
M
axim

izing Payload U
tilization of the H

YPSO
-1 Satellite

Sim
en Berg

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c 

Sy
st

em
s

Simen Berg

Maximizing Payload Utilization of the
HYPSO-1 Satellite

Master’s thesis in MTELSYS
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
July 2022

HYPSO

M
as

te
r’s

 th
es

is





Simen Berg

Maximizing Payload Utilization of the
HYPSO-1 Satellite

Master’s thesis in MTELSYS
Supervisor: Milica Orlandic
Co-supervisor: Roger Birkeland
July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems





Maximizing Payload Utilization of the HYPSO-1
Satellite

Simen Berg

July 26, 2022





Abstract

This thesis follows the HYPSO-1 satellite – from an operational perspective – from
its launch in January 2022 until June of 2022. The HYPSO team utilized space-
craft scripts to automatically capture images of target areas. The thesis shows
how operational tools were developed to reduce the sources and number of er-
rors, the required knowledge for the operator, and the time needed to make these
spacecraft scripts. With the tools implemented, the HYPSO-1 satellite achieved an
average of 2.94 image captures per day in the month of May, reaching a maximum
of six captures in a single day. The thesis also shows how operators were trained
during the ever-changing operational workflow. It was found that an academic
team with a high turnover of personnel had to accommodate different learning
styles and focus on providing a fundamental understanding of the system of sys-
tems. Lastly, the thesis investigated the possibility of operating HYPSO-1 using
only scheduled commands. It was found to be possible, but not achieved within
the span of the thesis.
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Sammendrag

Denne oppgaven følger HYPSO-1 satellitten fra oppskytning i januar 2022 frem til
juni i 2022, fra et operasjonelt perspektiv. HYPSO teamet benytter skript i satel-
litten for å automatisk ta bilder av ønskede områder. Denne avhandlingen viser
hvordan et sett av verktøy ble utviklet for å redusere antall feil og feilkilder, nød-
vendig forhåndskunnskap hos operatørene og tid brukt for å lage disse skriptene.
Med verktøyene implementert oppnådde HYPSO-1 et snitt på 2.94 bilder per dag
i mai, med et maksimum på seks bilder på en enkelt dag. Avhandlingen viser også
hvordan satellittoperatører ble opplært for en arbeidsflyt i konstant endring. Det
ble funnet ut at en akademisk arbeidsgruppe med høy utskiftning av medlemmer
må legge til rette for flere ulike lærestiler, og fokusere på å gi medlemmene en
fundamental forståelse av hele systemet. Til slutt undersøkte avhandlingen mu-
ligheten for å operere HYPSO-1 med bare å bruke planlagte kommandoer. Dette
er mulig, men ikke oppnådd i løpet av avhandlingen.
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Preface

Prior to starting this thesis, I have been fortunate enough to have the opportunity
of working with CubeSats through the student organization Orbit NTNU. It has
been four amazing years of working on the SelfieSat, which unfortunately is yet
to be deployed after its launch on SpaceX’s Transporter 5 mission. Satellites really
sparked my interest and I am grateful that I got the chance of working with the
operations of the HYPSO-1 satellite.

Working with the operations of a satellite can be a bit overwhelming because
of all the systems involved, but also very rewarding. I learned a whole lot in such
a small amount of time by getting the chance to be a part of so much. Building
the ground station, follow the launch, be there during the first ping, power on the
payload, and see the first images. Just thinking about it gives me goosebumps. It
is crazy to me that this is my job. Seeing the progress over the thesis period also
gave me motivation since I directly saw the effects of my contributions. I really
felt like I was solving a problem, which is why I started my engineering degree in
the first place.

The title of the thesis changed multiple times. Because operations of a satellite
include many systems, there is a lot of overhead which made it hard to focus on a
specific area at times. Controlling the satellite gives a lot of insight but is also time-
consuming. Additionally, trying to troubleshoot problems that were not contained
to the payload was hard due to my lack of insight into the systems developed
by NanoAvionics. Even though events like this were not directly productive for
my thesis, I obtained a lot of valuable knowledge and experience. I also got the
opportunity to work on papers alongside members with a lot more experience
than me. Looking back at it, I could not have wished for a better thesis, team, or
satellite to work with.
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Glossary

CubeSat A small satellite consisting of cubes called units [U]. One unit is 10cm
x 10cm x 10cm and is standardized dimensions for small satellites.. vii, 2,
3, 5

Cycle Life The number of charge/discharge cycles a battery can withstand before
decreasing in performance [1]. 46

FlatSat A FlatSat is a horizontally integrated system model. Instead of being
stacked vertically as in the satellite, the subsystems are connected horizont-
ally to ease the implementation and connection of systems.. 12

Grafana Grafana is open source visualization software [2]. It lets users make
custom, insightful dashboards to easily visualize information for other team
members [3].. 7, 8

LidSat A FlatSat setup of selected subsystems of the HYPSO-1 satellite at the
SmallSat Laboratory in Trondheim.. 12, 22, 28, 29, 34, 73, 74

MCS Mission Control Software (MCS) is a service provided by NanoAvionics that
connects ground infrastructure. MCS encompasses a suite of systems de-
veloped by NanoAvionics, and is integrated with other services.. 7–10, 28,
29, 31, 34–36, 38, 44, 59, 71

metodology A specific series of steps to be followed [4]. 14, 15, 21, 22

NNG A lightweight broker-less messaging library.. 7, 9

S-band The frequency range spanning 2 GHz - 4 GHz [5].. 7, 9, 10, 27, 31, 55,
63

SatLab SatLab is a company providing sband tranceiver and ground equipment.
The ground equipment consists of rotor controller, modem, antenna, and a
graphical user interface.. 7–9

Sun Synchronous Orbit A particular class of a polar orbit. Satellites travelling
in this type of orbit is synchronous with the Sun, meaning they will always
have a fixed position relative to the Sun [6]. . 2
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Chapter 1

Introduction

Satellites have been launched since 1957 [7], thus leading to satellite opera-
tions being a necessity for around 65 years. After a satellite has been developed,
launched, and commissioned, the predominant cost of the mission is the opera-
tions of the satellite [8]. Therefore, tools and workflows have been developed to
improve the capacity of operators, reduce the number of errors, and better the
monitoring of satellite health. This chapter will introduce the motivation behind
this thesis and provide a problem statement with the objective of this work.

1.1 Motivation

Harmful Algal Blooms (HABs) have become a more prominent concern over the
last century because of a dramatic rise in the severity and geographic extent of
these events caused by environmental degradation[9]. HABs are therefore a big
concern in countries like Norway since the fish market is one of their biggest ex-
ports [10] [11]. In 2019, Norway experienced a HAB, killing nearly eight million
Atlantic salmon in fish farms in northern Norway [12]. Monitoring the ocean to
get an early warning can help mitigate the severity of such outbreaks and increase
the understanding of algae blooms.

On the 13th of January 2022, the HYPer-spectral Smallsat for Ocean obser-
vation (HYPSO) team at the SmallSat Laboratory (SSL) at Norwegian Univer-
sity of Science and Technology (NTNU) launched HYPSO-1, a research satellite
equipped with a novel HyperSpectral Imager (HSI) payload designed to detect
Harmful Algal Blooms (HABs) from a Low Earth Orbit (LEO). HYPSO-1 was their
first satellite and the team did not have any previous experience in satellite oper-
ations. Operating a satellite is time-consuming, labor-intensive, and requires spe-
cial knowledge and qualifications [13]. In a small, resource-limited team like the
HYPSO team, it is therefore essential to make tools to ease operational challenges
in order to maximize the utilization of the satellite. Additionally, it is desired to
work asynchronously, meaning having the ability to troubleshoot or upload com-
mands without having to wait for the satellite to pass over a ground station. By

1



2 Department of Electronic Systems: Maximizing HYPSO-1 Payload Utilization

working asynchronously the flexibility of the team increases.

CubeSats are small, inexpensive, and have a shorter development time com-
pared to more traditional, monolithic satellites [14]. CubeSats are therefore often
used by academic institutions, like the HYPSO-1 satellite at NTNU [14]. Since
the satellites are so small, they have optical limitations when equipped with an
imaging payload [14]. The camera settings can be adjusted, and are therefore a
trade-off between resolution, coverage, revisit time, and swath width. The Hy-
perSpectral Imager (HSI) on HYPSO-1 can have a higher spectral resolution than
traditional satellites like Sentinel, but not with the same coverage. HYPSO-1, be-
ing a 6U CubeSat, can therefore not cover the same areas as traditional satellites,
but its utilization can be more agile. The HYPSO-1 satellite was launched to a
Sun Synchronous Orbit with a mean altitude of about 540km with the ability to
capture off-nadir images (internal information), and therefore covers the entire
earth within 24 hours. The satellite can image specific areas more frequently than
more traditional satellites that serve a wide range of users. In order to utilize the
potential responsiveness of the HYPSO-1 satellite, there is a need for tools that
enable members to quickly, and easily, operate the satellite to capture images of
specific targets. The concept of operations is shown in Figure 1.1.

Figure 1.1: Concept of operations for the HYPSO-1 satellite. The figure is an
alteration of a figure made by Mariusz E. Grøtte in [15]
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This thesis starts by introducing the stakeholders, relevant tools, and theory
used throughout the thesis. Afterward, the methods and workflow are described.
Then the results and experiences are provided, before ending with a discussion
and conclusion.

1.2 Problem Statement & Research Questions

Automating satellite operations can increase the responsiveness of captures and
overall data throughput from a satellite. Additionally, automation can lower the
knowledge needed to operate the satellite, thus making it more accessible. How-
ever, the payload is what makes satellites unique, and all satellites are equipped
with at least one mission-specific payload. Therefore, satellites have different op-
erational patterns and requirements, thus implying a need for mission-specific
tools. The HYPSO team launched their first satellite, HYPSO-1, on the 13th of
January 2022. This thesis investigates and implements tools to simplify opera-
tions in order to maximize the utilization of the HYPSO-1 satellite payload. This
objective has been divided into three research questions.

• RQ1: To what degree is it possible to work with operations of HYPSO-1 outside
of passes over a ground station?
Having to wait for the satellite to be in the range of a Ground Station (GS)
takes up a lot of time and causes stressful situations if one has a set of tasks
to perform within the satellite pass. Being able to schedule such commands
asynchronously to the satellite passes is desired.
• RQ2: To what degree is it possible to reduce the number of imaging capture

errors whilst also reducing the amount of testing on the ground?
Capture scripts can have different types of errors. They can have errors in
the spacecraft scripts i.e., the wrong name, incorrect timing, or typos in
commands. The capture scripts can have erroneous pointing parameters due
to human error when making the parameters. Capture scripts can also be
uploaded to the wrong script engine due to human error.
• RQ3: How can the project organization best facilitate the operator training?

An academic CubeSat team consist of members from a variety of study fields
and commonly has a big turnover of personnel. In academic teams, members
also have their own research to tend to and cannot focus solely on operating
the satellite. Members have different levels of understanding of the systems
to use. Facilitating training of operators can therefore be challenging.





Chapter 2

Background

This section will describe the background of this work. It will start by describing
the stakeholders and system design in the HYPSO project, then the applicable
theory will be presented.

2.1 Stakeholders

HYPSO-1 is a 6U CubeSat consisting of a satellite bus provided by NanoAvionics
(NA), and a payload developed at Norwegian University of Science and Techno-
logy (NTNU).

2.1.1 NTNU

HYPSO-1 is the first satellite made within the HYPer-spectral Smallsat for Ocean
observation (HYPSO) project. HYPSO is a part of the Mission-oriented autonom-
ous systems with small satellites for maritime sensing, surveillance and commu-
nication (MASSIVE) project, which is associated to the Centre for Autonomous
Marine Operations and Systems (AMOS) [16] [17]. The HYPSO-1 satellite is a
6U CubeSat equipped with a novel pushbroom HyperSpectral Imager (HSI) as its
main payload [18], called Colored Littoral Zone and Algae Watcher (CLAW). The
payload was custom built by the HYPSO team, which is a part of the SmallSat
Laboratory (SSL) at NTNU [18]. The payload consists of the On-Board Processing
Unit (OPU), a Red-Green-Blue (RGB) camera, and the HSI. The SSL consists of
about 20 students, ranging from Bachelor’s to Post-doc level, with an ever-evolving
mixture of skills and study disciplines [19]. Collectively, the student-driven SSL
has been able to develop, test, qualify, and integrate the HSI payload into a 6U
CubeSat platform provided by NA, and have a successfull launch of the HYPSO-1
satellite on the 13th of January 2022 [18] [19].

As part of the MASSIVE project, the HYPSO-1 satellite was part of a bigger
infrastructure for maritime surveillance. Together with Autnonomous Underwa-
ter Vehicles (AUVs), Unmanned Surface Vehicles (USVs), and Unmanned Aerial
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6 Department of Electronic Systems: Maximizing HYPSO-1 Payload Utilization

Vehicles (UAVs), the HYPSO-1 satellite forms what has been called the observa-
tional pyramid, shown in Figure 2.1. The HYPSO-1 satellite gives the best over-
view, while aerial-, surface-, and underwater vehicles can get more accurate meas-
urements and can operate below cloud cover [18].

Satellite Operators

The HYPSO team developed the payload but also operated the satellite. Satellite
operators were the users of the operational tools and training methods developed
in the thesis. The operators had no previous experience in satellite operations,
came from different study fields, and had varying levels of knowledge about the
satellite platform and ground systems.

End Users

The end users of the satellite data are primarily separated into two categories. Cat-
egory one consists of oceanographers who want raw data. Category two consists
of aquaculture groups, i.e., Grieg Seafood and SalMar. Category two prefers pro-
cessed data. Other groups interested in processed data are i.e., the environmental
directorate. End users are not constrained to be in Norway.

Figure 2.1: The observational pyramid showing the different autonomous agents
used in the MASSIVE project. The figure is obtained from [18], and is an updated
version of a figure originating from Tor Arne Johansen through the MASSIVE
project.
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2.1.2 NanoAvionics

NanoAvionics (NA) is a Lithuanian1 small satellite mission integrator providing
satellite platforms and subsystems [20]. One of the satellite platforms they provide
is the 6U nanosatellite bus, called Multi Purpose 6 (M6P) [21]. The M6P plat-
form is used by two other satellites launched before the HYPSO-1 satellite [21].
The M6P platform includes a Payload Controller (PC), which was the interface
between the satellite payload and the M6P bus. As mission integrator, NA provided
launch integration, payload data storage, and ground station software called MCS
for the HYPSO-1 mission.

2.2 Tools and System Design

This section will introduce tools and applicable modelling of the tools and systems
surrounding the HYPSO-1 satellite, including the relevant ground systems.

2.2.1 CubeSat Space Protocol

The CSP protocol was used for communication in the HYPSO-1 satellite. The Cube-
Sat Space Protocol (CSP) is a network-layer delivery protocol designed for Cube-
Sats originating from the university of Aalborg [22]. The main developer of the
protocol started working for GOMSpace, which used it in their products [22]. The
CSP protocol was made to ease communication between distributed embedded
systems by introducing a service-oriented network topology [22]. Since the com-
munication bus itself is the interface to other subsystems, the developers only need
to define a service contract and set of port-numbers that the subsystem will be
responding on [22]. GOMSpace released a basic implementation of the CSP func-
tionality as a software library under GNU Lesser General Public Licence (LGPL),
which allowed the implementation to be copied and used by the public [23].

2.2.2 Mission Control Software

The Mission Control Software (MCS) is ground station software provided by NA
that connects the different ground services as shown in Figure 2.2. MCS runs on
the Amazon Web Services (AWS) and includes a task scheduler, nanoMCS, pass
scheduler service, File Transfer Manager (FTM), data storage, and Grafana. MCS
is also connected to SatLab’s and Kongsberg Satellite Services (KSAT)’s pass sched-
ulers for ground station booking and operations. The operator can use the remote
connection to get access to all parts of MCS, use the direct access through NNG to
get a direct connection to the S-band modem or UHF radio, or use a RESTful Ap-
plication Programming Interface (API) to access the data storage. By connecting
directly to the S-band modem, the operator can communicate with the satellite
without the use of the subsystems that are a part of MCS.

1Recently acquired by Kongsberg Defence and Aerospace
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The task scheduler can schedule nanoMCS tasks, further described in subsec-
tion 2.2.3, or upload/download tasks using the File Transfer Manager (FTM). A
task is a set of commands to be executed on the satellite during a pass, i.e., change
configurations or download/upload files. The pass scheduler service communic-
ates with SatLab and KSAT pass scheduler to schedule satellite passes over the
different ground stations. The data storage is where all the data from the satel-
lite is stored, and Grafana is a Graphical User Interface (GUI) for visualizing the
telemetry data. The operator can connect the NTNU Ground Station (GS) dir-
ectly without using MCS as well. The operator can also connect to KSAT’s pass
booker and administration portal. In short, MCS allows operators to communicate
seamlessly with the satellite by connecting all of the services running on ground.
(Internal information).
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Figure 2.2: Overview of ground services. MCS is running on the AWS server and
communicates with SatLab and the pass scheduler at KSAT. The operator can
utilize MCS through a remote connection, a RESTful API, or connect to the S-
band modem directly using NNG.

2.2.3 Command Line Interfaces

The HYPSO-1 satellite uses an implementation of the CSP layer on top of a Con-
troller Area Network (CAN) bus, which is the communication interface between
the HYPSO-1 payload, CLAW, and the M6P satellite platform. nanoMCS and hypso-
cli are tools that translate human-readable commands to CSP commands that
give access to the shell commands of different subsystems.

nanoMCS is software provided by NA that is as a Command Line Interface
(CLI), and functions as an interface to the satellite subsystems. nanoMCS translates
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human-readable commands into low-level commands for the satellite subsystem,
which contains a toolset of functions used in mission control [24]. With nanoMCS
one can log into into the shell of subsystems produced by NA. To log into the shell
of subsystems is called remote shell in the rest of this thesis. Furthermore, MCS
supports setting up nanoMCS tasks with the task scheduler. All subsystems of the
M6P bus provided by NA supports CSP, but by using nanoMCS one can remote shell
into them and use human-readable version of the commands [24].

hypso-cli is a CLI developed by the HYPSO team at the SSL that fulfills many
of the same functions as nanoMCS, but is tailored to direct payload operations.
The CLI allows users to communicate with human-readable commands with the
payload. The OPU supports CSP, and can therefore communicate with the M6P
satellite bus. Using hypso-cli, the operator can use high-level functions with
human-readable input instead of communicating directly through CSP. hypso-
cli also provide access to the shell of all subsystems on the M6P platform but is
not connected to the task scheduler in MCS [25].

2.2.4 Spacecraft Subsystems

The spacecraft consists of the M6P satellite platform provided by NA with a pay-
load developed by NTNU. The satellite platform is shown in Figure 2.3. As de-
scribed in subsection 2.1.1, the payload consists of the OPU, the RGB camera,
and the HSI. There are different ways of partitioning a spacecraft into subsystems
[26]. The one used in this project divided the satellite platform consisting of seven
main subsystems [25]:

• The Flight Computer (FC)
• The Payload Controller (PC)
• The Electrical Power Subsystem (EPS)
• The Thermal Subsystem
• The Attitude Determination and Control Subsystem (ADCS)
• The Communication Subsystem
• The Structural Subsystem

The FC is the main controller of the satellite. The PC is the interface to the
payload. The EPS includes the solar panels and provides the whole satellite with
power. The thermal subsystem distributes heat energy and heats up the battery
pack. The thermal subsystem has passive, structural parts and active heaters. The
ADCS determines and controls the attitude of the satellite. The subsystem includes
Reaction Wheelss (RWs), Magnetorquers (MTQs), a star tracker, sun sensors, and
Inertial Measurement Units (IMUs). The communication subsystem consists of
two Ultra High Frequency (UHF) radios, an S-band transceiver, and antennas.
The structural subsystem is the satellite frame providing structural supports.

Compared to the partitioning proposed in [26], the on-board processing or
command and data handling subsystem is covered by the PC and FC. The tele-
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metry, tracking and command subsystem is covered by the EPS, FC, and commu-
nication subsystem. The M6P platform did not include any propulsion subsystem,
thus also not including a position and orbit determination and control subsystem.

For operations of the satellite, the FC is used to control the satellite platform,
and the PC is used to control the payload.

Figure 2.3: M6P Satellite platform. Figure obtained from [21].

2.2.5 Spacecraft Scripting

The PC and FC subsystems on the M6P platform are equipped with two inde-
pendent script engines each. These script engines can run script files consisting of
subsystem shell commands. The script files are text files with MS Windows style
line terminators (CRLF). The FC script engine runs in the shell of the FC and
vice versa for the PC. Therefore, the FC script engines have access to the human-
readable version of commands on the FC only. So to access/send commands to
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other subsystems, the shell commands must be sent as raw CSP messages, using
the csp txrx function.

The subsequent lines/commands in the scripts are run sequentially from start
to end. There are two different ways of triggering or delaying a command. The
first way is to delay until a specific unix timestamp, and the second method waits
for a defined amount of milliseconds.

The csp txrx command is defined with a delay that can be set up to 3000 ms
and the script engine waits until an acknowledge is received, or until the specified
delay has passed, before going to the next line in the script file. The script engines
therefore allow for automatic control of the satellite when the satellite is not in
range of a GS, but all timing between commands needs to be calculated on ground.
(Internal information).

2.2.6 Mirror on Ground

The LidSat is an assembly of selected engineering models of satellite sub-systems
on ground. The LidSat is a FlatSat, but is named LidSat because it is placed on a
lid of an Electrostatic Discharge (ESD)-box for more tidy mounting. The LidSat is
connected to the FlatSat set up in NA’s laboratory in Lithuania through ethernet
over a Virtual Private Network (VPN) tunnel. The LidSat consists of the payload,
FC, PC, Ultra High Frequency (UHF) radio, and two Electrical Power Subsystems
(EPSs). One EPS is at NTNU and the other one is in Lithuania. The LidSat has
been used for testing on target hardware during development. The LidSat setup
with CSP IDs are shown in Figure 2.4. The OPU is the payload. The RGB and HSI
is connected to the OPU. The secondary EPS is not depicted since it is not a part
of the satellite but needs to be connected in order to power the FC. The Software
Defined Radio (SDR) is part of the HYPSO-2 satellite and is therefore added in
the figure, but not relevant in this thesis.
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Figure 2.4: The LidSat setup with CSP IDs. Figure is obtained from [27]

2.3 Systems Engineering and Development

The thesis was done as part of the HYPSO team which consisted of students com-
ing from a variety of different fields of study, as described in subsection 2.1.1. In
order to develop and collaborate efficiently in such a team, there was a need to
establish workflows and training procedures. It was also important to understand
the phase of the project as a whole.

2.3.1 Project Life Cycle

In order to effectively improve the operations of the HYPSO-1 satellite, there is a
need to understand the current stage of the project. There are multiple ways of
modeling the project life cycle. Organizations such as NASA and ESA have made
their own standards and implementations. [26] shows the NASA project life cycle,
but in this thesis, ESA’s representation in European Cooperation for Space Stand-
ardization (ECSS) was used. The ECSS is a European collaboration to develop a
coherent, single set of user-friendly standards for use in European space activities
[28]. These standards include a description of the project life cycle of satellite mis-
sions divided into different phases. Phase 0, phase A and phase B contain mission
definition and preliminary design, phases C and D span the detailed design, pro-
duction, and qualification, phase E considers the utilization, and phase F consists
of the disposal [29]. Phase E comprises reviews prior to launch, commissioning,
utilization, maintenance of orbital elements, and maintenance of the associated
ground segment [29]. The major tasks of this phase vary widely depending on the
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type of project concerned [29]. General tasks are: preparing space and ground
segments for launch, launch, and early orbital operations, commissioning, in-orbit
operations to achieve the mission objectives, ground segment activities to support
the mission, and finalizing the disposal plan [29]. Associated reviews are Flight
Readiness Review, Launch Readiness Review, Commisioning Results Review, and
End-of-Life Review [29]. The project life cycle is defined to assist project managers
with controlling the cost, schedule, and technical objective [29]. At the same time,
the ECSS is generalized, thus leading to tailoring for the specific mission being ne-
cessary [30].

2.3.2 Agile Software Development

The software development used in HYPSO is an agile approach. Agile software de-
velopment is a conceptual framework that starts with a planning phase and utilizes
an iterative and incremental approach to reach the deployment phase [31]. The
overall objective of the agile framework is to reduce overhead and increase the
adaptability to changes without excessive rework, even late in the development
[31]. The agile software development manifesto was developed in 2001 [32], and
consists of four principles:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

These four principles have proven themselves to be valuable in a compet-
itive environment with high degrees of uncertainty often associated with low-
Technology Readiness Level (TRL) components [32]. The agile software develop-
ment framework has inspired different trade-offs of these four principles leading
to different metodologys [4]. Adopting these metodologys has proven to increase
productivity and quality [33].

Extreme Programming

Extreme Programming (XP) is one of the most popular approach to agile software
development [4]. XP is based on four values [4]:

1. Communication: Software development is all about solving the problem of
the user [34]. The users are therefore part of the project team such that
everyone share the same view of the system [4].

2. Feedback: Continuous feedback from previous work help identify areas for
improvement [34]. Feedback can be from the system it itself or other project
members [4].

3. Simplicity: Features are not implemented before they are needed to help
developers concentrate [33]. It promotes working on current requirements
and not predicting the future [34]. The code is also preferred to be simple
[4].
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4. Courage: In case of something not working, the previous principles should
be kept in mind for the results to not harm the team [34].

According to [34], minimum accompanying measures are required in XP, mean-
ing creating documentation and project requirements are not required. However,
[4] and [33] rather claim that XP allows for flexible requirements through fre-
quent change. The metodology life cycle is presented in Figure 2.5.

Figure 2.5: Extreme Programming life cycle. Figure obtained from [4]

The HYPSO Software Development Method

The HYPSO team used an agile approach to software development. They arranged
weekly software meetings and bi-weekly sprints. During the sprint, the team re-
viewed the past sprint and planned the new sprint. To keep track of the sprint, the
team used a KanBan board on GitHub. Bugs and feature requests were submitted
as GitHub issues and graded based on how much time the team thought it would
take to solve. For further description of the sprint process, the reader is directed
to [18].

The software meetings were meant to plan software releases, ask questions
and update everyone on what members were working on and if they had any
problems. The team also included updating the KanBan board used in the sprint.
The meetings were arranged to be updated on milestones and the current stage
of development. The meetings were allocated time to get help, give help, and
provide input on current development goals, milestones, and development meth-
odology. For further description of the software meetings and how the software
methodology of the HYPSO team was formed, the reader is directed to [18].
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2.3.3 System Design Evaluation

System design evaluation is the inner compass of system design [35]. System
design requires integration and iteration coordinated by synthesis, analysis, and
evaluation between all steps [35]. The analysis is performed to quantify the per-
formance and is essential for the evaluation process [26]. Using design-dependent
parameters like reliability, maintainability, and sustainability, analysis, the evalu-
ation of a system design is made possible [35]. These design-dependent paramet-
ers are not necessarily the same as the performance parameters defined in [26].
A representation of the synthesis, analysis, and evaluation cycle is shown in Fig-
ure 2.6.

Figure 2.6: Synthesis, analysis, and evaluation cycle. Figure obtained from [35]

[35] defined the three terms and how they are best used. Synthesis is the
process of building the system by using creativity to put known things together
into a new and more useful combination. The analysis concerns the function of
estimating and predicting values for design-dependent parameters and design-
independent parameters. [35] stated that system analysis and operations research
is a part of the system evaluation, but insufficient. Evaluation requires alternative
designs to be compared to each other and their compliance with the user require-
ments. It is the design-dependent parameters that differ between the alternatives,
and the user should make the final decision [35].

2.3.4 Learning Styles

Due to the many different backgrounds the satellite operators had, it was looked
into theory about learning styles. In 1984, David A. Kolb published his work on
experimental learning styles, including Kolb’s learning cycle [36]. The learning
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cycle consists of four steps: concrete experience, reflective observation, abstract
conceptualization, and active experimentation [37]. The learning cycle assists
with transforming experience into usable knowledge. Within the same publica-
tion, Kolb discussed four different learning styles [37]. The authors of [37] adap-
ted the learning cycle to also include the learning styles, resulting in Figure 2.7.
Each learning style occupies a quadrant in the learning cycle[37]. The learning
styles are a combination of the adjacent stages and are a function of circumstances
and preferences [37]. In [38], Kolb found that the pattern associated with the
four learning styles comes from the transaction between people and their envir-
onment at five different levels: personality, education, specialization, professional
career, current job role, and adaptive competencies [38]. The divergent learn-
ing style is associated with valuing skills like helping others and sense-making
through concrete experience and reflective observations [37] [38]. The assimilat-
ive learning style combines reflective observation and abstract conceptualization
[37], and is associated with thinking skills [38]. Assimilative learners are good at
information-gathering, analysis, and theory building [38]. The convergent learn-
ing style combines abstract conceptualization and active experimentation and is
associated with decision skills like the use of technology and goal-setting [38]
[37]. Lastly, the accommodative learning style combines active experimentation
and concrete experience and is associated with practical, and intuitive problem-
solving [37]. Individuals often thrive in leadership and taking initiatives [38].
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Figure 2.7: Kolb’s learning cycle and learning styles. Figure obtained from [37]

2.4 Existing Tools and Team Structures in Satellite Oper-
ations

Since satellite operation is demanding there have previously been developed team
structures and tools to simplify and automate processes.

2.4.1 Selection of Tools

To combat the resource-consuming satellite operations, NASA JPL have developed
tools called generic inferential executor (GENIE), Generic Spacecraft Analyst As-
sistant (GenSAA), and Automated Scheduling and Planning Environment (AS-
PEN). GENIE is a pass automation tool that mimics normal operators and graph-
ically displays the progress during a pass [39]. GenSAA that informs operators
about potential issues with the satellite as well as probable causes [40]. ASPEN
is a tool that provides low-level commands from high-level input from operators
[40]. GENIE and GenSAA automate passes, assist in troubleshooting the satellite,
and helps monitor the health of the satellite. ASPEN reduce the knowledge base
the operation team must have by replacing the role of subsystem specialists. To-
gether, these tools allow for downsizing and changing the knowledge base needed
for operations by not needing to have subsystem specialists available for nominal
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operations. However, when put in use the operators, which often did not have a
software background, could rarely figure out why it stopped working when it ran
into problems [8].

2.4.2 The IntelliSTAR Team Structure

The structure of HYPSO’s operational structure was inspired from the Intelligent
Satellite Technology Automated Reasource (IntelliSTAR) structure. In [41], Thomas
P. Gathmann and Linas Raslavicius look at the full operations domain and have
proposed the IntelliSTAR architecture. The IntelliSTAR architecture divides the
satellite operations domain into four distinct classes: planner, controller, sub-
system specialist, and analyst [41]. The planners develop and maintain a plan
to satisfy the overall objectives, the controllers coordinate activities and follow
the execution, the subsystem specialists manage and maintain specific subsys-
tems, and the analyst assess the degree of success or failure after a mission [41].
Together, these classes cooperate to develop missions and schedules, follow exe-
cution, and assess the results [41].
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Methods and Workflow

This chapter will describe what method and workflow were used, why they were
chosen, and adaptations throughout the project period.

3.1 Development Workflow

The HYPSO team did not have any previously existing tools for payload and satel-
lite operation made for automating the payload utilization of the HYPSO-1 satel-
lite. Additionally, the team did not have any previous experience in operating the
satellite. Features, implementation, and integration to the satellite utilization were
therefore uncertain. It was natural to go for an agile approach to development due
to the uncertainty in the use cases for operations. As described in subsection 2.3.2,
an agile approach provides high adaptability to changing requirements. The users
of the tools were the operators. Since the author was an operator during the pro-
ject period, the author had good communication with the users of the tools, which
is required in an agile approach. Because of the small size of the HYPSO team,
contacting project members was easy. Instead of defining how the supporting op-
erational tools were to be designed at an early stage, it was rather chosen to solve
problems as they occurred. This aligns with the Extreme Programming (XP) met-
odology described in section 2.3.2. The chosen methodology was an adapted XP
methodology.

The XP metodology allows for rapid changes to the requirements and does
not include new features before they are needed. The user of the tools to be de-
veloped is the operators part of the HYPSO team. By focusing on solving the issues
the users are currently experiencing, it becomes easy to focus on the correct parts
of development. Feedback from the users also locates new areas to improve. As
described in section 2.3.2, the XP metodology is often used on low-TRL products,
something that corresponds well with the supporting operational tools set to be
developed. However, the development of these tools are primarily done by the
author. It is therefore not possible to follow the XP metodology exactly since the
pair-programming and in-depth code reviews are not possible. The development

21
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method used is therefore an adaptation of XP where pair-programming and code
reviews are exchanged with testing on the LidSat and letting other members test
the tools.

The users were part of the evaluation process in the development. Features
and issues to be resolved were communicated to the author. Multiple alternat-
ives were proposed, then evaluated by the author in collaboration with other
team members before the author implemented the chosen alternative. The design-
dependent parameters were mainly maintainability and development time since
the resources were limited. This process has similarities with the system design
evaluation shown in subsection 2.3.3. With inspiration from both XP and the sys-
tem design evaluation cycle, the chosen development workflow was therefore an
adaptation of these. Mainly, the method was iterative, allowed for rapidly chan-
ging requirements, and focused on swift deployment. The workflow chosen is il-
lustrated in Figure 3.1. Features to implement and issues to correct were found
by the author or other parts of the team. The team adopted an ad-hoc approach
to testing due to a lack of resources and time. After changes were implemented,
test scripts were tested on the LidSat. If errors were found during testing or after
deployment, it went back to requested changes. The metodology valued rapid
deployment over reliability. The tests on LidSat only proved the sequence was
functional but did not contain tests for all the parameters that affect the satellite
in orbit such as pointing, position, and timing of the capture. Instead of testing
for all such possibilities, circumstantial errors were fixed when they were found.
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Figure 3.1: Development workflow used in this thesis.

3.2 Satellite Operator Team Structure

The HYPSO team organized their operations team with inspiration from the Intel-
liSTAR architecture. The team was divided into three categories: mission planner,
operator, and data analyst. Multiple members had several of these roles i.e., all
operators were also trained as mission planners. The mission planners’ role
was to generate capture scripts, meaning FC and PC scripts, and coordinate them
by merging them all into one master script to be uploaded. The operators’ role
was to upload the capture scripts, monitor the health of the satellite through tele-
metry data, pull the payload data downloaded from the satellite, and monitor the
execution of the scripts. The data analysts’ role was to process the downloaded
captures and provide feedback on capture settings.

These classes do not cover the entirety of the classes described in the Intel-
liSTAR architecture. Instead of having a specific class responsible for the planning
of all objectives and targets, everyone was able to request specific targets through
the GitHub issue templates described in subsection 4.2.3. Coordination of object-
ives for the week was decided upon at a weekly satellite operations meeting with
the entire operations team. The analyst role specified by the IntelliSTAR archi-
tecture was filled by the team as a whole. Additionally, after capture campaigns,
the analyst role was filled by members from all parts of the observational pyr-
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amid described in subsection 2.1.1. The subsystem specialist role was partially
covered by understanding the payload capabilities of the mission planners and
data analysts when setting capture configurations. However, making the script
compatible with the script generator was mostly the author’s responsibility. If a
problem was found, the team coordinated themselves to set up ad-hoc task forces
for debugging if needed.

3.3 Training of Operators

Since the HYPSO team is a student team with high turnover, the members come
from a variety of different backgrounds and fields of study with no previous exper-
ience in operating a satellite. It is therefore challenging to make suitable training
programs for all new operators. The operational workflow is ever-changing in the
beginning. The chosen approach is therefore to make a document describing the
high-level components of the HYPSO-1 satellite in order to give members a gen-
eral understanding of the system to be operated. Then, new operators watch as
the experienced operator works and explained what they are doing. After some
time, the new operator tries the work themselves with support from an experi-
enced operator. The training of operators is therefore thought to follow the stages
shown in Figure 3.2. As an independent operator, the person is expected to be cap-
able of searching through documentation independently but that does not mean
the person cannot ask other operators for help. If other adaptations are necessary,
they will be added iteratively.

Figure 3.2: Stages of operator training
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HYPSO-1 Launch &
Commissioning

Design is an iterative process. The
necessary number of iterations is
one more than the number you have
currently done. This is true at any
point in time.

Dave Akin

HYPSO-1 was launched on the 13th of January 2022, and the first contact with
the satellite was made on the 14th of January 2022. This chapter describes the
first two months in the orbital life of HYPSO-1, focusing on the early operations
and the beginning of the commissioning of the satellite. This chapter will not go
deeply into the commissioning performed by NanoAvionics (NA), it will rather be
mentioned what was being done if applicable, and focus on the work performed
by the HYPer-spectral Smallsat for Ocean observation (HYPSO) team. During this
point in time, the complete focus was put on checking that all parts of the satellite
were functional and learning how to operate it. A timeline showing the different
stages is shown in Figure 4.1.

25
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Figure 4.1: Timeline of the first three months after launch

4.1 System Checkout

The system checkout is marked in the timeline by the yellow arrow in Figure 4.2.

Figure 4.2: Timeline showing the start of system checkout with the yellow arrow.

The commissioning phase is intended to verify that all systems work as in-
tended and optimize configurations [42]. Since the HYPSO team acquired the
satellite platform from NA, they performed system checkout and commissioning
of the satellite bus. NA’s early operations commenced by getting contact with
the satellite and pinging subsystems [43]. Then NA downloaded telemetry and
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updated the Electrical Power Subsystem (EPS) and Ultra High Frequency (UHF)
configurations [43]. After configurations were verified, NA initiated S-band com-
munication, set the satellite in pointing mode, uploaded Two Line Element (TLE),
verified the Attitude Determination and Control Subsystem (ADCS) and Payload
Controller (PC), before ending with uploading an end-of-LEOP configuration to all
subsystems [43]. After NA had performed successful system checkout on the satel-
lite platform, the On-Board Processing Unit (OPU) of the payload was powered on
for the HYPSO team to perform their system checkout on the 28th of January. The
Red-Green-Blue (RGB) camera and HyperSpectral Imager (HSI) were powered
on for system checkout on the 31st of January 2022. All system checkout was suc-
cessful, leading into the next phase of fully commissioning the subsystems, and
learning to operate the satellite.

4.2 Development of the Script Generator

In preparation for the commissioning, the HYPSO team made an Mission Opera-
tions Plan (MOP). The commissioning phase was not purely driven by the MOP
since the MOP included testing of features that were not possible to achieve un-
til several months later. This section will therefore cover the commissioning as a
timeline and show how the HYPSO team learned to operate the satellite and util-
ize their payload. Commissioning of the satellite platform was gradual and went
on until the official handover meeting on the 27th of April while commissioning of
the payload was not achieved within the thesis period. The following subsections
will follow the timeline starting from the yellow arrow shown in Figure 4.3.
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Figure 4.3: Timeline with a yellow arrow showing the start of the commissioning
phase

4.2.1 Generation of the Early Capture Scripts

The first capture scripts were made at a time when there was a lot of uncer-
tainty about how to use the platform. The HYPSO team did not know how to use
MCS and was not comfortable with using nanoMCS. Only a few members had used
nanoMCS and tried making a few simple script engine scripts prior to launch. At
this point in time, the pointing of the satellite was stable, but the HYPSO team was
not sure about how to use the ADCS subsystem. Additionally, attempts at making
pointing scripts were impossible to test on the ground 1 and there had been made
design changes to the configurations on the FC to control the ADCS shortly before
launch. At the same time, the payload commissioning was at its very beginning, so
the accuracy of targets was not a major concern since the team focused on finding
suitable camera configurations. The target of captures was therefore nadir passes
over land with as many features as possible. Since the functionalities of the OPU,
RGB camera, and HSI were verified during the system checkout, the team focused
on the objective of finding suitable exposure times for both the HSI and RGB cam-
era.

The first Payload Controller (PC) and Flight Computer (FC) scripts, described
in subsection 2.2.5, were made using a tool the author has developed. The tool
parsed through the log generated from an instance of running hypso-cli and

1The LidSat was not equipped with an ADCS. Testing the ADCS in Earth gravity was not possible
without e.g., a Helmholtz cage, but could have been simulated in a Hardware In the Loop (HIL)
setup.
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wrote the command and corresponding CubeSat Space Protocol (CSP) packet to
a text file. It also fetched the timestamps of the command and wrote script delays
into the output file in order to make a script that recreated the sequence the op-
erator inputted to the LidSat. The outputted text file would therefore recreate the
same operation executed in the instance of hypso-cli in the same sequence with
an identical delay between commands. This tool was seen as a semi-autonomous
tool at best since the script converted a human-readable version to a script version,
but would only recreate the sequence and timing of what was typed in. Therefore,
the operator had to act like a script engine or modify the scripts afterward. Ad-
ditionally, the scripts depended on the file structure of the LidSat being an exact
copy of the file structure on HYPSO-1.

Even though accuracy was not a major concern at the early stage, it was ne-
cessary to learn how to capture at the correct time and have the satellite pointing
the camera instruments towards Earth. The default pointing of the satellite had
the camera payloads pointing towards nadir as a constrained vector, which was
deemed sufficient for the first captures, thus leading to not making a FC script to
change the satellite’s attitude. The Payload Controller (PC) script was started at a
time that gave the Red-Green-Blue (RGB) camera and the HyperSpectral Imager
(HSI) a seemingly good pointing towards an area with a lot of features to find
suitable camera configurations using the System Tool Kit (STK) software. Before
uploading the PC scripts, the scripts were tested on the LidSat and verified by an-
other team member to ensure they were functional. The upload was done using
the hypso-cli and not the task scheduler in the MCS. From the first scripts, it
became clear that the RGB camera was not performing as expected. It had passed
the system checkout since it was capturing pictures, but experienced unforeseen
anomalies. The pseudocode of one of the first capture scripts is shown in Code
listing 4.1. The script captured 10 RGB captures with the same configuration, and
two HSI captures with different configurations. The capture script was made us-
ing the tool that parsed through the hypso-cli log. From the timestamps, one can
see that the timing has been manually altered after generation.

Code listing 4.1: Capture script for Sahara capture

#13:59:48 Power on the OPU
script delay 9000

#13:59:57 Power on the RGB camera
script delay 34000

#14:00:31 Initialize the RGB camera
script delay 22000

#14:00:53 rgb configure 0.0202 -1 -1 -1 -1
script delay 1000

#14:01:04 rgb capture n rgb png sahara0
script delay 10000
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#14:01:17 rgb capture n rgb png sahara1
script delay 10000

#14:01:30 rgb capture n rgb png sahara2
script delay 10000

#14:01:42 rgb capture n rgb png sahara3
script delay 10000

#14:01:54 rgb capture n rgb png sahara4
script delay 10000

#14:02:06 rgb capture n rgb png sahara5
script delay 10000

#14:02:19 rgb capture n rgb png sahara6
script delay 10000

#14:02:31 rgb capture n rgb png sahara7
script delay 10000

#14:02:42 rgb capture n rgb png sahara8
script delay 10000

#14:02:54 rgb capture n rgb png sahara9
script delay 10000

#Added after generation rgb print
script delay 1000

#14:03:06 rgb deinit
script delay 14000

# tar cvmof sahara_rgb.tar rgb-images/sahara*
script delay 5000

#14:03:20 hsi capture -n 50 -f 10 -e 10 -s
script delay 51000

#14:04:11 hsi capture -n 2 -f 1 -e 10 -b 1 -s -w 1936 -h 1216
script delay 55000

#14:05:06 opu shutdown

4.2.2 Reusing Previous Scripts

After some time of generating specific scripts for each capture, the team figured
out some functional capture configurations and sequences which made it possible
to reuse previous scripts and exchange a few commands instead of generating a
whole new script from scratch. Commands and sequences that worked were used
in new versions while errors were corrected. The author also attempted making
pointing scripts for the FC even though NA made their own scripts. The FC scripts
were sent to NA for feedback. Eventually, these FC scripts were at the level where
NA deemed them good enough to use and added them to the script file they made
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for their commissioning of the satellite bus. The pointing scripts used quaternion-
pointing mode, which allowed the team to point the HSI off-nadir for captures,
thus opening up more possible target locations. Capturing off-nadir images was
also an objective during the payload commissioning. For more information about
quaternion pointing, the reader is directed to [44]. The HYPSO team slowly star-
ted becoming more confident with operating the satellite. At this point in time, NA
used MCS for their operations while HYPSO manually connected to the satellite
using the direct connection method that circumvented the rest of the MCS sub-
systems during passes over the NTNU Ground Station (GS).

Throughout these scripts, the team also tried buffering data from the payload
to the PC. Buffering of the capture to the PC was desired since the PC had a faster
communication bus to the S-band transceiver than the OPU. The Controller Area
Network (CAN)-bus between the PC and payload had a data rate of 1000 kbps
while the S-band transceiver had a data rate of about 1.4 Mbps. Additionally, the
CAN-bus was structured as shown in Figure 4.4. The CAN-bus used headers and
footers totaling 8 bytes of overhead to send 8 bytes of data in one frame. The
information rate of the CAN-bus was therefore 500 kbps, which was much lower
than the data rate of the S-band transceiver [45].

Figure 4.4: Mapping of a CSP packet to the CAN-bus. Figure obtained from [46]

By instead buffering the capture to the PC, the utilization of the S-band down-
load speed was maximized. Buffering the capture to the PC was less power ef-
ficient, but the HYPSO-1 satellite had a more constrained download time than
power budget, thus leading to all captures being manually buffered to the PC one
pass after the capture was executed. The increased downlink capacity led to the
team testing capture of a full hyperspectral cube using hardware compression,
thus marking off another capability defined in the MOP.

Within these scripts, it was also concluded that the RGB imager was not use-
ful due to the anomalies experienced, thus its utilization ceased. Instead, RGB
composites of the hyperspectral images were made with the HSI. This made it
even more important that images had to be taken along coastlines or land to have
enough features to georeference the captures. Throughout this period, it became
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clear that the capture modes in the MOP defined prior to launch were not suit-
able to follow. Instead of testing these capture modes, the team decided to apply
the newly obtained knowledge from the captures that were taken to improve the
capture quality, which was the essence of the MOP.

4.2.3 GitHub Issue Template for Requesting Captures

One of the major pain points of script generation was for the operator to get all
the necessary information. Members interesting in the data asked for captures of
specific targets leading to a lot of overhead for the operator. To ensure that enough
information was given to the operator the author made a GitHub issue-template
for requesting captures. The issue template limited the workload of the operator
by providing coordinates, pointing type, defining time constraints for helping with
prioritizing script generation, and HSI capture configurations. By including all this
information, the operator avoided having to look into all requested captures to
figure out what scripts to make first. The operators also did not need to have a
deep understanding of suitable capture configuration for that specific target. It
was also made a KanBan board with the swimlanes:

• todo
• script writing and planning
• scripts ready to be uploaded,
• scripts uploaded and in execution until all files are downloaded
• verified captures - ready to delete files on spacecraft
• done

These swimlanes made it easy for the operator to get an overview of the captures
to be done, and once a week the HYPSO team planned objectives for the week.
Organizing it on GitHub was also compatible with HYPSO’s software workflow.

4.2.4 First Script Templates

NA used a lot of time to commission the ADCS system compared to other M6P sub-
systems. One of the reasons was that the HYPSO team had requested a mission-
specific maneuver called slew. The HSI is placed on the Z-axis of the satellite, and
the slew maneuver is a pointing mode rotating the z-axis across the nadir vector
at a specific angular velocity, shown in Figure 1.1. Therefore, as the satellite flies
past a target, the rotation compensates for the movement of the satellite. For a
more thorough explanation of the slew maneuver, the reader is directed to [47].
Due to the slew mode still being under testing, the HYPSO team did not use the
mode, and instead used quaternion pointing or nadir pointing for captures.

When the scripts were at a point where the team settled on a functional se-
quence of commands, the author made script templates where timing was calcu-
lated for that specific sequence of commands. One only had to find the timestamp
of the middle of the capture and then fill out the unix-times described in the script
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template. However, updating all these unix times was tedious work and some er-
rors were made because of this. At the same time, having these unix-times pre-
calculated made it easier for the operator to generate the scripts and for others
to verify them. Buffering was also included as part of the script instead of being
done manually, saving one pass per capture before having it downloaded. In addi-
tion, since the command sequence had become static, the hypso-cli parser was
not used anymore since it was only needed to update a few commands between
scripts. Standard delays were also incorporated leading to improved timing of
captures, thus also improved accuracy.

Scripts were still slightly updated when errors or improvements were found.
One of the scripts had an erroneous capture. The capture command automatically
named the capture folder as hsi<index> where the index comes from the number
of existing folders following this structure. Therefore, when the buffering com-
mand was run, the file to buffer from was hard-coded into the script. Since one
capture failed, all the rest was named with the wrong index, causing them to fail.
Therefore, the following scripts were updated to rename all capture folders after
the capture was completed to force all new captures to be named hsi0 such that
one erroneous capture would not propagate to other captures. The problem with
continuously updating the script template was that it made other members un-
certain about what version to use. Some members opted to use an earlier version
of scripts that had been functional previously instead of using the latest version
of the script templates. This led to different versions of scripts being used, thus
not forming unified naming conventions and sequences. These discrepancies led
to confusion, particularly for operators with limited knowledge of how to use the
payload.

At this point, the team had tested all the short-term functionalities described
in the MOP. There were still tasks to be done on the calibration of the HSI, in-orbit
software updates, capture using the slew maneuver, dimensionality reduction, and
further improved exposure times. Slew capture was completed on the 7th of April
and exposure times have been improved, but the software update and dimension-
ality reduction were not completed during the project period of this thesis.

4.3 Increasing the Number of Captures

In order to maximize payload utilization of the HYPSO-1 satellite, operations of
the satellite had to be made more accessible for new members, and the time-
consuming tasks had to be mitigated. However, the satellite also had to produce
payload data, not just telemetry. It was therefore made generic capture scripts that
took, and buffered, one capture each night. There were no specific targets meant
for these generic targets other than randomly selected coastlines. Since there was
not a specific target, the scripts were quicker and easier to produce. The names
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of the captures were also set to be generic, thus leading to scripts only needing
updated timestamps between scripts. The scripts cleaned up after themselves on
the OPU. However, this also meant that if one download failed, the cube would
be deleted. Having the capture deleted was not deemed an issue since the generic
captures were of a lower priority, thus leading to less workload per downloaded
capture. Manual cleanup and updating names each week would take a too long
time to be worthy of possibly saving a few extra captures without integrity. The
time consumed doing so would be put to better use by generating more targeted
captures of higher quality instead.

There were three major changes from the targeted scripts to the generic scripts.
The first one being that the FC script started the PC script. Since the FC script star-
ted the PC script, and all capture configurations and names were the same, the
PC script did not have to be updated. The script engine utilization is shown in
Figure 4.5. Not updating the PC script reduced the number of timestamps to be
updated from four timestamps down to one per capture. This change not only re-
duced the amount of work but also the chance of human error. The second major
change was that the author scheduled automatic download tasks through MCS
to download the captures, a change that also was implemented in the script tem-
plates afterward. The captures, therefore, relied on MCS to successfully download
the captures each day. The third and final major change was that verification of
scripts became excessive since only the timestamps of the captures itself were
updated and the timestamp could not be verified by testing on the LidSat. Only
timing within a script could be tested on the LidSat. Since there were no specific
targets to aim towards, all captures were taken nadir, thus resulting in it being
easy to georeference the captures. The timestamp of capture start was chosen and
put into the orbit simulation software STK, and the capture location was found.

Being reliant on the MCS reduced the amount of work, but MCS also crashed
sometimes. It was decided to do cleanup and download manually. It became clear
that being reliant on MCS might also be a bad thing. Instead of following the plan
of not caring about the generic captures, the author put in the effort to manually
clean up.
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Figure 4.5: Two different ways of using the script engine. The version to the left
use the script engine on the FC to start the script engine on the PC. The example
to the right shows them running independently.

4.3.1 Second Version of Script Templates

Throughout the period of using script templates, improvements were done to the
scripts when needed, based on the feedback from the operators. The most notable
improvement was that the scripts buffered the capture as part of the PC script such
that the operator only had to download the capture and not manually buffer them.
The author also started getting familiar with MCS and set up automatic download
tasks by using the task scheduler on the 22nd of February. By doing so, operators
only had to asynchronously pull the payload data from the database on AWS. The
second version of script templates also had improved timing of capture to further
improve accuracy. It was implemented with another script delay command that
made the payload wait until a specified unix-time before issuing the capture com-
mand. It added an extra unix-time to update when making scripts but made the
timing of the capture have less uncertainty. The second version of script templates
also included more information about the calculation of the delays, thus making
it possible for other operators to change the capture configuration and calculate
updated delays correspondingly. At last, the second generation included an im-
proved metazip that collected more of the useful telemetry data surrounding the
capture, thus leading to fewer files needing to be downloaded manually.
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4.3.2 Improved Generic Capture Scripts

The second version of the generic captures made and buffered a metazip with sup-
porting information surrounding the capture, which previously had been down-
loaded manually. Additionally, the scripts cleared the buffer files used on the PC
after download. The buffer files were log files with a file size of 100 MB that
rewrote itself from the beginning if it was full. They did not have to be cleared
between each use since the File Transfer Manager (FTM) in MCS continuously
checked the entries corresponding to different file versions. However, if MCS
crashed, manually figuring out these entry numbers was challenging. By clear-
ing the files between all captures, manual download or cleanup would be easier
in case of an error happening. This change did not follow the plan that generic
captures were of a lower priority than targeted captures. The change was an easy
preventative measure to make, and gave the operators an option in case the cap-
ture seemed to be of a good quality based on the file size. Having the generic
script on the PC also made it easy to take ad-hoc captures during passes without
knowing how to operate the payload. One only had to start the PC script and
the capture would be taken, buffered, and downloaded automatically. Figure 4.6
shows four of the captures taken by the generic scripts. At this point in time, NA
did not test much other than their slew maneuver. All scripts were therefore sent
to NA on a weekly basis to merge with their scripts and NA planned their tests
around the capture times.
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(a) Low-resolution
RGB-composite the
generic capture on
the 1st of April

(b) Low-resolution
RGB-composite the
generic capture on
the 5th of April

(c) Low-resolution
RGB-composite the
generic capture on
the 5th of May

(d) Low-resolution
RGB-composite the
generic capture on
the 13th of May

Figure 4.6: Low-resolution RGB-composites of four generic captures

4.3.3 Training of Operators

During the whole timeline from Figure 4.1, a prominent problem was that a lot
of new members struggled to learn how to be an operator. The author wrote a
user manual ([48]) introducing the PC and FC subsystems, the csp txrx command,
timing considerations and the script templates. Since the workflow of operations
rapidly changed and operating the satellite required reactiveness in addition to
proactiveness, it was attempted to give the reader an understanding in order to
apply the knowledge to specific situations instead of following a specific sequence.
The document explained all the involved parts of making scripts. It became clear
that the members that understood the document either had a previous under-
standing of the system or systematically understood all of the documentation by
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asking specific questions when something was unclear. The members without this
previous knowledge of the system instead made their own bullet-point list of how
to make scripts. The bullet-point list made them capable of making scripts but
lacked an understanding of what they did. This led to scripts using the wrong
parameter values or being uploaded to the wrong script engine since they copied
the values from the example in the bullet-point list. Additionally, the members
never obtained the fundamental knowledge of how the system worked, thus lead-
ing to errors and time-consuming troubleshooting.

4.4 Automating Communication with the Satellite

MCS had the potential for automating parts of the time-consuming operation that
was done manually by the HYPSO team. This section will cover the initiatives
taken in order to utilize these capabilities.

Compared to subsection 2.4.1, MCS covered the same areas as GENIE and
partially GenSAA and ASPEN through having a task scheduler, automatic down-
load of telemetry and payload data, and visualizing the telemetry data using
Grafana. However, it did not provide information about potential errors and prob-
able causes. Additionally, nanoMCS did not have access to the remote shell of the
OPU. Nevertheless, it was decided to use MCS since it was already integrated with
the satellite platform. If another system were to be used, tailoring for utilization
of the mission-specific payload would still have had to be done. In [49] and [50],
they found that integration is time-consuming in academic CubeSat missions, and
advised other academic CubeSat missions to start easy and iteratively build upon
the functionality. Using MCS gave a functional baseline during the development of
additional tools to further automate operations. It was therefore chosen to build
upon MCS by starting to utilize its capabilities and developing supporting tools
with new functionality.

As mentioned above, MCS fully covered pass automation through the task
scheduler. However, it did not cover assisting in troubleshooting or generating
low-level scripts based on high-level input. It was chosen to begin by automating
the utilization of the satellite before automating troubleshooting since the author
had more knowledge about the payload than the satellite platform. Additionally,
there is no need for a healthy satellite if it does not produce any useful payload
data. To partially cover the troubleshooting it was instead scheduled automatic
downloads of all necessary telemetry needed to manually troubleshoot asynchron-
ously.
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4.4.1 Task Scheduling

The use of the task scheduler is shown by the yellow arrow in the timeline in
Figure 4.7

Figure 4.7: Timeline showing where the work with the task scheduler began
indicated by the yellow arrow.

The task scheduler could be used for file upload, file download, and nanoMCS
tasks. The file upload task uploads the defined file to the specified subsystem and
file id. The file download task downloads the content of a specified file id on the
defined subsystem of the satellite. The nanoMCS tasks were used for other commu-
nication with the satellite. All tasks could be given a name, a priority ranging from
1 - 100, a duration it was allowed to run for, a timestamp of when to activate, if
it should be repeated on all passes, and if the task depended on the outcome of
any other tasks. Additionally, the task scheduler supported the Microsoft common
parameters (described in [51]). The task scheduler produced logs from all satel-
lite passes and had the ability to show the live progress of a pass. If a task was
scheduled to run at a specific timestamp, it was attempted at the first possibility
after that given timestamp. If the task failed, it was attempted again during the
following pass until it reaches success.

Instead of having all operators learn how to use the task scheduler and the
syntax of nanoMCS, the author made generic tasks that could be resumed with
minimal edits. File uploads were set up using nanoMCS tasks instead of file upload
tasks. The nanoMCS tasks were used since they allowed for ensuring that the script
engine the file was uploaded to was enabled, running the correct script file, and
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could start the script engine. The file upload task was not suitable for the upload of
script files since it only uploaded the script file without starting the script engine.
The file upload was therefore only suitable for uploading files that were not meant
to be executable, such as Two Line Element (TLE) files. A pseudocode example of
one such script is provided in Code listing 4.2. The task started by ensuring that the
script engine was correctly configured by enabling it, aborting any current scripts if
one was running, and setting it to the correct script file. Then the task uploaded the
capture script before starting the script engine and ended by checking the status of
the script engine. All commands were running until success with a delay of 1000
ms between each attempt. For the script upload, the script file was allocated two
seconds to complete the upload, with a 10 ms period between entries. In order to
upload a new file, other operators only had to change the file path in the upload
command, then resume the task in order to activate it.

Code listing 4.2: script upload task

#enable script engine

#abort current script in case any are running

#reconfigure script engine to run file ID 15

#Upload of the capture script

#start script

#Check status

Such generic tasks were made for upload to all script engines on the satellite.
There were also made tasks to reboot the different subsystems on the satellite in
case that became a necessity. Automatic download of telemetry data from all sub-
systems of the satellite platform was scheduled to be executed on every satellite
pass. The tasks that were set to always be active are shown in Table 4.1
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Table 4.1: Overview of the task scheduler task that are always on

Name Purpose
eps-gs-wdt-reset Reset watchdog timer
comm-gs-wdt-reset Reset watchdog timer
srs4-gs-wdt-reset Reset watchdog timer
srs4-read-stats Download telemetry
read-config-status Check when- and how many times configs has changed
read-configs Check all active-, main-, and fallback configurations
read-versions Get githash and bootloader versions
check-time Check RTC and GPS time
FT-FC-SE0-LOG The log output of script engine 0 on the FC
FT-FC-SE1-LOG The log output of script engine 1 on the FC
FT-EPS-Telemetry EPS telemetry download
FT-COMM-1-Telemetry UHF telemetry download
FT-FC-Telemetry FC telemetry download
FT-COMM-2-Telemetry UHF telemetry download
FT-EPS-Startup-Telem EPS startup telemetry download
FT-COMM-1-Startup-Telem UHF startup telemetry download
FT-FC-Startup-Telem FC startup telemetry download
FT-PC-SE1-log-18 The log output of script engine 0 on the PC
FT-PC-SE0-log-17 The log output of script engine 1 on the PC
SE-status-FC-PC Status of the script engines on the FC and PC
FT-PC-Telemetry PC telemetry download
FT-PC-Startup-Telem PC startup telemetry download
FT-FC-ADCS-Telemetry ADCS telemetry download
FT-PC-File-33 Download of buffer-file 33
FT-PC-File-34 Download of buffer-file 34
FT-PC-File-35 Download of buffer-file 35
FT-PC-File-36 Download of buffer-file 36
FT-PC-File-37 Download of buffer-file 37
FT-PC-File-38 Download of buffer-file 38
FT-PC-File-39 Download of buffer-file 39
FT-PC-File-40 Download of buffer-file 40
FT-FC-GPS-log Download of GPS data

All these tasks were attempted to execute on all passes the HYPSO-1 satellite
had above any of the GSs in use. Tasks were added continuously when the author
found of need for them.

Key points from this section are summarized below:

• The task scheduler made it possible to work on the satellite without waiting
for HYPSO-1 to be in the range of a GS.
• The task scheduler was used to download telemetry data for monitoring and

troubleshooting the satellite continuously.
• The author made generic tasks that anyone could easily resume, thus not
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needing to make their own tasks.

4.4.2 Interfacing with the Payload Using the Task Scheduler

As stated in subsection 4.4.1, the task scheduler could run nanoMCS scripts. The PC
was made to interface with the payload, but only with peripherals and CSP. The
interface was therefore done through the PC shell. One problem that occurred
was that even though the PC and the OPU supported CSP, the implementation
differed. The M6P subsystems implemented the use of CSP through a csp txrx
command. The csp txrx command was declared as csp txrx node<int> port<int>
delay<ms> hex_code, where the node was the CSP id given to specific subsystems,
port was the service port used to route the message correctly, the delay was the
amount of time the command could wait for an acknowledge up until 3000 ms.
The hex-code was the command itself in hex format. The command was denoted
as an error if no acknowledgment was received within the timeframe given. How-
ever, the OPU was implemented with functions sending acknowledgments when
the function was completed successfully. The two different implementations led
to some commands timing out and being denoted as an error even though it was
a success. This issue is visualized in Figure 4.8.
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Figure 4.8: Sequence diagram of how the PC denotes a successfull command as
a failure since the timeout is exceeded.

The response time limitation led to a problem with the command for buffering
captures from the OPU to the PC since it only sent an acknowledge after buffering
was complete, and the timing used for the command was dependent on the size of
the file. This led to it being impossible to use the repeat-until-success functionality
in the task scheduler since it would denote the buffering as a failure and re-send
another buffering command. Not only would such an error potentially cause the
payload to become confused, but it would also prevent further scheduled tasks
from running since it would re-try the same command over and over. Since the
task itself would be denoted as an error, it would be attempted during all future
passes until the task was stopped by an operator. Additionally, it would buffer
more unnecessary data to the file which would also waste resources by down-



44 Department of Electronic Systems: Maximizing HYPSO-1 Payload Utilization

loading if not stopped by an operator. Interfacing with the payload was possible
but was only done with caution. The author’s solution was to submit a GitHub
issue on sending an acknowledgment for the start of buffering instead of waiting
until the buffering was finished such that these problems were circumvented. The
change is implemented in the current software release on the ground that will
eventually be uploaded to the HYPSO-1 satellite.

Even with the problems with the use of the buffering command when using
the task scheduler, there was made an attempt to make a task to daily download
the payload logs. Since the task scheduler only supported running a task on every
pass or after a specifically given timestamp, the task had to be resumed daily.
This was done by setting up a task using Windows task scheduler to open the
interface to MCS and command it to resume the task every night. The task was
resumed during the night since it would then be executed during the first pass of
the morning, which always was a low elevation pass not used for imaging, thus
not interfering with capture objectives. It could not use the repeat-until-success
functionality, so it had to only send the buffering command once and hope it was
successful. Pseudocode of the task is presented in Code listing 4.3. Even though it
deleted old logs with no security in actually completing the buffering of the file,
it was tried for about a month since all logs were backed up in the metadata of
each capture. The times the satellite had imaged since the last download of logs
and there was a capture pass on the second pass of the day, the logs download
ran close to captures happening. The reason for it happening on the second pass
was that the task was denoted as a failure on the first pass because of a large log
file, thus resulting in the buffering not being completed within three seconds. The
task was then executed again on the second pass. The task was therefore paused
until the coming software update.

Code listing 4.3: Automatic payload logs download task

# Power on OPU

#Wait for OPU to boot
delay 25000

Clear the buffer-file

#ls -l

#delete old logs.tar file

#make new logs.tar

#delete logs/*

#buffer logs.tar to file id 33. This command use more than 3sec and cannot be
#repeated so we just have to hope it works

#Wait for buffering to complete
delay 20000
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Key points from this section are summarized below:

• It was possible to interface with the payload using the task scheduler.
• The CSP implementation on the M6P platform differed from the implement-

ation on the payload leading to some commands always being denoted as
a failure.
• A software update on the payload will make them compatible.

4.4.3 Automating Script Generation

The automatic script generation is shown in the timeline by the yellow arrow in

Figure 4.9: Timeline showing where the work with the script generator began
indicated by the yellow arrow.

The first version of the script generator was a python script taking some high-
level user-input to generate capture scripts. The initial script generator only made
nadir capture script and was ready for use on the 18th of march. The input needed
was the unixtime of highest elevation above the capture target, name of the cap-
ture, exposure time and the file-id to buffer the hsi-cube and metazip to. The tool
made capture planning a lot easier and was therefore extended to cover more
capture modes the next day. On the 19th of march it was therefore possible to
select nadir-, quaternion-, generic-, or slew pointing. The script generator calcu-
lated FPS from the exposure-time input since it was desired to have the highest
possible FPS in order to maximize the spatial resolution. This useful tool removed
the knowledge barrier connected to using hypso-cli, understanding the csp in-
terface between the PC and OPU, and previous capture scripts. Additionally, all
timings were calculated and optimized for the different capture modes. Based on
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EPS telemetry, the power budget was not a limiting factor, but the satellite lifetime
is affected by the depth of discharge of the EPS [1]. The Cycle Life of the power
supply differs between batteries, but the relationship between cycle life and depth
of discharge is of an exponential nature [1].

Since all the script structures were static and made by the python script, the
scripts did not have to be tested on the ground before uploading to the satellite,
which removed the time needed for testing as well as severely mitigated the prob-
ability of errors. Additionally, if errors were found, they only had to be fixed once
and they would never occur again. Since the team was still learning to utilize the
HYPSO-1 satellite, the operational patterns slightly altered from day to day and
week to week. These alterations led to a need for frequent, but small, adjustments.

Functionality of the Script Generator

The script generator translates high-level user input into predefined capture struc-
tures and CSP packets. The output of the script generator is a PC- and FC script.
As described in subsection 2.2.5, the PC script handles commands related to the
payload while the FC script takes care of commands to the ADCS. The script en-
gine on the PC runs the script in the PC shell, thus meaning it has access to shell
commands on its internal subsystem, but has to use CSP packets to communicate
with other subsystems. One example of how these hex-codes looks is provided in
Figure 4.10 where the hsi capture command is defined.

With the addition of the script generator, the time used for generating capture
scripts heavily decreased. Captures for the week were planned every Monday at
noon, and scripts were uploaded the same evening.
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Figure 4.10: Definition of how the hex-code of the hsi capture command is built.
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The script generator takes the exposure-time input, calculates the FPS and
then translates the inputs to their correct hex-value to make the hex-string of the
equivalent CSP packet of the shell command, shown in Figure 4.11.
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Figure 4.11: Description of how a shell command is translated to its equivalent
csp packet.
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The script generator calculates the necessary parameters and then translates
them into the CSP packets used by the csp txrx command. The CSP id and port are
hardcoded since the structure of the scripts is always the same. All the variables
lie within the hex-code part of the csp txrx command. An overview of the dataflow
of the script generator is shown in Figure 4.12. The user input leads to a selection
of a specific capture structure before generating separate PC and FC scripts. A
pseudocode example of the outputted script files can be found in Code listing A.1
and Code listing A.1.

Figure 4.12: High-level dataflow of the script generator

Key points from this section are summarized below:
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• The script generator makes deterministic capture scripts from high-level in-
put.
• The script generator removes all human errors within the scripts.
• Since scripts are deterministic they do not have to be tested before being

uploaded to the satellite.
• The introduction of the script generator removed the need for operators to

have extensive knowledge about hypso-cli, CSP, and previous scripts in
order to make capture scripts.





Chapter 5

Using the Script Generator for
Mission Specific Capture
Campaigns

(Shea’s Law) The ability to improve
a design occurs primarily at the
interfaces. This is also the prime
location for screwing it up.

Dave Akin

Throughout the project period, the HYPSO-1 satellite was used in two separ-
ate mission specific capture campaigns even though the payload commissioning
was not complete. Due to the payload still being in commissioning, the main ob-
jectives of the capture campaigns were mostly set on showing the concept, not
producing valuable payload data. The campaign captures had a higher priority
than all other captures. Having a higher priority meant that other captures would
be removed if they interfered with the campaign captures. This chapter will de-
scribe the preparations, execution, and experiences done within these campaigns.

5.1 Frohavet - The First Campaign

The Frohavet capture campaign for HYPSO-1 spanned from the 23rd of March up
until the 2nd of May, but the active campaign spanned from the 28th of March
until the 27th of April. The capture campaign was executed as part of the Mission-
oriented autonomous systems with small satellites for maritime sensing, surveil-
lance and communication (MASSIVE) project, including other remote agents from
the observational pyramid shown in Figure 2.1. HYPSO-1 was still in commission-
ing, so the objective of HYPSO-1 in the campaign was to show the concept of the
full observational pyramid. A timeline of the capture campaign is shown in Fig-
ure 5.1. An overview of the errors is shown in Table 5.1.

53
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Table 5.1: Description of error IDs

ID Description

E01
Reboots caused by simultaneously reading
and writing to the memory card on the PC

E02
MCS crash caused by the FTM and
Task Scheduler running out of memory

E03
PC not accessing the SD card since it
loaded into the wrong bootloader

E04
Renaming error on the OPU caused by
multiple captures having the same name

E05 Star Tracker anomalies

Figure 5.1: Timeline of the Frohavet capture campaign

5.1.1 Preparation

To prepare for the Frohavet capture campaign, HYPSO-1 started capturing hyper-
spectral images of the target area ahead of the other autonomous agents being
deployed. This was done as a test to see if the correct target was hit or not. The
first attempt missed the target due to calculating the wrong quaternions and the
second attempt was lost due to a reboot, thus causing the script engines on the
PC to stop. Reboots became a frequent problem during buffering of captures and
were later found to be caused by E01. These buffering problems led to a change
in the script generator. Instead of deleting old captures, old captures were now
stored as safety captures on the OPU until an operator manually deleted them.
The safety copies were made to have a backup of the capture in the case that
buffering would fail such that it was not deleted before the next capture was
scheduled to happen. At this point in time, the generic captures were happening
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during the local nighttime, and Frohavet captures happened during the highest
elevation pass over the GS since the target area was right beside the GS. As a result
of the captures happening during the highest elevation pass, the capture timings
of the script generator were improved to not point towards the target area with
the cameras longer than necessary and instead get back to pointing the S-band
antenna towards the GS to downlink payload data more efficiently.

5.1.2 How the Workflow Affected the Main Campaign

The capture campaign consisted of a drone equipped with an HSI V4 instrument,
a drone equipped with a hypserspectral SpecIm AFX10 imager, an Unmanned Sur-
face Vehicle (USV), a Light Unmanned Surface Vehicle (LUSV), and the HYPSO-1
satellite [52]. All the remote agents were equipped with an HSI as part of their
sensor suite. Additionally, radiometric measurements, water sampling, and a nu-
merical simulation model were used [52]. The campaign consisted of two phases.
During phase 1, all of the aforementioned techniques were used over a timespan
of 36 hours [52]. Phase 2 consisted of the AUV, the numerical simulation model,
and occasional water samples [52]. The objective of the first phase was to see
what level of detail surveillance using HSIs could provide. The objective of the
second phase was to validate the numerical model and HYPSO-1’s capability of
tracking changes in the coastal environment over time using the LUSV as a ground
truth.

During phase 1, the capture on the 28th of March was lost due to a reboot,
but on the 29th of March, HYPSO-1 captured the image shown in Figure 5.2. At
the same time as the capture in Figure 5.2 was taken, the other remote agents
were deployed in the same location. In [52], E. Oudijk made a figure showing
the ground track of the other remote agents during the capture campaign. This
overview is shown in Figure 5.3.
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(a) Low resolution RGB-composite of
the the image captured by the HSI on
HYPSO-1

(b) Ground plot of the capture made by
Dennis Langer

Figure 5.2: Low-resolution RGB-composite of the capture taken during the phase
1 of the Frohavet capture campaign

During phase 2 of the campaign time, HYPSO-1 still suffered from many re-
boots later found to be caused by E01. Most of the team went on easter vacation
leaving only the author as the sole operator for about two weeks during this cam-
paign. Additionally, since the algae bloom season was starting, the number of
captures increased. The team had previously only executed one or two captures a
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Figure 5.3: Map showing the ground track of the remote agents during both
phases of the capture campaign. Figure obtained from [52]

day but was planning to take five captures on the 9th and 10th of April. Changes
done when adding the safety copy led to captures not being deleted but rather re-
named. These changes were not implemented for the generic captures since they
were of a lower priority. The sequence of the resulting error caused by the addi-
tion of safety copies is shown in Figure 5.4
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Figure 5.4: Sequence describing the E04 error.
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The safety copy became a problem since it resulted in a need for different
names on all captures and was not communicated clearly to the mission plan-
ners, leading to the error named E04. The first capture happened as normal and
renamed the capture folder from hsi0 to the specified name. However, since the
next capture was also named frohavet, the hsi0 folder was put inside the existing
hsi0 folder, leading to a wrong path for the buffering command, thus buffering
the first frohavet capture once more.

The third capture using the same name caused the renaming command to fail
because of the existing folder. This meant the next generic capture was named
hsi1 because there already existed a folder named hsi0, as described in subsec-
tion 4.2.4. Nevertheless, the script renamed the capture in the hsi0 folder to gen-
eric and buffered it. That meant the capture named generic was actually the third
forhavet capture. Since the generic capture deleted the folder after itself, it did
not cause any further issues with the generic captures. The next frohavet capture
then had the same malfunction and buffered the first frohavet capture once more.
The following capture was named balaton. Since there existed an hsi0 folder, it
was named hsi1. It then renamed the hsi0 folder, which was actually the fourth
frohavet capture, to balaton and buffered it. The frohavet capture was then named
hsi0 and again buffered the first frohavet capture. The following generic capture
was then named hsi2 and renamed the fifth frohavet capture under the name of
generic before deleting the folder.

Lastly, the frohavet capture had the same malfunction as earlier and buffered
the first frohavet capture once more. This became an alternating series where hsi-
folders piled up and were stored under the incorrect names. This went on for a
couple of more iterations before the author stopped the scripts and figured out the
cause. The error went unnoticed for so long since there were other errors happen-
ing at the same time.

While the captures piled up, the download tasks stopped working and MCS
crashed because the FTM and the task scheduler went out of memory, named E02.
In communication with NA, that issue was fixed. At this point, the capture scripts
were aborted and it was attempted to rebuffer the captures to the PC. However,
the satellite stopped downloading the captures even though the logs from the
OPU showed that buffering was completed. It was later found out that the PC had
booted into the wrong bootloader, named E03, leading to it not having access to
the memory card where the captures were stored. When this was figured out, the
author found the cause for why the captures got intertwined and started down-
loading and cleaning up to resolve E04.

After setting up new scripts, the satellite started having major pointing issues
because of anomalies with the star tracker (E05), leading to many of the cap-
tures missing the target. During the active campaign, HYPSO-1 captured a total
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of 50 captures, where 24 were attempts at the target area. Many of the Frohavet-
captures suffered from being overexposed because of cloud cover or missed the
target area, but the campaign was denoted as a success since it did show the
concept of the observational pyramid with the successful captures. Figure 5.5
shows a selection of three captures showing three different types of captures. Fig-
ure 5.5a shows an overexposed capture that hit cloud cover, Figure 5.5b shows a
good capture, and Figure 5.5c shows a capture with pointing issues caused by the
star tracker anomalies.
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(a) Overexposed low res-
olution RGB-composite of
the image captured by the
HSI on HYPSO-1 on the
2nd of April

(b) Low resolution RGB-
composite of the the im-
age captured by the HSI
on HYPSO-1 on the 19th of
April

(c) Low resolution RGB-
composite of the the im-
age captured by the HSI
on HYPSO-1 on the 24th

of April showing the point-
ing issues caused by star
tracker anomalies.

Figure 5.5: A selection of three low-resolution RGB-composites of captures taken
during the Frohavet capture campaign by the HSI on the HYPSO-1 satellite. The
captures show one that is overexposed, one that is good, and one that has pointing
issues.



62 Department of Electronic Systems: Maximizing HYPSO-1 Payload Utilization

5.1.3 Experiences and Improvements

Towards the end of the capture campaign, it was found that one of the causes
of the PC reboots was buffering captures within a GS pass. Since the captures
happened within the range of the GS, the buffering commenced as previous cap-
tures were downloading, thus reading and writing to the memory card on the PC
at the same time (E01). The HYPSO team did not consider that the position of
the satellite during captures affected the sequence needed to successfully execute
a capture script. It was therefore added new functionality to the script generator
where the mission planners could set a delay flag causing captures to delay buf-
fering of the hyperspectral cube by 20 minutes. However, it became clear that
multiple mission planners did not understand the utilization of the delay flag,
meaning it was used for all captures, and not only the captures happening within
range of the GS.

Additional changes to the script generator were the addition of the checksum
of the hyperspectral cube to the metazip of the captures. Using checksums to com-
pare the downloaded captures with the checksum of the capture on the satellite
was a preventative measure to help locate the corresponding captures in case of
situations like the one described in Figure 5.4 happen again. The metazip and
hyperspectral cube were also merged to be one file instead of two separate files to
make it easier to match the correct metazip to the capture. This change also used
fewer files on the PC, leading to coordination of captures being easier. The star
tracker was also taken out of the script temporarily while waiting for the anom-
alies to be corrected. Lastly, the reboots pushed a change to add better comments
in the scripts such that it was easier for operators to figure out what commands
the script had executed in case of reboots happening.

From the capture campaign, the team experienced that one should always plan
for errors. The team did not plan operator responsibilities for the whole campaign,
but rather made the planning on the weekly meeting as usual. This resulted in a
lack of operators during the Easter holiday. The lack of operators led to the au-
thor being the sole operator for around two consecutive weeks. Having only one
operator for an extended period of time is demanding and makes troubleshooting
slow. The author had to make decisions without discussing them with the rest of
the team. By having more operators available, the workload could have been split
up, leading to a faster recovery.

Key points from this section are summarized below:

• The team encountered three unpredictable errors (E02, E03, and E05) dur-
ing the campaign. The team also encountered two errors (E01 and E04)
caused by human error due to lacking an understanding of the system of
systems.
• The script generator was updated to make it easier to resolve the issues that
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were encountered in the future, but could not prevent them.
• The team attempted five captures in a single day. Not all captures were suc-

cessful, but the team was capable of generating scripts for all the captures.

5.2 Estimation of the Total Theoretical Captures per Day

After the Frohavet capture campaign where the team planned for a total of five
captures on two of the days, it was desired to estimate the total amount of captures
possible to capture per day. Using only the NTNU GS, the satellite has a line of sight
to the GS for an average of 10 passes per day, with a total theoretical duration of
100minutes [53]. The satellite link is shared with the tasks described in Table 4.1,
leading to approximately 60 minutes used for the download of captures [53]. As
mentioned in subsection 4.2.2, the S-band on HYPSO-1 has a data rate of 1.4
Mbps. The information rate was approximately averaging an information rate of
1 Mbps, thus having a theoretical downlink capacity per day of

(60 ∗ 60) ∗
1 ∗ 106 bi t

s
= 3600M b = 450MB

One full hyperspectral cube captured by HYPSO-1 is 153 MB, but is compressed
to 80 MB or less using the CCSDS123 compression algorithm [53]. Assuming full
cubes, the thoretically number of captures per day HYPSO-1 can downlink is

450MB
80MB

= 5.625

The team can increase this capacity by booking passes using the KSAT GSs. Addi-
tionally, most captures are below 80 MB. Therefore, HYPSO-1 is capable of down-
linking about 6 captures per day.

5.3 Kongsfjorden - The Second Campaign

The Kongsfjorden capture campaign happened from the 19th of May until the
29th of May. The capture campaign was executed as part of the Mission-oriented
autonomous systems with small satellites for maritime sensing, surveillance and
communication (MASSIVE) project, including other remote agents from the obser-
vational pyramid shown in Figure 2.1. The objective of the campaign for HYPSO-
1 was to get several captures of target areas with ground truth measurements
provided by other remote agents. The timeline of the campaign is shown in Fig-
ure 5.6. An updated error table is provided in Table 5.2.
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Table 5.2: Updated description of error IDs

ID Description

E01
Reboots caused by simultaneously reading
and writing to the memory card on the PC

E02
MCS crash caused by the FTM and
Task Scheduler running out of memory

E03
PC not accessing the SD card since it
loaded into the wrong bootloader

E04
Renaming error on the OPU caused by
multiple captures having the same name

E05 Star Tracker anomalies

E06
Pointing issues caused by not updating
the TLE on the satellite

Figure 5.6: Timeline of the Kongsfjorden campaign.

5.3.1 Preparation

Ahead of the Kongsfjorden capture campaign, the team set up planning meet-
ings to discuss what capture modes to use, how many captures to take, respons-
ibilities, and test captures ahead of the campaign. It was decided upon taking
one capture of the target area each day for a week ahead of the main campaign,
and two captures of the target area during the main campaign. One member was
chosen to be the main mission planner, and another member was selected to
be the main operator. The author was not part of the staff during this campaign
but was reachable for questions if necessary. As part of the preparation for the
campaign, the author made video tutorials and flowcharts describing the oper-
ator’s responsibilities and the most common troubleshooting. Each section in the
flowcharts had a corresponding video describing how to execute the specific task
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with explanations. Additionally, the author made a generator for making rebuf-
fering scripts. Operators were not comfortable with making scripts from scratch
themselves, thus meaning they manually buffered the files. However, manually
buffering files meant that there was a high chance for buffering and download to
happen at the same time since it was started within a pass, thus getting new in-
stances of E01. The rebuffering generator took the folder name of the capture and
the timestamp for rebuffering as input and outputted a script that would rebuffer
the captures at the specified timestamp.

Safety copies of captures were still being used, thus meaning an operator had
to delete captures after they were successfully downlinked. As part of preparing for
the Kongsfjorden capture campaign, the author did not take on as many operator
responsibilities as previously. Instead, the campaign team operated the satellite
for an extended amount of time with the author being the operator when neces-
sary. It quickly became clear that the cleanup on the satellite had been neglected,
causing a total of 32 captures to be stored on the satellite. The author cleaned up
the captures and told the team they need to clear up the satellite at least once a
week.

One of the captures taken prior to the main capture campaigns is shown in
Figure 5.7. The ground track in Figure 5.7b was calculated from the attitude de-
termination telemetry from HYPSO-1, but did not correspond to the capture itself.
The HYPSO team was not able to solve these pointing issues before the main cap-
ture campaign started.

5.3.2 How the Workflow Affected the Main Campaign

During the main capture campaign, the HYPSO team planned for two captures of
Kongsfjorden every day. The first capture was always during the morning passes,
and the second capture was during the evening. In addition to these captures, it
was planned captures of other targets. Throughout the main capture campaign,
HYPSO-1 captured a total of 44 images. Of these, 27 captures were attempts at
the target area. Instead of the planned two captures per day, the team started
attempting to capture three captures per day. The third capture had a bigger off-
nadir angle between the satellite and the target area. Nevertheless, it was decided
to attempt as many captures as possible. In order to downlink all the captures, the
team booked KSAT passes. Another measure by the campaign team was to inten-
tionally aim the capture a bit off target as it seemed like the pointing error had
a systematic error. On the 29th of May, two of the three captures hit the intended
target area, shown in Figure 5.8.

Several of the captures had buffering or downlink errors due to errors done
during the coordination of the captures. These errors were solved by re-buffering
the captures since they were stored in the safety copies. The main cause of the
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(a) Low resolution RGB-composite of an
image captured by the HSI on HYPSO-1
on the 13th of May.

(b) Ground track of the low res-
olution RGB-composite calculated
from the attitude determination
telemetry of HYPSO-1 made by
Dennis Langer

Figure 5.7: Low resolution RGB-composite of Kongsfjorden taken by HYPSO-1
on the 13th of May. The ground track incorrect.
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(a) Low resolution RGB-
composite of the hyper-
spectral cube captured by
HYPSO-1 at 11:11:13 UTC
on the 29th of May

(b) Low resolution RGB-
composite of the hyper-
spectral cube captured by
HYPSO-1 at 12:47:16 UTC
on the 29th of May

(c) Low resolution RGB-
composite of the hyper-
spectral cube captured by
HYPSO-1 at 19:04:46 UTC
on the 29th of May. The
capture missed the inten-
ded target.

Figure 5.8: Low resolution RGB-composite of the captures taken of svalbard by
HYPSO-1 on the 29th of May

buffering and downlink errors was a lack of coordination of the captures. The
lack of coordination caused some captures to be too close in time and led to one
of them overwriting the file on the PC before the downlink of the previous capture
was completed. There were also errors done when merging the scripts together
into one script file, thus resulting in lost captures. The problems were reduced by
stopping the generic captures to instead focus on the targeted captures. Therefore,
the generic captures were stopped on the 21st of May.

5.3.3 Experiences and Improvements

After the capture campaign, the cause of the E06 pointing error was found. The
star tracker was still not in use because of the anomalies found during the Fro-
havet campaign, meaning that the satellite relied upon the IMU for its attitude
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determination. The IMU consisted of a gyroscope, accelerometer, and magneto-
meter. The magnetometer relied on geomagnetic models of the Earth to compare
with its measurements [54]. Using positional knowledge, one could find the atti-
tude of the satellite [54]. HYPSO-1 found its position by using Two Line Element
(TLE) uploaded from the ground. On the 22nd of June, it was discovered that
the automatic Two Line Element (TLE) upload had malfunctioned, thus leaving
the satellite with outdated position information. The issue was resolved and the
Two Line Element (TLE) upload was resumed. Afterward, the pointing accuracy
increased notably.

During the capture campaign, HYPSO-1 captured up to six captures per day,
which is at the theoretical limit of how many captures could be downlinked in a
day, found in section 5.2. However, since a lot of the captures had overexposed
areas, they were more aggressively compressed, thus resulting in smaller file sizes.

Key points from this section are summarized below:

• The Kongsfjorden campaign was performed without the author as a mem-
ber of the campaign team. It was deemed a success, thus showing that the
operator training and the developed tools eased operations.
• The generic captures were stopped due to an increased amount of targeted

captures, thus showing script generation was simplified.
• The team captures up to six captures in a day.
• The team only suffered from one unresolved issue, but the issue lasted

throughout the entire campaign.

5.4 Total Captures and Timing Accuracy

Over the thesis period spanning from the launch until the end of June 2022,
HYPSO-1 has taken a total of 240 hyperspectral cubes. Figure 5.9 shows a timeline
of all captures taken throughout the thesis period. The timeline clearly shows an
increase in the number of captures over the project period, especially during the
Kongsfjorden capture campaign. Figure 5.10 shows the total captures from each
month, making the increasing trend up until May more noticeable, which aver-
aged 2.94 captures per day.
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Figure 5.9: Capture timeline of all hyperspectral captures downloaded from the
HYPSO-1 satellite from launch until then end of June 2022

Figure 5.10: Monthly captures downloaded from the HYPSO-1 satellite

The timing accuracy of captures was collected from a set of randomly selec-
ted captures spanning different versions of the tools used for making scripts. The
database only includes captures planned with a specified target timestamp for
capture start. The results are shown in Figure 5.11. There was a sudden spike to
58seconds on the 18th and 19th of March that is not shown due to the axes being
stretched out. The spike was caused by an error in calculating delays from the
script generator.
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Figure 5.11: Timing offset between attempted start of capture and actual start
of capture



Chapter 6

Discussion

6.1 Asynchronous Operations

As described in chapter 4, operations of the HYPSO-1 satellite was originally per-
formed manually within a pass. This means operators waited for the satellite to be
in the range of the GS and manually typed in commands. This way of operating
the satellite was gradually replaced by utilizing the task scheduler in MCS, thus
making most operations asynchronous, meaning scheduling commands ahead of
satellite passes. Using automated download tasks, all troubleshooting and nom-
inal operation of the satellite bus has become fully asynchronous. However, the
payload still needs manual involvement. As described in subsection 4.4.2, the au-
thor made an attempt to automate the download of logs from the payload but was
unsuccessful. Additionally, the inclusion of the safety copies meant that operators
needs to manually delete old captures at least once a week.

The author did find a solution for how to automate the logs from the pay-
load which is included in the upcoming software update, but the cleanup on the
satellite still needs to be done manually. It is possible to make scripts to delete
the files on the payload but automating deletion is unnecessarily risky. Something
that could be done is to make a generator for cleanup scripts that require file-
names and folder names as input, but checks the input and denies the user access
to delete certain important files. This still requires the operators to have an over-
view of the current file structure on the payload, but that can be automatically
downloaded using the same solution as the automated logs download. A fully
asynchronous operational pattern of the HYPSO-1 satellite is therefore possible
but was not achieved in this work.

For the automatic download of logs, one can utilize the Microsoft common
parameters to disregard the error of the buffering command or set a time limita-
tion of the task in order to mitigate the repercussions the task will have on other
scheduled tasks. However, adapting the task to fail successfully does not seem like
a good design and has the potential to confuse other operators.

71
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6.2 Satellite Operator Team Structure

The HYPSO operational team being based upon having weekly coordination meet-
ings makes members susceptible to confusion if they cannot participate. The op-
erational workflow changes rapidly, thus meaning if a member cannot participate
they might lose out on new knowledge and experiences. Additionally, the defined
mission planner, operator, and data analyst roles have overlapping responsib-
ilities. Most of the team members also had multiple of these roles at the same
time, meaning mission planners were often also operators and/or data ana-
lysts and vice versa for the other roles. The fact that all operators were trained
to also be mission planners clearly shows that the structure was not optimal.
The reason for operators being trained as mission planners was to provide them
with an understanding of how the scripts worked such that they were capable of
troubleshooting. Vice versa, the mission planners had to operate the satellite to
understand how different captures were affected by the position of the satellite to
prevent errors like E04. Even though tools like the task scheduler and the script
generator existed, the operators had to know how to use them. This directly con-
tradicted the reasoning behind separating the responsibilities defined in the team
structure in the first place. Additionally, all members had other commitments and
roles in the HYPSO team as well. Therefore, the operational team structure defined
in section 3.2 was not followed in practice. It was not possible with the small size
of the team. Because of the small team size, it could be beneficial to instead define
the skill set of each member instead. The IntelliSTAR team structure the HYPSO
team based themselves upon was defined for established operational teams, and
was maybe not suitable for such a young team.

The main problem could also be that satellite operations are normally de-
scribed from a commercial perspective where operators have a functional pipeline
and operators on duty at all times. This is not the case for academic organizations.
The HYPSO team consisted of several part-time operators with other commitments
to the organization. One can therefore not compare commercial satellite opera-
tions with academic satellite operations.

Throughout the two capture campaigns, the team experienced coordination
and communication problems. Being a small team usually makes communication
easier, but if the team is too small each member needs to have knowledge within
multiple fields, thus making it hard to focus on a specific area. Having tools to
automate parts of the chain only removes the need for specific knowledge of how
the part is made, it does not remove the need to understand how the part works
as part of the chain. Extending the team could improve the situation by allowing
more specific roles. The problem could also come from the high turnover of per-
sonnel, meaning the best solution would be to focus on improving the training to
give all members a better understanding of the system of systems.
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6.3 Operator Training

Operators had to learn mission planning as part of their training in order to be able
to troubleshoot if errors occurred, thus spanning a wide range of tasks. When op-
erator training started, it was expected for them to have read the documentation,
but it became clear that members from different backgrounds and fields of study
did not get the same foundation from the documentation. Therefore, they made
their own bullet-point list describing how to execute different tasks. The bullet-
point list was then used instead of the documentation because it gave the direct
answer. The documentation prepared by the author did not give direct answers
since it instead explained the functionality. The bullet-point list did not provide an
understanding of the system of systems. When the video tutorial was made, the
problem was partially solved. It was probably because the video tutorial showed
exactly the sequence of commands necessary to execute a specific task, but also
explained why it did so. Therefore, the video tutorials covered the areas of both
the bullet-point list and the documentation. It might also be because it gave op-
erators an alternative learning method, thus covering more of the learning styles
described in Figure 2.7.

6.4 Simplification of Operations

It is clear that the work done in this thesis has made operating the HYPSO-1 satel-
lite easier. The first capture script took three days to make without pointing to a
specific target whilst requiring special knowledge about hypso-cli, the payload,
and the M6P satellite bus. Additionally, the first capture scripts were manually
uploaded and payload data was manually downlinked within a pass. At the end
of the thesis period, the team planned up to five captures a day for a week at
a time in the timespan between the weekly meeting and the scheduled upload
of scripts the same evening. The upload of scripts and downlink of captures was
done automatically by using the task scheduler. Figure 5.9 shows an increase in
the number of captures throughout the project period. Additionally, the diagram
only shows the number of captures, not their size. In the beginning, captures were
smaller to test camera configurations. Then, the generic captures without specific
target areas were attempted daily from the 23rd of February until the 21st of May.
The fact that the generic captures were aborted due to an increased amount of
targeted captures clearly shows that script generation had been simplified.

The testing of scripts on the ground was seen as excessive with the addition of
the script generator, but the team still experienced a lot of errors throughout the
whole project period. The script generator was tested using the LidSat after every
new addition, but the testing was not thorough enough. By generating a script
and testing it on the LidSat, the only thing being tested was that the sequence
was functional for that one script. The problems experienced did not concern the
sequence or commands being wrong, but rather the utilization of it being wrong.
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The addition of the safety copies led to a need for using different names on all
captures. When tested on the LidSat this was done, but when it was used to gen-
erate capture scripts for HYPSO-1 this was not done. The testing on LidSat did
not cover variables like the satellite position, thus leading to the E04 error exper-
ienced in the Frohavet capture campaign. These factors are difficult to test for.
One way of solving it would be for other operators to verify all capture scripts be-
fore their upload, but that is time-consuming in an already resource-constrained
team. Therefore, it means the training of operators and communication with the
mission planners should be improved to make all members aware of these opera-
tional dependencies.

One of the main problems with operational dependencies was that the mis-
sion planners, who made the scripts, quickly adopted changes to make the script
generation easier, but did not easily adopt the changes made to account for the
operational dependencies like naming conventions and the delay flag to prevent
occurrences of E04. These changes were understood by some operators that had
to correct the errors after they occurred, but not by the mission planners who had
to make the preventative measures. These problems might have been resolved or
reduced if the author focused more on the operator training instead of simplifying
the tools to be used. By simplifying the utilization of the tools, the author enabled
mission planners to make scripts without having a fundamental understanding
of why it works. As mentioned, not all operators that had to fix the errors that oc-
curred from operational dependencies understood what caused the problem. They
simply followed the bullet-point list or the video tutorial describing how to correct
it. I.e., an operator would figure out that a capture was not downloaded correctly
due to a reboot, but not understand that the reboot was caused by not using the
delay flag during mission planning, thus resulting in simultaneously reading and
writing to the same memory on the PC. However, correctly classifying the cause
of a reboot was hard and was often done by the author.

A preventative measure could be to discuss all reboots in the weekly meetings
such that all team members get an explanation of the cause. Another measure
could be to improve the tools, i.e., making the script generator calculate the pos-
ition of the satellite during the capture and from that calculate if the delay flag is
necessary or not. This is part of a trade-off between how much knowledge an op-
erator should have and how much time should be used on automating operations.

If operators have less knowledge of the system it will become harder for them
to notice and locate errors, just like [8] stated when using the tools developed by
NASA. Therefore, overlapping roles were seen as a necessity to obtain an under-
standing of the rapidly changing system of systems. It is not possible for a single
operator to be an expert in all fields, but it is possible to have a fundamental un-
derstanding of the system itself.
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Operations of the HYPSO-1 satellite should be further automated, but it is im-
portant for operators to understand how to best operate the satellite while the
tools are being developed in order to continuously utilize the satellite. When mis-
sion planning becomes a full pipeline the uncertainties associated with human
involvement are removed, leading to a deterministic output. When a full pipeline
is achieved, a more strict team structure can be defined and utilized. If an error
is found, a subsystem specialist can fix the error in the pipeline. Until the full
pipeline is achieved it is impossible to calculate or reason to find the best balance.
It needs to be found by being open to changes and applying experiences.

6.5 Answering the Research Questions

6.5.1 RQ1 - Task Scheduling

It is possible to work fully asynchronously with the operations of HYPSO-1, mean-
ing that one never has to wait for the satellite to be in reach of a GS to execute spe-
cific tasks. Working fully asynchronously is not achieved for the HYPSO-1 satellite
at this time, but is possible. All monitoring and commands to the satellite plat-
form is possible to do asynchronously, but commands on the payload that take
more than three seconds to succeed are not possible to schedule using the task
scheduler. In order to make the payload compatible with the three-second timeout
of the task scheduler, the payload needs a software update to return an acknow-
ledgment at the start of the command instead of at the end.

6.5.2 RQ2 - Reducing the Amount of Errors in Capture Scripts

It is not possible to prevent all types of errors while reducing the amount of testing
on the ground. It is possible to prevent typos and logic errors within spacecraft
scripts while not having to test the scripts by using tools to generate them, but
these simple tools do not account for all faults that can be experienced. Capture
scripts can miss the target area due to wrongful pointing parameters or erroneous
capture timing. The tools developed in this thesis automated parts of the pipeline
on the ground necessary to run capture scripts on the satellite, but members still
had to use the tools correctly. The script generator and the generic task scheduler
tasks removed all human error contained within these scripts but did not remove
the human error when using these tools. To further remove human error the team
needs to extend the tools on the ground to be a full pipeline.

To achieve a full pipeline on the ground, the team needs to make additional
tools. The input to the pipeline should be a target area. Then, the pipeline should
provide a set of possible capture timestamps of that target area which the mis-
sion planner can select. The automated parts include calculating the pointing
parameters, generating the capture scripts, and scheduling uploads of the scripts
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using the task scheduler. If all these parts are automated, errors are contained to
unpredictable errors and the ability to select the wrong target area.

The HYPSO-1 satellite encountered multiple unpredictable errors like the star
tracker anomalies and unintentional reboots. The number of errors can therefore
be reduced to only these unpredictable errors while not having to test on the
ground, given that a full pipeline from the selection of the target areas to the
upload of scripts to the satellite is implemented. Until the pipeline is achieved,
the HYPSO team needs to rely on coordination and communication to reduce the
number of errors.

6.5.3 RQ3 - Training of Operators

The project organization should facilitate operator training by accommodating
multiple learning styles. This is especially important for teams with members from
different fields of study. In an academic team without a fully automatic pipeline
of script generation - like HYPSO - it is important for members to have a funda-
mental understanding of the total system of systems since the members have to
use the supporting tools correctly. If a full pipeline is achieved, members would not
need to understand the system of systems in order to utilize the satellite payload,
but it would be required for troubleshooting. Since RQ2 concluded that unpre-
dictable errors cannot be totally removed, it is important to have a fundamental
understanding of the satellite to resolve issues like E06, where the automatic TLE
upload malfunctioned. The academic project organization should therefore facil-
itate operator training by focusing on understanding the system of systems, and
accommodating different learning styles. The project organization should also be
aware of caveats connected with the learning methods, i.e., using video tutorials
resolves one specific issue without necessarily providing an answer to the root
cause of the issue.
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Conclusion

This thesis serves as the beginning of automating the utilization of the HYPSO-
1 satellite in order to maximize payload utilization. It describes the functional
baseline when the HYPSO-1 satellite was launched and shows the continuous im-
provements throughout the thesis period. It describes the steps going from doing
everything manually to working almost fully asynchronously, meaning scheduling
all commands to the satellite instead of waiting for it to be in the range of a GS.
It shows a variety of problems the team was faced with, how they were fixed, and
preventative measures that were implemented to prevent the errors from happen-
ing again. The method used focused on rapid development and fixing problems
when they were encountered instead of testing for all possibilities before deploy-
ment. The thesis found that it is possible to work fully asynchronously with the
operations of the HYPSO-1 satellite, but did not achieve it during the thesis period.

HYPSO-1 utilized spacecraft scripts to execute captures automatically. In order
to reduce the number of errors during capture whilst also reducing the amount
of testing on the ground, it was made a script generator that took high-level in-
put to generate low-level output. The addition of the script generator reduced the
time and knowledge needed to make capture scripts, and the number of errors in
the scripts by having a deterministic output. The testing on the ground became
excessive because the output of the script generator was deterministic, thus only
needing to be tested once. However, it only prevented errors in the script itself,
not errors in the utilization of the script generator. It was found that circumstan-
tial errors were impossible to predict. Therefore, it was not possible to prevent all
errors. Furthermore, the supporting tools used in the operations of the HYPSO-1
satellite should be integrated into a pipeline to prevent uncertainties associated
with human interference.

During the development of the supporting tools, it was found that the pro-
ject organization should adapt their operator training to cover multiple learning
styles. The work also found it important for the mission planners to operate the
satellite in order to understand how parameters like the position of the satellite
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could affect the capture. It becomes a trade-off between the level of automation
and the operator’s capability of fixing the error when they occur. In conclusion,
during the development of supporting tools to operate the satellite, there is a need
for understanding the system of systems, thus resulting in it being a necessity with
overlapping roles.

Overall, the HYPSO-1 satellite captured 240 hyperspectral cubes with the HSI
during the thesis period. Script generation has gone from taking three days for
a single capture down to less than one day to plan captures for an entire week.
The accuracy of captures has increased from not being aimed towards a specific
target at all, to within two seconds of the desired start time. HYPSO-1 reached
an average of 2.94 captures per day in the month of May and has captured up
to six captures in a single day. In conclusion, there are still improvements to be
done concerning the capacity, quality, and resource utilization for operations of
the HYPSO-1 satellite, but the payload utilization has been drastically improved
over the thesis period.

7.1 Future Work

Future work includes executing a software update of the satellite such that the
payload does not require manual download and deletion of logs. It also includes
continuing to improve the timing accuracy of captures. More of the necessary lo-
gic used for mission planning should be automated, but thoroughly described in
the documentation. The tools should be integrated into a pipeline that also cal-
culates pointing parameters and accommodates for position dependencies of the
satellite. Lastly, a tool like Generic Spacecraft Analyst Assistant (GenSAA) should
be developed to assist in troubleshooting.
Other upgrades to be done concerns the capacity of captures. Features like the
one proposed in [53], using the compression ratio of captures to determine if
they should be buffered or deleted, should be added.
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Appendix A

Additional Material

Code listing A.1: Pseudocode of an Flight Computer (FC) script of a slew man-
euver generated by the script generator

#OPU active: 07/08/22 10:43:34 - 07/08/22 11:43:34
# Slew pointing script for targeted capture. Mid capture at 1657277040

#read rtc time

#Turn on star tracker 30 minutes ahead of capture script
#turn on star tracker at 07/08/22 10:09:34 UNIX: 1657274974
script delayuntil 1657274974

#elevating role

#Power on star tracker
script delay 1000

#Turn on accurate determination

#Script start at: 07/08/22 10:39:34 UNIX: 1657276774
# script start 866 seconds before mid-capture
script delayuntil 1657276174

# elevating role again in case it was changed

#set priority of the pointing target to 0

#defining target to be SLEW pointing. It needs to init at least 320sec in advance

# Set priority to 0 in safe-mode

#Set start time of the slew maneuver

#Set duration of the slew maneuver

#Set start off-nadir degree with respect to the y-axis in body frame

#Set stop off-nadir degree with respect to the y-axis in body frame

# Set pointing priority to highest priority => starting pointing when timestamp hits

#Waiting until 266 seconds before mid-capture
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script delayuntil 1657276774

#Wait one minute for kalman filter to estimate bias

#Setting ADCS telemetry rate to 4Hz for 453 seconds. Needs to be lower than 10minutes

#Set EPS telemetry rate at 0.1Hz for 17 min

#Read rtc time

# waiting 453 seconds
script delay 453000

#Setting back to normal pointing by disabling this target

#Set ADCS telemetry rate back to normal rate

#Set ADCS mode back to coarse determination mode

#Power off the star tracker

#end script
#=================================================================================

Code listing A.2: Pseudocode of an Payload Controller (PC) script of a slew man-
euver generated by the script generator

#OPU active: 07/08/22 10:43:34 - 07/08/22 11:43:34
# Slew pointing script for targeted capture. Mid capture at 1657277040

#read rtc time

#Turn on star tracker 30 minutes ahead of capture script
#turn on star tracker at 07/08/22 10:09:34 UNIX: 1657274974
script delayuntil 1657274974

#elevating role

#Power on star tracker
script delay 1000

#Turn on accurate determination

#Script start at: 07/08/22 10:39:34 UNIX: 1657276774
# script start 866 seconds before mid-capture
script delayuntil 1657276174

# elevating role again in case it was changed

#set priority of the pointing target to 0

#defining target to be SLEW pointing. It needs to init at least 320sec in advance

# Set priority to 0 in safe-mode

#Set start time of the slew maneuver

#Set duration of the slew maneuver
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#Set start off-nadir degree with respect to the y-axis in body frame

#Set stop off-nadir degree with respect to the y-axis in body frame

# Set pointing priority to highest priority => starting pointing when timestamp hits

#Waiting until 266 seconds before mid-capture
script delayuntil 1657276774

#Wait one minute for kalman filter to estimate bias

#Setting ADCS telemetry rate to 4Hz for 453 seconds. Needs to be lower than 10minutes

#Set EPS telemetry rate at 0.1Hz for 17 min

#Read rtc time

# waiting 453 seconds
script delay 453000

#Setting back to normal pointing by disabling this target

#Set ADCS telemetry rate back to normal rate

#Set ADCS mode back to coarse determination mode

#Power off the star tracker

#end script
#=================================================================================
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