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Abstract Maternal genetic effects can be defined as the effect of a mother’s genotype on the 
phenotype of her offspring, independent of the offspring’s genotype. Maternal genetic effects 
can act via the intrauterine environment during pregnancy and/or via the postnatal environment. 
In this manuscript, we present a simple extension to the basic adoption design that uses structural 
equation modelling (SEM) to partition maternal genetic effects into prenatal and postnatal effects. 
We examine the power, utility and type I error rate of our model using simulations and asymptotic 
power calculations. We apply our model to polygenic scores of educational attainment and birth 
weight associated variants, in up to 5,178 adopted singletons, 943 trios, 2687 mother- offspring 
pairs, 712 father- offspring pairs and 347,980 singletons from the UK Biobank. Our results show the 
expected pattern of maternal genetic effects on offspring birth weight, but unexpectedly large 
prenatal maternal genetic effects on offspring educational attainment. Sensitivity and simulation 
analyses suggest this result may be at least partially due to adopted individuals in the UK Biobank 
being raised by their biological relatives. We show that accurate modelling of these sorts of cryptic 
relationships is sufficient to bring type I error rate under control and produce asymptotically unbi-
ased estimates of prenatal and postnatal maternal genetic effects. We conclude that there would 
be considerable value in following up adopted individuals in the UK Biobank to determine whether 
they were raised by their biological relatives, and if so, to precisely ascertain the nature of these rela-
tionships. These adopted individuals could then be incorporated into informative statistical genetics 
models like the one described in our manuscript to further elucidate the genetic architecture of 
complex traits and diseases.
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Introduction
Maternal genetic effects can be defined as the causal influence of maternal genotypes on offspring 
phenotypes over and above that which results from the transmission of genes from mothers to their 
offspring (Wolf and Wade, 2009). Over the last few years there has been a resurgence of interest in 
identifying and quantifying maternal genetic effects on offspring phenotypes, both from the perspec-
tive of variance component estimation (Balbona et al., 2021; Bates et al., 2018; Eaves et al., 2014; 
Eilertsen et al., 2021; Kim et al., 2021; Kong et al., 2018; Qiao et al., 2020; Tubbs et al., 2020) 
and estimating the causal effect of specific maternal environmental exposures on offspring outcomes 
through Mendelian randomization based approaches (Evans et al., 2019; Lawlor et al., 2017; Moen 
et al., 2020; Tyrrell et al., 2016; Warrington et al., 2019; Zhang et al., 2015). Indeed, following 
the advent of transgenerational genome- wide association studies, maternal genetic effects are begin-
ning to be identified at individual genetic loci (Warrington et al., 2019; Beaumont et al., 2018), a 
trend that is set to continue as the sample sizes of such studies increase further. Given the increasing 
number of variants identified in GWAS that exhibit robust maternal genetic effects, a natural ques-
tion to ask is whether these loci exert their effects on offspring phenotypes through intrauterine 
mechanisms, the postnatal environment, or both. Indeed, resolving maternal effects into prenatal 
and postnatal sources of variation could be a valuable first step in eventually elucidating the under-
lying mechanisms behind these associations (Armstrong- Carter et al., 2020), directing investigators 
to where they should focus their attention, and in the case of disease- related phenotypes, yielding 
potentially important information regarding the optimal timing of interventions. For example, the 
demonstration of maternal prenatal effects on offspring IQ/educational attainment, suggest that if the 
mediating factors that were responsible could be identified, then improvements in the prenatal care 
of mothers and their unborn babies targeting these factors, could yield useful increases in offspring 
IQ/educational attainment.

In this manuscript, we develop a simple method for partitioning maternal genetic effects into 
prenatal and postnatal components that leverages information provided by adopted individuals. 
We assume that an adopted individual’s phenotype is influenced by prenatal intrauterine factors as 
proxied by their biological mother’s genome, and postnatal influences as proxied by their adoptive 
mother’s and father’s genomes. In contrast, we assume that the phenotype of individuals who have 
not been adopted are influenced by prenatal intrauterine factors resulting from their biological moth-
er’s genome, and postnatal factors as proxied by their biological mother’s and father’s genomes. This 
model leads to different expectations for the covariance between an individual’s phenotype and their 
own and their relatives’ genotypes depending on whether they have been adopted or not.

One of the challenges in applying this kind of framework to real life situations is the paucity of 
cohorts containing large numbers of adoptive families (Horn, 1983; Rhea et al., 2013; Scarr and 
Weinberg, 1983). Restricted numbers of adoptive families will consequently limit the statistical power 
to partition maternal genetic effects- particularly at single genetic variants which tend to have very 
small effect sizes. It is important to realize, however, that adopted ‘singletons’ (i.e. adopted individ-
uals whose adoptive and biological parents have not been included in the study) provide important 
information on partitioning maternal genetic effects into prenatal and postnatal contributions regard-
less of whether information on their parents has been gathered. The intuition behind this surprising 
fact is that the covariance between an adopted individual’s genotype and phenotype is a function of 
prenatal (but not postnatal) maternal genetic effects (Figure 1, G5 to G7). In contrast, the covariance 
between a non- adopted individual and their own phenotype includes contributions from prenatal and 
postnatal genetic effects (Figure 1, G1 to G4). Thus, the difference between the genotype- phenotype 
covariance in adopted and non- adopted singleton individuals provides important information on the 
likely size of postnatal genetic effects. This is potentially important given that >7000 individuals in 
the UK Biobank study (Sudlow et al., 2015) report being adopted, and hence this publicly available 
dataset may represent a powerful resource for identifying prenatal maternal effects and partitioning 
maternal genetic effects into prenatal and postnatal sources of variation.

In this manuscript, we introduce a new structural equation model (SEM) to estimate prenatal and 
postnatal maternal genetic effects on offspring phenotypes. The SEM framework allows us to model 
the contributions from missing individuals as latent variables, facilitating the inclusion of information 
from adopted singleton individuals whose adoptive and/or biological parents are not available for 
analysis. We estimate the asymptotic power of our model to partition maternal genetic effects into 
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prenatal and postnatal components and confirm these results by simulation. We code our routines 
into a freely available R shiny app web utility that researchers can use to perform their own power 
calculations. Finally, we apply our methods to birth weight and educational attainment data in the 
UK Biobank- two phenotypes known to be affected by maternal genetic effects. We investigate the 
effect of inadvertently including adopted singleton individuals whose adoptive parents are geneti-
cally related to them in our model, adjust our model to correct for this misspecification and quantify 
the effect of this adjustment on type 1 error rates and power. We discuss the implications of model 
misspecification for using the UK Biobank resource in this context in future studies more broadly.

Materials and methods
Model description
We consider seven different family structures (Figure 1) which we model using SEM (although we 
note that the SEM framework is flexible enough to include many other sorts of family structures as 
well). The different family structures we consider are: Biological parent- offspring trios (G1), biolog-
ical mother- offspring pairs (G2), biological father- offspring pairs (G3), singleton individuals (who 

Figure 1. Path diagrams illustrating the structural equation models (SEM) underlying the seven family structures modelled in this manuscript (G1 – 
G7). Causal relationships are represented by one headed arrows. Two headed arrows represents correlational relationships. Observed variables and 
latent variables are shown in squares and circles, respectively. Zm represents biological mother’s genotype which influences offspring phenotype (Y) via 
prenatal (γm) and postnatal (βm) pathways. Zp represents the biological father’s genotype which only influences offspring phenotype postnatally (βp). Zo 
represents offspring genotype which influences offspring phenotype (βo) and is correlated ½ with the genotypes of its biological parents. Zm_b represents 
the genotype of a biological mother whose child was adopted and therefore only influences her child’s phenotype through prenatal pathways (γm). 
Zm_a represents the adoptive mother’s genotype which only influences her adopted offspring’s phenotype via postnatal pathways (βm). Zp_b represents 
the genotype of a biological father whose child was adopted and therefore has no influence on the adopted offspring phenotype. Zp_a represents the 
adoptive father’s genotype which influences his adopted offspring postnatally (βp). ρ represents the covariance between parental genotypes, as a result 
of e.g. assortative mating (it is assumed that this covariance is the same in biological parents and adoptive parents). The total variance of genotypes in 
the parental generation is set to Φ. Ɛ1 and Ɛ2 represent residual error terms for the biological and adopted offspring phenotypes respectively that we 
assume have different variances.
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were raised by their biological parents) (G4), adopted singleton individuals (who were raised by their 
adoptive parents) (G5), adoptive mother- adopted child pairs (G6), and biological mother- adopted 
child pairs (G7). For each of these different family structures, we model missing parental genotypes 
(whether biological or adoptive) as latent variables.

Let the variables Zm, Zp and Zo represent maternal, paternal and offspring genotypes. Likewise, 
let Zm_b and Zp_b denote the genotypes of the biological mother and father of an adopted individual 
respectively, and let Zm_a and Zp_a represent the genotypes of the adoptive mother and father of the 
adopted individual. These variables may be observed (i.e. the square boxes in Figure 1) or unob-
served latent variables (i.e. the circles in Figure 1). They may represent polygenic risk scores (PRS) 
consisting of multiple genetic variants, or single genetic variants if the study is of sufficient size to 
reliably demonstrate genetic effects at individual loci. The model includes path coefficient terms for 
maternal genetic effects (γm, ϐm), paternal genetic effects (ϐp) and offspring genetic effects (ϐo) on the 
offspring phenotype (Y). We are specifically interested in partitioning maternal genetic effects into 
prenatal (γm) and postnatal genetic effects (ϐm) and we assume that the effect of the prenatal maternal 
genetic effect and postnatal maternal genetic effect on the offspring phenotype is additive (i.e. γm + 
ϐm). We assume in the case of biological families (i.e. G1 to G4 in Figure 1), that biological mothers 
exert prenatal and postnatal genetic effects on their offspring. In contrast, in the case of adopted 
individuals (i.e. G5 to G7 in Figure 1), we assume that prenatal maternal effects from the biological 
mother and postnatal maternal genetic effects from the adoptive mother contribute to variation in the 
offspring phenotype. We assume that biological fathers exert only postnatal genetic effects on their 
offspring (biological families only), and adoptive fathers exert only postnatal genetic effects on their 
adopted offspring.

We estimate the genotypic variance (Φ) of each individual and assume that it is the same in 
mothers, fathers, their children, and across both biological and adopted individuals under random 
mating (although the requirement for equal variances across individuals can be relaxed if necessary). 
We account for possible covariance between maternal and paternal genotypes (e.g. through assorta-
tive mating) by estimating the covariance path ρ. This is equivalent to modelling one round of assor-
tative mating in the parental generation and has the effect of inflating the total genotypic variance in 
the offspring generation from Φ under random mating to Φ + ½ρ. Finally, to accommodate the possi-
bility that adopted individuals may have different phenotypic variances to individuals raised by their 
biological relatives, we permit the variance of residual sources of variation to differ across adopted 
and biological family structures (Cheesman et al., 2020).

We caution that for all the parameters in the model to be identified, different constellations of rela-
tives must be sampled from G1- G7. For example, to partition maternal genetic effects into prenatal 
and postnatal components, information from adopted individuals must be available. In fact, even 
adopted ‘singletons’, for whom there is no genotype information from their parents (i.e. biological or 
adoptive parents), contribute important information for the partitioning of maternal genetic effects, 
since the covariance between their own genetic score and phenotype is a function of offspring genetic 
effects and prenatal maternal effects, but not postnatal maternal effects (Figure 1). This contrasts with 
the situation in non- adopted individuals whose genotype- phenotype covariance is a function of all 
three sources of variation (plus postnatal paternal genetic effects). Thus, the difference between the 
genotype- phenotype covariance in adopted and non- adopted individuals provides important infor-
mation on the size of postnatal maternal genetic effects. Indeed, the inclusion of adopted singleton 
individuals in our model is sufficient for identification as long as there are at least some (biological) 
parent- offspring trios (or alternatively both biological mother- child and biological father- child pairs) 
available. Whilst the presence of adopted individuals’ parents (biological or adoptive) is not a neces-
sary condition for partitioning maternal effects into prenatal and postnatal components, the inclusion 
of such pairs is advantageous in terms of statistical power as we show below. We include an example 
R script that fits the sort of SEM described in this article that users can modify to apply to their own 
data (see Source Code File).

Asymptotic power calculations
We used OpenMx (Boker et al., 2011; Neale et al., 2016) to calculate the asymptotic power to 
partition maternal genetic effects into prenatal and postnatal maternal genetic effects. Asymptotic 
covariance matrices were generated assuming certain underlying values for the parameters of the 
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model depicted in Figure 1. The full model was then fitted to the covariance matrices to confirm a 
perfect fit to the data and to check that the parameter values were correctly estimated. Secondly, 
a reduced model where the parameter(s) of interest was constrained to zero was fitted to the same 
covariance matrices. We examined the effect of constraining the prenatal maternal genetic effect or 
postnatal maternal genetic effect to zero. The difference in minus twice the log- likelihood chi- square 
between the full and reduced models is equal to the non- centrality parameter of the test for associa-
tion, with the degrees of freedom equal to the difference in the number of free parameters between 
the models. Power was then calculated as the area under the curve of a non- central chi- square distri-
bution to the right of the significance threshold of interest:

 
Power =

ˆ ∞

X′2
α
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v,0

) dX′2 (v, ς
)
,
  

where  X
′2
α

(
v, 0

)
  is the quantile of the 100 * (1-α) percentage point of the central χ2 distribution with 

 v  degrees of freedom, and  ς   is the non- centrality parameter (Moen et al., 2019).
As we were interested in whether there might be enough adopted individuals in the UK Biobank 

for the informative partitioning of maternal genetic effects into prenatal and postnatal sources of vari-
ation, we first calculated power (α=0.05) using sample sizes roughly similar to the number of European 
individuals in the resource who reported their educational attainment (i.e. 1000 parent- offspring trios, 
4000 mother- offspring pairs, 1800 father- offspring pairs, 300,000 singletons who were raised by their 
biological parents, 6000 adopted individuals and 50 biological mother- adopted offspring duos- see 
below). We investigated the effect of different combinations of prenatal maternal genetic effects, 
postnatal maternal genetic effects, postnatal paternal genetic effects and offspring genetic effects 
(i.e.  γ m or ϐm = 0, 0.05, 0.1, 0.3 and 0.5). We also examined the effect of modifying the covariance 
between parental genotypes (with ρ ranging between 0 and 0.2 times the genotypic variance in the 
parental generation). Finally, we were curious as to the effect of increasing the number of the different 
family structures on statistical power, and in particular, on whether including increasing numbers of 
more attainable/accessible biological relatives (i.e. biological trios, pairs, and singletons [G1 – G4]) 
could increase power to partition maternal genetic effects for a fixed number of adopted individ-
uals. We also investigated the effect of varying the sample size of adopted individuals (G5), adoptive 
mother- adopted offspring duos (G6), and biological mother- adopted offspring duos (G7) on power. 
We used our calculator to determine 80% power (α=0.05).

Data simulations
In order to confirm our asymptotic calculations, we simulated a series of datasets of the same size 
and with the same underlying parameters as in the asymptotic power calculations. Each condition was 
simulated 1000 times and power was calculated as the number of simulations in which the effect of 
interest was detected (p<0.05) divided by 1000.

Online web utility
We developed a freely available, online power calculator that allows investigators to explore the 
power to detect prenatal and postnatal maternal genetic effects using our SEM in their own studies 
(https://evansgroup.di.uq.edu.au/ADOPTED). Our power calculator is built using the R shiny app 
(https://shiny.rstudio.com/) running the R studio software (RStudioTeam, 2015) and the OpenMx 
package (Boker et al., 2011; Neale et al., 2016) in the background.

Application to UK biobank data
We applied our model to self- reported birth weight and educational attainment data from the UK 
Biobank resource. The UK Biobank study was approved by the UK National Health Service National 
Research Ethics Service. Written consent was obtained from both the participants and their parents 
(for subjects younger than 18  years old). This study was approved by the Human Research Ethics 
Committee at the University of Queensland (approval number: 2019002705). We only included indi-
viduals of European ancestry, determined by: (i) projecting their genetic principal components onto 
the 1,000 Genome sample and then K- means clustering or (ii) those who self- reported ethnic back-
ground of either ‘British’, ‘Irish’, ‘Irish’, ‘White’, or ‘Any other white background’. Family relationships 
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were determined by the pairwise kinship estimated across the whole UK Biobank sample using the 
software KING (Manichaikul et al., 2010). Adoption status was determined based on response to the 
question “Were you adopted as a child?”. One from each pair of Individuals showing genome- wide 
genetic similarity greater than third degree relatives was removed from the dataset. We chose exclu-
sions so as to maximize the number of families from adopted singletons (G5), followed by trios (G1), 
mother- offspring duos (G2), and then father- offspring duos (G3).

Birth weight is a phenotype that is known to be affected by the maternal genome (Warrington 
et al., 2019), but should only be influenced by prenatal and not postnatal maternal genetic effects. 
We only included individuals whose birth weight was between 2.5 kg and 4.5 kg in analyses. These 
included 731 biological trios, 2014 biological mother- offspring pairs, 485 biological father- offspring 
pairs, 168,522 singletons raised by their biological parents, 1084 singleton individuals who reported 
being adopted, and 16 biological mother- adopted offspring pairs. We calculated each individu-
al’s weighted PRS (i.e. sums of the birth weight- increasing allele weighted by the effect size) and 
unweighted PRS (i.e. counts of the birth weight increasing allele) for birth weight using 20 SNPs 
known to influence birth weight via maternal pathways with p<5 x 10–8 from a recent GWAS of birth 
weight (Warrington et al., 2019). See Supplementary file 1 for a list of SNPs used to construct PRS 
of birth weight. We regressed birth weight on year of birth, sex and the first five genetic principal 
components and used the residuals in the analysis.

We then applied our model to educational attainment in UK Biobank participants of European 
ancestry. We calculated years of education, as a proxy of educational attainment, based on response 
to the question “Which of the following qualifications do you have?”: College or university degree = 
20 years; Vocational Qualification (NVQ), Higher National Diploma (HNC), or equivalent = 19 years; 
other professional qualification = 15 years; A level/AS level or equivalent = 13 years; O level/General 
Certificate of Secondary Education (GCSE) or equivalent = 10 years; Certificate of Secondary Educa-
tion (CSE) or equivalent = 10 years; none of the above = 7 years of education. We regressed years of 
education on year of birth, sex and the first five genetic principal components and used the residuals 
in the analysis. The final dataset included 943 biological parent- offspring trios, 2687 biological mother- 
offspring pairs, 712 biological father- offspring pairs, 347,980 singletons from biological families, 
5178 adopted singletons and 39 biological mother- adopted offspring pairs. We calculated weighted 
PRS (i.e. sums of the educational attainment increasing allele and weighted by the effect size) and 
unweighted PRS (i.e. counts of the educational attainment increasing allele) using 1267 SNPs from the 
current largest GWAS of educational attainment (Lee et al., 2018). We included only genome- wide 
significant SNPs in the construction of these scores because the most recent GWAS meta- analysis 
of educational attainment by Lee et al., 2018 included UK Biobank individuals (Lee et al., 2018). 
We were concerned that sample overlap would inflate estimates of the association between the PRS 
and educational attainment (and any inflation would be most severe for the hundreds of thousands 
of SNPs that did not reach genome- wide significance) and in turn bias parameter estimates from our 
model. For this reason, we also performed a sensitivity analysis using a second set of PRS of educa-
tional attainment using 72 SNPs from a GWAS of non- UK Biobank individuals (Okbay et al., 2016). 
See Supplementary file 2 for a list of SNPs used to construct these PRS.

The UK Biobank contains only very limited information regarding the adoption status of individuals 
(i.e. only whether they report being adopted or not). We were concerned about the possibility that 
some individuals in UK Biobank might have been adopted by their biological relatives in which case 
our model in Figure 1 would be misspecified. We therefore also conducted a sensitivity analysis by 
excluding adopted individuals with known breastfeeding information (on the reasoning that these 
individuals might be more likely to be fostered by a biologically related individual) and repeating the 
educational attainment analyses. This reduced the number of adopted ‘singleton’ individuals in the 
analysis to 2,867.

Investigating the effect of model misspecification
We were concerned about the effect that misclassifying adopted “singleton” individuals as unrelated 
to their adoptive parents (i.e. when in reality they were raised by their biological relatives) might have 
on type I error rates and estimates of prenatal and postnatal maternal genetic effects generated by 
our model. We therefore simulated data under four scenarios: (i) adopted singletons where 0%, 20%, 
40%, 60%, or 80% had adoptive mothers who were siblings or cousins of their biological mothers, (ii) 
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adopted singletons where 0%, 20%, 40%, 60%, or 80% had adoptive mother who were siblings or 
cousins of biological fathers, (iii) adopted singletons where 0%, 20%, 40%, 60%, or 80% had adop-
tive fathers who were siblings or cousins of biological fathers, and (vi) adopted singletons where 0%, 
20%, 40%, 60%, or 80% had adoptive fathers who were siblings or cousins of biological mothers. We 
assumed that sample sizes and the number of individuals in the other groups were the same as in our 
asymptotic power calculations.

We further investigated type 1 error rates and estimates of prenatal and postnatal maternal 
genetic effects after correctly modelling the relationship between biological and adoptive parents. 
We created four additional family structures (G8 to G11, Appendix  1—figure 1) considering the 
above four scenarios by adding a covariance path (r) between the genotypes of adoptive and biolog-
ical parents. The covariance between the genotypes of adoptive and biological parents was fixed to 
r=0.5 х Φ when the adoptive parent was a sibling of the biological parent and r=0.125 х Φ when 
they were cousins.

Results
Power calculations
The power to detect prenatal maternal genetic effects increased with increasing size of postnatal 
maternal genetic effects, paternal genetic effects, and offspring genetic effects (Figure 2). A similar 

Figure 2. Power to detect prenatal maternal genetic effects (γm) (top) or postnatal maternal genetic effects (βm) (bottom) whilst also varying the size of 
prenatal and postnatal maternal genetic effects, paternal genetic effects (βp) or offspring genetic effects (βo). Effect sizes are parameterized using the 
path coefficients β and γ. Power was calculated assuming sample sizes approximating the number of white European individuals in the UK Biobank with 
educational attainment data (i.e. 1000 biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 singletons, 
6000 adopted individuals, and 50 biological mother- adopted offspring pairs and a covariance of 0 (ρ) between maternal and paternal genotypes).

https://doi.org/10.7554/eLife.73671
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pattern was observed when we quantified the power to detect postnatal maternal genetic effects. 
Our calculations indicate that a study with a sample size and structure similar to the UK Biobank 
would have ~80% power (α=0.05) to detect prenatal maternal and postnatal maternal genetic effects 
that account for 1.5% and 0.9% of the variance in the offspring phenotype, respectively (calculated 
as  γ m2 and ϐm

2 assuming all the other genetic effects are null and zero correlation between parental 
genotypes). The power to detect prenatal and postnatal maternal genetic effects also increased 
slightly with increasing covariance between maternal and paternal genotypes (Appendix 1—figure 
2).

The power to detect prenatal and postnatal maternal genetic effects increased with the number of 
adopted singleton individuals, and more dramatically when the number of adoptive mother- adopted 
offspring pairs and/or biological mother- adopted offspring pairs increased (Figure 3). Power to detect 
prenatal maternal genetic effects increased most rapidly with increasing numbers of biological- mother 
adopted child pairs (G7), whereas the power to detect postnatal maternal genetic effects increased 
most strongly with increasing numbers of was provided by adoptive mother- adopted child pairs (G6). 
This makes sense intuitively, since adoptive mother- adopted child pairs (G6) provide a direct estimate 
of the postnatal maternal genetic effect (ϐm), whereas biological mother- adopted child pairs provide 
a direct estimate of the prenatal maternal genetic effect ( γ m). Likewise, adopted singleton individuals 
do not provide direct estimates of either prenatal or postnatal maternal genetic effects, and therefore 
contribute proportionally less in terms of statistical power than adoptive mother- adopted child or 
biological mother- adopted child pairs.

Interestingly, the power to detect prenatal and postnatal maternal genetic effects also increased 
with the number of biological families in the analysis (G1 to G4) (Figure 3); however, this increase 
asymptoted with maximal possible power depending primarily on the number of adopted individuals 
in the analysis. This result suggests that power to partition maternal genetic effects can be optimized 
through having large numbers of biological relatives in the analysis, but cannot be increased beyond 
a level that depends on the number of adopted individuals in the analysis (G5 to G7) and may be less 
than 100%. Results from simulations showed good concordance with asymptotic power calculations 
and appropriate type I error rates (Supplementary file 3, Supplementary file 4).

Figure 3. Power to detect prenatal maternal (γm) or postnatal maternal genetic (βm) effects whilst varying the numbers of each family structure, with the 
sample sizes of other family structures approximating numbers of white European individuals in the UK Biobank reporting educational attainment (1000 
biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 singletons, 6000 singletons, and 50 biological 
mother- adopted offspring pairs). Path coefficients representing postnatal or prenatal maternal genetic effects, paternal genetic effects (βp) and offspring 
genetic effects (βo) were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to 0.

https://doi.org/10.7554/eLife.73671
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Analyses in the UK Biobank
PRS for birth weight exhibited significant evidence of prenatal maternal genetic effects, offspring 
genetic effects (in the opposite direction), and no significant evidence for postnatal maternal or 
paternal genetic effects (Table 1). This pattern of results is expected since (a) birth weight is known to 
be affected by both maternal and fetal genetic effects, (b) maternal and offspring genetic effects on 
birth weight for many of the SNPs were in opposite directions, (c) conditional estimates of maternal 
and offspring genetic effects are negatively correlated, (d) in the present study SNPs comprising the 
PRS were selected for their strong maternal effects on offspring birth weight, and (e) birth weight is 
a perinatal phenotype and so by definition cannot be influenced by postnatal maternal (or paternal) 
genetic effects (Warrington et al., 2019; Beaumont et al., 2018; Warrington et al., 2018).

In the case of offspring educational attainment, our analyses showed evidence for a prenatal 
maternal genetic effect, a paternal genetic effect, and an offspring genetic effect (Table 2, Supple-
mentary file 5). The absence of a significant positive postnatal maternal genetic effect on offspring 
educational attainment was surprising given that maternal genetic effects should be mediated through 
maternal educational attainment, and therefore should mostly involve postnatal pathways (although 
it is possible that some of the relationship between maternal genotype and offspring educational 
attainment could be mediated through prenatal effects- e.g. less educated mothers consuming more 
alcohol during pregnancy which then has adverse effects on offspring cognitive development and 

Table 2. Modelling results of educational attainment in the UK Biobank.

Full sample

Unweighted PRS Weighted PRS

Estimate Std Error p- value Estimate Std Error p- value

Offspring effect 0.026 0.005 3.18 × 10 -7 2.474 0.485 3.40 × 10 -7

Prenatal maternal effect 0.027 0.011 0.013 1.722 0.703 0.014

Postnatal maternal effect –0.006 0.008 0.484 –0.288 0.514 0.575

Postnatal paternal effect 0.018 0.007 0.006 1.233 0.678 0.069

  

Excluding adopted individuals with breastfeeding information

Unweighted PRS Weighted PRS

Estimate Std Error p- value Estimate Std Error p- value

Offspring effect 0.025 0.005 5.52 × 10–7 2.441 0.372 5.15 × 10–11

Prenatal maternal effect 0.017 0.012 0.140 0.909 0.705 0.197

Postnatal maternal effect 0.004 0.009 0.682 0.549 0.595 0.357

Postnatal paternal effect 0.019 0.007 0.005 1.273 0.552 0.021

PRS: polygenic risk score constructed using 1,267 SNPs from Lee et al., 2018; Std Error: standard error.

Table 1. Modelling results of birth weight in the UK Biobank.

  

Unweighed PRS Weighted PRS

Estimate Std Error P- value Estimate Std Error P- value

Offspring effect –0.008 0.004 0.058 –0.173 0.115 0.132

Prenatal maternal effect 0.035 0.013 0.006 0.893 0.383 0.020

Postnatal maternal effect –0.017 0.011 0.130 –0.419 0.335 0.211

Postnatal paternal effect 0.003 0.005 0.588 0.048 0.151 0.751

PRS: polygenic risk score constructed using 20 SNPs showing maternal effects on birth weight from Warrington 
et al., 2019; Std Error: standard error.

https://doi.org/10.7554/eLife.73671
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educational attainment etc), and previous studies have shown that the effect of paternal and maternal 
PRS on educational attainment are roughly similar (Wang et al., 2021) that is suggesting the absence 
of prenatal maternal genetic effects. We were concerned that the cause of this surprising result might 
be because of model misspecification- specifically, adopted children being raised by adoptive parents 
who are biologically related to them.

We therefore performed sensitivity analyses where we excluded adopted individuals who reported 
breastfeeding information (i.e. on the hypothesis that knowing if they were breast fed or not is infor-
mation that an adopted individual could only know if they were adopted by a relative). The results 
of these analyses showed that estimates of the prenatal maternal genetic effect reduced in size and 
became non- significant. Whilst the postnatal maternal effect remained non- significant, the direction 
of effect changed from negative to positive. Sensitivity analyses using PRS constructed using the 72 
genome- wide significant SNPs from the Okbay et al., 2016 GWAS were underpowered but showed 
similar directions of effect Okbay et al., 2016.

Simulations where adoptive parents are related to biological parents
Our simulations showed that the presence of adoptive parents who were genetically related to their 
adopted offspring could in some cases increase the type 1 error rate to detect prenatal maternal 
genetic effects and bias estimates of prenatal and postnatal maternal genetic effects when these rela-
tionships were not accurately modelled in the SEM (Appendix 1—figure 3, Appendix 1—figure 4, 
Appendix 1—figure 5, Appendix 1—figure 6). In general, the effect of including unmodelled related 
adoptive and biological parents in the SEM depended on whether the adoptive mother or adoptive 
father was related to the biological parents (i.e. it did not matter whether the adoptive parents were 
related to the biological mother or father) and the degree of relatedness (i.e. closer relationships had 
the potential to produce greater bias and type I error rates).

In the case of adoptive mothers being genetically related to biological parents (Appendix 1—
figure 3, Appendix 1—figure 4), the presence of postnatal genetic effects (i.e.  βm  not equal to 0) 
was sufficient to bias estimates of the prenatal maternal genetic effect ( γm ) and increase type I error 
rates. In general, when  βm  was not equal to zero, then estimates of  γm  were biased towards the true 
total maternal genetic effect (i.e.  γm + βm ), and estimates of  βm  were biased towards zero. The reason 
for this can be seen intuitively by examining the path models for the G8 and G9 family structures 
in Appendix 1—figure 1 where the presence of biologically related adoptive mothers leads to an 
unmodelled covariance path between offspring genotype and phenotype (i.e.  

1
2 r × βm ). Note that 

the expected covariance implied by this path is the same in the case of adoptive mothers who are 
related to their adopted offsprings’ biological mothers (G8 in Appendix 1—figure 1), and adoptive 
mothers who are related to their adopted offsprings’ biological fathers (G9 in Appendix 1—figure 
1)- implying that failure to model relatedness in both groups should produce the same consequences 
in terms of bias and type I error. When  βm  is not zero, this unmodelled path alters the expected cova-
riance between offspring genotype and phenotype in adopted singleton individuals. In this situation, 
the model will incorrectly attribute the altered covariance to prenatal maternal genetic effects (i.e. 
since the  

1
2 r × βm  path is not explicitly modelled), and since estimates of the total maternal genetic 

effect remain unbiased (data not shown), will bias estimates of the postnatal maternal genetic effect 
towards zero. It follows that results will not be biased when   βm  = 0 and the magnitude of any bias will 
decrease as r approaches zero (i.e. with decreasing genetic relationship between adoptive mothers 
and the biological parents).

Likewise, our simulations showed that the presence of paternal genetic effects (i.e.  βp  not equal to 
0) was sufficient to bias estimates of the prenatal maternal genetic effect ( γm ) and increase type I error 
rates when unmodelled adoptive fathers who were genetically related to adopted children’s biological 
parents were included in the analysis (Appendix 1—figure 5, Appendix 1—figure 6). Inspection of 
the G10 and G11 family structures in Appendix 1—figure 1 shows that biologically related adoptive 
fathers leads to an extra unmodelled covariance path between offspring genotype and phenotype 
(i.e.  

1
2 r × βp ), and that this path is the same for both adoptive fathers related to biological fathers (G10 

in Appendix 1—figure 1) and adoptive fathers related to biological mothers (G11 in Appendix 1—
figure 1) (again implying that failure to model relatedness in both groups should have the same 
consequences). It also shows that there should be no bias/inflation of type I error rates in the absence 
of paternal genetic effects, which is consistent with the results from our simulations. However, if  βp  

https://doi.org/10.7554/eLife.73671
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is not zero, then this will affect the covariance between (adopted) offspring genotype and pheno-
type, and changes may be falsely ascribed to prenatal maternal genetic effects. In this situation, esti-
mates of the prenatal maternal genetic effect ( γm ) will be biased towards the sum of the true prenatal 
maternal genetic effect plus the true paternal genetic effect ( γm + βp ), and estimates of the postnatal 
maternal genetic effect ( βm ) will be biased towards the difference between the true total maternal 
genetic effect ( γm + βm ) minus the estimated prenatal maternal genetic effect ( γm ).

In general, the presence of unmodelled relationships between biological and adoptive parents 
did not bias estimates of offspring genetic or paternal genetic effects (results not shown). This makes 
sense since offspring and paternal genetic effects are estimated directly from the covariance between 
observed genotypes and phenotypes (i.e. the covariance between observed offspring genotype and 
offspring phenotype, and the covariance between observed paternal genotype and offspring pheno-
type, respectively), whereas the estimation of prenatal and postnatal maternal genetic effects have to 
be inferred indirectly using latent (not directly observed) genotypes and the difference in the covari-
ance between offspring genotype and phenotype in biological and adoptive families.

When we correctly modelled the relationship between biological and adoptive parents’ genotypes, 
there was no inflation in type 1 error rates and effect estimates were unbiased (Appendix 1—figure 7, 
Appendix 1—figure 8, Appendix 1—figure 9, Appendix 1—figure 10). However, correct modelling 
and inclusion of these individuals in the SEM produced complicated effects on the power to detect 
true effects relative to if the same number of adopted individuals with biologically unrelated adoptive 
parents had been included in the model (see Appendix 1—figure 11 where 0% on the x- axis corre-
sponds to this situation). For the simulations we examined, power to detect prenatal and postnatal 
maternal genetic effects decreased when adopted singletons whose adoptive mothers were related 
to their biological parents were included (and modelled correctly) in the analysis. This makes sense 
intuitively in that correct modelling of these mothers requires a covariance path between adoptive 
mother’s genotype and the relevant biological parent’s genotype (G8, G9). The presence of this path 
decreases the difference between the expected covariance between an adopted offspring’s genotype 
and phenotype (G8, G9), and the expected covariance between offspring genotype and phenotype 
from a non- adoptive family (G4)- hence lowering the power of the model to discriminate between 
maternal prenatal and postnatal genetic effects.

In contrast, power to detect prenatal and postnatal maternal genetic effects increased when 
adopted singletons whose adoptive fathers were related to their biological parents were included 
(and modelled correctly) in the analysis. In order to understand this result intuitively, it is useful to 
consider the case where the offspring trait is affected by concordant prenatal and postnatal maternal 
genetic effects (i.e.  γm  > 0 and  βm  > 0), but not by paternal ( βp  = 0) or offspring genetic effects ( βo  = 
0). Under the full model, adopted singletons (G5) and adopted singletons whose adoptive father is a 
genetic relative (G10, G11) produce identical expected covariance matrices and so lead to identical 
model fits and parameter estimates. However, under the reduced model where  γm  is fixed to zero, 
the only path that accounts for the covariance between offspring genotype and phenotype is the 
offspring genetic effect ( βo ). Thus in order for this covariance to be modelled accurately, the reduced 
model will produce positive estimates for the offspring genetic effect ( βo ). Simultaneously, to ensure 
that the covariance between the observed paternal genotype and offspring phenotype remains close 
to zero in parent- offspring trios and father- offspring pairs (i.e. G1 and G3), the model will produce 
negative estimates of the paternal genetic effect ( βp ). This process presents more of a challenge when 
modelling adopted singleton individuals whose adoptive fathers are related to their biological parents 
(i.e. G10, G11) where the paternal genetic effect impacts both the expected covariance between 
parental genotype and offspring phenotype, and the expected covariance between offspring geno-
type and phenotype (i.e. because of the presence of the fixed covariance path r). The consequence is 
that the reduced model doesn’t fit the data as well and increased power to detect association. Similar 
thought experiments can be used to provide intuition for the other results in Appendix 1—figure 11.

Discussion
Genetic studies of adopted individuals have a venerable history in the field of behavior genetics 
(Leahy, 1935; Richardson, 1913). Traditionally, adoption studies were used to determine the rela-
tive importance of genes and the environment on trait variability- the basic idea being that similarity 
between adopted individuals and their biological parents reflects the effect of genes, whereas the 
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similarity between adopted individuals and their adoptive parents reflects the effect of shared envi-
ronmental influences. Indeed, large studies of adopted individuals played a valuable role in resolving 
the ‘Nature vs Nurture’ debate of last century, complementing similar findings from twin studies and 
other pedigree- based designs (Horn, 1983; Rhea et al., 2013; Scarr and Weinberg, 1983).

In this manuscript, we developed a new statistical model that uses the information provided by 
adopted individuals to partition maternal genetic effects into prenatal and postnatal influences on 
offspring phenotypes. Our method uses SEM to model the expected covariance between geno-
types and phenotypes in adopted and non- adopted individuals. We have specifically designed our 
method to capitalize on the large number of adopted ‘singleton’ individuals present in large- scale 
population- based resources like the UK Biobank, exploiting the fact that the expected covariance 
between offspring genotype and phenotype differs between adopted and non- adopted individuals 
as a function of postnatal maternal genetic (and other) effects. Whilst our method does not provide 
explicit mechanistic insight into the reason for the existence of maternal genetic effects (merely a 
simple partitioning into prenatal and postnatal components, and estimation as to the relative impor-
tance of each), follow up studies could help elucidate these mechanisms by for example examining 
the association between maternal PRS and different prenatal and postnatal maternal phenotypes, and 
performing mediation and Mendelian randomization analyses (Evans et al., 2019; Armstrong- Carter 
et al., 2020).

We are not the first to note that information from adopted individuals could be used to provide 
valuable information on the effect of the prenatal environment on offspring traits (Loehlin, 2016; 
Demange et al., 2020). We are the first, however, to our knowledge to develop a model that specif-
ically quantifies prenatal and postnatal maternal genetic effects on offspring phenotypes. Recently, 
(Domingue and Fletcher, 2020) constructed a PRS to proxy educational attainment using maternal 
genotypes, and tested the strength of the association between the risk score and offspring educa-
tional attainment in children from biological and adoptive families separately (Domingue and 
Fletcher, 2020). The authors showed that the positive association between the score and educational 
attainment was stronger in children from biological than adoptive families. Our method differs from 
Dominique and Fletcher in a number of important respects. First, the focus in their study was on 
demonstrating indirect parental effects on offspring phenotypes, whereas the focus in our manuscript 
is specifically on partitioning maternal genetic effects into prenatal and postnatal effects. Second, 
our method provides point estimates and tests of the significance of prenatal and postnatal maternal 
genetic effects. Lastly, the method used in Dominique and Fletcher requires both adopted and biolog-
ical parent- child trios (or alternatively mother- offspring pairs). In contrast, our method at a minimum 
requires biological parent- child trios (or both biological mother- offspring pairs and biological father- 
offspring pairs) and adopted singletons only to estimate prenatal and postnatal maternal genetic 
effects on offspring phenotypes. The inclusion of adoptive mother- adopted offspring pairs and/
or biological mother- adopted offspring pairs increases power to partition maternal genetic effects 
dramatically, but is not a strict requirement of our method if adopted singletons are available.

We are also not the first to have used adopted individuals in the UK Biobank to estimate the contri-
bution of indirect genetic effects to phenotypic variability. (Cheesman et al., 2020) contrasted adopted 
and non- adopted individuals in the UK Biobank to investigate evidence for indirect genetic effects on 
educational attainment and the existence of gene- environment correlation (Cheesman et al., 2020). 
The authors found that a genome- wide PRS for educational attainment was more strongly associated 
with educational attainment in non- adopted compared to adopted individuals consistent with the 
existence of indirect genetic effects on educational attainment. Likewise, G- REML estimates of SNP 
heritability were also lower in adopted individuals compared to non- adopted individuals (potentially 
due to the absence/lower amount of passive gene- environment correlation in adopted individuals).

In a previous study of cognitive and non- cognitive effects on educational attainment (Demange 
et al., 2020), used three different sorts of study design to estimate the contribution of indirect genetic 
effects on educational attainment (Demange et al., 2020). They estimated indirect genetic effects by 
comparing between family and within family genetic effects in sibling pairs (Fulker et al., 1999), by 
estimating the effect of non- transmitted parental alleles on offspring phenotype in parent- offspring 
trios, and by computing the difference in PRS associations between adopted and non- adopted indi-
viduals. In general, the authors found that estimates of indirect effects using the adoption study 
design were lower than those produced by the other two models. They interpreted this as being 
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a consequence of the adoption study methodology not capturing the impact of prenatal maternal 
genetic effects (and also potentially being more robust to assortative mating and population strati-
fication) in contrast to the two other study designs. The present study explicitly capitalizes on differ-
ences between adopted and non- adopted individuals in their pattern of genotype- trait covariances 
to estimate the relative size of prenatal and postnatal maternal genetic effects and to provide formal 
statistical tests for their presence. Indeed, both (Demange et al., 2020) and our findings are consis-
tent with the existence of prenatal effects on educational attainment (although we believe that at 
least part of this finding is an artefact and due to unmodelled biological relationships between some 
adopted children and their adoptive parents in the UK Biobank).

Our power calculations show that in principle the number of adopted individuals in the UK Biobank 
is unlikely to be sufficient to resolve effects at individual genetic loci but may be large enough to 
detect evidence for prenatal/postnatal maternal genetic effects in the case of PRS. It is worth noting 
that, whilst primarily a function of the number of adoptive families in the analysis, the power to parti-
tion maternal genetic effects was also influenced by the number of biological families analysed. Intui-
tively, this is because the other family structures contribute to more precise estimation of for example 
paternal genetic effects, which in turn provides information on the total size of the maternal genetic 
component. This observation is important, because the number of adopted individuals in an anal-
ysis is likely to be severely constrained, whereas power can sometimes be improved (at least up 
to a threshold determined by the total number of adoptive families/individuals in the analysis) by 
increasing the sample size of other relative types that may be easier to ascertain. Regardless, the most 
efficient way to increase the power to detect prenatal and/or postnatal maternal genetic effects is to 
genotype adoptive mother- adopted child pairs and/or biological mother- adopted child pairs.

Our empirical analyses in the UK Biobank showed the expected pattern of maternal genetic 
effects on offspring birth weight (i.e. strong evidence for prenatal but not postnatal maternal genetic 
effects) but not on offspring educational attainment. Parental educational attainment is known to 
causally affect offspring educational attainment (Bates et al., 2018; Kong et al., 2018; Hwang et al., 
2020). Whilst it is possible, even probable, that some loci may affect offspring educational attainment 
through prenatal maternal pathways, it is not credible that such mechanisms would lead to larger 
effect sizes than those from postnatal pathways, or that fathers would exhibit strong evidence of 
postnatal effects but not mothers. Rather we hypothesize it is possible that our model could have 
been misspecified in that substantial numbers of adopted individuals in the UK Biobank may have in 
fact been raised by their biological relatives. This can be thought of as (unintentional) reintroduction 
of passive gene- environment correlation into the study. In other words, adopted children are brought 
up by their genetic relatives, who in turn provide the environment in which they are raised. This 
induces a correlation between adopted individuals’ PRS and their environment. Sensitivity analyses 
that excluded adopted individuals with known breastfeeding information suggested that including 
adopted individuals who were raised by genetically related adoptive mothers may lead to inflated 
prenatal maternal genetic effect estimates. Our simulations with adoptive parents who were siblings 
or cousins of the biological parents further confirmed that unmodelled relatedness can increase 
evidence for prenatal maternal genetic effects at the expense of postnatal effects, particularly when 
paternal genetic and postnatal maternal effects are present, as would be the case with educational 
attainment (this contrasts with birth weight where we do not expect any paternal or postnatal genetic 
effects and for which we obtained sensible results). Ideally, one would have detailed information on 
any genetic relationship between adoptive and biological parents and model these relationships in 
the SEM (see below).

Our model relies on several strong assumptions, some of which are shown explicitly in Figure 1 
and others which are not (see Supplementary file 6 for a summary of some of the major assumptions/
limitations of our model). Those assumptions explicitly encoded in Figure 1 include that the total 
maternal genetic effect can be decomposed into the sum of prenatal and postnatal components, that 
genetic effects are homogenous across biological and adoptive families, the absence of genotype 
x environment interaction, the absence of gene- environment correlation (including evocative gene- 
environment correlation and correlation between the prenatal maternal environment and maternal 
PRS), any correlation between the genetic scores in spouses is the same in biological and adoptive 
families, and that fathers do not exert prenatal effects on offspring traits. Assumptions that are not 
explicitly shown in Figure 1 include that adopted (and adoptive) individuals are not systematically 
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different from other individuals, adopted individuals are placed randomly within the population 
(including with individuals not genetically related to themselves), that adoption happened soon after 
birth and that the adopted individuals were raised in one adoptive family, and adopted individuals do 
not maintain contact with their biological parents. We also ignore any complexities due to for example 
single mothers raising offspring independently of their fathers etc.

Whilst we expect some of these assumptions to hold (i.e. it is reasonable to expect the absence of 
substantial prenatal paternal genetic effects for many traits), we expect that others will show varying 
degrees of violation with differing consequences for the parameter estimates obtained under the 
misspecified model. For example, it is well appreciated that adopted individuals and adoptive families 
may differ in several respects to the general population. For example, some studies have reported 
that adoptive families are better educated and have higher socio- economic status than the popu-
lation average (Kendler et al., 2015). We argue that violation of this assumption is likely to exert 
more serious consequences on traditional adoption studies which model the phenotypic correlation 
between biological, adopted relatives. In contrast, in our design it is more important that genetic 
effect sizes are homogenous across adopted and non- adopted individuals (i.e. no genotype by envi-
ronment interaction), and at least currently, there is limited evidence for large genotype by envi-
ronment interactions at individual genetic loci. Our model also allows for differences in the residual 
variance across biological and adoptive families (Cheesman et al., 2020). This may be important if for 
example, adopted children are selectively placed in a reduced range of environments compared to 
their non- adopted counterparts.

We argue that of greater consequence for the validity of our model is that any genetic relation-
ship between adoptive and biological parents is accurately modelled and included in the SEM. 
Through simulation, we have shown that the consequences of model misspecification depend 
upon which biological and adoptive parents are related, the nature of this relationship, and the 
proportion of adopted individuals in the sample who have had their relationship misspecified. 
Our simulations also showed that correctly modelling this relationship returns asymptotically unbi-
ased effect estimates and correct type I error rates. Clearly, knowing these cryptic relationships 
in the UK Biobank would allow us to properly model them and better estimate prenatal and post-
natal maternal genetic effects using this resource. We emphasize that accurately modelling these 
relationships does not require that actual genotypes for adoptive and/or biological parents be 
obtained (although this would be advantageous in terms of statistical power) as our SEM allows us 
to model these relationships in terms of latent variables. Indeed, as large- scale resources like the 
UK Biobank become more common, we expect that the number of adopted individuals who have 
GWAS will also increase, and consequently models like the one espoused in this manuscript will 
become increasingly useful. High quality phenotypic information on these adopted individuals and 
their adoptive parents including whether they share any biological relationship will be critical to 
making the most of these resources.

We have also not modelled the complex effects of assortative mating in our SEM other than 
including covariance terms between maternal and paternal genotypes and assuming equal genetic 
variances in parents and their offspring under random mating (i.e. this is equivalent to assuming one 
round of assortative mating in the parental generation). Positive assortment induces a number of 
complications when attempting to decompose the offspring phenotypic variance into its constituent 
sources of variation, including increasing homozygosity and the genetic variance at loci for the trait 
undergoing assortment relative to that expected under Hardy- Weinberg equilibrium, and inducing 
correlations between assorting loci across the rest of the genome both within and between indi-
viduals in the same family. Spousal correlations for phenotypes (educational attainment: r=0.285; 
birth weight: r=0.076) and PRS (educational attainment: r=0.117; birth weight: r=0.068) in complete 
parent- offspring trios in the UK Biobank suggest that assortative mating is likely present for educa-
tional attainment, and potentially to a lesser degree for (phenotypes correlated with) birth weight. 
Recent work by Balbona et al., 2021 and Kim et al., 2021 have shown how PRS of transmitted and 
non- transmitted alleles in parent- offspring trios can be used to estimate direct and indirect genetic 
effects on offspring phenotype and the variation attributable to the environmental influence of parents 
on offspring under phenotypic assortment (Balbona et al., 2021; Kim et al., 2021). It is possible that 
our basic model could be extended in a similar fashion to incorporate the effect of assortment and 
estimate some of these effects also.
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Also relevant to this discussion is a series of data simulations performed by Demange et al., 2020 
who found that estimates of indirect genetic effects obtained in adoption designs (i.e. which estimate 
the size of indirect genetic effects by taking the difference between a PRS- trait association in adopted 
individuals and a PRS- trait association in non- adopted individuals) were less biased by assortative 
mating and population stratification than estimates of indirect genetic effects obtained in biologically 
related parent- offspring trio designs (i.e. where estimates of indirect genetic effects are obtained by 
regressing offspring phenotype on parental genotype conditional on offspring genotype). In the case 
of population stratification, the intuition behind this observation is that the contaminating effects of 
substructure are present in both adopted and non- adopted individuals. This contamination cancels 
out when the PRS- trait association in adopted individuals is subtracted from the PRS- trait association 
in non- adopted individuals. However, this is not the case in parent- offspring trios, where estimates of 
indirect genetic effects remain contaminated.

In the context of our SEM, we expect that unmodelled population stratification will bias estimates 
of maternal prenatal and postnatal effects away from the null since population stratification will 
increase the covariance between maternal genotype and offspring phenotype, as well as the covari-
ance between offspring genotype and phenotype in adopted and non- adopted individuals. Because 
we have limited our empirical analyses to individuals of white European ancestry and residualized 
the phenotypes for the first five genetic principal components prior to analysis in the SEM, any influ-
ence due to population stratification is likely to have been minor in our empirical analyses in the UK 
Biobank. The influence of assortative mating on our model is more difficult to predict, but our limited 
exploration of this issue by simulation (data not shown) suggests that the effect of assortative mating 
on parameter estimates from our SEM is likely to be minor.

Finally, it has not been lost on us, that our framework may provide a basis for correcting Mende-
lian randomization (MR) studies of intrauterine/early life environmental exposures for some of the 
contaminating effects of horizontal genetic pleiotropy (Figure 4). The presence of latent horizontal 
pleiotropy is one of the major threats to the validity of causal inference from MR studies (Hemani 

Figure 4. Diagram illustrating a Mendelian randomization study designed to estimate the causal effect of a maternal prenatal environmental exposure 
on an offspring later life outcome. Maternal genotype proxies a perinatal exposure of interest and is used as an instrumental variable to estimate the 
causal effect of the perinatal exposure on the offspring outcome. The pathway of interest is represented by the blue arrows where the SNP influences 
the outcome prenatally through the perinatal exposure of interest. In this sort of design, it is important to control for spurious pathways through 
the offspring genome since offspring genotype will be correlated ½ with maternal genotype. Maternal genotype could also influence the offspring 
phenotype via other pleiotropic paths through the intrauterine environment (red arrow) or through the postnatal environment (dashed arrows). The 
inclusion of adopted individuals into the research design may be useful in controlling for the effect of horizontal pleiotropic influences through the 
postnatal environment. Intuitively this is because adoptive mother’s genotype provides an estimate of the relationship between maternal genotype 
and offspring outcome through postnatal pathways only. This estimate could be included in statistical models of the relationship between maternal 
genotype and offspring outcome to help correct for the effect of horizontal pleiotropy.
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et al., 2018). As we have shown, the inclusion of adopted individuals alongside biological families 
in genetic studies permits the partitioning of maternal genetic effects into prenatal and postnatal 
components. Consequently, if the focus of an MR study is on estimating the causal effect of a prenatal 
maternal exposure on an offspring outcome, the covariance between adoptive mother’s genotype 
and offspring (outcome) phenotype should provide an estimate of genetic effects due to postnatal 
horizontal genetic pleiotropy. These estimates could then be included in an MR model to correct 
causal estimates for the effect of postnatal pleiotropy (Figure 4). It is important to realize, however, 
that this procedure will not correct for the effect of prenatal/early life horizontal pleiotropy as these 
paths will be present in both biological and adopted individuals and so this approach is not a panacea 
for dealing with latent pleiotropy in MR studies.

In conclusion, we present a simple extension to the basic adoption design that includes measured 
genotypes and enables partitioning of maternal genetic effects into prenatal and postnatal sources 
of variation. We show in principle that adopted singleton individuals in the UK Biobank combined 
with biologically related parent- offspring trios and pairs is sufficient to partition maternal genetic 
effects into prenatal and postnatal sources of variation. However, power calculations suggest that 
such a partitioning would currently only be realistic for PRS explaining substantial proportions of the 
variance in offspring phenotype, and that much larger numbers of individuals would be required to 
achieve such a partitioning at individual loci. In addition, failure to correctly model cryptic relation-
ships between adoptive and biological parents may produce biased estimates of maternal genetic 
effects and increased type I error rates. Accurate modelling of cryptic relationships is sufficient to 
bring type I error rate under control and produce unbiased effect estimates. We suggest that there is a 
possibility that many individuals in the UK Biobank who report being adopted could have been raised 
by their biological relatives. We conclude that there would be considerable value in following up 
adopted individuals in the UK Biobank to determine whether they were raised by biological relatives, 
and if so, to precisely ascertain the nature of the relationship. These adopted individuals could then 
be used in informative statistical genetics models like the one described in the present manuscript to 
further elucidate the genetic architecture of complex traits and diseases.
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Appendix 1

Appendix 1—figure 1. Path diagrams illustrating the structural equation models (SEM) underlying four additional 
family structures (G8 – G11) where biological and adoptive parents are related. Observed variables and latent 
variables are shown in squares and circles respectively. Causal relationships are represented by one headed arrows. 
Two headed arrows represents correlational relationships. Zo represents offspring genotype which influences 
offspring phenotype (βo) and is correlated ½ with the genotypes of its biological parents. Zm_b represents the 
genotype of a biological mother whose child was adopted and therefore only influences her child’s phenotype 
through prenatal pathways (γm). Zm_a represents the adoptive mother’s genotype which only influences her 
adopted offspring’s phenotype via postnatal pathways (βm). Zp_b represents the genotype of a biological father 
whose child was adopted and therefore has no influence on the adopted offspring phenotype. Zp_a represents the 
adoptive father’s genotype which influences his adopted offspring postnatally (βp). ρ represents the covariance 
between parental genotypes, as a result of e.g. assortative mating (it is assumed that this covariance is the same in 
biological parents and adoptive parents). The total variance of genotypes in the parental generation is set to Φ. Ɛ3 
through Ɛ6 represent residual error terms for the adopted offspring that we assume have different variances. The 
(fixed) parameter r represents the covariance between biological and adoptive parents’ genotypes.
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Appendix 1—figure 2. Power to detect prenatal maternal (γm) or postnatal maternal (βm) genetic effects whilst 
varying the correlation (rg) between maternal and paternal genotypes. Power was calculated using sample sizes 
approximating the number of white European individuals in the UK Biobank reporting their own educational 
attainment (1000 biological trios, 4000 biological mother- offspring pairs, 1,800 biological father- offspring pairs, 
300,000 singletons, 6000 adopted individuals, and 50 biological mother- adopted offspring pairs). Path coefficients 
representing prenatal maternal (γm), postnatal maternal (βm), paternal (βp) and offspring genetic effects (βo) were 
fixed to 0.1.

Appendix 1—figure 3. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive mothers being siblings (top) or cousins (bottom) of biological mothers. An 
SEM which did not correctly model this relationship was fit to the data. Power was calculated using simulated data 
with 1000 biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 
singletons, and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of 
postnatal maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero 
whilst the size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring 
effects (βo) were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

https://doi.org/10.7554/eLife.73671
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Appendix 1—figure 4. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive mothers being siblings (top) or cousins (bottom) of biological fathers. An SEM 
which did not correctly model this relationship was fit to the data. Power was calculated using simulated data 
with 1000 biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 
singletons, and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of 
postnatal maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero 
whilst the size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring 
effects (βo) were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

Appendix 1—figure 5. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive fathers being siblings (top) or cousins (bottom) of biological fathers. An SEM 
which did not correctly model this relationship was fit to the data. Power was calculated using simulated data 
with 1000 biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 
singletons, and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of 
postnatal maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero 
whilst the size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring 
effects (βo) were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

https://doi.org/10.7554/eLife.73671


 Research article      Genetics and Genomics

Hwang et al. eLife 2022;11:e73671. DOI: https://doi.org/10.7554/eLife.73671  24 of 27

Appendix 1—figure 6. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive fathers being siblings (top) or cousins (bottom) of biological mothers. An SEM 
which did not correctly model this relationship was fit to the data. Power was calculated using simulated data 
with 1000 biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 
singletons, and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of 
postnatal maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero 
whilst the size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring 
effects (βo) were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

Appendix 1—figure 7. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive mothers being siblings (top) or cousins (bottom) of biological mothers. An SEM 
which modelled this relationship correctly was fit to the data. Power was calculated using simulated data with 1000 
biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 singletons, 
and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of postnatal 
maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero whilst the 
size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring effects (βo) 
were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

https://doi.org/10.7554/eLife.73671


 Research article      Genetics and Genomics

Hwang et al. eLife 2022;11:e73671. DOI: https://doi.org/10.7554/eLife.73671  25 of 27

Appendix 1—figure 8. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive mothers being siblings (top) or cousins (bottom) of biological fathers. An SEM 
which modelled this relationship correctly was fit to the data. Power was calculated using simulated data with 1000 
biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 singletons, 
and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of postnatal 
maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero whilst the 
size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring effects (βo) 
were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

Appendix 1—figure 9. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive fathers being siblings (top) or cousins (bottom) of biological fathers. An SEM 
which modelled this relationship correctly was fit to the data. Power was calculated using simulated data with 1000 
biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 singletons, 
and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of postnatal 
maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero whilst the 
size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring effects (βo) 
were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

https://doi.org/10.7554/eLife.73671
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Appendix 1—figure 10. Estimated prenatal (γm) and postnatal (βm) maternal effects and type 1 error rates whilst 
varying the percentage of adoptive fathers being siblings (top) or cousins (bottom) of biological mothers. An SEM 
which modelled this relationship correctly was fit to the data. Power was calculated using simulated data with 1000 
biological trios, 4000 biological mother- offspring pairs, 1800 biological father- offspring pairs, 300,000 singletons, 
and 6000 adopted individuals. Prenatal maternal genetic effects were fixed to zero whilst the size of postnatal 
maternal genetic effects were varied (left panels); postnatal maternal genetic effects were fixed to zero whilst the 
size of prenatal maternal genetic effects were varied (right panels). Paternal effects (βp) and offspring effects (βo) 
were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to zero.

https://doi.org/10.7554/eLife.73671
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Appendix 1—figure 11. Power to detect prenatal (γm) and postnatal maternal (βm) genetic effects when the 
relationship between adoptive and biological parents are correctly specified in the model. Power was calculated 
using simulated data assuming 1000 biological parent- offspring trios, 4000 biological mother- offspring pairs, 1800 
biological father- offspring pairs, 300,000 singletons from non- adopted families, and 6000 adopted individuals. 
Prenatal maternal genetic effects, postnatal maternal genetic effects, paternal genetic effects (βp) and offspring 
genetic effects (βo) were fixed to 0.1. The covariance between maternal and paternal genotypes was fixed to 0. The 
percentage of adopted individuals whose adoptive parents were genetically related to their biological parents was 
varied (x- axis). Note that 0% corresponds to the situation where biological and adoptive parents are unrelated.

https://doi.org/10.7554/eLife.73671
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