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We describe the thermodynamic state of a single-phase fluid confined to a

porous medium with Hill’s thermodynamics of small systems, also known as

nanothermodynamics. This way of defining small system thermodynamics, with

a separate set of control variables, may be useful for the study of transport in

non-deformable porous media, where presently no consensus exists on

pressure computations. For a confined fluid, we observe that there are two

pressures, the integral and the differential pressures. We use molecular

simulations to investigate and confirm the nanothermodynamic relations for

a representative elementary volume (REV). For amodel systemof a single-phase

fluid in a face-centered cubic lattice of solid spheres of varying porosity, we

calculate the fluid density, fluid-solid surface tension, replica energy, integral

pressure, entropy, and internal energy.
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1 Introduction

Transport in porous media takes place in a vast range of systems, natural as well as

man-made. It is thus important to have a deep understanding of the relevant driving

forces and their coupling, for instance to describe production of clean water [1–3], CO2

sequestration [4–6], transport of oxygen, hydrogen, and water in fuel cell catalytic layers

[7, 8], and transport in lithium-ion battery electrodes and separators [9–11].

The long-range aim of this work is to obtain a general thermodynamic theory of

transport of immiscible fluids in porous media on the macroscale [12–14]. In this work,

we pursue a thermodynamic route to define the pressures of fluids in porous media, as

opposed to a mechanical definition. The aim is to provide a thermodynamic basis for

Darcy’s law. This theory must first describe the thermodynamic state of the fluids in the

porous media. To do this we use a bottom-up approach, a procedure that includes all

details of the system on the nanoscale in the construction of a representative elementary

volume (REV) [15–17]. The procedure gives a coarse-grained description of the REV on

the macroscale, or what is called the Darcy level [12–16]. A central issue is to find the

pressure of the REV. Figure 1 illustrates the problem for the cases studied in this work. A
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fluid (blue) occupies the pores in a porous material (grey). The

pores are so narrow that interactions between fluid and wall

become significant, or in other words, that the fluid-wall surface

energy becomes significant. But how can we define and

determine the properties of the REV, for instance, the

pressure? Can we find a representative elementary volume, for

which this is possible? In this work, we aim to find answers to

these questions.

In bulk fluids, the hydrostatic pressure is well defined,

measurable, and well documented as the driving force of the

fluid flow. In porous media, where fluids are confined by the

pores, however, there is no consensus of neither the

thermodynamic nor the mechanical definitions of the

pressures. It requires special treatment due to the

heterogeneity of the system. In this work, we use

nanothermodynamics to define thermodynamic pressures of

fluids in porous media. The microscopic mechanical pressure

tensor is inherently ambiguous [18, 19]. In this context, we make

an emphasis on the milestone work of Israelachvili [20] who

documented short- and long-range forces on fluid particles

exerted by the surroundings, and on the thermodynamic

analysis that was pioneered by Derjaguin [21].

We have previously proposed thermodynamic definitions for

the pressure of heterogeneous media, applying Hill’s idea of

thermodynamics for small systems [13, 14, 22–24]. Hill’s

definitions have so far only been tested under simple

conditions [22, 23, 25, 26]. They have not been studied for a

variety of shapes and pore sizes.

In Hill’s thermodynamics of small systems or

nanothermodynamics (See Bedeaux, Kjelstrup and Schnell

[17]), the REV of the porous medium is considered as an

open system, controlled by the temperature, chemical

potential, or pressure in the environment. The

thermodynamic analysis is thus applied to a grand canonical

ensemble of systems and a new variable is introduced, the replica

energy, i.e., the energy needed to create one more small system in

the ensemble. An adjusted Gibbs-Duhem equation (the Hill-

Gibbs-Duhem’s equation) appears. This opens up a new route to

determine the REV pressure.

Using this as a starting point in Section 2, we shall find

expressions for the so-called integral and differential pressures of

the REV, from the system’s replica energy. We present a new

route to the pressure via the chemical potential of the reservoir in

equilibrium with the REV. Molecular dynamics simulations,

described in Section 3, will be used to illustrate and verify the

theoretical steps.

2 Theory

The systematic procedure of Hill consists of the three steps

[17], which we repeat to give an overview of the procedure.

Concepts will be defined in the text that follows.

1. To start, define the items which make the system small in

Hill’s sense, by defining the relevant REV. Find the

corresponding Hill-Gibbs equation. Next, define the

environmental variables that control the system.

2. From an analysis of the ensemble of small systems, find the

system’s replica energy in terms of its subdivision potential.

3. Derive the corresponding Hill-Gibbs-Duhem equation. This

equation can be used to find the REV thermodynamic

variables and their interrelations.

2.1 The general Hill-Gibbs equation of an
ensemble of open porous media REVs

We shall consider the REV of a porous medium, filled with a

single-phase, single-component fluid, see Figure 1. The REV

volume isV =Vf +Vs, whereVf is the volume of the fluid andVs is

the volume of the solid. The porosity is the fraction of the fluid

volume to the total volume, ϕ = Vf/V. These are time-

independent properties in the system. The REV is a small

system in Hill’s sense [17, 27] because the fluid is confined; it

does not have bulk-scale properties. The system is open for the

supply of fluid particles and energy. The number of solid particles

is fixed, however.

The ensemble of N REVs has a total entropy St, total fluid

volume Vf
t , total number of fluid particles Nf

t , total number of

solid particles Ns
t (with total volume Vs

t), and total fluid-solid

FIGURE 1
A single-phase and -component fluid in a porous medium.
The fluid-solid interfaces can have complex shapes and the
volumes can be on the nanoscale.
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surface area At. The total differential of the total internal energy

of the ensemble of REVs is then

dUt � TdSt − pfdVf
t − psdVs

t + μfdNf
t + μsdNs

t + γdAt + εdN .

(1)

This equation has been called the Hill-Gibbs equation [17, 23].

The temperature, fluid pressure, and solid pressures, chemical

potentials, and surface tension are defined from the variables

involved as

T ≡
zUt

zSt
( )

Vf
t ,V

s
t ,N

f
t ,N

s
t ,At,N

, pf ≡
zUt

zVf
t

( )
St,Vs

t ,N
f
t ,N

s
t ,At,N

,

ps ≡
zUt

zVs
t

( )
St,V

f
t ,N

f
t ,N

s
t ,At,N

, μf ≡
zUt

zNf
t

( )
St,V

f
t ,V

s
t ,N

s
t ,At,N

,

μs ≡
zUt

zNs
t

( )
St,V

f
t ,V

s
t ,N

f
t ,At,N

, γ ≡
zUt

zAt
( )

St,V
f
t ,V

s
t ,N

f
t ,N

s
t ,N

.

(2)

The subdivision potential ε is the property that deals with system

smallness in particular. It is an additional energy which is

covering all the energy contributions not described by the

other variables and is therefore dependent on the chosen set

of control variables [23, 25]. It is introduced with its conjugate

variable, the number of REVs,N . The subdivision potential is the

internal energy required to add one more REV to the ensemble

under the specified conditions,

ε ≡
zUt

zN( )
St,V

f
t ,V

s
t ,N

f
t ,N

s
t ,At

. (3)

When the subdivision potential differs from zero the system is

small. This property will, as we shall see below, adjust the

common variables like the pressure, and turn them into

effective new variables. In the case of the pressure, the

adjustment leads to the integral pressure, central for porous

media.

2.2 The replica energy

To find the properties of one system, we need to describe the

thermodynamic state of a single-phase, single-component fluid

in the REV. The fluid is free to move (the system is open), while

the solid is not. The system exchanges fluid particles with the

surroundings, but not solid particles. The variables that are

controlled by contact with the environment are the

temperature and the fluid chemical potential. Apart from

these, as stated above, the fluid volume, solid volume, surface

area, and the number of solid particles are control variables too.

The type of ensemble constituted by this set of variables is

particularly suited for the transport of fluids through a porous

medium.

In order to change the set of variables in the general

expression Eq. 1, into the above preferred set of control

variables, we express the additive variables in the original set

of total variables by their controlled value times the number of

replicas. This provides also the single system properties that we

are after. The controlled fluid and solid volumes, and surface area

per REV are Vf
t � VfN , Vs

t � VsN , and At � AN , respectively.

In addition we introduce the controlled number of solid particles

per REV,Ns
t � NsN . By introducing these control variables into

the Hill-Gibbs equation for the ensemble, we obtain

dUt � TdSt − pfN dVf − psN dVs + μfdNf
t + μsN dNs

+ γN dA +XdN , (4)
where the last term is the replica energy of one small system

X � ε − pfVf − psVs + γA + μsNs. (5)
The replica energy [27, 28] expresses in a simpler way, the energy

required to add one more small system to the ensemble of

systems under the conditions controlled. The combination of

terms can define the integral pressure minus the integral solid

chemical potential times number of solid particles,

−p̂V + μ̂sNs ≡ X, (6)
however, we need an additional equation to determine both p̂

and μ̂s separately. Through the introduction of an ensemble of

the systems, we have achieved that the internal energy, here Ut, is

an Euler homogeneous of the first order in the number of REVs.

This gave Hill the motivation for the use of an ensemble, and to

define the conjugate variables ε and N .

2.3 The Hill-Gibbs equation for a single
small system

We are now in a position to integrate the total differential of

the total internal energy, see Eq. 4, at constant T,Vf,Vs, μf,Ns, and

A. This gives,

Ut � TSt + μfNf
t +XN . (7)

By introducing the REV average properties, we obtain the

internal energy of one REV,

U � TS + μfNf +X. (8)
The total differential of the internal energy of one REV is

dU � TdS − pfdVf − psdVs + μfdNf + μsdNs + γdA. (9)
By differentiating the internal energy of the REV and using its

total differential, we obtain the total differential of the replica

energy

dX � d −p̂V + μ̂sNs( )
� −SdT − pfdVf − psdVs −Nfdμf + μsdNs + γdA. (10)

Frontiers in Physics frontiersin.org03

Galteland et al. 10.3389/fphy.2022.866577

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.866577


The equation is the outcome of step 2 in Hill’s procedure

presented in the introduction to this section. The equation

can be seen as an extension of Gibbs-Duhem’s equation, so

we have called it Hill-Gibbs-Duhem’s equation [17].

Applications can now be specified.

The partial derivatives of the replica energy follow

S � − zX

zT
( )

Vf,Vs,μf,Ns,A

, pf � − zX

zVf
( )

T,Vs,μf,Ns,A

,

ps � − zX

zVs
( )

T,Vf,μf,Ns,A

, Nf � − zX

zμf
( )

T,Vf,Vs,Ns,A

,

μs � zX

zNs
( )

T,Vf,Vs,Nf,A

, γ � zX

zA
( )

T,Vf,Vs,Nf,μs
.

(11)

With this set of equations we can calculate all the necessary REV

properties of a porous medium. We shall concentrate on the

integral fluid pressure and the route to this quantity via the

chemical potential.

2.4 The integral pressure and the chemical
potential of the solid in the REV

We apply here the conditions of constant temperature, fluid

volume, solid volume, number of solid particles, and surface area.

The Hill-Gibbs-Duhem’s equation reduces to

dX � d −p̂V + μ̂sNs( ) � −Nfdμf (12)

or, after dividing by V, the volume of the REV,

dx � d −p̂ + μ̂sρs( ) � −ρfdμf (13)

Where the density of the fluid in the REV is ρf = Nf/V and the

density of the solid is ρs = Ns/V. These densities are of the total

REV volume V, and not the fluid volume Vf or solid volume Vs.

The difference of the replica energy density can be calculated

from

x − x∞ � −∫μf

−∞
ρfdμ′f, (14)

The replica energy density is zero as the fluid chemical potential

approaches minus infinity. The replica energy density depends

on two unknown variables, p̂ and μ̂s. To proceed we need to

know more about these variables.

2.4.1 Constant integral pressure across
boundary

The integral pressure of the REV can be obtained from Eq. 13

dp̂ � ρfdμf + ρsdμ̂s. (15)
The fluid in the porous medium is in equilibrium with its

environment, here the bulk phase fluid that surrounds the

system (denoted b). The environment has the same

temperature. The integral pressure was observed to be

constant across the phase boundary inside a pore [25]. We

shall therefore make the assumption that also in this case;

p̂ � pb (16)

where pb is the bulk pressure of a fluid in equilibrium with the

porous medium. For an ideal gas in a cubic confinement it has

been shown that the integral pressure is equal to the bulk pressure

[29]. If this applies for this system, we also have

p̂ � ∫μf

−∞
ρbdμ′f, (17)

where ρb is the fluid number density in the bulk phase. The

integral pressure is zero as the fluid chemical potential

approaches minus infinity. As a consequence, the integral

pressure depends only on the fluid chemical potential and

temperature. The integral chemical potential of the solid in

the REV is then

μ̂s � 1
ρs
∫μf

−∞
ρb − ρf( )dμ′f. (18)

The solid chemical potential is zero at minus infinite fluid

chemical potential. The entropy density of the REV is

s � S

V
� 1
T

u − μfρf − x( ) (19)

where we used Eq. 8 and introduced the replica energy density, x.

2.5 Pressures and surface tension

There are three pressures; the integral, fluid and solid

pressures. The integral pressure is a combination of the

pressures of the fluid and the solid pressure as well as the

surface tension,

p̂ � pfϕ + ps 1 − ϕ( ) − γA/V � pb. (20)

We assume the integral pressure to be equal everywhere in

equilibrium and also equal to the bulk pressure of a bulk fluid

in equilibrium with the porous medium. If we also assume the

distances between solid surfaces to be large and their curvature to

be small, we can approximate the fluid pressure to be equal to the

bulk pressure [23]. In that case, the solid pressure is equal to

ps � pb + γA

Vs
. (21)

3 Simulation details

Systems of fluid and solid particles were investigated with

molecular dynamics simulations using LAMMPS [30, 31]. The

three different systems have been simulated: A bulk fluid, a single
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solid particle surrounded by fluid particles, and a face-centered

cubic (fcc) lattice of solid particles filled with fluid particles in the

pore space. The two latter systems are illustrated in Figure 2. The

systems were simulated in the grand canonical ensemble and had

periodic boundary conditions in all directions. The bulk fluid was

simulated to calculate the bulk pressure as a function of the fluid

chemical potential. The single solid particle surrounded by fluid

particles will be considered as if the lattice constant of the fcc

lattice is large. This system was simulated to calculate the fluid-

solid surface tension when the solid particles are far apart. The

thermodynamic properties of the fluid in the fcc lattice were

calculated as a function of the fluid chemical potential.

The temperature was controlled to be T = 1ϵ/kB by using a

Nosé-Hoover thermostat [33, 34] adapted by Shinoda et al. [35].

The fluid chemical potential was controlled by using grand

canonical Monte Carlo insertions and deletions of fluid

particles [36]. A particle is inserted at random position in the

simulation box with a probability

acc Nf → Nf + 1( )
� min 1,

V

Λ3 Nf + 1( ) exp β μ( − Ep Nf + 1( ) + Ep Nf( )[ ]{ }.
(22)

A random particle is removed from the simulation box with a

probability

acc Nf → Nf − 1( )
� min 1,

Λ3 Nf + 1( )
V

exp −β μ( + Ep Nf − 1( ) − Ep Nf( )[ ]{ }.
(23)

WhereΛ � �����������
h2/(2πmkBT)

√
is the de Broglie thermal wavelength,

h is the Planck constant, Ep is the potential energy and β = 1/

(kBT) where kB is Boltzmanns constant.

3.1 Simulation procedure

In the bulk system, the fluid chemical potential was varied in

the range μf ∈ [ − 7, 1]ξ, in which the fluid density varied from a

dilute gas to a dense liquid. The system was initialized with an

empty cubic simulation box of volume V = (40σ)3, and the grand

canonical Monte Carlo technique was used to insert particles.

The Lennard-Jones parameters ξ and σ are the minimum of the

interaction potential and the soft-core diameter of the fluid

particles, respectively. The simulation was run until the

average number of fluid particles was no longer increasing.

The bulk fluid number density ρb = Nf/V and pressure p =

(Pxx + Pyy + Pzz)/3 were calculated as a function of the fluid

chemical potential for 107 steps. The calculation of the

mechanical pressure tensor Pαβ is described below in Section 3.4.

The system of the single solid particle was simulated by first

placing the solid particle in the center of the cubic simulation box

of volume V = (30σ)3. The radius of the solid particle was R = 5σ,

where σ is the diameter of the fluid particle. The fluid chemical

potential was varied in the range μ ∈ [ − 7, 1]ζ, where ζ is the

minimum of the pair-wise interaction. The system was initialized

by placing the fluid particles in an fcc lattice with a fluid number

density approximately equal to the bulk fluid number density

around the solid particle at a given fluid chemical potential. This

FIGURE 2
Visualization of a two of the simulated systems. Fluid particles (red) and solid particles (blue) are visualisedwithOVITO [32]. Only the particles in a
slab centered on the solid particles of thickness 2.5σ is shown. The fluid chemical potential is μf= ξ and the radius of the solid particle is R= 5σ, where ξ
is the minimum of the interaction potential and σ is the soft-core diameter of the fluid particles. Left: Single solid particle. Right: An fcc lattice with
lattice constant a = 17.5σ and porosity ϕ = 0.61.
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was done to reduce the computational time. The simulation was

run until the average number of fluid particles no longer

increased, after which it was run for an additional 107 steps to

calculate the surface tension as a function of the fluid chemical

potential. The calculation of the surface is described below in

Section 3.4.

The fcc lattice of solid particles was fixed in space with lattice

constant in the range a ∈ [15, 30]σ, the radius of the solid particles
was R = 5σ. The simulation box lengths were L = 2a, total volume

V = 8a3, number of solid particles Ns = 32, and solid volume Vs =

128πR3/3. We have previously found that the smallest REV of

such a system is a quarter unit cell [22]. The fluid particles were

inserted in the pore space in between the solid particles. The

porosity of the system was

ϕ � Vf

V
� 1 − 16πR3

3a3
, (24)

where the radius of the solid particles was R = 5σ given that the

lattice constant is a≥ 2
�
2

√
R ≈ 14σ. For lower values of a the solid

particles overlap, however, we do not look at such systems. The

porosity varied from approximately 0.38 to 0.92. The fluid

chemical potential, number of solid particles, temperature,

and volume were controlled.

The system was initialized by placing the solid particles in an

fcc lattice with lattice constant a and fluid particles also in an fcc

lattice with a number density approximately equal to ρb(μf)

around the solid particles. The simulation was run until the

number of fluid particles was constant, after which the simulation

was run for an additional 107 timesteps to calculate

thermodynamic properties.

3.2 The Lennard-Jones/spline potential

The particles interacted with the Lennard-Jones/spline (LJ/s)

potential [37], which is equal to the Lennard-Jones potential up

to the inflection point rs shifted by a hard-core diameter d. At rs a

third degree polynomial is fitted for the potential to be zero at the

cut-off rc and the force and potential to be continuous at the

inflection point rs and cut-off rc. See the works by Hafskjold et al.

[37] and Kristiansen [38] for details on the properties of the LJ/s

potential. The LJ/s potential is,

]LJ/s r( ) �
4ζ

σ

r − d
( )12

− σ

r − d
( )6[ ] if r< rs,

a r − rc( )2 + b r − rc( )3 if rs < r< rc,
0 else

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(25)

where ζ is the minimum of the interaction potential. This symbol

is used to avoid confusion with the subdivision potential ε. The

soft-core diameter is σ, d is the hard-core diameter, r = |rj − ri| is
the distance between particle i and j. The distance r = σ + d is the

smallest distance where the potential is zero. The Lennard-Jones/

spline interaction potential was equal for all particle pairs, but

was shifted with hard-core diameter d. There were three particle

pair interactions, fluid-fluid, fluid-solid, and solid-solid, and only

the hard-core diameter varied between them. The solid-solid

interaction we set to zero. The hard-core diameter was dff = 0,

dfs = 4.5σ, and dss = 9σ for the fluid-fluid, fluid-solid, and solid-

solid interactions, respectively. The solid particle radius was

defined as R ≡ (dss + σ)/2 = 5σ. Other definitions of the radii

are possible, for example based on Gibbs dividing surface or the

surface of tension. The parameters a, b, rs and rc were determined

such that the potential and the force were continuous at r = rs and

r = rc. The masses of fluid particles werem, and the solid particles

were considered to have infinite mass as they were fixed in space.

3.3 Internal energy density

The internal energy density was calculated as the sum of the

kinetic and potential energy densities,

u � 1
V

∑N
i�1

∑N
j>i

uLJ/s rij( ) + 1
2
∑N
i�1

mi vi · vi( )⎛⎝ ⎞⎠ (26)

where V is the total volume, N is the total number of particles,

and vi is the velocity of particle i. The solid particles did not

contribute to the kinetic energy, as their velocities were

controlled to be zero. The internal energy density was used to

calculate the entropy density, see Eq. 19.

3.4 The mechanical pressure tensor

The mechanical pressure tensor was calculated in spherical

and Cartesian coordinates, see Ikeshoji et al. for details [39]. It

was calculated in spherical coordinates for the single solid

particle surrounded by fluid, and in Cartesian coordinates for

the bulk fluid and the fcc lattice of solid particles with inserted

fluid particles. For the bulk fluid and fcc lattice, the pressure was

calculated for the whole simulation box, with sides L ∈ [30, 60]σ

and interaction cut-off rc ≈ 1.74σ. While for the single solid

particle it was calculated in spherical shell subvolumes with the

origin at the center of the solid particle. This was done to

calculate the surface tension.

To avoid confusion between the thermodynamic and

mechanical pressures, we will use lower case p for all

thermodynamic pressures and upper case P for mechanical

pressures. We make this distinction because there is no

consensus on how, if possible, to connect the two for

heterogeneous media [23, 40–42].

The mechanical pressure tensor can be written as the sum of

the ideal gas contribution and a virial contribution,

Pαβ � ρkBTδαβ + Pv
αβ, (27)
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where δαβ is the Kronecker delta and the subscripts give the

components of the tensor. The virial contribution is due to

particle pair interaction, and is calculated as a sum over all

particle pairs. For a subvolume Vk the virial contribution is

Pv
αβ � − 1

Vk
∑N
i�1

∑N
j>i

fij,α∫
Cij∈Vk

dlβ. (28)

Where N is the total number of particles and fij,α is the α-

component of force acting on particle i due to particle j. The line

integral is along the part of the curve Cij that is contained in the

subvolumeVk. The virial contribution is inherently ambiguous as

any continuous curve that starts at the center particle i and ends

at the center particle j is permitted [18, 19, 43]. In this work, we

have used the Irving-Kirkwood curve, which is the straight line

from the center of particle i to the center of particle j.

The Cartesian mechanical pressure tensor was calculated for

the whole simulation box. The line integral in the virial

contribution reduces it to

Pv
αβ � − 1

Vk
∑N
i�1

∑N
j>i

fij,αrij,β. (29)

where rij is the line for the center of particle i to the center of

particle j.

The pressure is calculated as the mean of the diagonal

components of the Cartesian mechanical pressure tensor. The

bulk pressure is

pb � 1
3

Pxx + Pzz + Pyy( ). (30)

This was also calculated for the fluid in the fcc lattice of solid

spheres. However, we have not equated it to a thermodynamic

property.

The fluid-solid surface tension was calculated for the single-

spheresimulationcase fromthesphericalmechanicalpressure tensor,

γ � 1
R2

∫r0

R
PN − PT( )r2dr. (31)

Where R = 5σ is the solid particle radius, and r0 = 14σ is a position

in the fluid far away from the fluid-solid surface. The normal

component is PN = Prr and the tangential component is PT = (Pϕϕ
+ Pθθ)/2. This is the fluid-solid surface tension of the porous

medium given that the surfaces are sufficiently far apart. This will

be used to calculate the solid pressure, see Eq. 21.

4 Results and discussion

4.1 Single solid particle surrounded by
fluid

For the single solid sphere, we show the local fluid number

density and mechanical pressure tensor components of the

surrounding fluids in Figure 3. The fluid chemical potential is

fixed at the minimum of the pair-wise interaction potential, ζ,

givingμf=1ζ.Atthisfluidchemicalpotential, thebulkdensity isρb=

0.8σ−3. The fluid particles pack in layers close to the surface of the

solidparticleofradiusR=5σ, asreflectedinthedensityvariations in

Figure 3. The tangential component of the mechanical pressure

tensor, shown in orange to the right in the figure, has the same

variation. The normal and tangential components were used to

calculate the surface tension, shown in Figure 4 (see below). In this

calculation, we do not equate the solid pressure to the mechanical

pressure in any way. Inside the solid particle, the tangential

component is zero. This is because the cut-off of the fluid-fluid

interaction is relatively short, meaning that no fluid-fluid

interaction contributes to the pressure inside the solid sphere. It

is only the fluid-solid interactions that contribute to the pressure

inside, and these contribute only to the normal component. The

normal component is proportional to r−2 as a consequence, see

Figure 3. This follows from mechanical equilibrium in spherical

coordinates,

PT r( ) � PN r( ) + r

2
zPN

zr
. (32)

We used mechanical equilibrium and found that the mechanical

pressure calculation in spherical coordinates is consistent

with this.

The surface tension was calculated for a single solid sphere

surrounded by fluid particles, as a function of the fluid chemical

potential. This is presented in Figure 4. It was calculated from the

components of the mechanical pressure tensor, see Eq. 31. Fluid

particles have reduced contact with each other and with the solid

in the lower chemical potential-regime (μf ∈ [ − 7, − 3]ζ), which is

characterized by low densities. The surface tension is accordingly

very small. The surface tension between fluid and solid increases

sharply at a chemical potential of around μf = −2.3ζ. The increase

indicates increasing interactions between particles (fluid-fluid

and fluid-solid). For a chemical potential below ≈ 2.3ζ, the fluid is

more vapor-like, while above this value, it is more liquid-like.

In figure 5 the corresponding solid pressure is shown as a

function of fluid chemical potential for a single-sphere

surrounded by fluid particles. It is calculated from the surface

tension and bulk pressure, see Eq. 21. The bulk pressure

monotonically increases with the fluid chemical potential.

Sofar, thevariationsareallexpectedfrommechanicalequilibrium

and standard thermodynamics as given by the Young-Laplace

equation. It is reasonable that the pressure of the solid increases

monotonously, following the variation in the surface tension.

4.2 The fluid number density and the
replica energy density

Figure 6 presents the fluid number density ρf =Nf/V, where V

is the total REV volume, as a function of the controlled fluid
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chemical potential μf for various porosities ϕ of the fcc lattice.

Results shown as black crosses represent bulk fluid or the limit

where the porosity approaches unity. The fluid number density

starts at approximately zero density for small fluid chemical

potentials (a dilute gas-like phase) and converges to a density of a

dense liquid-like phase. The fluid number density decreases with

decreasing porosity, which is mainly because of decreased fluid

volume compared to total volume. The fluid particles form layers

on the solid surface, as was seen in Figure 3.

The replica energy density is a characteristic property of the

small system. It is shown for the first time for a regular fcc-lattice

in Figure 7. The property was obtained as the integral over the

fluid density, of the fluid chemical potential, see Eq. 14. The

replica energy density approaches the bulk fluid value (black

crosses) in the thermodynamic limit of increasing porosity, as

expected. We see a similar development in the replica energy

FIGURE 3
Local fluid number density (left) and normal and tangential pressure tensor components (right) in spherical shells as a function of the distance
from the center of the spherical particle in the single-sphere simulation case. The fluid chemical potential is fixed to μf = 1ζ and the particle radius is
R = 5σ.

FIGURE 4
Surface tension for the single-sphere case γ as a function of
fluid chemical potential μf.

FIGURE 5
The solid pressure, ps, in a single sphere, calculated from Eq.
21 as a function of the fluid chemical potential μf of the
surrounding fluid.

FIGURE 6
Fluid number density ρf = Nf/V as a function of fluid chemical
potential μf at varying porosity ϕ = Vf/V.
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density, as seen in the curve for the pressure of the solid around

the single sphere. The replica energy is negative and increases

with decreasing porosity. When compared with other

thermodynamic properties like the internal energy (see

below), the value is sizable.

The integral solid chemical potential was next calculated

from the fluid number density of the REV and the bulk, see Eq.

18. It is presented in Figure 8 as a function of the fluid chemical

potential. The integral solid chemical potential is much larger

than the fluid chemical potential because each solid particle has a

radius ten times larger than a fluid particle. This implies that each

solid particle interacts with more particles than each fluid

particle. The energy required to add one more solid particle is

very large compared to adding one more fluid particle.

Interestingly, the integral solid chemical potential is

independent of the porosity, it is a function of fluid number

density and fluid chemical potential. We interpret this to mean

that the solid particle are sufficiently far away from each other,

such that the integral solid chemical potential is unaffected by the

porosity.

Figure 9 compares the average of the diagonal components of

the mechanical pressure for the bulk fluid (black crosses) and the

fcc lattice of spheres filled with fluid particles. The mechanical

pressure was calculated in Cartesian coordinates for the whole

simulation box, as described by Eq. 29. The bulk value was now

equated to the thermodynamic bulk pressure, which was

assumed to be equal to the integral pressure. Note that we did

not equate the trace of the mechanical pressure tensor in the

heterogeneous porous medium to any thermodynamic property.

Figure 9 serves purely for a comparison. However, even though

the geometry inside the porous medium is more complex than

what can be captured by the Cartesian mechanical pressure

tensor, the values fall almost on the same line. This could

suggest that the mean of the diagonal components of the

Cartesian mechanical pressure tensor gives the integral

pressure. An exception is seen for the data obtained with the

smallest porosity, ϕ = 0.38, when fluid chemical potentials vary

between approximately μ = −2ζ and μ = −ζ. The given porosity is

near the closest packing possible for spheres. While this is

interesting, it may only hold for the present case, with a

relatively simple structure.

4.2.1 Internal energy and entropy densities
The internal energy and entropy densities as a function of

the fluid chemical potential are presented in Figures 10,11,

respectively. The internal energy and entropy are divided by

the REV volume V to give the respective densities. The

variation in the internal energy and entropy densities as a

function of the fluid chemical potential, is similar to that

shown by fluids above the critical point, when they are

FIGURE 7
The negative replica energy density − x= −X/V as a function of
the fluid chemical potential μf at varying porosities ϕ = Vf/V.

FIGURE 8
Integral solid chemical potential as a function of the fluid
chemical potential μf at varying porosities ϕ = Vf/V.

FIGURE 9
Trace of the mechanical pressure divided by three as a
function of the fluid chemical potential μf for varying porosities ϕ =
Vf/V.
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described by cubic equations of state, for example, the van der

Waals equations of state. It is therefore reasonable that the

maxima of the internal energy and entropy densities are a

consequence of a structural transition that takes place at the

chemical potential in question. This will explain why all

maxima are located at the same chemical potential (-2.3 ζ).

This location is close to the value of the chemical potential,

where the fluid-solid surface tension starts to increase and

also where the replica energy density begins to deviate

stronger from its bulk value (see Figures 4, 7). The maxima

locations remain at the same chemical potential, as the

porosity decreases and are given by the location in the bulk

fluid. It may therefore be possible to estimate this position

using the equation of state for the bulk fluid. Thus, one can

determine for which fluid states it is particularly important to

take the system size into account.

The absolute value of the internal energy density decreased

with the porosity, reflecting the fact that the fluid number

density decreased with the porosity. The entropy density

became larger as we approached the bulk value. This

observation is typical for phase transitions in small systems,

it becomes less clear cut first order, and has less of a

discontinuity in the phase variables [28].

4.3 Small system effects

A system is small in the sense of Hill when we need to take

into account the subdivision potential to accurately describe the

system [17]. We have shown in earlier work, that the value of

the subdivision potential depends on the chosen set of control

variables [23, 25]. This means, that if the system and all the

energy contributions are fully accounted for in the description,

the subdivision potential becomes zero. The subdivision

potential further depends on the choice of the REV. If the

REV, for example, is chosen such that it is macroscopic by

definition, then the subdivision potential cannot account for

small system effects. This, however, does not mean that there

are no local small system contributions present in a

macroscopic REV. This is indicated in a general manner in

Eq. 1. For a macroscopic REV, it is thus necessary to either

determine the dependency of the hat-variables in Eq. 1 on local

small system effects, or to choose and determine the respective

variables such that they automatically include all the

contributions. We have chosen the latter approach for

this work.

The smallness of a system can also be measured by the replica

energy (for the present system, see Eq. 5). The replica energy

depends also on the set of control variables, and has accordingly

an equivalent bulk variable [17]. It changes proportional to the

subdivision potential as the value of the subdivision potential is in

general included in the deviation of the replica energy from the

corresponding value of a bulk fluid, see Eq. 5. While a change in

replica energy is expected with additional contributions of the

solid, the application of the replica energy as a variable allows us

to quantify the smallness of the system. However, for evaluation

of the state of smallness, the single contributions given in Eq. 5

must be computed independent of one another. This we were not

able to do in the present work. The replica energy density may

still be used to assess whether small system effects can be

neglected or not. This can be done by evaluating the total

replica energy difference together with the entropy density.

Consider for the purpose of such an evaluation the left-hand

side of the peak in entropy density. Due to the small replica

energy differences between the fluid bulk value and the

corresponding values of the nanoporous medium for small

chemical potentials, it may be speculated that small system

effects are negligible for vapor-like densities. On the right

hand side of the peak, the difference is sizeable which is why

FIGURE 10
Internal energy density u = U/V as a function of the fluid
chemical potential μf for varying porosities ϕ = Vf/V.

FIGURE 11
The entropy density s= S/V as a function of the fluid chemical
potential μf for varying porosities ϕ = Vf/V. The integral pressure is
assumed to be equal to the bulk pressure.
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the small system effects cannot be assumed to be negligible a

priori.

4.4 The pressure of a REV in a porous
medium

We are now in a position to discuss, if not answer completely,

the questions posed upfront; what is the pressure of a

representative elementary volume (REV)?

In the present case, the structure of the porous system was

regular fcc, and all different microstates are represented by a

small REV, a unit cell for all practical purposes. A system with

irregular structure has probably a larger REV. All

thermodynamic properties defined, refer to the actual REV.

Equations 15, 16, 20 most central in the description. These

relations were derived using Hill’s systematic procedure for

porous media with nanoscale pores. The effective pressure p̂

of the REV was given in Eq. 15. We see that the expression is

consistent with Young-Laplace equation. Not only a set of system

variables is central in the theory; also the set of control variables

need be specified. When this is done, we can arrive, in the present

case, at the expression linking p̂ to two unknown system

variables.

In order to proceed, we have next taken the bold assumption

stated in Eq. 16, that the integral pressure p̂ is constant across the

medium at equilibrium. It is then not far from the next possible

step; to construct the driving force for mass transport using p̂.

The mean of the diagonal components of the Cartesian

mechanical pressure tensor, presented in Figure 9, gives a

good approximation of the integral pressure for the largest

porosities. This can give an alternative route to obtain the

integral pressure when the porosity is large. However, for

small porosities it deviates from the bulk pressure and the

integral pressure.

5 Conclusion

The thermodynamic method of Hill for nanoscale systems

was used to describe the thermodynamic state of a single-phase

fluid confined to a porous medium. The size and shape of the

porous media were restricted, such that the description can be

said to be general for any porous media.

The system was open for fluid to be exchanged with the

environment, while the solid was not allowed to be exchanged

with the environment. In addition, the temperature was controlled

by the environment, and the fluid and solid volumes, surface area,

and number of solid particles were controlled.

Nanothermodynamics introduces two new conjugate

variables, the subdivision potential and the number of

replicas. The subdivision potential was incorporated into the

definition of the integral pressure and integral solid chemical

potential. A fundamental assumption used in this work is that the

integral pressure is constant everywhere in equilibrium. We have

shown in previous works that this holds for simple porous media

such as the slit pore [23, 25].

We have used this framework to demonstrate how to

compute the fluid number density, replica energy density,

integral solid chemical potential, internal energy density,

and entropy density of a fluid confined to a face-centered

cubic lattice of solid particles. The radius of the solid

particles was ten times larger than the fluid particles, and

the porosity varied from ϕ = 0.38 to ϕ = 0.87. These

porosities range from almost closest packing to rather open

structures. We have used this system as a relatively simple

model of porous media, computing all its thermodynamic

properties, in particular its integral pressure, liquid-solid

surface tension, and solid pressure of a single solid particle

surrounded by fluid particles.

This way of defining the small system thermodynamic

properties, for a given set of control variables, may be useful

for the study of transport in non-deformable porous media.
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