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Abstract

In today’s modern industries, robots are ubiquitous. Their applications range from
lifting cargo off pallets to assembling consumer products. Unfortunately, most robots
are blind, significantly restricting their use cases. The introduction of 3D cameras
makes robots able to work in new and more challenging environments. Zivid AS
is a company that specializes in making such cameras, and their cameras utilize
structured light. Although the technique offers great accuracy, it struggles in envir-
onments that contain highly reflective objects giving rise to so-called interreflections.
Considering that most consumer products are wrapped in reflective plastic and that
many industrial parts are made of reflective metals, this poses a challenge to increase
the utilization of 3D camera systems.

This thesis introduces a new signal processing chain for structured light systems
to make them more resilient to reflective objects, without degrading the systems’
performance. The processing chain consists of both a geometric constraint and a
novel pattern codification strategy. The constraint exploits a restriction on the valid
solutions seen by the camera, which makes signal processing faster and more reliable
in the presence of interreflections. The pattern codification strategy is a new way
to code structured light. It is based on the combination of sequences with good
correlation properties and temporally randomly shuffled cosines which whiten out
the distortions from shiny objects.

When tested in the presence of multiple shiny objects, the novel pattern codification
strategy performs better than the state-of-the-art (GCPS). More than 70% of the
camera pixels have residuals within the desired 0.1% target, compared to 60% for
GCPS. Moreover, the residuals are spread evenly over the entire camera, instead of
being centered around the edges of objects, which could be useful for applications.
The codification strategy performs worse at close distances, and it is suggested that
it could be caused by an incorrect choice of parameters for these distances.

A limitation of the pattern codification strategy is that it suffers from periodic
systematic errors, and these contribute to approximately 50% of the residuals in
scenes with a lot of interreflections. Several improvements are suggested, which
could reduce these errors. Nevertheless, the codification strategy also suffers from an
acquisition time 4.1 times longer compared to the state-of-the-art and an unknown
higher computational complexity. This could for many use-cases be a deal breaker
and should be taken into consideration.
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Sammendrag

Roboter finnes overalt i dagens moderne industrier, og deres bruksomr̊ader inklu-
derer alt fra å løfte kargo av paller til å sette sammen forbrukervarer. Dessverre
er de aller fleste roboter blinde, og dette begrenser deres bruksomr̊ader betraktelig.
Ved å ta i bruk 3D-kameraer kan man bruke roboter i nye og mer utfordrende sam-
menhenger. Zivid AS er et selskap som spesialiserer seg i å lage slike kameraer, og
teknikken som kameraene bruker kalles for strukturert lys. Selv om denne teknikken
gir høy nøyaktighet, yter den ofte d̊arlig i miljøer som inneholder sterkt reflektive
objekter som gir opphav til s̊akalte interrefleksjoner. Med tanke p̊a at de fleste for-
brukervarene er pakket inn i reflektiv plast og at mange industrielle deler er laget
av reflektive metaller, er dette et hinder mot å øke bruken av 3D-kameraer.

Denne oppgaven presenterer en ny signalbehandlingskjede for systemer som bruker
strukturert lys for å gjøre dem mer tolerante mot reflektive objekter, uten å g̊a p̊a
bekostning av deres ytelse. Signalbehandlingskjeden best̊ar av b̊ade en geometrisk
beskrankning og en ny mønster-kodifiseringsstrategi. Beskrankningen utnytter en re-
striksjon for gyldige løsninger sett fra kameraet, og gjør signalbehandlingen b̊ade ras-
kere og mer p̊alitelig n̊ar interrefleksjoner er tilstede. Mønster-kodifiseringsstrategien
er en ny måte å kode strukturert lys. Den er basert p̊a kombinasjonen av følger med
gode korrelasjonsegenskaper og temporale tilfeldig omstokkede cosinus-bølger som
demper forstyrrelsene fra reflektive objekter.

Denne nye mønster-kodifiseringsstrategien yter bedre enn dagens standard (GCPS)
n̊ar den testes p̊a scener med mange reflektive gjenstander. Mer enn 70% av kame-
rapikslene har residualer innenfor målet p̊a 0.1%, sammenliknet med 60% for GCPS.
Residualene er i tillegg spredt jevnt over hele kameraet, istedenfor å være sentrert
rundt kantene p̊a objekter, noe som kan være nyttig for applikasjoner. Teknikken
yter verre p̊a korte avstander, og det er foresl̊att at dette kan være for̊arsaket av
d̊arlig valgte parametre for disse avstandene.

En svakhet ved denne mønster-kodifiseringsstrategien er at den lider av periodiske
systematiske feil, og disse bidrar til omlag 50% av residualene i scener med mange
interrefleksjoner. Flere forbedringer for å redusere disse feilene er foresl̊att. I til-
legg lider ogs̊a teknikken av en 4.1 ganger lengre bildetakingstid sammenliknet med
dagens standard, og en ukjent høyere utregningskompleksitet. Dette er egenska-
per som potensielt kan hindre bruken av mønster-kodifiseringsstrategien for mange
bruksomr̊ader, og m̊a tas i betraktning.
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σ Standard deviation.

ei Elementary column-vector with a 1 at the i-th position and 0 otherwise. Let
A be a matrix. Then eiA denotes the i-th row of the matrix, whereas Aei
denotes the i-th column.

fs Spatial frequency

ft Temporal frequency

NF Number of fringes in a pattern.

NP Number of patterns, typically in a code matrix.

WF Width of a fringe.
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1 Introduction

In today’s modern industries, robots are ubiquitous. Their applications range from
lifting cargo off pallets (depalletization) to assembling consumer products. Unfor-
tunately, most robots are blind. This, in turn, means that each maneuver has to be
pre-programmed to follow specific paths, and the objects with which robots interact
need to be positioned at exact known locations for the robot to be able to do its
job.

Zivid AS is a company that develops 3D cameras for industrial robots. These camera
systems make it possible for robots to work in changing environments, which in turn
increases their areas of use. Their imaging technique, known as structured light,
offers great accuracy and is tolerant of many of the distortions that are commonly
present in the environments. However, it struggles in environments that contain
highly reflective objects. Considering that most consumer products are wrapped in
reflective plastic and that many industrial parts are reflective metallic, this poses a
challenge to the further adoption of 3D camera systems. The aim of this thesis is
to improve the signal processing chain in structured light systems to make it more
resilient to these reflective objects, without degrading its performance.

1.1 Background and motivation

The first and second industrial revolutions (1733 to 1913) introduced the world to
the concept of factories and machine manufacturing (Engelman 2022). By providing
streamlined production services, factories significantly increased the throughput per
capita (Zeidan 2021). Furthermore, the usage of machines such as the Spinning
Jenny meant that the employees had to do less labor-intensive work (Zeidan 2021).

Several years later in 1961, the world’s first industrial robot named Unimate saw
its light (Wallén 2008). Unimate transported die castings from a General Motor’s
assembly line and welded these to the body of cars (Mickle 1999). Traditionally,
industrial machines could perform simple tasks, such as printing news papers and
weaving textiles. Industrial robots meant a leap in machine usage, as they allowed
for the execution of pre-programmed complex mechanical tasks. For these reasons,
the introduction of robots during the latter half of the 20th century has later been
known as the third industrial revolution (Rifkin 2011).

Since their introduction in 1961, the world has embraced the use of robots, partic-
ularly during the 21st century. Today, more than 2.7 million industrial robots are
employed around the world in factories and logistics centers (International Feder-
ation of Robotics 2019). Here, they perform dull, dangerous, and repetitive tasks,
such as spray painting cars and lifting heavy objects. By offloading these tasks from
humans, robots significantly improve the lives of workers.

One particular sector that has truly embraced robots is the automotive industry. For
every 10 workers in the industry, there are 1.3 industrial robots employed, which
is markedly higher than the general average of 0.3 industrial robots per 10 workers
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(International Federation of Robotics 2021). Robots move heavy parts around,
do spray painting, screwing, and drilling, only to name a few. Another industry
sector that has benefited from the employment of robots is the logistics sector.
Approximately 10% of all new industrial robots are deployed in this sector (Graat
2020). Machines automate the process of moving and storing goods in logistics
centers (Association for Advancing Automation 2020).

Robots have to interact with objects in their environment to perform their tasks.
Therefore, a main limiting factor for a robot’s performance is to what degree it is
able to observe and adapt to its environment. Today, most industrial robots are
blind(Golnazarian and Hall 2000). Without observing their environment, robots
require that all objects with which they interact are placed at predetermined loc-
ations. Typically, this would mean that their interacting objects are fed through
reels, such as in PCB pick-and-place machines. The disability significantly restricts
the tasks a robot can perform to repetitive tasks only, and exact programming of
each movement is required for every task (Association for Advancing Automation
2017).

Equipped with 3D vision capabilities, robots can perform multiple tasks without
reprogramming. Changing environments is also less of a problem, as the vision allows
for the adaptation to this through the recognition of objects and their positions.
This allows for greater flexibility, making robots faster, and increasing their return
on investment.

In particular, pick-and-place operations have been notoriously difficult for robots to
perform. According to (Association for Advancing Automation 2017), ”blind robots
could only pick objects from predetermined positions and 2D camera systems could
not pick out a part from its background”. However, with 3D vision, the system
can be taught to recognize the objects, e.g. by inputting 3D CAD files beforehand.
These operations then become much easier to perform since the introduction of
depth knowledge allows one to measure how far away the objects are. Additionally,
pick-and-place operations can be defined through object recognition, which reduces
the amount of programming required. These operations are a ground pillar within
both logistics and manufacturing, and so it is a big milestone to make robots capable
of mastering them.

One company that specializes in making 3D vision systems for industrial robots is
Zivid AS. Located in Oslo, Norway and founded in 2015, the company develops
hardware and software for 3D vision systems. Their portfolio of cameras include
the Zivid One, Zivid One+ and Zivid Two. A picture of Zivid Two, their latest
product which was unveiled in 2021, has been provided in Figure 1. All of their
cameras are using structured light as a technique for creating the 3D point clouds.
This technique will be explained in more detail in Section 2.2. Its main advantages
compared to other 3D imaging techniques such as stereovision are that ” it has fast
measuring speed, high resolution, and high precision” (Association for Advancing
Automation 2017).

Unfortunately, structured light systems do not work well in environments consisting
of a lot of shiny objects. Shiny objects such as metallic parts and products packaged
in plastic wrap are quite common in both factories and warehouses. For that reason

2



Figure 1: The Zivid Two camera mounted on a robot arm (Borgan 2022).

there is an increasing demand to make 3D cameras better at capturing point clouds
when such objects are present.

1.2 Previous work

The existing work done in the field of structured light has mainly focused on improv-
ing the technique in other fields rather than the interreflection issue. An overview of
the existing pattern codification strategies is given in (Salvi et al. 2004). As stated
in this overview, existing strategies focus on either short acquisition time, real-time
acquisition, or high spatial resolution.

An attempt to address the issue of interreflection has been done in (Harding 2019).
The paper focuses on modifying the hardware by applying a polarizing filter in front
of the camera. As the author states, this is only applicable to laser-based structured
light systems, and thus is not relevant for the portfolio of Zivid cameras. Moreover,
the system did not achieve satisfactory results, particularly in the case of multiple
reflections.

The application of a dual monocular structured light system in which two cameras
are used instead of one has been applied and analyzed in (He et al. 2020). Here, the
purpose is to use these two cameras to handle occlusion and high surface reflectance
in the presence of shiny objects. The method achieves satisfactory results. How-
ever, the work is limited by the fact that it focuses only on isolated shiny objects
rather than multiple shiny objects with interreflections occurring between them.
The codification strategy used is Gray-Coded Phase Shifts (GCPS). As shown later
in Section 3.1.4 the premises for the strategy do not allow for the filtering of such
interreflections.

A novel approach to address interreflections was taken in the work by (Lima-Eriksen
2022) in his project thesis. The application of correlation-based patterns signific-
antly reduced the distortions caused by interreflections. While the pattern codific-
ation strategies showed promising results, it required the system to be within focus
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in order to work. Also, it did not achieve high accuracy due to the discrete nature
of the patterns.

1.3 Problem statement

There is an increasing demand for structured light systems that work in the presence
of shiny objects in the scene. At the same time, little research has been done
to try to address this issue. The correlation-based pattern codification strategies
introduced in the project thesis (Lima-Eriksen 2022) showed promising results when
it comes to handling interreflections. It is therefore of interest to investigate why
this codification strategy sometimes fails, and how it can be modified or extended
to mitigate its limitations.

As mentioned in the project thesis, the pattern codification strategies fail outside of
focus. Little is known about how patterns are distorted depending on the distance
and thereby the focus. Therefore, system identification will be applied to the Zivid
Two camera to obtain the point-spread function and the frequency response of the
system.

The insights obtained from the system identification will then be applied to invest-
igate the limiting properties of correlation-based patterns. These insights are used
to make modifications and extensions to the patterns to address the limitations.
Ultimately, the goal is to develop a pattern codification strategy that works in the
presence of interreflections at a wide range of distances while still achieving high ac-
curacy. The work will focus on optimizing the performance for a Zivid Two camera.
According to Zivid AS, most industrial applications that use a 3D camera require
estimate errors less than 0.1% of the camera distance. This corresponds to 0.2 ppx
(projector pixels) at the focal distance for the Zivid Two camera, and will be the
target accuracy for the pattern codification strategy developed in the thesis.
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2 Theoretical background

This chapter gives an overview of the theory that is relevant to the work. In the
first half, a general structured light system is described from a top-down perspective.
An overview of the working principles and models behind structured light is given
first. The camera and projector inside the system are then described in a geometric
framework using the pinhole model.

The latter half of this chapter introduces common sources of distortions and how
they degrade the performance of the system. The first source of distortions originates
from the system itself and is caused by the lenses. Following is an overview of
reflections from within the scene, which is known as the second source of distortions.

2.1 3D cameras

3D cameras are systems which can create a 3D representation of its field of view.
Conventional cameras depict their field of view through a 2D projection in a rectan-
gular grid array of pixels; 3D cameras typically give each pixel a (x, y, z) coordinate
specified in spatial coordinates relative to the camera position. These collections of
coordinates are known as point clouds. A simple example point cloud that stores
only the coordinates of each pixel is given in Figure 2a. For this particular case, it
resembles the shape of a face. More advanced 3D cameras, such as the Zivid Two
camera, store the values for the RGB color channels for each of the points, and the
point clouds become more like a 3D picture. An example of such a point cloud
captured by the Zivid Two camera is given in Figure 2b.

(a) Coordinates only (Fabry et al.
2010).

(b) With colors, using Zivid Two (Zivid 2020).

Figure 2: Examples of different types of point clouds.

In contrast to conventional cameras, 3D cameras need a way to know where in
space a particular pixel originated from. There are several means of accomplishing
this, and most use either time-of-flight or multiview geometry. Time-of-flight-based
systems are very fast, but at the expense of resolution. Multiview geometry is the
principle used in structured light, and gives very accurate measurements. In its
most basic sense, a 3D camera using multiview geometry must be able to see its

5



field of view from multiple viewpoints, and then find correspondences between them
in order to triangulate the XYZ-coordinates of the pixels.

Consider first the case of a single pixel in a camera. As illustrated in Figure 3, there
exists one ray that specifies where light could possibly originate. The introduction
of a second camera further restricts this. Figure 4 shows the situation in which
two cameras point toward an object. Considering Camera L isolated, the system
only knows a ray from which the light originates for a particular pixel. But with
additional knowledge of the ray seen by Camera R, only the intersection between
these two can be the correct origin. The intersection between two rays forms a point
in space, and thus the XYZ coordinates of the corresponding pixel can be found
through geometric considerations of this intersection. Thus, the 3D coordinates of
the object can be calculated relative to the system by means of triangulation. For
this particular example using two cameras, the technique is known as stereo vision
and is fairly common in applications (Manuel 2020).

Figure 3: Simplified model of how a light ray impedes onto a camera image sensor.

Figure 4: Simplified model of triangulation using multi-view geometry.
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2.2 Structured light

The central problem to be solved in 3D cameras is the so-called correspondence
problem; To perform the triangulation shown in Figure 4, the system needs to know
which pixel in each of the cameras captures the same part of the object. For stereo-
vision systems, this would typically involve finding areas in each of the cameras that
appear similar. Surfaces that do not have any texture would then pose a challenge,
as large areas in the pictures are difficult to distinguish (Szeliski 2011). For instance,
consider a scene that consists of a plane that has the same color all over it. Each
of the cameras would then capture large areas with the same color. It is impossible
to find out which pixels from each of the cameras correspond to each other, as they
are all the same color and cannot be distinguished.

Structured light systems address this problem by replacing one of the cameras in
Figure 4 with a projector. For each of the pixels in the projector, there will exist a
ray pointed out in space that specifies the trajectory of the light originating from
the pixel. This is equivalent to the situation depicted in Figure 3 with one of the
cameras replaced with a projector, only the direction of the ray from the projector is
opposite. Therefore, the correspondence problem now changes to finding out which
projector pixel is seen in each of the camera pixels. Since each of the projector
pixels can be illuminated independently, the projector is capable of adding textures
to objects artificially. This alleviates the problem of surfaces lacking textures. The
correspondence problem can be further simplified in the case of structured light
systems. Consider the case where the projector is configured in such a way that
the intensity of the light that it emits is constant along the yp direction. Then
each projector column (xp, ·) forms a plane in the 3D world, as illustrated by the
green triangle in Figure 5. As before, each camera pixel (xc, yc) forms a ray in 3D
world space, indicated by the red line. The plane and the ray will intersect at a
point, making triangulation possible as before. Therefore, the camera only needs to
distinguish between all different projector columns rather than all projector pixels.
This means that the structured light system must be able to construct the surjective
mapping (xc, yc) 7→ xp, which maps each camera pixel (xc, yc) to a projector column
xp. The reader is referred to (Hartley and Zisserman 2003) for a more rigorous
introduction to how the multiview triangulation itself is performed. This thesis only
considers how to construct the mapping (xc, yc) 7→ xp without considering the 3D
reconstruction.

2.2.1 Patterns and temporal encoding

The correspondence problem is solved by uniquely identifying each projector column
xp for all camera pixels (xc, yc). There are primarily two disjoint methods for ac-
complishing this, and the preferred way depends on the kinetics of the scene itself.
First, define a pattern as a matrix P of dimensions YP×XP where each entry (P)ypxp

stores the intensity for a particular projector pixel (xp, yp). A scene is said to be dy-
namic when there are moving objects in the field of view. Similarly, a scene is static
if all objects within the field of view are fixed. For dynamic scenes, the projector
columns are typically coded spatially (Kawasaki et al. 2009). This means that the
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Figure 5: Projector column simplification of structured light systems.

neighborhoods of projector pixels are coded in such a way that the columns can be
identified in the camera capture by observing the pixels in close proximity. This
pattern codification strategy takes advantage of the fact that pixels that are spa-
tially close in the projector pattern tend to be spatially close in the camera capture
as well.

If the scene is static, the camera can take multiple pictures, known as captures,
without the scene changing between. Therefore, the system can project multiple
patterns and analyze the sequence of captures. This is known as temporal encoding,
and now each projector column is uniquely identified by the sequence of intensities
captured in the temporal dimension for every camera pixel. The patterns in the
pattern sequences are typically constant along the yp axis, so a pattern sequence
can be uniquely identified by the so-called code matrix. This matrix is constructed
in such a way that a particular entry (C)ixp stores the intensity of a projector column
xp for the i-th pattern.

An example of such a matrix is illustrated in Figure 6a. This particular code matrix
CB contains three patterns corresponding to the rows in the matrix. The second
pattern, (CB)2, is illustrated in Figure 6b with YP = 4ppx. Consider the projector

column xp = 3ppx in CB. It is encoded by the intensities CBe3 =
[
0 1 0

]T
. This

particular code matrix uses a binary codification strategy. Thus, by viewing the
sequence of patterns as a binary sequence, CBe3 would be decoded to 2. If these
patterns were used in a structured light system, the camera pixels which captured
this sequence would then correspond to the projector column xp = 3ppx. It is
apparent that temporal encoding allows for the unique identification of projector
columns in the camera only by considering the sequence of intensities captured in
each particular camera pixel. This observation will be used extensively throughout
the thesis.
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(b) Example of a pattern.

Figure 6: The relationship between a code matrix and its corresponding patterns.
The second row in the code matrix corresponds to the pattern illustrated to the
right.

2.3 Camera and Projector Geometry

This section describes the geometry of the camera and projector inside the structured
light system. The mapping between pixels and world coordinates is derived, which
makes it possible to estimate the spatial light trajectories corresponding to each of
the pixels. Lastly, the mapping between camera and projector world coordinates is
explained. The section is based on the corresponding section from the project thesis
(Lima-Eriksen 2022) with minor additions and corrections.

2.3.1 The pinhole model

A camera can be thought of as a projection of the 3D world onto a 2D pixel array
known as an image. Similarly, a projector maps a 2D image onto the 3D world.
When it comes to structured light systems, it is of interest to be able to estimate
these mappings so that correspondences between 2D images and the 3D world can
be made. The simplest model which allows such an estimation is called the pinhole
model (Moreno and Taubin 2012). It is valid for both cameras and projectors.

Consider the geometry of a general pinhole model depicted in Figure 7. From here
on, the subscript c|p indicates that the subscript c should be substituted for the cam-
era pinhole model and the subscript p should be substituted for the projector pinhole

model. Assume homogeneous world coordinates Xc|p =
[
Xc|p Yc|p Zc|p 1

]T
with

origin in Cc|p and homogeneous pinhole coordinates xc|p =
[
xc|p yc|p 1

]T
with

origin in pc|p. The world coordinates then describe a point in space relative to
the camera / projector origin Cc|p, and the pinhole coordinates correspond to a
particular pixel in the camera / projector relative to its origin pc|p.

The rightmost part in Figure 7 is the projection of the pinhole model onto the YZ-
plane. From the relationships of similar triangles in this projection, it follows that

9



Figure 7: Pinhole model geometry (Hartley and Zisserman 2003).

for a given Zc|p,

yc|p =
1

Yc|p

(
fc|p,yYc|p + pc|p,y

)
A similar relationship also holds for yc|p by considering the same geometry in the
XZ-plane from the leftmost model in Figure 7. The relationships give rise to the
mapping Xc|p 7→ xc|p through

xc|p = Kc|pXc|p (1)

where

Kc|p =

fc|p,x 0 pc|p,x 0
0 fc|p,y pc|p,y 0
0 0 1 0

 (2)

is either the camera matrix or the projector matrix. The terms pc|p,x and pc|p,y
account for the fact that the origin of pinhole coordinates is in the upper left corner
of the image plane, instead of the center in which the ZC-axis intersects. The terms
fc|p,x and fc|p,y are the horizontal and vertical focal lengths. These numbers are
measures of the distance between the lens p and the camera / projector sensor C.

Unfortunately, neither cameras nor projectors work in this linear fashion in the real
world. Lenses are used to solve the issue of getting enough light to pass through the
pinhole. But these introduce non-linearities due to geometric distortion known as
radial distortion. The effect of these distortions is that straight lines appear curved
if the distortions are not corrected for. The experimental setup used in this thesis
does not suffer from such distortions, and therefore they will not be considered to
keep things simple. In real-world scenarios, the distortions need to be taken into
account by introducing the radial distortion vectors kc|p and including them in the
above equations as shown in (OpenCV 2021).
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2.3.2 Relative orientation

Figure 8: The relative orientation of the camera and projector with their respective
world coordinate systems.

The camera and projector are displaced and rotated relative to each other as de-
scribed in Section 2.2. Figure 8 shows how the world coordinate systems described
in Section 2.3.1 do not have the same origin and basis. This comes from the fact that
the origins of these coordinate systems are placed in the sensor centers with their
respective Zc|p-axis pointing towards the lens center. Let Tpc denote the homogen-
eous combined translation and rotation matrix from the projector world coordinate
system to the camera world coordinate system. Then

Xc = TpcXp (3)

From the above equation it is possible to map a point from the projector world
coordinate system to camera world coordinate system and vice versa. This closes
the gap between the projector and camera, and allows for mapping a projector pixel
to a camera pixel given a certain distance. The geometric considerations will later
be exploited in Chapter 5 in order to improve on the performance of structured light
systems.

2.4 Lens optics

The pinhole model stated above gives a good model on the mapping between the
3D world coordinates and 2D image coordinates in cameras and projectors. Never-
theless, it is a simplification of what happens and lacks the ability to capture the
spatial distortions caused by lenses.
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(a) Without aperture.

(b) With aperture.

Figure 9: Model of how a lens focuses light in cameras and projectors at various
distances.

To focus light from the outside world onto the sensor in a projector or camera, a
convex lens is placed in front of the sensor (Fiete 2010). Such a lens makes light rays
converge towards the center of the lens. Typically, a camera or projector will utilize
a combination of convex and concave lenses to get optimal optical properties. In
order to keep things simple, a single convex lens will be used here, as the principles
stay the same. Also, the principles will be explained for a camera, but the same
arguments will also apply to a projector.

Figure 9a depicts an imaging sensor, a lens, and two possible objects l1 and l2 placed
in its field of view at different distances. Due to the bending of light rays caused by
the lens, there are multiple ways a light can travel through the lens and be incident
onto the same pixel. In the figure, these possible paths are illustrated by the blue
lines for one particular pixel. The optical properties of the lens as well as the focal
length specifies a distance to which all these lenses cross each other in a single point,
and this happens in what is known as the focusing distance. For this example, it
happens at the distance in which object l1 is placed. Notice that at this distance, a
single pixel will have its incident light rays from a single point in space only. This
in turn makes an image sharp.
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Objects may also be placed at distances different from the focusing distance and l2
is an example of this. Here, the light incident to a particular pixel will originate
from an area of circular shape on l2. Therefore, the light that is captured by this
pixel will be a weighted average of the light within this circle. Depending on the
relative distance of l2 from the focusing distance, the diameter of the circle will
change as indicated by the figure. The phenomenon of this weighted average over a
circle is known as blur, since it smoothes out the image. The diameter of the circle
is known as the blur diameter. A scene captured by a camera will never have all of
its objects within the focusing distance, and so many objects will only be slightly
blurred. The distance between the nearest and furthest objects in acceptably sharp
focus is known as Depth of Field (DOF).

For the model depicted in Figure 9a, the DOF is fixed by the optical properties
of the lens as well as the focal length, meaning that it cannot be adjusted once
the camera is constructed. There is however another way of modifying the DOF.
Figure 9b introduces what is known as an aperture. This is an adjustable circular
opening of the lens that restricts the light rays incident to the lens. It is measured
in f -number, where an increase in number corresponds to a narrower aperture. For
the aperture depicted in this particular figure, the two uppermost and lowermost
light rays cannot pass through the aperture, indicated by the dashed lines. This
effectively reduces the blur diameter outside of focus, as seen, e.g., for the object l2.
With a reduced blur diameter, the DOF increases. As a result, objects at a wider
range of distances from the focusing distance will appear sharp. The aperture is often
adjustable through a mechanism known as iris. Decreasing the aperture increases
the DOF, but it comes with its drawbacks. Since less light is allowed through the
lens, the exposure time must be increased to compensate for this. Exposure time
is the time in which light is allowed onto the sensor to form an image. If objects
move during the exposure, motion blur will be present, leading to an unsharp image.
Also, the increase in DOF with decreasing aperture will not continue indefinitely, as
other optical phenomena will occur (Conrad 2018).

The choice of aperture ultimately becomes a compromise between having a large
DOF and a short exposure time. This compromise means that not all blurring
can be avoided. The physical effects of this blur are quite complex to model, as
it depends on multiple optical aspects. However, a common simplification is to
approximate the blur as a convolution of a perfectly sharp image with a Gaussian
kernel with a certain SD to obtain the blurred image (Strasburger et al. n.d.).

From the signal processing domain, convolution with a Gaussian kernel is known
as a low-pass filter. Therefore, high frequency content will be dampened due to
this effect. In structured light, one wants to identify the mapping from projector
pixels to camera pixels in order to exploit multiview geometry. If the light in the
projector is coded with high frequency content, the details may be lost due to this
blurring effect, and caution has to be taken when designing the patterns to mitigate
the issue.
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Figure 10: Illustration of the different types of physical reflections. Based on an
illustration from Sergiyenko 2010.

2.5 Reflections

Reflection is the phenomenon in which parts of a light ray bounce off the incidence
between two different media, and return to the originating medium (Lekner 1987).
This section first describes reflections from a purely physical perspective, where they
are separated on the basis of how they spread back into the originating medium. In
the latter half, reflections are described from the perspective of a structured light
system in terms of how they cause distortions.

2.5.1 Diffuse and specular reflections

When a light ray enters the incidence between two media, a fraction of the wave will
be reflected back into the originating medium. Depending on the destining medium,
the light ray may be reflected in different ways.

For some destining media such as polished metal, glass, or transparent plastics, the
reflections will be mostly specular. Such reflections behave in a mirror-like fashion,
meaning that all of the light is reflected back into the originating medium at the
angle of incidence in accordance with Snell’s law of refraction (Steyerl et al. 1991).
The reflected light ray will have the same intensity as the originating ray because all
of the reflected light travels in the same direction. This is illustrated in Figure 10,
where the incident light ray (orange) is reflected back as a single ray (green).

A different phenomenon occurs when the destining medium is e.g. unfinished woods
or paper. For such surfaces which are close to Lambertian, the light rays will be
scattered away from the destining medium in a range of different angles (Lu 2016).
The intensity of the reflected light will be of a lower intensity than the incident light,
as it is spread of a larger area. This type of reflection corresponds to the purple rays
in Figure 10.

In reality, surfaces will reflect light as a mixture of both diffuse and specular reflec-
tions, whereby the ratio between these two is subject to variation.
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2.5.2 Direct reflections and interreflections

Structured light systems are based upon the principle of determining the correct
projector column observed in each of the camera pixels. When light from such a
projector column hits a surface, it is known as a reflection. Therefore, it is essential
to have knowledge on how the nature of these reflections affect the performance of
the system. From a structured light perspective, reflections are typically divided
into direct reflections and interreflections. The distinction is made based on how
many reflections occur from the light exiting the projector till it enters the camera.

(a) Direct reflection. (b) Direct reflection and interreflection
both entering the same (xc, yc).

Figure 11: The geometry of reflections in a structured light system. Camera: C;
Projector: P. Courtesy of Lima-Eriksen 2022.

Direct reflections occur when the incident light (xp, yp) bounces off of a surface in
a point Q and enters the camera directly in (xc, yc) without any further bounces
(Deeb et al. 2017) as illustrated in Figure 11a. Since a single projector pixel (xp, yp)
is captured by a particular camera pixel (xc, yc), there exists an injective mapping
(xc, yc) 7→ xp. This is the premise behind structured light systems as stated in
Section 2.2.

Things get more complicated in Figure 11b. Here, light rays from both (xp,5, ·) and
(xp,8, ·) enters the camera in (xc, yc). Typically, this phenomenon occurs when the
surface gives off a lot of specular reflections. A large proportion of the light reflected
from (xp,8, ·) in R is reflected specularly to the point S through what is called an
interreflection. This is the same point that the ray from (xp,5, ·) hits directly, and
the light rays give off diffuse reflections in this point. Therefore, both (xp,5, ·) and
(xp,8, ·) is seen by the camera in (xc, yc). As the mapping (xc, yc) 7→ xp now is non-
injective, decoding errors may occur. If the surface is of such shape that the light
ray from (xp,5, ·) is partially occluded, the light ray from (xp,8, ·) might be the one
with the highest intensity when captured in (xc, yc).
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3 State of the Art

This chapter presents the state of the art in structured light from the perspective
of signal processing. Gray-Coded Phase Shifts (GCPS) is a commonly used pattern
codification strategy for static scenes due to its high accuracy. The codification
strategy will be presented using a top-down perspective together with its strengths
and weaknesses. Lastly, a method of filtering out invalid solutions are presented.
The algorithm is particularly useful for pattern codification strategies which give
multiple possible solutions to the mapping (xc, yc) 7→ xp.

3.1 Gray-Coded Phase Shifts

Gray-Coded Phase Shifts is a temporal pattern codification strategy, using a hier-
archical column estimate. It consists of two types of patterns – phase shifts and
gray codes. Phase shifts give high-accuracy estimates of the originating projector
columns, but the estimates are periodic. To unwrap the periodicity of phase shifts,
temporal gray codes are used. The combination of these two pattern types make a
fast pattern codification strategy with high accuracy.

3.1.1 Working principles

The first part of GCPS is the phase shifts. It consists of projecting four patterns
with horizontal cosines, each with its phase shifted 90° relative to the previous. The
code matrix CPS(320) that belongs to the phase shift patterns with spatial period
WF = 320 ppx and XP = 1280 ppx is shown in Figure 12a. Recall that the blur
effects from defocus correspond to a convolution with a Gaussian kernel. This is a
low-pass filter, so the overall shape of these cosines will be preserved at a wide range
of camera distances ZC .

An important observation from these phase-shifted cosines is the fact that the pat-
terns resemble cosines in the temporal domain as well. To illustrate this, the samples
for xp = 320 ppx are available from the code matrix through CPS(320) ·e320, and are
plotted as the dots in Figure 12b. The blue curve in this same figure is a cosine with
its phase equal to the phase of the first sample when viewed as part of the cosine
in the spatial domain of the first pattern. By estimating the phase of the cosines in
the temporal domain, one gets the spatial phase of the first sample when viewing it
as part of a cosine in the spatial domain.

The phase of the temporal cosines can be found for each of the projector columns,
and the result for this example is shown in Figure 12b. The phase can be used to
identify each projector column through its phase shift. Unfortunately, the estimate
is periodic with WF due to the periodicity of arctan2. This in turn will lead to
an ambiguity, since, for instance, the phase in xp = 200 ppx is the same as in
xp = 200 ppx +WF . Decoding structured light requires the mapping (xc, yc) 7→ xp

be one-to-one, which means that these patterns cannot be used alone.

16



1 320 640 960 1280

xp [ppx]

1
2
3
4Pa

tte
rn

 [1
]

0.0

0.5

1.0

(a) CCP(320)

1 2 3 4
Pattern [1]

0.0

0.5

1.0

In
te

ns
ity

 [1
]

(b) CCP(320) · e320

1 320 640 960 1280
xp [ppx]

0

2

Ph
as

e 
[ra

d]

(c) ϕ

Figure 12: Phase stepping with XP = 1280 ppx and WF = 320 ppx.

To solve the ambiguity in the projector column estimates of phase shifts, temporal
gray codes are used. First, the xp-axis of the projector is divided into sectors of
equal width WF called fringes. This means that exactly one period of the cosines
in phase shifts fits within one such fringe. The purpose of the gray codes is to
uniquely identify the originating fringe of each projector column. This is illustrated
in Figure 13. Here, groups of four projector columns are identified as the same
fringe using gray codes. Within each of these fringes, phase shifts make it possible
to distinguish between the projector columns. Together, they allow for the unique
identification of any projector column.

Figure 13: In GCPS, the projector columns are sectioned into fringes of width WF .

Gray codes are binary codes that are constructed in such a way that only one
bit changes when going from one code word to the next. They can be derived
from its binary representation through the algorithm specified in (Gray 1947). For
instance, the binary code {0, 1} can be written as {1, 0} in gray code representation
. In GCPS, each fringe is given its unique gray code corresponding to its fringe
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(b) The decoded gray codes for each xp.

Figure 14: Gray codes with XP = 1280 px and WF = 320 px.

number. This means that the first fringe is coded as the gray code representation
for 0, the second fringe is coded as the gray code representation for 1, etc. In total
NF = ⌈XP

WF
⌉ fringes should be uniquely identified, requiring NP,GC = ⌈log2(XP

WF
)⌉ bits

to distinguish them. For this particular example, two bits are required. Gray codes
are coded in the temporal dimension, so one pattern is needed per bit. The code
matrix required for this example is shown in Figure 14a.

By decoding the gray codes for every projector column, one gets the result shown
in Figure 14b. Notice that it is constant within each fringe of size WF = 320 ppx,
as desired. The decoded phase shifts and gray codes can be scaled and combined to
form the mapping (xc, yc) 7→ xp, and this will be shown in the next section.

3.1.2 Algorithm

As seen above, GCPS consists of multiple steps which together allow for the unique
identification of projector columns for every camera pixel. The following section will
explain the pattern codification strategy from an algorithmic perspective. It is in
part based on the corresponding section found in the project thesis (Lima-Eriksen
2022), but it has been rewritten to use tensors and matrices in order to follow the
same general format as for the other patterns presented in this thesis.

3.1.2.1 Normalization

In most scenes, there is a certain background lighting originating from either the
sun or artificial lighting sources such as lamps. When a capture is made of a fully
dark pattern, this results in each camera pixel (xc, yc) having a certain background
illumination I0(xc, yc) instead of being fully black, as expected. In addition to this,
objects have varying reflectance as further described in Section 2.5. Therefore, the
total illumination of one particular camera pixel (xc,1, yc,1) will result in a different
intensity captured compared to another camera pixel (xc,2, yc,2). For the algorithm
to be able to correctly decode the captures, it is essential that the effects originating
from background illumination and reflectance are eliminated. This is done through a
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process known as normalization. In essence, it results in each camera pixel spanning
the range [0, 1] such that 0 corresponds to the intensity of no illumination from the
projector and 1 corresponds to maximum illumination from the projector.

Let the reflectance observed in (xc, yc) be denoted as R(xc, yc). If the camera pixel
(xc, yc) is illuminated by the projector with a particular intensity Icp(xc, yc), then
according to (Skotheim and Couwelleers 2004) the intensity captured by the camera
can be represented as

Ic(xc, yc) = I0(xc, yc) [1 +R(xc, yc) · Icp(xc, yc)] (4)

When capturing a certain pattern, the values of Ic(xc, yc) is what is obtained. How-
ever, the intensity Icp(xc, yc) that originates from the projector is of interest. To
obtain Icp(·), one needs to estimate I0(·) and R(·). This is done by first capturing
an image Ic0 where Icp(xc, yc) = 0 ∀ (xc, yc). In other words, an all-black pattern is
used. Then (4) simplifies to the estimate

Î0(xc, yc) = Ic0(xc, yc) (5)

For estimating R(·), a capture Ic1 of the pattern Icp(xc, yc) = 1∀ (xc, yc) is made.

The estimate Î0 from (5) is inserted into (4), and the equation is solved for R(·):

Ic1(xc, yc) = Î0(xc, yc)
[
1 + R̂(xc, yc) · 1

]
R̂(xc, yc) =

Ic1(xc, yc)

Î0(xc, yc)
− 1 (6)

With the estimates Î0(xc, yc) and R̂(xc, yc) known, an estimate of Icp(·) given Ic(·)
can be made through the transformation

Îcp(xc, yc) =
Ic(xc, yc)− Î0(xc, yc)

Î0(xc, yc)R̂(xc, yc)
(7)

It is shown through (7) that the projected light intensity in a certain camera pixel
(xc, yc) can be reconstructed. This transformation is used later in the GCPS al-
gorithm to estimate which part of the projected patterns is observed in the camera
pixels.

3.1.2.2 Phase shifts

In this next step, the scene is illuminated with a series of horizontal cosine patterns,
each with its phase shifted 90° relative to the previous. Let WF denote the spatial
period of the cosines. Also, define the phase shift vector
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ΦN =
[
0 · 2π

N
1 · 2π

N
· · · (N − 1) · 2π

N

]T
(8)

Then these patterns can be represented by its code matrix of dimensions 4 × XP ,
where each element is defined through

(
CCP(WF)

)
nxp

=
1

2

[
1 + cos

(
2π

WF

xp − (Φ4)n

)]
(9)

An example of CCP(WF) with XP = 1280 ppx and WF = 320 ppx was given in
Figure 12a. The phase for each projector column can be calculated (Hung 2000)
according to

(ϕ)xp
= arctan2

{
cosΦT

4 ·CCP(WF) · exp , sinΦT
4 ·CCP(WF) · exp

}
This would correspond to the phase plot in Figure 12c. Of course, the phases of
the cosines have to be estimated from the camera captures. Let the tensor MPH of
dimensions YC×XC×4 store the captures of the phase shift patterns for each camera
pixel (xc, yc) as (MPH)ycxc , normalized according to the normalization algorithm
provided above. Then the phase can be estimated similarly for each camera pixel
and stored in the YC ×XC matrix through

(QPH)ycxc
= arctan2

{
cosΦT

4 · (MPH)ycxc
, sinΦT

4 · (MPH)ycxc

}
(10)

3.1.2.3 Gray-coded fringes

In addition to the phase shift patterns, gray code patterns must be made. Let first
binN(n) be a function which takes a decimal number n and returns a vector of
dimensions N ×1 which is the binary representation of the number. As an example,

bin4(5) =
[
0 1 0 1

]T
. For a certain fringe width WF and number of projector

columns XP , NP,GC = ⌈log2 XP

WF
⌉ patterns are needed for the gray codes. Initialize

the binary code matrix CB(WF) of dimensions NP,GC ×XP as

CB(WF) · exp = binNP,GC
(xp mod WF )

Now, each column vector ofCB(WF) is the binary representation of its fringe number.
For instance, the first WF column vectors are the binary representation of 0, etc.
According to the conversion algorithm provided in (Gray 1947), this code matrix
can be converted to its gray code representation using

(
CGC(WF)

)
nxp

=
(
CB(WF)

)
nxp

⊕
(
CB(WF)

)
(n−1)xp

(11)

with the special case
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(
CGC(WF)

)
1xp

=
(
CB(WF)

)
1xp

An example of such a code matrix with WF = 320 ppx and XP = 1280 ppx was
provided in Figure 14b.

Let the tensor MGC of dimensions YC ×XC ×NP,GC store the captures of the gray
code patterns, normalized according to the normalization algorithm given earlier.
These captures store normalized light intensities in the range [0, 1], whereas the
codes are binary. In order to decode these captures to their corresponding fringe
number, they should first be discretized to binary numbers. This is done through

M′
GC = ⌊MGC⌉

which rounds each light intensity to the nearest integer (0 or 1). The captures can
be converted from gray codes to binary codes using

(QB)ycxcn
=

(
M′

GC

)
ycxc1

⊕
(
M′

GC

)
ycxc2

⊕ · · · ⊕
(
M′

GC

)
ycxc(n−1)

where the binary representations of the captures are stored in the tensor QB of
dimensions YC × XC × NP,GC . Let the matrix QGC of dimensions YC × XC store
the decimal representation of the decoded gray codes. Converting from binary to
decimal is trivial:

(QGC)ycxc
= (QB)ycxc1

· 2NP,GC−1 + (QB)ycxc2
· 2NP,GC−2 + · · ·+ (QB)ycxcNP,GC

· 20

3.1.2.4 Phase unwrapping

The gray code solutions and the phase shift solutions should finally be combined
to find the mapping (xc, yc 7→ xp. Phase shifts yield solutions between 0 and 2π,
and can identify projector columns periodic to WF . On the other hand, the gray
codes decode the fringe number for each camera pixel. These can be combined by
scaling the estimates and adding them, and the total solution is available through
the YC ×XC matrix, where

(QGCPS)ycxc
=

WF

2π
· (QPS)ycxc

+WF · (QGC)ycxc
+ 1 (12)

The +1 in the above equation comes from the fact that pixels start at 1.

3.1.3 Strengths

A major strength of GCPS is that it allows for a great accuracy in estimating the
mapping (xc, yc) 7→ yp. The phase stepping increases in accuracy with decreasing
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WF (Salvi et al. 2004). Also, the phase stepping is quite resilient to the blur caused
by lens defocus mentioned in Section 2.4, as the defocus behaves as a low-pass filter
and thus only reduces the overall amplitude of the cosines. Some defocus on the
projector lens is in fact advantageous because it blurs out the cosine and makes it
appear continuous. Then the phase unwrapping allows for sub-pixel accuracy. On
the other hand, the gray codes are a lot more susceptible to errors in the presence of
blurring artifacts. In practice, a compromise has to be made which allows for high
accuracy in phase stepping while still correctly decoding the grade codes when the
lens is somewhat defocused.

Another advantage of GCPS is that it is really fast and scales well. As mentioned
previously, the NF = ⌈XP

WF
⌉ fringes can be coded with log2NF patterns. Adding

one pattern thus doubles the number of fringes that can be encoded. Normalization
and phase shifts will always require only two and four captures, respectively. The
whole decoding pipeline is parallelizable for each camera pixel (xc, yc) as shown by
the equations, so the process of constructing the point cloud is fast.

3.1.4 Weaknesses

The GCPS pattern codification strategy does unfortunately only work correctly
when the surfaces of the objects in the scene mostly give off scattering reflections.
Both the gray code patterns and the phase shifts collapse in the presence of specular
reflections because they give rise to interreflections as seen in Section 2.5.

The gray codes utilize the whole code space, meaning that the lowest hamming
distance for all the code words to another valid code word is always one. Therefore,
erroneously decoding only a single bit can lead to errors of integer multiples of WF ,
which is significant. Such errors typically give rise to shadow planes and make the
point clouds useless in most cases.

The decoding error introduced in phase shifts is easily shown by noting that the
sum of two cosines with the same frequency ω is another cosine with the same
frequency but a new phase shift. For simplicity, let the correct signal be denoted by
s(t) = A cos(ωt−α). If an interreflection causes part of the pattern with a different
phase shift w(t) = B cos(ωt− β) to add to s(t), then the sampled signal i(t) will be
a new cosine with the same frequency but a different phase shift:

i(t) = s(t) + w(t)

= A cos(ωt− α) +B cos(ωt− β)

= C cos (ωt− ζ) , where

{
C =

√
[A cos(α) +B cos(β)]2 + [A sin(α) +B sin(β)]2

ζ = arctan
[
A sinα+B sinβ
A cosα+B cosβ

]
(13)

The phase shift ζ ̸= α is perfectly valid and it is impossible to distinguish s(t) from
w(t). Of course, following from (12) the errors ϵph = WF

2π
·[α−ζ] ∈

[
−WF

2
, WF

2

)
, which
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Figure 15: Physical interpretation of positive and negative gradient in projector
column mapping.

are always of lower magnitude than the ones introduced by the gray code patterns.
But errors in phase shifts can occur even for low magnitudes B of the noise. This
is in contrast to gray codes, which require at least one bit in the code word to be
decoded erroneously. For instance, if a zero is to be decoded, but interreflections
increase the light intensity in the pixel from 0.1 to 0.4, the pixel is still decoded as
a zero.

3.2 Gradient filter

The multiview geometry which is utilized in structured light places several restric-
tions on the mapping (xc, yc) 7→ xp, and one of them is a restriction in the projector
column gradient. It will be shown that this constraint allows for filtering out invalid
solutions, which typically originate from interreflections.

Consider the two-dimensional model of a structured light system depicted in Fig-
ure 15. The model is viewed from the top down. The columns in both the camera and
the projector increase when looking from the sensor through the lens left-to-right.
For this model, only two columns are depicted in the camera (xc,1 and xc,2) and the
projector (xp,1 and xp,1). Assume that the scene captured by the system is construc-
ted in such a way that each of the camera columns see either xp,1 or xp,2. Then there
are four possible pairs of camera-to-projector mappings: (xc,1 7→ xp,1, xc,2 7→ xp,1),
(xc,1 7→ xp,2, xc,2 7→ xp,2), (xc,1 7→ xp,1, xc,2 7→ xp,2) or (xc,1 7→ xp,2, xc,2 7→ xp,1).

The first two pairs of mappings would indicate that the scene depicts an object
which tangents the rays from either xp,1 or xp,2 respectively, and are trivial. The
third mapping corresponds to an object having the surface of l2, which is perfectly
possible from a physical perspective. For the last mapping, it would require the
surface of l1 to be causing the reflection. As the model shows, the situation depicted
is not a reflection at all, as l1 blocks the light rays from entering the camera. The
situation is contradicting, and not physically possible.
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Figure 16: Projector column mapping with valid (s2) and invalid (s1) solution.

From a mathematical perspective, let the mapping be depicted as projector columns
being a function of camera columns. Then the pair (xc,1 7→ xp,1, xc,2 7→ xp,2) corres-
ponds to the function having a positive gradient and the pair (xc,1 7→ xp,2, xc,2 7→
xp,1) would correspond to a negative gradient. Thus, a negative gradient is invalid
due to geometric considerations.

Next, consider the camera column to projector column mappings depicted in Fig-
ure 16. First, let s0 and s1 be the mappings obtained using a structured light system.
The points s1 have a negative gradient, and are physically impossible. Therefore,
they should be considered invalid and removed in further processing. This is known
as applying a gradient filter. Typically such negative gradients will originate from
interreflections, as these will invert the order in which projector columns appear
in a capture. For some pattern codification strategies, the decoding stage might
give multiple possible solutions s1 and s2. In that case, s2 would be considered the
correct solution.

Although a gradient filter appears simple through its derivation, its practical ap-
plication is significantly more difficult. Detecting such negative gradients requires
application-specific tuning, and using the technique will be out of the scope of this
thesis. It is included merely to substantiate the usefulness of pattern codification
strategies which give multiple solutions.
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4 Materials and Method

Much of the work in this thesis revolves around the analysis of a structured light
system, which is inherently nonlinear. Later it will also be shown that some of the
patterns themselves are nonlinear. For these reasons, direct analytical approaches
are not feasible in most cases. Instead, experiments are developed to give insight
into performance. These will be performed using rendering software.

This chapter serves as an overview of the materials and method applied in the work
of the thesis. First, the experimental setup will be presented with an introduction to
how the rendering software works. Next, the test scenes used to render the patterns
are shown. The latter part defines metrics and benchmarks used to quantify the
performance of the test results.

4.1 Experimental setup

There are mainly two ways of performing experiments with structured light systems.
Either a physical system can be used or the system can be simulated using rendering
software. The main advantage of using a real-life camera would be that the captures
are true-to-life and therefore accurately reproduce all the distortions that are present
in a typical scene. Consequently, a simulator should be unbiased for this to not be
a key differentiator.

Nevertheless, this strength also turns out to be one of its biggest weaknesses. Objects
may move slightly between experiments due to unintended human intervention. In
turn, this might lead to the objects now being placed in such a way that reflections
cause new distortions, making comparisons with previous experiments erroneous.
The objects of importance here are typically slippery metal parts, and thus such
displacements can easily occur without being easily noticeable.

Perhaps an even larger source of error is the camera positioning. Throughout the
thesis, experiments will be performed by taking captures using a range of distances.
If a physical system was to be used, this would require measuring and repositioning
the system for each capture. An incorrect positioning can easily occur in both the
distance and pose. This is mitigated by using a simulator because the distance and
pose are set programatically.

In addition, comparisons with the ground truth will be used extensively to find out
where pattern codification strategies give incorrect results. A physical camera has
for obvious reasons no way of obtaining the ground truth, which makes it impossible
to use for such comparisons. Fortunately, there are certain ways to find the ground
truth using the simulator, which will be explained later.

For these reasons, a simulator is used in the experiments. The experimental setup
revolves around a rendering engine configured to approximate the Zivid Two camera.
A programming framework has been developed on top of this software to automate
the process of rendering different code matrices for a range of configurations.
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4.1.1 Software overview

OctaneRender® by OTOY Inc. was chosen as the rendering engine for the exper-
iments. It is the world’s fastest GPU-accelerated renderer (OTOY 2022), meaning
that few compromises have to be made in the simulations in order to optimize for
fast render times. Even more importantly, it is unbiased and physically correct.
This means that physical phenomena such as specular reflections can be trusted to
resemble reality.

The rendering engine has a feature rich application programming interface (API),
which makes it possible to programatically modifyi attributes such as the camera
distance ZC and the patterns to be used. By using its command-line interface
(CLI), rendering can be started from the command line without having to use a
GUI. Together, these features make it possible to fully automate the experiments
used in the thesis. The programming framework that performs the automation has
been developed in Python. The language was chosen for its ease of use and wide
variety of libraries. In particular, the library called OpenCV2 proved to be useful in
converting the renderings to a more programming-friendly format.

The rendering engine has been configured to use the camera and projector matrices
as defined in (14) and (15) respectively. Furthermore, the combined translation and
rotation matrix Tpc defined in (16) is used. These are the values that apply to the
Zivid Two camera (Zivid Two Datasheet 2021). To keep things simple, the camera
was configured with an aperture of f/5.6. According to Zivid AS, this is a value
that is typical for the camera.

Kc =

1.728× 103 0 9.715× 102 0
0 1.728× 103 7.355× 102 0
0 0 1 0

 (14)

Kp =

1.153× 103 0 6.395× 102 0
0 1.035× 103 3.595× 102 0
0 0 1 0

 (15)

Tpc =


9.925× 10−1 −5.750× 10−7 −1.218× 10−1 1.109× 102

8.071× 10−7 1 1.855× 10−6 2.965× 10−3

1.218× 10−7 −1.939× 10−6 9.925× 10−1 1.899× 10−1

0 0 0 1

 (16)

4.1.2 Workflow and pre-processing

The programming framework has been developed with a focus on being easy to use,
while still providing the flexibility to modify key attributes of the test setup. These
advantages are achieved by making the framework fully declarative. In other words,
the framework provides only a function called render, and all modifications must
be made by changing parameters in a configuration file render_config.yaml. An
example of such a configuration file has been provided in Source Code 1. The frame-
work also takes the code matrix code_matrix.mat and a scene scene_template.orbx
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as parameters. Together, these files are everything necessary to produce the render.
The entire workflow is visualized in Figure 17. Here, white boxes with dashed blue
border illustrate a file which is either provided by the user or produced by the
framework. A box with a blue background represents a processing step. The whole
workflow will be explained below.

Source Code 1: Default render_config.yaml.

1 simulator:

2 octane_path: "/localhome/studenter/leikli/OctaneRender/octane"

3 projectors_count: 8 # [1]

4

5 scene:

6 distance: 800 # [mm]

7 rotation:

8 vertical: 0.0 # [rad]

9 horizontal: 0.0 # [rad]

10

11 camera:

12 f_number: 5.6 # [1]

13 focusing_distance: 800 # [mm]

14 dimensions:

15 x: 1944 # [cpx]

16 y: 1472 # [cpx]

17

18 projector:

19 power: 1.0 # [1]

20 dimensions:

21 x: 1280 # [ppx]

22 y: 720 # [ppx]

4.1.2.1 Pattern generation

The rendering engine has no concept of a code matrix. Instead, the projector can
be configured with a single pattern and render its light projected onto the scene as
seen from the camera. Consequently, the first step in the workflow is to convert
the code matrix into its corresponding patterns. The dimensions YP × XP of the
patterns are specified in render_config.yaml through projector.dimensions.y

and projector.dimensions.x respectively. Recall that the code matrix can span
any range of R, but a projector can only output intensities I ∈ [0, 1] ⊂ R. Therefore,
the code matrix C should be mapped onto this range. This is done according to
(17).

C′ =
C−min{C}

max{C} −min{C}
(17)
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Figure 17: Flow chart of the rendering workflow.
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Each row in the code matrix C′ is then repeated YP times to make a pattern as
seen in Section 2.2.1. In addition, a fully black and a fully white pattern is made
to accommodate for the normalization of the captures according to Section 3.1.2.1.
The patterns are saved as PNG-files, as the file format utilizes lossless compression
(Salomon et al. 2006).

4.1.2.2 Scene preparation

Parallel to the pattern generation, the test scene scene_template.orbx needs to
be modified to resemble the parameters specified in render_config.yaml. The
modification is done by running the CLI of the renderer on scene_template.orbx.
The CLI exposes its API through the --script parameter. A Lua-script is provided
as parameter, which reads the YAML-file and modifies the parameters of the ORBX-
files by utilizing the API. The resulting configured file is stored as test_scene.orbx.
The programming framework allows setting the f -number, focusing distance XC and
YC of the camera. The projector can be configured through its power (maximum
intensity ), XP and YP . For the experiments in the thesis, it is only the distance
ZC that is modified, and it is available through scene.distance. The pose of the
camera can be set through scene.rotation.

4.1.2.3 Scene generation

Next, the ORBX-file needs to be configured to project the patterns through the
projector. The renderer has the ability to record eight render passes, meaning that
each render can output the capture of eight different patterns. This is exploited by
having eight projectors stacked on top of each other in the rendering engine, and
letting them output to each their own render pass. The total amount of renders
would therefore be NR =

⌈
NP+2

8

⌉
, accounting for the additional white and black

patterns.

For each render, an ORBX-file has to be created, configured with its correspond-
ing eight patterns. This is done by running a different Lua-script which modi-
fies the pattern input for each of the projectors. The Lua-script is executed on
test_scene.orbx by applying the same technique as was done in the scene prepar-
ation.

4.1.2.4 Rendering

The fully configured scenes have to be rendered in order to generate the captures.
The rendering is done by executing the render target through the command line.
Each render generates a EXR-files, which is a slightly compressed raw image output
containing the render passes. The rendering engine outputs both the direct reflec-
tions and the combined reflections (combination of the direct reflections and the
interreflections), and these are stored in separate tensors.
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4.1.2.5 Concatenation and compression

A code matrix consists in most cases of more than six patterns excluding the black
and white ones, meaning that multiple renders are necessary. The renders are com-
bined together to one single file in order to keep the files organized. They are stored
in MAT-files, as these are easily read in python by using scipy.io.loadmat. For
the purpose of debugging, the outputted render.mat also contains the configuration
provided through render_config.yaml.

4.1.3 Limitations

Although the simulator is unbiased and fast, it also has its shortcomings. The most
significant of these fall into the category of that the simulator performs too good.
As previously mentioned, it does not suffer from any radial distortions. In addition,
there are no calibration errors with regard to the relative positioning of the camera
and projector. For physical systems, one would typically experience noise in the
pixels (Jin and Hirakawa 2013), and this is also not present in the simulator. Such
sources of distortions would degrade the performance of the system, meaning that
the simulator gives a better performance than one could expect from a real-world
structured light system. However, this difference is not expected to be significant.
Moreover, the novel patterns will be compared to the state-of-the-art, which will be
rendered using the same conditions. Therefore, the relative performance between
these two should be a good metric of how well they compare with each other. In
other words, if a new type of patterns performs better than the state-of-the-art in
simulations, it should also perform better in the real world.

4.2 Test scenes

Two test scenes have been used for the experiments. They are both developed
and provided by Zivid AS. When a structured light system is used in a real-world
application, environmental lighting is almost always present. This could be artificial
lighting such as the sun, lamps, etc. In the test scenes provided below, there is no
ambient lighting. The exclusion was done so that only interreflections between
different parts of the patterns themselves can affect the performance.

For some of the experiments, renders are performed on a range of distances called
distance sweeps. Depending on the complexity of the calculations done on the ren-
derings, two distance sweeps can be used. They are listed below.

zrough[mm] = {300, 400, 500, 600, 650, 700, 750, 800, 1000, 1200, 1400, 1500}
zdetailed[mm] = {300, 350, · · · , 1450, 1500}
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4.2.1 Diffuse plane

A scene called Diffuse plane has been developed to be as simple as possible. As
the name suggests, it is simply an infinitely-sized plane coated in a 100% diffuse
material. The plane is perpendicular to the ZC-axis of the camera in the structured
light system, and the whole plane has the gray-color rgb(200, 200, 200). The
whole scene is planar, which in turn means that the projector pixels are not stretched
or shrunk due to the terrain of the scene. Also, no occlusions are present of the same
reasons. The absence of specular reflections further allows the analysis of pattern
codification strategies not subject to interreflections.

4.2.2 Objects in bin

A more challenging scene called Objects in bin scene is used for the testing and
evaluation of pattern codification strategies. It consists of a picking bin containing
twelve cylinders and twelve truncated icosahedrons. The scene has been made in
Cinema4D by simulating throwing the objects from a height of 1m above the bin
until they reside at their final positions. Therefore, the positioning of the objects
should be similar to what is observed in a typical bin-picking scenario at a pick-and-
place station. The resulting scene is shown in Figure 18. It has been rendered using
the Zivid Two simulator by projecting a fully illuminated white pattern at distance
ZC = 800mm.
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Figure 18: Render of the Objects in bin scene at distance ZC = 800mm.

Notice from Figure 18 that there are several areas where little light from the projector
reaches. This is known as occlusion, and means that no signal from the pattern
codification strategies will be present. When the performance of these strategies
later will be evaluated and compared against each other, it is important that the
occluded areas are not considered in the analysis. Otherwise, the performance will be
negatively biased. In order to disregard these areas, occlusion exclusion masks have
been developed for the distances ZC ∈ {550mm, 800mm, 1400mm}. The exclusion
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Figure 19: The occlusion exclusion mask for ZC = 800mm.

masks are matrices which are zero in occluded areas and one otherwise. They are
derived from fully illuminated captures by finding a threshold in light intensity for
which brighter areas are not considered occluded. These matrices will be referred
to as occlusion exclusion masks. Figure 19 shows the occlusion exclusion mask for
distance ZC = 800mm, and the other exclusion masks are available in Appendix A.

The picking bin and objects can be coated in one of two materials, which have optical
properties resembling metals. The least challenging is the material metal-50. It
gives off 50% diffuse reflections and 50% specular reflections and is close to the
average metal part encountered in pick-and-place operations. A more challenging
material is metal-80. This material gives off 80% specular reflections and 20%
diffuse reflections, and is optically close to the most challenging metal parts.

4.3 Benchmarks

The results of the decoded captures using a particular pattern codification strategy
only give the mapping (xc, yc) 7→ xp. This alone gives little information on how well
the codification strategy performs. In order to give meaning to the results, there
are two other results needed. First, the ground truth should be obtained. This
data is the correct mapping (xc, yc) 7→ xc that results from direct reflections only.
By comparing the ground truth to the pattern codification strategy, it is possible
to determine where this codification strategy decodes erroneously. Secondly, the
results should be compared to the ones obtained using the state of the art; if the
novel codification strategy does not improve compared to the de facto standard,
then it is of no use.
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4.3.1 Ground truth

The simulator will not give (xc, yc) 7→ xp by itself, so other methods must be used.
There are two ways of finding the ground truth, and the correct way of doing it will
depend on the scene itself. For the Diffuse plane scene, the whole scene will have
the same distance ZC from the camera. Therefore, the equation (22) which will be
derived later in Chapter 5 can be used to analytically find the correct mapping for
this scene.

It is a bit more complex for the Objects in bin scene. Here, the mapping must be con-
structed using a pattern codification strategy. It has already been established that
GCPS gives an accurate mapping, but only when interreflections are not present.
These interreflections are easily eliminated by decoding the direct reflections only,
available in the render output as a separate array.

4.3.2 State of the art - GCPS

In addition to the ground truth, GCPS will serve as a comparison to the state of
the art. The pattern codification strategy is subject to the same scene covered with
the same materials in order to give a fair comparison. In addition, the parameters
of the codification strategy will be chosen such that it is similar to the codification
strategy in subject.

4.4 Metrics

A pattern codification strategy works on a MIMO system, with a large output matrix
of dimensions YC×XC . In order to give meaning to the results, some metrics should
be defined.

4.4.1 Residual matrix

It has previously been established that both the ground truth and the estimated
mapping (xc, yc) 7→ xp from a particular pattern codification strategy can be ob-
tained using the simulator. The difference between the ground truth and the estim-
ated mapping will then indicate the decoding error in each camera pixel. This error
will be known as the residual. Let Q be a YC×XC matrix such that (Q)ycxc contains
the estimated originating projector column for camera pixel (xc, yc). Also, let Q′

be a similar matrix containing the ground truth projector columns. The residual
matrix E is then defined as

E = Q−Q′ (18)

These matrices will be visualized as heatmaps. One example of such a matrix is
shown in Figure 20. Here, blue denotes that the camera pixel decodes a lower
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projector column value than the ground truth, and vice versa for the red color.
Note that the heatmap only spans the range [−2, 2]. As seen in Section 3.1, GCPS
either gives residuals in integer multiples of WF or it gives really small residuals.
For the large residuals, it is not interesting to see whether it is WF , 2 · WF etc as
it is too large to be acceptable. Therefore, the residuals are clipped to the range
[−2, 2] so that the smaller, sub-pixels errors are better visualized. This would mean
that large residuals would appear as ±2 ppx.
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Figure 20: Example of a residual matrix heatmap.

4.4.2 Empirical CDF plot

While the residual matrix heat-map is good at showing the spatial distribution
of residuals, it lacks in visualizing their numerical distribution. This is what an
empirical CDF plot is useful for. This plot shows the cumulative distribution of the
absolute value of the residuals. An example is included in Figure 21. For a given
residual value along the x-axis, the corresponding y-value shows the fraction of the
residuals which are equal to or lower than that particular residual. For instance, the
example plot reveals that 60% of the residuals are less than 0.2 ppx, and that 80%
are less than one projector pixel. Some details are however left out of the plot, as
it has the range restricted to [0, 1 ppx]. This choice of range was made so that the
distribution of sub-pixel residuals are visualized the best. The rest of the empirical
CDF will be summarized in an accompanying table.

4.4.3 Histogram of residuals

Histograms of the residuals will also be included for some of the results. These show
the numerical distribution of the residuals and will, for instance, be useful to observe
whether they follow a Gaussian distribution.
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Figure 21: Example of an empirical CDF plot.
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Figure 22: Simplified model of the working principles behind the projector column
distance constraint.

5 Projector Column Distance Constraint

This chapter introduces a coding constraint for structured light systems. Due to geo-
metric considerations, only a certain range of all projector columns can be seen by
a particular camera pixel within a distance range ZL

C ≤ ZC ≤ ZU
C . The constraint is

first explained from a purely geometric perspective. Following is the development of
the corresponding algorithm using the algebraic framework provided in Section 2.3.
Lastly, the constraint is viewed from a practical perspective in terms of how it can
be used to improve on the performance of pattern codification strategies. This con-
straint was first discovered in the project thesis (Lima-Eriksen 2022). The algorithm
is reproduced here with some additions and corrections.

5.1 Working principles

A simplified model of a structured light system has been provided in Figure 22.
Here, the camera and projector are viewed from a top-down perspective. The two
large horizontal bars lL and lU represent possible objects causing reflections at their
corresponding camera distances ZL

C and ZU
C . Recall from Section 2.2 that there

exists a single ray for each camera pixel along which light may be incident onto that
particular pixel. For the camera pixel (xc, yc), this ray corresponds to the red line
in Figure 22. Introduce first the horizontal bar lL at camera distance ZL

C . Then the
light that is captured by (xc, yc) would have to originate from a reflection at the
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intersection between the red line and lL at the point P.

It has also been established in Section 2.2 that light originating from a projector
column (xp,L, ·) forms a vertical plane in space. Let (xp,L, ·) denote the projector
column that is incident on P, indicated by the yellow line in Figure 22. The same
considerations can be made for the object lU at distance ZU

C . The light incident on
the same camera pixel (xc, yc) would now instead have to originate from a reflection
in the point Q. As seen in the figure, the projector column (xp,U , ·) indicated by the
green line is the one seen in the camera pixel at that particular distance.

Note that this green line would have to originate from a projector column xp,U > xp,L.
For a given range of camera distances ZL

C ≤ ZC ≤ ZU
C , there should by induction

exist a range of valid projector columns [xp,L, xp,U ] that are observable for a particular
camera pixel (xc, yc). This is known as the projector column distance constraint.
Its algorithmic derivation is provided in the following.

5.2 Algorithm

Section 2.3 introduced theory for mapping 3D world coordinates to 2D images and
vice versa for the camera and projector. In addition, it gave the mapping between the
camera world coordinates and projector world coordinates. Given a distance from
the camera ZC , the equations from Section 2.3 can be combined to find out which
projector pixel (xp, yp) is visible from each camera pixel (xc, yc). More specifically,
it makes it possible to construct the mapping (xc, yc) 7→ xp for a given ZC . Let

xc =
[
xc yc Zc

]T
. By reordering the camera version of (1), one gets

Xc = K−1
c xc (19)

The expression for Xc from (3) is inserted into (19), yielding

TpcXp = K−1
c xc

Xp = T−1
pc K

−1
c xc (20)

Lastly, the projector version of (1) is inserted into (20) to get the mapping from
camera pixels to projector pixels at camera distance ZC :

K−1
p xp = T−1

pc K
−1
c xc

xp = KpT
−1
pc K

−1
c xc (21)

Define two camera distances ZU
C and ZL

C such that ZU
C > ZL

C . Consider now the
tensors CU and CL of dimensions Xp × Yp × 3 where
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(
CU|L)

xcyc
=

[
xc yc Z

U |L
C

]T
∀ xc ∈ N ∩ [1, XC ]

∀ yc ∈ N ∩ [1, YC ]

Then the tensors PU and PL of the same dimensions Xp×Yp×3 can be constructed
using (21) such that

(
PU|L)

xcyc
= KpT

−1
pc K

−1
c

(
CU|L)

xcyc
(22)

The element (PU|L)xcyc would then contain the homogeneous projector pinhole co-

ordinate belonging to camera pixel (xc, yc) at the camera distance Z
U |L
C . Therefore,

(PU)xcyc2 and (PL)xcyc2 now contain the largest and smallest values for xp respect-
ively that a particular camera pixel (xc, yc) can capture given the constraint that
all distances the camera can capture are in the range Zc ∈

[
ZL

C , Z
U
C

]
. Consider the

vectors pU and pL each of dimensions XC × 1 where

(
pU|L)

xc
= max

i∈[1,YC ]⊂N

(
PU|L)

xci2
(23)

Now
(
pU

)
xc
and

(
pL

)
xc
contain the largest and smallest observable projector column

respectively for a given xc. Then a vector d of dimensions XC × 1 can be defined
such that

(d)xc
=

(
pU

)
xc
−
(
pL

)
xc

XP

(24)

Each element (d)xc
∈ (0, 1] now specifies the ratio of projector columns that can be

seen in a particular camera column xc.

5.3 Usage

Consider the optimal working distance of the camera (Zivid Two Datasheet 2021)
such that ZL

C = 500mm and ZU
C = 1100mm, and define Kc, Kp and Tpc according

to (Zivid Two Datasheet 2021) as done in equations (14), (15) and (16) respectively.
Then pL and pU become piecewise straight lines as depicted in Figure 23a. Notice
how the lines are quite close to each other, meaning that each camera column xc

can only see a small range of values for xp. This is further visualized in Figure 23b,
where it is apparent that at most 12% of the projector columns xp is visible for any
xc.

These calculations can be extended to a range of different pairs of distances
(
ZL

C,i, Z
U
C,i

)
.

By calculating max (d) for the vector d corresponding to each pair of
(
ZL

C,i, Z
U
C,i

)
,

a matrix can be made. One such matrix that uses the attributes for the Zivid Two
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Figure 23: Distance constraint for Zivid Two when ZL
C = 500mm and ZU

C =
1100mm.

camera has been illustrated in Figure 24. Note that for most of the distance ranges
less than 20% of the projector columns can be visible for a particular camera pixel.

As seen in the above-mentioned plots, the distance constraint significantly restricts
the possible projector columns in each of the camera pixels. One way to use the
constraint is by simplifying the codes in a pattern codification strategy. For instance,
the gray codes in GCPS require the unique identification of all NF = XP

WF
fringes.

However, this constraint means that at most ⌈max(d) ·NF ⌉ fringes can be seen for
any camera pixel. Therefore, the length of the gray codes can be reduced accordingly.
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Figure 24: Maximum ratio of projector columns visible per camera pixel for select
pairs of camera distances (ZL

C , Z
U
C ).

Another perhaps more relevant use case for the work in this thesis is to filter out
invalid decoded projector columns. If a camera pixel decodes a projector column
that is too large or small to fit within the distance constraint, it can be considered
invalid. This will be used later in the development of a novel pattern codification
strategy.
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Figure 25: Flow chart of how a projector pixel is modified before captured by a
camera pixel.

6 System Identification

This chapter serves as an overview of the attributes of the system which are of
relevance in the domain of signal processing. Since the system is highly non-linear,
the attributes will be estimated in an empirical fashion using the experimental setup
as provided in Section 4.1. First, the empirical point-spread function (PSF) is
estimated. This will prove to be useful in estimating the amount of blur that should
be added in certain numerical approximations. In the latter half, the frequency
response of the system will be estimated and analyzed. The frequency response is
later used as a base for choosing parameters in patterns which have known spatial
frequencies.

6.1 Point-spread function

The point-spread function is a measure of how an imaging system responds to an ex-
citation caused by a point source (Rottenfusser et al. 2022). In the context of struc-
tured light systems, this corresponds to how the illumination of a single projector
pixel spreads out in the capture made by the camera. Under ideal circumstances,
the illumination of a single projector pixel should illuminate a single camera pixel.
In that case, the PSF would be equal to the Dirac delta function. Several optical
and geometric considerations prevent this from happening. An overview of the steps
involved between the illumination of a projector pixel to the capture of a camera
pixel is presented in Figure 25.

The projector pixel first travels through the projector lens, and hits a surface. Due
to lens defocus, the pixel will be blurred out as seen in Section 2.4. This effect
can be approximated as the convolution with a Gaussian kernel where the SD is
dependent on the distance to the projector Zp. The camera and projector are
translated and rotated relative to each other as seen in Section 2.3.2. Therefore,
the blurred projector pixel will appear skewed in the camera, further adding to the
PSF. For structured light systems with low baseline such as Zivid Two, this effect
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Figure 26: Examples of how Gaussian fits match the empirical PSF for various
distances.

will typically be insignificant. There is also a mismatch between the spatial size
of the projector and camera pixels. This effect depends on the field of view and
the number of pixels in the x and y directions for the projector and camera. In
the case of a Zivid Two camera, SX = 1.7 cpx/ppx from the camera will cover a
single projector pixel in the x-dimension. From a signal processing perspective, the
effect of this will be a linear interpolation of the blurred and skewed projector pixel,
which further modifies the PSF. Lastly, the signal is subject to the blur caused by
the camera lens. This effect is also approximated by a Gaussian blur with a standard
deviation that depends on the distance to the camera ZC .

As seen above, there are multiple distorting factors that contribute to the PSF.
Therefore, an analytical derivation of the PSF is not feasible and an empirical ap-
proach is desired. Recall from Section 3.1 that the patterns only vary along the
x-axis. This means that the PSF will distort the patterns in this direction only,
and an estimate of the PSF in the x-direction should be sufficient to describe the
distortions caused by it.

A pattern PPSF consisting of vertical lines of width 1 ppx with a spacing of 100 px
between each line will be used to obtain the PSF estimate. The pattern will be
rendered using the diffuse plane scene, as it has a constant distance ZC for all
camera pixels. Certainly, the PSF will vary with the camera distance ZC . By that
reason, the estimate should be made for a range of distances. The calculations are
not computationally demanding, which means that the zdetailed distance sweep can
be used here.

The empirical PSFs are plotted for the distances ZC ∈ {500mm, 1100mm} in Fig-
ure 26 as the blue curves. Gaussian fits have been made for them both, and they
are illustrated by the orange curves. Notice how the Gaussian fits either match the
samples well or slightly overestimates the standard deviation σPSF. By that reason,
the standard deviation seems to be a reasonable measure of the PSF.

With the captures obtained of the PPSF using the zdetailed distance sweep, the
resulting blurred vertical lines must be identified in each of the captures. This is
done using a simple peak-finding algorithm. For this case, the find_peaks from the
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scipy.signal python package is used. First, the center row of each capture m is
extracted. Next, the find_peaks function is applied to this vector with paramet-
ers height=100, distance=30, and prominence=5. The function returns a vector
containing the center indices of the peaks in capture m obtained at the distance
(zdetailed)m.

From each of these indices, new vectors smn can be made by considering the NS = 71
samples centered around the sample corresponding to each of the indices in capture
m. As an example, the vectors s31 and s32 will then contain the samples centered
around the first and second peak in capture m = 3, respectively. These vectors will

then contain the samples of each of the blurred lines. Let x =
[
−30 29 · · · 30

]T
,

and define the normalized samples vectors

um
n =

smn∑
i

(
smn

)
i

An unbiased estimator for the standard deviations of each of the lines n in every
capture m is found through the empirical standard deviation defined below:

(
σ̂m

PSF

)
n
=

1

SX

·
√∑

i

(x)2i
(
um
n

)
i
− µ̂n

2 ,where µ̂n = xT · um
n (25)

Now σ̂m
PSF is a vector containing all estimates of the σPSF for a particular capture

m. The term 1
SX

comes from the fact that the standard deviation is measured in
camera pixels but should be specified in projector pixels. These estimates should be
aggregated to a single estimate for each capture m. As the PSF will be used as a
measure for the worst possible distortions, the following estimator will be used for
a given distance:

σ̂m
PSF = max

n

(
σ̂m

PSF

)
n

(26)

The calculations have been done with the result is plotted in Figure 27. Notice that
σPSF ≤ 0.9 ppx ∀ZC ∈ [550mm, 1500mm]. Also, it grows fast for ZC < 550mm.
This suggests that the range 550mm ≤ ZC ≤ 1500mm might be beneficial for
pattern codification strategies requiring a low standard deviation.

6.2 Frequency response

Before estimating the frequency response of the system, it is important to have a
clear definition of what the response measures in this particular sense. Normally
in signal processing, the frequency response defines the quantitative measure of
amplitude and phase changes of cosines propagating through a system from an input
to the output (Smith 1997). Structured light is a system identification problem
itself, where the task is to find the mapping from the input (projector columns)
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Figure 27: Standard deviation estimates of the empirical PSF for the system.

to the output (camera pixels). Since this mapping is not known beforehand, one
cannot think of the frequency response in the same way for structured light. To
complicate things further, the system is highly susceptible to cross-talk between
inputs. In fact, cross-talk is what happens when blur is present and causes signal to
spread into neighboring camera pixels. Another major difference is in which domain
the frequency response is to be calculated. For an analog LTI circuit, one would
calculate the response in the temporal domain, meaning that the system responds
differently to varying frequencies in time. This temporal variability does not occur
in structured light systems. Instead, it is the spatially varying frequencies which are
subject to amplitude change through the system. The same phenomena as shown
in Figure 25 are also responsible for these effects.

As with LTI systems, there are two ways of estimating the frequency response of a
structured light system. The impulse response can be found, and from this the fre-
quency response can be obtained through calculating the discrete fourier transform
of it (Smith 1997). An impulse response does not exist for structured light systems,
but the PSF has the same usage for such systems. The PSF found in the preced-
ing section is an approximation to the actual PSF. Nevertheless, it is a worst-case
estimate which relies of several simplifications, and it was made for other use cases.
Therefore, it is not considered usable for obtaining the frequency response.

Another way of calculating the frequency response is by projecting cosines of the de-
sired range of frequencies, and observing how much their amplitudes are dampened.
As mentioned previously, these cosines should vary in the spatial domain, and thus
their periods are denoted in projector pixels [ppx]. The cosines will vary spatially
along the projector x-axis, as this also is the direction that conventional patterns
will vary.

Normally for standard LTI systems, the cosine is sampled along the same dimension
as the cosine propagates; the cosine would in the LTI case both propagate in the
temporal dimension and be sampled in the temporal dimension. If the same prin-
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ciple was to be applied to the structured light case, it would mean that one should
consider multiple samples along the x-direction in the capture of a spatially varying
cosine, and use those samples to estimate the amplitude. However, it is already
established that each camera pixel is a separate output in the captures. Using mul-
tiple camera pixels to make these calculations would therefore not correspond to
the true frequency response. Instead, one needs to obtain multiple samples of each
cosine using the same input (projector pixel) and output (camera pixel).

One way of accomplishing this can be found by considering how the phase shifts
are used in GCPS as seen in Section 3.1. Here, a cosine with a particular spatial
frequency is phase shifted in order to obtain multiple samples of it using the same
input and output. This technique can be modified for the estimation of the frequency
response. The phase shifting will be performed four times as in GCPS, but for
multiple spatial frequencies within the range of interest. Instead of estimating the
phase of the cosines, the amplitude is what is desired. By calculating the DFT of all
of the samples in the temporal domain for a particular camera pixel using a particular
spatial frequency, the amplitude can be obtained. This is done by calculating the
absolute value of the DFT, and summing the components corresponding to temporal
frequencies of ft = ±1

2
Hz. The possible intensity range is found by projecting an all

black and all white pattern. This obtained intensity range can then be used in order
to normalize the amplitudes to a ratio between 0 and 1, where 1 is no amplitude
dampening. Estimates will then be obtained for each camera pixel for each chosen
spatial frequency, whereas a single estimate for each pair of spatial frequency and
distance is desired. This is done by calculating the mean of all samples for each
such pair. These renders should be performed using the diffuse plane scenes, for
the same reasons as for the PSF estimates. Also, it should be done for a range of
distances zdetailed.

There are two free variables in the estimates — the spatial frequency fs and the
camera distance ZC . This leads to two ways of visualizing the results. By letting the
x-axis represent the spatial frequency, one will obtain the typical frequency response,
and each curve will correspond to a certain distance. The frequency response is
visualized in Figure 28. There are multiple insights to be made from this plot.
First, it is apparent that all frequencies are eliminated for ZC = 300mm. This is
particularly unexpected, as the working distance of the Zivid Two spans from this
distance and can be used with GCPS. It is unclear what causes this phenomenon,
but it could be due to the fact that the simulator is not a fully realistic model of
the physical system. This plot also makes it apparent that the system in fact acts
as a low-pass filter; all of the curves resemble the characteristic shape of a frequency
response belonging to such a filter. This is also expected because the PSF can be
approximated by the convolution with a Gaussian kernel as seen previously.

Perhaps an even more useful representation is obtained by assigning the camera
distance ZC to the x axis and letting each curve correspond to a particular spatial
frequency. This type of visualization is made in Figure 29, and will from now be
known as the distance response. Notice in particular how all of the curves follow
the same shape; they are quite low for small distances, and quickly grow towards
their maximum attained at around ZC = 800mm. From there on, they fall towards
further growing distances. Nevertheless, these are the only similarities between the
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Figure 28: Empirical frequency response of the system.

curves. Observe that a decreasing spatial frequency leads to a distance response that
rises faster for small distances, and falls slower for the large distances. Also, the
distance response reaches a higher maximum value for lower frequencies. In general,
this concludes the fact that lower spatial frequencies function better in structured
light systems. The plot also reveals that subsequent decreases in spatial frequency
lead to less improvement in response, converging to a maximum. The differences are
mainly seen in the tails of the curves for particularly large distances. For example,
there are few differences between the distance responses comparing fs = 1

9
ppx−1

to fs = 1
10
ppx−1. Depending on the usage of the system, this plot suggests that

patterns containing spatial frequencies below fs =
1
8
ppx−1 should function well.
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Figure 29: Empirical distance response of the system.

45



7 Distortion-Resilient Patterns

This chapter introduces two novel types of patterns which are resilient to the defocus
and interreflection distortions as presented in Section 2.4 and Section 2.5 respect-
ively. The patterns will later be combined to form a complete pattern codification
strategy in Chapter 8. The first type of pattern is based on the principle of separ-
ating signals through correlation. It allows for the unique identification of fringes
similar to the gray codes as presented in Section 3.1. This type of pattern is an
improvement of the correlation-based pattern codification strategies developed in
the project thesis (Lima-Eriksen 2022), adding the possibility of code words that
occupy fringes of width WF instead of being only one projector pixel wide. The
latter type of patterns presented in this chapter is a modification of the phase shifts
from GCPS which makes it more resilient to interreflections. It allows for sub-pixel
decoding of projector columns.

7.1 Correlation-identified fringes

A major issue with the gray codes used in GCPS is that a single bit error makes the
decoding erroneous. This can often be the case when there are interreflections. Pat-
terns which tolerate bit errors are needed to allow the application of structured light
in such demanding environments. These attributes are found in bipolar sequences
with good correlation properties, typically known from the field of telecommunica-
tion. Therefore, patterns using these sequences should be a good fit.

The project thesis (Lima-Eriksen 2022) introduced such correlation-based patterns
with a fringe width WF = 1ppx. As mentioned above, it was discovered that the
patterns worked well within focus, but failed outside. The distance response in Sec-
tion 6.2 indicated that patterns containing low spatial frequencies should work better
at distance outside of focus.. An increase in WF would lead to such a lowering of
spatial frequencies, as more neighboring pixels are similar. The correlation-identified
fringes from the project thesis will therefore be extended to allow for an arbitrary
fringe width WF . Succeeding this, insights into how the choice of WF affects the
performance will be given.

7.1.1 Working principles

Consider first binary bipolar sequences with ideal correlation properties. There are
in total seven known sequences with these requirements, and they are known as
the Barker sequences (Barker 1953). The longest of them all is the 13-digit Barker
sequence b13[n] as defined in (27). Its auto-correlation function has been plotted in
Figure 30a, showing a large peak at lag τ = 0 and low values otherwise.

b13[n] = {1, 1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1} (27)

Define the n× n circular right-shift matrix Rn as
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Figure 30: The 13-digit Barker code b13[n]. Courtesy of Lima-Eriksen 2022.

Rn =


0
... In−1

0
1 0 · · · 0


where In−1 is the (n−1)× (n−1) identity matrix. Now, all the 13 circularly shifted
permutations of b13[n] can be derived from (27) such that

sm = Rm
13b13 ∀ m ∈ N ∩ [0, 12] (28)

Consider the case in which a sequence a[n] is made by superpositioning two scaled
A · sm[n] and B · so[n] such that m ̸= o. Then

a[n] = A · sm[n] +B · so[n] (29)

Correlation is a linear operator, and so

Rab13(τ) = (a ∗ b13)(τ)
= ((A · sm +B · so) ∗ b13)(τ)
= (A · sm ∗ b13)(τ) + (B · so ∗ b13)(τ)
= A ·Rsmb13(τ) +B ·Rsob13(τ) (30)

Since b13[n] has an ideal autocorrelation function, (30) implies that Rab13(τ) will
have two distinct peaks at τ = m and τ = o, where the largest peak corresponds to
the sequence having the largest scaling factor. This is shown visually in Figure 30b
considering the realization a′[n] of a[n] as defined in (31).
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a′[n] = 0.7 · s5[n] + 0.3 · s8[n] (31)

Consider the example of reflections as depicted in Figure 11b. If each projector
column xp,m encoded the pattern sm in the temporal domain, then a′[n] would be
the signal captured in (xc, yc), and the direct reflection and interreflection would be
separable by calculating the cross-correlation as depicted in Figure 30b.

For practical applications, the Barker sequences are too short. Having at most 13
distinct permutations, they can only uniquely identify 13 columns. Therefore, the
requirement of having ideal correlation properties should be relaxed to having good
correlation properties.

Several families of sequences meet this requirement, including the Kasami and Gold
sequences (Spinsante et al. 2011). The Gold sequences will be used throughout the
thesis due to its favorable lengths, but the algorithms apply equally to other families
as well.

First discovered by Robert Gold in 1967, Gold codes are a type of bipolar sequences
typically used in CDMA and GPS (Gold 1967). One set has 2m + 1 Gold codes,
each having a period of 2m − 1. The autocorrelation function is two-valued and is
defined as

Rgm(τ) =

{
±2m − 1 , τ = 0

∓1 , τ ̸= 0
(32)

All except one of the Gold codes will have zero cross-correlation for lag τ = 0. There
exists no closed-form expression for the cross correlation of any two gold codes gm,i

and gm,j, but its absolute value is upper bounded by

∣∣Rgm,igm,j ,max

∣∣ = {
2(m+2)/2 + 1 , m even

2(m+1)/2 + 1 , m odd
(33)

7.1.2 Algorithm

For the codes to be used as patterns, both an encoding and a decoding algorithm
should be constructed. This section serves as an explanation on how the codes
are used to construct patterns, and how the sequence of patterns captured can be
decoded to reconstruct the originating fringe.

7.1.2.1 Encoding

A set of Gold codes can be generated as follows: A preferred pair of m-codes having
length 2m − 1 is first generated from two irreducible polynomials. A table of such
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Figure 31: Code matrices using Gold codes.

irreducible polynomials is available from (Peterson 1970). The preferred pair will
be known as the first two Gold codes g1 and g2 in this particular set. Then the
remaining 2m − 1 Gold codes can be derived from these through

gn = (Rn−2
2m−1 · g1)⊕ g2 ∀ n ∈ N ∩ [3, 2m + 1] (34)

Let G =
[
g1 g2 · · · g2m+1

]
be the matrix containing the set of Gold codes

originating from a preferred pair of length 2m−1. Since a set of Gold codes has good
cross-correlations for any lag τ , an extended code matrix can be formed containing
all the circularly right shifted permutations of G according to

G+ =
[
R0

2m−1G R1
2m−1G · · · R2m−2

2m−1G
]

(35)

For m = 5, one can construct 25 + 1 = 33 Gold codes each of length 25 − 1 = 31.
Then G+ will contain 33 · 31 = 1023 codes in total. In the case of the Zivid Two
camera, this is less than the number of projector columns XP = 1280 ppx, and
insufficient for the use in this camera. Of course, one could use m = 6 instead and
obtain codes of length 26 − 1 = 63. But capturing 63 images takes a lot of time,
and is therefore not considered any further. Another way of solving this issue would
be to simply repeat some of the codes twice and filter them out using the projector
column distance constraint from Chapter 5. This is exactly what is done in (36).

CG =
([

G+ G+

]
ixp

)
1≤i≤2m−1
1≤xp≤XP

constrained by Xp ≤ 2 · (2m+1) · (2m−1) (36)

The code matrix for these patterns using m = 5 is visualized in Figure 31a. The
normalized covariance matrix for CG is available through
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Figure 32: Normalized covariance matrix for the code matrix CG.

Cov[CG,CG] =
1

max
(
CT

GCG

) ·CT
GCG (37)

and is provided in Figure 32a. Notice from the zoomed covariance matrix in Fig-
ure 32b that the matrix has block diagonals of nearly uncorrelated neighbors. This
comes from the fact that the codes are arranged in such a way that nearby codes
have the same lag and thus low covariance. The distribution of the values of the
normalized covariance matrix is shown in Table 1.

Covariance value Occurrence
1.0 0.10%
0.23 30.2%
-0.032 51.6%
-0.29 18.1%

Table 1: Distribution of normalized covariance values for CG.

Each code occupies a single column in CG, which corresponds to having a fringe
width WF = 1ppx. This code matrix can be used to develop new code matrices
CG(WF) of same dimensions (2m − 1)×XP with greater fringe widths WF > 1 ppx.
Each entry in such matrices can be derived using (38).

(
CG(WF)

)
ixp

= (CG)i⌊ xp
WF

⌋ ∀ WF > 1 ppx (38)

An example of this is illustrated with WF = 10 ppx in Figure 31b. It is apparent
from the figure that each code now occupies 10 ppx instead of 1 ppx.
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7.1.2.2 Decoding

The decoding algorithm will be utilizing the projector column distance constraint
as derived in Chapter 5. This will be used to filter out which codes from CG(WF)

are valid for each particular camera pixel (xc, yc). Since only a small fraction of all
codes are valid, the decoding algorithm will gain a significant reduction in compu-
tational complexity, reducing the decoding time accordingly. Also, the constraint
will mean that reflections coming from outside of the valid projector columns will
not be considered in the decoding, making it more resilient to interreflections. The
correlation between the sequence captured for a particular camera pixel and all the
valid codes are first calculated. Then the two codes with the highest correlation will
be considered the possible solutions. It is beyond the scope of this thesis to figure
out the single correct solution, as this would require the application of a properly
tuned gradient filter according to Section 3.2.

First, the upper and lower bounds ZU
C and ZL

C of the camera distance have to be
defined according to the range of distances to the objects present in the scene. The
equations from Chapter 5 should be used to calculate pU, pL and d for these distance
constraints. There are in total ⌈XP

WF
⌉ distinct codes in the code matrix. The vector d

stores the ratio of valid codes for each camera column xc, which means that max (d)
should be the highest ratio of valid codes for any camera column. Therefore, at

most NC =
⌈

Xp

WF
·max(d)

⌉
codes can be visible for any camera pixel.

All camera pixels are decoded independently, which means that the decoding al-
gorithm is massively parallelizable. In order to take full advantage of this, all of
the calculations should be done using tensors and matrices. The first step is to
create a tensor A which stores all valid codes for each camera column xc. It should
be constructed in such a way that (A)xc is a code matrix containing all the valid
codes for that particular xc. In the case that WF > 1 ppx, multiple columns in the
originating code matrix CG(WF) will contain the same code. As A later will be used
directly in computations, it is desirable that each entry (A)xc contains unique codes
only to decrease computational complexity. Therefore, duplicate codes should not
be stored in (A)xc . Also, the number of valid codes varies depending on xc. By
that reason, the tensor A should be of such dimensions that it can store the highest
amount of possible valid codes NC . Initialize an all-zero tensor A of dimensions
XC × NP × NC , where NP = 2m − 1 specifies the number of patterns in the code
matrix. Then, assign

(A)xc
=

{(
CG(WF)

)
ixp

}
1≤i≤NP

(pL)xc≤xp≤(pU)xc

(39)

Now (A)xc contains all the unique codes which are valid for each camera column xc.
An example of (A)xc for xc = 400 cpx using CG is provided in Figure 33.

Consider the sequence of captured images using the code matrix CG(WF) in which
the intensities have been normalized according to (7). These can be stored in a
tensor MG(WF) of dimensions YC ×XC ×NP . Then the intensity captured for the
pattern (CG(WF))i in the camera pixel (xc, yc) is stored in (MG(WF))ycxci. As the
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Figure 33: Example of (A)xc for xc = 400 cpx using CG.

intensity ranges from zero to one and the codes are bipolar, the intensities should
first be mapped to the range from −1 to 1 by subtracting 1/2 and then multiplying
by 2. All valid codes for the camera column xc are stored in (A)xc , so the correlation
becomes the matrix product between the bipolar version of

(
MG(WF )

)
ycxc

and (A)xc .

All this can be written in Einstein notation, as shown in (40).

(T)ycxc
= 2 ·

[(
MG(WF)

)
ycxc

− 1

2

]
· (A)xc

(40)

Now, T is a tensor of dimensions YC × XC × NC in which the entry (T)ycxC
is a

vector storing the correlation values for all the valid codes in camera pixel (xc, yc).

Lastly one needs to find the two highest correlation values for each camera pixel.
As seen below, (B)ycxc contains the fringe number of the valid solutions for camera
pixel (xc, yc) relative to the lower bound of the projector column distance constraint
(pL)xc . Equation (41) maps these solutions to absolute projector column values by
first multiplying with WF to convert relative fringe numbers to relative pixels, and
then adding the lower bound of the distance constraint.

(B)ycxc1
= argmax

i∈[1,NP ]⊂N
(T)ycxci

(B)ycxc2
= argmax

i∈[1,NP ]⊂N\(B)ycxc1

(T)ycxci

(D)ycxc
= WF · (B)ycxc

+
(
pL

)
xc
−
((

pL
)
xc

mod WF

)
(41)

7.1.3 Limitations

While the patterns appear to handle interreflections well by using correlation prop-
erties, they also have their limitations. The first of its shortcomings is related to its
resilience to blur. As seen in Figure 31, the neighboring codes are quite dissimilar.
This in turn will mean that the patterns contain mostly spatially high frequency
content. According to the distance response depicted in Figure 29, such high spa-
tial frequencies are significantly dampened when the lenses of the system are not
in focus. Therefore, it is expected that having a low fringe width WF would make
the patterns fail when out of focus. Also, its discrete nature limits its resolution.
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G for a range of WF .

Only integer projector columns can be identified in the decoded signal, and this is
significantly worse than the sub-pixel accuracy of GCPS.

The increase in the width of the fringe WF is expected to lead to higher defocus
resilience. Making each code word occupy more pixels will in turn make the patterns
contain lower spatial frequencies. According to the distance response shown in
Figure 29, these frequencies are less dampened due to lens defocus. The increase in
fringe width does unfortunately come at the cost of worsening the resolution even
further, as the projector columns are identified only up to an integer multiple of the
fringe width. Having a fringe width WF = 10 ppx would, for instance, mean that
projector columns can be identified only up to a 10 ppx accuracy.

7.1.4 Tuning

When a certain code family (such as the Gold codes) has been chosen, there are only
a few parameters which can be adjusted. The first is the order in which the codes
appear code matrix. Referring to the project thesis (Lima-Eriksen 2022), there are
particularly two useful ways of ordering the codes. They could be grouped either by
lag or they could be grouped by similar neighboring code values. The former is what
has been done in this thesis, and is known as Grouped Gold from the project thesis.
Here, the 31 distinct codes are placed next to each other, and are repeated with
incremental lags of 1. As the codes are made in such a way that they are almost
orthogonal to each other, this leads to low covariance values within each lag group.
The phenomenon is visualized by the blocks of low values along the diagonal of the
covariance matrix, as seen previously in Figure 32. An alternative ordering is to
place codes in such a way that the number of similar neighbors are maximized. This
is what was done for the Low-pass Gold in the project thesis. Ordering outperformed
Grouped Gold in all metrics, and this could probably be attributed to the fact that
the patterns contained lower frequency content. However, this ordering comes with a
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disadvantage. When similar codes are placed adjacent to each other, the covariance
values of the spatially close codes become quite high. Interreflections often occur
between projector columns that are spatially close, as they typically originate from
reflections caused by neighboring objects. Therefore, it is assumed that it is best
to organize the codes in such a way that spatially close codes have low covariance
values as seen in the Grouped Gold arrangement.

Defocus issues should instead be handled by increasing the fringe width WF , which
decreases spatial frequencies without affecting the covariance values for spatially
close codes. Patterns with fringe widths WF ∈ {1 ppx, 2 ppx, · · · , 8 ppx} can be
made according to the algorithm in Section 7.1.2.1. These can then be rendered
using the diffuse plane scene using the distance sweep zrough. For each of these
renders, the performance of the patterns is measured through its average energy.
The results of the renderings are summarized in Figure 34. Each curve represents
the average energy of the signal over a range of distances along the x-axis. Increasing
WF should lead to lower spatial frequencies, and this is confirmed by comparing the
overall shape of these curves with those of the distance response shown in Figure 29.
Notice from Figure 34 that the average energy withWF = 1ppx is at most 20.0 when
the distance ZC is close to the focus distance (800mm), but it drops sharply outside
of the focus. From the project thesis, it was revealed that the correlation-based
patterns with WF = 1ppx work within focus, but fails outside. By increasing the
fringe width to WF = 3ppx the average energy is greater than 20.0 for all distances
ZC ∈ [500mm, 1500mm]. As the patterns worked well when the average energy was
above 20.0, these observations together suggest that the correlation-based patterns
should work well as long as the fringe width WF ≥ 3 ppx.

7.2 Permuted phase shifts

The correlation-identified fringes cannot decode the projector columns to a high
enough accuracy due to its energy loss caused by lens defocus. Increasing the fringe
width increases the energy, but at the expense of the accuracy. Additional patterns
having high accuracy are needed.

The correlation-identified fringes can in some ways be compared with the gray codes
in GCPS. They are both binary and discrete, meaning that they can never achieve
subpixel accuracy. Also, they only work sufficiently well when having a fringe width
WF > 1 ppx. As seen in Section 3.1, phase shifts handle all distortions but inter-
reflections really well. In addition, they have the desired sub-pixel accuracy. This
begs the question whether phase shifts can be modified in such a way that it also
behaves nicely in the presence of interreflections. This will be further investigated
in the following

7.2.1 Working principles

Recall from Section 3.1 that the major issue with using phase shifts in structured
light is the inseparability of superpositioned cosines. Consider two sampled cosines
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s[n] = A cos(2πft · n − α) and w[n] = B cos(2πft · n − β) with the same frequency
ft, but different phase shifts α ̸= β. The superpositioning i[n] = s[n]+w[n] of these
two signals becomes a new cosine with the same frequency ft, but different phase
shifts:

i[n] = s[n] + w[n]

= A cos(2πft · n− α) +B cos(2πft · n− β)

= C cos (2πft · n+ ζ) ,

{
C =

√
[A cos(α) +B cos(β)]2 + [A sin(α) +B sin(β)]2

ζ = arctan
[
A sinα+B sinβ
A cosα+B cosβ

]
Let now the vectors

s =
[
s[0] s[1] · · · s[NP − 1]

]T
w =

[
s[0] s[1] · · · s[NP − 1]

]T
contain the first NP samples of these two signals. It can be shown (Hung 2000) that
the phase ζ of the sampled i = s+w is calculated through

ζ = arctan2
{
sin

(
ΦT

NP

)
· i, cos

(
ΦT

NP

)
· i
}

where ΦNP
is defined according to (8). Drawing the analogy to structured light, let

s denote the temporal signal containing the direct reflection in a particular camera
pixel and w denotes an interreflection. It is then apparent that an interreflection
will cause a phase distortion.

There is, however, one exploitation that can be made here. Due to the phase-
ambiguity problem, the phase shifts are typically used in a fringed setting, where the
receiver has already identified the originating fringe for each camera pixel. Consider
the case where it is known that the camera pixel (xc, yc) receives its direct reflection
from fringe number 1. Let also the interreflection originate from fringe number 2,
but this is unknown. Now, associate the permutation matrices S1 and S2 with fringe
numbers 1 and 2, respectively. A permutation matrix S is a special type of matrix
which changes the order of the entries of a vector when it is premultiplied to it.
Instead of projecting the signals s and w, these signals will first be pre-multiplied
with their corresponding permutation matrices. This means that s′ = S1s and
w′ = S2w are the projected signals from the direct reflection and the interreflection,
respectively. The captured signal in camera pixel (xc, yc) will then be

i′ = s′ +w′

= S1s+ S2w

It is already known that fringe number 1 causes the direct reflection, and so the
captured signal should be pre-multiplied with the transpose of the corresponding
permutation matrix to recover the signal:
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i = S1
T · (S1s+ S2w)

= s+ ST
1 S2w (42)

Several observations can be made from (42). First, if no interreflection is present
(B = 0), then the equation reduces to i = s. Consequently, the estimator is un-
biased. Also, notice how the term ST

1 S2 appears only in front of the signal from the
interreflection. By selectively choosing S1 and S2, the effects of w on the estimation
of ζ can be minimized.

As an example, consider the case where S1 and S2 are chosen such that the product
ST
1 S2 of the two are as depicted in Figure 35. Next, define the noise vector w as

one period of a cosine with a period of 10 samples. This is depicted as the blue
curve in Figure 36a. By pre-multiplying w with ST

1 S2, the samples obtained will
be as indicated by the orange curve in Figure 36a. The DFT can be calculated
for them both, and has been visualized in Figure 36b. From this plot, important
observations can be made. Notice how w contains only the frequency 1

10
Hz. By

pre-multiplying with the permutation, the frequency content is increased to mostly
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containing the frequencies 4
10
Hz and 5

10
Hz. The permuted cosine now does not

contain any components of temporal frequency 1
10
Hz. Recall that the recovered

signal i = s + ST
1 S2w. It has been shown that s and S1

TS2w contain different
frequencies. This should in turn mean that phase estimation of s by using i can be
done without being subject to distortions by the interreflection w. These are the
working principles behind permuted phase shifts (PPS).

7.2.2 Algorithm

Encoding and decoding algorithms for permuted phase shifts have to be developed.
As seen in the previous section, the decoding algorithm requires that the originating
fringe had been identified in all camera pixel. The algorithms will therefore assume
that this is known.

7.2.2.1 Encoding

It has been shown that permuted phase shifts makes it possible to substantially
reduce the effect of interreflections if the permutation matrices are chosen correctly.
This then begs the question whether it is possible to analytically find the best
permutation matrices for the fringes. At first glance, it might seem reasonable, as
all of the above equations are matrix and vector algebra. However, recall that s
and w were vector representations of sequences. For this reason, while the equations
themselves are linear, the mathematics they represent is certainly not linear. An
extensive literature search has been performed with the purpose of investigating
whether or not there exists algebra related to this kind of permutation. No usable
sources were found.

Instead of finding the permutation matrices analytically, random permutations will
be used. Note that the samples from each projector column come from a cosine.
Therefore, the samples must come from the arcsine distribution. Intuitively, it is
expected that when the samples are shuffled at random, the resulting sequences will
be whitened permutations of the original cosines. Increasing the number of temporal
samples of the same cosine should lead to a broader frequency spectrum in which
the signal can be whitened, with less energy for each of the frequencies. Recall
that the direct reflection will be a cosine of a single frequency. For that reason,
this algorithm is expected to converge to a lower error as the number of temporal
samples increases.

The first step of the encoding algorithm is to make a non-permuted fringe. This
is a matrix consisting of all projector pixel values for each of the patterns within
each fringe, but in a nonpermuted order. Before constructing the matrix, three
parameters should be chosen. The fringe width WF specifies how many projector
columns each fringe should occupy. Next is the spatial frequency fs. Recall from the
phase shifts in GCPS that the phase estimation is periodic up to 2π, so fs should be
chosen in such a way that one period occupies no less than one fringe width, that
is, 1

fs
≥ WF . Lastly, the number of patterns NP has to be chosen. A non-permuted
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fringe F of dimensions NP ×WF with spatial frequency fs is made according to (43),
and Figure 37a shows an example of one such matrix. Notice that both rows and
columns of the matrix resemble cosines.

(F)ij = sin

(
2πfs · j −

2π

NP

· i
)

(43)

The next step of the algorithm is to generate the permutation matrices. There

are in total NF =
⌈

XP

WF

⌉
fringes, meaning that also NF permutation matrices are

needed. There are various ways of generating these. In Python, the numpy package
has a function numpy.random.permutation(length). By using it with the length
parameter equal to NP , the function returns a vector of integers that span the
range [0, NP ) in random order. This shuffle vector vn can easily be converted into a
permutation matrix by first initializing an all-zero matrix Sn of dimensions NP ×NP

and then assigning

(Sn)i(vn)i = 1 ∀ i ∈ [1, NP ] ⊂ N

Consider now one particular permutation matrix with NP = 8 as depicted in Fig-
ure 37a. By pre-multiplying this with the fringe in Figure 37b, the permuted fringe
as shown in Figure 37c is obtained. Notice how the permutation matrix changes
the order of the patterns so that the matrix no longer resembles cosines along the
temporal dimension (columns), but conserves the shape of a cosine in the spatial
dimension (rows). Therefore, the cosine should be well preserved within the fringe,
as it is still a cosine here.

However, permutations should be applied to a whole code matrix, and not to a
single fringe only. Let now additionally XP = 50 ppx, and assume that all NF

permutation matrices Sn have been created according to the algorithm mentioned
above. Then the code matrix CPPS consisting of the permuted phase shifts can be
created according to

CPPS =
([

S1F S2F · · · SNF
F
]
ixp

)
1≤xp≤XP

(44)

The code matrix for this particular case is illustrated in Figure 38. Notice that there
is a discontinuity in the patterns in the boundary between two fringes. This comes
from the fact that each fringe uses a different permutation matrix.

7.2.2.2 Decoding

As mentioned initially, a requirement for the successful decoding is to already know
which fringe is shown in each of the camera pixels. One way of accomplishing
this will be explained later in Chapter 8. Assume a tensor L of dimensions YC ×
XC ×NP ×NP such that (L)ycxc is the permutation matrix belonging to the fringe
observed in the camera pixel (xc, yc). Furthermore, let MPPS denote a tensor of
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Figure 37: Example of how a fringe is modified through the pre-multiplication of a
permutation matrix. Constructed with parameters fs =

1
10
ppx−1, WF = 10 ppx and

NP = 8.
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Figure 38: Code matrix for permuted phase shifts with fs =
1
10
ppx−1, WF = 10 ppx

and NP = 8.
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(b) Reconstructed phase shifts (U)ycxc
.

Figure 39: Samples of permuted phase shifts before and after reconstruction using
NP = 40 for a particular camera pixel (xc, yc).

dimensions YC×XC×NP that stores the normalized captures of camera pixel (xc, yc)
in (MPPS)ycxc . The vector (MPPS)ycxc stores the permuted phase shift samples of
(xc, yc), and one example of such a vector is visualized in Figure 39a. Notice that the
curve does not resemble a cosine. To reconstruct the temporal cosines, each of these
sample vectors should be premultiplied with the transpose of their corresponding
permutation matrices to get the samples in their non-permuted order. Furthermore,
the samples should be mapped from the range [0, 1] onto the range [−1, 1] to remove
bias. The resulting YC ×XC ×NP reconstructed sample tensor U is made according
to (46). Each entry (U)ycxc should now be a vector in which the samples appear in
the order that resembles a cosine. An example of this reconstruction is shown in
Figure 39b, and it was performed on the samples shown in Figure 39a.

(U)ycxc
= [(L)ycxc

]T ·
[
2 · (MPPS)ycxc

− 1
]

(45)

With the reconstructed signals obtained, the phase estimation algorithm is similar
to the phase shifts in GCPS, the only difference being that NP patterns are needed
instead of the typical 4 patterns. Recall that the phase unwrapping is 2π-periodic
due to the nature of arctan2. The coefficient WF

2π
scales the unwrapped phase to

projector pixels, and the equation becomes

(QPPS)ycxc
=

WF

2π
· arctan2

{
sinΦT

NP
· (U)ycxc

, cosΦT
NP

· (U)ycxc

}
(46)

7.2.3 Limitations

The reordering of cosines through permuted fringes seems to mitigate a lot of the
issues with interreflections. However, the patterns still suffers some issues, which
will be explained in this section.

Figure 40 shows a simplified model of a scene from the camera’s point of view.
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Figure 40: Intra-fringe interreflection for the permuted phase shifts patterns.

Here, the blue lines indicate the border between each of the fringes Fi. An object
(orange) causes an interreflection from P to Q, with its corresponding signal w′

observed in the camera pixel in point Q. At the same time, the signal s′ from
the direct reflection in point Q is also captured in this camera pixel. These signals
originate from the same fringe F2, and are therefore subject to the same permutation
matrix S2. Therefore, the reconstructed signal i can be derived from the captured
signal i′ as follows:

i′ = s′ +w′

i′ = S2s+ S2w

i = ST
2 i

= ST
2 (S2s+ S2w)

= s+w

As shown above, this interreflection will not be whitened as previously mentioned.
Instead, it will behave in the same way as for phase shifts in GCPS and cause
distortions of larger magnitudes. Interreflections that originate and terminate within
the same fringe are hereby known as intra-fringe interreflections. These are typically
seen in vertical reflections such as the one shown in the model. In such reflections,
the signal does not travel far in the x-direction which increases the chance of it
terminating in the same fringe.

Another limitation of these patterns occurs in the fringe borders, particularly when
the system is out of focus. The phenomenon is best explained through a simple
visualization. Consider a particular pattern using permuted phase shifts with fs =
1
10
ppx−1 and two fringes. Due to the permutations, the cosines appear in different

orders depending on the fringe number, which results in discontinuities at the fringe
border. This discontinuity is visualized by the blue curve in Figure 41, which shows
the intensity values of the projector columns. For this particular example there is
a phase difference of π between the two fringes. The phase difference causes no
problem when there is no lens defocus (σPSF = 0ppx), as no blur occurs between
neighboring pixels.
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Figure 41: The spatial effects of lens defocus in the fringe borders.

However, the case is quite different when this defocus effect is introduced. Recall
from Section 6.1 that the empirical PSF was found to reach values of σPSF = 0.9 ppx

for camera distances ZC
+→ 550mm and ZC

−→ 1400mm. The same pattern has also
been plotted after convolving it with a Gaussian kernel with σ = 0.9 ppx, and the
resulting intensity curve is shown by the orange curve in the same plot. Notice in
particular that the two pixels in the closest vicinity to the fringe border (red) are
significantly altered compared to the blue (perfect-focus) curve. The phenomenon
occurs due to the discontinuity at the fringe border. As previously seen, the convo-
lution operator is equivalent to cross-talk between neighboring pixels. In contrast
to the pure cosine, which is not distorted by such cross-talk, it is an issue at this
fringe border. Due to the different permutation matrices, the signal from the neigh-
boring fringe will behave just as an interreflection here. The problem is then that
distortions similar to interreflections will occur even when no such reflections are
present, purely due to optical phenomena which cannot be avoided. Also, it occurs
at regular intervals due to the periodicity of the fringe borders. If this cross-talk is
significant enough, it could result in the patterns performing even worse than the
traditional phase shifts used in GCPS.

7.2.4 Tuning

As seen in the previous section, there are several limitations that could significantly
affect the performance of these patterns. Therefore, great care must be taken to
avoid distortions. The encoding algorithm introduced several parameters that can
be adjusted to improve performance. Their effect on the distortions will be explored
in this section.
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Figure 42: The kernel of the PSF with σPSF = 0.9 ppx as seen from the camera.

7.2.4.1 Fringe width

A particularly important parameter is the fringe widthWF , which influences the per-
formance in many ways. First and foremost, it affects the occurrence of intra-fringe
interreflections. Vertical reflections will always have a certain horizontal component,
and decreasing WF makes it more likely that a vertical reflection terminates in a
different fringe.

Unfortunately, lowering the fringe width comes at a disadvantage. The total number

of fringes NF =
⌈

XP

WF

⌉
is inversely proportional to the width of the fringe. Therefore,

a low fringe width corresponds to a high number of fringes and thus a high number
of fringe borders. The fringe borders have previously been identified as potentially
problematic. Therefore, they should be kept at a minimum.

The choice of fringe width ultimately becomes a compromise between having a low
enough occurrence of both intra-fringe interreflections and number of fringe borders.
Some rough calculations can be made to find a good compromise. An intra-fringe
interreflection has to originate and terminate within a section corresponding to the
spatial width of a fringe. It is therefore of interest to find out how wide a fringe
is. The projector in Zivid Two has a throw ratio of rt = 0.9. At a distance ZC ,
this means that the projector patterns will occupy a width of wproj =

ZC

rt
. Since the

projector in total has XP pixels in this direction, each pixel would occupy a spatial
width of wpx =

wproj

XP
. For the whole fringe, it would occupy

wfringe = WF · wpx

= WF · ZC

rt ·XP

Consider a fringe width WF = 10 ppx at a distance of ZC = 1000mm and using the
numbers belonging to Zivid Two (XP = 1280 ppx and rt = 0.9). Then, wfringe ≈
8.7mm. Such a span is assumed to be within the acceptable range. Next, the
effects of defocus should also be considered. Figure 42 shows the kernel of the PSF
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with σPSF = 0.9 ppx as seen from the camera. It is apparent that the PSF causes
significant cross-talk from a pixel to its closest neighbor, and moderate cross-talk to
its second closest neighbor. With a fringe width of WF = 10 ppx, a fringe will span
SXWF = 17 cpx. Accounting for the distortions at both sides of the fringe borders,
it is estimated that approximately 2 cpx

17 cpx
= 12% of the camera pixels will be subject

to significant fringe border distortions, and 2 cpx
17 cpx

= 12% will be subject to moderate
fringe border distortions. Neither the resilience to intra-fringe interreflections nor
the fringe border distortions seem to be particularly good or bad, which leads to the
conclusion that WF = 10 ppx seems to be a good compromise.

7.2.4.2 Spatial frequency

After choosing the fringe width, the spatial frequency should be decided upon. From
the development of GCPS in Section 3.1, it was established that WF places an upper
bound on the spatial frequency fs through fs ≤ 1

WF
. Otherwise, phase ambiguities

would arise. From the distance response shown in Figure 29, it was found that
the frequencies fs ≤ 1

8
ppx−1 should work adequately within the optimal working

distance. For GCPS it was also stated that a higher spatial frequency increases the
accuracy of the phase estimate. Therefore, the highest possible spatial frequency
fs =

1
WF

= 1
10
ppx−1 has been chosen for the configuration used in the thesis.

7.2.4.3 Pattern count

The last parameter to choose it the pattern count NP . Through the development of
the encoding algorithm, it was suggested that increasingNP should lead to a decrease
in distortions caused by interreflections. The argument that lead up to this was that
it would whiten out the interreflection over a larger frequency span. Each pattern
uses a finite time to capture depending on the chosen exposure time, and increasing
NP should also lead to a longer processing time due to more multiplications and
additions through e.g. (46). Therefore, a compromise between error rate and time
usage should be made.

Recall that the permutation matrices are randomly generated. Therefore, some pairs
of permutation matrices may work better at dampening interreflections than others.
In order to gain insight into how the system as a whole performs when subject to
interreflections, numerical estimates will be made in the following paragraphs. There
are in total XP different projector columns where each projects its unique temporal
signal. For the sake of simplicity, it is in this part assumed that at most two projector
columns can terminate in the same camera pixel. This would mean thatXP ·(XP−1)
combinations of direct reflections and interreflections are possible. Given a certain
SNR and σPSF, it is possible to estimate the effects that interreflections will have
on the signals for all these combinations. This will be done below by constructing
a tensor containing all of the possible combinations, and then estimating the errors
for all of them.

LetC
(NP)
PPS(10) denote the code matrix using permuted phase shifts withWF = 10 ppx,
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(a) The tensor AS. (b) The tensor AW.

Figure 43: Visualizations of the tensors used for error estimates in permuted phase
shifts. Each cell stores the vector as indicated in their covering rectangle.

fs =
1
10
ppx−1 and NP patterns. In order to account for the blurring effects caused

by the PSF, a new code matrix C
(NP)′

PPS(10) of same dimensions should be derived
according to

(
C

(NP)′

PPS(10)

)
i
=

(
C

(NP)
PPS(10)

)
i
∗NσPSF

∀ i ∈ [1, NP ] ⊂ N

where NσPSF
denotes a Gaussian kernel with SD equal to σPSF. Each pattern of

this new code matrix is now blurred corresponding to the amount specified by the
PSF. Define a signal tensor AS of dimensions XP ×XP ×NP such that (AS)ixp

=

C
(NP)′

PPS(10)exp ∀ i, xp ∈ [1, XP ] ⊂ N. Also, initialize the XP ×XP ×NP noise tensor

AW to (AW)xpi
= C

(NP)′

PPS(10)exp ∀ i, xp ∈ [1, XP ] ⊂ N. The noise tensor AW is then

constructed in such a way that (AW)1 contains NP duplicates of the first code in the
blurred code matrix, (AW)2 contains NP duplicates of the second code in the blurred
code matrix, etc. The signal tensor is simply the transpose of the noise tensor, that
is, (AS)ij = (AW)ji. The tensors have been visualized in Figure 43 to illustrate
this. For a certain SNR, a combination tensor B of dimensions XP × XP × NP is
constructed according to

(B)ij =
1

SNR + 1
·
[
SNR ·

(
AS

)
ij
+
(
AW

)
ij

]
Each cell (B)ij will now contain the superpositioning of a signal coming from the
projector column j and noise coming from the projector column i with the correct
PSF and SNR taken into account. Each of these cells should be decoded according
to the decoding algorithm developed in Section 7.2.2.2 by assuming that (B)ij ori-
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Figure 44: The residuals obtained with permuted phase shifts using SNR = 2,
σPSF = 0.9 ppx and NP = 20.

ginates from fringe number
⌊

j
WF

⌋
. The decoded results are stored in a matrix Q of

dimensions XP × XP such that (Q)ij contains the decoded pixel where the signal
comes from projector column j and the interreflection comes from projector column
i. This whole procedure should then also be done for SNR → ∞ and σPSF = 0, with
the decoded results stored in a matrix Q′. With both the output and ground truth
at hand, the residual matrix is found through calculating the difference between the
two:

E = Q−Q′

An example of such a residual matrix is visualized in Figure 44a using SNR = 2,
σPSF = 0.9 ppx and NP = 20. Notice first that the matrix has block diagonals of
dimensions WF × WF with values higher than the off-diagonals. These represent
the residuals observed in intra-fringe interreflections, as they correspond to the su-
perpositioning of two signals originating from the same fringe. The residuals are
further visualized through a histogram shown in Figure 44b. Centered around zero,
the residuals indicate that the estimator is unbiased even in the presence of noise.
Also, notice how the residuals seem to have a distribution close to a Gaussian. The
standard deviation σerror = 0.42 ppx has been estimated from the samples and is
used to form the Gaussian fit indicated by the orange curve in the same plot. The
fit is more heavy-tailed than the distribution from the estimate, which means that
the SD will overestimate the variability in the errors. Nevertheless, the standard
deviation σerror of the error matrices will be used as a metric for the residuals of the
permuted phase shifts.

To recap, an algorithm has been developed for finding the standard deviation of the
residuals occurring in permuted phase shifts given a certain SNR, σPSF and NP . It
is then of interest to visualize for pairs of SNR and σPSF how σerror will be affect over
a range of NP . This algorithm is used to make the plots shown in Figure 45. The
baseline visualized through its dashed blue line is made through the same algorithm
as stated above with the difference being that all of the permutation matrices are
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identity matrices, meaning that the fringes will not be shuffled at all.

Several observations can be made from the plots. Consider first the case when no
interreflections are present (SNR → ∞) as depicted in Figure 45a. As expected the
baseline has zero error in its estimate. However, the curve for σPSF = 0.5 ppx is
also tangent to it. This means that the algorithm decodes the patterns correctly
when no interreflections are present and the lens is within its focus. Moreover, the
σerror increases with increasing σPSF. This is also expected, as the fringe borders
experiences more blur from neighboring pixels which come from different fringes.
Nevertheless, it should be noted from the plot that permuted phase shifts seem to
perform worse than non-permuted phase shift when no interreflections are present,
particularly within focus.

The second plot, depicted in Figure 45b, shows the performance of permuted phase
shifts for SNR = 2. This corresponds to 1

3
of the captured signal originating from

an interreflection. From the plot, it is clear that the permuted phase shifts seem
to follow a logarithmic convergence with increasing NP . Moreover, the patterns
outperforms the non-permuted phase shifts for σPSF < 2.0 ppx. In Figure 45c,
permuted phase shifts is compared to the baseline for SNR = 0.5. The case is
equivalent to 2

3
of the captured signal originating from interreflections. Here, the

convergence is still logarithmic, but the rate of convergence is far slower.

As seen from the convergence plots in Figure 45, the permuted phase shifts converges
logarithmically to decreasing σerror for increasing NP . The choice of NP cannot be
made from these plots alone, as it would depend on the preceding patterns used
for identifying the correct fringes. If those patterns do not function in SNR ≈ 0.5,
then it is not necessary to use NP = 60 patterns. By assuming SNR ≥ 2, it
is reasonable to choose NP = 20. The highest defocus experienced within the
restriction 550mm ≤ ZC ≤ 1400mm was previously found to be σPSF = 0.9 ppx.
From Figure 45b it is seen that little performance is gained by increasing NP any
further under those constraints. The permuted phase shifts would then typically
have σerror = 0.3 ppx for SNR = 2.0 and σerror = 0.2 ppx for SNR → ∞. Recall
that the Empirical Rule states that 68% of the observations falls within one SD and
95% falls within two SD. Needless to say, most of the observations should thus reach
sub-pixel accuracy under these assumptions. Also, approximately 68% of the pixels
should have residuals less than 0.2 ppx under the worst defocus conditions, which is
required for most applications as stated in the problem statement.

7.2.5 Fringe border filter

One of the limitations of this type of patterns is the fringe border distortions. These
are periodic distortions that occur on the border between two fringes. Assuming that
the distortions cause low residual, it should be possible to filter out these distortions
to some extent. As these distortions occur on the border, this corresponds to entries
(QPPS)ycxc that are either close to 0 or close to WF . Therefore, it should be possible
to reduce the residuals simply by keeping only the entries TF ≤ (QPPS)ycxc ≤
WF −TF given a certain threshold TF . This would of course result in fewer decoded
pixels, but they are expected to have lower decoding residuals.
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Figure 45: The standard deviation of the decoding error for permuted phase shifts
plotted as functions of the number of patterns NP .
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8 A Novel Pattern Codification Strategy

Chapter 7 introduced two new types of patterns. The first type of pattern was
the correlation-identified fringes (CIF). It utilizes sequences with strong cross- and
auto-correlation properties in order to successfully decode the originating fringes
even in the presence of interreflection. The main issue with this type of patterns is
the compromise between resilience to defocus and its accuracy; resilience to defocus
requires a large fringe width WF , but this comes at the cost of reducing accuracy.
The second type of pattern introduced in the previous chapter was permuted phase
shifts (PPS). This kind of pattern offers far better accuracy than the correlation-
identified fringes. Its main limitation was that it required the knowledge of each of
the originating fringe for each of the camera pixels.

The attributes of the previously mentioned patterns lead to the suggestion that the
correlation-identified fringes can be combined with permuted phase shifts to form a
pattern codification strategy. Compared to Gray-Coded Phase Shifts, correlation-
identified fringes would then correspond to the gray codes, whereas permuted phase
shifts would correspond to the standard phase shifts in GCPS. In other words,
correlation-identified fringes could be used to identify the originating fringe for each
camera pixel. The permuted phase shifts could then use this knowledge to correctly
decode all of the camera pixels. This pattern codification strategy, now known
as Correlation-Fringed Permuted Phase Shifts (CFPPS), will be explored in this
section. First, encoding and decoding algorithms will be developed that combine
these two types of patterns. Lastly, the performance of the pattern codification
strategy will be tested and evaluated using the test scenes described in Section 4.2.

8.1 Algorithm

The combination of correlation-identified fringes and permuted phase shifts places
several constraints on the attributes of the patterns themselves, and therefore the
parameters belonging to them must be chosen in tandem to make the patterns work
together. The ultimate goal of this combination of patterns is that CIF is used to
identify the fringes, and then PPS uses these fringes to decode the phases. For this
to work correctly, the fringes should be the same for both CIF and PPS. Recall from
their respective tuning sections that CIF required WF ≥ 3 ppx and PPS required
WF = 10 ppx. Therefore, WF = 10 ppx should work well for CFPPS. Moreover,
the spatial frequency fs =

1
WF

= 1
10
ppx−1 was found to work well for the permuted

phase shifts. The last parameter to be chosen is NP for the permuted phase shifts.
Recall from the tuning section for PPS that SNR > 2 meant that NP = 20 should
be sufficient.

With all the parameters chosen, the code matrices for each of CIF and PPS can
be made according to their encoding algorithms previously described. Stacking
the two matrices on top of each other leads to the combined code matrix for this
particular realization of CFPPS, which is shown in Figure 46. Notice that the
patterns belonging to the CIF part appear first in the code matrix. The PPS
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Figure 46: The code matrix CCFPPS for Correlation-Fringed Permuted Phase Shifts
using WF = 10 ppx and NP = 20.

patterns requires the decoding of CIF. By first projecting the CIF patterns, they
can be decoded while the PPS patterns are projected and captured.

A decoding algorithm for the entire pattern codification strategy should also be
developed. It is largely based on the decoding algorithms for CIF and PPS re-
spectively. The only missing connection between them is to use the decoded fringes
from the correlation-identified fringes to choose the right permutation matrices in
the permuted phase shifts. From CIF, the decoding algorithm leads to a tensor D
which stored the two possible solutions for the camera pixel (xc, yc) in (D)ycxc . As
mentioned previously, finding the correct solution will not be considered. Instead,
the ground truth as explained in Chapter 4 will be used to find the solution that
is closest to the ground truth and store it in a YC ×XC matrix QCIF. Notice then

that a YC × XC matrix R defined by (R)ycxc =
⌊

1
WF

(QCIF)ycxc

⌋
will contain the

fringe numbers for all camera pixels. The tensor L required for decoding PPS is
then constructed according to

(L)ycxc
= S(R)ycxc

Decoding the permuted phase shifts captures results in a matrix Q. The entire
decoded solution will be the sum of the two solutions:

QCFPPS = QCIF +QPPS

8.2 Tests

The CFPPS pattern codification strategy has been developed and should be tested
to analyze its performance. The codification strategy will first be used on the Diffuse
plane scene. Here, it will be analyzed under ideal circumstances, mainly focusing
on how the defocus affects the performance at various distances. Lastly, the Objects
in bin scene will be used. This particular scene focuses mainly on how the codifica-
tion strategy works to remove distortions originating from interreflections at various
distances. Here, comparisons will also be made with GCPS using the same fringe
width WF = 10 ppx.
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8.2.1 Diffuse plane

The Diffuse plane scene will be rendered using CFPPS at distances ZC ∈ {550mm,
800mm, 1000mm, 1400mm}. The distances 800mm and 1000mm will be used to
observe how the codification strategy performs both in focus and slightly out of
focus. The last distances will be used to analyze the worst-case performance at the
distance extremities.

Multiple plots will be used to show the results. First, plots of the center row at
yc = ⌊YC

2
⌋ of the residual matrix will be included. This should be particularly useful

for viewing the residuals that occur as a result of the fringe border distortions.

Next, a histogram of the residuals will be made. As it shows the numerical distri-
bution of the residuals, it will reveal whether the distribution is unimodal, bimodal,
etc. In addition, the symmetry of the residuals will be shown.

Lastly, an empirical CDF plot of the residuals will be included. The plot shows the
cumulative distribution of the residuals and is useful for e.g. obtaining information
on the subpixel accuracy. A table showing the CDF at certain limits will also be
made.

The rendering is done using the simulator introduced in Section 4.1, and the results
are shown below. They are grouped according to the camera distance.

8.2.1.1 At distance ZC = 550mm
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Figure 47: Plots of the residuals for yc =
⌊
YC

2

⌋
cpx obtained using CFPPS on a

diffuse plane at ZC = 550mm.
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(a) Histogram of the residuals.
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(b) Empirical CDF of the residuals.

Figure 48: Histogram and empirical CDF of the residuals obtained using CFPPS
on a diffuse plane at ZC = 550mm.

Residual limit Occurrence
< 0.05 ppx 63.8%
< 0.1 ppx 68.7%
< 0.2 ppx 74.9%
< 0.5 ppx 89.0%
< 0.75 ppx 95.7%
< 1.0 ppx 98.9%

Table 2: Cumulative occurrence of the residuals obtained using CFPPS on a diffuse
plane at ZC = 550mm.

8.2.1.2 At distance ZC = 800mm
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(b) 400 cpx ≤ xc ≤ 500 cpx.

Figure 49: Plots of the residuals for yc =
⌊
YC

2

⌋
cpx obtained using CFPPS on a

diffuse plane at ZC = 800mm.
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(a) Histogram of the residuals.
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(b) Empirical CDF of the residuals.

Figure 50: Histogram and empirical CDF of the residuals obtained using CFPPS
on a diffuse plane at ZC = 800mm.

Residual limit Occurrence
< 0.05 ppx 87.2%
< 0.1 ppx 90.3%
< 0.2 ppx 93.2%
< 0.5 ppx 97.6%
< 0.75 ppx 98.7%
< 1.0 ppx 99.1%

Table 3: Cumulative occurrence of the residuals obtained using CFPPS on a diffuse
plane at ZC = 800mm.

8.2.1.3 At distance ZC = 1000mm
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(a) 100 cpx ≤ xc ≤ 1794 cpx.
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(b) 400 cpx ≤ xc ≤ 500 cpx.

Figure 51: Plots of the residuals for yc =
⌊
YC

2

⌋
cpx obtained using CFPPS on a

diffuse plane at ZC = 1000mm.
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(a) Histogram of the residuals.
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(b) Empirical CDF of the residuals.

Figure 52: Histogram and empirical CDF of the residuals obtained using CFPPS
on a diffuse plane at ZC = 1000mm.

Residual limit Occurrence
< 0.05 ppx 79.6%
< 0.1 ppx 84.9%
< 0.2 ppx 89.2%
< 0.5 ppx 97.2%
< 0.75 ppx 99.2%
< 1.0 ppx 99.6%

Table 4: Cumulative occurrence of the residuals obtained using CFPPS on a diffuse
plane at ZC = 1000mm.

8.2.1.4 At distance ZC = 1400mm
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(b) 400 cpx ≤ xc ≤ 500 cpx.

Figure 53: Plots of the residuals for yc =
⌊
YC

2

⌋
cpx obtained using CFPPS on a

diffuse plane at ZC = 1400mm.

74



1.5 1.0 0.5 0.0 0.5 1.0 1.5
Residual [ppx]

0

2

4

6

8

10

In
te

ns
ity

 [1
]

(a) Histogram of the residuals.
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(b) Empirical CDF of the residuals.

Figure 54: Histogram and empirical CDF of the residuals obtained using CFPPS
on a diffuse plane at ZC = 1400mm.

Residual limit Occurrence
< 0.05 ppx 65.0%
< 0.1 ppx 69.5%
< 0.2 ppx 76.3%
< 0.5 ppx 89.9%
< 0.75 ppx 96.0%
< 1.0 ppx 99.1%

Table 5: Cumulative occurrence of the residuals obtained using CFPPS on a diffuse
plane at ZC = 1400mm.

8.2.2 Objects in bin

The scene Objects in bin is used primarily to compare CFPPS to GCPS when there
are many interreflections, for a range of distances. The renders will be performed
for ZC ∈ {550mm, 800mm, 1400mm} to cover the whole distance range, and ZL

C =
550mm and ZU

C = 1500mm has been used for all camera distances. While the
results from the Diffuse plane scene focused primarily on the numerical distribution
of residuals and the fringe border residuals, the results from this scene will be more
qualitative.

Residual matrix plots will be made for both CFPPS and GCPS for all distances
using the material metal-80. These will be used to qualitatively compare the
spatial distribution of residuals. Multiple colored arrows will be placed on these
plots at various locations to aid in the discussion of the results.

The second type of metric is the empirical CDF distribution plot. In these plots,
the CDF of the residuals compared to the ground truth for both CFPPS and GCPS
are visualized, allowing a direct comparison between these two. In addition, the
empirical CDF of CFPPS with direct reflections will be included. This serves as a
comparison of how much the accuracy is reduced by the interreflections. Here, sev-
eral acronyms will be used as labels. The suffix ”-D” in ”CFPPS-D” indicates that
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the plot was made considering direct reflections only for CFPPS. Correspondingly,
”-C” is used for the combined signal, consisting of both the interreflections and the
direct reflections. Lastly, the ”-C(F)” suffix means that the combined signal is used
with a fringe border filter, as explained in the following.

For the distance ZC = 800mm, some additional renderings have been done. In par-
ticular, residual matrices using the material metal-50 have been made and included
to observe how the amount of specularity affects the spatial distribution of residuals.
Moreover, residuals have been calculated for the CFPPS with interreflections by also
applying a fringe border filter as defined in Section 7.2.5. The filter has been con-
figured with a threshold of TF = 1.25 ppx and is used with the material metal-80.
Notice that with this threshold, approximately 2·TF

WF
= 25% of the camera pixels are

removed from the render when the filter is applied.

The rendering is done using the simulator introduced in Section 4.1, and the results
are shown below. They are grouped according to the camera distance ZC .
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8.2.2.1 At distance ZC = 550mm
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(b) CFPPS

Figure 55: Residual matrices obtained for the Objects in bin scene at ZC = 550mm
with the material metal-80.
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Figure 56: Empirical CDF obtained for the Objects in bin scene at ZC = 550mm
with the material metal-80.

Residual limit GCPS CFPPS-C CFPPS-D
< 1.0 ppx 87.3% 71.7% 73.1%
< 5.0 ppx 90.4% 92.1% 92.7%
< 10.0 ppx 94.1% 99.1% 99.8%
< 20.0 ppx 96.7% 99.5% 99.9%

Table 6: Cumulative occurrence of the residuals obtained using CFPPS on the
Objects in bin scene at ZC = 550mm with the material metal-80.

Fringe decoding errors occurred at a rate of 1.27% for CFPPS and 8.36% for GCPS
at distance ZC = 550mm when using the material metal-80.
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8.2.2.2 At distance ZC = 800mm
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Figure 57: Residual matrices obtained for the Objects in bin scene at ZC = 800mm
with the material metal-50.
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(b) CFPPS
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Figure 58: Residual matrices obtained for the Objects in bin scene at ZC = 800mm
with the material metal-80.
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Figure 59: Empirical CDFs obtained for the Objects in bin scene at ZC = 800mm
with the material metal-80.

Residual limit GCPS CFPPS-C CFPPS-D CFPPS-C(F)
< 1.0 ppx 80.2% 93.6% 95.6% 97.6%
< 5.0 ppx 81.7% 95.5% 95.8% 99.4%
< 10.0 ppx 84.8% 99.7% 99.9% 99.7%
< 20.0 ppx 88.1% 99.8% 99.9% 99.9%

Table 7: Cumulative occurrence of the residuals obtained using CFPPS on the
Objects in bin scene at ZC = 800mm with the material metal-80.

Fringe decoding errors occurred at a rate of 0.48% for CFPPS and 17.3% for GCPS
at distance ZC = 800mm when using the material metal-80.

81



8.2.2.3 At distance ZC = 1400mm
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Figure 60: Residual matrices obtained for the Objects in bin scene at ZC = 1400mm
with the material metal-80.
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Figure 61: Empirical CDF obtained for the Objects in bin scene at ZC = 1400mm
with the material metal-80.

Residual limit GCPS CFPPS-C CFPPS-D
< 1.0 ppx 94.6% 94.5% 94.7%
< 5.0 ppx 95.6% 95.5% 95.5%
< 10.0 ppx 98.0% 99.9% 99.9%
< 20.0 ppx 99.5% 99.9% 99.9%

Table 8: Cumulative occurrence of the residuals obtained using CFPPS on the
Objects in bin scene at ZC = 1400mm with the material metal-80.

Fringe decoding errors occurred at a rate of 0.07% for CFPPS and 3.40% for GCPS
at distance ZC = 1400mm when using the material metal-80.
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9 Discussion

The starting point of this thesis was some correlation-based patterns that worked
well when the system was in focus, but failed outside. Through system identific-
ation, a distance response was obtained and plotted in Figure 29. It correlated
well with the energy plot of correlation-identified fringes in Figure 34, leading
to the suggestion that an increase in fringe width WF should make the patterns
more resilient to lens defocus. The scene Objects in bin has been rendered using
CFPPS, which includes CIF patterns with WF = 10 ppx for fringe identification.
For any distance rendered, fringe decoding errors have been observed to occur at a
rate of no more than 1.27% using this codification strategy. In the project thesis
(Lima-Eriksen 2022), the Grouped Gold pattern codification strategy was rendered
at ZC = 1000mm using the scene Metal cylinders in picking bin. No numerical
metric of the error rate was made for that distance, only the decoded rendering.
However, a visual inspection of that decoded rendering makes it apparent that the
pattern codification strategy used in this thesis attains a significantly lower error
rate. Therefore, it is reasonable to conclude that the increase in fringe width and
thus the decrease in spatial frequency content makes the correlation-based patterns
more resistant to defocus distortions.

Notice also from the renderings of Objects in bin that GCPS achieved a fringe
error rate of 17.3% at ZC = 800mm with metal-80, while the same rate was only
0.43% for CFPPS. First, these numbers show that the decoding errors for the gray
codes in GCPS can actually be significant for some scenes; more than one in seven
camera pixels has incorrectly decoded gray codes in GCPS in this particular case.
More importantly, the large difference in this rate between the codification strategies
indicates that correlation-based patterns can be really useful in reducing such types
of errors. With a fringe decoding error rate of no more than 1.27% for all distances,
it appears that the correlation-based patterns handles interreflections really well.
Also, observe that the residual plots using metal-50 in Figure 57b depicts this
same trend of decreasing large residuals, suggesting that the same results may be
found for objects with lower specularity as well.

The residual matrices for the Objects in bin scene with metal-80 at ZC = 800mm
are shown in Figure 58. Here, it is apparent that large areas are erroneously decoded
when using GCPS. Notice in particular the large horizonal reflection in the rightmost
wall shown by the yellow arrow. This is almost completely removed when using
CFPPS. Also, it is seen that most objects have decoding errors around their edges,
such as the one indicated by the cyan-colored arrow. Recall that 3D cameras are
particularly useful for pick-and-place operations. By distorting these edges, it might
be difficult for an object recognition software to find the exact position of these
objects, as it cannot accurately capture their spatial extent. These boundary errors
are mostly removed in CFPPS. However, there are some larger areas of residuals still
present using CFPPS, in particular the blue area in the object with the cyan arrow.
The residual is located in the bottom half of the object, which could suggest that
a vertical reflection causes an intra-fringe interreflection here. As shown previously,
these errors cannot be completely avoided due to the working mechanisms of the
patterns. Nevertheless, most of the vertical reflections are actually significantly
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reduced. For instance, observe the vertical reflection occurring at the lower left
corner of the bin indicated by the green arrow. This is a vertical reflection, but
is significantly reduced when using CFPPS. Perhaps it could be due to the fringe
width not being high enough to cause intra-fringe interreflections here.

Object-border residuals are also present for GCPS at distances ZC ∈ {550mm,
1400mm}, as seen in the residual matrices in Figure 55 and Figure 60, respectively.
However, there is a lower incidence of them. Notice from the occlusion exclusion
masks listed in Appendix A that the bin walls are illuminated only for ZC = 800mm.
It could be the case that the walls are the origin of most of the interreflections and,
therefore, resulting in a reduced incidence for the other distances. Nevertheless,
the residual matrices reveal that the object-border residuals which are present are
reduced significantly for these objects as well, indicated by e.g. the objects with
green arrows.

Although it is apparent that many of the interreflections are reduced or removed
using CFPPS, the codification strategy still has its shortcomings. From the resid-
ual matrices using the Objects in bin scene, it is quite apparent that residuals are
present at regular intervals as vertical lines. This phenomenon is also present when
rendering CFPPS on the scene Diffuse plane – a scene which does not contain any
interreflection. Therefore, it cannot be attributed to interreflections, and must in-
stead be a phenomenon that occurs due to the nature of the patterns themselves.
Recall from the limitations mentioned in Section 7.2.3 that the correlation-identified
fringes patterns should cause periodic distortions at the fringe borders because of
the lens defocus. This seems to be the phenomenon causing these distortions, as
the nature of the distortions matches well with e.g. the periodicity. Consider, for
instance, the residuals of this scene with ZC = 800mm as seen in Figure 49b. Here,
roughly 4 to 5 camera pixels are erroneously decoded at the fringe border within
each fringe. Considering that a fringe is SX ·WF = 17 cpx wide, up to 5

17
≈ 30% of

the camera pixels are subject to this type of distortion, which is significant. Never-
theless, Section 7.2.4 predicted approximately 24% of the pixels will be affected by
fringe-border distortions, and so it is within what was expected. Taking into account
the residual plots Figure 47b for ZC = 550mm and Figure 53b for ZC = 1400mm,
this distortion only increases in magnitude when out of focus, also as expected. A
consequence of these fringe border errors is that objects such as the cylinder in
Figure 58 indicated by the pink arrow becomes completely covered by periodically
occurring residuals. This is in stark contrast to the almost completely correctly de-
coded cylinder depicted in its residual matrix using GCPS. Therefore, it is obvious
that CFPPS is not free of distortions.

There is however one major difference in the nature of the distortions for these two
pattern codification strategies. The distortions from interreflections seen in GCPS
are scene-dependent and are therefore random in nature. On the other hand, the
fringe border residuals seen in CFPPS occur at regular intervals that correspond to
the fringe widthWF , indicating that it is a systematic type of error. Moreover, notice
from the empirical CDF plots for the Objects in bin scene that the vast majority
of residuals are less than 0.5 ppx for CFPPS. This means that the camera pixels
that decode projector columns that are close to a fringe border are very susceptible
to fringe border distortions, as suggested in Section 7.2.5 through the concept of a
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fringe border filter. By applying the fringe border filter with TF = 1.25 ppx, the
residual matrix shown in Figure 58c is obtained when the material metal-80 is
used at distance ZC = 800mm. It is quite apparent from this plot that a large
fraction of the fringe border residuals are removed. Since such systematic errors can
be predicted, they are, to some extent, possible to reduce. Therefore they should
be less of a concern compared to the random interreflection errors seen in GCPS.
However, it should be noted that this method of removing camera pixels reduces the
amount of camera pixels by 2·TF

WF
= 25% and is probably not the best way to remove

systematic errors. It has been included merely to state that it is possible to predict
the errors to some extent.

Recall from the problem description that most applications of the Zivid Two camera
require residuals less than 0.2 ppx. Empirical CDF graphs for the scene Objects
in bin show the numerical comparison of residuals between GCPS and CFPPS.
Due to the fringe decoding errors for ZC = 800mm using GCPS, it is evident
that CFPPS outperforms GCPS, reaching a residual rate of > 70% being less than
0.2 ppx, compared to GCPS with a rate of ≈ 60%. This rate is more similar for
ZC = 1400mm, with a rate of ≈ 70% for both here. The similarity could probably
be due to the fact that not many interreflections are present at this distance, and
that the interreflection error rate of GCPS becomes similar to the fringe border error
rate of CFPPS. For all these distances, CFPPS has a high rate of residuals less than
0.2 ppx. Depending on the requirements for the use-case, it could very well be that
this rate is good enough to be used in applications. Either way, it reduces most of
the interreflections while not significantly affecting the accuracy at these distances.

Lastly, the situation is quite the opposite for ZC = 550mm. Here, CFPPS reaches a
rate of merely 30% of the residual being less than 0.2 ppx, compared to GCPS with
a rate of > 70%. It seems that the fringe-border distortions dominate the residuals,
and so it is quite a problem for this distance. It is unknown why these distortions
are so significant at this distance; perhaps they are due to an underestimate of σPSF

at this distance. Probably a higher value of WF could decrease these distortions.

The major problem with CFPPS seems to be the fringe border distortions, and so
it is interesting to look at how much this type of distortions actually contributes
towards the residuals of CFPPS. Such insights can be found when comparing the
residuals of the combined reflections (CFPPS-C) to the ones using direct reflections
only (CFPPS-D) with this codification strategy. The empirical CDFs of these re-
siduals are shown in the same plots for the Objects in bin scene, allowing for the
comparison between them. Since the residuals of the direct signal are not subject
to interreflections, it will represent the best possible results for the particular scene.
Consider the empirical CDFs for ZC = 800mm with metal-80 as seen in Figure 59.
Here, the orange curve represents the residuals without interreflections, and the
green curve denotes the residuals when interreflections are present. The difference
between these two curves should thus correspond to the distortions caused by the
interreflections alone. Notice that for all these empirical CDF plots, the differences
between these curves are quite significant and accounts for 50% of the residuals.
Therefore, it is expected that the reduction of fringe border distortions could sub-
stantially improve the performance of CFPPS. Figure 59 also visualizes the residuals
after applying the fringe border filter as a red curve. The residuals are lower with
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the filter than without, further strengthening the hypothesis that a large fraction of
the residuals occur at the fringe borders.

It is important to bear in mind that the fringe border errors occur due to the
optical properties of the system, in particular the amount of lens blurring. The
Zivid Two camera used for the evaluation in this thesis was specifically developed to
work well with pattern codification strategies such as GCPS. Therefore, even better
performance can be achieved by adjusting the optical properties to fit CFPPS better.
In particular, different lenses can be used to reduce the amount of blur that occurs
at extreme camera distances. Also, it can be shown that increasing the baseline, i.e.
having a larger displacement between the camera and the projector, would mean that
the system tolerates a larger projector column error while still being within the 0.1%
error margin (Bouquet et al. 2017). None of these parameters have been explored
further. Nevertheless, the pattern codification strategy shows promising results with
regard to performance in challenging environments with many shiny objects. The
observed errors are systematic and could possibly be reduced or avoided by further
development.

However, little attention has been paid to efficiency of the two pattern codification
strategies. With 31 correlation-based patterns and 20 cosine patterns, this codific-
ation strategy uses 4.1 times the number of patterns compared to the 11 patterns
required by GCPS, when taking into account the fully black and white patterns
required for normalization. Recall that the temporal pattern codification strategies
requires the scene to be static under acquisition. This means that if a robot was to
be used in conjunction with the system, it would have to stay still 4.1 times longer
for each acquisition compared to when using CFPPS. Robot operations should typ-
ically be done as quickly as possible, and so this could, in fact, be so limiting that
the codification strategy simply cannot be used.

The codification strategy is also much more computationally demanding when it
comes to decoding the result. For GCPS, the codification strategy requires first
normalization of the images and then a lookup to find the corresponding binary
representation of each of the normalized binary codes. Lastly, eight multiplications,
six summations, and arctan are required for the cosine samples, referring to (10).
For CFPPS, it is significantly more complex. Here, correlation should be performed
between CIF captures and the valid codes. Also, the permuted phase shifts captures
should be premultiplied by the correct permutation matrices. Referring to (46),
phase estimates of these non-permuted phase shifts require 38 additions and 40
multiplications, in addition to the arctan. While an exact performance comparison
cannot be made on the basis of this, it is apparent that CFPPS is significantly more
complex computation-wise. This could further limit the use cases.
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10 Conclusion

In this thesis, a novel temporal pattern codification strategy for structured light
systems has been developed. Its main goal was to work well in the presence of
shiny objects over a wide range of distances. The codification strategy consists
of two types of patterns. The first type uses correlation to correctly identify the
originating projector column sector (fringe) in each camera pixel. The second type
uses temporally reordered phase shifts to estimate the originating projector column
relative to the fringe in each camera pixel with sub-pixel accuracy. Together, these
patterns make it possible to use structured light in challenging environments with
many shiny objects.

The codification strategy was first tested on a diffuse plane at various distances,
and it revealed that decoding errors occurred periodically with the fringe width
even when no interreflections were present. This was attributed to the fact that
lens defocus causes noise at the fringe borders. Lastly, the codification strategy
was tested in a scene with many shiny objects. Compared to GCPS, it performed
significantly better when many interreflections occurred. The fringe decoding errors
seen in GCPS were almost eliminated in CFPPS, reaching a fringe decoding error
rate of less than 1.27% for ZC ∈ [550mm, 1400mm]. Furthermore, the errors that
are seen on the edges of objects were reduced when using CFPPS. For distances
ZC ∈ [800mm, 1400mm], the novel pattern codification strategy had more than
70% of its residuals within the 0.2 ppx (0.1%) target. The codification strategy
struggled at ZC = 550mm, which could probably be due to a too low fringe width
at this distance.

The main source of residuals in CFPPS was the fringe-border distortions, which
were found to be systematic errors. Therefore, it is possible that these errors can
be reduced by exploiting their periodic and predictable occurrence. The errors are
largely caused by optical properties such as lens blurring. The Zivid Two camera has
not been optimized for this pattern codification strategy, which means that better
results can be achieved by developing a new camera with more suitable optical
properties.

Although the codification strategy shows promising results, it is still much more
demanding in terms of acquisition time and computational complexity. The acquis-
ition time was found to be 4.1 times higher compared to GCPS. For many use-cases,
this increase in complexity could mean that the codification strategy is not of any
use despite its better decoding accuracy. If so, other codification strategies should
be considered instead.
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11 Future Work

The pattern codification strategy developed in this thesis showed promising initial
results with respect to the suppression of interreflections at a wide range of distances,
suggesting that it could have real-world applications. Nevertheless, it has some
systematic errors that occur at regular intervals due to lens defocus, known as fringe-
border errors. Future work that addresses this issue could make the codification
strategy significantly better and, in turn, make it more useful. There are mainly
two ways in which these fringe-border errors can be addressed, as stated in the
discussion.

The first way to reduce fringe-border interreflections is to design a new structured
light system with lenses causing less defocus within the desired range of distances.
This would directly reduce the standard deviation of the point-spread function,
which in turn reduces the residuals at the fringe borders. Also, the baseline of the
structured light system can be increased to make it tolerant to higher projector
column residuals while still being within the 0.1% error margin (Bouquet et al.
2017).

The second way to reduce the fringe-border distortions is through addressing them
from a signal processing perspective. The distortions are systematic errors, meaning
that it is predictable where the errors will occur. Perhaps, some additional patterns
that have these errors at different locations can be added. An algorithm that chooses
between which patterns to decode could then possible eliminate these errors. Filters
that either removes or corrects the camera pixels at the fringe borders could also
yield promising results.
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Appendix

A Occlusion exclusion masks
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Figure 62: The occlusion exclusion mask for the Objects in bin scene at ZC =
550mm.
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Figure 63: The occlusion exclusion mask for the Objects in bin scene at ZC =
800mm.
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Figure 64: The occlusion exclusion mask for the Objects in bin scene at ZC =
1400mm.
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