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Abstract

Numerical simulations of geophysical and atmospheric flows have to rely on parameteriza-
tions of subgrid scale processes due to their limited spatial resolution. Despite substantial
progress in developing parameterization (or closure) models for subgrid scale (SGS) pro-
cesses using physical insights and mathematical approximations, they remain imperfect and
can lead to inaccurate predictions. In recent years, machine learning has been successful
in extracting complex patterns from high-resolution spatio-temporal data, leading to im-
proved parameterization models, and ultimately better coarse grid prediction. However,
the inability to satisfy known physics and poor generalization hinders the application of
these models for real-world problems. In this work, we put forth a frame invariant closure
approach to improve the accuracy and generalizability of deep learning-based subgrid scale
closure models by embedding physical symmetries directly into the structure of the neural
network. Specifically, we utilized specialized layers within the convolutional neural network
in such a way that desired constraints are theoretically guaranteed without the need for
any regularization terms. We demonstrate our framework for a two-dimensional decaying
turbulence test case mostly characterized by the forward enstrophy cascade. We show that
our frame invariant SGS model (i) accurately predicts the subgrid scale source term, (ii)
respects the physical symmetries such as translation, Galilean, and rotation invariance, and
(iii) is numerically stable when implemented in coarse-grid simulation with generalization
to different initial conditions and Reynolds number. This work opens up a possibility of
connecting physics-based theories and data-driven modeling paradigms, and thus represents
a promising step towards the development of physically consistent data-driven turbulence
closure models.
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1. Introduction

Computational modeling of turbulent flows remains a key issue in many engineering and
geophysical applications. Turbulence involves a wide range of spatio-temporal scales that
makes the direct numerical simulation (DNS) computationally infeasible for many complex
systems. Coarse-graining approaches like large eddy simulation (LES) alleviate the computa-
tional burden by resolving only large and intermediate scales of the flow. The non-linearity of
the Navier-Stokes equations introduces a subgrid scale (SGS) closure problem in LES which
can be addressed via modeling of unresolved scales on the resolved flow quantities. The
choice of the SGS model directly affects the accuracy of LES-based solution, and, therefore,
the SGS modeling has been an active area of research for the past few decades [1, 2, 3, 4].
The development of SGS models has largely been driven by physical insights, mathematical
considerations, and often problem-specific intuition. More recently, the availability of data
from observations and high-resolution simulation along with advances in hardware and algo-
rithms has fuelled interest in the development of data-driven turbulence models [5, 6, 7, 8].

The initial efforts towards data-driven SGS modeling include training a neural network to
predict computationally expensive SGS model for channel flow [9] with the aim to speed-up
LES. Similar frameworks includes applying neural network to determine the eddy-viscosity
of the dynamic Smagorinsky model [10, 11], SGS model classification and blending [12], and
reinforcement learning to predict SGS dissipation coefficient [13]. Deep learning (DL) has
been applied to discovering new SGS models from the DNS data without any assumption
of prior structural or functional form of the model [14, 15, 16, 17, 18, 19, 20]. The data-
driven approach that employs convolutional neural network for learning the SGS model has
also been used for different problems like two-dimensional decaying turbulence [11, 21, 22],
three-dimensional decaying homogeneous isotropic turbulence [23], momentum forcing in
ocean models [24], and subgrid-scale scalar flux modeling [25]. Moreover, neural networks
have also been utilized to learn the optimal map between filtered and unfiltered variables
in the approximate deconvolution framework for SGS modeling [26, 27]. Apart from SGS
closure modeling, machine learning (ML) and in particular DL is being increasingly applied
for different problems in fluid mechanics, like superresolution of turbulent flows [28, 29],
Reynolds-Average Navier-Stokes (RANS) closure modeling [30, 31, 32], data assimilation
[33, 34, 35, 36], spatio-temporal forecasting of fluid flows [37, 38, 39] and reduced-order
modeling [40, 41, 42, 43, 44].

Despite their early success, ML models are faced with an array of challenges, such as poor
generalization, lack of interpretability, and in some cases, violation of the known governing
laws of the physical systems. For example, the SGS model derived through supervised
learning may be numerically unstable, and diverge from the original trajectory, and this issue
is exposed in many studies [15, 45, 23, 46]. These issues can be addressed by leveraging our
prior knowledge about the physical systems into an ML model. Readers are referred to recent
review articles on physics-informed machine learning [47, 48] that detail different methods
of incorporating physics into ML models and discuss the capabilities and limitations of these
methods. In the context of SGS modeling, there are many ways to embed physical constraints
into the ML model. One such method for constructing a robust and generalizable SGS
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model is through the selection of suitable non-dimensionalized input and output quantities
of the ML model to ensure that the known symmetries are respected [49]. Another class
of methods pertains to the customized neural network architectures that encode the prior
physical or mathematical knowledge as hard constraints. Some of the examples of this
methods applied in fluid dynamics are tensor basis neural network [50], transformation
invariant neural network [25], physics-embedded neural network [51], spatial transformer
[52, 53], and equivariant networks [54, 55, 56].

In this work, we address the challenges associated with data-driven turbulence modeling
by introducing a frame invariant convolutional neural network (FI-CNN) for SGS closure
model discovery. Specifically, we select model inputs that are Galilean invariant, and replace
the convolution operation with group convolutions [57, 58] to embed rotation invariance.
Therefore, the FI-CNN preserves various symmetries, including translation, Galilean, and
rotation both during training and inference. This makes the FI-CNN framework physically
consistent and robust to extrapolation, and consequently, it produces accurate and stable
results in their a posteriori deployment. We demonstrate our framework for two-dimensional
turbulence which is often used as a prototypical test case for large-scale geophysical flows
[59, 60, 61, 62, 63]. Although we focus on SGS closure model development in this study, this
framework has a promising application for many scientific problems where physical symme-
tries are very common. For example, there are several invariant finite-difference schemes
based on equivariant moving frames that preserve Lie symmetries that have been developed
for the solution of partial differential equations (PDEs) via consideration of modified forms
of the underlying PDEs [64, 65, 66]. These symmetries can be exploited along with data-
driven discretization [67] to design numerical schemes that are more accurate than their
non-invariant counterpart.

This paper is organized as follows. In Sec 2, the symmetries of Navier-Stokes equations
and the SGS closure modeling problem for two-dimensional turbulence is introduced. The
detailed procedure on how to embed frame symmetries, including translation, Galilean, and
rotation invariance within the CNN is provided in Sec 3. In Sec 4, the details on data
generation and training are discussed. The performance of the FI-CNN in the a priori and
a posteriori settings along with a detailed discussion of the results are presented in Sec 5.
Finally, the concluding remarks and summary of the work are given in Sec 6.

2. SGS Closure Modeling

2.1. Symmetries of Navier-Stokes Equations

The Navier-Stokes equations governing incompressible fluid flows can be written in prim-
itive variable (velocity–pressure) form as

∇ · u = 0, (1)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u, (2)

where u is the velocity, p is the pressure, ρ is the density, and ν is the kinematic viscosity
of the fluid. The governing equations for LES (also called as the filtered Navier-Stokes
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equations) are obtained by applying a spatial filter operation and it can be written as
follows

∇ · ū = 0, (3)

∂ū

∂t
+ ū · ∇ū = −1

ρ
∇p̄+ ν∇2ū+∇ · (ūū− uu)︸ ︷︷ ︸

τSGS

, (4)

where the overbar is used to denote the filtered variables and τ SGS is subgrid-scale stress ten-
sor. The problem of determining subgrid-scale stress tensor τ SGS using the filtered variables
is called the subgrid scale closure problem in LES.

There are many possible SGS closure models and any mathematical, physical constraints
will lead to a specific type of SGS model. Requirements such as frame invariance, realizabil-
ity, finite kinetic energy can act as guiding principles for a satisfactory SGS closure model,
and readers are referred to [3] for more details. The frame invariance constraint on the
SGS model is derived by enforcing the symmetry of the original Navier-Stokes equations
[2, 1, 68, 3] upon the filtered Navier-Stokes equations with the SGS closure model. Let G
denote a group of transformation acting on space-time functions u(x, t). We say that the
group G is a symmetry group of the Navier-Stokes equations if, for all u which are solutions
of the Navier-Stokes equations, and all g ∈ G, the function gu is also a solution [69]. The
frame invariance constraint involves preservation of the symmetry property of the original
Navier-Stokes equations to translation, Galilean, and rotation transformations, and they can
be written as follows

• Space-translation: gspaceδ u(x, t) = u(x − δ, t), ∀δ ∈ R3, where gspaceδ is the space-
translation operator with the arbitrary displacement δ.

• Galilean transformation: gGal
α u(x, t) = u(x − αt, t) + α, ∀α ∈ R3, where gGal

α is the
Galilean operator and α is a fixed but arbitrary constant vector.

• Space-rotations: grotA u(x, t) = Au(A−1x, t), where grotA is the rotation operation and
A ∈ SO(3).

Imposing the symmetry preservation constraint give some structure to the the SGS model,
and this insights have been extensively used in turbulence models [70, 2, 3]. We make use of
these symmetries as physical constraints while building a frame invariant data-driven SGS
model.

2.2. Two-dimensional Turbulence

In this work, we are interested in the SGS modeling for two-dimensional turbulence that
is usually applied for modeling geophysical flows in the atmosphere and ocean [60, 59] where
rotation and stratification dominate, and the most efficient way to model it is using the
vorticity transport equation. Taking the curl of Eq. 2 yields the Navier-Stokes equations
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in vorticity-velocity formulation, and, for incompressible fluid flows, it can be written as
follows

∂ω

∂t
+ (u · ∇)ω = ν∇2ω, (5)

where ω is the vorticity, and for two-dimensional flows, we have ω = ∂v/∂x−∂u/∂y. A scalar
function called the streamfunction is defined in such a way that the continuity equation
is satisfied if the velocity expressed in terms of the streamfunction is substituted in the
continuity equation. This leads to the definition of velocity in terms of the streamfunction
as follows

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (6)

where ψ is the streamfunction. The Poisson equation relating the vorticity and streamfunc-
tion is obtained by substituting the above velocity components in the definition of vorticity.
Thus, we have

∇2ψ = −ω. (7)

It is convenient to write Eq. 5 in the vorticity-streamfunction formulation as follows

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (8)

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (9)

where J(·, ·) is the Jacobian (or the nonlinear term), and Re is the Reynolds number of the
flow. The above equation is also called the vorticity transport equation.

The filtered Navier-Stokes equations for two-dimensional turbulence is obtained by ap-
plying a spatial filtering operation to Eq 8 as follows

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω. (10)

The above equation can be rewritten as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω +Π, (11)

where the overbar quantities represent filtered variables and are evolved on a grid that is
significantly coarse compared to the DNS resolution. The effect of the unresolved scales due
to truncation of high wavenumber flow scales is encapsulated in a subgrid scale (SGS) source
term Π and must be modeled solely based on the resolved variables (ω, ψ). Mathematically,
the true SGS source term Π can be expressed as

Π = J(ω, ψ)− J(ω, ψ). (12)

The functional and structural models are the most commonly used approaches for mod-
eling the SGS closure term in LES of turbulent flows [2]. The functional models are based
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on the concept of eddy viscosity where the effect of unresolved scales are approximated by
artificial dissipation [71, 72]. The functional models can be further improved by dynamic
adaptations of the coefficients that control the dissipation of the model and are determined
adaptively by the use of a low-pass spatial test filter [73, 74, 75]. Although the dynamic
formulation allows for spatial and temporal variation of coefficients in the eddy viscosity
model, the ensemble averaging procedure does not allow for true back-scattering in order
to limit the growth of numerical instabilities during the a posteriori testing [76, 77]. The
structural models on the other hand aim at obtaining an accurate approximation of the SGS
term and are based on the approximate deconvolution procedure [78, 79] and scale-similarity
arguments [80]. Scale-similarity models address the SGS closure term by extrapolation from
the smallest resolved scales to unresolved scales and have found to be the most accurate
in a priori testing [2, 81]. However, numerical instabilities have been reported with scale-
similarity models, and this has led to development of many mixed models with additional
eddy viscosity term for stability reasons [82, 83, 84]. More recently, data-driven methods
are emerging as a new paradigm to build turbulence closure models by extracting informa-
tion from the data, and are seen as the potential applications to address the limitations of
existing SGS models [5, 6, 85].

3. Frame invariant SGS closure model

In this work, we consider the frame invariance property that must be satisfied by any SGS
model and demonstrate how to include them within a neural network as hard constraints.
The SGS source term Π is approximated using a neural network as shown below

Π̃ ≈ M(ω̄, ψ̄), (13)

where M is a neural network-based model, and Π̃ is the approximation of true SGS source
term Π. We remark here that the vorticity is defined using the spatial derivative of the
velocity field, and, therefore it is invariant to Galilean transformations. Additionally, the
streamfunction is computed using the vorticity, and therefore both the inputs to our model
are Galilean invariant. We now discuss how to embed the translation and rotational invari-
ance/symmetry properties into the neural network-based model.

3.1. Translation invariance

In this work, we use the convolutional neural network (CNN) for learning the SGS closure
model based on filtered vorticity and streamfunction as the model inputs. The CNN is an
attractive choice for high-dimensional data and it does not suffer from the curse of dimen-
sionality due to its weight-sharing feature. The CNN is composed of many convolutional
layers and each of the layers is parameterized by filters, also called kernels, that has to be
learned through training. Let

¯
f,
¯
k : R2 → RNc be vector-valued two-dimensional features

and kernel, i.e.,
¯
f = (f1, · · · , fNc) and ¯

k = (k1, · · · , kNc), then the convolutional operation
can be defined as follows

(
¯
k ⋆

¯
f)(x) =

Nc∑

c=1

∫

R2

kc(x− x′)fc(x
′)dx′, (14)
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where x′ is a dummy variable spanning over R2 space. The convolutional layer maps a
feature vector

¯
f (l−1) : R2 → RNl−1 with Nl−1 channels to feature vector

¯
f (l) : R2 → RNl

using a set of Nl kernels k
(l) := (

¯
k
(l)
1 , · · · ,¯k

(l)
Nl
) and this operation can be defined as

¯
f (l) = ζ(k(l) ⋆

¯
f (l−1)) := ζ(

¯
k
(l)
1 ⋆

¯
f (l−1), · · · ,

¯
k
(l)
Nl
⋆
¯
f (l−1)), (15)

where ζ is an activation function. The parameters of the kernel are shared for the whole im-
age as the kernel is convolved relative to the position about x and this aspect of the relative
motion makes the CNN translation invariant. Although we present the convolution op-
eration with continuous kernels, convolutional layers are equipped with discretized-filtering
operations in their practical implementation. From here on, we refer to the model built using
convolutional layers and nonlinear activation function as MCNN. The inputs to our model
are the vorticity and streamfunction and the output is the SGS source term. Therefore, the
learning map for MCNN can be expressed as

MCNN : {ω̄, ψ̄} ∈ R2 → R2 7→ {Π̃} ∈ R2 → R1, (16)

where Π̃ is the predicted SGS source term from a neural network.

3.2. Rotation invariance

The rotational invariance of the SGS model requires that it maps as a tensor under the
coordinate rotation [2]. As discussed in Section 3.1, the CNN is often invariant to only trans-
lation and not for other groups of transformations. However, there are recent developments
on this front to exploit polar mapping of input images to convert rotation to translation [86].
In this work, we apply the group equivariant convolutions within the E(2)-CNN framework
[87] for embedding rotational symmetry. The first roto-translation equivariant CNN was
called the group convolutional neural network (GCNN) and it considered the rotations by
multiples of π/2 [57]. The GCNN was further augmented by defining filters in terms of the
steerable basis that are equivariant to rotations by multiples of 2π/N , with N > 4 [88]. The
E(2)-CNN library is based on the framework of steerable CNNs [89, 58] and it has different
options for the group that takes the form of the semi-direct group H = R2 ⋊ G where the
group G ≤ O(2) (here O(2) is the group of continuous rotations and reflections). For exam-
ple, the group H = R2 ⋊ SO(2) = SE(2) is the semi-direct product of the group of planar
translations R2 and continuous rotations SO(2). In this work, we utilize the cyclic group
G = CN containing the discrete rotations of 2π/N (i.e., H = R2 ⋊ CN). For a large value
of N , the difference between continuous rotations and discrete rotations is indistinguishable
due to space discretization.

A full understanding of the steerable CNNs requires some knowledge of the group repre-
sentation theory, but the implementation of the steerable CNNs is similar to ordinary CNNs.
Readers are suggested to read Weiler and Cesa [87] and references therein for a more com-
prehensive discussion on the general framework of steerable CNNs. Here, we briefly explain
the G-equivariant convolutions. A G-convolution between a vector-valued two-dimensional
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image
¯
f : R2 → RNc and a filter

¯
k : R2 → RNc where

¯
f = (f1, · · · , fNc) and ¯

k = (k1, · · · , kNc)
can be expressed as follows

(
¯
k⋆̃
¯
f)(g) =

Nc∑

c=1

∫

R2

kc(g
−1x′)fc(x

′)dx′, (17)

where g = (x, θ) ∈ H = R2 ⋊ CN , x
′ ∈ R2, and ⋆̃ denotes the group correlation operation

under joint translation and rotation. This operation corresponds to lifting of the data on
two-dimensional space to the data that lives on a three-dimensional position orientation
space H. The first layer maps a two-dimensional image

¯
f (l−1) : R2 → RNl−1 with Nl−1

channels at (l − 1)th layer to H vector image
¯
F (l) : H → RNl using a set of Nl kernels

k(l) := (
¯
k
(l)
1 , · · · ,¯k

(l)
Nl
) as follows

¯
F (l) = ζ(k(l)⋆̃

¯
f (l−1)) := ζ(

¯
k
(l)
1 ⋆̃

¯
f (l−1), · · · ,

¯
k
(l)
Nl
⋆̃
¯
f (l−1)). (18)

Since the
¯
F is a function on H, the filters from the second layer onward should also be

functions on H. The subsequent group convolutions are defined as [88, 90]

(
¯
K⋆̃

¯
F )(g) =

Nc∑

c=1

∫

H

Kc(g
−1h)Fc(h)dh. (19)

A group convolution layer is defined by a set of H kernels K := (
¯
K

(l)
1 , · · ·

¯
K

(l)
Nl
) that maps

¯
F (l−1) with Nl−1 channels to

¯
F (l) with Nl channels as shown below

¯
F (l) = ζ(K(l)⋆̃

¯
F (l−1)) := ζ(

¯
K

(l)
1 ⋆̃

¯
F (l−1), · · · ,

¯
K

(l)
Nl
⋆̃
¯
F (l−1)). (20)

Finally, the feature field at the last layer can be synthesized from H space to R2 space. The
user interface of the E(2)-CNN library [87] hides most of the intricacies of group theory,
solutions of the steerable kernels space constraints, and requires users to specify only the
transformation laws of the feature spaces. We use the regular representation for all hidden
layers and the action of regular representation is given by permutation matrices (Appendix
B in [87]).

To summarize, we embed the Galilean invariance into our neural network model by using
input features (i.e., vorticity and streamfuction) that are invariant to Galilean transforma-
tion. The translation variance is automatically embedded through the use of a convolutional
neural network to learn the mapping from input features to the subgrid-scale closure term.
Lastly, the rotation variance is embedded as a hard constraint by using group convolution
layers that are invariant to discrete rotations of 2π/N . From here on, the model built using
the equivariant CNN is called MFI-CNN. The learning map for MFI-CNN is the same as the
MCNN and can be written as follows

MFI-CNN : {ω̄, ψ̄} ∈ R2 → R2 7→ {Π̃} ∈ R2 → R1, (21)

where Π̃ is the predicted SGS source term from a neural network.

8



Journal Pre-proof

165

170
Jo
ur

na
l P

re
-p

ro
of

4. Data Generation and Training

The parameters of the neural network based SGS models are learned through supervised
training that requires a set of labeled inputs and outputs, usually obtained from direct
numerical simulation (DNS). The dataset should encompass a range of dynamics that is
expected to be reproduced by the SGS model. The data for training is generated from
DNS of two-dimensional Kraichnan turbulence in a doubly periodic square domain with
Lx×Ly = [0, 2π]× [0, 2π], and the domain is discretized using 20482 degrees of freedom. Our
DNS solver is based on a second-order accurate energy-conserving Arakawa scheme [91] for
the nonlinear Jacobian and second-order accurate finite-difference scheme for the Laplacian
of the vorticity. The elliptic equation for the relationship between the streamfunction and
vorticity is solved using a second-order accurate FFT-based Poisson solver, and the time
integration is performed with a third-order accurate Runge-Kutta method. The vorticity
distribution at the start of the simulation is initialized based on the energy spectrum given
by [92]

E(k) = Ak4exp

(
−
(
k

kp

)2)
, (22)

where A = 4k−5
p /3π and k = |k| =

√
k2x + k2y. For our numerical experiments, we use kp =

10. The initial vorticity distribution in Fourier space is obtained through the introduction
of random phase as follows

ω̃(k) =

√
k

π
E(k) eiξ(k), (23)

where the phase function is given by ξ(k) = ϕ(k)+η(k). Here, ϕ(k) and η(k) are independent
random values chosen in [0, 2π] at each grid point in the first quadrant of the kx − ky plane
(i.e., kx, ky ≥ 0). The phase function for other quadrants is obtained through conjugate
relations as follows

ξ(k) = −ϕ(k) + η(k) for kx < 0 and ky ≥ 0, (24)

ξ(k) = −ϕ(k)− η(k) for kx < 0 and ky < 0, (25)

ξ(k) = ϕ(k)− η(k) for kx ≥ 0 and ky < 0, (26)

(27)

Further details on the problem setup and the numerical schemes can be found in our previous
work [84]. Different realizations of the initial vorticity field can be obtained by using different
phase functions with a different seed for random value generation.

The DNS is performed from time t = 0 to t = 4 with the time step ∆t = 5 × 10−4. In
the Kraichnan turbulence problem, the initial vorticity field is dominated by a population
of vortices and small-scale structure starts appearing as the flow evolves. The initial spin-
up time from t = 0 to 0.5 is neglected and we start collecting the data for training from
time t = 0.5. From time t ≈ 0.5, the flow has started following Kraichnan–Batchelor–Leith
(KBL) theory [93, 94, 72] of energy cascade where energy is transferred from the smaller
scales to the larger scales. From time t ≈ 0.5 onward, large coherent vortices start emerging
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through vortex merging mechanism and viscous dissipation of small-scale structures. The
vorticity field and angle-averaged energy spectrum are displayed in Fig. 1 and we can see
that the energy spectrum has started exhibiting k−3 scaling from approximately t = 0.5.

Figure 1: Visualization of the vorticity field and energy spectrum at different time instances for Re = 16000
with grid resolution 2048× 2048.

The data for training a neural network-based SGS model is stored at every 20∆t, i.e., we
have 350 snapshots of the vorticity and streamfunction between t = 0.5 to 4.0. We emphasize
here that the neural network-based SGS model is trained only for a single Reynolds number
Re = 16000 and we assess the performance of the model for Reynolds number up to Re =
128000. The filtered DNS data for training is obtained by first applying a Gaussian filter
transfer function to the DNS data and then coarse-graining the filtered solution to the LES
grid [95, 22]. The Gaussian filter provides a smooth transition between resolved and subgrid
scales and is also positive definite in physical and wave space [96, 97]. Additionally, our
numerical solver is in physical space, and therefore we select the Gaussian filter instead of a
spectral cut-off filter. The coarse-grid level for LES is 2562 which corresponds to 64 times
fewer spatial degrees of freedom compared to DNS.

We do not pre-process the filtered DNS data before training as the DNS data is generated

10
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from a non-dimensionalized vorticity transport equation. The total data is divided into 80%
of the data for training and 20% for the validation set. While the input and output of both
MCNN and MFI-CNN are the same, the user needs to specify the type of representation for
intermediate feature field while constructing an FI-CNN [87], similar to the number of kernels
for CNN. We use the kernel size of 5× 5, six hidden layers and ReLU activation function for
the MCNN and MFI-CNN. The number of kernels for the CNN and FI-CNN models is set to
30 and 16, respectively. With these hyperparameters, the number of trainable parameters
is roughly the same around O(1.1× 105) for both models. Both the models are trained for
100 iterations using an Adam optimizer. Fig. 2 shows the history of training loss versus
iterations for both neural network-based SGS models and we can observe that the loss for
MFI-CNN is almost one order magnitude less than the loss for MCNN. This can be attributed
to rotational invariances incorporated in the MFI-CNN against MCNN, which is only invariant
to translation and Galilean transformation. For both neural network-based SGS models, we
use the parameters (i.e., weights) corresponding to minimum validation loss obtained while
training the neural network.

Figure 2: History of the training loss versus iterations for MCNN and MFI-CNN.

5. Numerical Results

In this section, we first outline the numerical results of our framework in the a priori set-
tings where the neural network-based models are utilized in predicting the SGS source term.
We analyze the capability of MCNN and MFI-CNN in incorporating the frame-invariance
property over the testing data. Then, we present the results of a posteriori LES coupled
with neural network-based SGS models and evaluate their performance using numerous
statistical metrics.

Before we present our results for the Kraichnan turbulence problem, we illustrate the
capability of CNN and FI-CNN models to satisfy rotational equivariance using a simple
example of a vortex merging test case. In this test case, two vortices of the same sign are
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separated by a certain distance from each other along a parallel axis and the merging of
vortices occurs ending as a single, nearly axisymmetric, final vortex [98]. The CNN and
FI-CNN models are trained using the data generated for horizontally aligned vortices initial
condition, i.e., the vorticity field shown in the top row and first column in Figure 3. During
the inference, both CNN and FI-CNN models are able to predict the SGS source term with a
sufficient level of accuracy. However, if we test the CNN model for vertically aligned vortices
(bottom row and first column in Figure 3), we observe that the predicted SGS source term
is inaccurate and the rotational equivarince is not satisfied. However, the FI-CNN model
is successful in preserving the rotational symmetry and correctly captures the 90◦ rotation
of the SGS source term. Therefore, by designing a model that respects certain physical
symmetries, we can guarantee that the network is robust and generalizes well to different
scenarios.

Figure 3: Illustration of rotational symmetry for the initial vorticity field of two Gaussian-distributed vor-
tices. The CNN and FI-CNN models are trained using the data generated for horizontally aligned vortices,
i.e., the top row and first column. When data-driven models are used for vertically aligned vortices, the CNN
model fails to capture the rotational equivariance (the bottom row and third column), while the FI-CNN
model correctly captures the rotational equivariance (the bottom row and fourth column).

5.1. A Priori investigation

Here, we assess the performance of neural network-based models in predicting the SGS
source term compared to the true SGS source term for the out-of-training data. The out-
of-training data is obtained for a different initial condition and corresponds to 70 snapshots
stored randomly between time t = 0.5 to t = 4.0. We remark here that the initial energy
spectrum for the testing data is also given by Eq. 22 and the difference is due to a different
phase function. Fig. 4 displays the probability distribution function and cumulative distri-
bution function for the test data. There is a very good agreement between the true SGS
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source term and the predicted SGS source term from both models. However, we notice that
the MFI-CNN is more accurate near the tails of the distribution (Fig 4, left) compared to
MCNN. This difference is also observable in the cumulative distribution function of true and
predicted SGS source terms and is highlighted in the zoom-in portion (Fig 4, right). Based
on these results, we may conclude that both neural network-based SGS model has learned
the relationship between filtered quantities and the SGS source term. Both models are able
to produce viable physical results for the completely unseen data with similar physics.

Figure 4: Probability distribution function (left) and cumulative distribution function (right) of the SGS
source term over the entire testing dataset. The testing dataset corresponds to 70 snapshots selected
randomly between time t = 0.5 to t = 4.0 for the initial condition different from the one used in training
and σ is the standard deviation of the data.

Next, we evaluate neural network-based models in respecting rotational symmetry on the
test data. Specifically, we perturbed the test data based on the rotation transformation, and
generate multiple test datasets. Then, we compute the root mean squared error (RMSE) for
each dataset, and calculate the expected value and variance for all test datasets. The rotation
matrix A is sampled uniformly between [0◦, 360◦] in the multiple of 90◦. If the rotation
symmetry constraint is satisfied strictly, then the RMSE will be the same for each test
dataset leading to zero variance for the RMSE metric. The results in Table 1 demonstrate
the remarkable ability of MFI-CNN to respect the rotation symmetry in contrast to MCNN

which violates this symmetry. Furthermore, the expected value of RMSE for MFI-CNN is
one order of magnitude lower than MCNN and is consistent with the training loss (Fig. 2).
The performance of both models is substantially accurate in terms of the Pearson’s cross-
correlation coefficient, with MFI-CNN slightly better than MCNN. We note here that it is
relatively straightforward to embed Galilean invariance constraint within neural network-
based SGS model through intelligent selection of model inputs, and translation invariance
through simple CNN. However, incorporating rotational symmetry in a neural network-
based SGS model is more complex and requires special consideration. Although a relatively
simple method like data augmentation can be utilized to impose the rotation symmetry as a
soft constraint, it does not satisfy rotation invariance strictly [25]. The strict enforcement of
rotation symmetry is challenging and requires the use of tailored neural network architecture,
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Table 1: Evaluation of the rotational symmetry constraints provided by MCNN and MFI-CNN. The expected
value and variance of the root mean squared error on the SGS source term predicted by both models is
computed from many realizations (20 ensembles) on the testing data. The testing dataset corresponds to 70
snapshots selected randomly for the initial condition different from the one used for training. The rotational
angle A is sampled uniformly between [0◦, 360◦] in the multiple of 90◦ and is used in the rotational operator
grotA . The Pearson’s cross-correlation coefficient between the predicted SGS source term and the filtered
DNS solution is computed as P(X,Y ) = cov(X,Y )/σXσY .

Metric MCNN MFI-CNN

E[L] 10.6941 7.3462

σ[L] 4.2442 ×10−2 5.6587 ×10−8

P(X, Y ) 0.9600 0.9776

such as equivariant CNN.

5.2. A Posteriori deployment

We now evaluate the performance of neural network-based SGS models in the LES of
Kraichnan turbulence. The spatial resolution for LES is reduced by a factor of eight in each
direction and this gives us 2562 degrees of freedom. The time step for LES simulation is
ten times larger compared to the DNS, i.e., ∆tLES = 5 × 10−3. The performance of neural
network-based SGS models is compared with the widely used dynamic Smagorinsky model
(DSM) [73, 74]. The a posteriori deployment is a rigorous task for any data-driven SGS
model due to the presence of numerical instabilities, and the challenges and remedies have
been highlighted in many studies [15, 12, 99, 22, 23, 100, 101]. For example, Maulik et
al. [15] and Zhou et al. [101] achieved the stable LES results by truncating SGS source
term corresponding to negative eddy viscosity. Stoffer et al. [100] attained stable a posteri-
ori results by resorting to artificially introducing additional dissipation (via eddy-viscosity
models). Guan et al. [22] provided sufficient amount of data during training to obtain a
stable a posteriori results. While the exact reason for this behavior is unknown, several is-
sues such as error accumulation, aliasing errors, numerical instability, extrapolation beyond
the training data, chaotic nature of turbulence, presence of multiple attractors might be
responsible for unstable a posteriori simulation [23, 100, 6, 46].

From our a posteriori simulation, it is revealed that MCNN is unstable, while MFI-CNN

is able to produce a stable and physical solution without any kind of clipping or by adding
artificial dissipation. We note here that, perhaps MCNN can also achieve stable a posteriori
simulation, provided there is sufficient data available for training or some kind of post-
processing is carried out for the predicted SGS source term. However, our main motivation
in this work is to construct a physically consistent data-driven SGS model that can be
trained in a data-sparse regime and is also stable in the a posteriori simulation. We assess
the performance of our a posteriori simulation using several statistical metrics and compare
it with the statistics from filtered DNS solution. The turbulent kinetic energy at time tk is
computed as follows

TKE(tk) = λ(u2f (tk) + v2f (tk)), (28)
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where uf and vf are the fluctuating components of velocity given by

uf = ū− λ(ū), (29)

vf = v̄ − λ(v̄), (30)

where λ(a) represents the spatial average of the field variable a. The velocity ū, and v̄ are
computed by spectral differentiation of streamfunction as shown below

ū =
∂ψ̄

∂y
; v̄ = −∂ψ̄

∂x
. (31)

The vorticity variance at each time step is computed as

σ2 = λ((ω̄ − λ(ω̄))2). (32)

We compare the kinetic-energy spectra and the vorticity structure function at inter-
mediate time t = 2.0 and at final time t = 4.0 with the k−3 scaling which is observed in
two-dimensional turbulence based on the classical KBL theory. The vorticity structure func-
tion is calculated using the formula given by [102] for two-dimensional turbulence as follows

Sω =< |ω̄(x+ r)− ω̄(x)|2 >, (33)

where <> indicates ensemble averaging, x is the position on the grid, and r is certain
distance from this location. The PDF of the vorticity increment is utilized to assess the
capability of SGS models in predicting the coherent vortices in the flow. The vorticity
increments at different separations r is defined as

δω(r) = ω(x+ r)− ω(r). (34)

We reiterate here that neural network-based SGS models are trained using the data for
Reynolds number Re = 16000 and a single initial condition. Once the models are trained,
the LES coupled with SGS models is performed for Reynolds number up to Re = 128000 and
for five different initial conditions. Fig. 5 shows the evolution of turbulent kinetic energy and
vorticity variance for LES runs with five different initial conditions and for several Reynolds
numbers. For all the LES runs, we initialize the vorticity field at t = 0.5 after the initial spin-
up period using the filtered DNS solution. We can observe that the model MCNN is stable
only for short time and quickly becomes unstable after t ≈ 2.0 even for Reynolds number
Re = 16000 which was included in the training. In contrast to MCNN, model MFI-CNN is
stable for all test cases conducted here without any post-processing of the predicted SGS
source term. The ensemble averaging procedure in DSM leads to highly dissipative results
and is noticeable in the overprediction of the energy decay rate. The results of the LES runs
with MFI-CNN have the best agreement with filtered DNS solution for both turbulent kinetic
energy and the vorticity variance.

Fig. 6 displays the kinetic-energy spectra at intermediate time t = 2.0 and at final time
t = 4.0 obtained from LES runs with five different initial conditions for multiple Reynolds
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Figure 5: The time evolution of the turbulent kinetic energy TKE(tk) normalized by the initial turbulent
kinetic energy TKE(t0) (top row) and vorticity variance (bottom row) for different Reynolds numbers at
2562 grid resolution. The solid line shows the mean from LES runs for five different initial conditions and
the shaded area corresponds to one standard deviation. The LES simulation starts at t = 0.5 after the
initial spin-up time (i.e., once the turbulence has set in). The CNN and FI-CNN models are trained using
the data generated from a single initial condition at Reynolds number Re = 16000.

16



Journal Pre-proof

295

300

305

310
 Jo
ur

na
l P

re
-p

ro
of

number. Although the LES runs coupled with MCNN is stable at t = 2.0, the solution is
unphysical as seen by the energy pile up near grid cutoff wavenumbers. This behavior is
also illustrated in Fig. 7 through a large value of vorticity structure function at t = 2.0
across all Reynolds numbers. The LES runs with MCNN has diverged around t ≈ 2.5 (see
Fig. 5), and, therefore the kinetic-energy spectra and vorticity structure function are missing
at t = 4.0 in Fig. 6 and Fig. 7, respectively. There is a very good agreement between the
kinetic-energy spectra for LES runs with MFI-CNN and filtered DNS solution, especially in
the inertial subrange and k−3 theoretical scaling is captured accurately. From Fig. 7, we
can see that the model MFI-CNN is successful in producing the r3/2 scaling [103] for the
vorticity structure function at small scales and it gradually flattens near the large scales.
The excessive dissipation of DSM is also illustrated in Fig. 6 and Fig. 7 via mismatch
between kinetic-energy spectra and vorticity structure function between DSM and filtered
DNS solution. The successful performance of LES runs with MFI-CNN demonstrates that
incorporating frame symmetries as hard constraints has been effective in stabilizing the
coarse-grid simulation and in ensuring generalized learning across different initial conditions
and Reynolds numbers.

Figure 6: A posteriori kinetic-energy spectra for different Reynolds numbers at t = 2.0 (top row) and t = 4.0
(bottom row). These results are obtained from LES runs with five different initial conditions and only mean
kinetic energy spectrum is shown. Note here that the CNN model has diverged and the kinetic-energy
spectra for the CNN model is missing at the final time t = 4.0 (bottom row).

Figs. 8-11 provides the visualization of vorticity field and probability density function
(PDF) of vorticity increments for Reynolds number Re = 16000 to Re = 128000 computed
using the filtered DNS solution, LES with DSM model, and LES with MFI-CNN at final
time t = 4.0. We remark here that these results correspond to only one initial condition
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Figure 7: A posteriori second-order vorticity structure for different Reynolds numbers at t = 2.0 (top row)
and t = 4.0 (bottom row). These results are obtained from LES runs with five different initial conditions and
the solid line shows the mean vorticity structure and the shaded area corresponds to one standard deviation.
Note here that the CNN model has diverged and the vorticity structure for the CNN model is not present
at the final time t = 4.0 (bottom row).
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that is different from the one used for training the neural network-based SGS models. Even
though the LES with DSM model is successful in capturing large-scale structures in the
flow, it fails to capture the small-scale structure due to excessive dissipation. The LES with
MFI-CNN is able to capture both large- and small-scale structures in the flow, and this can be
ascertained to the stabilizing property of MFI-CNN in the a posteriori deployment without
any post-processing of the predicted SGS source term. Qualitatively, the vorticity field
obtained from LES with model MFI-CNN is very similar to the filtered DNS solution. The
similarity in the shape of the PDF of vorticity increments as shown in Figs. 8-11 suggests the
scale-invariant statistics of turbulence at all Reynolds numbers investigated in this study.
The shape of the PDF of vorticity increments predicted by the LES with MFI-CNN matches
with the shape of the filtered DNS solution, and the heavy exponential tails in the PDF
are related to the presence of coherent vortices in the flow. These heavy exponential tails
are missing in the PDF of the solution obtained from LES with DSM, and it follows the
Gaussian distribution.

Figure 8: Snapshots of the vorticity distribution for Re = 16000 taken at final time t = 4.0 (top
row) from different models and compared qualitatively against the FDNS solution. The bottom row
displays the probability density function P (δω) of the vorticity increments δω for separations r =
2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4 computed from different models at Re = 16000. A
Gaussian distribution is given in gray dashed line for comparison. We also note that the plain vanilla
CNN becomes numerically unstable and unbounded before t = 4.0.
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Figure 9: Snapshots of the vorticity distribution for Re = 32000 taken at final time t = 4.0 (top
row) from different models and compared qualitatively against the FDNS solution. The bottom row
displays the probability density function P (δω) of the vorticity increments δω for separations r =
2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4 computed from different models at Re = 32000. A
Gaussian distribution is given in gray dashed line for comparison. We also note that the plain vanilla
CNN becomes numerically unstable and unbounded before t = 4.0.
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Figure 10: Snapshots of the vorticity distribution for Re = 64000 taken at final time t = 4.0 (top
row) from different models and compared qualitatively against the FDNS solution. The bottom row
displays the probability density function P (δω) of the vorticity increments δω for separations r =
2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4 computed from different models at Re = 64000. A
Gaussian distribution is given in gray dashed line for comparison. We also note that the plain vanilla
CNN becomes numerically unstable and unbounded before t = 4.0.
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Figure 11: Snapshots of the vorticity distribution for Re = 128000 taken at final time t = 4.0 (top
row) from different models and compared qualitatively against the FDNS solution. The bottom row
displays the probability density function P (δω) of the vorticity increments δω for separations r =
2π/256, 2π/128, 2π/64, 2π/32, 2π/16, 2π/8, and2π/4 computed from different models at Re = 128000. A
Gaussian distribution is given in gray dashed line for comparison. We also note that the plain vanilla CNN
becomes numerically unstable and unbounded before t = 4.0.
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Next, we examine the robustness of the neural network-based SGS model by training an
ensemble of neural networks using randomization-based approaches where different random
initialization of weights are utilized for generating ensembles. Specifically, we train five
neural networks for both models MCNN and MFI-CNN using the same dataset as discussed
in Section 4. This method is also applied to quantify the model-form uncertainty in deep
learning [104]. Fig. 12 shows the time evolution of turbulent kinetic energy and vorticity
variance at different Reynolds numbers. The time evolution of the TKE in Fig. 12 implies
that the weights of the neural networks for MFI-CNN are learned in such a way that the
final models are overall dissipative in nature (as indicated by the solid line for mean from
different LES runs). The vorticity variance predicted by the modelMFI-CNN is more accurate
compared to DSM and is very close to the filtered DNS solution.

Figure 12: The time evolution of the turbulent kinetic energy TKE(tk) normalized by the initial turbulent
kinetic energy TKE(t0) (top row) and vorticity variance (bottom row) for different Reynolds numbers at
2562 grid resolution. The LES simulation starts at t = 0.5 after the initial spin-up time (i.e., once the
turbulence has set in). For the CNN and FI-CNN models, an ensemble of neural networks is trained using
the data generated from a single initial condition at Reynolds number Re = 16000 with different weights
initialization. The solid line shows the mean from LES runs for a single initial condition with different
trained networks and the shaded area corresponds to one standard deviation.

Fig. 13 depicts the kinetic-energy spectra at intermediate time t = 2.0 and at final time
t = 4.0 obtained from LES runs for a single initial condition with different network-based
SGS models for multiple Reynolds numbers. We observe the energy pile up near grid cutoff
wavenumbers for the LES runs coupled with MCNN and this suggests that the solution is
unphysical. This behavior is also demonstrated in Fig. 14 through a large value of vorticity
structure function at t = 2.0 across all Reynolds numbers. The LES runs with MCNN has
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diverged around t ≈ 2.5 (as seen by large TKE in Fig. 12), and, therefore the kinetic-
energy spectra and vorticity structure function are missing at t = 4.0 in Fig. 13 and Fig. 14,
respectively. The kinetic-energy spectra for LES runs with MFI-CNN is highly accurate
and shows an excellent agreement with the filtered DNS solution, especially in the inertial
subrange. The small uncertainty band also suggests that an ensemble of neural networks
have produced very similar statistics for MFI-CNN. Fig. 14 shows that the model MFI-CNN

is successful in capturing the r3/2 scaling for the vorticity structure function at small scales
and flattening near large scales. With this numerical experiment, we can establish that the
MFI-CNN is robust, trustworthy, and stable in the LES, and it also ensures generalizable
learning across different initial conditions and Reynolds numbers.

Figure 13: A posteriori kinetic-energy spectra for different Reynolds numbers at t = 2.0 (top row) and
t = 4.0 (bottom row). The solid line shows the mean from LES runs for a single initial condition with
different trained networks and the shaded area corresponds to one standard deviation. Note here that the
CNN model has already diverged and the kinetic-energy spectra for the CNN model is missing at the final
time t = 4.0 (bottom row).

6. Concluding remarks

Closure modeling in fluid dynamics simulations refers to parameterizing the interactions
between high-fidelity and coarse-fidelity descriptions. In this study, we explore data-driven
closure modeling strategies to improve both the accuracy and generalizability of such resid-
ual models. The motivation behind data-driven closure modeling stems from the fact that
most of the existing SGS models are derived based on physical and mathematical consid-
erations, and might not account for the important transfer of kinetic energy from small
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Figure 14: A posteriori second-order vorticity structure for different Reynolds numbers at t = 2.0 (top row)
and t = 4.0 (bottom row). The solid line shows the mean from LES runs for a single initial condition with
different trained networks and the shaded area corresponds to one standard deviation. Note here that the
CNN model has diverged and the vorticity structure for the CNN model is not present at the final time
t = 4.0 (bottom row).
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scales to large scales (i.e., back-scatter) [105]. However, pure data-driven models can lead
to physically inconsistent results [47] and might violate the known physical constraints. To
address this limitation of pure data-driven models, we apply a frame invariant neural net-
work architecture aiming at embedding physical symmetries directly into the structure of
the convolutional neural networks. Thus, our model theoretically guarantees the frame sym-
metries, including translation, Galilean, and rotation invariance both during training and
inference. The embedding of physical symmetries as hard constraints not only improves the
accuracy of the model but notably improves the generalization of the model, and eventually
makes the model stable in their a posteriori deployment without any clipping.

We test the proposed framework for subgrid-scale modeling of Kraichnan turbulence in
a priori and a posteriori settings. The performance of the proposed framework is evaluated
using several metrics like kinetic energy spectra, vorticity structure, and vorticity increments.
Based on our analysis, we concluded that symmetry preservation has the potential to improve
the accuracy, generalizability, and stability of the SGS model, besides embedding important
geometric properties of the underlying PDEs into deep learning models. This work also
illustrates a broader lesson on how to combine machine learning with physics for scientific
computing. It may be argued that two-dimensional turbulence is far from reality. However, it
is generally considered as a canonical testbed for geophysical turbulence in the atmosphere
and oceans. Our future development will be focused on scaling up the proposed frame
invariant closure modeling framework to solve more realistic three-dimensional turbulent
flows. Another interesting avenue is to apply this framework for learning parameterization
models for realistic geophysical flows with stratification, the Earth rotation, and Beta plane
effects, paving the way for improved weather and climate prediction.

Data availability

The data that supports the findings of this study are available within the article. Imple-
mentation details and Python scripts can be accessed from the Github repository [106].
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Highlights

• We introduce a novel data-driven closure approach.

• Our approach considers frame invariant properties in embedding physical symmetries.

• The proposed framework improves the generalizability of deep learning closure models.


