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Abstract: Sustainable biofuel production is the most effective way to mitigate greenhouse gas
emissions associated with fossil fuels while preserving food security and land use. In addition to
producing bioenergy, waste biorefineries can be incorporated into the waste management system
to solve the future challenges of waste disposal. Biomass waste, on the other hand, is regarded as a
low-quality biorefinery feedstock with a wide range of compositions and seasonal variability. In light
of these factors, biomass waste presents limitations on the conversion technologies available for value
addition, and therefore more research is needed to enhance the profitability of waste biorefineries.
Perhaps, to keep waste biorefineries economically and environmentally sustainable, bioprocesses
need to be integrated to process a wide range of biomass resources and yield a diverse range of
bioenergy products. To achieve optimal integration, the classification of biomass wastes to match the
available bioprocesses is vital, as it minimizes unnecessary processes that may increase the production
costs of the biorefinery. Based on biomass classification, this study discusses the suitability of the
commonly used waste-to-energy conversion methods and the creation of integrated biorefineries. In
this study, the integration of waste biorefineries is discussed through the integration of feedstocks,
processes, platforms, and the symbiosis of wastes and byproducts. This review seeks to conceptualize
a framework for identifying and integrating waste-to-energy technologies for the varioussets of
biomass wastes.

Keywords: lignocellulosic waste; organic waste; waste-to-energy; biorefinery integration; industrial
symbiosis

1. Introduction

The IEA (International Energy Agency) predicts that the global energy demand will
be approximately 8% smaller than today in 2050, with 90% of the energy generation
emanating from renewable energy sources such as hydropower, biomass, wind, tide, solar,
and geothermal [1]. However, to achieve this target, the substitution of all fossil fuels with
low-carbon renewable energy such as bioenergy before 2050 is crucial [2]. Biorefineries as
alternatives to petroleum refineries have become increasingly important because of their
ability to produce biofuels with a net-zero balance towards CO2 emission and properties
similar to fossil fuels [3]. Recently, second-generation biorefineries that use biomass residues
and municipal waste have gained increasing attention from researchers in academia and
industry due to their role in adding value to waste material and mitigating the risks
associated with using virgin biomass [4–6]. According to the literature, the conversion of
numerous types of biomass wastes into biofuels is widely studied [6]. However, due to
the diverse range of biowastes, most research studies have described waste biorefineries
based on the type of feedstock processed; for example, agriculture waste, municipal solid
waste, and organic waste biorefineries [7–10]. Furthermore, studies reveal that biorefineries
using single feedstock and conversion technology encounter challenges such as limited
feedstock supply and heterogeneity, both of which have an impact on the biorefinery’s
economic recovery [11].
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In recent years, several researchers have called for the adoption of integrated biore-
finery concepts that integrate multiple conversion processes to improve efficiency and
cost-effectiveness while adding value to multiple feedstocks [11,12]. However, despite the
technological and economic advantages, integrated biorefineries are not being developed in
a systematic manner due to the broad range of biomass sources, conversion processes, plat-
forms, and products involved. As a result, each integrated biorefinery concept tends to have
a unique output efficiency and process arrangement. In order to standardize the creation of
integrated biorefineries, the relationship between the diverse properties of biomass waste
and the various conversion technologies needs to be well-understood. Budzianowski [13]
discussed the integration approaches suitable for integrating biorefinery systems in the
total chain by investigating the increase of facility capacity through combining multiple
platforms, exchanging wastes and products with other industries, applying more efficient
biomass conversion processes, providing ecosystem, and optimizing the biomass supply
chain on a broader scale. In an effort to systematize the knowledge in the literature, the
authors characterize system boundaries, principles, and integration approaches in total
chain integration. According to Alibardi et al. [14], the full-scale implementation of organic
waste biorefineries requires a careful understanding of waste characteristics, markets for
biorefinery products, and means to integrate processes with other industrial processes.
Furthermore, Bisnella et al. [15] performed sensitivity analyses to show how waste char-
acteristics affect the recovery and environmental performance of waste biorefineries. The
authors carefully quantify the results of life cycle analyses based on waste characteristics.
Lodato et al. [16] have published a process-oriented modeling framework for environ-
mental evaluation that parametrizes the physiochemical correlations between biomass
feedstock material, conversion processes, and end products. The framework allows for
more flexible modeling and selection of conversion technologies for life cycle assessments.
Even though the impact of waste characteristics on individual conversion technologies
has been extensively studied, no review on the combination of various technologies has
been published.

In this review, we discuss the integration of biorefineries focusing on the identification
of the most suitable combination of conversion technologies for the selected set of biomass
wastes. In a descriptive approach to biorefinery integration, biomass feedstocks, conver-
sion processes, platforms, byproducts, products, and existing industrial infrastructures
are considered as the integration variables. This study aims to demonstrate how biomass
waste characteristics influence the integration of biomass conversion technologies in waste
biorefineries. As a result, the critical review process is adopted to conceptualize information
from multiple literature sources [17]. The study examines data collected from 123 doc-
uments, including books, reports, and articles from 2010 to the present. The literature
review in this study is structured into four main sections. Section 2 classifies biomass
waste as feedstock to waste biorefineries, and using the biowaste classification, Section 3
discusses the suitability of various waste-to-energy technologies, Section 4 describes waste
biorefineries, and Section 5 discusses some of the key features that govern the creation of
integrated biorefineries.

2. Biomass Waste

Biomass residues and waste originate from all levels of biomass production and
processing including municipal waste, industrial waste, aquaculture, animal manures,
agricultural and forestry, and others [8,18,19]. However, the technical classification of
biogenic waste is rarely discussed in the literature, despite its importance in resolving
the issues of biomass heterogeneity in waste biorefineries [18]. With the broad variation
in the quality of biomass wastes, waste biorefineries tend to be more sophisticated than
typical biorefineries [14]. As a result, understanding the qualities of biowaste is critical for
selecting the most appropriate waste biorefinery technologies [20–22].

There have been numerous studies conducted to describe the relationship between
biomass feedstock characteristics and conversion technologies. Melendez et al. [21] pro-
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posed a classification system for biomass waste based on conversion process requirements.
The authors classified biomass feedstock as sugar and starch, vegetable oils and animal
fats, lignocellulosic and biodegradable waste. Although the authors discussed suitable
conversion technologies, liquid biogenic waste was not included in the classification. The
need for more ecologically friendly industries has motivated scientists to evaluate the
potential of using wastewater as a feedstock for waste biorefineries [23]. Chen et al. [24]
examined municipal solid and liquid waste as feedstocks, taking into consideration several
conversion technological options to maximize energy and value recovery for biorefiner-
ies. Furthermore, numerous biorefining schemes have been proposed by Chen et al. [25]
for producing chemicals, fertilizers, bioenergy and clean water from organic and liquid
municipal wastes.

For bioenergy applications, biomass waste can be described as lignocellulosic or
organic waste, depending on the level of moisture [26]. For example, lignocellulosic biomass
waste such as agricultural and forest residues often have low moisture (often less than 60%),
making it amenable for treatment using thermochemical procedures. Residues with a high
moisture content, as well as wastewater, are examples of organic or fermentable biomass
waste. The moisture content of this sort of waste is frequently high (often greater than 60%),
making it appropriate for biochemical treatment. Livestock manure, the organic part of
municipal waste, industrial waste, and wastewater are examples of such residues [26].
In this study, biogenic waste is defined as lignocellulosic, organic solid, and liquid waste,
as shown in Figure 1.
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Figure 1. Classification of biomass waste.

2.1. Lignocellulosic Biomass Waste

All biomass residues formed from materials that primarily comprise of celluloses,
hemicelluloses, and lignin are classified as lignocellulosic waste [27]. Examples of lignocellu-
losic wastes include forest residues, agricultural residues, wood residue, the lignocellulosic
fraction of municipal solid waste, and others, as shown in Figure 2.

Lignocellulosic waste has high energy value, low moisture content, and rigid struc-
tures that necessitate harsh conversion conditions (i.e., high temperature) only available in
thermochemical processes such as combustion, gasification, or pyrolysis [18,21,28]. Con-
version of lignocellulosic waste through biochemical or biological processes will require
pretreatment to enhance the reactivity and accessibility of carbohydrates before undergoing
biological degradation [10,29]. The addition of energy-intensive pretreatment processes
might result in additional processing expenses, which can impair the biorefinery’s economic
performance [21,30,31].
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2.2. Organic Solid Waste

The organic fraction of solid waste, on the other hand, is characterized as a solid
waste that has a high moisture content and is easily biodegradable, such as municipal
solid waste, livestock manure, sewage sludge, industrial waste, and food waste [21,32].
According to the Landfill Directive (1999/31/EC) [33], biodegradable waste is defined
as “any waste that can undergo anaerobic or aerobic decomposition, such as food and
green waste, and paper and paperboard”. Furthermore, the presence of high moisture
and biodegradable carbon material in organic solid waste makes it appropriate to apply
biological processes like anaerobic digestion and fermentation [6]. While thermochemical
processes require biomass with low moisture, pretreatment methods such as drying can be
used to reduce the moisture content to suitable levels [28]. Even though such a pathway
is technically possible, the addition of a preprocessing step may increase the processing
costs of the biorefinery [30,34]. As a result, identifying the most appropriate technology for
transforming organic solid waste into energy is critical to the economics of the biorefinery.

2.3. Liquid Biomass Waste

As shown in Figure 3, liquid waste can be collected as municipal wastewater or
industrial waste, primarily from food processing industries such as fish, vegetable oil
refining, and dairy processing. The effluent obtained from industrial processing is also
often obtained as a by-product of extracting solid organic matter solids from the industrial
effluents [35]. The organic matter contained in wastewater can serve as a good source
of bioenergy [25], freshwater [36], and organic fertilizer [37]. The treatment of liquid
waste may include mechanical techniques for removing organic and inorganic suspended
particulates, as well as biochemical conversion methods for degrading and removing
soluble biodegradable organics [37].
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Other liquid wastes, such as used cooking oil, have been treated using chemical pro-
cesses that transform the triglycerides (fats) in the oil into useful biodiesel [38]. With proper
process conditions, transesterification of waste oils can produce high-quality biodiesel that
can replace fossil diesel in engines, without any major modifications [39]. Feedstocks for
biodiesel production may include waste cooking oils from homes and businesses, animal
fats, and wastes or by-products from vegetable oil refining [40].

3. Waste to Energy Conversion Processes
3.1. Thermochemical Methods

Besides combustion, the thermochemical conversion methods involve the treatment
of biomass with pyrolysis to produce solid, liquid, or gaseous compounds that can then
be upgraded into fuels, heat, or electricity (see Figure 4) [41]. Gasification and pyrolysis
are the two most popular thermochemical conversion processes in modern biorefineries.
These technologies have a short processing time and operate under harsh circumstances
(high temperature and pressure), hence having the ability to handle biomass waste that is
difficult to decompose through biochemical processes [6,28].
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Unlike biological methods, which rely solely on the biodegradable carbon content of
biomass, thermochemical pathways make use of the entire biomass, thus minimizing the
energy-intensive step of feedstock pretreatment [41]. Low energy recovery and emission
of harmful compounds such as toxic gases and particles into the environment are some of
the issues faced by the thermochemical conversion of solid waste to energy [42]. Although
studies reveal waste incineration as the most cost-effective among the thermochemical
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technologies, the high volume of particulate matter and greenhouse gases emitted by the
technology makes it inappropriate for use in modern biorefineries [8,43].

On the other hand, hydrothermal carbonization (HTC), also known as wet pyrolysis, is
an emerging type of pyrolysis technology that is thermochemical and is capable of handling
biomass with a high moisture content [44]. While hydrothermal carbonization is capable to
process wet biowaste, it is often used as a pretreatment method to produce hydrochar and
liquid effluent which further processed to produce bioenergy [45,46]. Nonetheless, HTC
technology is still in its infancy, and additional research is needed to better understand the
impact of parameters on final product qualities and applications [44].

3.2. Biochemical Methods
3.2.1. Solid Organic Waste Conversion

In contrast to thermochemical processes, biochemical or biological conversion tech-
niques use enzymes to break down substrates, making them more suitable for biomass
that is high in moisture and easily biodegradable [14,21]. Biochemical routes convert wet
biomass waste into biofuels and other value-added products using aerobic and anaerobic
microbes. Anaerobic digestion and fermentation are two of the most prevalent biochemical
techniques for this type of biomass waste into biofuels (see Figure 4) [6].

Anaerobic digestion (AD) is a process that involves decomposing organic waste by the
anaerobic microbes in the absence of oxygen to create biogas, biohydrogen, and digestate,
which can be utilized as a biofertilizer in agricultural [6]. The enzymatic breakdown process
consists of several phases (i.e., hydrolysis, acidogenesis, acetogenesis, and methanogenesis)
that result in biogas which could be used for heating, transportation, and/or electricity
production [47,48]. To increase the yield of biogas, accessibility of the substrate by mi-
croorganisms can be increased by adding a pretreatment step to the AD process [29,49].
Additionally, due to the sensitivity of AD process, optimization of design and operation
parameters is critical for maximizing biogas yield and quality [50].

Fermentation is a biological process that aerobically breaks down compounds like
glucose in biomass waste to produce primarily ethyl alcohol and carbon dioxide [21].
One of the oldest fermentation technologies is the synthesis of bioethanol from fermentable
carbohydrates. Vegetable and fruit waste, corn stover, and sugarcane bagasse all contain
considerable amounts of sugar, which can be utilized in the fermentation process to generate
bioethanol [51]. The microorganisms used in ethanol fermentation break down the sugars
available in organic waste into pyruvate molecules, which are subsequently converted to
ethanol and carbon dioxide [52,53]. Organic wastes containing complex sugars such as
cellulose and hemicellulose, on the other hand, are difficult for fermentation microbes to
digest, necessitating a pretreatment phase (hydrolysis) to convert the polysaccharides into
simple sugars prior to fermentation [6,51]. For example, Byadgi and Kalburgi [54] investi-
gated the three-step fermentation of waste newspapers to produce bioethanol. According to
the authors, lignin is removed from cellulosic material, and polysaccharides are hydrolyzed
to simple sugars before commencement of the fermentation process. The procedure for
producing ethanol from lignocellulosic biomass has been considered attractive, but it’s
economic performance is not effective [55].

3.2.2. Liquid Waste Conversion

In comparison to solid waste, the energy potential of liquid waste has been underuti-
lized [56]. The wastewater contains a lot of organic substrates, which means there’s a lot of
room for bioenergy and other value-added goods [57,58]. Furthermore, producing biofuels
and treating wastewater at the same time allows for financial savings while also making
the biorefinery environmentally sustainable [57].

Advances in biological and electrochemical processes such as anaerobic digestion,
microbial fuel cells (MFC), and microbial electrochemical cells (MEC) have prompted re-
searchers to look into the possibility of recovering bioenergy from liquid waste. A summary
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of some studies that demonstrate the production of bioenergy products from liquid biomass
waste has been provided in Table 1.

Table 1. Liquid biowaste to energy technologies, feedstock, and bioenergy products.

Technology Liquid Waste Bioenergy Challenges References

Conventional AD Water ponds Biogas
- Long retention time
- Large treatment area [59]

Upflow anaerobic
sludge blanket, UASB

Industrial, municipal
wastewaters Biogas

- Forming and AD inhibitions at high organic
loading rates (OLR). [52,60,61]

Photobiological
hydrogen production,
Anaerobic Digestion

Agricultural,
industrial, municipal

wastewaters

Algal biomass,
Hydrogen,
methane

- Low biomass yield
- Requires a large amount of wastewater supply
- Technology not yet mature
- high capital costs for photobioreactor systems
- High variability in wastewater composition may

introduce toxicity compounds to microorganisms
(i.e., NH3, pH, heavy metals)

[62–64]

Microbial fuel cells
(MFCs)

Agricultural,
industrial, municipal

wastewaters
Bioelectricity

- Technology not yet mature
- Electricity produced is still very low for

commercialization
[65,66]

Microbial Electrolysis
Cells (MEC)

Agricultural,
industrial, municipal

wastewaters
Biohydrogen

- high capital costs
- Technology not yet mature
- High ohmic and concentration losses.
- Lower volumes of H2 production

[67–69]

Transesterification
(Acid/Base/

Enzyme catalyst)

Household and
industrial cooking

waste oils from
vegetable oil,
animal fats

Biodiesel

Chemical-catalyzed:

- additional costs for product separation and
catalyst recovery,

- high energy demand
- undesirable side reactions

Enzyme catalyzed:

- Enzymes sensitive to temperature and alcohol

[38,40]

• Anaerobic Digestion: Anaerobic digestion of wastewater entails the breakdown of or-
ganic matter in wastewater in the absence of oxygen, resulting in the production of
biogas, carbon dioxide, and treated water as products [57]. Aside from the products,
wastewater treatment using anaerobic digestion (AD) reduces pollutant levels, stabi-
lizes sludge, and reduces sludge tonnage significantly with minimal energy input [49].
Traditional anaerobic digestion has long been used to breakdown organic compounds
and pathogens in wastewater collected in ponds [59]. Because conventional AD meth-
ods necessitate a long retention period and large treatment areas, more advanced
anaerobic reactors, such as the Upflow anaerobic sludge blanket reactor (UASB), with
short contact time between bacteria and wastewater, have been developed [59,60].
Even though Upflow anaerobic sludge blanket (UASB) reactors have the potential
to significantly increase biogas yield [61], the technology still requires further devel-
opment to overcome foaming and other AD inhibitions, particularly at high organic
loading rates (OLR) [52].

• Bioelectrochemical systems (BECS): Bioelectrochemical conversion has emerged as one
of the most efficient ways to cleanse wastewater and produce bioenergy (bioelectricity
and hydrogen) [70]. Microbial fuel cells (MFCs) and microbial electrochemical cells
(MECs) are two types of bioelectrochemical cells in which one of the electrodes inter-
acts with microorganisms (usually anode respiring bacteria, ARB) to transfer electrons
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from the organic substrate to the electrode [71,72]. While MFCs require the presence of
an oxidative agent (i.e., oxygen) to generate electricity, MECs require a modest amount
of energy from an external source to fuel the redox reactions that produce hydrogen
gas [68]. MFC’s ability to generate energy from wastewater makes it more eco-friendly;
however, the technology is still in its early stages, and the electricity generated is
insufficient for large-scale application [65,66]. Studies show that MECs offer the sub-
stantial potential to improve the efficiency of liquid waste biorefineries; nevertheless,
the process is economically unfavorable due to the high capital costs of technology
adoption [69]. Furthermore, obstacles such as ohmic and concentration losses, satura-
tion kinetics, and competing reactions like methanogenesis, which reduce the rate of
hydrogen production, continue to stymie MEC technology’s commercialization [67].

• Microalgal Cultivation: The process of algae cultivation requires carbon dioxide and
light energy, organic and inorganic carbon, as well as inorganic nitrogen (N) and
phosphorous (P), present in wastewater [73]. Because algae biomass is unicellular
and buoyant, structurally complex substances such as lignin and hemicellulose are
not required for growth [74]. For this reason, microalgae are most desirable biofuel
source because the cell walls are not resistant to treatment conditions, necessitating just
moderate pretreatments [75]. Microalgae contain valuable components like proteins,
carbohydrates, and lipids that can be converted into biofuels such as alcohols, biogas,
and biodiesel through a number of conversion routes [76], as shown in Figure 5.
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As a result of the role microalgae play in capturing carbon dioxide from the atmo-
sphere, development of microalgae biorefineries have also attracted increased attention
from scientists. Studies show that microalgae cultivation can be integrated into biorefinery
processes to capture flue gas and transform liquid by-products into biofuels. Details on
some of these concepts are found in the studies by Bahr et al. [77], Ren et al. [78], and
Chen et al. [79].

Despite advancements, large-scale biofuel generation from microalgae remains tech-
nically and economically unviable (see; [80]). Low biomass productivity and a lack of
a substantial and consistent supply of wastewater are the two major obstacles to the
technology’s commercialization [64]. Furthermore, cost-analysis studies have found that
photobioreactor systems are expensive, greatly increasing the investment cost [63].

• Transesterification: Transesterification is a crucial step in the conversion of waste oils
into biodiesel, which has the potential to completely replace fossil fuel [39]. The
production of low-cost biodiesel from waste oils such as household and industrial
waste cooking oil, animal fats, and soapstock from vegetable oil refining has been
suggested as a viable solution to the waste oil disposal problems [40].

To convert waste oils into biodiesel, transesterication uses chemicals (i.e., acid and
base) or enzyme catalyzed processes [6]. Higher biodiesel yields are produced by chemical
transesterification reactions catalyzed by acids, especially when the feedstock contains



Energies 2022, 15, 2697 9 of 22

more Free Fatty Acids (FFA). However, the reaction is slow and requires operations at high
temperatures [38]. Additionally, both acid and base-catalyzed processes necessitate extra
costs for product purification and catalyst recovery [38,40]. Enzyme-catalyzed reactions, as
opposed to chemically catalyzed reactions, have several advantages, including reusabil-
ity, low energy intensity, and environmental friendliness, as well as the elimination of a
separation step. However, due to the presence of alcohols and high temperatures in the re-
actor, substantial problems such as enzyme deactivation may develop in enzyme-catalyzed
processes [6].

4. Waste Biorefineries

Due to the ecological and economic burden of waste treatment, waste biorefineries
provide a good alternative use of waste. The characteristics of feedstock used in waste
biorefineries play a significant role in the selection of conversion technologies and end
products [8]. As a result, most studies categorize waste biorefineries based on the sources
of biomass waste. Biorefineries from food waste [81], dairy waste [82], forest residue [83]
are some of the examples. Additionally, the term “organic waste” is often used to refer to
all wastes and residues from biomass by some researchers [14,32]. However, this paper
considers organic waste to be comprised of biomass wastes with high moisture content and
easily biodegradable, whereas lignocellulosic waste is defined as one with high cellulose,
hemicellulose, and lignin content. In the following subsections, we discuss some examples
of lignocellulosic and organic waste biorefineries.

4.1. Organic Waste Biorefineries

In organic waste biorefineries, biomass residues with high organic content such as food
waste, food processing waste, organic fraction of municipal solid waste, animal manure,
and industrial organic wastes are used.

• Food waste biorefineries: Sridhar et al. [84] reviewed the advantages and drawbacks of
several thermochemical and biochemical processes utilized in food waste conversion.
A comparison of numerous technologies shows that anaerobic digestion (AD) is the
most promising technology for food waste valorization. AD requires less space, energy,
and has the potential to produce renewable energy products, which are important
in reducing greenhouse gas emissions. A study by Mirabella et al. [85], discussed
the importance of waste characterization and technological maturity of conversion
processes in adopting industrial symbiosis in the food industry. According to the
findings, waste characterization is required for determining the type and quantity of
waste, as well as identifying possible technologies and types of bioproducts to produce.
Furthermore, a review by Zhang et al. [35] discusses the advantages of assessing
the characteristics of cassava waste in the production of biofuels and biochemicals.
Using the input-output-suitable technology strategy, Tsegaye et al. [86] emphasize the
importance of aligning the composition of food waste to the desired final products as
the first steps in choosing a more effective biorefinery conversion pathway. According
to Caldeira et al. [87], some efforts are still needed to improve the efficiency of food
waste biorefineries via technology integration. Moreover, the lack of willingness for
food industries to share data on the nature of components in the food waste industries
hinders the development of new food waste valorization routes [88].

• Municipal waste biorefineries: Nizami et al. [4] assessed the value of generating bioenergy
from MSW during Muslim pilgrimage in Makkah. According to the study, the large
fraction of organic content in MSW—particularly food waste—offers considerable
economic and environmental benefits for developing a waste biorefinery in Makkah. In
addition, Saini et al. [89] discussed the features of municipal solid waste biorefineries
by considering conversion pathways for the lignocellulosic and organic waste fractions.
The authors also examined the extent of research in the organic fraction of MSW when
it comes to converting it into bioenergy via the biochemical conversion processes.
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• Animal waste biorefineries: For a long time, the valorization of animal manure has been
primarily centered on the solid fraction conversion for biogas production; however,
new research reveals that interest in using the liquid fraction for bioenergy production
is increasing [56]. Moreover, due to the availability of numerous chemical constituents
in animal manure, researchers have recently focused on examining the possibilities
of producing other products such as bioethanol and biodiesel from the substrate [90].
According to Jung et al. [90], the co-production of biogas, bioethanol, and fertilizer
presents a cost-effective way to maximize value from livestock manure. Liu et al. [91]
investigated an animal waste biorefinery that combines an AD, liquid digestate electro-
coagulation (EC), and solid fiber fungal conversion into methane and fine biochemicals.
In their approach, animal manure was first processed by an AD to produce methane
gas, which is used to power the biorefinery. EC processed the resultant liquid digestate
to recover water. The cellulose-rich solid digestate was then treated with enzyme hydrol-
ysis and fungal fermentation to produce chitin (a polysaccharide containing nitrogen).

4.2. Lignocellulosic Waste Biorefineries

Agricultural residues, woody waste, and forest residues and by-products are the most
prevalent feedstocks for lignocellulosic waste biorefineries.

• Agricultural waste biorefineries: Batidas-Oyanedel et al. [92] examined the use of dates
and palm residues as feedstocks for waste biorefineries in the Middle East and North
Africa (MENA). The authors propose biorefining as a way to add value to date palm
residue instead of burning it or using it to build conventional homes. Ginni et al. [93]
presented a comprehensive review of the numerous biorefinery routes for the val-
orization of agricultural residues through the separation and conversion of cellulose,
hemicellulose, and lignin fractions into biofuels and other useful products. Finally, the
study reveals that the transformation of agricultural residue can be improved through
the use of integrated bioprocesses.

• Forest residue biorefineries: In order to assess the opportunities of forestry biorefiner-
ies, Stafford et al. [83] identified a total of 129 chemical, thermochemical, biological,
and mechanical processing pathways that can lead to the production of 78 distinct
bioproducts. The study also includes an assessment of the technology readiness and
market potential of biorefinery products. Finally, the authors suggest that bioproduct
feasibility assessments need to consider environmental and social sustainability in ad-
dition to economics. Additionally, through an example of the pulp and paper industry,
a study by Gottumukkala et al. [94] reveals that introducing bioprocess integration
results in more appealing carbon conversion yields in the forest waste biorefineries.

5. Integration of Biorefinery Systems

According to Takkellapati et.al. [12], integrated biorefineries are designated as Phase
III biorefineries, that generate a wide range of products from a multitude of feedstocks and
conversion technologies. Meanwhile, the integration focuses on the maximization of the
economic and environmental benefits of the biorefinery systems, it also plays a crucial role
in overcoming the limitations associated with the wide variation in the physicochemical
properties of biowaste [8]. The integration of bioprocesses provides biorefineries with the
chance to upgrade multiple biomass waste streams, while maximizing resource efficiency.

In order to design a sustainable biorefinery, understanding the interactions between
subsystems is essential for achieving economic, environmental, and social benefits. Stu-
art et al. [95] described the importance of process, infrastructure, feedstock and product
integration, supply chain integration, and environmental integration in the development
of integrated biorefineries. Feedstock and product integration takes advantage of the
multifunctional qualities of biomass feedstocks and products, process integration con-
centrates on material and energy, and infrastructure integration connects processes to
other sectors. Budzianowski et al. [13] studied the total chain integration of sustainable
biorefineries by defining system limits, concepts, and integration approaches. The study
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shows that designing economically viable biorefinery systems necessitates tight component
integration at all levels of the biorefinery value chain. According to the authors, feedstocks,
conversion processes, platforms, and end products all play essential roles in integrating
biorefinery systems.

As Total Chain Integration focuses on a holistic approach [13,96], it is essential to un-
derstand the way biorefineries integrate at the process level in order to eliminate redundant
processing steps and maximize resource efficiency. For example, Gopinath et.al. [97] studied
the symbiotic framework in the sugar industry using primary and secondary by-products
as source materials for energy production. Through the analysis of waste utilization op-
tions, the authors identified several symbiotic material and energy recovery pathways
that maximize waste usage between sugar, energy, and construction industries. According
to Yazan et al. [98], the volume of by-products and wastes is directly dependent on the
efficiency of the primary processes and the quantity of the final product produced. As a
result, the symbiosis between the primary and secondary processes is crucial to maximizing
the overall economic benefits of the biorefinery [99].

Although the benefits from the interdependencies between processes are well known,
there is still a need to develop systematic methods in selecting and integrating conversion
options that complement the available biomass feedstock, wastes, and byproducts [88].
Furthermore, as symbiosis characterizes the causality between subsystems, material and
energy integration methods can be employed to optimize the subsystem integrations in the
biorefinery [100]. In order to conceptualize the process, a detailed understanding of how
biomass and intermediate product characteristics influence the integration of bioprocesses
is required to conceive the feedstock-product pathways (Figure 6). The following sections
discuss how the integration of biorefinery systems can be attained based on the feedstock
properties, Waste to Energy (WtE) conversion processes, multiple platforms, and products,
as well as its integration with other industrial sectors.
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5.1. Integration by Feedstock

Due to the heterogeneity of waste biomass, pretreatment is required to improve the
quality and yield of the WtE conversion processes. To improve the moisture content, par-
ticle size, and cellulose-hemicellulose-lignin concentration, among other characteristics,
preprocessing steps involving mechanical, chemical, biological, or thermal techniques
can be applied [29,101]. Furthermore, diverse biomass feedstocks necessitate different
preprocessing procedures in order to achieve the necessary biomass grade. As a result,
biorefineries processing different feedstocks will require a combination of several pre-
treatment and conversion processes, increasing the biorefinery’s complexity as shown
in Figure 7.
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A biorefinery can eliminate the need for biomass pretreatment by selecting an alter-
native process that does not require or requires limited pretreatment to create a similar
product. For example; to avoid the extra costs of pretreatment, gasification can be used in-
stead of anaerobic digestion to produce hydrogen from lignocellulosic waste [6,29]. During
integration, the economics of adding a biomass pretreatment step needs to be evaluated
and compared with other WtE technologies. Alternatives to consider are integration of
conversion processes, i.e., each type of feedstock is processed separately for a similar or
distinct product; and integration of pretreatment steps: a single WtE process with several
pretreatment processes.

5.2. Integration by Products, Byproducts, and Waste

The concepts of industrial symbiosis are used to integrate biorefineries by exchang-
ing wastes, byproducts, and products [97]. The synergy between cascading processes
maximizes the use of biomass resources while reducing waste output in biorefineries [13].
Furthermore, the growing notion of zero-waste biorefineries emphasizes value creation
from all biorefinery waste streams [102]. This concept can lead to increasingly complex
biorefinery superstructures (see Figure 8) which necessitate sophisticated process integra-
tion methods and tools. To illustrate the sequencing of WtE processes in the integrated
system, classifications; process (i), sub-process (i,j), and sub-sub-process (i,j,k) are adopted
to describe the primary, secondary and tertiary utilization of wastes or byproducts re-
spectively. From literature, some examples of integrated waste biorefinery concepts that
highlight waste and by-product integration are summarized in Table 2.
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Table 2. Examples for biorefinery integration based on the exchange of waste/by-product.

Primary Feedstock/Process Primary Product Secondary
Feedstock/Prosess Secondary Product Reference

Yard waste/AD Biogas
2930 Nm3d−1

AD residue & woody
biomass/gasification

Syngas
17.17 Nm3h−1

LHV: 5.17 MJ/Nm3
[103]

Mixed animal manure & agricultural
residues/AD Biogas AD digestate/Pyrolysis

Bio-oil: 51 wt%
Biochar: 34.0 wt%
Syngas: 15.0 wt%

[104]

Grass & Chicken manure/AD Biogas
237 mL (gVS)−1

AD digestate &
woodchips/Gasification

Syngas
15.75 Nm3h−1

LHV 8.1 MJ/kg
[105]

Mixed agricultural wastes (pig manure,
cow manure, maize and triticale silages,

and cereal bran)/AD

Biogas
9477 Nm3d−1 AD digestate/Gasification

Syngas
65.5 wt%

LHV: 2.88 MJ/Nm3
[106]

Lignocellulosic waste & animal manure
Biogas

5150 Nm3d−1

61 % v/v
AD digestate/Pyrolysis

Bio-oil: 58.4 wt%
Biochar: 32.0 wt%

Syngas: 8.8 %wt, 15.7 MJ/Nm3
[107]

Wastewater/AD
Biohydrogen
1.16 mol H2
(kgCOD)−1

AD effluent/MFC Bioelectricity
176.35 J/kgCOD/m3 [108]

Lignocellulosic biomass wastes/AD
Waste type 1: 18.68 MJ/kg (HHV)
Waste type 2: 17.87 MJ/kg (HHV)
Waste type 3: 21.55 MJ/kg (HHV)

Biogas
0.2 kJ/kgTS
0.2 kJ/kgTS
0.5 kJ/kgTS

AD digestate/Gasification

Syngas
HHV: 2.5 MJ/Nm3

HHV: 2.4 MJ/Nm3

HHV: 2.6 MJ/Nm3

[109]

Animal manure/AD
Feedstock: HHV 19.39 MJ/Kg

51.5 MWth

Biogas
49 % LHV (dry)

25 MWth

AD diges-
tate/Gasification/Solid
Oxide electrolysis cell

Synthetic Natural Gas
138% LHV (dry)

71.1 MWth
[110]

5.3. Integration by Platform

According to IEA Bioenergy Task 42 [111], platforms are intermediates that connect
feedstocks and final products. However, as shown in Table 3, various researchers may as
well interchangeably use the terms “platform” and “product”. The integration of thermo-
chemical and biochemical platforms allows for more effective use of biomass resources
as well as greater flexibility in producing the required energy products [112–114]. The
inherent variability of biomass necessitates the integration of many conversion processes
to transform a diverse set of feedstocks that result in multiple platforms for distinct bio-
products and better economics of the biorefinery [115]. Nevertheless, the need to produce
a single platform can also lead to the integration of multiple pretreatment methods to
upgrade multiple feedstocks for the desired conversion process, as illustrated in Figure 9.
While the economic advantage of producing multiple platforms is obvious, the biorefinery
complexity index (BCI) increases with the increasing number of platforms [112], as shown
in Table 3.
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Table 3. Examples of biorefinery integration to produce two or more platforms.

Feedstock Platforms Processes Products BCI References

Woodchips 3-Platforms (C5 & C6 sugar,
electricity and heat, lignin)

Pyrolysis, fermentation,
combustion

Phenols, bioethanol, electricity,
and heat 29 [112,114]

Algae 4-platform(biogas, biomethane,
oil, electricity and heat)

Anaerobic Digestion,
Combustion, Esterification

Fertilizer, biodiesel, fertilizer, omega
3, electricity and heat, glycerin 35 [114]

Straw 3-platform (pyrolysis oil,
syngas, and electricity and heat)

Pyrolysis, gasification,
combustion, methanol
synthesis, FT-synthesis

Methanol, electricity and
heat, biofuels 25 [114]

Wood chips 2-platform (syngas, electricity
and heat)

Steam gasification, combustion,
Fischer-Tropsch (FT) Synthesis

FT-diesel, FT-gasoline, wax,
electricity and heat 16 [112]

Oil based
residues 1-Platform(Bio-oil) Esterification Biodiesel, Bio-oil, gycerine

and fertilizer 8 [113]

5.4. Integration by Processes

The diversity of biomass waste has prompted researchers to investigate hybrid con-
version systems that can process a variety of feedstocks [13,29]. The use of integrated
bioprocesses is essential for overcoming the shortcomings and inefficiencies of individual
conversion processes that are only suitable for specific types of biomasses [21]. As a result,
combining different bioprocesses enables for the processing of a diverse range of feedstocks
and production of a diverse range of bioproducts, as shown in Figure 10.
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In contrast to the parallel arrangement of conversion processes, other researchers have
studied the sequential combination of bioprocesses to improve biomass conversion effi-
ciency. For example, the sequential configuration of a microbial electrolysis cell (MEC) and
an AD reactor has been found to increase biomethane yield in food waste biorefineries [116].
When products from the successive conversion processes are different, the integration can
also be described as one that exchanges wastes or byproducts. For the integration to be
under the sequential category, product (n,1) and product (n,2) in Figure 10 will need to
be the same.

5.5. Integration with Industrial Infrastructure

The integration of biorefineries with other downstream processes (see Figure 11)
helps address the environmental and economic challenges originating the use of crude
or raw biofuels as the source of bioenergy. Jungmeier and Buchsbaum [117] studied how
biorefineries could be integrated with a range of industrial infrastructures, including power
and CHP plants, biofuel facilities, oil refineries, pulp and paper plants, the wood industry,
and waste treatment facilities, among others. Furthermore, among the four elements of
integration (feedstock, platforms, products, and processes), the study showed that feedstock
and products offer better integration prospects than platforms and processes.
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In addition, the performance of an integrated solid oxide fuel cell (SOFC) and biomass
gasification system employing various gasification agents was investigated by Coplan
et al. [118]. Hameed et al. [119] presented a review of the technical and economic benefits
and challenges of combining energy recovery technologies like anaerobic digestion, fuel
cells, nuclear, and solar with a gasification process that uses a mix of municipal solid waste
and biomass as feedstocks. Nevertheless, the ability to generate carbon-negative bioenergy
using bioenergy with carbon capture and storage (BECCS) has recently attracted the atten-
tion of researchers [120]. According to the energy reports [121], combining biorefineries
with carbon capture and storage presents an opportunity to generate bioenergy while
creating a net carbon dioxide removal from the atmosphere. Table 4 summarizes a range of
studies that demonstrate the integration of various biowaste conversion paths with other
industrial infrastructures with CCS inclusive.

Table 4. Examples on the Integration of biorefineries with other industries.

Feedstock Technology Industry Infrastructure Products Reference

Forest biomass Combustion BECCS, Biomass-fired CHP plant
CCS: 0.9–1.84 tCO2/tdm*
Heat: 10.18 GJ/tdm*
Electricity: 6.48 GJ/tdm*

[122]

Wood Gasification Solid Oxide Fuel Cell-based CHP

Heat: Air 4877 MJ/tdm*,
Steam: 967 MJ/tdm*
Electricity: Air 2 GJ/tdm*,
Steam: 4.5 GJ/tdm*

[118]

Eucalyptus
biomass Combustion Biomass-fired CHP plant, CCS & algae

growth and utilization.

CCS: 85.4 tCO2/d
Heat: 419 GJ/d (internally consumed)
Electricity: 177 GJ/d

[123]

Sewage water
(40,000 m3/d

10 kgCOD/m3)

Anaerobic &
Aerobic

Digestion

Sewage water treatment, biogas-fired
CHP plant & CCS

CCS: 0.6 kgCO2/KgCOD (removed)
Electricity: 7.92 KWh/tone (reusable water)
Heat: Not reported

[124]

Miscanthus
poplar, MSW,

forest residue and
crop residue

Combustion Pulverized biomass-fired power plant
with CCS (BE-CHP-CCS)

CCS: 90% CO2 Capture rate
Electricity: 1.58 Wheq./tCO2 captured

[120]
Combustion Biomass -fueled CHP plant with

CCS (BECCS)
CCS: 90% CO2 Capture rate
Electricity: 1.3 MWheq./tCO2 captured

Gasification &
Water-gas-shift

technologies

Biomass-derived hydrogen production
with CCS (BHCCS)

CCS: 90% CO2 Capture rate
Electricity: 0.7 MWheq./tCO2 captured

6. Future Integrated Waste Biorefineries

In contrast to conventional biorefineries, waste biorefineries play an important role in
reducing land use impacts and environmental pollution originating from waste disposal.
While waste biorefineries have been widely established as standalone technologies, integra-
tion enables more efficient material and energy utilization, thus enhancing their economic
and environmental viability. As a result, the future concept of an energy-driven waste
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biorefinery is one that integrates physical, thermal, chemical, and biological processes with
other sectors to generate biofuels and other useful bio-based products while keeping emis-
sions in sight. Furthermore, the development of integrated waste biorefineries minimizes
the risks associated with the seasonal variations in feedstock availability. However, since
biomass waste is diverse, characterization of the feedstock is essential in minimizing the
number of conversion processes required to process the individual feedstocks.

According to studies, integration of waste biorefineries with existing low-carbon
infrastructures like CHPs, waste management, and others enhance the quality of bioenergy,
while the addition of Carbon Capture and Storage (CCS) will deliver carbon negative
electricity and heat to support the decarbonization of the energy sector. Nevertheless, the
development of integrated biorefineries is still at conceptual, pilot, or laboratory scale.

There is still a need for more research studies that target improvement in technology
and optimization methods that address the challenges of feedstock diversity and increase
process recoveries. As depicted in Figure 12, different types of feedstocks and applicable
conversion processes lead to different biorefinery configurations, platforms, and products.
However, provided the biorefinery’s economics is not compromised, modifying feedstock
quality for the desired conversion process can also be an option.
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7. Conclusions

Attributes of the biomass feedstock directly influence the selection of conversion
pathways and bioenergy end-products, which in turn influence the synthesis of a waste
biorefinery. As a result, most of the waste biorefineries are classified according to the
type or source of feedstocks. Therefore, combining waste biorefineries to process multiple
biomass wastes as feedstocks necessitates a technical and cost-effective aggregation of
biomass waste to match with the existing technologies and desired products.

The moisture content of biomass waste is one of the most crucial aggregation compo-
nents for waste conversion technologies. Feedstock for waste biorefineries towards energy
application can be classified as lignocellulosic or organic waste based on moisture content.
For example, lignocellulosic biomass waste has a low moisture content (usually below 60%)
and a high lignocellulosic material content. Since lignocellulosic waste contains lignin,
thermochemical processes such as gasification, pyrolysis, and incineration are favored for
energy conversion. Other thermochemical processes, such as wet pyrolysis, have been
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investigated to handle biomass waste with high moisture content, but the technology is
still at inception stage. Organic waste has a high moisture content (usually above 60%), as
well as easily biodegradable materials. The most common methods of converting organic
waste into energy are biochemical methods such as anaerobic digestion and fermentation.
The use of bioelectrochemical technologies such as microbial fuel cells and microbial elec-
trochemical cells to handle organic waste have been proposed as a solution pathway to
energy decarbonization. These techniques, however, are still in the laboratory stage, and
additional work needs to be done to overcome the limitations of their application.

The development of integrated waste biorefineries focusing on integration by feed-
stocks, processes, waste, platforms, and end-products can be illustrated using organic and
lignocellulosic waste classification. Furthermore, a need-centric strategy for feedstock to
end-product can be implemented to synthesize an integrated waste biorefinery using a
defined set of biochemical and thermochemical processes. This study is a first step toward
creating a systematic framework for identifying and integrating waste-to-energy conversion
processes based on the available set of biomass sources for waste biorefineries.
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