
Fridtjof Gerdsønn Eikanger

Instruction Level Power Modeling of a RISC-V System

Master’s thesis
for the degree MSc in Embedded Systems, Electronics

Trondheim, July 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

NTNU

Norwegian University of Science and Technology

Master’s thesis
for the degree of MSc in Embedded Systems, Electronics

Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

© 2022 Fridtjof Gerdsønn Eikanger

Abstract

The estimation of power usage in embedded software is useful for developers of both hardware
and firmware. Instruction-Level Power Modeling (ILPM) is a method of estimating such
power usage which is faster but less accurate than Register-Transfer Level (RTL) simulations.
We show that with a collection of data-dependent features added to a standard ILPM model,
the worst case error of power estimation in one two-stage pipelined RISC-V CPU is 3.52 %,
with an R2 of 0.775. The effects of adding too many features to a model is also analyzed.

v

Contents

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Structure . 2

2 Theory 3
2.1 Power dissipation in digital electronics . 3
2.2 Instruction-level power modeling . 3

2.2.1 Basic ILPM . 4
2.2.2 Constant power modeling . 5
2.2.3 Data dependent ILPM . 5
2.2.4 System level power modeling . 6
2.2.5 Other attempts at power modeling . 6

2.3 RISC-V . 7
2.4 SystemC . 7

3 Design 9
3.1 RTL Target . 9

3.1.1 Extracting a power curve . 10
3.2 TLM . 11
3.3 Features . 11
3.4 Calibration and prediction process . 12

3.4.1 Calibration process . 14
3.4.2 Calibration code . 14
3.4.3 Prediction . 16

4 Evaluation 17
4.1 Benchmarks . 17

4.1.1 Data dependency . 18

5 Results 19
5.1 Power factor vector . 19
5.2 Individual statistics . 19
5.3 Data dependency test . 19
5.4 Model comparisons . 19

6 Discussion 29
6.1 Interpretation of the results . 29

vii

viii CONTENTS

6.1.1 Differences between the power domains 29
6.1.2 Adding features and over-fitting . 29
6.1.3 Data dependency . 30
6.1.4 Calibration code . 30
6.1.5 Accuracy . 31

6.2 Weaknesses . 31
6.3 Future work . 31

6.3.1 Further analysis . 31
6.3.2 Model improvements . 32

6.4 Conclusion . 32

Appendices

A Instruction timings 33

B Benchmarks 37

C Statistics 41

Bibliography 49

List of Tables

2.1 A selection of RISC-V extensions. Compiled from information in [Uni19]. . . 7

3.1 Implemented instruction-level power modeling (ILPM) feature types. 12
3.2 The instruction types of different instructions as counted by the instruction

swap features. 12

4.1 Benchmarks used to evaluate the model. 18

5.1 Average power by domain for different all benchmarks extracted from register-
transfer level (RTL) simulation. Normalized within each domain to the average
power of the calibration code. 23

5.2 The accuracy of the instructing timing for different benchmarks. Found by
dividing the execution time predicted by the model by the real execution time
from the register-transfer level (RTL) simulation. 23

5.3 R2 for all model across all domains. This R2 is based on the ability of the
models to predict average power over a program’s execution. 27

A.1 Instruction completion times for all modeled instructions. A 0-aligned address
is one which ends in 0 or 8. 4-aligned addresses end in 4 or c. One cycle is
62.5 ns. 33

C.1 Statistics for the calibration code benchmark. 42
C.2 Statistics for the coremark benchmark. 43
C.3 Statistics for the fib benchmark. 44
C.4 Statistics for the fir benchmark. 45
C.5 Statistics for the hanoi benchmark. 46
C.6 Statistics for the quicksort benchmark. 47
C.7 Statistics for the tak benchmark. 48

ix

List of Figures

2.1 Shape of the ILPM vectors and matrices. 4

3.1 Shape of the multidomain ILPM matrices. 9
3.2 A diagram showing the rough layout of the TC4 compute domain. 10
3.3 The process of calibrating and utilizing the model. 13

5.1 The power factor vector for the central processing unit (CPU) module of the
basic ilpm model. Normalized to the energy cost of delta time (10 ns). 20

5.2 The power factor vector for the central processing unit (CPU) module of the
branch taken model. Normalized to the energy cost of delta time (10 ns). . . . 21

5.3 The power factor vector for the central processing unit (CPU) module of the
all features model. Normalized to the energy cost of delta time (10 ns). 22

5.4 The real vs predicted power used by the CPU when running the calibration
code. The model used for prediction is single instructions. The power has bee
normalized to the average of the real power usage. 24

5.5 Real (black) vs predicted (red, dotted) power used by the domains when
running different benchmarks. y-axis shows power, x-axis shows time. The
all features model was used for all predictions. 25

5.6 Real vs predicted power used by the domains when running the data dependency
test. The all features model was used for predictions. 26

5.7 Relative error by actual power in the different domains. The actual power is
normalized to the calibration code average power. 28

xi

Source code

3.1 calibration_code.S loop structure . 14
3.2 calibration_code.S loop structure . 15
B.1 fir.c . 37
B.2 fir.c . 37
B.3 hanoi.c . 38
B.4 quicksort.c . 38
B.5 tak.c . 39

xiii

Acronyms

ALU arithmetic logic unit

CMOS complementary metal-oxide-semiconductor

CPU central processing unit

CSV comma separated values

DVFS dynamic voltage and frequency scaling

I/O input/output

ILPM instruction-level power modeling

IPC instructions per cycle

ISA instruction set architecture

LSU load/store unit

PFV power factor vector

RMS root-mean-Square

RTL register-transfer level

SLPM system-level power modeling

SoC system on a chip

TLM transaction level modeling

UART universal asynchronous receiver-transmitter

xv

Chapter 1

Introduction

1.1 Motivation

The minimization of power and energy usage in computing has been recognized as a critical
component of electronic system design for over 30 years [CSB92]. Estimating the power or
energy usage of a specific program in a timely manner is essential to providing embedded
firmware developers the feedback they need to make energy-optimal architectural and small-
scale decisions. Using a register-transfer level simulation can give accurate estimations of
power usage, but these methods have several drawbacks.

First, the simulation and power analysis are prohibitively slow. Second, it requires a model
of the hardware at the level of the simulation, which is unlikely to be available to developers
outside the company developing the hardware. Lastly, the output of the simulation gives
the developer no indication of what parts of the program consume power, just which parts
or modules of the chip. The developer will then have to work backwards to find out which
modules are utilized by what parts of the code.

These drawbacks justifies the utilization of a higher level simulation which runs faster and
is focused more on functionality than hardware implementation. Transaction level modeling
(TLM) fulfills these requirements. There is no way to directly estimate power with such a
model, since the power usage is implementation-dependent. However, the model could report
the occurrence of different architectural states, e.g. how many instances of each instruction
is executed in a central processing unit (CPU) core, in a system trace. We wish to use this
system trace to estimate the power usage of a core, by finding the correlation between it and
the power usage reported by a cell-level simulation. This approach is called instruction-level
power modeling (ILPM) [TMW94].

However, there is a limit to the accuracy that can be achieved by only looking at
instructions executed. While two instances of an add-instruction are counted as the same by
a basic ILPM model, they can have wildly different effects on the power usage based on the
operands [ACPS01]. We therefore need a model which takes into account some features of
the data being processed.

1.2 Contribution

In this paper, we propose several instruction-level power models with different features, and
investigate whether adding features to a model will make it more accurate.

1

2 CHAPTER 1. INTRODUCTION

1.3 Structure
Chapter 2 will give an introduction to the theory of power dissipation in digital circuits,
and a summary of previous works in the field of power modeling. Sections 2.1 and 2.3 are
reworked sections from the project thesis [Eik21] which this thesis builds on.

Chapter 3 covers the design of our particular power model, including the calibration code.

Chapter 4 shows how the power model was evaluated, which statistics were collected and
which benchmarks were used.

Chapter 5 contains the results of the evaluation.

Chapter 6 is a discussion of the results, the weaknesses of this paper, and future work.

Chapter 2

Theory

2.1 Power dissipation in digital electronics
Modern digital electronics is dominated by complementary metal-oxide-semiconductor (CMOS)
logic, so to understand power dissipation in modern electronics we must first understand
power dissipation in CMOS circuits. The three main sources of power dissipation in CMOS
logic circuits are transistor switching, direct-path short circuits and leakage currents [CSB92].
For most circuits, these sources can be modeled as the three terms in equation 2.1.

Ptotal = Pswitching + Pshort-circuit + Pleakage

= pt(CLV 2
ddfclk) + IscVdd + IleakageVdd

(2.1)

As one would expect, all terms scale with the supply voltage. The switching power also scales
with the loading capacitance CL, the clock frequency fclk and the switching activity pt. The
switching activity is a measure of how many times the average transistor flips in one clock
cycle. While it is usually a number between zero and one, a single transistor can switch
multiple times in one clock cycle due to glitching. Pswitching used to be dominant, but as
gates and transistors get smaller, leakage current grows more important [Tho98].

Assuming no low-power states (such as sleep modes) or dynamic voltage and frequency
scaling (DVFS), any firmware that runs on a core will only affect the switching activity pt.
The other variables in equation 2.1 are decided solely by the design of the circuit.

If we allow for low-power states however, the firmware will also be able to affect the
leakage current by e.g. power gating parts of the circuit. If we go further and allow DVFS,
Vdd and fclk can be either directly controlled by firmware [WWDS94] (usually through an
operating system), or indirectly affected by firmware as the hardware decides what voltage
and frequency is appropriate [IZZH19].

2.2 Instruction-level power modeling
Instruction-level power modeling is a method of predicting the power or energy usage of a
CPU, core, micro-controller, or other device containing a CPU. The basic idea is that each
instruction in the CPU’s instruction set architecture (ISA) can be assigned a base energy cost,
representing how much energy is needed to execute the instruction on average. This cost is
then used to predict the device’s power usage over time, based on a trace of instructions
executed by the CPU when running a specified program in a functionally correct simulation.
It is possible to assign energy costs to any event in the simulation that runs the program,

3

4 CHAPTER 2. THEORY

S =

10 16 0 0 · · · 0
10 0 16 0 · · · 0
10 0 0 16 · · · 0
...

...
...

...
10 0 0 0 · · · 16

(a) The system trace S of a program
running each instruction 16 times. The
left-most column represents the length
of time interval, while the rest represent
single instructions.

P =

42
26
18
...

10

(b) Power curve P . Its
rows correspond to the
rows of S.

α =

1
2
1

0.5
...
0

(c) Power factor vector
α. Its rows correspond
to the columns of S.

Figure 2.1: Shape of the ILPM vectors and matrices.

not just which instructions are executed. We will call the events tracked by the simulation
and placed in the system trace features.

There are three important quantities that must be explained to understand how an ILPM
model is created. Shown in figure 2.1, they are the system trace S, the power curve P and
the power factor vector α. P is a vector containing the power over time of a program, where
each of the N elements is the average power during a small interval of time. It is obtained by
running the program on a physical chip or in a power-aware low-level (e.g. register-transfer
level (RTL)) simulation. The system trace S is an N × M matrix, where each column is
a feature, and each row shows how many times each feature occurred during an interval of
time corresponding to an element of P . The power factor vector is a length M vector, where
each element is the energy cost of one feature. The PFV could be viewed as the power model
itself, as it is what stays constant between different programs.

To extract the PFV α from a system trace S and power curve P , equation 2.2 is solved
using a least squares error algorithm.

P = Sα (2.2)

Some ILPM models, like [Vil19], choose to solve impose the restriction that all elements of α
must be non-negative, with the justification that it does not make sense in a physical system
to save energy by executing an instruction. To find the predicted power curve P̂ of a program
from a system trace S and PFV α, equation 2.3 is used.

P̂ = Sα (2.3)

2.2.1 Basic ILPM

The original ILPM paper [TMW94] examines a model with two kinds of features: single
instructions and inter-instruction effect features. Single instructions are as described above:
the simulator tracks how many times each instruction is executed. Inter-instruction effects
are the power usage resulting from how instructions executed after one another interact,
and inter-instruction effect features are features designed to predict such effects. The paper
divides inter-instruction effects into two categories: circuit state effects, which is the overhead
between executing different instructions consecutively; and resource constraint effects, such
as stalls and cache misses. Circuit state effects are found to have small enough variation to

2.2. INSTRUCTION-LEVEL POWER MODELING 5

model as a constant power contribution. The authors model the effect of cache misses as a
constant multiplied by the number of misses, which is found using a cache simulator.

The original paper does not perform the estimation using an TLM processor simulator,
but instead divides the program into blocks which can be statically analyzed to extract power
used when executing the block once. Then, a program profiler is used to tally the number of
times each block is executed. Then, the power contribution of the cache is added.

[ACPS01] describes how ILPM predicts a program’s total energy cost Ep with the equation

Ep =
∑

i

(Bi × Ni) +
∑
i,j

(Oi,j × Ni,j) +
∑

k

Ek (2.4)

where Bi, Oi and Ek are the costs of single instruction i, the inter-instruction cost of
instruction sequence i, j, and the cost of event k respectively. Events include stalls, cache
misses and similar. Ni is the number of times instruction i was executed and Ni,j is the
number of times the sequence i, j was executed.

There are other, more granular ways to handle circuit state overhead cost prediction.
[NKL+03] extracts one cost per possible instruction pair, which provides the possibility
of higher accuracy, but adds m(m − 1) features to the model, where m is the number
of instructions in the ISA. The paper reached an accuracy of 5 % on a 3 stage CPU, for
various "real software kernel". [Vil19] avoids the combinatorial explosion by partitioning the
instructions by encoding format into 8 groups, reducing the number of features added from
over 1000 to 56. This approach reached an accuracy of 1.2 % for a RISC-V core and 2 % for
an ARM core, however running only a single, undisclosed benchmark.

We will refer to a feature describing the occurrence of two instructions or instruction
groups being executed consecutively as a instruction swap. So executing a sequence of three
instructions, A, B, and C, will increment five features: the single instruction features NA,
NB and NC , and the instruction swaps NA,B and NB,C .

2.2.2 Constant power modeling

It was shown in [RJ98] that the power of embedded high performance 32-bit CPUs can be
modeled as a constant to an accuracy of 8 %. The paper argues that optimizing for program
execution time will also optimize for program energy cost in almost all cases, and that the
most power saving comes from physical changes like operating voltage and frequency. While
voltage and frequency is undeniably a major factor in power usage, this paper was written
in 1998, and power saving in processors is a lot more complex 25 years later. As we will see,
many models outperform the 8 % result as well.

2.2.3 Data dependent ILPM

There is a limit to how accurate a power model can be if it is constrained to only considering
which instructions are executed. Such a power model can, for example, not tell the difference
between a program where two registers containing the value 0 are repeatedly added together,
and one where random register values are added together. In the latter case, the arithmetic
logic unit (ALU) will have higher switching activity, leading to higher power usage. Data
dependent ILPM, or ILPM with data dependency, aims to increase the accuracy of the power
model by including features related to the data being processed by the executed instruction.

In [ACPS01] a data-dependent model was proposed, which provides power usage cycle by
cycle. In addition to single instruction and instruction swap features, it uses the hamming
distance between consecutive values of buses and registers to predict extra power usage. The
model also differentiates between the direction of transition, i.e. a bit flipping 0 to 1 is

6 CHAPTER 2. THEORY

different than one flipping 1 to 0. This differentiation only makes sense in a model which
provides power usage cycle by cycle, as over longer periods of time the number of transitions
0 to 1 must approximately equal the number of transitions 1 to 0. We will ignore the bit flip
directions. The data-dependent part of the model is described with the equation

f(data) =Hamming(Xi−1, Xi) × weightX

+ Hamming(Yi−1, Yi) × weightY

+ Hamming(memaddri−1, memaddri) × weightmemaddr

(2.5)

where Hamming is the hamming distance between two values of a signal, i.e. the number of
bits that are different between the values. Xi and Yi represent the values during cycle i of
the two CPU buses which read their values from the registers and input values into the ALU
and other CPU modules. The change in values on these two buses is used as a proxy for
general switching activity in the ALU. Memaddri is the address on the memory bus, used to
fetch data and instructions from memory, during cycle i.

This model achieves an error of less than 5 % for all benchmarks run.

2.2.4 System level power modeling
So far, the focus has been on power usage of CPU cores, as this is where the instructions
are executed. However, in embedded system design, CPU power is sometimes not the main
factor in power usage. System-level power modeling aims to describe an entire system on a
chip (SoC) in terms of its component modules and their power usage.

[GVH00] shows a framework for modeling different parts of an SoC in order to help
hardware developers with architectural choices early on in development. The main idea is
to model individual hardware modules using ILPM, where the term instruction is used more
broadly to fit modules other than a CPU. For example, a universal asynchronous receiver-
transmitter (UART) was modeled using the four instructions, "reset", "enable", "disable" and
"write buffer". The authors show that this model predicts power usage with up to 30 % error,
for eight parametric permutations of the hardware.

In [SWN+20], the power model FUSED is used to simulate and predict the power of
an intermittent computing system where memory access contributes significantly more to
energy usage than which instructions are executed. The prediction is made harder by a
fluctuating supply voltage which affects current draw, and the need to predict somewhat
instantaneous power usage, as the goal is to predict how much calculation an intermittently
powered system can perform before having to power off. Since the system is powered from a
capacitor, current voltage scales with the integral of current, and so the model attempts to
predict current usage, not power directly. The FUSED model predicts the average current
icc over a short time interval ∆t as

icc =
(∑

k Ekck

vcore∆t
+

∑
m

Im,s

)
creg(V) (2.6)

where Ek and ck are the energy cost and number of occurrences respectively of event k, Im,s

is the current draw of module m in the state s it is in during the time interval, and creg(V) is
a voltage-dependent scaling factor determined experimentally. FUSED achieves a maximum
error of 23 %, with the greatest errors on tests involving memcpy.

2.2.5 Other attempts at power modeling
[Wan17] greatly simplifies the single instruction part of ILPM, dividing the instructions in
the ISA by functionality into three groups: load, store and ALU. Using these three features

2.3. RISC-V 7

Table 2.1: A selection of RISC-V extensions. Compiled from information in [Uni19].

Extension Description
M Standard Extension for Integer Multiplication and Division
A Standard Extension for Atomic Instructions

Zicsr Control and Status Register (CSR) Instructions
Zifencei Instruction-Fetch Fence

F Standard Extension for Single-Precision Floating-Point
D Standard Extension for Double-Precision Floating-Point
Q Standard Extension for Quad-Precision Floating-Point
C Standard Extension for Compressed instructions

and the instructions per cycle (IPC) of the program, the model achieves a maximum error of
10 %.

[DLL+17] uses a neural network to predict power usage of coarse-grained reconfigurable
architectures with an error less than 5 %. The power usage in a CGRA is hard to estimate
with a regression model, since its configuration and datapath can change during runtime,
affecting the power consumption.

2.3 RISC-V
RISC-V is a free and open ISA originally created at the University of California, Berkeley in
2010 [Int21]. It is made to be flexible and applicable to many use cases. As such, it consists
of several base integer ISAs, all of which have several extensions. The base ISAs differ in how
many general purpose CPU registers are in each core (16 or 32), and how wide they are (32,
64 or 128 bits). The extensions add additional functionality like support for multiplication,
floating point arithmetic, or atomic operations. The name of a specific RISC-V ISA with
specified extensions is RV<bits><reg><extensions>, where bits is the size of the registers,
base is either I (for 32 registers) or E (for 16), and extensions is a series of extensions (listed
in table 2.1). For example, RV32IMF is the RISC-V ISA with 32 32-bit registers and the
multiplication and floating point (single precision) extensions [Uni19].

In this paper, we are exclusively working with the unprivileged RISC-V instructions,
which are those which are "generally usable in all privilege modes"[Uni19].

The RV32I instruction set contains 40 different instructions. The functionality covers basic
integer- and bit-wise arithmetic, branches and jumps, program counter arithmetic, memory
input/output (I/O), and system calls. This is enough to emulate the other extensions except
for the Zi- and Atomicity extensions.

2.4 SystemC
SystemC is a library for C++ which enables high level description of hardware. It can be
used to create virtual prototypes of hardware, which allows developers to experiment with
HW/SW partitioning and other architectural choices [Ini22a]. A virtual prototype can also
be used as a model of existing hardware, which can be used for simulation and analysis, e.g.
a functionally correct CPU core for a specific ISA can be modeled to verify the correctness
of software if the hardware is unavailable.

SystemC contains libraries for specific design methodologies like TLM, allowing developers
to model interconnects between modules and create entire SoCs, and quickly simulate multiple
cores and systems simultaneously [Ini22b].

Chapter 3

Design

Our design predicts power usage in multiple sub-modules (power domains) by simulating a
TLM model of a RISC-V core, resulting in a system trace which is used alongside a PFV to
predict a power curve. Unlike in section 2.2 the PFV is a matrix with several columns, one
for each power domain. This results in a power curve which is also a matrix with several
columns, one for each domain. For the sake of continuity, we will keep referring to these
components as the power factor vector and power curve, despite them both being matrices.

3.1 RTL Target

The RTL target is a proprietary test chip developed by Nordic Semiconductor, known simply
as test chip 4 or TC4. This chip has a domain for computation containing four RISC-V cores,
some memory and interconnect. This compute domain will be the target of our predictions.
A diagram of its layout is shown in figure 3.2.

The cores in the compute domain are proprietary versions of the open source project
nanoRV1 which implements the RV32I ISA. The cores are 16 MHz, two-stage pipelined cores
with one fetch and one execute stage. In our analysis, instruction and data caching has been
disabled, and only one core (CPU 0) is active.

The domain’s memory is split in two: one ultra low power and one ultra low leakage
memory module.

1Hosted at https://github.com/rbarzic/nanorv32

S =

10 16 0 0 · · · 0
10 0 16 0 · · · 0
10 0 0 16 · · · 0
...

...
...

...
10 0 0 0 · · · 16

(a) The system trace S of a program
activating each feature (columns) 16
times.

P =

42 5 · · · 17
26 13 · · · 1
18 21 · · · 1
...

...
10 37 · · · 1

(b) Power curve P . Its rows
correspond to the rows of S,
while each columns represents
one power domain.

α =

1 0.5 · · · 0.1
2 0 · · · 1
1 0.5 · · · 0

0.5 1 · · · 0
...

...
0 2 · · · 0

(c) Power factor vector α.
Its rows correspond to the
columns of S, while its
columns correspond to the
columns of P .

Figure 3.1: Shape of the multidomain ILPM matrices.

9

https://github.com/rbarzic/nanorv32

10 CHAPTER 3. DESIGN

CPU 0
instruction

cache
data

cache

CPU 1
instruction

cache
data

cache

CPU 2
instruction

cache
data

cache

CPU 3
instruction

cache
data

cache

Memory bus

ULP
RAM

ULL
RAM

Legend

 enabled
 disabled

Figure 3.2: A diagram showing the rough layout of the TC4 compute domain.

Because of the disabled instruction cache, the active core spends a large part of the run
time stalling while the next instruction is being fetched. This leads to some hard-to-predict
instruction completion times. A wide range of test programs were simulated in the provided
RTL testbench to create an instruction timing model, shown in table A.1 in appendix A.
This timing model is not completely accurate, and is not made to predict the length of single
instructions, but rather the execution time of a longer sequence of instructions.

3.1.1 Extracting a power curve

Extracting the power curve of a program is a two-step process: RTL simulation, and power
analysis. After compiling or assembling the program for the TC4 platform, the RTL simulation
is run using QuestaSim, exporting the switching activity in the form of a .fsdb file. This
file is then analyzed using Synopsis PrimePower, and one power curve per module/domain
under the compute domain is extracted in the .frpt format.

The .frpt files are converted to a comma separated values (CSV) format. Each row in
the resulting files consists of two values, timestamp and power. There may be multiple rows
in the power curve file for each row in a system trace, since PrimePower writes a new row in
the .frpt file every time the power changes (up to a maximum of one row/ns). To correlate
the power curve with a system trace, the timestamps of their rows need to match, so the
power curve is normalized to fit the rows of the system trace.

For each row in the system trace, the normalization process reads the lines of the power
curve which represent power usage within the time interval the row represents. The energy
contributions from each line in the power curve is found, by multiplication of the power and
the duration of each line, and accumulated. Care is taken when processing the first and last
power curve line, as they might represent slices of time which are only partly within the
system trace row’s time interval. When every line has been processed, the total row energy

3.2. TLM 11

is divided by the time interval to get the row’s power. The next row is then processed, and
this continues until the power of all rows in the system trace has been found.

Because the instruction timing model is not completely accurate, the power curve and
system trace can have different lengths, which could cause the feature occurrences to be
correlated to the wrong parts of the power curve. Therefore, the normalization script also
stretches the power curve to be the same length as the system trace in such a way that
the power remains the same. The script also combines the different power curves into one
table, and the result is one power curve file where each row shows the power usage of the
corresponding row in the system trace, and each column shows the power curve of one domain.

3.2 TLM

The TLM model used is based on the open source RISC-V-TLM project2, which is a model
of a RISC-V core implementing the RV32IMACZifenceiZicsr ISA. It is written is SystemC,
and uses the TLM library to model connections between the simulated hardware modules.

The original TLM model was modified in two main ways: the instruction timings found
when analyzing TC4 were implemented as a delay after every instruction, according to table
A.1; and the performance reporting system was overhauled to report a system trace with all
desired ILPM features.

A time interval of ∆t = 10 µs was chosen. For a program only executing instructions in
the top row of table A.1, this means 20 cycles per row.

3.3 Features

A wide range of features were implemented in the TLM model, which fall into the categories
listed in table 3.1. To examine the helpfulness of each type of feature, several models were
created with different combinations of features.

The most basic model created was one with only single instruction features along with the
time interval. All instructions in the RV32I ISA were modeled, except for FENCE, ECALL
and EBREAK. This model was considered as a baseline for the other models, which all also
use the single instruction and time interval features.

The next model created was basic ilpm, utilizing the time interval, single instruction and
instruction swap features. The instruction swap features are all combinations of two types
from table 3.2, with the ordering of the pair being important. As explained in section 2.2.1,
this results in 12 instruction swap features. This model is along with the single instructions
model considered a baseline for the other models.

One model was created for each of the feature types branch, bitflips bus, bitflips regs and
bitflips memory. These models are a super set of basic ilpm, with their respective feature
type added. The branch feature simply measures how many jumps occur. This is different
from the number of jump and branch instructions, since branch instructions can be executed
without jumping if the branch condition fails.

The bitflips bus features sum up the total hamming distance between consecutive values
on three conceptual buses X, Y and Z. This is similar to the feature covered in section 2.2.3,
with the difference that our model does not predict energy cycle by cycle but over a time
interval. Since a goal of our model is to not be overly designed around one specific chip,
these buses do not necessarily map one to one with buses in the hardware, but are solely
based on the ISA, which is the reason behind the term "conceptual buses". Every time an

2Hosted at https://github.com/mariusmm/RISC-V-TLM

12 CHAPTER 3. DESIGN

Table 3.1: Implemented ILPM feature types.

Type Count
Time interval 1

Single instructions 37
Instruction swaps 12

Branch 1
Bitflips bus 3
Bitflips regs 1

Bitflips memory 1
Total 56

Table 3.2: The instruction types of different instructions as counted by the instruction swap
features.

Type Instructions

ALU LUI, AUIPC, ADDI, SLTI, SLTIU,
XORI, ORI, ANDI, SLLI, SRLI,
SRAI, ADD, SUB, SLL, SLT, SLTU,
XOR, SRL, SRA, OR, AND

LOAD LB, LH, LW, LBU, LHU

STORE SB, SH, SW

BRANCH JAL, JALR, BNE, BEQ, BLT, BGE,
BLTU, BGEU

instruction is executed in our TLM model, it gets the data necessary for its execution from
a combination of immediate values, CPU registers and memory. Depending on the encoding
type of the instruction, these values are put into the X and Y buses, which represent the
left and right operand. If the instruction has some sort of result, this value is put onto the
Z bus. Every time a bus receives a new value, the hamming distance between the previous
and new values is calculated and added to the total for the current time interval. A separate
count is kept for each of the buses.

The bitflips regs, and bitflips mem features function the same way as the bitflips bus
features, but it is the hamming distance of consecutive values in the CPU registers and
memory registers respectively that is summed.

One final model, all features, was created with all the feature types utilized.

3.4 Calibration and prediction process

An overview of the process of calibration and prediction is shown in figure 3.3. A piece of
calibration code is run both in the TLM and RTL simulation, which allows us to correlate the
system trace and power curve using linear regression, resulting in a model, i.e. a PFV. For
prediction, the model is applied on another program’s system trace, obtained through a TLM
simulation. There are slight differences from section 2.2 since our model is a multi-domain
model.

3.4. CALIBRATION AND PREDICTION PROCESS 13

Produces

Loaded into

Calibration
program

Produces

SystemC
simulation

RTL
simulation

Power curveSystem trace

Power factor vector

Linear regression
algorithm

(a) The calibration process. The same program
is run in an RTL and a TLM simulation, and
the resulting power curve and system trace are
correlated to create the model.

Developer's
program

Produces

SystemC
simulation

Power curve

System trace

Power factor vector

Matrix
multiplication

(b) The prediction process. The model from the
calibration process is used to predict the power
curve of a new program.

Figure 3.3: The process of calibrating and utilizing the model.

14 CHAPTER 3. DESIGN

3.4.1 Calibration process

As covered in section 2.2, the PFV α is extracted by minimizing the squared error in equation
2.2. This is the same as a linear regression model.

The equation is solved using a least squares method which allows for negative elements
of α. The reason for not restricting α, given the argument that executing an instruction
cannot create energy, is that there are features other than instructions in the system trace.
Additionally, no row in the system trace contains only one feature, meaning that a negative
total power will still be avoided, and if the power curve should ever become negative we know
something is wrong with our model; the error does not stay hidden.

The model is able to predict the power usage of multiple domains by simply correlating
the power curve of each domain to the system trace separately. Before the matrix equation
is solved, the power curves are smoothed by convolution with a Hanning window, which has
been normalized to preserve the average power. This is done to reduce the effect of noise, and
the error from power spikes not being synchronized properly. The first and last few rows are
also discarded to remove the effects of power-up and avoid having to write code specifically
for the last row, which might only cover a fractional time interval.

3.4.2 Calibration code

The program used for calibration, known as the calibration code, is a program structured
around running short loops designed to create many occurrences of single features. This
allows the power contributions of each feature to be separated more easily. The loop bodies
are made to take at least as long as the system trace time interval ∆t to execute. It is written
in assembly for a higher level of control of which features are present in each loop.

The program starts with loops of single instructions, then executes loops combining several
kinds of instructions. This ensures that the single instruction and instruction swap features
get enough data. Listing 3.1 gives an example of a loop of add instructions which use random
registers not used for other purposes like loop control. Registers x5 and x6 are used as
loop index variable and the loop limit respectively.

Listing 3.1: calibration_code.S loop structure
1 # −−−− register loading −−−− #
2 li x8, 1
3 li x9, 0
4 ...
5 li x14, 4
6 li x15, 2
7 # −−−−−−−− main loop −−−−−−− #
8 addi x5, x0, 0 # set loop index
9 loop_ADD_0_0:

10 addi x5, x5, 1 # increment index
11 add x13, x11, x8
12 add x9, x10, x11
13 ...
14 add x12, x15, x13
15 add x11, x8, x12
16 bne x6, x5, loop_ADD_0_0 # x6 is set at program start

To ensure the branch feature’s weight can be determined, the calibration code must make
sure that some iterations of branch instruction loops end up branching and some not. This is
achieved with the code in listing 3.2, where the index variable in x5 is compared against a

3.4. CALIBRATION AND PREDICTION PROCESS 15

constant in x4 which is set once at the start of the program to be half of x6 . This ensures
that the branch condition is true for at least one iteration of every branch loop, and false for
at least on iteration. nop instructions have been inserted as padding since there are strange
timing effects that occur when jumping several instructions in a row (these effects were not
thoroughly enough researched to put in table A.1).

Listing 3.2: calibration_code.S loop structure
1 addi x5, x0, 0 # set loop index
2 loop_BLT_0_0:
3 addi x5, x5, 1 # increment index
4 blt x5, x4, label_040
5 nop
6 nop
7 label_040:
8 nop
9 nop

10 blt x5, x4, label_041
11 nop
12 nop
13 nop
14 label_041:
15 ...
16 label_058:
17 nop
18 nop
19 nop
20 blt x5, x4, label_059
21 nop
22 nop
23 nop
24 label_059:
25 bne x6, x5, loop_BLT_0_0

The calibration code must also provide a wide range of bus, register and memory activity,
so the model is able to calibrate the weights of the bitflips feature types properly. Each
instruction has several consecutive loops associated with it, where the first loop attempts
to facilitate a low activity and the last a high activity. The first method to achieve this is
varying the values in the utilized registers; before every loop, each register used in the loop
(except x0 , which is special) is overwritten, as shown in line 2-6 in listing 3.1. For the first
loop, the written values are all small numbers represented by only a few bits. For the last
loop, the entire range of the 32-bit register is used. The second method is restricting the
immediate values in the looped instructions in the same way: the first loop uses only smaller
values, while the following loops use progressively larger values.

The different types of bitflips features will naturally have different numbers of occurrences
for the different instructions, so no actions are taken to make their power contributions
separable.

After the single-instruction loops, there is a section of multi-instruction loops, at least one
loop per instruction swap feature. A loop cannot contain occurrences of only one instruction
swap, so different sets of two and three instructions are picked in such a way that all features
occur at least once and all the features’ power contributions can be separated from each
other. Since branches and bitflips are covered well by the single instruction loops, there is
only one loop per set of instructions.

16 CHAPTER 3. DESIGN

3.4.3 Prediction

Prediction requires a system trace and a previously calibrated model, i.e. a PFV. The
prediction is done using a simple matrix multiplication as shown in equation 2.3.

Chapter 4

Evaluation

The main evaluation criterion for the model is its accuracy measured in relative average error
ϵ̄r, which is defined by equation 4.1.

ϵ̄r = 1
NP̄

N∑
i=0

ϵi = 1
N

N∑
i=0

(P̂i − Pi)/P̄

= 1
N

N∑
i=0

P̂i/P̄ − 1
(4.1)

where N is the number of rows in the power curve, and Pi and P̂i are the real power and
estimated power respectively of row i. Other stats like root-mean-Square (RMS) error and
R2 are also calculated per model, domain and benchmark. These stats might provide some
insight into the model, but they are not as useful as relative average error as evaluation
criteria, since the main use case of our model is predicting total energy usage; the ups and
downs of the power curve are less important.

The stats for all domains are calculated separately. This allows us to get a better picture
of the model’s strengths and weaknesses, i.e. whether there is one domain the model fails to
predict power usage accurately for.

A separate R2 value is calculated which compares the models’ ability to predict the average
power usage of a benchmark on each domain. The R2 value shows a model’s predictive power
in comparison with the constant model which would best fit the data. A value of 1 means the
model predicted the data perfectly, while 0 means the model was only as good as a constant
guess. A negative value means the model was worse at predicting the data than a constant
model. Equation 4.2 shows the definition of R2 for a model f predicting labels y from features
x.

R2 = 1 −
∑

i(f(xi) − yi)2∑(ȳ − yi)2 (4.2)

4.1 Benchmarks

Six benchmarks, listed in table 4.1, were used to evaluate the accuracy of our model. The
code for all the benchmarks, except the Coremark test, is listed in appendix B. The same
benchmarks are all adapted from [Wan17].

17

18 CHAPTER 4. EVALUATION

Table 4.1: Benchmarks used to evaluate the model.

Benchmark ref. Description
Coremark [EEM22] An embedded power benchmark inspired by dhrystone,

developed to test power usage in low power micro-
controllers and CPU cores.

Fib Appendix B.1 Calculates the 15th Fibonacci numbed recursively.
Fir Appendix B.2 Apply a finite impulse response filter to an array.

Hanoi Appendix B.3 Simulate a game of the towers of Hanoi.
Quicksort Appendix B.4 Sort an array using the quicksort algorithm.

Tak Appendix B.5 A recursive-based benchmark function.

4.1.1 Data dependency

Another test was performed to investigate how well the model can fit a heavily data dependent
sequence of addi instructions. The test consists of four parts with 256 addi instructions;
the difference between the parts is only the operands. The first part is nop instructions,
implemented in RISC-V as addi x0, x0, 0 . These should cause almost no switching activity.
The second part is addi x11, x11, 1 , which should cause a small amount of activity. The
third part starts with loading a 1 into x11 , and then alternates between decrementing
twice and incrementing twice. This will cause a lot of transitions between -1 (ffffffff)
and 0 (00000000), which is a high level of switching activity. The final part consists of
addi x11, x11, <X> , where <X> is a number between 1000 and 2023. This should cause a
medium level of activity.

Chapter 5

Results

5.1 Power factor vector
The resulting power factor vector from calibration the all features model is given in figure
5.3. The weights have been normalized in such a way that the energy cost of keeping the chip
powered on for 10 ns is 1. Figures 5.1 and 5.2 show the same information for the basic ilpm
and branch taken models. In order to be visible, the listed weight of the bitflips features are
per 10 bit flips.

5.2 Individual statistics
Tables showing the relative average, maximum and RMS errors of the power estimation using
the different models can be found in appendix C. Each table shows the statistics for each
domain and model for one benchmark. The subscript r denotes that an error is relative to
the average of the real (RTL) power. Table 5.1 shows the real (RMS) average power used by
each domain during simulation of each benchmark. The values have been normalized within
each domain, such that the average power of the calibration code is 1.

Table 5.2 shows how well the instruction timing table predicted the execution time of the
different benchmarks. Figure 5.4 shows what a power curve of the calibration code looks like,
alongside a prediction by the single instructions model. fig. 5.5 shows the power curves for
the other test benches and domains compared to the prediction of the all features model. To
make the plots more readable, all the curves have been smoothed using a Hanning window.
The radius of this window was 100 for the coremark testbench, and 10 for the rest.

5.3 Data dependency test
Figure 5.6 shows real and predicted power for each domain when running the data dependency
test. The power has been normalized.

5.4 Model comparisons
Figure 5.7 shows the relative error vs real (RTL) average power usage of the different tests as
scatter plots, with each point being one model predicting one benchmark. Each plot covers
one domain. The real power has been normalized as in table 5.1. The R2 for the average
power usage prediction of each model in each domain is shown in table 5.3. This R2 differs
from the R2 in the tables in appendix C, which show how well a model’s prediction fits the

19

20 CHAPTER 5. RESULTS

−5

0

5

C
PU

en
er

gy

−10

0

10

20

U
LL

R
A

M
en

er
gy

L
U

I
A

U
IP

C
JA

L
JA

L
R

B
E

Q
B

N
E

B
LT

B
G

E
B

LT
U

B
G

E
U

L
B

L
H

LW L
B

U
L

H
U SB SH SW

A
D

D
I

SL
T

I
SL

T
IU

X
O

R
I

O
R

I
A

N
D

I
SL

L
I

SR
L

I
SR

A
I

A
D

D
SU

B
SL

L
SL

T
SL

T
U

X
O

R
SR

L
SR

A
O

R
A

N
D

A
L

U
T

O
L

O
A

D
A

L
U

T
O

ST
O

R
E

A
L

U
T

O
B

R
A

N
C

H
L

O
A

D
T

O
A

L
U

L
O

A
D

T
O

ST
O

R
E

L
O

A
D

T
O

B
R

A
N

C
H

ST
O

R
E

T
O

A
L

U
ST

O
R

E
T

O
L

O
A

D
ST

O
R

E
T

O
B

R
A

N
C

H
B

R
A

N
C

H
T

O
A

L
U

B
R

A
N

C
H

T
O

L
O

A
D

B
R

A
N

C
H

T
O

ST
O

R
E

−0.1

0

0.1

U
LP

R
A

M
en

er
gy

Figure 5.1: The power factor vector for the CPU module of the basic ilpm model. Normalized
to the energy cost of delta time (10 ns).

5.4. MODEL COMPARISONS 21

−5

0

5

C
PU

en
er

gy

−10

0

10

20

U
LL

R
A

M
en

er
gy

B
R

A
N

C
H

T
A

K
E

N
L

U
I

A
U

IP
C

JA
L

JA
L

R
B

E
Q

B
N

E
B

LT
B

G
E

B
LT

U
B

G
E

U
L

B
L

H
LW L
B

U
L

H
U SB SH SW

A
D

D
I

SL
T

I
SL

T
IU

X
O

R
I

O
R

I
A

N
D

I
SL

L
I

SR
L

I
SR

A
I

A
D

D
SU

B
SL

L
SL

T
SL

T
U

X
O

R
SR

L
SR

A
O

R
A

N
D

A
L

U
T

O
L

O
A

D
A

L
U

T
O

ST
O

R
E

A
L

U
T

O
B

R
A

N
C

H
L

O
A

D
T

O
A

L
U

L
O

A
D

T
O

ST
O

R
E

L
O

A
D

T
O

B
R

A
N

C
H

ST
O

R
E

T
O

A
L

U
ST

O
R

E
T

O
L

O
A

D
ST

O
R

E
T

O
B

R
A

N
C

H
B

R
A

N
C

H
T

O
A

L
U

B
R

A
N

C
H

T
O

L
O

A
D

B
R

A
N

C
H

T
O

ST
O

R
E

−0.1

0

0.1

U
LP

R
A

M
en

er
gy

Figure 5.2: The power factor vector for the CPU module of the branch taken model.
Normalized to the energy cost of delta time (10 ns).

22 CHAPTER 5. RESULTS

0

5

C
PU

en
er

gy

−10

0

10

20

U
LL

R
A

M
en

er
gy

10
B

IT
F

L
IP

S
X

10
B

IT
F

L
IP

S
Y

10
B

IT
F

L
IP

S
Z

10
B

IT
F

L
IP

S
R

E
G

S
10

B
IT

F
L

IP
S

M
E

M
O

R
Y

B
R

A
N

C
H

T
A

K
E

N
L

U
I

A
U

IP
C

JA
L

JA
L

R
B

E
Q

B
N

E
B

LT
B

G
E

B
LT

U
B

G
E

U
L

B
L

H
LW L
B

U
L

H
U SB SH SW

A
D

D
I

SL
T

I
SL

T
IU

X
O

R
I

O
R

I
A

N
D

I
SL

L
I

SR
L

I
SR

A
I

A
D

D
SU

B
SL

L
SL

T
SL

T
U

X
O

R
SR

L
SR

A
O

R
A

N
D

A
L

U
T

O
L

O
A

D
A

L
U

T
O

ST
O

R
E

A
L

U
T

O
B

R
A

N
C

H
L

O
A

D
T

O
A

L
U

L
O

A
D

T
O

ST
O

R
E

L
O

A
D

T
O

B
R

A
N

C
H

ST
O

R
E

T
O

A
L

U
ST

O
R

E
T

O
L

O
A

D
ST

O
R

E
T

O
B

R
A

N
C

H
B

R
A

N
C

H
T

O
A

L
U

B
R

A
N

C
H

T
O

L
O

A
D

B
R

A
N

C
H

T
O

ST
O

R
E

−0.1

0

0.1

U
LP

R
A

M
en

er
gy

Figure 5.3: The power factor vector for the CPU module of the all features model. Normalized
to the energy cost of delta time (10 ns).

5.4. MODEL COMPARISONS 23

Table 5.1: Average power by domain for different all benchmarks extracted from RTL
simulation. Normalized within each domain to the average power of the calibration code.

benchmark CPU ULL RAM ULP RAM
calibration code 1.000 1.000 1.000

coremark 1.047 1.009 1.005
fib 1.028 1.048 1.002
fir 0.988 0.981 0.970

hanoi 0.916 0.972 0.902
quicksort 0.976 0.978 0.944

tak 0.993 1.064 0.975

benchmark TTLM/TRTL − 1 (%)
calibration code 0.27

coremark 2.26
fib -0.50
fir -1.21

hanoi -2.04
quicksort -3.99

tak -2.32

Table 5.2: The accuracy of the instructing timing for different benchmarks. Found by
dividing the execution time predicted by the model by the real execution time from the
RTL simulation.

24 CHAPTER 5. RESULTS

0 5000 10000 15000 20000 25000
t (µs)

0.98

1.00

1.02

1.04

1.06

1.08

P

Real
Predicted

Figure 5.4: The real vs predicted power used by the CPU when running the calibration code.
The model used for prediction is single instructions. The power has bee normalized to the
average of the real power usage.

5.4. MODEL COMPARISONS 25

CPU ULP RAM ULL RAM

co
re

m
ar

k

0.975

1.000

1.025

0.9

1.0

1.0010

1.0015

1.0020

fib

0.98

1.00

1.00

1.05

1.10

1.0025

1.0030

1.0035

fir 1.02

1.03

1.05

1.10

1.03525

1.03550

1.03575

1.03600

ha
no

i

1.10

1.11

1.10

1.12

1.14

1.16

1.11350

1.11375

1.11400

1.11425

qu
ick

so
rt

1.04

1.05

1.06

1.07

1.05

1.10

0.0000

0.0005

+1.064

ta
k

1.01

1.02

1.03

1.02

1.04

1.06

−0.00025

0.00000

0.00025

+1.03

Figure 5.5: Real (black) vs predicted (red, dotted) power used by the domains when running
different benchmarks. y-axis shows power, x-axis shows time. The all features model was
used for all predictions.

26 CHAPTER 5. RESULTS

0 100 200 300 400 500
t (µs)

1.00

1.02

1.04

1.06

1.08

1.10

P

Real
Predicted

(a) CPU

0 100 200 300 400 500
t (µs)

1.000

1.025

1.050

1.075

1.100

1.125

1.150

P

Real
Predicted

(b) ULL RAM

0 100 200 300 400 500
t (µs)

1.0380

1.0385

1.0390

1.0395

1.0400

1.0405

P

Real
Predicted

(c) ULP RAM

Figure 5.6: Real vs predicted power used by the domains when running the data dependency
test. The all features model was used for predictions.

5.4. MODEL COMPARISONS 27

Table 5.3: R2 for all model across all domains. This R2 is based on the ability of the models
to predict average power over a program’s execution.

model ULL RAM ULP RAM CPU
only single instr -0.2810 0.9997 0.6359

basic ilpm -0.5198 0.9997 0.6896
branch taken -0.1129 0.9998 0.6979

bitflips bus -0.9085 0.9996 0.7749
bitflips regs -0.4325 0.9997 0.7388

bitflips memory -0.5088 0.9997 0.6875
all features -0.1456 0.9997 0.7298

variation over time within a single benchmark, because this R2 shows how well the model
beats an constant cost model when predicting average power usage.

28 CHAPTER 5. RESULTS

0.92 0.94 0.96 0.98 1 1.02 1.04 1.06

−5

−4

−3

−2

−1

0

PCPU

ϵ r
(%

)

Single instructions
Basic ILPM

Branch taken
Bitflips bus
Bitflips regs

Bitflips memory
All features

0.98 1 1.02 1.04 1.06

−2

0

2

4

6

PULL RAM

ϵ r
(%

)

Single instructions
Basic ILPM

Branch taken
Bitflips bus
Bitflips regs

Bitflips memory
All features

0.9 0.92 0.94 0.96 0.98 1

−8

−6

−4

·10−2

PULL RAM

ϵ r
(%

)

Single instructions
Basic ILPM

Branch taken
Bitflips bus
Bitflips regs

Bitflips memory
All features

Figure 5.7: Relative error by actual power in the different domains. The actual power is
normalized to the calibration code average power.

Chapter 6

Discussion

6.1 Interpretation of the results

6.1.1 Differences between the power domains

Table 5.3 gives a good overview over how well the different models predict the average power
usage of the different benchmarks. We see that all the models predicted the power usage of
the ULP RAM domain a lot better than an constant power model, but that no model was
better than a constant power model when predicting power usage in ULL RAM. Negative R2

values suggest that the power usage of the calibration code was unrepresentative of a typical
workload. Specifically, the calibration code might not have enough cases of jumps to function
starts followed by a large number of stores to different places in memory, which is typical for
un-optimized function calls.

Tables 5.1 to 5.3 show the difference in energy costs of instructions between the domains.
As expected, the domains have different features which have high and low energy costs; the
low-leakage memory uses little power outside load/store unit (LSU) instructions, while the
CPU has higher energy costs for ALU instructions. The low-power memory’s power usage is
dominated by the baseline power from just being powered up.

When predicting CPU power, all models were better than constant, but not as good as
in ULP RAM. The two least feature-rich models (only single instr and basic ilpm) were also
the worst performing in the CPU domain. However, the all features model was not the best
performing, scoring lower than bitflips regs and bitflips bus. This suggests that the models
were over-fitting to the calibration code, wrongly assigning energy costs to features that just
happened to overlap with a spike or drop in energy.

In conclusion, not much work is needed on modeling the ULP RAM, as it has the lowest
relative error and the highest R2 values. The CPU modeling was largely successful, but the
model is prone to over-fitting. Finally the ULL RAM model consistently does worse than a
constant power model, which is a sign of non-representative calibration code.

6.1.2 Adding features and over-fitting

The PFVs in figs. 5.1 and 5.3 show the above-mentioned over-fitting. The basic ilpm model
assigns very similar energy costs to the ALU instructions from ADDI to OR in the ULL
RAM domain. This corresponds with reality, as the memory module’s energy usage should
not be dependent on the operations internal to the CPU. In the all features model, however,
the energy cost of these instructions vary quite a bit in the ULL RAM. This shows that
the addition of more features can lead to a model less representative of reality. Ideally,
the calibration code covers so many different cases that the calibration process can separate

29

30 CHAPTER 6. DISCUSSION

the signal from the noise and end up with values that make sense and therefore have more
predictive power.

We see the opposite effect between figure 5.1 and 5.2, where the addition of branch taken
makes the energy costs of the instructions between BEQ and BGEU more similar for the ULP
RAM domain.

Some features in all features are also suspiciously negative. While it make sense for some
features like single instructions and instruction swaps to have negative weights, it does not
make sense for bit flip features to be negative. This is because a higher number of bit flips
should mean a higher switching activity and a higher power usage. The cause of the negative
weights might be that a high number of bit flips on one bus is correlated with a high number
of bit flips on other buses in the calibration code.

In conclusion, an increase in the number of different features must be met with appropriate
additions and changes to the calibration code.

6.1.3 Data dependency

Figure 5.6 gives us an idea of the data-dependent nature of the power usage in the different
domains. All the domains are data dependent in some form, even when all the executed
instructions are addi . The power usage of the CPU is as expected, going from almost no
activity to low to high to medium. The data dependency of the low leakage memory is
overestimated by the model, and the power curve has largely the same shape as the CPU’s
power curve. The overestimation is a sign that the calibration code pairs high bus activity
with memory accesses, and that the calibration process does not have enough data to separate
them. The domain still exhibits some data dependency, which could mean that some part of
the memory module is exposed to the activity of the CPU buses, even when the instructions
executed do not use the memory.

The low-power memory’s power curve is extra interesting, as the medium activity case has
a higher power usage than the high activity case. There could be some power contribution
from the hamming distance between consecutive instructions, but this cannot be the only
data dependent contribution, as the no activity and low activity regions of the power curve
have the same hamming distance (zero) between instructions.

More research could be done into this topic, but the accuracy gain from doing so is
minimal. The largest error (ULL RAM 300-400µs) will most likely be fixed with better
calibration code.

6.1.4 Calibration code

So far, we have seen that improving the calibration code could increase the models’ accuracies.
Figure 5.5 supports this by showing that the model consistently either under- or overestimates
the power usage within a single domain. For example, adding 1 % to the prediction of the
CPU’s power would increase the accuracy of all the tests. This means that if the calibration
code had a higher average power usage in the CPU (which is more representative of the
benchmarks), the model would have a higher accuracy. It is also possible that there is
something about the benchmarks that make their power curves unrepresentative for programs
in general. This seems less likely than the calibration code being bad, as the benchmarks
are varied in their workload, are compiled from a higher level language (which most code
will be) and the model consistently either over- or underestimates the power within each
domain. The only exception is the power usage of ULP RAM when running coremark, which
is underestimated, while the power usage of the rest of the benchmarks are overestimated.

6.2. WEAKNESSES 31

6.1.5 Accuracy

From the tables in appendix C we see that the model with the best worst-case performance
for the CPU domain was all features with a worst case error of −3.52 % running coremark.
For the ULL RAM the best worst-case was single instructions with 5.07 % error running
quicksort. The model achieving the best worst-case for the ULP RAM was branch taken with
0.07 % error running coremark.

However, worst case accuracy is not the only measure of a model’s accuracy; the R2 value
in table 5.3 is preferred.

6.2 Weaknesses

This study has some weaknesses that should be pointed out. Firstly, no cache was utilized
in any benchmark or calibration. This means there was no analysis of the effect of cache hits
and misses on power usage. The CPU used is also relatively simple, with only a two-stage
pipeline.

There was also no analysis of total energy used, only average power was used. This makes
a difference in accuracy when considering the accuracy of the instruction timing model shown
in table 5.2.

The paper also only used six benchmarks. More benchmarks means more confidence that
the worst-case accuracy and R2 statistic is accurate.

The model was calibrated to, and tested against, the power reported by an RTL simulation,
which itself might not be accurate to the real power consumption. This was justified by the
fact that it is the ILPM model’s ability to reflect a program’s power curve that is being
tested, and that the actual accuracy of the ’real’ power curve is irrelevant. However, it could
be the case that a simulation of a fully floor-planned and routed chip yields power curves
that are not only more accurate to the real world, but also harder to predict because of some
unforeseen effects.

It is also a weakness that the model only covers one CPU core and two memory modules.
Ideally, the model should have covered the entire chip, but this would require building a
more advanced TLM model of the chip, extending the power model to include features for
peripherals, and writing calibration code which can give the calibration process the data
needed to separate the power contributions from the different features.

6.3 Future work

A lot of work can be done to further analyse and improve upon the model.

6.3.1 Further analysis

There has been no analysis of how well different calibration methods work. It is possible to
look into the possibility of improving the calibration code, or the effects of removing parts of
the calibration code. More experimentation with different linear regression methods can be
done; this model used a normal least-squares solver, but it is possible to use a non-negative
solver, or a solver which prefers a lower number of non-zero weights.

32 CHAPTER 6. DISCUSSION

6.3.2 Model improvements

One feature that can be added to the model is hamming distance of consecutive instructions,
and hamming distance between consecutive values in the PC register. Both of these will affect
the power used by the memory buses, as they are the data and address of the instruction
memory respectively.

More thought can be put into restricting some features to some power domains, to mitigate
the tendency to over-fit to the calibration code. This will also reduce the size of the model,
which may be useful if it starts covering multiple cores and peripherals.

Much work can be done to improve the calibration process. A (relatively) simple first
step is to allow the calibration code to be multiple programs, and fit the model to all their
power curves. This removes the need for loop bodies of only 20 instructions, since this was
limited by program memory size and the number of different kinds of loops. With several
programs, one program can be only addi , and one only lb , etc.

The instruction timing model can be improved. Either more work can be done to make it
accurate, which requires a lot of repeated manual work and a complete restart if the target
CPU is updated or changes. Another idea is to calibrate the timing model like we calibrate
the power model, creating an Instruction Level Timing Model of sorts. This would automate
a large part of the work when switching target CPUs. Keeping the system trace and power
curve synchronized while calibrating the model could be done by extracting the waveform of
the program counter from the RTL simulation, and using it to synchronize with the TLM
simulation.

The largest improvement in terms of practical usefulness is to model an entire chip.
This means extending the TLM model to include several cores in parallel, writing a cache
simulator for the particular chip, modeling the interface to peripherals, looking at simulating
sleep modes and much more. For a simpler micro-controller, it may be enough to keep the
ILPM for a single core, but ultra low power devices have a plethora of methods for energy
saving (sleep modes, DVFS, specialized peripherals, etc.), and these must be considered when
making a useful power model.

6.4 Conclusion
In this paper, we showed that the power usage of a CPU, an ultra-low-power memory and
an ultra-low-leakage memory can be modeled with ILPM with a maximum error of 3.52 %,
5.07 % and 0.07 % respectively. An R2 value of 0.775 was reached in terms of predicting the
average power usage in the CPU while running six different benchmarks.

We found that adding more features to the model can make the model more accurate,
but any additional features must be met with more code to calibrate the weights of these
features, to avoid over-fitting. All features added to the model alone increased its R2 value,
but the model’s predictive power declined when too many features were added.

Additionally, care should be taken that the code used to calibrate the model has instruction
patterns which reflect the instructions patterns of real programs, lest the model systematically
under- or overestimates the power usage.

Appendix A

Instruction timings

Table A.1: Instruction completion times for all modeled instructions. A 0-aligned address is
one which ends in 0 or 8. 4-aligned addresses end in 4 or c. One cycle is 62.5 ns.

Instructions Timing
LUI, AUIPC, ADDI,
SLTI, SLTIU, XORI, ORI,
ANDI, SLLI, SRLI, SRAI,
ADD, SUB, SLL, SLT,
SLTU, XOR, SRL, SRA,
OR, AND

8 cycles

JAL, JALR, BEQ, BNE,
BLT, BGE, BLTU, BGEU

The timing depends on whether the instruction ends up jumping,
and on the alignment of the PC and destination address.

if no jump then
8 cycles

else
if PC 0-aligned then

if destination 0-aligned then
16 cycles

else
20 cycles

end if
else

if destination 0-aligned then
20 cycles

else
24 cycles

end if
end if

end if

33

34 APPENDIX A. INSTRUCTION TIMINGS

LB, LBU, SB LSU instructions affect the timing of consecutive LSU
instructions. This is modeled by a counter c which increments
by one on any 8-bit LSU instruction, by two on any larger LSU
instruction, and decrements on any non-LSU instruction. c is
always a non-negative integer no greater than 2. The timing is
also affected by the alignment of the program counter.

if c = 0 then
20 cycles

else
if PC 0-aligned then

16 cycles
else

20 cycles
end if

end if

LH, LHU, SH LSU instructions which operate on data longer than one byte
have timings which depends on the alignment of the data address
a.

if a%2 = 0 then
like an 8-bit LSU instruction

else
if c < 2 then

28 cycles
else

if PC 0-aligned then
28 cycles

else
32 cycles

end if
end if

end if

35

LW, SW
if a%4 = 0 then

like an 8-bit LSU instruction
else if a%4 = 2 then

like a 16-bit LSU instruction
else

if c < 2 then
40 cycles

else
if PC 0-aligned then

40 cycles
else

44 cycles
end if

end if
end if

FENCE, ECALL,
EBREAK

Not analyzed. Just uses the standard 8 cycles.

Appendix B

Benchmarks

This appendix contains the source code for five of the benchmarks that the model was
evaluated with. All are versions of the benchmark code in appendix A.1.4 of [Wan17].

Listing B.1: fir.c
1 // fib C code
2 #include "tc.h"
3

4 #pragma GCC optimize ("−O0")
5 int fib (int n) {
6 if (n < 2)
7 return n;
8 else
9 return (fib(n−1) + fib(n−2));

10 }
11

12 int main() {
13 int a;
14 a = fib(15);
15 return 0;
16 }

Listing B.2: fir.c
1 // fir C code
2 #include "tc.h"
3

4 #define F_LENGTH 20
5 #define K_LENGTH 5
6 #define K_RADIUS (K_LENGTH−1)/2
7 #define I_LENGTH F_LENGTH + K_RADIUS * 2
8 #pragma GCC optimize ("−O0")
9 void firFixed(int *coeffs, int *input, int *output, int length, int filterLength) {

10 int acc; // accumulator for MACs
11 int *coeffp; // pointer to coefficients
12 int *inputp; // pointer to input samples
13 int n;
14 int k;
15 // apply the filter to each input sample
16 for (n = 0; n < length; n++) {
17 // calculate output n
18 coeffp = coeffs;

37

38 APPENDIX B. BENCHMARKS

19 inputp = &input[n];
20 acc = 0;
21 // perform the multiply−accumulate
22 for (k = 0; k < filterLength; k++) {
23 acc += (*coeffp++) * (*inputp−−);
24 }
25 output[n] = acc;
26 }
27 }
28

29 int main(void) {
30 int input [I_LENGTH] = {
31 0, 0, 0, 0, 1,
32 1, 1, 1, 1, 5,
33 1, 1, 2, 3, 4,
34 2, 1, 4, 2, 1,
35 5, 2, 0, 0
36 };
37 int output [F_LENGTH];
38 int coeffs [K_LENGTH] = {0, 100, 500, 100, 200};
39 firFixed(coeffs, input + K_RADIUS*2, output, F_LENGTH, K_LENGTH);
40 return 0; // 0 means test success
41 }

Listing B.3: hanoi.c
1 // hanoi C code
2 #include "tc.h"
3

4 #pragma GCC optimize ("−O0")
5 int Hanoi (int from, int to, int use, int howmany) {
6 if (howmany == 1) {
7 return 1;
8 } else {
9 int imovs =0;

10 imovs += Hanoi(from, use, to, howmany −1);
11 imovs += Hanoi(from, to , use, 1);
12 imovs += 1;
13 imovs += Hanoi(use, to, from, howmany−1);
14 return imovs;
15 }
16 }
17

18 int main (void) {
19 Hanoi(3,2,1,5);
20 return 0;
21 }

Listing B.4: quicksort.c
1 // quicksort C code
2 #include "tc.h"
3

4 #pragma GCC optimize ("−O0")
5 void quicksort(int list[], int m, int n) {
6 int key,i,j,k,temp;
7 if(m < n) {
8 k = (m+n)/2;

39

9 // swap [m] and [n]
10 temp = list[m];
11 list[m] = list[k];
12 list[k] = temp;
13 key = list[m];
14 i = m + 1;
15 j = n;
16 while(i ≤ j) {
17 while((i ≤ n) && (list[i] ≤ key)) i++;
18 while((j ≥ m) && (list[j] > key)) j−−;
19 if(i < j) {
20 // swap [i] and [j]
21 temp=list[i];
22 list[i]=list[j];
23 list[j]=temp;
24 }
25 }
26 // swap [m] and [n]
27 temp=list[m];
28 list[m]=list[j];
29 list[j]=temp;
30 // recursively sort the lesser list
31 quicksort(list, m, j−1);
32 quicksort(list, j+1, n);
33 }
34 }
35

36 int main() {
37 const int MAX_ELEMENTS = 15;
38 int i = 0;
39 int list[25] = {
40 19, 74, 17, 33, 94,
41 18, 46, 83, 65, 2,
42 32, 53, 28, 85, 99,
43 11, 68, 67, 29, 82,
44 21, 62, 90, 59, 63
45 };
46 // sort the list using quicksort
47 quicksort(list, 0, MAX_ELEMENTS−1);
48 return 0;
49 }

Listing B.5: tak.c
1 // tak C code
2 #include "tc.h"
3

4 #pragma GCC optimize ("−O0")
5 int tak(int x, int y, int z) {
6 int a1, a2, a3;
7 if (x ≤ y) return z;
8 a1 = tak(x−1,y,z);
9 a2 = tak(y−1,z,x);

10 a3 = tak(z−1,x,y);
11 return tak(a1,a2,a3);
12 }
13

14 int main(void) {
15 tak(10,5,3);

40 APPENDIX B. BENCHMARKS

16 return 0;
17 }

Appendix C

Statistics

This appendix contains large tables of results from running benchmarks on the different
models. The value for R2 was rounded to − inf if the calculated value surpassed -3000.

41

42 APPENDIX C. STATISTICS

Table C.1: Statistics for the calibration code benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 0.0007 13.3917 1.9465 0.9756
bitflips memory 0.0007 13.4222 1.9468 0.9756
all features 0.0007 13.2055 1.8453 0.9780
only single instr 0.0002 13.7805 2.0224 0.9736
basic ilpm 0.0007 13.4366 1.9497 0.9755
branch taken 0.0007 13.4318 1.9353 0.9758
bitflips bus 0.0007 13.2510 1.8697 0.9775

ULP RAM bitflips regs -0.0000 0.1229 0.0157 0.9183
bitflips memory -0.0000 0.1466 0.0190 0.8798
all features -0.0000 0.1152 0.0140 0.9354
only single instr -0.0000 0.1581 0.0235 0.8167
basic ilpm -0.0000 0.1467 0.0191 0.8797
branch taken -0.0000 0.1369 0.0183 0.8890
bitflips bus -0.0000 0.1163 0.0140 0.9351

CPU bitflips regs -0.0005 4.3411 0.8906 0.9047
bitflips memory -0.0006 5.8394 0.9945 0.8811
all features -0.0003 4.2284 0.8044 0.9222
only single instr -0.0001 6.8246 1.4697 0.7404
basic ilpm -0.0006 5.8336 0.9941 0.8812
branch taken -0.0006 5.7050 0.9922 0.8817
bitflips bus -0.0003 4.2393 0.8167 0.9198

43

Table C.2: Statistics for the coremark benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 0.4717 20.3224 4.2428 -0.3254
bitflips memory -0.2713 21.9857 4.4179 -0.4371
all features -2.0403 22.3501 4.7963 -0.6938
only single instr -0.1930 21.8069 4.2727 -0.3442
basic ilpm -0.2692 21.9886 4.4187 -0.4376
branch taken -0.2398 21.8899 4.2817 -0.3498
bitflips bus -2.4287 23.1898 5.1692 -0.9674

ULP RAM bitflips regs -0.0512 0.1568 0.0552 -7.8659
bitflips memory -0.0675 0.1654 0.0701 -13.3241
all features -0.0335 0.1433 0.0420 -4.1282
only single instr -0.0569 0.1907 0.0623 -10.2929
basic ilpm -0.0676 0.1652 0.0702 -13.3340
branch taken -0.0681 0.1647 0.0710 -13.6750
bitflips bus -0.0323 0.1445 0.0418 -4.0801

CPU bitflips regs -4.3165 8.2042 4.4486 -14.7143
bitflips memory -4.9544 9.2453 5.0928 -19.5950
all features -3.5202 7.6175 3.7093 -9.9254
only single instr -4.4539 8.3754 4.6131 -15.8975
basic ilpm -4.9524 9.2549 5.0906 -19.5770
branch taken -4.9567 9.3351 5.0987 -19.6426
bitflips bus -3.6528 7.6699 3.8193 -10.5830

44 APPENDIX C. STATISTICS

Table C.3: Statistics for the fib benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 4.2100 6.9835 4.2708 -76.1843
bitflips memory 4.4448 6.9589 4.4977 -84.6041
all features 4.2791 8.1959 4.3767 -80.0598
only single instr 4.1576 6.4722 4.2064 -73.8720
basic ilpm 4.4690 6.9922 4.5219 -85.5278
branch taken 3.7356 6.1427 3.7913 -59.8238
bitflips bus 5.6040 9.7388 5.6915 -136.0771

ULP RAM bitflips regs -0.0870 0.1050 0.0874 -254.5757
bitflips memory -0.0808 0.1053 0.0812 -219.4866
all features -0.0866 0.1152 0.0870 -252.5973
only single instr -0.0778 0.1030 0.0782 -203.7241
basic ilpm -0.0811 0.1056 0.0815 -221.1138
branch taken -0.0661 0.0879 0.0664 -146.5622
bitflips bus -0.0901 0.1199 0.0906 -273.5057

CPU bitflips regs -2.1054 3.0939 2.1204 -271.3986
bitflips memory -1.8953 3.1444 1.9168 -221.6031
all features -2.5240 3.9544 2.5474 -392.1537
only single instr -2.4881 3.6569 2.5065 -379.6310
basic ilpm -1.8702 3.1166 1.8915 -215.7632
branch taken -1.7558 2.9822 1.7774 -190.3940
bitflips bus -2.1379 3.4595 2.1601 -281.7127

45

Table C.4: Statistics for the fir benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 5.3796 7.0859 5.5926 -34.6815
bitflips memory 5.1645 6.9956 5.3741 -31.9482
all features 4.7244 5.9814 4.9132 -26.5389
only single instr 4.9742 6.2366 5.1722 -29.5189
basic ilpm 5.1709 7.0177 5.3809 -32.0314
branch taken 4.6767 6.1424 4.8663 -26.0148
bitflips bus 5.5573 7.1411 5.7804 -37.1182

ULP RAM bitflips regs -0.0592 0.0703 0.0614 -678.4446
bitflips memory -0.0638 0.0716 0.0661 -787.2132
all features -0.0699 0.0786 0.0724 -944.9627
only single instr -0.0630 0.0721 0.0653 -768.5090
basic ilpm -0.0639 0.0718 0.0662 -789.0953
branch taken -0.0541 0.0616 0.0561 -566.3646
bitflips bus -0.0730 0.0823 0.0757 -inf

CPU bitflips regs -0.6485 0.8501 0.6820 -19.4602
bitflips memory -0.8397 1.1586 0.8908 -33.9088
all features -1.4796 1.6645 1.5349 -102.6362
only single instr -1.6349 1.8528 1.6968 -125.6494
basic ilpm -0.8331 1.1564 0.8848 -33.4389
branch taken -0.7581 1.0927 0.8117 -27.9824
bitflips bus -1.1586 1.3519 1.2049 -62.8639

46 APPENDIX C. STATISTICS

Table C.5: Statistics for the hanoi benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 4.4854 6.0249 5.0454 -55.4978
bitflips memory 4.7446 6.3009 5.3304 -62.0596
all features 3.2197 4.6494 3.6498 -28.5647
only single instr 4.4914 5.9959 5.0509 -55.6192
basic ilpm 4.7787 6.3401 5.3683 -62.9595
branch taken 4.0157 5.5109 4.5236 -44.4149
bitflips bus 4.6188 6.1739 5.1946 -58.8883

ULP RAM bitflips regs -0.0651 0.0791 0.0725 -inf
bitflips memory -0.0577 0.0697 0.0643 -inf
all features -0.0662 0.0803 0.0738 -inf
only single instr -0.0530 0.0656 0.0591 -inf
basic ilpm -0.0581 0.0702 0.0648 -inf
branch taken -0.0420 0.0510 0.0468 -741.3051
bitflips bus -0.0706 0.0851 0.0787 -inf

CPU bitflips regs -0.7938 1.0991 0.8875 -72.0664
bitflips memory -0.5535 0.9266 0.6264 -35.3908
all features -1.4779 1.9196 1.6495 -251.3906
only single instr -1.1832 1.5102 1.3201 -160.6486
basic ilpm -0.5164 0.8795 0.5853 -30.7734
branch taken -0.3926 0.7282 0.4494 -17.7367
bitflips bus -1.0173 1.3553 1.1362 -118.7579

47

Table C.6: Statistics for the quicksort benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 5.7548 7.3097 6.1597 -24.7366
bitflips memory 6.0414 7.5484 6.4599 -27.3061
all features 5.5821 7.8184 6.0177 -23.5637
only single instr 5.0719 6.4091 5.4245 -18.9596
basic ilpm 6.0442 7.5441 6.4625 -27.3285
branch taken 5.3084 6.9120 5.6894 -20.9567
bitflips bus 6.9484 9.0241 7.4435 -36.5824

ULP RAM bitflips regs -0.0656 0.0851 0.0700 -94.6798
bitflips memory -0.0590 0.0761 0.0630 -76.4343
all features -0.0741 0.0869 0.0789 -120.7666
only single instr -0.0685 0.0855 0.0731 -103.5436
basic ilpm -0.0590 0.0763 0.0630 -76.5320
branch taken -0.0441 0.0566 0.0472 -42.4775
bitflips bus -0.0775 0.0898 0.0826 -132.1747

CPU bitflips regs -0.4209 1.1070 0.5127 -0.2516
bitflips memory -0.1653 0.9943 0.3557 0.3976
all features -1.2004 2.0498 1.3029 -7.0839
only single instr -1.9927 3.1083 2.1555 -21.1237
basic ilpm -0.1625 0.9965 0.3548 0.4006
branch taken -0.0498 0.9005 0.3225 0.5047
bitflips bus -0.8051 1.7085 0.9058 -2.9071

48 APPENDIX C. STATISTICS

Table C.7: Statistics for the tak benchmark.

domain model ϵ̄r (%) max{|ϵr|} (%) RMS(ϵr) (%) R2

ULL RAM bitflips regs 3.2539 5.1866 3.4341 -54.9326
bitflips memory 3.3194 5.2441 3.5005 -57.1186
all features 1.5497 3.6780 1.8188 -14.6895
only single instr 3.2650 4.9917 3.4259 -54.6672
basic ilpm 3.3464 5.2802 3.5280 -58.0331
branch taken 2.4877 4.3175 2.6640 -32.6609
bitflips bus 3.0164 5.3268 3.2409 -48.8158

ULP RAM bitflips regs -0.0658 0.0733 0.0679 -548.9919
bitflips memory -0.0633 0.0703 0.0652 -506.9827
all features -0.0639 0.0709 0.0659 -517.0165
only single instr -0.0624 0.0696 0.0644 -493.6122
basic ilpm -0.0636 0.0705 0.0656 -512.5507
branch taken -0.0453 0.0522 0.0467 -259.5857
bitflips bus -0.0685 0.0756 0.0706 -593.3653

CPU bitflips regs -1.0024 1.3579 1.0697 -8.5393
bitflips memory -0.9437 1.3190 1.0132 -7.5576
all features -1.5872 1.8783 1.6497 -21.6854
only single instr -1.4486 1.8655 1.5271 -18.4395
basic ilpm -0.9140 1.2914 0.9846 -7.0814
branch taken -0.7733 1.1512 0.8483 -4.9983
bitflips bus -1.1013 1.3977 1.1588 -10.1941

Bibliography

[ACPS01] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide Sarta. An
instruction-level power analysis model with data dependency. VLSI Design,
2001:245–273, 2001.

[CSB92] Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low-power
cmos digital design. IEICE Transactions on Electronics, 27(4):371–382, 1992.

[DLL+17] Chenchen Deng, Leibo Liu, Yang Liu, Shouyi Yin, and Shaojun Wei. Pmcc:
Fast and accurate system-level power modeling for processors on heterogeneous
soc. IEEE Transactions on Circuits and Systems II: Express Briefs, 64:540–544,
2017.

[EEM22] EEMBC. Coremark. https://www.eembc.org/coremark, 2022. Accessed on
2022-7-7.

[Eik21] Fridtjof Gerdsønn Eikanger. Instruction-level power modeling. Master’s thesis,
Norwegian University of Science and Technology, December 2021.

[GVH00] Tony Givargis, Frank Vahid, and Jörg Henkel. A hybrid approach for core-based
system-level power modeling. Proceedings 2000. Design Automation Conference.
(IEEE Cat. No.00CH37106), pages 141–145, 2000.

[Ini22a] Accellera Systems Initiative. SystemC the language for system-level design,
modeling and verification. https://systemc.org/about/systemc/overview/,
2022. Accessed on 2022-7-3.

[Ini22b] Accellera Systems Initiative. SystemC transaction level modeling (tlm). https:
//systemc.org/about/systemc/tlm/, 2022. Accessed on 2022-7-3.

[Int21] RISC-V International. History of RISC-V. https://riscv.org/about/
history/, 2021. Accessed on 2021-12-17.

[IZZH19] Connor Imes, Huazhe Zhang, Kevin Zhao, and Henry Hoffmann. Copper: Soft
real-time application performance using hardware power capping. In 2019 IEEE
International Conference on Autonomic Computing (ICAC), pages 31–41, 2019.

[NKL+03] Spiridon Nikolaidis, Nikolaos Kavvadias, Theodore Laopoulos, Labros Bisdounis,
and Spyros Blionas. Instruction level energy modeling for pipelined processors.
J. Embed. Comput., 1:317–324, 2003.

[RJ98] Jeffry T. Russell and Margarida F. Jacome. Software power estimation and
optimization for high performance, 32-bit embedded processors. Proceedings
International Conference on Computer Design. VLSI in Computers and
Processors (Cat. No.98CB36273), pages 328–333, 1998.

49

https://www.eembc.org/coremark
https://systemc.org/about/systemc/overview/
https://systemc.org/about/systemc/tlm/
https://systemc.org/about/systemc/tlm/
https://riscv.org/about/history/
https://riscv.org/about/history/

[SWN+20] Sivert T. Sliper, William Wang, Nikos Nikoleris, Alex S. Weddell, and Geoff V.
Merrett. Fused: Closed-loop performance and energy simulation of embedded
systems. In 2020 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 263–272, 2020.

[Tho98] Scott Thompson. Mos scaling: Transistor challenges for the 21st century. Intel
Technology Journal, 1998.

[TMW94] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first
step towards software power minimization. IEEE Transactions on Very Large
Scale Integration Systems, 2(4):437–445, 1994.

[Uni19] University of California, Berkeley. The RISC-V Instruction Set Manual Volume
I: Unprivileged ISA, 2019.

[Vil19] Luis David López Tello Villafuerte. System-level power modeling for automotive
asics. Master’s thesis, Technische Universität Kaiserslautern, October 2019.

[Wan17] Wei Wang. An improved instruction-level power and energy model for RISC
microprocessors. PhD thesis, University of Southampton, 2017.

[WWDS94] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for
reduced cpu energy. In Proceedings of the 1st USENIX conference on Operating
Systems Design and Implementation, page 2, 1994.

50

	Abstract
	Introduction
	Motivation
	Contribution
	Structure

	Theory
	Power dissipation in digital electronics
	Instruction-level power modeling
	Basic ILPM
	Constant power modeling
	Data dependent ILPM
	System level power modeling
	Other attempts at power modeling

	RISC-V
	SystemC

	Design
	RTL Target
	Extracting a power curve

	TLM
	Features
	Calibration and prediction process
	Calibration process
	Calibration code
	Prediction

	Evaluation
	Benchmarks
	Data dependency

	Results
	Power factor vector
	Individual statistics
	Data dependency test
	Model comparisons

	Discussion
	Interpretation of the results
	Differences between the power domains
	Adding features and over-fitting
	Data dependency
	Calibration code
	Accuracy

	Weaknesses
	Future work
	Further analysis
	Model improvements

	Conclusion

	Instruction timings
	Benchmarks
	Statistics
	Bibliography

