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AbstractÐ This paper presents an adaptive hybrid feed-
back control law for global asymptotic tracking of a hybrid
reference system for marine vehicles in the presence of
parametric modeling errors. The reference system is con-
structed from a parametrized loop and a speed assignment
specifying the motion along the path, which decouples the
geometry of the path from the motion along the path. Dur-
ing flows, the hybrid feedback consists of a proportional-
derivative action and an adaptive feedforward term, while a
hysteretic switching mechanism that is independent of the
vehicle velocities determines jumps. The effectiveness of
the proposed control law is demonstrated through experi-
ments.

Index TermsÐ Marine vehicles, hybrid systems, adaptive
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I. INTRODUCTION

I
T is well known that continuous-time systems whose state-

space can be identified with a vector bundle on a compact

manifold have no point that can be globally asymptotically

stabilized by continuous-time state feedback [1]. This is re-

ferred to as a topological obstruction to global asymptotic

stability and follows from the fact that no compact manifold

is contractible.

Topological obstructions to global asymptotic stability can

be overcome by employing hybrid feedback with a properly

defined switching logic [2]. In particular, hybrid feedback

derived from a family of synergistic potential functions can

be used to globally asymptotically stabilize compact sets using

gradient descent and a hysteretic switching mechanism [3], [4].

Hybrid feedback has been employed to achieve global asymp-

totic stability of compact sets for planar orientation control [5],

[6], reduced orientation control [7], spatial orientation control

[8], [9], tracking of underwater vehicles [10] and for more

general compact manifolds [11].
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While employing hybrid feedback to overcome topologi-

cal obstructions on compact manifolds has been extensively

studied through simulations in the idealized case where the

model structure and the model parameters are assumed to be

known, little attention has been paid to the more practical case

involving parametric modeling uncertainties. In [12], a global

exponential tracking controller with integral action is derived

for the orientation control of a spatial rigid body subject to

a matched and constant disturbance. Hybrid feedback using

synergistic potential functions was extended to the case where

the original control system is subject to matched uncertainties

in [13]. However, when applying this approach to mechanical

systems, the switching mechanism is not independent of the

system velocities. Moreover, the approach does not permit

estimation of the inertia matrix parameters.

Some of the first adaptive control laws proposed for un-

derwater vehicles can be found in [14] and [15], where Euler

angle representations were utilized for the vehicle orientation.

The first quaternion-based control laws for underwater vehicles

were introduced in [16], while adaptive and quaternion-based

control approaches for underwater vehicles can be found in

[17] and [18]. None of the aforementioned quaternion-based

approaches achieve global asymptotic stability results, since

they only stabilize one of the equilibrium points corresponding

to the desired orientation. Adaptive backstepping designs for

tracking control of ships were introduced in [19], [20], and

[21]. However, none of these methods permit estimation of

the inertia matrix parameters, and all of them lift the vehicle

orientation from the circle to the field of real numbers, which

leads to unwinding problems.

To the best of the authors’ knowledge, experimental valida-

tions of globally stabilizing hybrid control laws for surface and

underwater vehicles are virtually nonexistent in the existing

literature. A combined hybrid observer/controller for dynamic

positioning of a marine surface vehicle with global exponential

stability properties was proposed in [22]. However, this result

was achieved by a priori assuming that the angular velocity

is bounded and by lifting the vehicle orientation from the

circle to the field of real numbers, which leads to unwinding

problems.

The main contribution of this paper is the development of

an adaptive hybrid feedback controller for global asymptotic

tracking of a hybrid reference system for marine vehicles sub-

ject to parametric uncertainties. In contrast to backstepping-

based hybrid adaptive control [13], the proposed approach
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permits estimation of the inertia matrix, and the switching

mechanism is independent of the system velocities. As our ap-

proach is based on traditional Euler-Lagrange system models,

the adaptive hybrid control law is applicable to other mechan-

ical systems as well. In particular, it can easily be extended

to robot manipulators or, more generally, vehicle-manipulator

systems. The hybrid reference system is constructed from a

parametrized loop and a speed assignment for the motion

along the loop. The main benefit of this formulation is that

it decouples the design of the path from the motion along

the path, allowing us to globally asymptotically track a given

parametrized loop at a desired and time-varying speed. The

proposed reference system can be considered an adaptation

of the maneuvering problem [23], [24] to a hybrid dynamical

systems setting. Preliminary results were presented in [25],

and in this paper we extend the hybrid feedback control

law from surface vehicles to a more general class of Euler-

Lagrange systems on SE(2) or SE(3) satisfying a set of gen-

eral conditions on the switching mechanism and the potential

functions. Moreover, we show that the potential functions and

switching mechanisms introduced in [25] and [26] satisfy these

conditions, and these potential functions and switching mech-

anisms are subsequently employed to design hybrid adaptive

control laws for surface and underwater vehicles, respectively.

Finally, we validate the theoretical developments for surface

and underwater vehicle applications through experiments.

This paper is organized as follows. Section II introduces

the notation, terminology and mathematical preliminaries that

will be used throughout this paper. Then, Section III presents

kinematic and dynamic models of marine vehicles, a hy-

brid reference system based on a parametrized loop and

the problem statement. The hybrid control law developed in

Section IV is based on a set of potential functions and a

hysteretic switching mechanism. In Section V, we construct

potential functions and switching mechanisms to overcome

the topological obstructions of SE(2) and SE(3). Moreover,

we show that the aforementioned potential functions and

switching mechanisms satisfy the assumptions in Section IV.

In Section VI, we present the results of three experiments

conducted on marine surface and underwater vehicles, and

then, Section VII concludes the paper.

II. PRELIMINARIES

A. Notation

We denote the set of nonnegative integers by Z≥0, the field

of real (complex) numbers is denoted R (C), the real (complex)

space of dimension n is denoted R
n (Cn), and R

n×n (Cn×n)

is the space of n × n matrices with real (complex) entries.

The Euclidean inner product in R
n is written ⟨x, y⟩ and the

Euclidean norm is denoted |x| = ⟨x, x⟩1/2. The entry of a

matrix a ∈ R
n×n corresponding to the ith row and jth column

is denoted aij . The unit n-sphere embedded in R
n+1 is given

by S
n = {x ∈ R

n+1 : |x| = 1}. Furthermore, for a set S ⊂
X := X1×X2, the projection of S onto the set X1 is defined by

πX1
(S) := {x1 ∈ X1 : (x1, x2) ∈ S for some x2 ∈ X2}. The

range (or equivalently, the image) of a mapping f : Rm → R
n

is defined as rge f = {y ∈ R
n : ∃x ∈ R

m such that y =

f(x)}. We say that a mapping f : R
m → R

n is of class

Cr for a nonnegative integer r if f is r-times continuously

differentiable. For a Ck mapping f : R → R
n, we denote the

derivatives by f ′, f ′′, f (3), . . . , f (k), with f (0) = f . Finally, a

function V : Y → R, where Y ⊂ R
n, is proper if the preimage

of any compact set K ⊂ R under V is compact.

B. Matrix Lie Groups

Lie groups are smooth manifolds that are also groups in

which multiplication and inversion are smooth mappings. A

matrix Lie group G is a closed subgroup of the general linear

group GL(n) =
{
g ∈ R

n×n : det g ̸= 0
}

. The identity

element is denoted e ∈ G. The Lie algebra of a matrix Lie

group G is denoted g, and is defined as g :=
{
a ∈ R

n×n : t ∈
R =⇒ exp(at) ∈ G

}
, where exp : Rn×n → GL(n) is the

matrix exponential. Note that there is no loss of generality in

assuming that g is real-valued, since GL(n,C) = {g ∈ C
n×n :

det g ̸= 0} is isomorphic to a Lie subgroup of GL(2n). The

Lie algebra g is a real vector space with dimension equal

to the dimension of G as a manifold. Therefore, there exists

an isomorphism (·)∧ : Rk → g with inverse (·)∨ : g → R
k,

where k denotes the dimension of G. For g ∈ G, ξ ∈ R
k and

ζ ∈ R
k, we define the adjoint mappings Ad : G × R

k → R
k

and ad : R
k × R

k → R
k by Adg ξ :=

(
gξ∧g−1

)
∨

and

adξ ζ :=
(
ξ∧ζ∧ − ζ∧ξ∧

)
∨

, respectively. For each ξ ∈ R
k,

we define a left-invariant vector field Xξ(g) = gξ∧ on G with

g ∈ G. The Lie derivative of a continuously differentiable

function V : G → R along the vector field Xξ can be written as

⟨⟨DV (g), Xξ(g)⟩⟩, where ⟨⟨a, b⟩⟩ := tr
(
aTb
)

is the Frobenius

inner product and

DV (a) =




∂V
∂a11

· · · ∂V
∂a1j...

. . .
...

∂V
∂ai1

· · · ∂V
∂aij


 .

The Lie derivative can be rewritten using the Euclidean

inner product by defining the mapping dV : G → R
k by

⟨dV (g), ξ⟩ := ⟨⟨DV (g), Xξ(g)⟩⟩. Finally, the bilinear map

∇M : Rk × R
k → R

k induced by the inertia matrix M is

defined by [27]

∇M
ν η := 1

2 adν η − 1
2M

−1[adTν Mη + adTη Mν]. (1)

Observe that M∇M
ν ν = − adTν Mν. In this work, we consider

matrix Lie groups of the form G = R
m
⋊H, where ⋊ denotes

the semidirect product, Rm is a normal subgroup and H is a

subgroup [28]. In particular, we will consider the subgroups

SO(m) = {R ∈ R
m×m : RTR = RRT = e, detR = 1} and

SU(2) =

{(
α −β̄
β ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

III. MODELING AND PROBLEM STATEMENT

This section begins by presenting kinematic and dynamic

models of marine vehicles. Then, we derive a hybrid reference

system generating continuous and bounded configuration, ve-

locity and acceleration references from a parametrized loop.

Moreover, the motion along the path can be independently

controlled by specifying a desired speed, which takes values

within a compact interval. Finally, we derive the error system

and formulate the problem statement.
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A. Models for Surface and Underwater Marine Vehicles

The configuration of a marine vehicle can be identified with

a matrix Lie group G ⊂ R
n×n of dimension k ≤ 6. Let g ∈ G

denote the configuration and ν = (v, ω) ∈ R
k denote the

body velocity, where v and ω denote the linear and angular

velocities of the vehicle. Using the Lie group structure of the

configuration space, the equations of motion for fully actuated

marine vehicles are given by

ġ = gν∧, (2a)

Mν̇ − adTν Mν = d(ν) + f(g) + τ, (2b)

where M ∈ R
k×k is the inertia matrix, including hydrody-

namic added mass, adTν Mν describes Coriolis and centrifugal

forces, the function d : Rk → R
k describes dissipative forces,

f : G → R
k contains potential forces and disturbances, and

τ ∈ R
k is the control force. Observe that the dynamic equation

(2b) coincides with the dynamic equations of motion in [29,

Ch. 7,8] and [30, Ch. 2] by identifying C(ν)ν̄ := − adTν̄ Mν.

B. Hybrid Reference System

We construct a hybrid reference trajectory gd : R≥0 ×
Z≥0 → G by composing a path γ : [0, 1] → G with a time

scaling s : R≥0 × Z≥0 → [0, 1], i.e. gd(t, j) = γ(s(t, j)).
A key advantage of this formulation is that it decouples the

geometric path from the desired motion along the path.

Definition 1: Let I = [0, 1], H2 = SO(2), H3 = SU(2) and

m ∈ {2, 3}. The parametric Cr-path γ : I → G := R
m
⋊Hm

defined by

γ(s) := (γ1(s), γ2(s)), γ1(s) ∈ R
m, γ2(s) ∈ Hm, (3)

is a Cr-loop if it satisfies

γ(j)(0) = γ(j)(1), (4)

for all 0 ≤ j ≤ r.

Given a loop γ, the motion along the loop can be controlled

through a speed assignment for ṡ. In particular, by assuming

that |γ′1(s)| ≠ 0 for all s ∈ I, the desired speed of the vehicle

can be controlled through the following speed assignment [23]

ṡ = ϱ(s, ud) :=
ud

|γ′1(s)|
, (5)

where ud ∈ R is a desired input speed. To ensure continuity

of the velocity and acceleration references, the desired speed

can be obtained from the following set-valued second-order

low-pass filter with natural frequency ωn > 0 and damping

factor ζf > 0

üd ∈ U(ud, u̇d) := ω2
n[0, c]− 2ζfωnu̇d − ω2

nud, (6)

where the interval [0, c], with c > 0, contains the values of the

commanded input speed µ.

Let Ω1,Ω2 ⊂ R be compact. The Lie group structure of the

desired path γ leads to the following hybrid reference system:

R :





ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)





(s, ud, ad) ∈ I × Ω1 × Ω2

s+ = 0 (s, ud, ad) ∈ {1} × Ω1 × Ω2

gd = γ(s)

νd = κ(s)ϱ(s, ud)

αd = fd(s, ud, ad)

where κ(s) = (γ(s)−1γ′(s))∨ is the desired tangent vector

expressed in the desired frame and the mapping fd : I ×Ω1×
Ω2 → R

k is given by

fd(·) = κ(s)

(
∂ϱ

∂s
ϱ(s, ud) +

∂ϱ

∂ud
ad

)
+ κ′(s)ϱ(s, ud). (7)

Conceptually, R can be considered as a hybrid system with

the commanded speed µ ∈ [0, c] as the input, and

y :=(gd, νd, αd) = (γ(s), κ(s)ϱ(s, ud), fd(s, ud, ad)), (8)

as the output, where gd ∈ rge γ, νd ∈ R
k and αd ∈ R

k are

the desired configuration, velocity and acceleration references,

respectively. We remark that the speed assignment for ṡ in (5)

ensures that the norm of the desired linear velocity vd is equal

to the desired speed ud. Note that if γ is a C2-loop, then it fol-

lows from γ(j)(0) = γ(j)(1) for all 0 ≤ j ≤ 2 and continuity

of ud, ad that the output map y = (gd, νd, αd) is continuous.

We remark that for practical purposes, only a compact path

is required. This, in turn, removes the switching component

of the reference system. However, the loop assumption helps

ensure that every maximal solution is complete.

C. Error System and Problem Statement

The error dynamics are obtained by considering the con-

tinuous and invertible transformation (g, ν, r) 7→ (ge, νe, r),
using the natural (and left-invariant) error defined by [27]

ge := g−1
d g, (9)

νe := ν −Adg−1

e
νd. (10)

We observe that ge expresses the configuration of the vehicle-

fixed frame with respect to the desired vehicle-fixed frame,

while the term νr := Adg−1

e
νd can be interpreted as νd

expressed in the vehicle-fixed frame. Moreover, the time

derivative of νr satisfies

ν̇r = Adg−1

e
αd − adνe Adg−1

e
νd. (11)

The error dynamics can now be stated as

N :





ġe = geν
∧

e

ν̇e = fe(ge, νe, s, ud, ad, τ)

ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)





(ge, νe, s, ud, ad) ∈ Ĉ

s+ = 0 (ge, νe, s, ud, ad) ∈ D̂
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where Ĉ = G×R
k×I×Ω1×Ω2, D̂ = G×R

k×{1}×Ω1×Ω2

and the mapping fe : G × R
k × I × Ω1 × Ω2 × R

k → R
k is

given by

fe(·) :=M−1(τ −M∇M
ν ν + d(ν) + f(g))

−Adg−1

e
fd(s, ud, ad) + adνe Adg−1

e
κ(s)ϱ(s, ud).

(12)

We remark that the matrix representation of the adjoint maps

Ad and ad are provided in Section VI for the Lie groups

SE(2) and SE(3) and their Lie algebras se(2) and se(3).
Lemma 1: The hybrid system N satisfies the hybrid basic

conditions [31, Assumption 6.5].

Proof: The flow and jump sets Ĉ and D̂ are closed since

Ω1 and Ω2 are closed. Moreover, the jump map is single-

valued and continuous. The flow map is single-valued and

continuous for every state except ad. However, since the set-

valued mapping U is outer semicontinuous, convex and locally

bounded, the flow map is outer semicontinuous, convex-valued

and locally bounded.

Problem Statement: For a given C2-loop γ, the speed

assignment ϱ defined in (5) for ṡ and a compact set A◦ ⊂ G,

design a hybrid feedback control law with output τ ∈ R
k

such that every solution to N is bounded and converges to

the compact set

B = {(ge, νe, s, ud, ad) : ge ∈ A◦, νe = 0}, (13)

for the system N under parametric uncertainties.

IV. HYBRID CONTROL DESIGN

In this section, we propose an adaptive hybrid feedback

control law for the system N . The control law is derived

from a set of potential functions and a hysteretic switching

mechanism encoded by the flow and jump sets and the

jump map. The hybrid controller is based on the following

assumption.

Assumption 1: Given a 5-tuple (A, C,D,G, V ), where V :
O → R is defined by (g, q) 7→ V (g, q) = Vq(g), where q ∈ Q
is a logic variable, Q ⊂ R is a finite set and O is an open set

containing C
(A1) A ⊂ C is a compact set and πG(A) = A◦;

(A2) C and D are closed subsets of G×Q such that C ∪D =
G×Q and πG(C) = G;

(A3) The set-valued mapping G : D ⇒ Q is nonempty for

all (g, q) ∈ D and outer semicontinuous and locally

bounded relative to D;

(A4) for every (g, q) ∈ C ∩D, it holds that (g, w) ∈ C \D for

each w ∈ G(g, q);
(A5) there exists N ∈ Z≥1 such that for every (g, q) ∈ D, it

holds that (g, w) ∈ C \ D for each (g, w) ∈ GK(g, q),

where 1 ≤ K ≤ N , G(g, q) = {g}×G(g, q) and GK :=
G ◦ G ◦ · · · ◦ G︸ ︷︷ ︸

Ktimes

;

(A6) V is continuously differentiable on O and is proper and

positive definite on C with respect to A;

(A7) for all (g, q) ∈ C ∩ D and each w ∈ G(g, q)
Vw(g)− Vq(g) ≤ 0; (14)

(A8) for all (g, q) ∈ C, dVq(g) = 0 if and only if (g, q) ∈ A.

Assumption 1 guarantees that the switching is hysteretic, the

hybrid control law satisfies the hybrid basic conditions and is

required to ensure that every solution to N converges to B.

We remark that the conditions of Assumption 1 are different

from the conditions for synergistic control [32, Definition 7.3].

First, they do not enforce a strict decrease in V across jumps.

Second, they are not restricted to a switching mechanism based

on the value of the potential functions Vq . Finally, they permit

each potential function Vq to be defined locally, i.e., having a

domain that is a strict subset of G.

To establish convergence to the set B when the model

parameters are unknown, we define the modified reference

velocity νm ∈ R
k and the corresponding reference velocity

error ζ := νm − νr through the differential equation

Λ[ζ̇ +∇Λ
ν ζ] = −dVq(ge)− ϑq(ζ), (15)

where ϑ : Rk×Q → R
k satisfies ϑq(ζ)

Tζ > 0 for each q ∈ Q
and for all ζ ̸= 0. We remark that ϑ can be chosen independent

of q and that the term Λ∇Λ
ν ζ is optional. The latter is because

⟨ζ, Λ∇Λ
ξ ζ⟩ = 0 for any ξ ∈ R

k, which entails that any velocity

can be used in place of ν in the bilinear map ∇Λ. The velocity

error is now redefined as

ξ := ν − νm = νe − ζ. (16)

Since ζ = 0 implies ξ = νe, the velocity tracking control

objective νe = 0 is accomplished when (ξ, ζ) = 0. In practice,

this type of velocity error may be advantageous when the

configuration error encoded by dV is significant while the

velocity error νe is zero.

Before delving into the proposed adaptive controller, we

begin by presenting the non-adaptive version. Given a 5-

tuple (A, C,D,G, V ) satisfying Assumption 1 and if the model

parameters in (2) are known, we propose the following hybrid

control law




ζ̇ = −∇Λ
ν ζ − Λ−1

(
dVq(ge) + ϑq(ζ)

)
, (ge, q) ∈ C

q+ ∈ G(ge, q), (ge, q) ∈ D
τ =M [ν̇m +∇M

ν νm]− d(ν)

− f(g)− dVq(ge)− φq(ξ).

(17)

Observe that the feedback control law (17) comprises a

proportional action dV and a derivative action φ, where

φ : Rk ×Q → R
k is such that φq(ξ)

Tξ > 0, for each q ∈ Q,

and for all ξ ̸= 0. In other words, the control law (17) is

essentially a PD+ control law [33] with desired velocity νm
and hysteretic switching. We note that the derivative action

can be chosen independently of the logic variable q. However,

the proportional action can only be chosen independently of q
provided that the configuration space is globally diffeomorphic

to Euclidean space.

To make the control law (17) adaptive, we make the

following assumption on the unknown model parameters.

Assumption 2: There exists a known matrix-valued function

of available data Φ: G×R
k×R

k×I×Ω1×Ω2 → R
k×l and

a vector of unknown model parameters θ ∈ R
l with known

lower and upper bounds θ and θ such that

M [ν̇m+∇M
ν νm]−d(ν)−f(g)=Φ(ge, ζ, ξ, s, ud, ad)θ, (18)
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for all (ge, ζ, ξ, s, ud, ad) ∈ G× R
k × R

k × I × Ω1 × Ω2.

The boundedness assumption on the parameters is justified by

the fact that the parameters represent real physical quantities

that we often have rough estimates of in practice. Assump-

tion 2 implies that the parameters are contained in the convex

set

P := {θ ∈ R
l : θ ≤ θ ≤ θ}. (19)

Define the extended tangent cone to P by

TR,P(θ) := T
R,[θ

1
,θ1]

(θ1)× T
R,[θ

2
,θ2]

(θ2)× · · ·
× T

R,[θl,θl]
(θl),

(20)

where the extended tangent cone to each interval is given by

T
R,[θi,θi]

(θi) :=





[0,∞) if θi ≤ θi
(−∞,∞) if θi ∈ (θi, θi)

(−∞, 0] if θi ≥ θi

(21)

Let θa ∈ R
l denote the estimate of θ and define the convex

set

Pϵ := {θa ∈ R
l : θ − ϵ ≤ θa ≤ θ + ϵ}, (22)

where ϵ = (ϵ1, . . . , ϵl) ∈ R
l, defines boundary layers of length

ϵi > 0 around each interval in (19). The goal is to enforce

θa ∈ Pϵ through the adaptive update law. To this end, we

define the projection operator Proj : Rl × Pϵ → R
l by [34]

Proj(χ, θa) :=

{
χ, if χ ∈ TR,Ω(θa)

(1− h(θa))χ if χ /∈ TR,Ω(θa)
(23)

where the components of h(θa) are given by

hi(θa,i) =





0, if θa,i ∈ (θi, θi)

min{1, θi−θa,i

ϵi
}, if θa,i ≤ θi

min{1, θa,i−θi
ϵi

}, if θa,i ≥ θi

(24)

The following lemma can be found in [34, Lemma E.1].

Lemma 2: The projection operator (23) satisfies

(P1) The mapping Proj : Rl × Pϵ → R
l is Lipschitz contin-

uous in χ and θa.

(P2) The differential equation

θ̇a = Proj(χ, θa), θa(t0) ∈ Pϵ, (25)

satisfies θa ∈ Pϵ for all t ≥ t0.

(P3) Let θe = θ − θa denote the estimation error, then

−⟨θe, Γ−1Proj(χ, θa)⟩ ≤ −⟨θe, Γ−1χ⟩, (26)

for all θa ∈ Pϵ and θ ∈ P .

Using (18) and the projection operator defined in (23), we

define an adaptive version of (17) by




ζ̇ = −∇Λ
ν ζ − Λ−1

(
dVq(ge) + ϑq(ζ)

)

θ̇a = Proj(−ΓΦ(ge, ζ, ξ, s, ud, ad)Tξ, θa)

}
(ge, q)∈C

q+∈ G(ge, q) (ge, q)∈D
τ = Φ(ge, ζ, ξ, s, ud, ad)θa−dVq(ge)−φq(ξ).

(27)

By defining x := (ge, ξ, s, ud, ad, ζ, θa, q) ∈ X and the

extended state space

X := G× R
k × I × Ω1 × Ω2 × R

k × Pϵ ×Q, (28)

the adaptive hybrid control law (27) applied to the hybrid

system N leads to the hybrid closed-loop system

H :





ġe = ge(ξ + ζ)∧

ξ̇ = f̃(x)

ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)
ζ̇ = −∇Λ

ν ζ − Λ−1
(
dVq(ge) + ϑq(ζ)

)

θ̇a = Proj(−ΓΦ(ge, ζ, ξ, s, ud, ad)Tξ, θa)





x ∈ C̃

(q+, s+) ∈ G̃(ge, q, s) x ∈ D̃,

(29)

where

f̃(x) :=−M−1Φ(ge, ζ, ξ, s, ud, ad)θe−∇M
ν ξ

−M−1(dVq(ge) + φq(ξ)).
. (30)

Moreover, the jump map G̃ : G×Q× I ⇒ Q× I is defined

as

G̃(ge, q, s) :=





(G(ge, q), s) , (ge, q, s)∈D × (I\{1})
{(G(ge, q), s) , (q, 0)} (ge, q, s)∈D × {1}
(q, 0), (ge, q, s)∈(C\D)×{1}

(31)

while the flow set C̃ and jump set D̃ are defined by

C̃ := {x ∈ X : (ge, q) ∈ C}, (32)

D̃ := {x ∈ X : (ge, q) ∈ D} ∪ {x ∈ X : s = 1}. (33)

Lemma 3: The closed-loop system H satisfies the hybrid

basic conditions.

Proof: From Lemma 1, Assumption 1 and the definitions

of the jump map, flow set and jump set, it follows that all of

the assumptions in [32, Lemma 2.21] are satisfied.

Theorem 1: Let Assumption 2 hold. Given a 5-tuple

(A, C,D,G, V ) satisfying Assumption 1, the compact set

A1 = {x ∈ X : (ge, q) ∈ A, ξ = 0, ζ = 0, θa = θ}, (34)

is uniformly globally stable for the system H and every

solution to H converges to

A2 = {x ∈ X : (ge, q) ∈ A, ξ = 0, ζ = 0,

Φ(ge, 0, 0, s, ud, ad)θe = 0}. (35)

Proof: Let H̆ denote the hybrid system H with each

jump set D̃ replaced by D̆ = {x ∈ X : (ge, q) ∈ C ∩ D} ∪
{x ∈ X : s = 1} and consider the continuously differentiable

function

W (ge, q, ξ, ζ, θa) = Vq(ge) +
1

2
⟨ξ,Mξ⟩

+
1

2
⟨ζ, Λζ⟩+ 1

2
⟨θe, Γ−1θe⟩.

(36)
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For all x ∈ C̃, the change in W along the solutions of H̆ is

⟨dVq(ge), νe⟩+ ⟨ζ,−dVq(ge)− ϑq(ζ)⟩
+ ⟨ξ,−Φθe −M∇M

ν ξ − dVq(ge)− φq(ξ)⟩
− ⟨θe, Γ−1Proj(−ΓΦTξ, θa)⟩,

(37)

which simplifies to

− ⟨ξ, φq(ξ)⟩ − ⟨ζ, ϑq(ζ)⟩
− ⟨θe, Γ−1Proj(−ΓΦTξ, θa) + ΦTξ⟩

≤ −⟨ξ, φq(ξ)⟩ − ⟨ζ, ϑq(ζ)⟩
≤ 0,

(38)

where the first inequality follows from (P3) in Lemma 2. For

any x ∈ D̆ and (w,m) ∈ G̃(ge, q, s), the change in W across

jumps is

W (ge, w, ξ, ζ, θa)−W (ge, q, ξ, ζ, θa)

= Vw(ge)− Vq(ge),

which is clearly equal to zero when (ge, q, s) ∈ (C\D)×{1},

i.e. when w = q. Otherwise, it follows from Assumption 1 that

Vw(ge) − Vq(ge) ≤ 0 for all (q, w) ∈ Q × πQ(G̃(ge, q, s)).
Consequently, the growth of W along solutions to H̆ is

bounded by

uc(x)=

{
−⟨ξ, φq(ξ)⟩−⟨ζ, ϑq(ζ)⟩, if x ∈ C̃
−∞, otherwise

(39)

ud(x)=

{
0, if x ∈ D̆
−∞, otherwise

(40)

along flows and across jumps, respectively. It follows from

Assumption 1 and (36) that W is proper and positive definite

on C̃ ∪D̆ with respect to the compact set A1. Hence, the proof

of [31, Theorem 3.18] implies that A1 is uniformly globally

stable for the hybrid system H̆ . Observe that the system H̆

permits at most two consecutive jumps before a nonzero time

of flow follows. Thus, since W is continuous, H̆ satisfies the

hybrid basic conditions, and every maximal solution to H̆

is complete, it follows from [31, Corollary 8.7 (b)] that each

solution to H̆ converges to the largest weakly invariant subset

Ψ contained in

W−1(r) ∩ u−1
c (0), (41)

for some r ∈ R, where

u−1
c (0) = {x ∈ X : ξ = 0, ζ = 0, (ge, q) ∈ C}. (42)

Moreover, the closed-loop system (29) is such that ζ ≡ 0
implies dVq(ge) ≡ 0, and it follows from Assumption 1 that

dVq(ge) = 0 implies (ge, q) ∈ A. Thus, (ξ, ζ) ≡ 0 implies

that Φ(ge, 0, 0, s, ud, ad)θe ≡ 0, which results in

Ψ ⊂W−1(r) ∩ u−1
c (0) ⊂W−1(r) ∩ A2 ⊂ A2.

Consequently, since every solution is complete and bounded,

every solution to H̆ converges to A2. Solutions to H that

are not solutions to H̆ are those with initial values x∗ such

that (g∗e , q
∗) ∈ D\C. However, it follows from (A5) that such

solutions exhibit 1 ≤ M ≤ N immediate and consecutive

jumps from q∗ to some w ∈ GM (g∗e , q
∗) satisfying (g∗e , w) ∈

C\D, after which the solutions coincide with a solution to

H̆ . Consequently, we conclude that A1 is uniformly globally

stable for the hybrid system H and that every solution to the

hybrid system H converges to A2.

We remark that Theorem 1 implies that the problem state-

ment is solved. Furthermore, note that uniform global asymp-

totic stability of the compact set

B̃ = {x ∈ X : ge ∈ A, q ∈ R, ζ = 0, ξ = 0}, (43)

for the closed-loop system H implies that B is uniformly

globally asymptotically stable for the error system N .

However, without further assumptions on the nature of the

parametrized loop and commanded input speed, it is not

possible to show that (27) uniformly globally asymptotically

stabilizes the compact set B̃ for the closed-loop system H .

However, a trivial modification of the proof of Theorem 1

clearly shows that the non-adaptive hybrid control law (17)

uniformly globally asymptotically stabilizes the compact set

B̃ for the closed-loop system H with θ̇a = 0 and θe = 0,

implying that B is uniformly globally asymptotically stable

for the error system N .

V. POTENTIAL FUNCTIONS FOR MARINE VEHICLES

In this section we construct potential functions and derive

5-tuples (A, C,D,G, V ) satisfying Assumption 1 for a surface

vehicle and an underwater vehicle. This 5-tuple determines

the proportional control action and the switching mechanism

through the potential functions V and the flow set, jump set

and jump map C, D, G, respectively.

A. Potential functions on SE(2)

The configuration of a surface vehicle can be identified with

the matrix Lie group SE(2) = R
2
⋊ SO(2). An element g =

(p,R) ∈ SE(2) contains the position p = (x, y) ∈ R
2 and

orientation R ∈ SO(2) of a vehicle-fixed frame with respect

to an inertial frame.

Using the linear action of SO(2) on R
2 defined by (p,R) 7→

Rp, the semidirect product SE(2) = R
2
⋊ SO(2) yields the

natural error on SE(2)

ge = g−1
d g = (pe, Re) = (RT

d (p− pd), R
T

dR). (44)

The goal is to construct potential functions and a switching

mechanism for stabilization of the configuration corresponding

to the compact set

A◦ = {ge ∈ SE(2) : pe = 0, Re = e}. (45)

To this end, we let δ > 0 and define the functions ρ1 : D1 →
R, ρ2 : D2 → R and ρ3 : D3 → R, where D1 = D2 := {R ∈
SO(2) : (logR)∨ ∈ [δ, π] ∪ (−π,−δ]} and D3 := SO(2) by

ρ1(R) :=

{
(logR)∨, if (logR)∨ ∈ [δ, π]

(logR)∨ + 2π, if (logR)∨ ∈ (−π,−δ]
(46a)

ρ2(R) :=

{
(logR)∨, if (logR)∨ ∈ (−π,−δ]
(logR)∨ − 2π, if (logR)∨ ∈ [δ, π]

(46b)

ρ3(R) := (logR)∨, (46c)
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where (logR)∨ = atan2(R21, R11) is the principal logarithm

of R ∈ SO(2), which corresponds to the heading angle ψ ∈
(−π, π] in practice. Now, for each q ∈ Q = {1, 2, 3}, we

define the potential functions Vq : Uq × R
2 → R≥0 by

Vq(ge) :=
1
2kqρq(Re)

2 + 1
2p

T

eKpe + oq, (47)

where K = KT > 0, k1 = k2 = k > 0, k3 > 0,

o1 = o2 = o and o3 = 0. Due to the topology of SO(2),
at least two potential functions are required to design a

globally asymptotically stable hybrid control law. However, by

using three potential functions we obtain improved transient

performance by encoding smaller proportional gains into the

global controllers (q ∈ {1, 2}) relative to the local controller

(q = 3). To this end, the role of the offsets is to enable

k3 > k, i.e., a larger proportional gain locally around Re = e.
A visualization of the rotational part of the potential functions

is shown in Figure 1.
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Fig. 1. The rotational part of the potential functions {Vq}q∈Q with k =
1

(2π)2
, k3 = 4

(2π)2
, δ = π

4
, ε = π

12
, and o = 1

2
(δ + ε)2(k3 − k).

The switching mechanism is defined by the flow and jump

sets C,D ⊂ SE(2) × Q and the jump map G : D ⇒ Q
associated with the potential functions {Vq}q∈Q. We define

the flow and jump sets by

C :=
⋃

q∈Q
Cq × {q}, (48a)

D :=
⋃

q∈Q
Dq × {q}, (48b)

where

C1 := {ge ∈ SE(2) : δ ≤ ρ1(Re) ≤ π + ε}, (49a)

C2 := {ge ∈ SE(2) : δ ≤ −ρ2(Re) ≤ π + ε}, (49b)

C3 := {ge ∈ SE(2) : |ρ3(Re)| ≤ δ + ε}. (49c)

and

D1 :={ge ∈ SE(2) : π + ε ≤ ρ1(Re) ≤ 2π − δ}
∪ {ge ∈ SE(2) : |ρ3(Re)| ≤ δ} (50a)

D2 :={ge ∈ SE(2) : π + ε ≤ −ρ2(Re) ≤ 2π − δ}
∪ {ge ∈ SE(2) : |ρ3(Re)| ≤ δ} (50b)

D3 :={ge ∈ SE(2) : |ρ3(Re)| ≥ δ + ε}. (50c)

In (49) and (50), δ > 0 determines the switching point be-

tween the local and global controllers while ε > 0 denotes the

hysteresis half-width between the global controllers. Finally,

we define the set-valued jump map for all (ge, q) ∈ D by

G(ge, q) := {w ∈ Q \ {q} : ge ∈ Cw ∩ Dq} . (51)

The following lemma provides conditions on the gains and

offsets in (47), ensuring that V is nonincreasing across jumps.

Lemma 4: Let A = A◦ × {3}. If k3 ≥ k, δ + 2ε < π and

1
2δ

2(k3 − k) ≤ o ≤ 1
2 (δ + ε)2(k3 − k), (52)

then the 5-tuple (A, C,D,G, V ) satisfies Assumption 1.

Proof: (A1-A2) A is compact since it is finite, while

C and D are closed subsets of SE(2) × Q since each ρq is

continuous and the sublevel sets of a continuous function are

closed. Moreover,
⋃
q∈Q Cq = SE(2) and Cq ∪ Dq = SE(2)

for each q ∈ Q. Hence, (A1)-(A2) hold.

(A3) Observe that G is locally bounded since rgeG = Q is

compact. Moreover, it follows from (A2) that G nonempty for

all (ge, q) ∈ D. Since G−1(w) =
⋃
q ̸=w (Cw ∩ Dq) × {q} is

closed, gphG−1 =
⋃
w∈Q G−1(w)×{w} and the intersection

of closed sets are closed, it follows from [35, Theorem 5.7

(a)] that G−1 is outer semicontinuous everywhere, and hence

that G is outer semicontinuous everywhere.

(A4) Let ge ∈ Cq ∩Dq and w ∈ G(ge, q). Consider the case

where q ∈ {1, 2}. If w = 3, then it follows that |ρ3(Re)| = δ,

and hence that ge ∈ C3\D3. Otherwise, w = 3 − q and it

follows that |ρq(Re)| = π+ ε, which implies that |ρw(Re)| =
π − ε and hence that ge ∈ C3−q\D3−q . Finally, consider that

q = 3. Then, ge ∈ Cq ∩ Dq implies that |ρ3(Re)| = δ + ε,
which further implies that ge ∈ Cw\Dw.

(A5) Let (ge, q) ∈ D\C. Then, ge ∈ Cw for some w ∈
G(ge, q). Consequently, ge ∈ Cw\Dw or ge ∈ Cw ∩ Dw. It

follows from (A4) that (A5) holds with N = 2.

(A6) V is clearly continuously differentiable on O and

positive definite with respect to A. Moreover, since the func-

tion Ṽ : D → R, where D =
⋃
q∈QDq × {q} defined by

(R, q) 7→ 1
2kqρq(R)

2 is continuous, πSO(2)(D) = SO(2), and

SO(2) is compact, it follows that Ṽq is proper. Additionally,

the function V̌q : R
2 → R defined by p 7→ 1

2p
TKp is radially

unbounded. Consequently, Vq(ge) = Ṽq(Re) + V̌q(pe) is a

proper map.

To prove (A7), consider ge ∈ Cq∩Dq , q ∈ {1, 2}, w = 3−q,

and 0 < ε < π. It follows immediately from the definitions of

ρ1 and ρ2 that V3−q(ge) − Vq(ge) < 0. When ge ∈ Cq ∩ Dq ,
q ∈ {1, 2}, w = 3, 0 < ε < π and 0 < δ < π, it holds that

ρ3(Re)
2 ≤ ρq(Re)

2, which implies that

V3(ge)− Vq(ge) ≤
1

2
(k3 − k)ρ3(Re)

2 − o.

Since k3 − k ≥ 0 and ρ3(Re)
2 ≤ δ2, the lower bound o ≥

1
2 (k3−k)δ2 follows. Let ge ∈ C3∩D3 and w ∈ G(ge, 3). Then

δ + 2ε < π implies that ρw(Re)
2 = ρ3(Re)

2, and hence

Vw(ge)− V3(ge) ≤
1

2
(k − k3)ρ3(Re)

2 + o.

Using k − k3 ≤ 0 and ρ3(Re)
2 ≥ δ + ε > 0, it holds that

o ≤ 1
2 (k3 − k)(δ + ε)2.
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(A8) For all (ge, q) ∈ C, it is clear that dVq(ge) =
(RT

eKpe, kqρq(Re)) = 0 if and only if (ge, q) ∈ A.

B. Potential functions on SE(3)

Analogous to the surface vehicle case, we can identify the

configuration of an underwater vehicle with the matrix Lie

group SE(3) = R
3
⋊ SO(3). An element g = (p,R) ∈ SE(3)

contains the position p ∈ R
3 and orientation R ∈ SO(3) of a

vehicle-fixed frame with respect to an inertial frame.

The goal is to construct potential functions and a switching

mechanism for stabilization of the configuration corresponding

to the compact set

A0 = {ge ∈ SE(3) : pe = 0, Re = I}, (53)

However, working with 3 × 3 rotation matrices can be cum-

bersome in practice. Unfortunately, there does not exist any

globally nonsingular three-parameter representation of SO(3).
As a result, practical state estimation and control applications

normally utilize a globally nonsingular four-parameter unit

quaternion representation of the vehicle orientation.

Unit quaternions z = (η, ϵ) ∈ S
3, where η ∈ R and ϵ ∈ R

3,

map to the Lie group SU(2) through the isomorphism z 7→ Z
defined by

Z :=

(
η + iϵ3 −ϵ2 + iϵ1
ϵ2 + iϵ1 η − iϵ3

)
∈ C

2×2, (54)

and an element ω = (ω1, ω2, ω3) ∈ R
3 maps to su(2) through

the isomorphism (·)∧
su(2) : R

3 → su(2) defined by

ω∧

su(2) :=
1

2

(
iω3 −ω2 + iω1

ω2 + iω1 −iω3

)
. (55)

The Lie algebras of su(2) and so(3) are isomorphic. Hence,

the surjective homomorphism Ad: SU(2) → SO(3) given by

AdZ := I3 + 2ηϵ∧ + 2(ϵ∧)2, (56)

is a covering map, where (·)∧ : R3 → so(3) is defined by

ϵ∧ :=




0 −ϵ3 ϵ2
ϵ3 0 −ϵ1
−ϵ2 ϵ1 0


 . (57)

Note that Ad : SU(2) → SO(3) is globally two-to-one and

satisfies AdZ = Ad−Z because SU(2) is the double cover of

SO(3). In practice, this implies that ±Z corresponds to the

same physical orientation.

Using the adjoint action of SU(2) on R
3 given by (p, Z) 7→

AdZ p, the semidirect product R
3
⋊ SU(2) implies that the

natural error on S̃E(3) := R
3
⋊ SU(2) is [28]

ge = g−1
d g = (pe, Ze) = (AdZ−1

d
(p− pd), Z

−1
d Z). (58)

We remark that S̃E(3) is the universal covering group of

SE(3). Due to the double cover property of SU(2), stabilizing

the set {ge ∈ S̃E(3) : pe = 0, Ze = e} using the gradient of a

potential function either leads to unwinding, where the control

law unnecessarily performs a full rotation of the rigid body,

or it may lead to very poor convergence properties around

tr(Ze) = 2ηe = 0 [10], [26], [36]. Consequently, to prevent

unwinding and obtain global convergence properties, we must

stabilize the compact set of disconnected points

A◦ = {ge ∈ S̃E(3) : Ze = ±e}. (59)

To this end, we define the set Q := {−1, 1} and the potential

functions Vq : S̃E(3) → R≥0 as in [26] by

Vq(ge) := k tr(e− qZe) +
1
2p

T

eKpe

= 2k(1− qηe) +
1
2p

T

eKpe,
(60)

where k > 0 and K = KT > 0. Let ε ∈ (0, 1) denote the

hysteresis half-width and define the flow and jump sets by

C := {(ge, q) ∈ S̃E(3)×Q : qηe ≥ −ε} (61a)

D := {(ge, q) ∈ S̃E(3)×Q : qηe ≤ −ε}. (61b)

Finally, the jump map is defined as

G(q) := −q. (62)

Observe that the preceding definitions ensure that the switch-

ing is hysteretic since qηe ≤ −ε implies that G(q)ηe ≥ ε.

Lemma 5: Let A :=
{
(ge, q) ∈ S̃E(3)×Q : ηe = q

}
. The

5-tuple (A, C,D,G, V ) satisfies Assumption 1.

Proof: The proof is a straightforward extension of the

results of [26, Lemma 5.1, Theorem 5.2]. It is clear that the

function V̌q : R
3 → R defined by p 7→ 1

2p
TKp is continuously

differentiable, radially unbounded and positive definite with

respect to πR3(A). Moreover, C and D are clearly closed

subsets of S̃E(3)×Q, A is compact, and for all (ge, q) ∈ C,

it holds that dVq(ge) = (RT
eKpe, kqϵe) = 0 if and only if

pe = 0, ϵe = 0 which implies that η = ±1, i.e., (ge, q) ∈ A.

VI. EXPERIMENTAL RESULTS

In this section we report the results of three experiments

conducted in the Marine Cybernetics Laboratory (MC Lab)

[37] at the Norwegian University of Science and Technology

(NTNU) in Trondheim. The main purpose of the experiments

is to demonstrate the applicability of the devised controllers in

realistic scenarios for surface and submerged marine vehicles.

The first two experiments were conducted using a scale model

tug boat and the third experiment was conducted with a

remotely operated underwater vehicle.

In the MC Lab, a local positioning system comprises sets of

cameras mounted above and below the water surface and the

Qualisys Track Manager (QTM) software. Light emitted by

the cameras is reflected by a set of optical markers mounted

on the vehicle to be tracked. These measurements are then

processed with QTM, which outputs the position and orienta-

tion estimates at a rate of 100Hz. A multiplicative extended

Kalman filter (MEKF) [29, Section 14.4.3] is employed to

reconstruct the velocities and filter the position and orientation.

The MEKF is augmented with linear acceleration and angular

velocity measurements for the underwater vehicle experiments.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2022.3161372

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

Fig. 2. The Marine Cybernetics Lab at NTNU

Fig. 3. Cybership Enterprise in the MC-Lab

A. Cybership Enterprise

Cybership Enterprise (CSE) is a 1:50 scale model tug boat

with a length of 1.105m and beam of 0.248m. CSE is

equipped with two Voith Schneider propellers (VSPs) and

one bow thruster. The configuration of CSE is described

by g = (p,R) ∈ SE(2), where elements in SE(2) admit

a homogeneous matrix representation through the injective

homomorphism SE(2) → GL(3) defined by [28]

g :=

(
R p
0 1

)
∈ R

3×3. (63)

Denoting the vehicle-fixed linear and angular velocities by v ∈
R

2 and ω ∈ R, respectively, define the vehicle-fixed velocity

as ν := (v, ω) ∈ R
3. An element ν ∈ R

3 maps to se(2)
through the isomorphism (·)∧ : R3 → se(2) defined by

ν∧ :=

(
Sω v
0 0

)
∈ R

3×3, S :=

(
0 −1
1 0

)
. (64)

Let θ ∈ R
15 denote the model parameters. The equations of

motion for a surface vehicle can be formulated by (2) with

M =



θ1 0 0
0 θ2 θ3
0 θ3 θ4


 , f(g) = b, (65)

d(ν) =




−θ5ν1
−θ6ν2 − θ8ω
−θ9ν2 − θ7ω


+



−θ10|ν1|ν1
−θ11|ν2|ν2
−θ12|ω|ω


 (66)

where b = (θ13, θ14, θ15) ∈ R
3 is a constant bias. We remark

that the expression for the regressor Φ follows from (18)

together with (65) and (66).

The generalized forces are calculated using (27), where the

adjoint actions of SE(2) and se(2) on R
3 for g = (p,R) ∈

SE(2) and ν = (v, ω) ∈ R
3 are given by

Adg =

(
R −Sp
0 1

)
, adν =

(
Sω −Sv
0 0

)
. (67)

TABLE I

CONTROL PARAMETERS

Circle Lemniscate

δ π/6 δ π/18
ε π/18 ε π/18
Kp diag(1.7, 1.7) Kp diag(1.45, 1.45)
k 0.5 k 0.5
k3 1.2 k3 1.5
Kd diag(.7, .6, .6) Kd diag(1.25, 1.25, 1)
Λ I3 Λ I3

The generalized forces τ ∈ R
3 map to the actuator inputs

(α, u) ∈ R
2 × R

3 through

τ = B(α)Ku, (68)

where α = (α1, α2) are the VSP angles and u = (u1, u2, u3)
are the thruster inputs. Specifically, (u1, u2) corresponds to

the VSPs, and u3 is the bow thruster.

Using the transformation (α, u) 7→ (ǔ1, ǔ2, ǔ3), where

ǔ1 =

(
cos(α1)u1
sin(α1)u1

)
, ǔ2 =

(
cos(α2)u2
sin(α2)u2

)
, ǔ3 = u3. (69)

we can rewrite (68) as τ = B̌Ǩǔ, which is solved using the

Moore-Penrose pseudoinverse

ǔ∗ = (B̌Ǩ)†τ, (70)

for a given τ ∈ R
3. The actuator control inputs (α, u) are

then obtained by inverting the transformation (69). Note that

the BT input is constrained to the interval [−1, 1], while the

VSP inputs are constrained to [0, 1]. The desired path is given

by γ(s) = (γ1(s), γ2(s)) ∈ SE(2) where

γ1(s) =

(
xd(s)
yd(s)

)
, γ2(s) = exp(Sψd(s)), (71)

where ψd(s) = atan2(y′d(s), x
′
d(s)).

The hysteresis width and control gains are chosen according

to Table I with ϑq(ζ) = Kdζ and φq(ξ) = Kdξ. Moreover,

the adaptation gain and bounds on θ ∈ R
15 are given by

Γ = blkdiag(50, 40, 5, 20, 5I4×4, 10I9×9, 0.025, 0.1, 0.01),

θ = (10, 15, 1,−3, 07×1,−1,−4,−4,−4),

θ = (20, 30, 5, 3, 107×1, 10, 4, 4, 4),

and the parameters are initialized as

θ0 = (10, 15, 1, 012×1). (72)

Two two experiments are performed using different

parametrized loops; the first loop is a circle, and the second

is a lemniscate.

1) Circle: The circle is centered at O = (1m, 0) with a

radius of R = 1.2m and is represented by the parametric

equation

γ1(s) =

(
R cos(s)
R sin(s)

)
+O. (73)

Experimental results are presented in Figures 4 to 10.

The ship was initialized at p(0) = (0.35m,−1.46m) with

ψ = −42°. At this point in time, the orientation error was

ρ3(Re(t))|t=0 = −π 106
180 ≥ δ + ε, and it follows from (47)
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Fig. 4. North-East plot showing the North-East position p = (x, y)
and the desired position pd = (xd, yd).
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Fig. 5. The configuration p = (x, y), R = exp(Sψ) and the desired
configuration pd = (xd, yd), Rd = exp(Sψd).
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Fig. 6. The velocity estimates (ṗ, ω) and the desired velocity refer-
ences (γ̇1, ωd).
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Fig. 7. The speed U , desired speed ud, commanded input speed µ
and logic variable q.
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Fig. 8. The VSP control inputs u1, u2 ∈ [0, 1], the BT control input
u3 ∈ [−1, 1] and VSP angle inputs α1, α2.
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Fig. 9. The inertia and bias parameters.
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Fig. 10. The damping parameters associated with the linear and
nonlinear damping.

that ρ22(Re(t))|t=0 < ρ21(Re(t))|t=0. In other words, the

orientation error was in the jump set corresponding to q = 3
and the jump map (51) implies that the global controller

corresponding to q+ = 2 was activated, which is what we

observe in the lower plot in Figure 7. Then, at t ≈ 33 s, the

commanded input speed µ was set to 0.08m/s as seen in

Figure 7. Figures 4 and 5 shows that CSE accurately tracked

the path after an initial transient due to the significant initial

configuration error, even though the actuator inputs saturate

until t ≈ 25 s as seen in Figure 8. Figure 6 depicts the system

velocities and desired velocities, while Figure 7 shows the

commanded input speed µ(t), the desired speed ud(t) and the

estimated speed U(t) = ∥v(t)∥. Therefore, it is clear that the

speed and velocities are tracked with sufficient accuracy.

2) Lemniscate: The lemniscate is centered at O = (2m, 0)
and is represented by the parametric equation

γ1(s) =



R1

cos s

1 + sin2s

R2

√
2 sin 2s

1 + sin2s


+O, (74)

where R1 = 2m, R2 = 2.4m.
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Fig. 11. North-East plot showing the position p and the desired position
pd.

Experimental results are presented in Figures 11 to 17. The

ship was initialized at p(0) = (4.2m, 0.3m) with a heading
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Fig. 12. The configuration p = (x, y), R = exp(Sψ) and the desired
configuration pd = (xd, yd), Rd = exp(Sψd).
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Fig. 13. The velocity estimates (ṗ, ω) and the desired velocity
references (γ̇1, ωd).

of ψ = 130°. Since the lemniscate loop given by (74) does not

result in a constant acceleration with respect to the body-fixed

frame for nonzero commanded input speeds, the control gains

must be increased to compensate for the inaccuracies in the

dynamic model and obtain similar performance to the circular

trajectory.

By comparing Figures 9 and 10 with Figures 16 and 17,

it is clear that the parameters do not converge to any ‘true’

value. This cannot be expected because we have not provided

any persistency of excitation condition; that is, we have not

given any conditions under which (27) uniformly globally

asymptotically stabilizes the compact set B̃ for the closed-loop

system H . However, even if such conditions were provided, a

constant bias in the vehicle-fixed frame will not fully capture

the inaccuracies in the mapping between the forces produced

by the actuators and their inputs. As a consequence, the desired

forces and torque computed by the control law are significantly

different from the actual forces and torque produced by

the actuators. In turn, this leads to a tracking error, which

induces parameter adaptation. Since this adaptation occurs

due to unmodeled effects that are not correctly captured by

our assumed model structure, we cannot expect to accurately

identify the mass and damping model parameters for this

system. Instead, due to the presence of a constant bias in our

dynamic model, our control law is more reminiscent of a PID
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Fig. 14. The speed U , desired speed ud, commanded input speed µ
and logic variable q.
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Fig. 15. The VSP control inputs u1, u2 ∈ [0, 1], the BT control input
u3 ∈ [−1, 1] and VSP angle inputs α1, α2.
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Fig. 16. The inertia and bias parameters.
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Fig. 17. The damping parameters associated with the linear and
nonlinear damping.

controller with adaptive feedforward. To see this, note that the

bias feedforward term can be written as −
∫ t
0
(νe(τ)−ζ(τ))dτ ,

and that (15) can be interpreted as a multiple-input multiple-

output low-pass filter with input −dVq and output ζ. Thus,

when the velocity error νe is zero, the bias feedforward term

can be interpreted as the integral of the output of a low-pass

filter whose input is the configuration error.

Finally, we observe that the parameters converge for the

circular trajectory. This is a consequence of the steady-state

nature of the circular trajectory, that is, constant desired

velocities with respect to the desired frame when ud has

converged to the commanded input speed µ. For the lemniscate

trajectory, however, the desired velocities are not constant even

if the desired speed has converged to the commanded input

speed. Hence, considering the inaccuracies in the mappings

between the desired forces and torque and the produced forces

and torque, it is not surprising that the parameters do not

converge to any specific values and that the damping and bias

parameters change more rapidly when the ship is in a turning

maneuver, as seen in Figures 12, 16 and 17. Despite these

structural modeling inaccuracies, the ship’s position remains

within 4 cm of the desired position after converging to the

path, as seen in Figures 11 and 12. Moreover, from Figure 13

and Figure 14, we observe that the desired velocities and the

desired speed are tracked with sufficient accuracies.

B. BlueROV2

The BlueROV2 is a remotely operated underwater vehicle

developed by Blue Robotics. The experiments were conducted

using the heavy configuration BlueROV2 with eight thrusters,

depicted in Fig. 18.

Elements g = (p, Z) ∈ S̃E(3) admit a matrix representation

using the injective homomorphism S̃E(3) → GL(6,C) given

by

g =



AdZ p 0
0 1 0
0 0 Z


 ∈ C

6×6 (75)

Denoting the vehicle-fixed linear and angular velocities by v ∈
R

3 and ω ∈ R
3, respectively, define the vehicle-fixed velocity
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Fig. 18. The BlueROV2 in the MC-Lab.

as ν := (v, ω) ∈ R
6. An element ν ∈ R

6 maps to s̃e(3)
through the isomorphism (·)∧ : R6 → s̃e(3) defined by

ν∧ =



ω∧ v 0
0 0 0
0 0 ω∧

su


 ∈ C

6×6. (76)

The equations of motion for an underwater vehicle can then

be formulated by (2) with

f(g) = β(Z) + b, (77)

where β(Z) = (θ7 AdTZ e3, e
∧

3 AdTZ θ8:10) contains gravita-

tional and buoyancy forces and b = (θ1, . . . , θ6) ∈ R
6 is

a constant bias. Moreover, by assuming port/starboard and

fore/aft symmetry, the inertia matrix is parametrized by

M =




θ11 0 0 0 θ17 0
0 θ12 0 θ18 0 0
0 0 θ13 0 0 0
0 θ18 0 θ14 0 0
θ17 0 0 0 θ15 0
0 0 0 0 0 θ16




(78)

while the hydrodynamic drag forces are assumed to satisfy

di(ν) = θ18+i + θ24+i|νi|νi, (79)

for i ∈ {1, . . . , 6}. We remark that the expression for the

regressor Φ follows from (18) together with (77), (78) and

(79). The generalized forces are calculated using the control

law (27), where the adjoint actions of S̃E(3) and s̃e(3) on R
6

for g = (p, Z) ∈ S̃E(3) and ν = (v, ω) ∈ R
6 are given by

Adg =

(
AdZ p∧ AdZ
0 AdZ

)
, adν =

(
ω∧ v∧

0 ω∧

)
. (80)

The generalized forces τ ∈ R
6 map to the desired thrust

u ∈ R
8 through τ = Ku, where each column of K is

Ki =

(
ri

Li × ri

)
, (81)

where ri ∈ R
3 is a unit vector pointing in the direction of

thrust and Li ∈ R
3 is the position of the thruster relative to

the body frame. Using (27), the actuator control inputs are

then found from the expression u = K†τ .

The desired path is given by γ(s) = (pd(s), Zd(s)) ∈
S̃E(3), with

pd(s)=



L1

cos s
1+sin2s

L2

√
2 sin 2s

1+sin2s

L3
2 sin s

1+sin2s


+O, zd(s)=

(
cos(ψ(s)/2)

0
0

sin(ψ(s)/2)

)

where zd is a unit quaternion that maps to SU(2) through the

isomorphism zd 7→ Zd defined in (54). Moreover, L1 = 1m,

L2 = 0.6m, L3 = 0.25m, O = (0.2m,−0.3m,−0.55m)
and ψ(s) = atan2(y′d(s), x

′
d(s)).

The desired speed reference is given by

µ =

{
0.1m/s, 5 ≤ t < 125

0.2m/s, t ≥ 125
, (82)

while the hysteresis half-width is ε = 0.1. The con-

trol gains are chosen as Kp = diag(50, 50, 70), k =
16, φq(ξ) = Kdξ, ϑq(ζ) = Kdζ and Λ = I6 with Kd =
diag(40, 40, 30, 7, 7, 7). Moreover, the adaptation gain and

bounds on θ ∈ R
30 are given by

Γ = blkdiag(Γ1, Γ2, Γ3),

Γ1 = diag(1.5, 1.5, 1.5, 1.2, 1.2, 1.2),

Γ2 = diag(2.5, 2, 2, 2),

Γ3 = diag(7, 7, 7, 4, 4, 4, 5, 5, 20, 20, 20, 5, 5, 5,

20, 20, 20, 5, 5, 5),

θ = (−40,−109×1, 07×1,−2, 012×1),

θ = (1010×1, 506×1, 2, 0, 5012×1),

and the parameters are initialized as

θ0 = (010×1, 19.17, 26.37, 28.24, 0.28, 0.28,

0.28, 0.23,−0.23, 4.03, 6.22, 5.1,

0.07, 0.07, 0.07, 18.18, 21.66, 36.99,

1.55, 1.55, 1.55)

. (83)
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Fig. 19. North-East-Down plot showing the position p, the desired
position pd and the projection of pd onto the North-East plane.

Experimental results are presented in Figures 19 to 27. Due

to limitations in the hardware implementation, the controller

activates a few seconds before the data logger and actuator
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Fig. 21. The position p = (p1, p2, p3) and desired position pd =
(p1

d
, p2

d
, p3

d
).

driver do. As a result, the bias and gravitational parameters

have already adapted for several seconds by the time the

control signals are sent to the actuators. This can be observed

in the upper plot in Figure 27, where θ1 and θ3, i.e., the

x and z components of the bias, are already saturated at

t ≈ 4 s when the actuator driver is activated and the control

inputs are converted to pulse width modulated actuator signals.

Remarkably, this has little effect on the transient performance,

as observed in Figure 21. This occurs despite the fact that

the BlueROV2 was initialized at the bottom of the pool at a

distance ∥pe∥ ≈ 1.36m away from the desired position with

no initial knowledge of the gravitational- and buoyancy-related

parameters.

The initial quaternion error satisfies ηe ≤ −ε, which entails

that a switch from the initial value of q = 1 to q = −1 occurs

at the first time step of the controller. Since the logger was

initialized after the controller, although no control inputs were

sent to the actuators, we have changed first logged value of

the logic variable to q = 1 to highlight the fact that a switch

has in fact occurred.

From Figures 19, 21 and 22, we observe that the ROV

successfully tracks the position and orientation references with

satisfactory accuracy. Moreover, from Figures 23 and 24, we

see that the desired velocities νr = Adg−1

e
νd are tracked with

satisfactory accuracy. However, we remark that v3 contains

significantly more noise compared to the other linear veloc-

0 50 100 150 200 250

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

O
ri
en

ta
ti
on

z1

z2

z3

z4

z1;d

z2;d

z3;d

z4;d

Fig. 22. The orientation and desired orientation, represented by the
unit quaternions z and zd, respectively.
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Fig. 23. The linear velocities v and the desired linear velocities vr ,
decomposed in the body frame.

0 50 100 150 200 250

Time [s]

0

0.1

0.2

0.3

A
n
gu

la
r
v
el
o
ci
ty

!1

!1
r

0 50 100 150 200 250

Time [s]

-0.3

-0.2

-0.1

0

0.1

A
n
gu

la
r
v
el
o
ci
ty

!2

!2
r

0 50 100 150 200 250

Time [s]

0

1

2

A
n
gu

la
r
v
el
o
ci
ty

!3

!3
r

Fig. 24. The angular velocities ω and the desired angular velocities ωr

decomposed in the body frame.
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Fig. 26. The control inputs u corresponding to the eight thrusters.
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Fig. 27. The bias and gravitational/buoyancy related parameters, the
inertia matrix parameters and the damping parameters.

ities. Moreover, the x-component of the linear velocity, v1,

exhibits spikes that coincide with the minima of p3, i.e. the z-

component of the position vector. This is due to poor tracking

of the ROV from the camera-based underwater positioning

system, which either loses track of the ROV and/or outputs

noisy and inaccurate position measurements (especially in

the z-direction). This can be mitigated by further restricting

the operating region of the ROV and/or lowering the weight

of the camera-based position measurements relative to the

accelerometer measurements in the Kalman filter.

VII. CONCLUSION

In this paper, we have proposed an adaptive hybrid feedback

control law for marine vehicles. The control law tracks a

hybrid reference system constructed from a parametrized loop

and a speed assignment for the motion along the path and

achieves global asymptotic tracking of the loop at a time-

varying desired speed. The proposed hybrid feedback control

law was implemented on a scale model tug boat and a remotely

operated underwater vehicle, and laboratory experiments have

demonstrated the effectiveness of the proposed control law.
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