
USB. The main functionality of the SenTiBoard is to record accurate timestamps. This is
done by using 9 Input capture (IC) pins which can capture the TOV, TOT and TOA from

Table 3.1: The sensors used in the UAV.

Sensor type Sensor name

IMU ADIS16490 [16]
IMU Kongsberg MiniMRU 30 [17]

GNSS receiver u-blox ZED-F9P [18]
Thermal camera Genie Nano C4040 [19]
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Figure 3.1: UAV with the sensors and computing payload in the white box.

9 sensors simultaneously. The IC pins trigger an interrupt subroutine (ISR) when they de-
tect an edge, and in addition to this the value of the clock timer is stored. The SenTiBoard
supports multiple protocols including U(S)ART, RS-232, RS-422, SPI and I2C. The Sen-
tiBoard can also trigger sensors by generating pulses. This can be used to sample multiple
sensors simultaneously or to activate sensors like a camera. This can be useful as for ex-
ample cameras can send more data than the microprocessor is able to process. The camera
will in this instance be synced either by controlling when it takes a picture by generating a
pulse, or by registering a separate signal to get the TOV. Finally, the SenTiBoard can also
control the power of the sensors that are connected to turn them on or off if necessary. In
order to get a TOV timestamp from a sensor, the sensor needs to support this by having a
dedicated output which toggles when the sensor data is valid.

The SenTiBoard uses a common data envelope for the data it receives from each sensor.
The data is wrapped in a envelope format which is depicted in Figure 3.3. The format starts
with a 8-byte header which includes 2 bytes for the header checksum (CS H). The header
consists of 2 bytes for the syncword which checks that the data is the start of a packet that
comes from a configured sensor, 2 bytes for the length of the data, 1 byte for the id of the
sensor port and 1 byte for the id of the revision of the envelope format. Following this is an
optional timestamp that is only available if connected to an external computer. After that
follows the main timestamps TOV, TOT and TOA. After the data is a package checksum
(CS PKG) and padding bytes. The padding bytes are needed to align the data for the direct
memory access (DMA).

3.2.1 Sentiboard timing

Using the 100 MHz clock gives a resolution of 10 nanoseconds, but the clock will drift
over time and the accuracy of the timestamps will reduce over time. In order to correct the
drift a reference clock can be used. This reference clock needs to be more accurate than the
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Sentiboard SBC

GNSS
Receiver IMU MRU

Camera

Trigger

USB

UART + PPS

UART  
+ PPS SPI RS422

To autopilot

ETHERNET

Figure 3.2: Overview of the system

clock it is correcting otherwise the drift will only get worse. Since a highly accurate clock
is expensive and usually heavy a good alternative is to use a GNSS receiver which receives
GPS time. As mentioned in Section 2.3.1 GPS time is continuously synchronized to be
within 25 ns of UTC modulo 1 second and can therefore be used as a highly accurate refer-
ence clock to correct drift. If a sufficiently accurate GPS time signal can be retrieved from
a GNSS receiver, this can be used to remove the clock drift of the SenTiBoard clock. The
accuracy of the GNSS receiver is presented in Section 4.5 while the corrected timestamps
can be seen in Chapter 5.
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Sync Length RevisionID CS_H

External timestamp

TOV TOA

TOT

PADCS_PKG

Data

0 1 2 3 4 5 6 7

Figure 3.3: The contents of the data envelope for the SenTiBoard. The numbers at the top is the
byte count.
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4
Current performance

4.1 Collection of data
The data that is evaluated in this thesis is summarized in Table 4.1 and comes from three
different sources:

• The first dataset is data collected by me where the payload of the system was con-
nected to a battery and the data went from the SenTiBoard and to a computer running
a Linux operating system (OS). This dataset uses the ADIS IMU. This test was done
outside where the equipment was placed far away from buildings such that it had
good access to multiple GNSS satellites. Due to the weather conditions a rain cover
was placed over the electronics, but the GNSS antenna was in a raised position and
was uncovered. The test lasted for one hour and the system was stationary during
the test. Figure 4.1 shows what the test setup looks like at the test site. This data is
what was used to make the algorithms presented in Chapter 5.

• The second dataset is from a few different flights using a UAV that also uses the
SenTiBoard with the same GNSS receiver, but with a different IMU. The IMU used
in this dataset is a Sensonor STIM300 [20]. This data is used to see general trends
in the performance of the SenTiBoard and the IMUs. It is also used as a control to
check that the algorithms developed using the first dataset are also applicable to a
UAV in flight and that they work regardless of which sensor is used.

• The last dataset is from a flight using the same equipment as the test I performed
myself, which means that it also uses the ADIS IMU. Due to an error this dataset
has a very high amount of packet loss. This dataset will be used to check if the
algorithms can handle packet loss. Packet loss from the GNSS receiver can for
example happen if the UAV flies into a tunnel.

If data from the ADIS IMU or MRU is mentioned it is always from dataset 1 except if
it is explicitly mentioned that it’s from the dataset with packet loss, which is dataset 3. If
data from the STIM IMU is mentioned, it is always from dataset 2.
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Table 4.1: The sensors used for each dataset and the sample rate they were configured with.

Dataset ADIS IMU sample rate STIM IMU sample rate MRU sample rate

Dataset 1 1062.5 Hz no STIM IMU 200 Hz

Dataset 2 no ADIS IMU 200 Hz NO MRU

Dataset 3 4250 Hz no STIM IMU not used

Figure 4.1: GNSS antennas, sensor suite and laptop with rain cover on trolley at test site.

4.2 Synchronization error calculation

The data collected will be evaluated based on the accumulated synchronization error over
time. The accumulative effect of the synchronization error over time is calculated using
[4, Eq. (1)] generalized to any sampling frequency:

e(n) = t(n)−
(
t(0) +

n

sensor freq

)
(4.1)

where t(n) is the value of the timestamp at sample n for the current timestamping method,
n is the sample number and sensor freq is the nominal sampling frequency of the sensor.
This equation measures how much each timestamp differs from the expected time at each
sample given a constant sample rate. Therefore, this shows how different the timestamp
is compared to a perfect clock showing the true time. As will be shown in Section 4.5,
the accuracy of the timestamps from the GNSS receiver is very high and the other sensors
timestamps will be synchronized to the GNSS receivers timestamps. Therefore, the syn-
chronization error is calculated as how far off a given timestamp is to the actual time, which
is approximately equal to the timestamps from the GNSS receiver. This approximation is
sufficient given the level of accuracy achieved with the algorithms presented in Chapter 5.
This synchronization error consists of two parts, the error due to the timestamping not
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Figure 4.2: Synchronization error when using TOA for ADIS IMU connected to the PC running
Linux.

being accurate and the error due to clock drift.

4.3 Timestamping accuracy
The most basic form of timestamping is timestamping on arrival which gives us a times-
tamp using TOA as presented in Section 2.3.2. The data collected is timestamped on arrival
with three different methods. In all cases this data is passed through the SenTiBoard. The
first and worst method is timestamping on arrival when the data arrives at the PC running
the Linux OS. This OS runs many other tasks and as such the data can arrive at a time
where the processor is busy with another task. This results in timestamps that vary wildly
and are not very accurate. Figure 4.2 shows what this looks like for the ADIS IMU from
the dataset without packet loss. This shows that the majority of the timestamps are close
to each other and that they slowly drift from 0 to 40 ms of synchronization error. There
are, however, quite a few outliers that have up to 100 ms worse synchronization error than
the main cluster. This is likely due to the processor being busy with other tasks when the
data arrives. The main drift from 0 to 40 ms is likely due to the drift of both the PC clock
and the ADIS IMU clock which will be covered in more detail in Section 4.4.

To get improved accuracy, the timestamping on arrival can be done on an SBC running
real-time software. The only dataset which has data collected in this way is the dataset
with high packet loss. The synchronization error for this dataset using timestamping on
arrival can be seen in Figure 4.3. The top plot shows the synchronization error during the
entire runtime. Due to the high amount of packet loss, it is difficult to see how accurate it
is. The synchronization error becomes very high due to the way the synchronization error
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is calculated. As seen in (4.1) the synchronization error is calculated based on a constant
sample rate, which is not the case when packets are lost. The result of this is that when a
GNSS packet is lost, the synchronization error jumps by one second. A solution to plot
this better is presented in Section 5.7, but that requires very accurate timestamping. When
using timestamping on arrival it is difficult to differentiate a lost packet and the processor
being busy. Therefore the acutal synchronization error is most likely similar to what is
seen in Figure 4.2, but with smaller spikes in the synchronization error. To get a better
impression of how well it actually performs the bottom plot is a zoomed in plot of the data
where no GNSS packet loss occurs. Although this data is not very good due to the packet
loss, it clearly shows that the worst synchronization errors has been reduced from around
100 ms to around 10 ms when using the SBC compared to the PC. This is likely due to
the SBC only running what is needed for the UAV, and the fact that it is using real-time
software.

To further increase the accuracy of the timestamping on arrival, dedicated hardware
such as the SenTiBoard can be used. In the previous cases the data was sampled by the
SenTiBoard and then sent to the Linux PC or the SBC for timestamping. If the data is
timestamped directly in the SenTiBoard the accuracy greatly increases. Figure 4.4 shows
the accuracy of timestamping on arrival using the SenTiBoard. Since the accuracy of the
timestamps is so high compared to the synchronization error due to the drift, it becomes
difficult to see any details when plotting the synchronization error. In order to see the ac-
curacy of the timestamps, the difference between the expected time between two samples
and the actual time between two samples is compared. From now on this is referenced as
∆TOV error or ∆TOA error depending on the timestamping method used. The ∆TOA for
the ADIS IMU can be seen in the top plot in Figure 4.5. This shows that the error has now
greatly reduced from around 10 ms to fluctuating 200 µs before and after the expected
time.

To further improve the timestamping accuracy, the sensor hardware needs to be de-
signed for high precision timestamping as well. The ADIS IMU has a pin that toggles
when the current sample is valid. Combined with the IC capture functionality of the Sen-
TiBoard this can be used to get very accurate TOV timestamps. In this case, it is necessary
to look at the ∆TOV error, the outliers now fluctuate about 6 µs before or after the expected
time. This functionality is also present in the STIM IMU which is even more accurate with
fluctuation of about 0.1 µs before or after the expected time. These results can be seen as
the middle and bottom plots in Figure 4.5.
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Figure 4.3: Synchronization error when using TOA for ADIS IMU connected to SBC with high
amounts of packet loss. The top plot shows the entire runtime while the bottom plot shows a zoomed
in view.
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Figure 4.4: Synchronization error when using TOA for ADIS IMU where the SenTiBoard does the
timestamping.
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Figure 4.5: The ∆TOA error for the ADIS IMU and ∆TOV error for the ADIS And the STIM IMU.
The top plot shows the ∆TOA error for the ADIS IMU. The middle plot shows the ∆TOV plot for
the ADIS IMU. The bottom plot shows the ∆TOV error for the STIM IMU.
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4.4 Drift
When using both sensor hardware and timestamping hardware that is designed for high
presicion timestamping, the accuracy of each individual timestamp becomes very accu-
rate. The problem is that even though the timestamp itself is very accurate, the clocks
that are used in both the sensor hardware and the timestamping hardware can drift. When
comparing ADIS ∆TOV and ADIS ∆TOA in Figure 4.5 we can see that the spread of the
timestamps is much smaller when using TOV. However, when looking at the synchroniza-
tion error for the TOV which can be seen in the top plot of Figure 4.6, the overall drift of
the timestamps are the same as in Figure 4.4 which shows the ADIS TOA.

To see how this can be fixed, the drift of the sensors and the SenTiBoard needs to be
evaluated. This can be done by looking at the TOV of the GNSS receiver. The GNSS
receiver sends pulses once per second using a PPS signal. This pulse has an root mean
square (RMS) accuracy of 30 ns [18]. Any synchronization error higher than this would
therefore be the result of a drift in the SenTiBoard clock which is used for sampling this
signal. The bottom plot of Figure 4.6 shows the TOV of the GNSS, it is clear that there is
a drift and that it varies over time. This drift is much smaller than the drift seen in top plot,
which shows the ADIS TOV, where both the SenTiBoard clock and the ADIS clock drifts.
This indicates that the drift in the ADIS clock is higher than the drift in the SenTiBoard
clock. The way the clocks drift is very closely related to the change in temperature of
the sensors. The change in drift over time can be seen by using ∆TOV. In order to see a
pattern, we need to average a given number of elements at a time to see the main trends
and not just the outliers. For these plots all the samples were averaged such that only 100
points remained for each sensor. This results in the plots shown in Figure 4.7. The top plot
shows the ∆TOV mean for the ADIS TOV, while the middle plot shows the ∆TOV mean
for the GNSS TOV. These have the same general shape, but different values as the sample
rate is different. The bottom plot shows the temperature at the ADIS IMU. They both
follow the change in temperature quite closely. This connection between temperature and
drift is even more clear when looking at the STIM data which can be seen in Figure 4.8.
This figure follows the same structure as the previous figure. From these figures we can see
that the drift of the TOV for the ADIS and the GNSS receiver actually change in the same
way throughout the runtime even though the synchronization error looks quite different as
seen in Figure 4.6.
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Figure 4.6: Synchronization error when using TOV for ADIS IMU and GNSS receiver where the
SenTiBoard does the timestamping.
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Figure 4.7: ∆TOV error mean for ADIS IMU and GNSS receiver and temperature at ADIS IMU.
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Figure 4.8: ∆TOV error mean for STIM IMU and GNSS receiver and temperature at STIM IMU.
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This shows that the drift changes during runtime and is closely linked to the change
in temperature. It is possible to design oscillators that minimize drift due to temperature
changes by different methods such as utilizing polysilicon resistors with opposite temper-
ature coefficients [21], or looking at the utilization of electron mobility in MOS transistors
[22]. If it is not possible to tune the clock during runtime, the drift can be handled by
software. This is what this thesis accomplishes in Chapter 5. This is possible if the soft-
ware algorithms do not take too much time to run, and if the data being slightly delayed
to its destination does not affect the result meaningfully. In this case it is important to
know exactly when a measurement was taken, but it is not as important that it arrives at
its destination immediately. This is because having a high synchronization error gives an
incorrect result, while having a delay only causes the data to arrive later. If the delay is
known and affects every measurement, it is even possible to compensate for the delay in
the timestamp afterwards. As we saw from the bottom plot of Figure 4.3 the data sent to
the SBC can be up to 10 ms delayed, which is many orders of magnitude more than the
precision that the synchronization error ends up at after using the time synchronization
algorithms presented in Chapter 5.

From Figure 3.2 in Chapter 3 we can see that the MRU is connected to the GNSS
receiver and receives a PPS signal. This is because the MRU automatically synchronizes
its internal clock by comparing it to the time pulse from the GNSS receiver [17]. This
is clear from the MRU TOA seen in Figure 4.9 which looks identical to the GNSS TOV
seen in the bottom plot of Figure 4.6. This is because the synchronization error in both
is due to the SenTiBoard clock drift, as the MRUs internal clock drift has already been
handled by the MRU itself. However, since the MRU does not have support for TOV and
has to use TOA, the spread of the timestamps is higher than if TOV had been used as can
be seen in Figure 4.10 which shows ∆TOA. The drift can be handled by software, but the
spread in timestamps must be handled by hardware. Therefore, the end result of the MRU
using the algorithms presented in Chapter 5 will be worse than for the IMUs. The MRU
does however have a much lower synchronization error than the IMUs before the software
timestamp correction due to its internal clock correction.
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Figure 4.9: Synchronization error when using TOA for MRU where the SenTiBoard does the times-
tamping.

Figure 4.10: The ∆TOA error for the MRU.
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4.5 GNSS receiver accuracy
In order to solve the problem of the SenTiBoard clock and the sensor clocks drifting the
GNSS receiver is used. The GPS time is stored as TOW as mentioned in Section 2.3.1.
The TOW is calculated using iTow which gives TOW in milliseconds and fTow which
gives the fractional part of iTow in a range of ±5 · 105 ns. The equation for the precise
GPS time can be found in the interface description of the GNSS receiver [23], and is as
follows:

TOW (n) = (iTow(n) · 10−3) + (fTow(n) · 10−9) (4.2)

The iTow and fTow values are retrieved from the NAV TIMEGPS message sent from
the GNSS receiver. The top plot in Figure 4.11 shows the accuracy of the TOW times-
tamps. The error is now in microseconds, but it is still present. This error, however, is due
to the drift of the GNSS receiver clock and not the SenTiBoard clock. This can easily be
fixed as the GNSS receiver calculates this internally by comparing its clock to the GPS
time. If the TOW value is corrected with the clock bias measurement using the following
equation:

TOWcorrected(n) = TOW (n) + (bias(n)− bias(0)) (4.3)

the error becomes much smaller. The clock bias and time accuracy estimate values are
retrieved from the NAV CLOCK message sent from the GNSS receiver. The middle plot
in Figure 4.11 shows the timestamp accuracy using TOW corrected with the clock bias.
The outliers are ± 1 ns while most of the timestamps are within ± 10 picoseconds of the
actual time. This gives a solid foundation for correcting the drift present in the other clocks.
The last plot in Figure 4.11 shows the time accuracy estimated by the GNSS receiver. This
seems to be conservative as using the worst-case values of ± 1 ns from the fixed TOW
gives an accuracy of 2 ns. Since the NAV TIMEGPS message was not activated for the
flights from the second dataset using the STIM IMU, a simulated perfect clock with added
normally distributed noise ± 1 ns was used to correct the STIM IMU.
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Figure 4.11: Synchronization error for the GNSS TOW with and without bias correction. The
bottom plot shows the time accuracy estimated by the GNSS receiver.
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5
Time synchronization algorithms

This chapter will present the general form of the algorithms used to correct the synchro-
nization errors. Then three different methods of correcting this error will be presented
along with the results from this by showing the synchronization error for each of the sen-
sors. These results will be compared to a tuned Kalman filter. A method for handling
packet loss will also be presented. The results from all of this will, in the end, be evaluated
using the syncline model. Finally, a method for correcting the synchronization error of the
camera without the SenTiBoard timestamping it will be presented.

5.1 Algorithm development
These algorithms were developed incrementally by initially comparing the sensor time
with the GNSS receiver time and then using the results from each algorithm to gradually
improve upon it. The results of the algorithms were checked visually by plotting and by
looking at the RMS of the synchronization error. The algorithms were also designed to
work in real-time, but were only evaluated with data from finished flights. The algorithms
read the data as if it was continuously arriving and did not use information that a real-time
system would not have. Due to this the code attached to this thesis might be a bit different
than the algorithms and equations presented in this chapter.

5.2 General algorithm structure
The general algorithm is presented in Algorithm 5.1. There are some values that need to be
initialized for all the methods when the algorithm starts. These are the sensor samples per
GNSS receiver sample which is called f , the nearest integer of that value rounded down
which is called f int, and the error. The error is set to 0. Since we are using the TOW
value of the GNSS receiver as presented in Section 4.5, we need to find out how many
sensor samples arrive per GNSS receiver sample. Since the count of packets is an integer
number and the sample frequency can be a real number, we need to use the nearest integer
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of that value rounded down. This is the value that is then used as the amount of sensor
packets to be counted before a new error is calculated. The amount of GNSS packets to be
counted before a new error is calculated will then always be one. Since the TOW value is
what is used to calculate the new error, this means that it can only be updated when a new
GNSS receiver packet arrives. The error correction on the other hand can happen for every
sensor packet that arrives. This general structure will be the same for all the methods, but
the way in which the error calculation and error correction happens will change.

Algorithm 5.1: The general algorithm which is used as a base for the rest of the algorithms.

GENERAL ALGORITHM

1 Initialize values
2 repeat
3 Wait for packet
4 if Sensor packet
5 if Sensor packet count reached and GNSS packet count reached
6 Calculate new error
7 Apply error correction
8 if GNSS packet
9 if Sensor packet count reached and GNSS packet count reached

10 Calculate new error
11 until flight finished

5.3 Algorithm 1
The first algorithm is the simplest one and works by comparing the timestamp of the latest
received GNSS packet with the timestamp from the sensor. Whenever a new GNSS packet
is received this will reduce the synchronization error to close to zero if the drift has been
constant since the last packet.

ϵ = TOWcorrected(k)−
(
t(n) + TOWcorrected(k) ·

f − fint
f

)
tcorrected(n) = t(n) + ϵ (5.1)

In the algorithm shown in (5.1), ϵ is the error, k is the count of the current GNSS
receiver packet and t(n) is the value of the timestamp at the sensor packet sample n for
the current timestamping method. The last part of the error calculation handles the cases
where f is not an integer by adding the expected value that the timestamp would have
increased in the fractional part of f . The error caused by f not being an integer increases
over time as there is always a fractional part of f that is not included. The algorithm
fixes this by scaling that part of the error based on the time that has passed. This method
calculates a new error when a GNSS receiver packet arrives by looking at the difference
between the time that the TOW from the GNSS receiver reports and the time that the
timestamp from the SenTiBoard reports. This error is then added to every sensor packet
until a new GNSS receiver packet arrives.
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Table 5.1: The RMS of the synchronization errors when using the algorithm in Section 5.3 for the
ADIS IMU, STIM IMU and the MRU.

Sensor RMS of synchronization error

ADIS 9.4 · 10−6s

STIM 5.3 · 10−6s

MRU 3 · 10−6s

From this first algorithm we can already see that the results are much better than what
they were when just using TOV or TOA. From Figure 5.1 we can see that the synchro-
nization errors have gone down from ms to us. However, if we looked at a zoomed in
plot of for example the ADIS TOV as in Figure 5.2 we can see that the error repeatedly
increases gradually before going back to being close to zero. The error becomes close to
zero whenever a new GNSS receiver packet arrives, but between each packet the error in-
creases with the speed of the clock drift. This can also be observed in the ADIS and STIM
plots from Figure 5.1, as the error increases when the clock drift increases. The changes
in clock drift was previously presented in Figure 4.7 and Figure 4.8. The results of the
algorithm on the different sensors is summarized in Table 5.1 which presents the RMS of
the synchronization errors.
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Figure 5.1: Synchronization error when using TOV or TOA that has been corrected using the algo-
rithm from Section 5.3 for the ADIS IMU, STIM IMU and MRU.
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Figure 5.2: A zoomed in plot of the synchronization error when using TOV that has been corrected
using the algorithm from Section 5.3 for the ADIS IMU.
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5.4 Algorithm 2
The second algorithm seen in (5.2) improves on the first one by correcting not only when
a GNSS packet is received, but by also changing the correction based on how many sensor
packets that have been received since the previous GNSS packet.

ϵ = TOWcorrected(k)−
(
t(n) + ϵsum + TOWcorrected(k) ·

f − fint
f

)
ϵsum = ϵsum + ϵ

tcorrected(n) = t(n) + ϵsum + ϵ · pkts since GNNS

f
(5.2)

This time the error is summed together after each error calculation, but also subtracted
in the main error calculation. This makes it so that ϵ only contains the change in error
while ϵsum contains the total error. ϵ is then added to the error correction and scaled based
on the amount of sensor packets received so far since the previous GNSS receiver packet
was received. This change causes the correction to change for each sensor packet that
arrives.

By splitting the errors into ϵ and ϵsum it is possible to correct the synchronization er-
ror more often. The total synchronization error is corrected when a new GNSS packet is
received as in Section 5.3, but the drift that occurs during the time between two GNSS
packets being received can also be corrected. The value of ϵ is how much the synchro-
nization error drifted since the previous GNSS packet was received, and can as such be
used to correct the error until the next GNSS packet is received. Therefore ϵ is scaled with
the amount of packets currently received divided by the amount of packets expected to be
received before a new GNSS packet is received. The amount corrected whenever a new
sensor packet is received is therefore how much it drifted on average per packet in the time
since the previous GNSS receiver packet was received. This means that a high clock drift
does not cause a high synchronization error as the value of the drift is updated whenever
a new GNSS packet is received. A sudden change in the drift between two GNSS packets
does affect the error as the drift of the previous packet will be used until the next packet
arrives.

The results from the second algorithm is a clear improvement from the first algorithm
as can be seen in Figure 5.4. The synchronization error has decreased and no longer varies
based on the value of the clock drift. This can also be seen Figure 5.3 where the effect of
the clock drift is mostly handled by changing the correction for each sensor packet. From
the figure it is clear that there are still some packets that are not corrected the way they
should. The results of the algorithm on the different sensors is summarized in Table 5.2
which presents the RMS of the synchronization errors.
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Figure 5.3: A zoomed in plot of the synchronization error when using TOV that has been corrected
using the algorithm from Section 5.4 for the ADIS IMU.

Table 5.2: The RMS of the synchronization errors when using the algorithm in Section 5.4 for the
ADIS IMU, STIM IMU and the MRU.

Sensor RMS of synchronization error

ADIS 1.3 · 10−6s
STIM 2.6 · 10−7s
MRU 2.7 · 10−6s
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Figure 5.4: Synchronization error when using TOV or TOA that has been corrected using the algo-
rithm from Section 5.4 for the ADIS IMU, STIM IMU and MRU.
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5.5 Algorithm 3
The third algorithm seen in (5.3), attempts to solve the problem of the error increasing if
the clock drift suddenly changes. This is done by taking a moving average of the error
such that the correction is not solely based on the drift between two GNSS packets.

ϵ(k) = TOWcorrected(k)−
(
t(n) + ϵsum + TOWcorrected(k) ·

f − fint
f

)
ϵsum = ϵsum + ϵ(k)

mov avg = mean(ϵ(k − avg count : k)

tcorrected(n) = t(n) + ϵsum +mov avg · pkts since GNNS

f
(5.3)

For this algorithm the moving average of the error of a given number of previous
GNSS receiver packets is calculated. Up until the specified amount has been received the
average is taken of the available error values. This change makes it so the error that is
corrected for each sensor packet is an average of the previous errors, and not just the error
that was present when the previous GNSS receiver packet arrived as was the case in the
algorithm in Section 5.4. This works to some extent as in Figure 5.5 the errors are closer
to zero and the drift seems to affect it less. The difference from the previous algorithm
is, however, very minor and as shown in Table 5.8 the results are better for the ADIS and
the MRU, but worse for the STIM. It is difficult to see any major differences in the total
result that can be seen in Figure 5.6, but due to averaging, the outliers are a closer to the
rest of the timestamps compared to using the algorithm from Section 5.4. In order to find
out how many elements that should be included in the moving average, the algorithm was
tested with every possible input. The result from this for the ADIS IMU can be seen in
Figure 5.7. The top plot shows the RMS of the synchronization error for every possible
amount of elements used in the moving average. The plot clearly shows that the accuracy
decreases at higher values. A zoomed in plot of the same data is seen in the lower plot.
This shows that the lowest RMS for the synchronization error is achieved by taking the
moving average of 15 elements at a time. The results for the MRU and the three flights for
the STIM IMU were very similar. Therefore, the algorithm should work on most datasets
fairly well if the moving average of about 5 - 15 elements at a time is chosen. The results
of the algorithm on the different sensors is summarized in Table 5.3 which presents the
RMS of the synchronization errors.

Table 5.3: The RMS of the synchronization errors when using the algorithm in Section 5.5 for the
ADIS IMU, STIM IMU and the MRU.

Sensor RMS of synchronization error

ADIS 9.6 · 10−7s
STIM 3.2 · 10−7s
MRU 2.5 · 10−6s
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Figure 5.5: A zoomed in plot of the syncrhonization error when using TOV that has been corrected
using the algorithm from Section 5.5 for the ADIS IMU.
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Figure 5.6: Synchronization error when using TOV or TOA that has been corrected using the algo-
rithm from Section 5.5 for the ADIS IMU, STIM IMU and MRU.

40



5 Time synchronization algorithms 5.5 Algorithm 3

0 500 1000 1500 2000 2500 3000 3500 4000

Moving average count

0.5

1

1.5

2

2.5

3

3.5

R
M

S
 o

f S
yn

ch
ro

ni
za

tio
n 

er
ro

r 
[u

s]

ADIS TOV fixed

0 20 40 60 80 100

Moving average count

0.95

1

1.05

1.1

R
M

S
 o

f S
yn

ch
ro

ni
za

tio
n 

er
ro

r 
[u

s]

ADIS TOV fixed

Figure 5.7: RMS of the synchronization error when using the algorithm in Section 5.5 with differing
amounts of elements chosen for the moving average.
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5.6 Kalman filter
Kalman filters have been used to estimate clock drift in order to perform clock synchro-
nization. In [24] a wireless PTP network uses the grandmaster clock as a time reference
similar to how the GPS time is used in this thesis. A Kalman filter is used to estimate
the clock drift and clock offset to adjust the PTP synchronization, which improves the
synchronization.

Since Kalman filters have been proved to work for estimating clock drift, this was
used as the fourth method used to correct the synchronization error. The Kalman filter
follows the general structure from Algorithm 5.1, but has to be a bit different due to how a
Kalman filter works. As explained in Section 2.5, the Kalman filter has two main steps, the
prediction step and the update step. In this case the prediction step functions as the error
correction while the update step functions as the new error calculation. The initialization
of a Kalman filter is also more complicated as it has to be tuned. The values selected
for the tuning variables and the model variables can be seen in the initialization part of
Table 5.5. The prediction part of the Kalman filter is performed whenever a new sensor
packet arrives and the update part of the Kalman filter is performed when a new error
should be calculated as per the structure in Algorithm 5.1. These formulas can be seen
in the prediction and update part of Table 5.5. The results from using the Kalman filter
can be seen in Figure 5.8. The results look similar to the previous two algorithms and, as
shown in Table 5.6, the results are not that different from the other algorithms.

The clock drift was modelled as a first order Gauss-Markov Process, with states x
where x1 is clock time and x2 is clock drift. This means that ẋ1 = x2 and if discretized
ẋ2 becomes:

xk+1 = e−∆t/τxk +
√
σ2(1− e−2∆t/τ )wk (5.4)

where k is the time index, ∆t is the time sampling interval and wk is white gaussian noise
[25]. Using this we get F , G and σdrift Q from Table 5.5. F is then discretized to get Φ in
Table 5.5. G is then used to get Q which is the process noise covariance matrix, which is
based on the noise in the clock drift.

The value of the time constant τ was found by first checking how much the system
had drifted in 60 seconds. That value was then used as f(t) in the step response for a first
order system: f(t) = 1 − e

−t
τ where t was replaced by 60. This was then used to solve

for τ . This was repeated in increments of 60 second blocks for the entire dataset for each
sensor and the result was approximately 1 ·105s for all the sensors. The initial value of the
error covariance matrix P was found by looking at the steady state of P after many updates.
The value was around 1 · 10−15 for both states for all the sensors. To find the standard
deviation of the clock drift the plots from Figure 5.1 were used. The synchronization error
in these plots drift from 0 s to 10 µs in one second, so 10 µs was chosen as an initial value
for tuning. For each sensor a binary search was then performed, and a test performed with
each value until the RMS of the synchronization error was minimized. The result of this
can be seen in Table 5.4. The value of the measurement noise covariance matrix R is based
on the noise in the measurement signal which in this case is the timestamp of the GNSS
receiver. This was chosen as the square of the drift of the GNSS clock at flight start since
this Kalman filter does not use a time varying Q or R.
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Table 5.4: The clock drift for the different sensors used when tuning the Kalman filter.

Sensor standard deviation of clock drift (σdrift)

ADIS 6 · 10−6s

STIM 50 · 10−6s

MRU 3 · 10−6s
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Table 5.5: The values selected for initializing the Kalman filter and the prediction and update for-
mulas.

Initialization

τ = 105

P =

10−15 0

0 10−15


R = GNSS drift at start2

x̂ =

0
0

, x1 = clock time, x2 = clock drift

σdrift Q =
√

2
τ ·σdrift

2

F =

0 1

0 −1
τ


sample time = 1

sensor freq

G =

 0

σdrift Q


Φ = discretize(F,G, sample time)

Q = G ·GT · sample time

H =

1
0


Prediction

x̂ = Φ · x̂+

t(n)− t(n− 1)

0


P = Φ · P · ΦT +Q

P = P+PT

2

Update

y = TOWcorrected(k)− TOWcorrected(k) · f−fint

f

ŷ = H · x̂
K = P ·HT · (H · P ·HT +R)−1

x̂ = x̂+K · (y − ŷ)

P = (I −K ·H) · P · (I −K ·H)T +K ·R ·KT
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Figure 5.8: Synchronization error when using TOV or TOA that has been corrected using the kalman
filter described in Section 5.6 for the ADIS IMU, STIM IMU and MRU.
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Table 5.6: The RMS of the synchronization errors when using the algorithm in Section 5.6 for the
ADIS IMU, STIM IMU and the MRU.

Sensor RMS of synchronization error

ADIS 9.4 · 10−7s

STIM 2.6 · 10−7s

MRU 2.5 · 10−6s
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5.7 Packet loss
All the algorithms presented above work well if there is no packet loss, however, as they
expect the time between each packet to be fairly constant, they do not work that well if
a packet is lost. If a single GNSS receiver packet is lost, it does not affect the result, but
multiple packets lost could be an issue. This is because the algorithm will continue to
correct the sensor packets with the last error calculation that was performed. If there is
a large change in temperature, which in turn causes a large change in clock drift at the
same time as multiple GNSS receiver packets are lost, then this would make the system
less accurate until the next GNSS receiver packet arrives. However, if sensor packets are
lost this causes a bigger issue as the error is calculated as the difference between the actual
time and the expected time given the current packet count. As an example, consider the
scenario where the time between GNSS receiver packets is one second and the amount of
sensor packets per second is 1000 packets. If 100 sensor packets are lost within that time,
the time reported at the GNSS receiver packet which will be compared with the 1000th
sensor packet that is received will be off by 100 times the sample time of the sensor. The
timestamp of the 1000th sensor packet received is what would have been the timestamp
of the 1100th sensor packet if no packets were lost, and therefore, the amount of sensor
packets that are lost needs to be counted and subtracted during the error calculation step.
This error will add up over time and therefore the total count of sensor packets lost needs
to be tracked. The synchronization error calculation presented in Equation (4.1) has to be
modified to account for the packet loss. This is done by counting the amount of sensor
packets lost and when they were lost. The error is then added to the synchronization error
at the correct packet count to account for the sample rate of the received packets not being
constant. The new synchronization error calculation can be seen in (5.5) and is used for
the plots with packet loss in this section. Figure 5.9 shows the result of different kinds of
packet loss, where all the plots show the synchronization error when using the algorithm
from Section 5.5. The top plot is of the test dataset with simulated packet loss of GNSS
packets. This causes no additional error, since only a few GNSS packets are lost. The
middle plot shows the result of simulating having a lot of ADIS packets lost at the start of
the runtime. This results in the synchronization error increasing a lot when the packets are
lost and it stays that way for the rest of the runtime. This is because the GNSS receiver
packet count and the sensor packet count is not synced. The bottom plot is the result from
using the dataset with a high amount of packet loss and shows that the synchronization
error increases whenever sensor packets are lost and keeps getting worse throughout the
runtime since packets are lost frequently.

e(n) = t(n)−
(
t(0) +

n+ packets lost since start(n)

sensor freq

)
(5.5)

To correct for this the general algorithm presented in Algorithm 5.1 needs to be mod-
ified slightly. Every time a sensor packet is received it checks if there was any sensor
packets lost between this packet and the previous packet. The new structure of the algo-
rithm can be seen in Algorithm 5.2. The method for checking if a sensor packet is lost
or not is to check the difference between the previous and the current sensor packet and
check if the time between them is more than expected. The way this is done can be seen in
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Algorithm 5.3. The error calculation is then modified by subtracting the offset caused by
each sensor packet lost which can be seen in (5.6). The results of using this algorithm on
the three same scenarios as in Figure 5.9, can be seen in Figure 5.10. The result in the top
plot is as before, since there were no ADIS packets lost. The middle plot is significantly
improved, and only shows minor errors at the start. The bottom plot has a few outliers
near the start, but generally stays close to 0 despite the high amount of packet loss. A
zoomed in plot of the bottom plot from Figure 5.10 can be seen in Figure 5.11. This shows
that the synchronization error suffers if the packet loss is very high, but that the algorithm
works even in extreme conditions. The RMS of the synchronization error on the dataset
with packet loss for the ADIS IMU is 2s without packet loss handling and 2.9 ·10−3s with
packet loss handling when using the algorithm from Section 5.5 and Section 5.7 respec-
tively.

Algorithm 5.2: The general algorithm adjusted to compensate for packet loss.

GENERAL ALGORITHM FOR PACKET LOSS

1 Initialize values
2 repeat
3 Wait for packet
4 if Sensor packet
5 if Sensor packet lost
6 Increase lost sensor packet count
7 if Sensor packet count reached and GNSS packet count reached
8 Calculate new error
9 Apply error correction

10 if GNSS packet
11 if Sensor packet count reached and GNSS packet count reached
12 Calculate new error
13 until flight finished

Algorithm 5.3: Code to check for packet loss.

CHECK FOR PACKET LOSS

1 time between packets = current packet - prev packet
2 while time between packets > (expected time between packets + margin)
3 packets lost = packets lost + 1
4 time between packets = time between packets - expected time between packets
5 return packets lost
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ϵ(k) = TOWcorrected(k)−
(
t(n) + ϵsum + TOWcorrected(k) ·

f − fint
f

)
ϵ(k) = ϵ(k)− sensor packets lost

sensor freq

ϵsum = ϵsum + ϵ(k)

mov avg = mean(ϵ(k − avg count : k)

tcorrected(n) = t(n) + ϵsum +mov avg · pkts since GNNS

f
(5.6)
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Figure 5.9: Synchronization error when using TOV that has been corrected using the algorithm in
Section 5.5 for the ADIS IMU. The top and middle plot use the test dataset and has simulated packet
loss while the bottom plot uses the dataset with a high amount of packet loss.
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Figure 5.10: Synchronization error when using TOV that has been corrected using the algorithm in
Section 5.5 with the packet loss correction from Section 5.7 for the ADIS IMU. The top and middle
plot use the test dataset and has simulated packet loss while the bottom plot uses the dataset with a
high amount of packet loss.
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Figure 5.11: A zoomed in plot of the Synchronization error when using TOV that has been corrected
using the algorithm in Section 5.5 with the packet loss correction from Section 5.7 for the ADIS
IMU. The plot uses the dataset with a high amount of packet loss.
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5.8 Syncline
In order to compare the accuracy of each of the algorithms presented above, the syncline
model as presented in Section 2.4 is used. The packet loss algorithm is not included as
it is simply meant to show how the algorithms can be adapted to account for packet loss.
The RMS of the synchronization error from each algorithm is used in the syncline model
to compare the accuracy of the different algorithms and to check if the timing precision is
a limiting factor or not given the systems dynamics and the sensor accuracy. In order to
generate a syncline model for the IMUs and the MRU we need values for vmax, ωmax, d,
σp, σr, σΘ and σu. The values chosen for the syncline can be seen in Table 5.7. The exact
values chosen here are not important as this is mainly supposed to be used to compare
the different algorithms. The precision of the sensors and the dynamics of the system
can be changed in order to test a system with different conditions. As a baseline, the
Syncline when using timestamping on arrival and TOV with the ADIS IMU, is shown in
Figure 5.12. The RMS of the synchronization error is used here as well, but it is not as
representative of the actual synchronization error since the error increases a lot over time.
The value shown is therefore roughly equivalent to the synchronization error after half
the runtime has passed. The RMS of the synchronization error when using timestamping
on arrival and TOV is roughly 2.5 · 10−2s. The synclines for the different algorithms
for the ADIS IMU without packet loss can be seen in Figure 5.13. This shows that the
first algorithm performs the worst, with each new algorithm performing better. The third
algorithm and the Kalman filter has the same accuracy. With the system values chosen
here, the first algorithm is sync-bound while the other algorithms and the Kalman filter is
sensor-bound. The syncline for the STIM IMU shown in Figure 5.14 shows mostly the
same results, except this time all the algorithms are sensor-bound. The syncline for the
MRU also follows the same pattern as seen in Figure 5.15. Table 5.8 shows the results
from all of the algorithms. The results show that the Kalman filter produces the best
result, closely followed by the third algorithm. The second algorithm performs very well
compared to the third and the Kalman filter considering that it does not need to be tuned
at all and is less complex.

Table 5.7: The values used for the syncline model

d 400
vmax 5
ωmax 180
σp 0.01
σr 0.01
σΘ 0.001
σu 0.01
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Table 5.8: The RMS of the synchronization errors for every algorithm for the ADIS IMU, STIM
IMU and the MRU.

Sensor RMS Algorithm 1 RMS algorithm 2 RMS algorithm 3 RMS Kalman filter

ADIS 9.4 · 10−6s 1.3 · 10−6s 9.6 · 10−7s 9.4 · 10−7s

STIM 5.3 · 10−6s 2.6 · 10−7s 3.2 · 10−7s 2.6 · 10−7s

MRU 3 · 10−6s 2.7 · 10−6s 2.5 · 10−6s 2.5 · 10−6s
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Figure 5.12: Syncline model showing the estimation accuracy and synchronization accuracy when
using timestamping on arrival and TOV for the ADIS IMU.
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Figure 5.13: Syncline model showing the estimation accuracy and synchronization accuracy of the
different error correction algorithms for the ADIS IMU.
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Figure 5.14: Syncline model showing the estimation accuracy and synchronization accuracy of the
different error correction algorithms for the STIM IMU.
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Figure 5.15: Syncline model showing the estimation accuracy and synchronization accuracy of the
different error correction algorithms for the MRU.
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5.9 Correcting the camera
As shown in Figure 3.2 the camera is triggered by the SenTiBoard, but the data flows to the
SBC and does not get timestamped by the SenTiBoard. The error that we want to correct
is the SenTiBoard drift, since this is what affects when the camera will be triggered. We do
not need to correct the drift of the camera clock since the timestamp counter of the camera
can be reset to 0 when taking a picture [26]. Therefore, the timestamp of the camera should
count up to the sample time used for the SenTiBoard triggering and then reset to 0. No data
from the camera was collected, so to check how the camera would be corrected the MRU
data can be used as an example. This works since the MRU autocorrects, which results in
only the SenTiBoard drift affecting the timestamps. To correct for the SenTiBoard drift we
simply find the difference between the TOV and the TOW of the GNSS receiver as shown
in (5.7). The result of this on the MRU TOA can be seen in Figure 5.16. The RMS of this
synchronization error is 3·10−6. In this case it is not important to count the GNSS packets,
since the newest error available gives the current bias and can be added whenever a new
MRU packet is received. The correction calculation has to change when actually using the
camera as the camera only counts up to the sample time of the SenTiBoard trigger. The
new correction is shown in (5.8). The difference from the last correction is that only the
change in error that has occurred since the last camera packet is added. This is because
the MRU adds the sum of the drift over time, while the camera only adds the current drift
due to it only counting up to the sample time of the SenTiBoard trigger. The corrected
timestamp of the camera is then found by initializing a counter to 0 in the SBC when the
other timers start and then incrementing it with the corrected TOV.

ϵ = TOWcorrected(k)− tGNSS(k)

tcamera corrected(n) = tcamera(n) + ϵ (5.7)

ϵ(k) = TOWcorrected(k)− tGNSS(k)

tcamera corrected(n) = tcamera(n) +
ϵ(k)− ϵ(k − 1)

f
(5.8)
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Figure 5.16: Synchronization error when using the camera correction algorithm from Equation (5.7)

59



6
Discussion

To see how the results from Chapter 5 could affect the georeferencing accuracy an example
of a potential flight is presented. Assume that the UAV dynamics is as in Table 5.7, flying
at an altitude of 400 m, with a linear velocity of 5m/s and an angular velocity of 180◦/s.
Assume that the UAV has been stationary for a while and as such has very accurate position
and attitude measurements. We also assume that the UAV reaches its linear and angular
velocity instantaneously. The camera takes a picture every 0.25 seconds and the GNSS
receiver receives a signal every second. Then consider this scenario 2000 seconds into
the flight. The GNSS receiver has just received a signal and then flies for 0.75 seconds
horizontally at 5m/s and then rotates for 0.25 seconds at 180◦/s. This scenario can be seen
in Figure 6.1.

If we use the synchronization errors from the ADIS IMU TOV (top plot in Figure 4.6)
for the ADIS and the synchronization error from the SenTiBoard (bottom plot in Fig-
ure 4.6) for the camera at 2000 seconds we get the following values. The SenTiBoard
synchronization error is at -7 ms while the ADIS synchronization error is at 23 ms which
means that the SenTiBoard clock is 7 ms behind the true time and the ADIS clock is 23 ms
ahead of the actual time. Adding this together a timestamp with the same time logged by
the camera happens 30 ms later than a timestamp with the same time logged by the ADIS
IMU.

Using this information with the scenario presented gives the following errors. The
reported position that picture 1,2 and 3 was taken at will be off by 15 cm which is given
by:

5m/s · 30 · 10−3s = 0.15m

Picture 4 will be much worse as the error from the rotation is proportional to the dis-
tance from the ground. In this case the angle the picture is taken will be off by 5.4◦ which
is given by:

180◦/s · 30 · 10−3s = 5.4◦

To figure out how much this will affect the position we can use basic trigonometry. The
UAV forms a right triangle with the ground where one side is 400m and the angle between
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that side and the hypotenuse is what was just calculated. Using this we can calculate the
length of the other side by using the equation

b = a ∗ tan(β) (6.1)

where a is the known side and β is the known angle. To get the error we then compute
the difference between the length of what the side would be with the correct angle of 45
degrees and subtract the length of the side with the actual calculated angle. If we put in
numbers from earlier this results in an error of 69.1 m. This is found from:

400m · tan(45)− 400m · tan(45− 5.4) = 69.1m

To see how much this error has improved by using the algorithms in Chapter 5 we
can use the RMS of the synchronization errors from algorithm 3 as seen in Table 5.3. For
the ADIS this is 9.6 · 10−7s. We assume that the camera is corrected as in (5.8) and has
about the same error as the MRU had in Figure 5.16 which gives a synchronization error
of 3 · 10−6s. Adding this together gives an error of about 2 · 10−6s which means that the
same time logged by the camera happens 2µs later than a timestamp with the same time
logged by the ADIS IMU.

Performing the same calculations as before gives us a positional error of 10µm for
picture 1,2 and 3 given by:

5m/s · 2 · 10−6 = 1 · 10−5m

For picture 4 the angle will be off by 3.6◦ · 10−4 given by:

180◦/s · 2 · 10−6s = 3.6◦ · 10−4

This results in a georeferencing error of 52 cm. This is found from:

400m · tan(45)− 400m · tan(45− 3.6 · 10−4) = 0.52m

This shows that for this simple example the georeferencing errors due to synchroniza-
tion errors when flying straight is improved from 15 cm to 10µm which is an improvement
of a factor of 15000 while the errors when rotating is improved from 69.1 m to 52 cm
which is an improvement of a factor of 100. This only accounts for the errors introduced
due to synchronization errors and does not account for the errors introduced by the sensor
measurements.

Since the algorithms were not tested in real-time and were not used in a flight it is
difficult to know whether or not the system would work and how much of a difference
the increased synchronization would have on the georeferencing accuracy. The Syncline
model is shown to be a good model for direct georeferencing and therefore an increase in
the synchronization accuracy should give increases in georeferencing accuracy [5]. Com-
paring the results from the Syncline with and without error correction gives an improve-
ment from 2.5·10−2s to 9.6·10−7s when using no error correction and the third algorithm.
This is an improvement of a factor of 25000 in regards to synchronization accuracy. The
Syncline model also reports an increase in estimation accuracy from 5 · 10−4 to 2 which
is an improvement of a factor of 4000. This is equivalent to the errors in the measurement
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 4
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UAV

Camera

Figure 6.1: Example flight where the UAV flies at an altitude of 400m for 0.75 seconds at 5 m/s
before rotating for 0.25 seconds at 180◦/s. It also takes a picture every 0.25 seconds.

first being 2000 m and then going down to 50 cm as the estimation accuracy is the inverse
of the error.

The results from the Syncline model combined with the simple example presented
here proves that theoretically these error correction algorithms should improve the georef-
erencing accuracy by a significant amount. In practice there are always things that work
differently than expected or things that are not accounted for. Therefore, the real-time ben-
efit of reducing the error synchronization in a complete georeferencing system by using
these error correction algorithms is likely lower than what is presented here.

6.1 Limitations of the thesis

The hardware that was used for the thesis was also in use by others and due to time con-
straints, it was not possible to have a test flight using the algorithms from Chapter 5. The
algorithms were also only evaluated after a flight had finished and not tested with the SBC
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used during the flights. Therefore, the real-time viability of the algorithms have not been
verified.

6.2 Further work
Implementing the algorithms on a SBC connected to the UAV and running them in real-
time would be the first step moving forward. Doing this would check if the assumptions
made in this thesis is correct and can also be used to see whether or not the synchronization
accuracy is as good as this thesis claims.

Following that a test flight using the camera to test the georeferencing accuracy should
be performed. If this is done it is important to account for all the errors that occur due to
sensor measurement errors and misalignment error caused by the sensors not being placed
correctly.

Fixing the synchronization errors from the camera is difficult as it has to be triggered
and the data received from it can not be accurately timestamped. Using the SenTiBoard
works to a certain extent, but is lacking due to the SenTiBoard clock drift as presented in
Section 5.9. Another way of solving this problem could be to use another GNSS receiver
which sends a signal directly to the camera to trigger it. This signal is very accurate and can
be triggered with a frequency up to 10 MHz [18]. Multiple GNSS receivers are all synced
to each other since they are synced to the same satellites (Section 2.1.2) and therefore the
camera triggering will be synced to the other sensors.

The accuracy of the Kalman filter could also probably be improved by adding in the
effect of temperature on the modelling of the clock drift. Then the temperature measure-
ment could be used to correct the predictions. The Kalman filter can also be updated to
use time varying process noise and measurement noise covariance matrices.
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7
Conclusion

This thesis aimed to analyze the current timing errors present in a UAV georeferencing
system and to implement algorithms to perform time synchronization that would in turn
improve the georeferencing accuracy. This was achieved by looking at data from flights
and correcting the sensor timestamps using timestamps from a GNSS receiver. It was
showed that when using algorithms that are applicable for real-time use the timing errors
due to lack of time synchronization decreased by a factor of 25000 and the positional
georeferencing accuracy was improved by a factor of 4000 given the system dynamics
and sensor accuracy chosen for the Syncline model. This is only a theoretical increase
using arbitrary values and have not been tested during an actual flight with the algorithms
implemented. The results from this thesis are, however, very promising and further testing
and implementation should be performed. The code used and the algorithms presented are
general and should be applicable regardless of the sensor used as long as a GNSS receiver
and hardware capable of accurate timestamping is used.
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Appendix

The zip file handed in with this project contains the following:

• The code used for extracting the variables, correcting the timestamps and plotting
the data:

– (Master code.m) The main codefile with everything except the combined packet
loss plots.

– (Packet loss simulation.m) The code used for the combined plots for the packet
loss. simulation

• The datasets used in the thesis.
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