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Abstract

Determining the data driven description of the behaviour in sheep on rangeland
grazing pastures is in demand to ensure welfare and sustainability in both Norwe-
gian and worldwide modern pastoral systems. This study investigated the move-
ment pattern of sheep on rangeland pastures in Norway in terms of different types
of breed and diurnal and seasonal behavior traits. High resolution digital GPS
collar data on free range sheep enables a deeper dimension of research on typical
sheep behavior. The research in this thesis was done with the unsupervised ma-
chine learning models k -means and DBSCAN and statistical analysis. Data from
391 sheep of six breeds in five different grazing areas from 2012-2016 and 2018-2020
was studied. Variables included in the analysis were time of day, activity levels,
altitude, trajectory angle, season, breed, number of lambs, temperature, and age
of sheep. Diurnal behavioural traits could be identified, and the k -means model
categorized their day into four characteristic activity periods. Digital threshold
marker values were calculated from the mean of the behavioural outliers detected
by the DBSCAN model, which when triggered indicate possible atypical movement
patterns. The analysis found that the sheep velocity threshold marker should be
considered split into four different values based on the circumstances surrounding
the herd. The threshold marker values may be used as trigger conditions in future
collar alerting technology, and thus give more specialized herd welfare warnings
to the farmer.
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Chapter 1
Introduction

1.1 Motivation

The sheep industry in Norway consists of over 13 thousand sheep farms, where
every year around two million sheep will be released on rangeland pastures dur-
ing the summer to graze [1, 2]. While out on the outfield rangelands the sheep
herds will move freely over large areas, and be for most of the time unsupervised
except for occasional check-ups by the farmers. More than 30 thousand sheep
were reported lost due to predators in 2021, resulting in over 44 million NOK in
compensation claims [3]. Sheep are also lost due to causes like diseases, accidents,
parasites or eating poisonous plants. In table 1.1.1 the reported amount of lost
lambs and adult sheep per county in Norway in 2021 is presented, where the areas
with the highest loss percentages are Innlandet and Trøndelag. Sheep lost while
on rangeland pastures will not only have economical consequences for both the
farmer and the government, but there is also an important factor of ensuring ani-
mal welfare. Without supervision sheep may be sick or hurt for a long time before
the farmer can help, and they may not become aware of the problem at all before
it is too late. In recent years modern agricultural technology has been used in
the form of electronic collars on a selection of sheep within herds, to track their
movement while out on pastures. These collars will send their UTM position, and
may have other sensors installed as well to track other conditions about the sheep.
Optimizing the collar systems and furthering the technology may substantially
help with measuring the behavior of the sheep, and thus in extent also to assess
their welfare. Should the sheep movement pattern diverge from the typical and
expected behavior, this might give indication that something is wrong. Detecting
this as early as possible gives more time to fix the problem, help the sheep in
need, ensure a higher standard of animal welfare and give long term economical
gain. The sheep loss may thus decrease. Identifying atypical behaviour in sheep
on rangeland grazing pastures is therefore in demand to ensure welfare and sus-
tainability in both Norwegian and worldwide pastoral systems. The access to high
density movement data from numerous electronic collars facilitates the possibility
to collect behavioural information at both individual and herd level. Knowledge
of typical behaviour patterns and deviations from these has the potential to pro-
vide a tool to detect atypical behaviour in real time, that may be caused by for
example predatory attacks or disease.

1



2 CHAPTER 1. INTRODUCTION

County Lost lambs Lost sheep

Agder 793 134

Innlandet 7648 1508

Møre og Romsdal 1433 156

Nordland 4405 983

Oslo 0 0

Rogaland 95 16

Troms og Finnmark 2453 541

Trøndelag 6578 1491

Vestfold og Telemark 985 167

Vestland 948 259

Viken 1216 298

Table 1.1.1: Lost sheep per county in Norway in 2021, data collected from
Rovbase [3].

1.2 Project description

This master’s thesis was given by the Norwegian University of Science and Tech-
nology (NTNU), in collaboration with the Norwegian Institute of Bioeconomy
(NIBIO) and the Norwegian Institute of Nature Research (NINA). The data used
in the analysis was given by NIBIO and NINA, and consists of coordinate positions
on different herds on rangeland pastures in Fosen, Møre og Romsdal and Tingvoll,
Trøndelag. The goal of the analysis was to investigate and describe the normal
behavior of sheep on rangeland pastures based on digital data, and to examine
if it is possible to determine atypical sheep behavior using machine learning and
data mining. It is expected behavior for sheep to flee from predators while out
on rangeland pastures, so normal behavior embraces both typical habitual and
calm demeanor, and more atypical behavior in e.g. extreme movement perhaps
because of predators. Atypical behavior is within the normal spectre, but defined
as the less common and more irregular movement patterns detected. The project
aims to be able to recommend further development within the technology of elec-
tronic collars for sheep, by looking into what properties that may be the most
important to represent atypical sheep behavior and if it is possible to quantita-
tively describe them. The analytical methods and strategies to solve the problem
were done with guidance and recommendation from the supervisors from NTNU,
NIBIO and NINA.

The available data did not have many cases of known target situations where
anti-predatory or sick behavior occurred. The machine learning will therefore
be unsupervised, and it will not be possible to check the accuracy of the model
predictions or verify the results without further research. The analysis still aims
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to form a basis on which future studies may build on, and work as a possible
starting point in examining the development possibilities of threshold markers in
livestock collar technology.

1.3 Stakeholders
A. Sheep farmers: From both an ethical and economical perspective, sheep
farmers will have a high motivation to to reduce the amount of lost sheep each
year. Both time and resources from the farmer are allocated to ensuring animal
welfare for the sheep while on rangeland pastures, locating lost individuals and
reporting any deceased sheep. An improved digital solution might simplify and
give more control over all tasks.

B. The government: The government has several departments and agencies
that handles livestock welfare and losses, and compensation claims when sheep
are lost due to predators. There may be a large economical gain in reducing the
amount of lost sheep and by lessening the workload for the government employees
associated with better sheep welfare.

C. Producers of electronic sheep collars: Providers of electronic collars for
livestock will have an interest in bettering their products and service. The so-
lutions on the marked today will sometimes have a type of stress detector from
excessive movement, and the research done in this study may further the accuracy
and scope of realizable parameters incorporated in the collars.

D. NIBIO and NINA: Both collaborating institutes on this project are ana-
lyzing and researching digital solutions and future possibilities within agricultural
technology daily. Specialized knowledge and skills from students doing detailed
research may help to advance and develop their innovations.



4 CHAPTER 1. INTRODUCTION



Chapter 2
Theory

The ethological behavior of sheep and the theory of calculating with geographical
data were studied in the project thesis. The following sections 2.1 and 2.2 are
partially excerpts from the findings stated in the specialization project report [4],
with some changes and additions to better fit the analysis in the master thesis.
The project thesis can be found linked in appendix B.

2.1 Ethological theory

There are many factors that may influence the behavior of how a sheep acts
naturally when out on rangeland pastures, without the security of constant human
protection. A special field of interest in this thesis is how sheep behave when
there is an indication that something is wrong, compared to their typical, relaxed
behavior. Since the end goal is to differentiate these two, and hopefully be able to
see tendencies of this in the data, it is very important to understand what to look
for, and what affects the data. Parameters that may influence the nature of the
sheep behavior include type of breed, hierarchy order, environment and weather,
age and gender, available resources and individual personality. The findings on
factors influencing the temperament and movement pattern of sheep are presented
below.

2.1.1 Breed of sheep and its impact

Observations clearly state that the breed of sheep will influence their behavior,
especially on rangeland pastures where they can roam freely over large areas un-
interrupted by human interaction [5, 6]. Sheep have been domesticated and bred
by humans for at least 7000 years [7], and trait selection has long been a part of
breeding the animal. Especially in more modern times, when sheep farming has
gradually evolved from being a livelihood within a family, to be an international
economical and sometimes industrial occupation. Traits that maximize profits
and streamlines operations are often more wanted and bred upon. This includes
traits like growing better quality wool, more muscle for more meat per sheep, less
flocking, and being more friendly and social towards humans [5]. This will in
turn affect their survival instincts on rangeland pastures, and make them more
dependent on humans as a species. Research indicates that the more bred upon

5



6 CHAPTER 2. THEORY

a sheep breed is, the more tame and heavier it will be, and the sheep might thus
have weakened instincts to help guard themselves against predators [8]. However,
breed differences and their antipredatorial behaviors are generally poorly docu-
mented.

2.1.1.1 Description of relevant Norwegian breeds

Spæl: Originating from one of the oldest breeds in Norway, the Spæl sheep is
still considered to have a close resemblance in manner and physical features to the
earliest domesticated Norwegian sheep. It has been somewhat crossbred during
the first half of the 20th century creating different kinds of Spæl. The main types
are Old Norwegian Spæl, White Spæl and Colored Spæl. Spæl has less meat con-
tent and fat than most other breeds, but has stronger mother instincts and milks
very well. Despite its slightly smaller and fragile build, it is light on its feet and
robust, more vigilant and runs fast. While on pasture they gather in a herd [9, 10].

Old Norwegian: Also called Wild sheep or Stone age sheep, like Spæl it stems
from the old original Norwegian breed. It is small but highly cautious and sturdy,
with strong mother and herd instincts.

Norwegian Fur: A relatively new breed from the 1960s, and slightly larger and
heavier than Spæl. It has good mother instincts, and will roam widely on pastures.

Dala: One of the largest breeds, and has a calm, tame demeanor. It has some
difficulties with breeding, and will often scatter more on pastures.

Norwegian White Sheep (NKS): This is a crossbred sheep consistent of dif-
ferent both Norwegian and foreign types. Lately some of the other Norwegian
breeds like Dala, Rygja and Steigar are sometimes being classified as NKS instead
due to crossbreeding. It is a fast growing and heavy breed, very fertile and social
towards humans, making it the most populous breed in Norway. It will often walk
separate on pastures and not flock together.

Grey Trønder: A cross between Old Norwegian and Tauter from Trøndelag,
with a medium weight. It is alert, frugile and has good herd instincts.

2.1.1.2 Reactions to predators by breed

Research on the antipredatorial reaction in ewes of several typical Norwegian
breeds were done in Trøndelag [8]. The breeds were Old Norwegian Sheep, Spæl,
Norwegian Fur Sheep, Suffolk, Steigar Sheep, and Dala sheep. Their reaction was
recorded against the threats stuffed wolverines, lynx, and bears, humans and dogs,
and big unfamiliar objects. This study found that lighter breeds have stronger in-
stincts and reactions against predators than heavier breeds. The breed that had
the longest de-reaction time, longest flee distance, most defensive behavior, and
flocked the most together was the Old Norwegian Sheep. After that came Spæl
and then Fur sheep, and the Fur Sheep was also the most offensive towards the
predator types. The rest of the breeds had no to little differences in reactions



CHAPTER 2. THEORY 7

between them. Steigar Sheep flocked the least together when threatened. The
predator figures that initiated the longest de-reaction times were in decreasing
order dog, lynx, wolverine and bear. The ones that stimulated the longest flee dis-
tance were in decreasing order wolverine, bear, lynx, and then dog. Human and
large objects fell significantly below the other threats in reactions. There were
also stronger reactions during the fall experiment than the one in spring time.

2.1.2 Hierarchy and herd behavior

When referring to a herd in this thesis what is meant is the whole collection of sheep
belonging to a farmer, while when referring to a flock it is meant a smaller portion
of the herd, like a family group. When on rangeland pastures, the adult sheep
are usually only ewes. In a study conducted at the University of New England,
Australia, herd position during movement and hierarchical and temperamental
differences were examined in adult Merino ewes [11]. The movement was enforced
by high value food motivation along a track. Every sheep was given a lameness
score each test day, to map their positional variance against their health status
and mood. The research show strong correlation in especially preceding runs,
and hints towards strong front- and rear hierarchical order. In figure 2.1.1a, the
mean position of each sheep relative each other and the standard deviation of
their position are given. The curve plainly shows that the further to the front or
back in the herd an ewe is located, the more consistent their relative position is.
For the sheep in the middle of the herd, the standard deviation is both higher
and varies more, which may indicate that hierarchy is mostly important for sheep
with either strong leadership or follower traits. The study also found that for
days when sheep showed lameness, their positional mean were 20.5 ± 5 % further
back than on days they were not deemed lame. Tømmerberg (1985) followed a
herd of Dala sheep over two years on rangeland pastures, and recorded their rank
and compared it against their age, as seen in figure 2.1.1b [12]. Here there is a
correlation between older age giving higher rank in the herd. He also found that
once hierarchy was established in spring, this stayed constant for the whole season
out on the pastures. Similar results for Border Leicester sheep and other Merinos
have also been found, but more extensive research is needed in order to conclude
generally about the spatial leadership for sheep [13, 14].

2.1.3 Habits and movement patterns of sheep

2.1.3.1 Home range

Sheep are habitual animals, and when roaming on rangeland pastures they will
mostly keep to a fixed area each year called home range [9]. William Burt (1943)
defined it as "...the area, usually around a home site, over which the animal
normally travels in search of food. Territory is the protected part of the home
range, be it the entire home range or only the nest." [15]. The extent of the home
range will vary with grazing qualities, topography, predators, and quantity of
other grazing animals. Tømmerberg (1985) found that the home range increased
in size later in the season, which may be explained by that the lambs are older
and need more nutrition, and vegetation grows more slowly towards fall [12]. Each
individual sheep or small family group will have their own home range, and will
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(a) Hierarchical position of sheep in movement

(b) Hierarchical position by age of sheep

Figure 2.1.1: Figure (a) shows individual mean position of each sheep (n=196)
for all runs and their standard deviation (SD) (figure taken from Doughty et al.
[11]), and (b) shows hierarchy position of one herd over two years compared to
age, where a low position means higher rank (figure taken from Tømmerberg [12].)

also follow more or less the same route every year. This route will pass down from
ewe to daughter, and stay approximately consistent throughout the generations
[12]. Trying to change pasture may prove difficult, as the sheep often will return
to the area they grew up with. If the home range of a sheep is changed it is most
likely due to disturbances, like predators or human intervention [16].
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2.1.3.2 Reactions to different types of weather

The movement pattern of sheep will be affected by the weather. On sunny days
they are more likely to be in higher altitudes, probably to seek more wind and
cooling temperatures [9]. Likewise, they keep to lower grounds if the weather is
cold or rough. They roam the most on dry, cloudy days, while staying more put
if it is either very hot or stormy. Their behavior is not influenced by a normal
amount of rain, but should it rain a lot they will usually find shelter in the form of
vegetation or natural formations. When there are a lot of insects, typically when
sunny, hot and calm winds, they will move onto higher grounds to try to find
more wind to get relief from the nuisance. One behavior to note here is that when
bothered by insects sheep will regularly shake their heads and fidget more, which
may affect the GPS positioning. At very hot days, grazing at night will increase
while the sheep instead will relax more during the day. Scott and Sutherland
(1981) found for Merino sheep that grazing were at a maximum around 10-15◦C,
and relaxing and shade group formations increased noticeably at temperatures
above this [17].

Figure 2.1.2: Schematic breakdown of the diurnal rhythm of sheep while on
rangeland pastures, figure retrieved from Saueboka [9]. The white segments rep-
resent grazing and moving about, while the black segments represent resting and
chewing cud.

2.1.3.3 Diurnal routines

The major part of the day for a sheep is spent alternating between grazing and
chewing cud, as can be seen in figure 2.1.2. Grazing will occupy up to 7-11 hours
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each day, and cud chewing about 5-9 hours [18, 9]. This depends on the quality of
the pasture relative the amount of sheep and time of the season. The most active
grazing periods will be at dawn and at dusk, while the sheep will rest during the
early afternoon when temperatures and sun are peaking [12, 17, 19]. Towards
night the herd will usually seek higher up in the terrain, and come down again in
the morning.

Figure 2.1.3: The diurnal sheep activity measured in percentage, from the study
of Tømmerberg [12]. The activity is registered from mid-July to mid-August on
adult ewes with lambs.

2.1.3.4 Seasonal habits

Typically the sheep will be released on rangeland pastures around the end of
May/beginning of June, and be gathered home again in the middle of September.
Depending on the breed, a herd will sometimes split into smaller flocks of family
groups out on the pastures. As discussed in 2.1.1.1 the larger and more docile
breeds like NKS will split more than e.g. Spæl. When a flock is grazing together
they will often move in a wide formation forwards, but if a flock is migrating to
another area they will walk in a row behind each other instead [9]. They seek se-
cure places for when resting or chewing cud, either higher up or around vegetation.
Their route throughout the season will often stop by mineral blocks if laid out.
Migration of a flock is mostly motivated by better vegetation and grazing oppor-
tunities elsewhere. At the end of the season a herd will often return homewards by
itself, from where it had been grazing. This will also often happen if it is scared
by predators [20, 12]. Activity during the night in the late season significantly
decreased compared to the early season according to Tømmerberg, which may be
explained by darker and longer nights. The home range also increased later in the
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season in his study. Around 90 % of this active time were used for grazing, the
rest for walking, running, nursing et cetera.

2.1.4 Diseases and behavior when sick

When sheep get sick while on rangeland pastures, they may fall behind the flock,
become lethargic, have less energy and generally move more slowly than when
healthy. This could be because of several diseases, like scrapie, hypokalemia,
coccidiosis, or anaplasmosis [9]. Alveld is a disease that arise by consumption of
the plant bog asphodel, and will make the sheep sensitive to light and uneasy, and
they will often seek shade. Lambs are typically more susceptible to get sick than
adult ewes.

2.1.5 Herd reaction to predators

Tømmerberg observed the herd running upwards in the terrain when frightened
by something, and hypothesized that the shift to higher altitudes at night is a
measure to better be able to detect approaching predators when dark [12]. This
argument is further supported by that this behavior largely followed the length of
the day, where the move upwards started earlier in late summer when the sun set
earlier. The given feedback from farmers stated that sheep will return either home
to the farm if close enough, go to roads or cabins, or seek towards water when
predators are near their pasture. They will be noticeably stressed and restless.
One report from the Norwegian Institute for Nature Research in 2016 found an
indication of correlation between heightened deaths because of golden eagles and
deaths because of diseases and accidents on rangeland pastures, even though the
data did not provide a basis to conclude [21]. It is worth noting that a prevalence
of more diseases in a herd might cause easier prey and hence more predatory
deaths, or that the presence of predators might increase the chances of diseases.
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2.2 Calculating with geodata
Latitude and longitude are geographical coordinates, and in Geographic Informa-
tion Systems (GIS) they are often given in decimal degrees, as were the case with
the data from Tingvoll and Fosen. Latitude is the degrees in the north-south ori-
entation, and thus represented by horizontal lines called parallels, and goes from
0◦ at the equator to ±90◦ at the poles. Longitude is the east-west orientation,
and thus represented by vertical lines called meridians, and goes from 0◦ at the
prime meridian in Greenwich to ±180◦ east/west [22]. Latitude and longitude are
illustrated in figure 2.2.1. When moving along latitudinal lines with an unchanged
longitude, the trajectory will slice the earth through the center along the merid-
ian, but when moving along longitudinal lines the trajectory will depend on the
latitudinal value.

Figure 2.2.1: Illustration of the earth, and how latitudes and longitudes are
calculated with respect to the equator and prime meridian.

The earth in itself is approximately spherical, but because the earth is spinning
about a fixed axis though its center, the fictitious inertial centrifugal force com-
presses the middle of the earth outwards, and deforms the earth into an obloid
spheroid sometimes called an ellipsoid of rotation [23]. This deformity affects how
latitudes and longitudes are computed in a Global Navigation Satellite System
(GNNS) and a GIS, which need a reference in approximately the same shape of
the earth to calculate values. This reference ellipsoid for a given coordinate system
should be specified as in accordance with the ISO 19111:2019 standard in order
to be sufficiently accurate [24]. Most world wide services like Google Earth and
OpenStreetMap, which are 3D geographical coordinate systems that can chart co-
ordinates, uses the WGS84 geodetic reference frame (datum) to define the ellipsoid
reference of earth [25, 26]. The identifier used to chart coordinate values on the



CHAPTER 2. THEORY 13

WGS84 ellipsoid is EPSG 4326 [27]. Note that this is in relation to 3D-mapping
of coordinates to locations, when applied to the flat 2D plane on projected coordi-
nate systems like maps, the identifier EPSG 3857 for coordinate transformations
is used for WGS84 [28]. In Norway and other European countries, the EUREF89
reference frame is also used, which is based on WGS84 and Europe’s tectonic
position in 1989. Because of continental drift, Europe and America moves a cou-
ple of centimeters apart each year, increasing the difference between EUREF89
and WGS84 [29]. For the data from Fosen and Tingvoll, the exact GNNS and
reference frames are unknown, which may affect results in especially orthometric
height (altitude) calculation. The orthometric height is the vertical height from a
given point to the geodetic reference frame, approximating the meters above the
mean sea level [30]. For this project it will be assumed that GPS and WGS84
are used, based on probability, but the difference from other standards are not
deemed significant. Further on, the major part of this project will depend on
positional differences and qualitative analysis, not exact location, and therefore
be mostly independent of reference frame as long as the calculations are consistent.

If the distance is less than about 200 km, the earth may be assumed spherical
when calculating the length between points [31]. The Haversine formula given
in equation (2.1) is a method used to calculate the distance traveled by coordi-
nate values and taking into account the curvature of a spherical surface [32]. The
Haversine is defined as hav(θ) = sin2(θ/2), R is the sphere radius and ∆ϕ and
∆λ are the differences in latitude and longitude, respectively. This formula is an
approximation, because of the obloid curvature of the earth the Haversine formula
may still have an error up to 0.5 % [33]. Vincenty’s formula will take into account
the reference frame, most commonly WGS84, but it is computationally heavy, and
for a qualitative analysis on relatively small distances not necessary [34].

a = sin2(∆ϕ/2) + cos(ϕ1) · cos(ϕ2) · sin2(∆λ/2)

d = 2R · arcsin(
√
a)

(2.1)

Some error in GNNS values must be assumed, and could be caused by for example
signal noise, clock offsets between satellites, atmospheric conditions, or attitude
in orbit inclination. But for e.g. the American system GPS, this fault will only
account for a couple of meters [35].
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2.3 Machine learning

Machine learning is a subcategory of artificial intelligence which applies statistical
analysis and mathematical models on data in order to make a computer detect
trends, or make decisions or predictions [36]. An algorithm is said to learn if it can
make decisions based on empirical data without being explicitly programmed on
how to do so. The concept was formally defined by Tom Mitchell as "A computer
program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E." [37]. A well-posed learning problem therefore must
be able to identify the three features (1) the tasks, (2) the measure of performance,
and (3) the training experience.

A machine learning program may take into account many different input vari-
ables, which are called the features or attributes. The parameters of the model
are internally configured variables which are tuned and adjusted as the model
learns during training, and hyperparameters are coefficients externally predefined
to guide the learning process [38]. The goal is to optimize both parameters and
hyperparameters so the model will be specialized enough to discover the pattern
but general enough to accurately predict or classify unseen data. If a model is
made too complex it may learn to incorporate the noise and errors in the data as
part of the structure. This is called overfitting. On the other hand the model will
be underfitted if it is not trained enough or too rudimentary to detect a correlation
in the data. Tactics against under- and overfitting may be to get more training
data, stopping the training process early, feature selection and regularization [38].

2.3.1 Supervised vs. unsupervised learning

In supervised learning the target values to be predicted, called labels, will be
known when training a machine learning model. The values of all features of one
point xi, a so-called example of data, will correspond to one output variable la-
bel yi. The algorithm will learn through experience using a data set with known
labels, and tune the parameters in the model in order to optimize its predicting
performance on new data [39]. Labels for data with unknown output values can
then be predicted with no other information available other than the example val-
ues and the tuned model parameters. Accuracy for the model may then be tested
by splitting the data into train and test sets, where you predict labels for the test
set after tuning the model with he train set, and compare the predicted values
with the real ones. With unsupervised learning the target labels are not known,
and the main objective is rather to find underlying structure and dependencies in
the data. The accuracy of the model thus cannot be directly calculated, and other
methods must be used to have a metric of the model performance.

For a supervised model the training variance and test error may be calculated.
If it is underfit both will be high, while if overfit the variance will be very low
while the test error will be high [38]. For unsupervised models there is no way
of calculating an error without true labels, and avoiding under- and overfitting is
rather reduced into a problem of e.g. deciding the optimal number of clusters.



CHAPTER 2. THEORY 15

2.3.2 Feature engineering

Feature engineering involves using domain knowledge, intuition and mathematical
computation to transform the data into feature representations better suitable to
portray the underlying problem for the model. It is done after the data cleaning
process on the raw data, and gives a better quality input to the algorithm as to
improve the model accuracy and performance. It is one of the most important
steps in a machine learning pipeline, as the selection and form of the input will
have a major impact on the model performance, often more than the algorithm
itself [38].

2.3.2.1 Feature generation and data transformations

Raw data will not always include all variables relevant to the problem the model
aims to solve, and constructing new features will often be necessary. Creating new
features may be done by transforming existing data from one or more features, or
by aggregating data from outside sources. Sufficient domain knowledge is crucial
for feature generation in order to know what type and form of information that will
affect the issue, and thus knowing what is most likely needed for the model. This
includes for example binning from continuous variables to categorical, by creat-
ing discrete ranges to place each value in order to improve the model performance.

How each feature is represented will have a major impact on the results of the
algorithm [38]. It must be in a form the machine learning program understands
and that make sense computationally, and physically. The data must therefore
sometimes be transformed or converted into another, more suitable shape.

2.3.2.2 Scaling

The different input variables in a data set will most likely have a wide range of
both values and units depending on what they are describing. For example the
age of a group of people versus their income level will be of a quite dissimilar order
of magnitude. Algorithms in machine learning will often employ a distance met-
ric between features to calculate similarities in the data, and critically disparate
value intervals might give a disproportionate bias and severely affect the outcome.
Features with higher values will be emphasized more, even though they might not
be more important for the model compared to other features of different ranges
and units of measurement. Feature scaling is therefore needed to make divergent
attribute values comparable. This is done with normalization (Min-Max Scaling)
and standardization (Z-Score Normalization) [38].

Min-Max Scaling, given by equation (2.2a), transforms all the data to a similar
scale so that their range becomes bounded by [a, b] [40]. Here a is the minimum
and b the maximum, typically [0, 1]. Normalization simply rescales the range,
and does not change the relative positioning of any outlier points. Z-score, given
by equation (2.2b), shifts the features such that they follow normal distribution
rules, which means that the mean is zero and the standard deviation is one [41].
The z-score is calculated by subtracting the mean µ and dividing by the stan-
dard deviation σ. This ensures that variables of different types of measurement
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are comparable. Normalization and standardization transformations are not al-
ways needed, but useful when the features have contrasting characteristics and/or
especially when distance metrics are used in the model calculations [38].

Min-Max: xi,new = (b− a)
xi − xmin

xmax − xmin

+ a, ∈ [a, b] (2.2a)

Z-Score: xi,new =
xi − µx

σx

(2.2b)

2.3.3 Clustering

The technique of clustering in machine learning is an unsupervised method and
uses the notion that a set of observed and abstract points will be more similar
to each other the closer they are [38]. Given a set S = {x1, x2, ...., xn} of n ≥
2 heterogeneous points, and the pairwise distances between them given by the
distance function d(xi, xj) where xi, xj ∈ S, the points may be grouped together
based on the similarity of closeness. The resulting partitions T1, T2, ..., Tk ⊂ S of
the grouping function f are called clusters, where the points belonging to the same
cluster are closer together than to the points in different clusters [42]. The cluster
assumption states that if points are in the same cluster, they are more likely to
be in the same class [39].

2.3.3.1 K -means

k -means is a method for clustering data into k non-overlapping clusters, where
each data point belong to the cluster with the smallest mean distance to the
cluster center (centroid) [43, 44]. The goal is thus to minimize the intra-cluster
variance, while the inter-cluster variance is maximized [45]. The algorithm for
k -means is as follows:

• Specify the number of clusters k.

• Initialize the cluster centroids either by randomly selecting seeds or by the
use of an optimization method.

• Calculate the sum of squared distance between all data points and all clus-
ters, and assign each point to the nearest cluster center.

• Compute new centroids by finding the mean point of all the data within each
cluster.

• Repeat the two previous steps until convergence or until a stopping condition
is met.

The sum of squared distance (SSD) is given by equation (2.3a) using euclidean
distance, where µq is the centroid for cluster q. The sum of squared distance
will give the cluster variance as it computes the square deviation of each example
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from the mean, and may also be used to measure the total error since the intra-
distance will rate the dissimilarity for each cluster [43]. This is therefore sometimes
shortened to SSE (sum of square error) as given in equation (2.3b), where r =
1, 2, ..., k describes which cluster point xi belongs to and δrq is the Kronecker delta.

SSD =
n∑

i=1

(x⃗i − µ⃗q)
2 (2.3a)

SSE =
k∑

q=1

δrqSSD (2.3b)

To optimize k -means one may use an improved initialization algorithm, such as
k -means++. This chooses the initial centroid values, or seeds, to set a better
starting point for the rest of the k -means algorithm [46]. K -means++ works by
first randomly selecting the first centroid from the data points available, it then
computes the distance between the chosen centroid and all other points, and se-
lects the next centroid as the point with the maximum distance to the previously
chosen centroids. The last step is repeated until k centroids have been chosen.

2.3.3.2 The elbow method

To check the model validity and performance of the k -means clustering, the elbow
method will be used. By plotting the explained variation (inertia) against the
number of clusters, a cut-off cluster value is given at the "elbow" of the curve.
The curve will linearly level out at higher numbers of clusters after this point,
which means adding an additional class will not necessarily yield a much better
model of the data. It is a heuristic and does not guarantee the global optimal
solution, but will help get satisfactory results where the model will most likely be
accurate enough at an acceptable cost and where k -means will at least terminate
at a local optimum [47]. The reasoning behind the concept of the elbow method is
that with more classes available the fit will naturally improve and explain more of
the variation as more compact clusters can be used, but at some k the model will
be overfitted. SSE is used as the measure of explained variance. By implementing
the elbow method to choose the number of classes to include in the model, over-
and underfitting is hopefully avoided and validity strongly suggested [48].

2.3.3.3 DBSCAN

DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise,
and will cluster data together while also detecting outliers [49]. It will group points
together that are close and with many nearby neighbours, while marking points
that are alone in low-density regions as anomalies. The clustering will therefore
not be particularly affected by outliers [50]. DBSCAN characterizes all the data
into three different types of points, i.e. core points, boundary points and noise
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points [51]. This is based on the number of neighbours a point have within a given
neighbourhood. The neighbourhood of a point is defined as the distance radius
of the point, which is a hyperparameter decided by the user, and the number of
points within the circle spanned by the radius is defined as the point neighbours.
A core point will have at at least as many neighbouring points as a given minimal
value also given by the user, counting itself. A boundary point does not fulfill the
criteria of enough neighbours, but will be in the neighbourhood of a core point.
Noise points are all the the rest of the data that do not fit into either of the two
other categories. Further, a point p is said to be density connected to point q if
there exists a chained set of core points, connected through their neighbourhoods,
such that p and q are each in the neighbourhood of a core point in the set. The
DBSCAN algorithm works as follows:

• Categorize all the data into either core, boundary or noise points by the
given hyperparameters.

• Remove all noise points from further consideration.

• Allocate a cluster to a core point, and assign all other density connected
points to the same cluster.

• Repeat the last step until all core points have been assigned to a cluster.

• Assign each boundary point to the cluster of the nearest core point.

2.3.3.4 K-Nearest Neighbours

Likewise the elbow method for k -means, an optimization algorithm will be used to
optimize and choose the hyperparameter value for the point radius ϵ in DBSCAN.
As proposed by the original authors of DBSCAN, Sander et al. 1998 [50], the
method of K-Nearest Neighbours (K-NN) is used. It calculates the euclidean dis-
tances to the K nearest neighbours of each point, sorts the distances from minimal
to maximal value and plots them to find the elbow of the curve. This will give a
parameter radius distance ϵ which will separate the majority of the intra-cluster
distances from the noise points further apart from the rest. A heuristic to decide
the input variable number of neighbours K in the K-NN algorithm was proposed
by Sander et al. to be K= 2 ∗Dim − 1, where Dim is the dimensionality of the
data, i.e. the number of independent variables (or features) present. Further, the
hyperparameter for the minimal amount of neighbours needed to be considered a
core point in DBSCAN, minPts, needs to be decided by domain knowledge. Gen-
erally it should be greater than or equal to the dimension, and be chosen larger
for larger and more noisy data sets [50].
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2.4 Statistical significance
To validate hypotheses made from the data driven results, the statistical signifi-
cance has to be computed. It is used as a test to check whether the results obtained
are likely due to chance alone or due to an actual global relationship between two
or more variables [52]. The method calculates through statistical hypothesis test-
ing the p-value of the results (or the sample), which signifies the probability of
observing as extreme values from the data if it is presumed that the results ac-
tually were only because of chance [53]. The null hypothesis H0 represents the
notion that there exists no significant relationship between the data and that any
observed difference is due to chance, and the alternative hypothesis HA is some
form of opposite to H0, often the assumed hypothesis made by the researchers that
they are studying if is true [54]. Hypothesis testing determines whether to reject
the null hypothesis or not, and thus prove that the sample of a situation that were
studied can be extrapolated to the entire population and be globally generalized
also outside the sample. Most hypothesis tests assumes a normal distribution in
the data analysed. A study is considered statistically significant if its p-value is
less than the pre-defined significance level α, typically set to 5 %.

2.4.1 The central limit theorem

The central limit theorem demonstrates that when a large enough normalized
random sample is taken from a population, the sample mean will incline towards
a normal distribution even when the population is not normally distributed [55].
An adequate sample size for the theorem to hold will be around 30-50 samples
[56].
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Chapter 3
Methods

3.1 Work method

A smooth and strategic workflow is essential for obtaining legitimate and reliable
results, and to keep the research process effective, systematic and logical. It is
important to utilize a work method appropriate for the problems to be solved and
that fits to fulfill the objectives of the study. The process model chosen for this
thesis was the CRoss Industry Standard Process for Data Mining (CRISP-DM)
[57]. The method is suitable for data mining projects, and is well documented
and tested [38]. CRISP-DM provides the workflow and necessary steps to execute
an analytical project through iterative phases. The analysis is expected to change
direction and requirements as new discoveries are made, so the CRISP-DM model
was paired with a flexible and agile project management.

3.1.1 CRISP-DM and the agile work process

A key principle of CRISP-DM involves prioritizing to understand the business of
and gain domain knowledge about the field of research. This will be valuable when
choosing how to solve the problems, give important insights that might affect the
analysis, and help interpret and recognize results. The CRISP-DM method con-
tains six phases in a cycle, where the discoveries made guide the requirements of
the data project in an agile and iterative manner. As more knowledge is gained
from the analysis, the workflow may need to be adjusted, and the different steps
repeated. To use an agile development approach to the workflow implies to be
adaptive of changes throughout the whole project, where the model design and
implementation are interleaved and under constant development. Formal docu-
mentation is kept at a minimum until the end, as the solution is meant to be
reassessed and changed often [58]. The six phases of the CRISP-DM method are
described below.

1. Business understanding: The initial phase focuses on understanding the
environment of the given problem, recognizing the business context, and determin-
ing the business goals and objectives. The first phase is crucial for later analysis,
such that when defining the business requirements it is known how a data mining
process can answer the problem and which success criteria to set. The business

21
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understanding hence includes gaining domain knowledge relevant for the available
data, knowing what the existing solutions to the problems are and what are in
need of improvement. The first phase should be used to specify and concretize
the issues, determining limitations or caveats, and to reduce the scope of the ob-
jectives if necessary. A tentative project plan should be made, in accordance with
the principles of the six phases of CRISP-DM and the agile methodology. The
business in this thesis refers to the industry of sheep farming and sheep welfare
technology on rangeland pastures.

2. Data understanding: The second phase involves investigating the available
data in detail, and taking the necessary steps to understand all the data before the
process of analysing it can begin. This will include retrieving the data, describing
all the different features, performing exploratory data analysis (EDA) and visual-
izing the attributes, and verifying the quality of the data at hand.

3. Data preparation: Data preparation is the major part of the data mining
process, and will take up to 60-70 % of the total time of the project [38]. In
order to prepare the data for the modelling in the later analysis, the data has to
be cleaned, wrangled, transformed and curated to a convenient format. Errors,
anomalies and missing values has to be checked upon and handled, new attributes
might be constructed (feature generation), and the most important features are
selected for further use in the model.

4. Modeling: The modeling phase is the process where the machine learning
model is designed and built, evaluated and tuned. The model can then be run
with the clean and formatted data to deliver results, and the model performance
assessed with respect to the business objectives and success criteria. Previous
steps may be revised and iterated until satisfactory results are achieved based on
the domain knowledge.

5. Evaluation: The fifth phase involves a detailed assessment of the final models
and the given results, evaluating the significance of the findings and analysing
their relevance for the problem. An overall evaluation of the process should be
done, and further work recommended. Whether the business understanding or the
objectives need to be refined should be discussed, and necessary adaptations for
any future iterations suggested.

6. Deployment: The final phase is to prepare the models for deployment. This
entails to document the project and the results, suggest a plan for future monitor-
ing and maintenance, and discuss how to validate the performance of the proposed
solution. It should be clear how and when to update, replace or retire models after
they have been deployed.
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3.1.2 Gantt chart and work progression

Figure 3.1.1: Gantt chart of the tentative progress plan of the project.

As described by the CRISP-DM phase one, a tentative project plan of the timeline
was made as a Gantt chart shown in figure 3.1.1. The different tasks belonging to
the different phases of CRISP-DM are planned in iterative sprints, as the model
design and requirements are updated in accordance with new knowledge and re-
vised business understanding. The plan is flexible and will change as needed, but
will give a framework to keep the workflow effective and systematic.

3.2 Software and libraries used
All data on the sheep were given as comma separated files. The programming
language Python was used for all coding, and the library Pandas was used for
handling the data. Pandas is a software library especially well suited for data
manipulation and data analysis, where data is represented as a DataFrame object
for operating all information [59]. All data plots included in the thesis were made
with the data visualization libraries Matplotlib, Seaborn and Plotly. Illustrations
were made with Inkscape and Adobe Photoshop. The machine learning models
were built with the open source library scikit-learn [60]. All the code files for the
data cleaning, EDA, feature engineering and machine learning are collected in a
Github repository, which can be found in appendix A.
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3.3 Exploratory Data Analysis

An important step in data driven science, and in accordance with the CRISP-DM
method, is understanding the data at hand. The data and its properties needs to
be explored and visualized, to help understand what is going on in the data. It will
also be useful when interpreting the results and to identify the possibilities in the
later analysis. Examples of what to look into are how many attributes the data
contains and what are their statistical properties, what do the different attributes
look like and how is the data described.

Fosen:
The data from Fosen had 10 attributes in total, where the datetime-object, the
sheep identification number, and the latitude and longitude values were used fur-
ther. A sensor in the electronic collar of the sheep registered the temperature in
real time, but an external and more reliable source was used instead for this infor-
mation. There were a total of 583858 rows of data, distributed over 346 individual
sheep trajectories, three separate farms and three years from 2018-2020. After
data wrangling the final amount of individual sheep trajectories were 309, where
145 were of adult sheep and 164 were of lambs. The distribution of the different
breeds of sheep were 193 NKS, 90 White Spæl, 1 Old Norwegian Spæl, and 25
Old Norwegian sheep. There were a total of 13 individual sheep who wore an
electronic collar for two seasons, and three wore one thrice. Three sheep were con-
firmed killed by predators, one by golden eagle and the other two by unknown type.

Tingvoll:
The raw data retrieved from Tingvoll had 18 attributes in total, whereas only date,
time, latitude and longitude continued to be used in the analysis. The attributes
altitude and temperature, which were generated directly in the collar, were not of
good enough quality to be reliable. These were thus later collected from external
sources. The rest of the included attributes were not of interest in the analysis of
sheep behavior, like battery power or collar status. The data from Tingvoll had
a total of 444234 rows of data, distributed over 89 individual sheep trajectories,
two separate farms and five years from 2012-2016. There were a final amount of
82 individual sheep trajectories after data wrangling, where all were adult sheep.
The distribution of the different sheep breeds were 40 Grey Trønder sheep, 32
Spæl, 7 NKS and 3 not specified. Also for the Tingvoll data there were 13 sheep
who wore an electronic collar for two seasons, and one wore it three times. There
were no confirmed kills by predators in the data from Tingvoll.

For both locations there were given files with extra information on each sheep,
including individual identification number, electronic collar id, age, number of
lambs, breed, farm, and birth year. Some of the information on these files were
used to supplement the data used in the final model.

3.3.1 Visualization of data

In the directory EDA in the Github repository lies all code files for visualizing and
exploring the data. The activity of the sheep in the form of movement velocity be-
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tween points were plotted in various ways, the size of all individual trajectory sets
checked, the different home ranges of all farms explored against maps, a heatmap
were made of the correlation between features and the inter-feature dependencies
further investigated with pairplots. Additionally, since the start and end dates
for the individual trajectory sets were somewhat dispersed they were plotted in a
histogram to visualize and inspect the possible trends. The available information
on all individual trajectory sets were also summarized and stored in csv-files.
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3.4 Data wrangling

Before any analysis and visualizations can take place, the raw data has to be
pre-processed and prepared properly. Data wrangling is the task of cleaning and
transforming the material into more convenient formats. Instrumental data gener-
ated in real time retrieved from sensor systems will most likely have intermittent
erroneous point generations. The format in which the data is produced may also
not be suitable or appropriate for the later studies, and needs to be converted
into a shape understandable for the machine learning models. Cleaning and pro-
cessing the data will as aforementioned demand about 60-70 % of the total time
spent on data analysis problems, and the wrangling process will iterate over time
as new issues arise. Real life big data will seldom be perfect or without any
faulty information included, the goal is to minimize the amount of defect data so
that it is still useful and representative for the analysis. It is not always evident
or obvious whether a point is faulty or just an extreme true observation. Since
part of this study involves identifying atypical sheep behavior, outliers of extreme
observations are key to recognize deviant movement patterns and it will be impor-
tant to preserve this data in order to discover any would-be relationships between
the variables at these instances. It is therefore essential to be careful, slightly re-
strictive and deliberate when deleting, imputing or altering any anomalous points.

3.4.1 Handling ungenerated points

In the data from Fosen there were occasional time stamps where no coordinates
had managed to generate, but were set to zero instead. These faulty points were
often at either the beginning or the end of each sheep trajectory. In the script
PointClean.py, ungenerated points were handled. Since there seemed to be a
connection with the first few points before and after switching the power of the
electronic collars, the first and last five points of each trajectory set were deleted.
Afterwards, all additional zeros at the end or the beginning of each set were deleted
if there existed more over the five points just removed. Lastly, the faulty points
in the middle of functional data were imputed with new values based on the mean
of the two closest adjacent errorless points. If the consecutive sequence of faulty
points were an odd number, the middle index were imputed with the mean of
the existing outer points, and the upper and lower voids recursively filled with
the mean of the newly imputed value and the existing upper and lower points,
respectively. If the consecutive sequence were an even number the mean of the
outer points were imputed into the lower of the two middle indices, and the rest
filled recursively as with the odd sequence.

3.4.2 Handling error in time

For both data sets there were erroneous time stamps in the data, in various forms.
All trajectory sets were for one season and should be valid only for one specific
year, however sometimes the year in the time stamp attribute were different than
the rest in the same set. The change of months should only increment the month
in the time stamps upwards by one, and the day before the month changes should
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also be either the 30th or 31st since the data is set to the summer months only.
The days should likewise just increment upwards by one, except at the change of
months, and the last clock time before changing a day should be close to 23:00.
The time range between point generations were either an hour for the Fosen data
or 30 minutes for the Tingvoll data. If the clock time difference between two
adjacent points varied by more than a user set threshold, while the time difference
with the next point over was less than the given threshold, then the clock time
will be faulty for the middle point. Clock time also only goes forwards. In the
script Timeclean.py all these instances of errors in time were handled. The user
set threshold for clock time difference were set to four times the time interval
between points. The faulty time stamps were also checked against the date and
time two points over, in case it was a case of a long time off for the electronic
collar and not an isolated time generation error. In the data from Tingvoll there
were additionally cases of the same point being copied and stored twice in a row,
so that one had to be deleted.

3.4.3 Selecting universal time ranges

The first and last days of the sheep trajectory sets in the data consisted of the
sheep either being driven off towards outfield rangeland from the farm, or being
collected down to the farm again in the fall. This data is not representative of
normal free range sheep behavior and needs to be cut off. The mean activity per
year per date for the data from both Fosen and Tingvoll are attached in appendix
C4 and C5, respectively. Based on the slightly heightened activity in the begin-
ning and end for all years, and the mean start and end date for all the individual
trajectory sets, every trajectory set cut off the first and last few recorded days in
the script TimeInterval.py. In addition, when comparing behavioral patterns it is
advantageous that the time ranges are approximately equal, so that the data is
comparable across years on the seasonal differences. Since the trajectory set time
ranges were somewhat varied also within the same year, the range cut decision was
based on trying to preserve most of the data while keeping the dates as universal
across the years as possible. The selected time ranges for all data is presented in
table 3.4.1.

Further a cut-off value of the individual trajectory set sizes were set at 10 % of
the average size in the data from Fosen and Tingvoll separately. This was done
to ensure a minimal amount of data for a set to be considered valid enough to be
included in the analysis, and to remove faulty sets. Trajectory sets that were only
slightly above the cut-off value were manually checked, and deleted if they looked
defective.

3.4.4 Other data cleaning

The data from Tingvoll had twice the resolution as the data from Fosen, as a
point were generated each half hour where in Fosen the time interval were only
every hour. Sheep will change direction as they move, and may also turn back
from where they came, and with a higher point resolution the values of the e.g.
movement velocity will be affected and be more accurate. To be able to compare
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Fosen Start date End date

2018 03.06 29.06

2019 03.06 03.07 or 31.08

2020 03.06 05.09

Tingvoll Start date (farm 1/2) End date

2012 09.06 07.09

2013 23.06 / 15.06 25.08

2014 05.06 / 25.06 10.09

2015 13.06 / 03.07 06.09

2016 17.06 22.07

Table 3.4.1: Selected time ranges for all individual trajectory sets in the data.

the two sets, they have to have the same resolution so that the features based on
distance calculations are made with the same basis. Therefore the data resolution
from Tingvoll had to be reduced by deleting every other point where the time
interval difference were less than an hour. There were also 32 trajectory sets of
data from Fosen that lacked extra information on them that had to be deleted as
analysis on breed, age, and number of lambs thus could not be done. The last
data wrangling done were to update the format of the data by deleting extraneous
attributes and concatenating the two data sets together.
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3.5 Feature engineering

3.5.1 Generating new features

The first new feature that was generated was the movement velocity of the sheep.
In the script Haversine.py, the Haversine distance represented in meters was cal-
culated between all points, given by equation (2.1). The distance was then divided
by the time difference between the points represented in hours, to give the velocity
in m/h. A threshold value of the maximal distance a sheep could run over the
course of an hour had to be set, to filter out any unreasonable coordinates. It is
important to not set this threshold too small, as the extreme cases of behavior are
what this study aims to find and describe. It was assumed that a sheep might run
a maximum of about 10 km/h, and to give some room to preserve any extreme
cases the threshold was set at 15 km/h. This value was also compared to the
range of unmodified velocity values, where the maximum was over 17 km/h. The
data wrangling process thus started a new iteration, by cleaning the erroneous co-
ordinates that resulted in a too high velocity. At the points where the maximum
velocity threshold were exceeded, the coordinates were changed to the mean of
the closest viable adjacent points and a new velocity were calculated.

Another feature created was the inverse trajectory angle. Two vectors were de-
fined between three coordinate points A, B and C as B⃗A between point A and
B and B⃗C between point B and C. The angle was then calculated using the dot
product between the vectors, θ = arccos((B⃗A · B⃗C)/(|B⃗A| · |B⃗C|)). Thus the
movement pattern of the sheep is included as a feature, giving either an acute and
small trajectory angle as seen in figure 3.5.1 for the movement ABC” when chang-
ing direction, or an obtuse angle close to 180 degrees as seen for the movement
ABC’ when continuing straight. To make the extreme cases of directional change
the highest in value, that is when the direction is changed towards the complete
opposite, the inverse of the angle was made as the feature.

The altitude in the form of orthometric height for each coordinate pair had to
be collected from an external source. The public government service for maps
Kartverket were used, where all latitude and longitude coordinates and the cor-
responding altitude are stored in a database in extensible markup language trees
[61]. An application programming interface (API) call had to be made for each
coordinate pair to retrieve the altitude for each point, which resulted in several
hundred thousand API calls. This is highly time consuming, so multithreading
were implemented. Multithreading is the property of handling several threads of
executions concurrently within the cores of a central processing unit [62]. For
a multi-core processor many threads can be run at perceivably the same time.
With tasks that include wait time, as with making an API request to retrieve
information from Kartverket, other threads may use the processing resources as
another thread is waiting for the returned answer. The limiting restriction on the
number of threads to be used was then how many simultaneous calls the server of
Kartverket could handle, which turned out to be three. The API calls for several
coordinate points could then be made in parallel, cutting down the execution time
of retrieving the altitude values by a third. The altitude values were given in the
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unit meters above mean sea level (mamsl). After retrieving the altitude for all
points, the data again had to go through a cleaning iteration. Altitude points
below zero means that the coordinates are over a body of water, where the sheep
have not been. These points are therefore erroneous. New coordinates were then
instead imputed by taking the mean of the two closest adjacent points, and a new
altitude value retrieved and a new inverse trajectory angle calculated.

Figure 3.5.1: The trajectory angle found between three points A, B and C. The
two different C-points show the angle gotten for relatively unchanged directional
trajectory with C’, and opposite directional trajectory with C”.

The temperature also had to be collected from an outside source, and was down-
loaded from Norsk Klimaservicesenter delivered by Meteorologisk Institutt [63].
The weather stations used were Rissa III (23 mamsl) for Fosen and Sunndalsøra
III (6 mamsl) for Tingvoll. The weather observation data had measured the tem-
perature every hour, so each date and hour of the weather data were matched
with the date and hour of the sheep data, and the temperature inserted for each
point. Not all hours had a registered temperature in the weather data, so if no
value were given in the temperature feature for a point, the mean of the two ad-
jacent points imputed the value instead. The weather stations are not exactly at
the same locations as where the herds resided, but they were the closest found
with observed data for the time periods in question. The temperature used in the
machine learning models is therefore an approximation, but it is assumed the data
will qualitatively be in the same order of magnitude as the temperature the sheep
actually experienced.

New features were also generated from the files of extra information on each sheep.
These features were the age, the number of lambs, the breed, the farm, and identifi-
cation number. Lambs of age zero would naturally not have any lambs themselves.
The number of lambs are based on the amount born by each ewe, which might
have changed during the grazing season if any were e.g. lost, killed or slaughtered.
Additionally, Miljødirektoratet was contacted in order to obtain data on observed
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locations of predators in Fosen and Tingvoll. The data was based on the approx-
imate coordinates an observer noticed some sort of trace of a predator, and the
time stamp of when the predator most likely had been there based on how fresh
the trace seemed. The traces could be footprints, fur, feces, carrion or live ob-
servations. However, the observations were irregular and very few, and relatively
imprecise. This data was hence not used in the analysis.
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3.5.2 Transforming temporal data

The time feature in the data is represented as datetime objects in Pandas, which
is not in a numerical format the model will understand and can compute with. A
new feature had to therefore be generated by transforming the datetime variable.
When examining the movement pattern of sheep on rangeland pastures the interest
in this study will mainly be in their diurnal cyclic habits. It is expected to see
some variations in behavior across dates and throughout the season, but this can
be dealt with by splitting the data into categories of longer time periods and cross-
examining the differences. The times of the day follow a cyclic process of 24 hours
however, and the time difference across the 24-hour mark must be equal to other
time differences on the clock. If e.g. only the hour is extracted to consider the
diurnal behavior, the computer will interpret 23:00 and 01:00 to be 22 hours apart,
instead of actually only being two hours apart. These points in time will therefore
be far apart from each other as input in the model and will most likely not be
clustered together, even though it is expected of the sheep to behave approximately
the same at these times. This is illustrated in figure 3.5.2a, where the daily cycle
will drastically jump at 00:00 when using linear time. The solution is to transform
the 24-hour clock to cyclic values using trigonometric representation instead [64].
The datetime objects in the data were generated either at the minutes :00, :15 or
:45, with some variations to the exact time the point was fixed. The resolution
of the time was therefore set to minutes, and the 24-hour clock represented as
minutes after midnight. Since both sine and cosine will intercept the same value
twice in their individual cycle, in the same way an analogue clock will hit an
hour twice every day, each time must be represented by a sine-cosine pair given
by equation (3.1). Sine and cosine are out-of-phase with each other, breaking the
symmetry, and thus ensuring that every sine-cosine pair represents a unique value,
as illustrated in figure 3.5.2b. When plotting the time pair representations against
each other for the first 100 rows of data, time has become a cyclic feature as seen
in figure 3.5.2c, represented now as a 24-hour analogue clock. Midnight is hence
at the top of the clock, every quadrant measures six hours, and midday is at the
bottom of the clock. This transformation also ensures that the time feature is
normalized and standardized, since trigonometric values will always be bounded
by [-1, 1].

Sine time = sin(2π · minutes after midnight/(24 · 60))

Cosine time = cos(2π · minutes after midnight/(24 · 60))
(3.1)

Thus the final features in the data after the feature engineering are latitude, lon-
gitude, datetime, velocity, identification number, sine time, cosine time, age, num-
ber of lambs, breed, farm, temperature, altitude and inverse trajectory angle. The
features that will not be used directly in the model are latitude and longitude
(preserved in velocity and altitude), datetime (preserved in trigonometric time),
identification number, farm, and breed.
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(a) Time as a linear variable.

(b) Time represented as pairs of sine and cosine.

(c) Time as a cyclic feature.

Figure 3.5.2: Figure (a) shows the time variable in the data for the first 100 rows
using linear time as minutes past midnight, figure (b) shows the trigonometric time
representation for one cycle where each time point has a unique sine and cosine-
pair value, and figure (c) shows time as a cyclic feature with the trigonometric
pairs.
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3.6 Implementing the machine learning models
Before running both k -means and DBSCAN, the features of interest were selected,
and the rest deleted. The remaining features were standardized and normalized,
and the hyperparameters optimized. With unsupervised learning there is not a
direct way of checking the accuracy of the model, since the predicted target values
cannot be compared to any true labels as with supervised learning. Optimizing
the model must therefore be done by other means, like making sure the hyper-
parameters are as optimized as possible to reduce the variance and error in the
model.

3.6.1 K -means

The first model k -means were optimized using the elbow method by comparing
the explained variance against the number of clusters. The model were run for two
different set ups, one where only the velocity of the sheep and the time of day were
included as features, and one where all features were included. By only checking
how the velocity of the sheep changes throughout the day, the clusters generated
will describe the activity periods sheep will go through based on the simplest
example of data. K -means is best suited for describing the normal behavior of the
sheep, as all points will be assigned to a cluster, outliers included. The outliers
may skew the clustering results, but this will also be useful in determining the
usual activity habits of the sheep as it will take into account when the atypical
behavior usually occurs. The results of the elbow method for the velocity and
time is shown in figure 3.6.1, where the determined elbow point is at four clusters.
The k -means model were implemented by setting up the algorithm with the found
optimized hyperparameter, fitting the model on the data, and labeling all points
to their respective clusters.

Figure 3.6.1: Explained variance as SSE for the data plotted against number of
clusters included, with respect to the velocity for all sheep.
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The second run were done with all the features included. The cluster number
optimization had to be run again, where the results are shown in figure 3.6.2. The
optimal amount of clusters for all features is also here four.

Figure 3.6.2: Explained variance as SSE for the data plotted against number of
clusters included, with respect to all features.

3.6.2 DBSCAN

The optimization of DBSCAN will be done by using the elbow method on radius
ϵ-plots calculated by the K-Nearest Neighbours algorithm. DBSCAN will be used
mainly to describe the atypical behavior of the sheep. As the outliers in DBSCAN
will be set aside when the algorithm describes the final clusters, some critical sheep
behavior will not affect the clustering outcome. Atypical behavior, such as flight
from predators, are still within the normal span of how sheep behave even though
it is not the predominant behavior. Therefore when describing the overall behavior
of sheep k -means were used where the outliers were included. The main advantage
with DBSCAN is that it can separate the outliers such that the atypical behavior
alone can be analyzed and described. The model were first run with all data and
all features, where the resulting ϵ-plot for hyperparameter optimization is shown in
figure 3.6.3. The epsilon radius, which is the maximum distance between two data
points for them to be considered neighbours, was determined to be ϵall = 0.37.
Three different data split configurations were run with DBSCAN, with all features
included for all. The first data split configuration were done on different types of
sheep breed, where the lighter short tailed breeds of Grey Trønder, Old Norwegian
and all types of Spæl were separated into one data split, and the heavier long tailed
breed of NKS were the other. The second data split were done on early versus
late season, and the last data split were to look into the differences in behavior
between day and night. The resulting epsilon values for all the split data sets are
given in table 3.6.1.



36 CHAPTER 3. METHODS

Figure 3.6.3: Sorted K-NN distance for all data points, using all numerical
features. The elbow to the right is used to choose the value for the epsilon hyper-
parameter in DBSCAN.

Data split Epsilon

All data 0.37

Heavier breed 0.39

Lighter breed 0.39

Early season 0.42

Late season 0.39

Day 0.37

Night 0.39

Table 3.6.1: Epsilon radius values for the DBSCAN hyperparameter optimaliza-
tion for all data set configurations.

The DBSCAN model was implemented by setting up the algorithm with the op-
timized hyperparameters, fitting the model on the data, and assigning each point
to a cluster. The outliers, or noise points, could then be separated from the rest
and inspected. Threshold values of atypical sheep behavior were then calculated
based on the mean of the outlier points for the different dynamical features, by
reversing the standardization and normalization of the data values.
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3.6.3 Other

Principal Component Analysis (PCA) were implemented and tested for k -means,
but not used for further analysis. The reason is that PCA will assume a linear
relationship between the features, and works best when the features have a strong
correlation [65], which were not quite applicable to the data in this study. PCA
is also sensitive to outliers. The code for the PCA model is however still included
in the script Kmeans.py.

3.7 Two-tailed two sample t-test
The hypothesis test chosen to check the statistical significance of the data split
threshold values was the two-tailed two sample t-test. The t-test is suited to com-
pare and examine any difference between two samples of the same variable but
with underlying differences for each set [66]. Here the different sample configu-
rations are the noise data on lighter short tailed sheep breeds versus the heavier
long tailed sheep breed NKS, the early versus late season, and lastly the daytime
hours versus nighttime hours. The test will be two-tailed since the quality to be
examined is if the sample mean difference is not equal to zero, and hence that the
threshold marker values for the feature should be differentiated on the data split
configurations.

H0 : µ1 − µ2 = 0 (3.2a)

HA : µ1 − µ2 ̸= 0 (3.2b)

To find the p-value, the standard error (SE) and test statistic tstat are calculated
by equations (3.3a) and (3.3b). Here σi is the sample standard deviation and ni

the sample size. The test statistic is compared to a t-Distribution table against the
degrees of freedom in the variables, dof = n1+n2−2. Since the test is two-tailed,
the chosen criterion for the significance level α has to be divided by two, with one
segment of significance for each tail on the distribution. The p-value is the α that
corresponds to some critical value tcrit in the table for two-tailed alpha-values.
The null hypothesis can be rejected, and the achieved mean sample difference can
thus be declared statistically significant, if the ttest value is more than the tcrit of
the chosen criterion for α.

SE =

√
σ2
1

n1

+
σ2
2

n2

(3.3a)

ttest = |µ1 − µ2

SE
| (3.3b)
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Chapter 4
Results

4.1 Statistical results and visualizations
This section shows the results from the EDA. The data from Fosen and Tingvoll
are here merged after the finished data wrangling, so the results include all data
collected unless indicated otherwise.

4.1.1 Feature correlation

The pairwise correlation between features were calculated, and plotted in a heatmap
in figure 4.1.1. The colors show how linked and dependent two features are to each
other. In machine learning, the input variables to a model should stay mostly un-
correlated with each other, if two variables are very highly correlated they will
cause redundancy of information, decrease efficiency, and reduce the generalisa-
tion ability and the accuracy. One of the features should thus be removed. Most
of the features have close to zero correlation, except a not too surprising positive
correlation between age and number of lambs and a slight negative correlation
between temperature and time of day. However, one will not be removed as the
dependency is not deemed too high.

Figure 4.1.1: Heatmap of the correlation between features, where -1 is perfect
negative correlation, 0 is no correlation and 1 is perfect positive correlation.

39
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(a) Correlation between velocity and time.

(b) Correlation between velocity, age and number of lambs

Figure 4.1.2: Feature correlation matrices between the features velocity, time,
age and number of lambs showing their relationship with each other, and the
attribute distributions.
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Figure 4.1.3: Feature correlation matrix between the features velocity, temper-
ature, altitude and inverse trajectory angle showing their relationship with each
other, and the attribute distributions.

In order to investigate further the inter-feature relationships and their dependen-
cies to each other, scatter plot matrices (pairplots) were made as shown in figures
4.1.2 and 4.1.3. A pairplot will plot the values in all the features two and two
against each other, revealing how they correlate. It will also plot the univariate
histograms for the individual features on the diagonal, thus showing the distri-
bution of the features, and will not plot the pairplot of a feature against itself
because that will just become a linear function. Because of the number of features
present, the plot was split, where all plots contain the velocity as this is the most
important attribute to compare with when it comes to the sheep activity. Some
features were not considered for the pairplot as they are not directly numerically
comparable. The attributes left out were datetime, breed, farm and identification
number. The split of which attributes to put against each other was determined
based on which feature correlations were the most interesting, but a full corre-
lation matrix with all features can be found in appendix D. Interpretations and
further explanations can be found in chapter 5.
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4.1.2 Statistics before data selection

As part of the EDA, before any data were cut away in the data preparation process,
preliminary visualizations were made. The data was cleaned of obvious errors, and
the velocity of the sheep in terms of meter per time were added as a feature. This
attribute was the first collected which could give some initial intuition on the
behavioral pattern of the sheep. Plots of the data set sizes and different types of
mean registered activity can be found in appendices C1-C5. A table of statistics
on the velocity of the sheep can be found in appendix C6. All representations were
done before any deletion of data, e.g. when fixed time frames were selected, and
further cleaning in the iterative wrangling process as the data was more understood
modified some values in the later analysis. Therefore these plots will be somewhat
different than the ones presented later in this section. It may still be valuable
to have available the unprocessed visualizations, as assumptions were made when
threshold values for deletion were chosen, and some useful information may have
been lost in this process.

4.1.3 Statistics after data selection

A table of the different statistics on the numerical and dynamic features after the
data cut is given in table 4.1.1. This includes outliers that might skew the results
upwards. The features considered are the numerical dynamic attributes, excluding
time, as these are the features of interest for digital threshold values. Static or
categorical attributes like age, breed or number of lambs will mainly not change
while on rangeland pastures, and thus not influence a live statistical model.

Statistic Velocity Altitude 1/Angle Temp.

Mean 122.68 240.98 93.75 13.95

Std 224.51 145.88 60.39 4.44

Q1 28.00 111.60 34.15 10.60

Median 63.00 223.20 99.59 13.30

Q3 137.00 359.10 151.99 16.70

Min 0.00 1.00 0.00 3.30

Max 14519.00 616.70 180.00 32.10

Table 4.1.1: Table of dynamic feature statistics where outliers are included,
for all data points. Velocity is given in m/h, the altitude in mamsl, the inverse
trajectory angle in 1/degrees, and temperature in degrees Celsius.
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(a) Data set sizes in Fosen after the data cut.

(b) Data set sizes in Tingvoll after the data cut.

Figure 4.1.4: The figures show the trajectory data set sizes of each data set,
after the extraneous information were cut off. The orange line indicates the cut-
off threshold for the data sets. The trajectory data set numbers are ordered
chronologically in time, from (a) 2018-2020 in Fosen and (b) 2012-2016 in Tingvoll.

After the data wrangling and feature engineering were done, the total final data
were explored and visualized. In figure 4.1.4 the size of each data set for the
individual sheep trajectories are shown, i.e. each scatter point represents the total
number of generated attribute points for every sheep. The final threshold cut-off
values were 131 data points for Fosen, and 333 for Tingvoll. The values are based
on 10 % of the mean set size after the data was cut due to setting a fixed time
frame for each year and each place. All data sets in the figures are above this
level, the ones below were deleted due to being too small to be considered.
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(a) Mean sheep velocity

(b) Outliers of mean sheep velocity

Figure 4.1.5: The figure shows (a) the mean sheep velocity per hour in a boxplot,
and (b) the outliers of the boxplot.

Figure 4.1.5 shows boxplot statistics and the outliers of the boxplot of mean sheep
velocity, given in meters per hour. The boxes are bounded by the interquartile
range (IQR), where the lower boundary is the 25th percentile (Q1, first quartile),
the upper boundary is the 75th percentile (Q3, third quartile), and the orange
line is the median (50th percentile, Q2). The green triangle is the mean, and the
whiskers are delimited by ∓1.5· |IQR| of the first and third quartile, respectively.
Outliers are here points lying outside the defined whiskers, and the colored marks
at the bottom of each hour in figure 4.1.5b are the boxes in the upper plot. There
are two clearly defined local optima in figure 4.1.5a around 06 and 19 with a local
minimum in between, and the global minimum is approximately at midnight.
Outliers can be seen throughout the entirety of the day, but are more heavily
concentrated between 10-22.
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Figure 4.1.6: Mean sheep altitude per hour of the day, given in meter above
mean sea level. There were no outliers.

Figure 4.1.7: Mean sheep inverse trajectory angle per hour in a boxplot, given
in 1/degrees. There were no outliers.

The mean sheep altitude per hour of the day is shown in figure 4.1.6. There is a
small change in altitude between daytime and nighttime, where the sheep move
upwards at dusk and come down again at dawn. Figure 4.1.7 gives the inverse
trajectory angle per hour, where while the minimum and maximum stay roughly
equivalent throughout, the mean and median follow a sinusoidal path with maxima
at midnight and midday. The upper third quartile has some slight variation in
accordance with the mean but is mostly flat, while the lower first quartile varies
more and deviates the most between 22-02.
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4.1.4 Map of trajectories

(a) Plot of sheep range trajectory on map, in Fosen.

(b) Plot of sheep range trajectory on map, in Tingvoll.

Figure 4.1.8: Individual sheep trajectories plotted on a map, showing examples
of sheep home ranges in (a) Fosen and (b) Tingvoll.
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Figure 4.1.8a shows three trajectory examples for each separate farm unit in Fosen,
where each color plot represents approximately the different pasture home ranges
of the units. The same is shown for the two separate farm units in Tingvoll in
4.1.8b. The maps are retrieved from Open Street Map [67].

4.1.5 Activity distribution

Figure 4.1.9: Sheep activity distribution per hour presented as a violin plot with
four bins. The width of the violin plot indicates the frequency of the y-value, while
the mean is indicated at the blue horizontal lines.

Based on the activity levels presented in figure 4.1.5, four bins were defined with
a duration of six hour intervals, capturing the four extrema of the mean velocity.
The frequency distribution of the bins and their means are plotted in figure 4.1.9,
using a probability density function which smoothes the four histogram levels. The
larger the area the more activity, and a taller spire means more intense activity.
The values on the horizontal axis represents all points that are within the hour
stated, meaning that e.g. a point at 09:45 will belong to the bin of 09. The
distribution is widest above the mean at 16-21, indicating this is the most active
time for the sheep with the most high-intensity movement. The distribution is
also quite wide at 04-09 below the mean, suggesting that at these hours the sheep
will be highly active in general but in a more moderate and relaxed manner than
at the afternoon.
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4.2 Results of the machine learning models

The task of clustering the data with unsupervised machine learning models, so that
it could be described and characterized was done with k -means and DBSCAN. The
results of the machine learning is presented below.

4.2.1 K -means

Several analyzes were done with k -means, mainly to determine normal behavior
as described by data. The first were to investigate the basic case of looking at
only velocity in terms of time of day to look into their diurnal activity traits, that
is their daily movement pattern. The results are presented in figure 4.2.1, where
the sheep activity clusters into four distinct time intervals, thus categorizing their
day into four characteristic activity periods. These time periods are 22:30-04:30,
04:30-10:30, 10:30-16:30, 16:30-22:30. This is also highly in accordance with the
density distribution bins given in figure 4.1.9. The plot in 4.2.1 is also shown in
appendix E1 with a top-down perspective, to show the 24-hour clock view of the
activity periods. The more intense velocity points are in higher density during
the day, indicating that atypical activity behavior perhaps should have a higher
threshold value at day than at night.

K -means was also run with all numerical features included, where the number of
clusters given by the elbow method was four also here. Visualizing eighth dimen-
sional data to show the resulting clustering is difficult to do in an understandable
and readable way. Therefore the mean and standard deviation for all features in
all clusters were calculated and plotted in polar line plots in figures 4.2.2a and
4.2.2b. This shows the identified clusters’ different average scopes. The mean
and standard deviation of all cluster values are also numerically presented in ta-
ble 4.2.1, while the feature mean for the individual four clusters are attached in
appendix F.
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Figure 4.2.1: Clustering with K-means showing their diurnal activity patterns,
using the features velocity, sine time and cosine time for all data. The purple
cluster at sine time equal to zero corresponds to midnight. The number of clusters
k = 4 were decided using the elbow method as shown in figure 3.6.1.
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(a) Polar line plot of the k -means clustering for all numerical features and
all data.

(b) Polar line plot of the standard deviation of the k -means clustering for all
features and all data.

Figure 4.2.2: K -means clustering results in mean and standard deviation for all
numerical features for all data, with k = 4. Each color represents a computed
cluster. The features included are velocity, altitude, trajectory angle, sine and
cosine time, temperature, age and number of lambs.



CHAPTER 4. RESULTS 51

Feature Mean Std

Velocity -0.983 0.003

Altitude -0.221 0.032

1/Angle 0.040 0.051

Temp. -0.247 0.134

Age -0.431 0.399

n_lambs -0.433 0.513

sin_time -0.051 0.630

cos_time -0.035 0.585

Table 4.2.1: Feature cluster statistics from the results of the k -means model for
all features and all data, showing the mean and standard deviation across the four
identified clusters. All values are standardized and normalized.

4.2.2 DBSCAN

The domain knowledge acquired about the normal behavior of sheep from the
k -means model suggests that a good estimate at the number of clusters for typical
behavior should be around four. Likewise, the minimal number of nearest neigh-
bours in DBSCAN should be at least as large as the dimension of the data and
larger for bigger and more noisy data sets. Therefore the minPts hyperparameter
for DBSCAN was set to a value that gave approximately the equal amount of typ-
ical clusters of that of k -means, and that produced a comparably similar cluster
plot.

The minimal number of nearest neighbours for all features and all data was de-
termined to be minPts = 16 , which is twice the dimension of the data. This
gave a plot closest related to that of normal behavior in k -means. The model
determined there to be five clusters of typical behavior. The resulting polar line
plots of the mean cluster values and the standard deviation are shown in figure
4.2.3. The mean of the noise points, i.e. the outliers of the data representing
the atypical behavior, is likewise plotted in figure 4.2.4. Examining other values
of minPts showed that the outliers had approximately both the same plot shape
and values regardless. Statistics from the dynamic features of the noise points are
given in table 4.2.2, where the mean values are slightly elevated from the same
statistics given in table 4.2.1, except for inverse trajectory angle where it is slightly
lower. Only the dynamic features are considered since the goal is to identify digi-
tal threshold marker values to imply atypical sheep behavior, and these attributes
have to be able to change in order to notice deviant actions in real time. The total
amount of outliers determined by the model was 1521.
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(a) Polar line plot of the mean of the DBSCAN clustering for all numerical
features and all data.

(b) Polar line plot of the standard deviation of the DBSCAN clustering for
all numerical features and all data. The blue line is the standard deviation
for the noise points.

Figure 4.2.3: DBSCAN clustering results in mean and standard deviation for all
numerical features for all data, showing the five computed clusters. The features
included are velocity, altitude, trajectory angle, sine and cosine time, temperature,
age and number of lambs.
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Figure 4.2.4: Polar line plot of the mean for the detected noise points from the
DBSCAN clustering results for all features and all data.

Statistic Velocity Altitude 1/Angle Temp.

Mean -0.886 0.134 0.013 0.164

Std 0.329 0.492 0.621 0.466

Q1 -0.998. -0.202 -0.537 -0.292

Median -0.991 0.150 0.025 0.278

Q3 -0.975 0.523 0.563 0.521

Min -1.000 -0.999 -1.000 -1.000

Max 1.000 0.979 1.000 1.000

Table 4.2.2: Table of dynamic feature statistics for the noise points determined
by DBSCAN, calculated with all data. All values are standardized and normalized.

The data was split into several versions to look at behavioral differences with differ-
ent factors included. The first configuration was to look at the breed differences
between the heavier long tailed breed NKS, and the lighter short tailed breeds
present. The minimal number of nearest neighbours for all model splits converged
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at minPts = 15. For both types of breed the model produced six clusters apiece.
The model detected 1126 outliers for the heavier type, and 1065 for the lighter
breeds. The second type of split was to look at early versus late season, where the
limit was set at before and after the first of July. Here the model resulted in five
clusters, for both sets. The amount of outliers were 810 for the early season, and
1325 for the later season. The final split was to look at daytime values versus night
time, since the sheep activity differs substantially during the course of a day, as
seen in figure 4.1.5 and 4.1.9. The diurnal hourly split were decided by the hourly
sheep velocity, where the minimal low between 22-03 were determined to be the
night hours, and 04-21 were set to be the day hours. The amount of clusters also
here became five for both versions. The total number of outliers were 1136 for the
day hours, and 549 for the night hours.

Statistic Velocity Altitude 1/Angle Temp.

Heavier breed

Mean -0.908 0.014 0.034 0.029

Std 0.278 0.392 0.645 0.513

Lighter breeds

Mean -0.924 0.166 -0.011 0.144

Std 0.279 0.510 0.618 0.474

Early season

Mean -0.873 -0.517 -0.118 -0.027

Std 0.381 0.512 0.560 0.376

Late season

Mean -0.918 0.181 0.039 0.130

Std 0.248 0.452 0.623 0.482

Day

Mean -0.880 0.140 0.014 0.192

Std 0.342 0.501 0.632 0.472

Night

Mean -0.922 0.145 -0.051 0.373

Std 0.261 0.505 0.610 0.485

Table 4.2.3: Table of dynamic feature statistics for the noise points determined
by the DBSCAN model, for the different data split configurations. All values are
standardized and normalized.
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All mean and standard deviation values for the noise points of the dynamic fea-
tures, in all data splits, are listed in table 4.2.3. These values will be used to
calculate if there is any statistical significance on the difference between the split
data configurations, to test if the factors of type of breed, date, or hour of the
day will have any noteworthy impact on any threshold marker values that might
be implemented. Since the numerical values are the factor of interest, all plots of
clustering results and noise plots are not included in the results, only the table
values. They were however of approximately the same shape and size as the results
for all data.

4.3 Digital threshold markers

The statistical significance was computed for all data splits and all dynamic fea-
tures from equation 3.3b with the mean values given in table 4.2.3. All features
for all data splits were statistically significant for at least p<0.05, except for the
difference in velocity and in inverse trajectory angle between breed types, and the
difference in altitude between day and night. This indicates that there should
be set different threshold marker values implemented into the electronic collars
depending on the situation for the sheep. All the calculated p-values are given in
table 4.3.1.

Data split Velocity Altitude 1/Angle Temp.

Breed type X <0.0001 X <0.0001

Season <0.005 <0.0001 <0.0001 <0.0001

Daytime <0.01 X <0.05 <0.0001

Table 4.3.1: The calculated p-values for the statistical significance of the differ-
ences between all data splits for all dynamic features, by the two-tailed two sample
t-test.

The suggested threshold marker values for atypical sheep behavior for all the
dynamical features are presented in table 4.3.2, calculated from the mean of the
outlier noise points. A proposal is also included for the undivided data, thus it is
possible to only implement one value for each feature if that is preferable. Both
inverse angle and temperature stay roughly around the same values for all splits,
even though they have statistical significance on the difference, while velocity and
altitude diverges more. The percentiles of the threshold values calculated with all
the data are given in the last row of the table. Velocity and temperature both has
a high percentile and for altitude it is somewhat lower, but for the inverse angle
the percentile is set at slightly less than half of the value distribution.
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Data split Velocity Altitude 1/Angle Temp.

Heavier breed X 313 X 18

Lighter breed X 356 X 20

Early season 919 148 79 17

Late season 478 365 93 20

Daytime 869 X 91 20

Nighttime 531 X 85 19

All data 824 350 91 20

Percentile 98.7 72.6 46.9 89.9

Table 4.3.2: Suggested digital threshold marker values for both all data splits
and the undivided data. Velocity is given in m/h, the altitude in mamsl, the
inverse trajectory angle in 1/degrees, and temperature in degrees Celsius.

4.3.1 Sheep movement against threshold values

When analysing sheep movement it is important to look at the behavioral pattern
of the nearby flock, not just individual sheep. One sheep may act atypical as an
exception, but if several sheep or the whole herd act atypical it is more reason to
believe it might be from actual external provocations. Not all sheep in the herd
wore the electronic collars, and the herd will divide further into smaller flocks
of close family and friends, so it is not known which sheep are closer together
at all times. However, there are known mother ewe and lamb-pairs, which will
stay together throughout the season and move approximately the same. In figures
4.3.1-4.3.4 the dynamic features and their suggested threshold values for one such
mother-lamb pair were plotted. The data from the pair is from 2019, and they
were NKS sheep. The inverse trajectory angle varied greatly, and to make the plot
in figure 4.3.4 readable and understandable, a smaller segment of the data were
chosen instead. The plot shows the inverse angle for a day of high movement in
late july. As the figures show, the general movement of mother and lamb is highly
equal, for all features of sheep behavior. For velocity, the sheep only cross the
threshold a handful of times, while for altitude, inverse angle and temperature,
the sheep stay above the line for longer periods of time.
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Figure 4.3.1: The velocity of the mother ewe and lamb throughout the season
in 2019, against the threshold value calculated for all data.

Figure 4.3.2: The altitude of the mother ewe and lamb throughout the season
in 2019, against the threshold value calculated for all data.
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Figure 4.3.3: The registered temperature throughout the season in 2019, against
the threshold value calculated for all data.

Figure 4.3.4: The inverse trajectory angle of the mother ewe and lamb through-
out a day in 2019, against the threshold value calculated for all data.



Chapter 5
Discussion

5.1 Data wrangling decisions
As seen in the table of selected time ranges in table 3.4.1 and illustrated by the
data set sizes for Fosen in figure 4.1.4, the trajectory set sizes were smaller in
2018 and partially for 2019 than in 2020 and the rest of 2019. They all started
at approximately the same date, but some trajectory sets only lasted about a
month before being terminated in the middle of the rangeland grazing season.
To preserve most of the data, the larger sets were kept at full length of about
two months until the end of the rangeland grazing season while the smaller sets
were set at about half as big. Even though not all sets then can contribute with
the same information of seasonal behavior, the smaller sets are able to provide
data on approximately the full early season so this was deemed unproblematic.
The start and end date variation in the data from Tingvoll were more dispersed,
and dependent on which farm the different herds belonged to. The selected time
ranges differed from either full rangeland grazing season, only late grazing season,
or almost full leaning towards late grazing season. The overall data coverage on
sheep behavior from both Fosen and Tingvoll is hence relatively balanced.

The threshold cut-off value of 15 km/h travelled by the sheep for the velocity
feature might have been too high for a reasonable assumption, and can for future
research be considered to be set slightly lower. A relatively tolerant maximum
value had to be assumed, and given some lenience to include most target behav-
ioral cases, but in retrospect of the analysis such a high velocity threshold before
imputing new values may have contributed to skew the data some in the more
extreme direction. This might have influenced the calculated digital threshold
marker values to be higher than necessary, and if future research should be done
with alterations to the threshold values it might be expected that the velocity
threshold will turn out somewhat lower.

59
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5.2 Feature engineering decisions

The sheep movement velocity calculated with the Haversine formula is more an
attribute describing the distance travelled over an hour, and not the instantaneous
velocity a sheep is moving in. The points were however not consequently gener-
ated correctly, so the time difference was not always the same between all points.
To make the distance feature independent of time interval errors, the distance
travelled were divided by the hourly point difference to give the velocity. For the
acquired data on temperature, the closest weather stations were several hundred
meters lower in altitude than where the sheep were mostly located. The temper-
ature feature may therefore also be somewhat higher than it should be for the
given data points in time and space. The externally retrieved data were however
more accurate and reliable than the temperature measured by the sensors in the
electronic collars.

There were several possibilities on what to study within the data and how to
prioritize the analysis, and thus which feature engineering to carry out. To examine
the home range on sheep which wore a collar over several years or the last behavior
of the confirmed killed sheep were considered, but since the data on both these
cases were very limited and not enough to be of statistical relevance this was not
explored further in this study. The time available for a thesis is finite, and the
main objective must be narrowed down. The aim was therefore set to look into the
general data driven description of the normal behavior of sheep, and to propose
digital markers of atypical sheep movement.

5.3 Statistical analysis

5.3.1 Feature correlation

The correlation between features seen in the heat map in figure 4.1.1 was gener-
ally very low, with most features very close to zero. Naturally, when the cosine
value increases the sine value will decrease, and vice versa, resulting in a neg-
ative correlation. There was also some positive correlation between the age of
the sheep and the number of lambs, which is further understood by the pairplot
given in figure 4.1.2b with an increasing trend to the right connecting the two
features. When comparing the velocity against the time of day in pairplot 4.1.2a,
the velocity stays relatively steady at all times below 5000 m/h and has less point
density above. The sine time is most dense below zero and up to about 0.5, while
the cosine time is quite spacious in the middle and more concentrated along the
extremes at positive and negative one. These times correspond to 10:00-00:00,
with some emphasis on around 18:00 and at midnight. This distribution confirms
unsurprisingly that sheep are the most active during the day and that this is re-
flected in the data, but that their activity will also fluctuate in periods during
the hours of the day. The velocity and thus the activity levels are denser and
more extreme the younger the age, where the lambs of age zero (born the same
year), which also do not have lambs of their own, are clearly the most active.
The sheep that only have one lamb is also discernibly more active than compared
to the sheep with two or three lambs. This might be explained by having less
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freedom and time to e.g. play as an adult the more children the sheep have to
watch over. These observations are in accordance with normal expected sheep be-
havior. That this can be seen by data visualization establishes that the quality of
the data is at least to some degree good enough to analyse real life sheep behavior.

For figure 4.1.3, the velocity is distinctly upwards limited at just below 5000 m/h
for the closely compacted part of the plot, across all the other three features in the
matrix. Above this value, the points spreads more. For the inverse angle, there
seems to be no obvious correlation between the more spread points above 5000 and
what trajectory the sheep have taken. This might imply that when highly active
or when the sheep run far, they do not necessary have a preference on whether to
change direction or not. The altitude has the most high velocity points around the
middle. This might mean that any disturbances to the herd making them move
further usually happens around a mid-height, and that when trekking upwards
or further down the interference is subdued or not as much present. From figure
4.1.6 it is apparent that the sheep seek higher altitudes at night, as expected from
the theory of their diurnal routines as stated by Garm et al., Tømmerberg, and
Tribe [9, 12, 19]. This is also a time when they are less active, which may explain
that the higher altitude has less high velocity points. From ethological theory it
is already a hypothesis that sheep seek upwards at night to escape predators, get
a better view and starting point, and feel safer [9, 12]. The data here confirms the
behavior, without any assumptions about the reason why, which might strengthen
this theory. This behavior is however of course dependent on the topographic
conditions, and their possible limitations on vertical movement and how their
environment looks, so this might not be true for all herds. Consequently, any
threshold value for altitude will not be universal, but rather be dependent on the
individual and local circumstances. For the temperature, the velocity and thus
the activity of the sheep is clearly concentrated around a mild climate of about
10-15 degrees Celsius. This is exactly in accordance with the findings of Scott and
Sutherland (1981) [17], where very hot or cold days resulted in more docile sheep
and less movement. It is therefore expected that high activity when it is also very
hot or very cold will be classified as atypical behavior. For very cold temperatures
below 5 degrees, the sheep sought a middle height, staying away from the lowlands
and high altitudes.

5.3.2 Data sets after wrangling

By comparing the final data set sizes after the data wrangling in figure 4.1.4 with
the set sizes of the raw data enclosed in appendix C1, the average is a lot more
even and uniform. The data from Fosen has two distinct set size lines, with much
less spread around these levels and less deviating variations in between after the
data wrangling. The data set numbers are chronologically ordered, which shows
how the data from 2018 and partially 2019 are prominently smaller than those
from 2020 and the rest of 2019. A cut-off threshold for when a data set was to
be considered too small to be a part of the analysis was defined at 10 % of the
average, and is indicated by the orange line in the figures. For the pre-wrangling
figure in the appendix, several sets had to be cut away, and after cleaning and
removing unwanted sets none were below the cut-off value. The data set sizes in
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Tingvoll were much more varied and dispersed, and some were also much larger
in size compared to the ones in Fosen. One of the reasons for this was because
many electronic collars were not turned off after the sheep were herded home at
fall. When a set date range were selected for each year and each place, and the
data from Tingvoll were reduced to hourly point generation, the set sizes became
more uniform across both places.

5.3.3 Description of normal sheep behavior

The mean velocity per hour of the day in figure 4.1.5 has two local maxima at
06 and 19, indicating the sheep’s most active periods. The mean is significantly
skewed upwards from the median, signifying a wider range of higher outlier values.
The median is likewise centered below the middle of the IQR meaning that the
lower activity values are more dense than the higher values as half of all data lie
below this line. The sheep will alternate between grazing and active play, and
relaxing, and the division seen in the figure is comparably equal to that in fig-
ure 2.1.3. Although there has been used different units of measurement (velocity
versus activity percentage), both graphs show a unit of movement flowing in two
maxima and two minima. However, the positions of the extrema are somewhat
skewed compared to each other. The sheep studied by Tømmerberg were later
active with a preferance towards during the middle of the day, whereas the sheep
in this study have been more active at break of day and early morning. This differ-
ence is deemed not significant, and the behaviors seem to have the same qualities.
The sheep in Fosen and Tingvoll both independent from each other had the same
activity pattern with maxima at 04-06 and 18-20, and minima at 12 and 00 as seen
in appendix C2. Sheep in Tingvoll had a slightly more extreme movement pattern,
with higher velocities in general and being more active during the early hours of
the day compared to Fosen which were most active in the evening. This could be
due to just herd differences, sheep personalities, or the topographic environment,
but might also be because of predatory conditions. If there are more predators
hunting in the morning in Tingvoll than in Fosen, or generally just more preda-
tors, this could affect the data in this way. However by looking at appendix C3,
there are considerably more outliers of the activity in Fosen compared to Tingvoll,
which may be used to argue for the opposite. While the outliers for the Fosen
data is more dispersed and even throughout the day, the outliers for the activity in
Tingvoll are centered at two instances, one during the morning around 05-06 and
one in the early afternoon around 16. From table 1.1.1, there are five times more
sheep deaths because of predators in Trøndelag compared to Møre og Romsdal, so
a higher predator density in Tingvoll may be a reasonable assumption. However,
since no labeled data is available it is not practicable to conclude if the differences
seen possibly come from predators or some other explanation. Hence, the data
from Fosen and Tingvoll were merged to give the machine learning models as much
material to work with as possible.

As per the ethological theory of sheep behavior and shown in figure 4.1.6, the sheep
will on average seek higher altitudes at night, and come down again at dawn. This
behavior is observable and evident in the data, but the difference in mean altitude
is however small. The mean difference is of about 30 meters, which is not very pro-
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nounced. This might simply be because the topography of the herds are relatively
level. The mean inverse trajectory angle plotted in figure 4.1.7 will flow contrary
to that of the mean activity per hour, with maxima at midnight and midday, and
minima at 04-06 and 18-20. This means the sheep will change directions the least
during the times with the most activity, and at times where the altitude changes
the most. This could just imply that when moving to change pasture from the
nightly relaxation to the daily grazing, they move relatively straight forward and
with a purpose. The mean and median stay roughly the same, at approximately
the middle of the box plots, indicating that the dispersion of inverse angle values
are quite symmetric about the median. The trajectories taken by the sheep will
thus roughly be of equal probability of being acute or obtuse. Per table 4.1.1,
the total range is naturally of 0-180 degrees, where the inverse median is at 99.59
and the mean at 93.75, both above the right angle 90 degrees. The data is con-
sequently moderately skewed downwards, with a wider and more spacious range
at lower values below Q2. The feature is the inverse angle, so that the higher the
value, the less the change in trajectory. The behavior of the sheep hence nominally
leans towards not making extreme directional changes.

The violin plots of the activity distribution on figure 4.1.9 further confirms the
activity behavior pattern of the sheep, with both most intensity and amount hap-
pening at dawn and dusk.
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5.4 Machine learning models
Machine learning algorithms are often stochastic and use some form of random-
ness when optimizing and training, e.g. how the starting seeds for each run are
chosen. This will often result in different outcomes every run. Even though the
model results varied some each round, there were a limited amount of possible
outcomes, and the findings were approximately equivalent nevertheless.

5.4.1 K -means and diurnal behavioral patterns

The k -means model identified four characteristic activity periods for the normal
behavior of sheep throughout the day, that were comparatively consistent with the
acquired mean activity flow and the mean activity density distribution. Theory
stated that the most active grazing periods will be at dawn and dusk, which are
here discovered as two of the distinctive diurnal behavioral stages. The different
stages and their characteristics are summarized below, based on the results from
k -means, statistics, and established theory.

• 04:30-10:30: The sheep wakes up, migrate to lower altitudes, and have
their first grazing period of the day. This stage is hereby referenced as the
first grazing period.

• 10:30-16:30: The sheep will relax more during the peak of the tempera-
ture and day, and chew cud from their first grazing period. They may also
move about and graze some more, but less intensively. This stage is hereby
referenced as the moderate period.

• 16:30-22:30: Grazing intensity and movement activity will increase, and
the sheep will seek upwards in the terrain towards higher altitudes again.
This stage is hereby referenced as the second grazing period.

• 22:30-04:30: This stage will be calm and restfull, the sheep will mostly
sleep, relax and chew cud. This stage is hereby referenced as the resting
period.

The resulting time intervals of the activity periods are quite similar to that of the
violin plots in figure 4.1.9, only shifted half an hour later. From the results of
k -means including all numerical features, the different day periods identified by
the four output clusters were roughly the same as those stated above, only slightly
skewed. If compared, the red cluster in figure 4.2.2 corresponds to the first grazing
period, the purple to the moderate period, the blue to the second grazing period,
and the green to the resting period. By evaluating the cluster centroids by the
mean sine- and cosine-time pairs in appendix F on the k -means clock view in ap-
pendix E, and accordingly assigning the points to the closest cluster center, the
time shift from including all features in the model can be estimated. The first
grazing period is somewhat extended in time in both ends, making it the longest
active period. The moderate period is hence shifted clockwise, but remains seem-
ingly the same length. The second grazing period is decreased in both ends, and
thus the resting period is correspondingly shifted counterclockwise. The changes
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do not appear to be more than about an hour back or forth at each borderline from
the original time stamps stated. With more features and more information, it is
more likely the model will be more accurate when describing the behavior of the
sheep. The time ranges of the behavioral stages may therefore be updated to stage
1: 04:00-11:30, stage 2: 11:30-17:30, stage 3: 17:30-21:30, and stage 4: 21:30-04:00.
These limits are however only an estimation and are not discrete, the behavior
will flow gradually from one characteristic into the other. By comparing the re-
sults with the approximate and schematic diurnal rhythms proposed by Garmo
et al. in figure 2.1.2 the activity periods look remarkably alike, strengthening the
ethological theory. The diurnal behavior has however here been demonstrated and
established by data driven verification.

All periods have a low velocity mean at almost negative one, indicating that nor-
mal sheep behavior for all parts of the day is to remain relatively docile. This
heightens the importance of high velocity as a trigger for atypical behavior. The
temperatures are divided into two groups, appropriate for the nightly and the daily
climate. The second grazing and the resting period are placed at higher altitudes
than the other two. The resting period has a higher mean of trajectory change,
where the first grazing period and the moderate grazing period have the lowest
and thus the most linear movement. The standard deviation is relatively high
for the inverse angle for all clusters, meaning that the range of values are more
dispersed and spread out from the mean. The altitude varies the most for the
second grazing period, while the temperatures at day are more diverse than the
temperatures at night. The rest of the features are not directly relevant to analyze
as only the effects of the dynamic features will be used for marker threshold val-
ues. Further, even though the static features like age and number of lambs are a
part of the model to determine herd behavior as a whole and therefore impact the
given values for the dynamic features, they do not influence the results as much.
However, it is worth noting that for the second grazing period, the most prominent
sheep in the data were the older and the ones with more lambs, while the younger
sheep were the most prominent for the moderate period. It is expected that the
more lambs to feed, the more a mother ewe has to eat and therefore graze more
actively, which might explain this correlation. On the contrary, the younger sheep
do not need to eat as much and might require more sleep, and therefore might be
more still and thus influence the moderate period the most which tends towards
slightly less activity.

The k -means algorithm does not handle well non-globular, anisotropic data, be-
cause k -means tends to select spherical groups. However, this is not problematic
as long as the clustering makes sense and is intentional. When observing only
the time versus the velocity, the data is cylindrical, and there is a big distance
between points that are far from each other in time. These points will therefore
not be clustered together with k -means. The objective to only look at time versus
velocity was to determine the characteristic activity periods for the sheep during a
day, using the most important measure for activity. It is intentional and suitable
that the resulting clusters have to be limited by time periods close to each other
to fulfill this purpose, instead of having points of the same behavior connected
over all clock values. It is therefore interesting that when the points are more
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complex in higher dimensions with more features included, k -means still returns
approximately the qualitatively equivalent result.

5.4.2 DBSCAN and atypical behavioral patterns

DBSCAN is density-based and calculates the clusters by considering if the next
point over is close enough. The cluster distribution will therefore not necessarily
be as polarized as with k -means, but more layered and mixed for more complex
data. It can also be explained visually by how a lot of the lower velocity points
in figure 4.2.1 will be dense enough to be assigned to the same cluster all along
the circle of time, while the next cluster would rather most likely be on top of
that on a level above where the velocity points starts to diverge more. This prin-
ciple continues as more dimensions are added and as the distribution becomes
more complex. Describing the diurnal typical behavior of sheep is therefore not
as straight forward when using DBSCAN. As can be seen in figure 4.2.3a, where
both the mean sine and cosine time are about zero for all clusters. This confirms
that the clusters made by DBSCAN found similar behavior across all times of day,
such that the mean is zero.

K -means with the help of statistics described the normal behavior of the sheep,
but to depict the atypical behavior DBSCAN is a better algorithm. The goal
of optimizing the algorithm was to make the normal clusters become similar to
that of k -means, such that the assumed regular behavioral points are preserved in
some typical cluster also in DBSCAN. The typical clusters made from DBSCAN
are as explained above more complex to describe and understand, however the
main motivation for implementing DBSCAN is rather the binary task of separat-
ing the typical behavior from the outlier noise points such that the outliers alone
can be described. As with the typical results, both mean sine and cosine time
is centered approximately at zero for the noise, probably because there will exist
outliers all around the clock. They are nonetheless both skewed a small amount
in the negative direction, that is towards the moderate and the second grazing
period, indicating that there is some predominance of outliers at these times.

From the statistics in table 4.2.2, all feature means except the inverse angle is
elevated from the k -means normal point values in table 4.2.1, confirming that the
outliers are more extreme than the ordinary. The outlier standard deviation is
considerably higher than for most normal clusters, especially for time and angle.
The mean inverse angle is also situated around zero, establishing an equal weight
of values above and below. From this it can be concluded that atypical behav-
ior may therefore occur at all times of day, and as previously discussed this also
furthers the hypothesis that the sheep may not have a preference on directional
changes when stirred. The outlier values for age, temperature and altitude have
a slightly above zero mean, and a standard deviation of about 0.5. The ranges
are here compressed from -1 to 1, where zero is the relative middle value. The
most of the atypical behavior happens by adult sheep of most ages, but more
for the above average age and less for the very young lambs or the older ewes.
The same principle applies to temperature and altitude, where it is expected most
atypical behavior at a slightly above middle height, and on warmer days, but the
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standard deviation range mostly only excludes the extreme altitudes and temper-
atures. This is the same conclusion as expected from the correlation plots.

For the three features altitude, inverse angle and temperature, the median and the
mean are comparably similar, while the third quartiles are not disproportionately
high compared to the means. A low difference between median and mean dictate
unskewed normalized data, and ensures that the mean is a good measure to rep-
resent the atypical behavior for that attribute. For velocity however, the mean
is substantially higher than the median, and the third quartile is over six times
closer to the median than the mean. This reveals how for the velocity there will
be a few very high outliers skewing the data. The mean may therefore be higher
than it perhaps ought to be to describe when atypical behavior occurs. When
suggesting threshold marker values the mean will anyhow be the measure used as
a starting point, and more research will instead be needed to test and examine
how they should be altered to be more optimal.

The amount of outliers expresses the frequency of deviant sheep actions present
in the data. While it will not give information on what type or how extreme, it
may work as a measure of expectations for the atypical behavior. For the data
split on breeds the amounts were quite similar, while significantly higher for the
late season compared to the early season. The late season data was the split with
the most outliers of all. It may therefore be expected that there are more alerts of
atypical behavior, and thus maybe more trouble with predators, in the late season.
The amount of outliers at day versus night were also very different, with the most
at day. This is most likely a consequence of the sheep sleeping and staying mostly
put at night when it is dark.

5.4.3 Proposed digital threshold markers

The results of the calculated statistical significance lead to that the only data split
configurations that did not have statistical significance were the velocity difference
and inverse angle between heavier and lighter breeds, and the altitude distance
between day and night. This is somewhat unexpected, and diverges from the etho-
logical theory and from the findings of Hansen et al. [8]. It could be the case that
there is not a big enough difference in the behavior, but it is also important to note
that more experimentation and analysis should be done before any conclusions can
be made. The given results could be due to other causes such as the topography,
breed composition within the herd, or insufficient data. A difference in altitude
between night and day could still be seen in the statistical representation in the
EDA, even though it did not here result in statistical significance.

Another aspect to consider is the statistical test in itself. A t-test will usually
assume that the samples are normally distributed and randomly sampled from
the population. In this case the populations, that is the data split configurations,
were not necessarily normally distributed. The samples, that is the different noise
data for each data split, were not randomly sampled either as they were selected
by the machine learning model based on patterns found in the population data.
The size of the noise data were relatively large, and the central limit theorem
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states that a sample size of over 30-50 can be assumed approximately normally
distributed if randomly sampled. Since the noise data were not randomly selected,
the hypothesis testing does not meet all the requirements, and the calculated sta-
tistical significance should be evaluated with some skepticism. Other hypothesis
tests may be more appropriate, like Z-testing or Mann–Whitney U testing, which
may be considered for future examinations.

The threshold values for temperature for all splits were centered not too far from
the one given for all data at 20 degrees Celsius. The difference between the tem-
perature furthest from this value (17 degrees) is not deemed contrasting enough
to be of consequence. The proposed threshold marker value for atypical behavior
is therefore set to that of all the data at 20◦C. In its own the temperature does not
describe the behavior of the sheep, it is in combination with other characteristics
that this becomes important. It has been hypothesised in prevoius research that
sheep will generally be more docile above and below 10-15 degrees Celsius [17].
The mean velocity threshold values given by the noise points are all well above the
mean for the normal behavior, showing that as expected the atypical behavior the
machine learning model alludes to is high activity, and thus especially at higher
temperatures. The combination of warm weather and high velocity should be a
clear sign of herd irregularities. The altitude values are mostly positioned around
350 mamsl, except for the data for the early season. As seen in figure 4.3.2 the
altitude is very low at the beginning of the season, either because the sheep have
not yet been released for the rangeland pastures from the farm or because they
stay close to the farm in the beginning before moving on further. Either way, the
danger of predators close to the farm will be relatively small compared to up in
the mountains, so the probability of atypical behavior because of predators at this
altitude will be low. The altitude later in the season varies around the same levels,
suggesting that the low mean value for the early season is skewed by the first few
days, and will also gradually converge towards about 350. It might therefore be
a safe assumption that a lower threshold value for altitude for the early season
will not be necessary. The proposed threshold marker value for altitude is as well
set to that of all the data at 350 mamsl. Furthermore, the inverse angle points
are evenly dispersed, and it is not clear whether the atypical behavior happens
above or below the given threshold value. This is heightened by that the threshold
value for all the data, which is quite equal to all other data split values, is only
at the 46.7th percentile. In figure 4.3.4 it can be seen how the inverse angle varies
approximately equally above and below 90 degrees over the course of a day. The
trajectory angle is thus proposed dropped as a trigger property.

The velocity threshold values are quite varied for the different data splits, and are
proposed kept separated for the early and late season, and between day and night.
For velocity and temperature the percentiles for the threshold values for all data
are quite high, calculated from data that already consists of outliers only, ensuring
that the value most likely will describe atypical behavior. The altitude percentile
is somewhat lower, and it could be considered to set the threshold even higher.
Further, the local topography will vary greatly, so to generalize it will be best to
use the percentile value for the altitude for the approximate local range the herd
will move in, instead of the fixed number 350 mamsl that might not apply in dif-
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ferent areas. The same may be considered for also the temperature, but this might
not vary locally just as much. By comparing the final proposed threshold marker
values with the total statistic data in table 4.1.1, they are well above the mean,
ensuring that when triggered something irregular most likely have happened.

If these threshold values were to be implemented in electronic sheep collars, there
are several ways of executing it. Atypical sheep behavior is not necessarily decided
by one characteristic, like for example high activity, but a combination of several
contributions. Whether a feature trigger is able to detect irregularities on its own,
or needs to be connected to another feature trigger before alerting the farmer,
have to be investigated further. Another thing to consider is how complex the
alerting system should be, by assessing whether to enforce threshold markers for
all features suggested, and whether to split on season and/or daytime. By looking
at figures 4.3.1-4.3.4, the only feature that crosses the threshold as an exception
and does not have long periods of being above is the velocity. This suggests that
perhaps the velocity is able to be implemented as a trigger alone, and emphasizes
that the other features need to be in combination with other triggers in order to
be functional for atypical behavior.

The proposed threshold values for the atypical behavior are heightened from the
normal, indicating they point to instances where the sheep are provoked and able
to move freely. They will not detect sick sheep, as their behavior when sick will on
the contrary be lethargic and slow. From the interviews of farmers done for the
specialization project, they reported that the sheep behavior and reaction pattern
to predators will also depend on individual personality and the type of predator.
The threshold values may therefore as well vary with different herds and different
areas where other predators are more prone.

5.5 Future work

The features temperature and altitude had to be retrieved from external sources
as the in-collar generated values were not reliable enough for the analysis. If these
features should be used for monitoring live behavior against threshold markers,
the firmware and sensors that generate the different attributes should be depend-
able enough to be able to rely on the alerts of irregularities when they happen.
An alternative is to look further into parallel and/or sequential irregularities in
behavior, where one point of triggered threshold values is not enough to set off any
alarms, but e.g. several in the flock at the same time must by triggered where the
collars can communicate with each other, or several points in a row for one sheep
must be irregular. The latter is however not recommended if the time interval is
one hour, as many hours of predatory danger before making the farmer aware will
most likely be too long to be able to save the sheep. Nevertheless, looking at more
than a single trigger will make the alerts more reliable for actual atypical behavior
worth checking up upon.

An initial analysis has here been done based on unsupervised data, and different
threshold values has been proposed for different attributes affecting the sheep be-
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havior. The next steps going forwards from this are to implement these values
into the electronic collars to give alerts when triggered, and to test their accuracy
by observing the sheep behavior both at typical and atypical points. If possible,
labeled data of predatory presence to the herd should be collected and analysed.
New and more precise threshold values should then be computed, and the elec-
tronic collars updated. More features and their thresholds could also be developed,
and further research should be done on which sheep attributes and which feature
trigger combinations are the most important when it comes to predatory reac-
tions, and which that give the most accurate results for alerting when predators
are nearby. It is also recommended to look further into the different data split
configurations, and to test their individual threshold values specifically to see if
split values make a difference in real life or if all data values work just as well.
Deeper levels of data splits could also be made, like investigating the behavioral
difference of day and night at early season for the lighter breeds, and so forth.
Lastly, it would be interesting to test the threshold values on herds in new areas
to see if the conclusions would be the same and how well the results translate to
the general case.

To gather labeled data in order to do a supervised analysis should be of interest
for the future work on sheep welfare. It is recommended that if new data is to be
collected in new herds that these are chosen from more predator prone areas. It
is expected that the most vulnerable sheep in the herd are at the highest risk of
being taken by predators, hence it might be valuable to install electronic collars
on sheep that are older, lonely grazers, low rank or lambs. Further, it would be
an advantage if there were data over several years where the sheep wearing the
collars were consistently the same individuals each year so the home ranges to a
greater extent could be investigated. Sheep are habitual animals, and deviations
from their usual home range is an established theory of atypical behavior.
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Conclusions

The main objective with this study was to look at both normal and atypical sheep
behavior not only from ethological theory or observations done by the naked eye,
but by data driven verification. From the analysis done for this thesis, and in
accordance with other published theories, it has been established that sheep on
rangeland pastures will have a habitual and regular diurnal routine. Their most
intense periods of movement will be at dawn and dusk, and their activity levels will
rise and fall throughout the day. The characteristic activity periods, determined
by a k -means machine learning model, were termed the first grazing period (04:00-
11:30), the moderate period (11:30-17:30), the second grazing period (17:30-21:30)
and the resting period (21:30-04:00). The first and second grazing periods are the
most active, while the moderate period involves more resting during the peak of
day, and the resting period will mostly be for sleeping. They will seek higher
altitudes at night, but this may not necessarily be a big difference in height, and
for the calculations the altitude difference proved not statistically significant.

Typical sheep behavior is generally to remain relatively docile. They prefer more
moderate temperatures, and will be more active at around 10-15 degrees Celsius.
At higher or lower temperatures than this they will stay more still, and any intense
activity at these times is atypical behavior for the sheep. Detected atypical behav-
ior were the most frequent among adult sheep, and less for young lambs and older
ewes. When agitated the sheep did not show a preference on directional changes,
and would either modify their trajectory or not with about equal probability.

Digital threshold marker values of atypical behavior were computed, and are sug-
gested to be implemented in the electronic collars on the sheep to alert the farmer
of irregularities. For the temperature the threshold were proposed at above 20
degrees Celsius, or at above the 90th percentile of the local summer climate. The
altitude threshold were proposed at above 350 mamsl, or at above the 72.6th

percentile of the local topography. The velocity threshold were proposed at over
824 m/h travelled if only one value for velocity should be used in the collars, or
at above the 99th percentile. For several situational splits on the velocity, the
proposed trigger values are proposed at above 919 m/h for the early season and
above 478 m/h for the late season, and at above 869 m/h during the daytime
periods and above 531 m/h during the nighttime period. The trajectory angle
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is recommended not being used as a behavioral attribute. Further research and
testing are needed to validate and optimize the threshold values, and to analyse
what combination of triggered threshold markers before sending an alert gives the
most accurate results of e.g. predatory presence to the herd. Should new research
be initialized it is recommended to collect data from more predator prone areas,
and to put the electronic collars on the same sheep individuals over several years
to investigate their home range variations. To increase the chances of obtaining
more labeled data it is also preferable that the collars are set on the more high
risk and vulnerable sheep in the herd.
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A - Code

All code scripts used in this thesis are included in the Github repository linked
below. Explanations are given in the readme-file. The Python files are:

Data cleaning:

• FosenDelete.py

• PointClean.py

• TimeClean.py

• TimeInterval.py

• TingvollReduce.py

• UpdateFormat.py

EDA:

• ActivityPerTime.py

• InfoGenerationFosen.py

• InfoGenerationTingvoll.py

• MapPlotFosen.py

• MapPlotTingvoll.py

• SizeCheck.py

• StartEndDates.py

• Eda.py

80



Feature engineering:

• Altitude.py

• Angle.py

• Haversine.py

• InfoFeatureGeneration.py

• TimeScale.py

• WeatherFeature.py

Machine Learning:

• DBSCAN.py

• Kmeans.py

• StatSignificance.py

Github repository link

• https://github.com/ninasalvesen/master_thesis_ninasalv
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B - Specialization Project

The specialization project were written during the fall of 2021, and the final report
is linked below.

Specialization project report link

• https://bit.ly/3NV0O5E
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C - Statistics before the data cut

C1 - Data set size

(a) Data set sizes in Fosen before the data cut.

(b) Data set sizes in Tingvoll before the data cut.

Figure C.1: The figures show the trajectory data set sizes of each data set and
the proposed cut-off threshold set at 10 % of the mean trajectory set size, before
any information were cut off from the cleaned raw data. The data set numbers are
ordered chronologically in time, from (a) 2018-2020 in Fosen and (b) 2012-2016 in
Tingvoll.
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C2 - Mean activity per hour

(a) Mean activity per hour in Fosen before the data cut.

(b) Mean activity per hour in Tingvoll before the data cut.

Figure C.2: Boxplots of the mean activity per hour of the day for all sheep in
(a) Fosen and (b) Tingvoll before the data cut.
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C3 - Mean activity per hour outliers

(a) Mean activity per hour outliers in Fosen before the data cut.

(b) Mean activity per hour outliers in Tingvoll before the data cut.

Figure C.3: Outliers (fliers) of the mean activity per hour of the day for all sheep
shown for (a) Fosen and (b) Tingvoll before the data cut. The colored marks at
the bottom corresponds to the boxplots given in appendix C2, and the scatter plot
represents the outliers in the data.
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C4 - Mean activity per year per date in
Fosen

Figure C.4: Mean activity per year per date and the mean total per date for all
years in Fosen before the data cut, measured in m/h.

86



C5 - Mean activity per year per date in
Tingvoll

Figure C.5: Mean activity per year per date and the mean total per date for all
years for Tingvoll before the data cut, measured in m/h.
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C6 - Statistics on sheep velocity

Statistic Fosen Tingvoll

Count 387317 283960

Mean 130.66 134.18

Std 248.09 230.32

Q1 31.00 21.00

Median 67.00 63.00

Q3 142.00 159.00

Min 0.00 0.00

Max 14519.00 14253.00

Table C.1: Table of statistics on sheep velocity in m/h before the data cut.
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D - Feature correlation pairplot matrix

Figure D.1: Full feature correlation matrix in a pairplot, with the feature his-
togram distribution along the diagonal. The sequence of features from left to right,
and from top to bottom, is velocity, sine time, cosine time, age, number of lambs,
temperature, altitude and angle.
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E - K -means results 24-hour clock view

Figure E.1: Results from k -means with time and velocity, for all data, in a top-
down perpective to show the activity against the 24-hour clock. The top point
[sin(0), cos(1)] is 00:00, and every 90 degrees clockwise corresponds to six hours
later.

90



F - K -means mean cluster feature values

Feature Mean1 Mean2 Mean3 Mean4

Velocity -0.981 -0.981 -0.983 -0.987

Altitude -0.241 -0.256 -0.199 -0.189

1/Angle 0.005 -0.007 0.057 0.105

Temp. -0.299 -0.130 -0.145 -0.412

Age -0.515 -0.812 0.131 -0.529

n_lambs -0.607 -0.827 0.321 -0.621

sin_time 0.733 -0.708 -0.372 0.145

cos_time -0.440 -0.356 -0.167 0.826

Table F.1: Mean feature cluster statistics from the results of the k -means model
for all features and all data, for the four identified clusters. Cluster one is the first
grazing period, two the moderate period, three the second grazing period and four
the resting period. All values are standardized and normalized.
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