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Abstract

Stringent regulations on greenhouse gas emissions from gas turbines used
for land-based and aircraft applications has resulted in a gradual transition
towards carbon-free fuels such as hydrogen. Conventional single-stage
combustor architectures, originally designed to operate on natural gas, face
challenges in burning hydrogen efficiently. These challenges basically stem
from the high reactivity of the hydrogen fuel, resulting in a risk of flame
flashback and consequent damage to the engine components. A staged
combustion architecture, containing a propagation-stabilized flame in the
first stage and an autoignition-stabilized flame in the second reheat stage,
allows for efficient power production both with natural gas and fuels with
high hydrogen contents by varying the fuel splits between the first and the
second stages.

The fascinating phenomena of combustion instability, which results from
the unsteady interactions between the flame dynamics and the acoustic
field of the combustion chamber, can result in self-sustained flame and flow
oscillations. This undesirable phenomenon, also know as thermoacoustic
instability, can result in large amplitude oscillations in the flow quantities
such as pressure and heat release rate, which can cause structural damage,
loss in performance and can significantly impede stable power generation.
Getting insight into the phenomenon of combustion instability in reheat
combustors with autoignition-stabilized flames is the main objective of this
thesis.

Combustion instability in reheat combustors can be established via many
different pathways/mechanisms. This work considers one such ‘intrinsic’
mechanism where acoustic waves generated by heat release rate oscilla-
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tions associated with the autoignition front travel upstream and introduce
temperature, pressure and velocity perturbations in the incoming reactant
mixture. These flow perturbations modulate the autoignition chemistry
and the front kinematics, thereby creating ignition front position and heat
release rate oscillations, which, in turn, generate upstream-traveling acous-
tic disturbances, closing the feedback loop.

In this work, intrinsic thermoacoustic (ITA) oscillations in reheat combus-
tion systems are first investigated by solving the compressible reactive
Navier–Stokes and Euler equations in a simple one-dimensional combus-
tor geometry. These computations are used to demonstrate the occurrence
of intrinsic thermoacoustic oscillations and characterize the linear stabil-
ity of the ITA mode. In the second part of this work, modeling tools to
enable efficient prediction of the intrinsic thermoacoustic oscillations as-
sociated with autoignition fronts in the linear regime are proposed. A
simplified flame response framework, based on a Lagrangian treatment of
the autoignition process, in combination with a linearized Euler equation
(LEE) framework are used to predict the linear stability of the ITA sub-
system of the reheat combustor. Both these frameworks are compared to
more detailed high-resolution numerical flow computations yielding good
comparisons both in the context of flame dynamics and acoustic field pre-
diction. Furthermore, the predictions of the thermoacoustic eigenvalue,
which characterize the frequency and growth rates of the thermoacoustic
oscillations, from the simplified frameworks show good agreements with
the detailed flow computations suggesting that the modeling tools pro-
posed in this work can be used to predict thermoacoustic oscillations in
more complex laboratory and industrial scale reheat combustor geomet-
ries.
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Chapter 1

Introduction

The main objective of this thesis is to get insight into the occurrence of ther-
moacoustic instabilities in reheat combustors with autoignition-stabilized
flames. This chapter is intended to give a brief background on combus-
tion instabilities and discuss the current state of the art in thermoacoustic
modeling of reheat combustion systems and consequently, present the ob-
jectives and goals of this work. This chapter is subdivided into four sec-
tions. Section 1.1 points out the importance of a sequential combustion
system for power generation with low-carbon fuels. A brief overview of
thermoacoustic instabilities is given in Section 1.2. A discussion of intrinsic
thermoacoustic feedback and its relevance to a reheat combustion system
is given in Section 1.3. Section 1.4 presents the current state of the art with
respect to thermoacoustic modeling of reheat combustors, and Section 1.5
lists the objectives of this work.

1.1 Relevance of a sequential combustion system to
gas turbines operating on hydrogen

Gas turbines play an important role in enabling consistent power genera-
tion along with renewable sources (Conti et al., 2016). While renewable
energy sources like solar and wind are being increasingly used around
the world, they do not guarantee consistent power production at all sea-
sons/times. Therefore, renewable sources have to be balanced by techno-
logies which can respond flexibly to both varying load demand and fluc-
tuating energy production. Power production with gas turbines using hy-
drogen as a fuel is one good candidate for this role, which fits perfectly into
so-called Power-to-H2-to-power schemes.

1



2 Introduction

Figure 1.1: Variation of laminar flame speeds of methane–hydrogen–air mixtures
with equivalence ratio. The temperature and pressure used for this calculation are
300 K and 1 bar. Adapted from Æsøy (2022).

Hydrogen can be produced using different methods (Dincer and Acar,
2015). First, excess energy from renewables can be used in the electrolysis
of water to produce what is termed as green hydrogen. Second, steam re-
forming of methane and the subsequent CO2 capture and storage produces
blue hydrogen. The third, and the most commonly used method currently,
is the production of hydrogen with steam reforming of methane without
carbon capture which is termed as grey hydrogen. Therefore, develop-
ing technologies which can produce hydrogen with very minimal CO2
emissions (green or blue hydrogen, for example) combined with methods
which efficiently burn hydrogen in gas turbines alongside renewable en-
ergy sources can ensure power generation for a sustainable and clean fu-
ture.

Successful power production using hydrogen in gas turbines necessitates
combustor architectures which are capable of burning hydrogen and nat-
ural gas interchangeably in a flexible manner. For instance, in the event
that the hydrogen/natural gas supply is reduced, we should still be able
to burn mixtures containing hydrogen and natural gas in various propor-
tions. Therefore, fuel-flexible combustor technologies are a vital need in
the present context.

The main challenge of using hydrogen in a single-stage combustor archi-
tecture with propagation-stabilized flames designed to operate on natural
gas is the following. Hydrogen, owing to its increased reactivity, i.e., the
burning velocity, tends to shift the flame position further upstream in the
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combustion chamber (Lieuwen et al., 2008; Bothien et al., 2019c). To get a
quantitative idea, Figure 1.1 plots the laminar consumption speed of mix-
tures of methane and hydrogen at standard conditions. One-dimensional
flame speed calculations are performed in Cantera (Goodwin et al., 2022)
for the chemical reaction, which, at stoichiometric condition, reads

𝑥CH4 + 𝑦H2 +
(
2𝑥 + 𝑦

2

)
(O2 + 3.76N2) → 𝑥CO2 + (2𝑥 + 𝑦) H2O

+
(
2𝑥 + 𝑦

2

)
(3.76N2) .

(1.1)

A quantity which measures the mole fraction of CH4 in the fuel stream can
be written as

𝜒CH4 =
𝑥

𝑥 + 𝑦 . (1.2)

Figure 1.1 plots the laminar consumption speed of the reactant mixture in
Equation (1.1) as a function of hydrogen enrichment and equivalence ratio.
It is evident that increasing the hydrogen content increases the flame speed.
Therefore, a combustion chamber which was initially designed to operate
on natural gas, cannot efficiently operate on hydrogen due to an increased
risk of flashback (Yahou et al., 2022). A way to avoid this is to inject less fuel
and thereby reduce the flame temperature, moving the flame downstream
to its design position. However, this entails a severe reduction in the en-
gine performance. One attractive alternative to overcome this problem is
to divide the entire combustion process into two distinct stages using a se-
quential combustor. An example of such a system presently used is the An-
saldo Energia GT36 constant pressure sequential combustor (Pennell et al.,
2017). In a sequential combustor (see Figure 1.2), the first stage flame is sta-
bilized aerodynamically using, for example, vortical structures induced by
swirl or bluff-bodies. More fuel is then added to the burnt product mixture
exiting the first stage. This vitiated-oxidant mixture, by virtue of its high
temperature, spontaneously ignites downstream resulting in the formation
of an autoignition front in the second stage. The two contrasting methods
of flame-stabilization in the sequential combustor allows for fuel flexibility,
minimizing NO𝑥 emissions and maximizing the engine’s turndown capab-
ility (Ciani et al., 2019; Bothien et al., 2019b,c; Ciani et al., 2020). The next
paragraph describes the strategy used in a sequential combustor to reduce
pollutant emissions and ensure fuel-flexible operation.

• Reduction of pollutant emissions: At the high operating temperat-
ures experienced during base load, thermal NO𝑥 contributes to the
main source of pollutants (Turns et al., 1996). In this scenario, the
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fuel

air

1st stage
Propagation
flame

dilution air
fuel

2nd stage
autoignition front

reheat stage
MET

𝑇0

𝑥

CH4

𝐻2

less fuel

Figure 1.2: Schematic of the two-stage sequential combustion system. The bottom
graph shows the strategy used for fuel-flexible operation (adapted from Bothien
et al. (2019c)).

mixer exit temperature (MET), which is the inlet temperature at the
reheat stage, is reduced causing the autoignition front to be located
further downstream resulting in a reduced post-combustion resid-
ence time. Conversely, during low part-load operation, the MET is
increased resulting in the autoignition front moving substantially up-
stream, which therefore increases the time required for burnout of
carbon monoxide (Bothien et al., 2019c).

• Fuel-flexible operation: To burn a highly reactive fuel such as hydro-
gen in a sequential burner designed to operate on natural gas, the
first stage flame temperature is reduced by injection of less fuel. First
of all, this strategy ensures that the propagation-stabilized flame is
located at its design position, as the leaner mixture compensates for
the increased fuel reactivity (Bothien et al., 2019c). Second, the reduc-
tion in the first stage flame temperature also reduces the inlet tem-
perature to the reheat stage (MET), which increases the ignition time
associated with the autoigniting mixture. The increased ignition time
due to a reduction in the MET compensates for the higher fuel react-
ivity (see Figure 1.3), maintaining the autoignition-stabilized flame
location at its design position (see Figure 1.2).
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Figure 1.3: Ignition times of vitiated hydrogen–air and methane–air mixtures with
temperature. The pressure is 1 bar. The species mass fractions used are taken
from Schulz and Noiray (2019) and Aditya et al. (2019). At a given temperature,
the ignition time of the hydrogen–air mixture is much smaller than that of the
methane–air mixture. Therefore, the MET is reduced for hydrogen–air mixtures
to keep the autoignition front position close to the design value.

Combustion instabilities, which manifests due to unsteady interactions in-
volving the flame, the flow dynamics and the acoustic modes of the com-
bustion chamber, are a major problem which affect the stable operation of
many combustion systems used for power generation applications. The re-
cent work of Schulz et al. (2019) has demonstrated, using experiments and
numerical computations, the occurrence of thermoacoustic combustion in-
stability for a laboratory-scale sequential combustor. Getting insight into
combustion dynamics phenomena in sequential combustion systems will
be the main focus of this work. The next section gives a brief overview of
thermoacoustic instabilities.

1.2 Brief overview of thermoacoustic instabilities
Thermoacoustic oscillations happen due to a feedback loop involving the
flow, flame and the acoustic modes of the combustion chamber. In other
words, flames respond unsteadily to acoustic waves and unsteady flames
generate acoustic waves (Poinsot, 2017). Therefore, a feedback loop in-
volving these two processes can be established resulting in self-sustained
flame oscillations, which can cause significant loss in performance and
structural damage to engine components (Lieuwen and Yang, 2005).
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Flame heat release 
rate fluctuations 
ሶ𝑞′

Combustion 
chamber

Acoustic waves

Velocity 
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𝑝4

Flame kinematics

Figure 1.4: Common combustion instability mechanisms in combustors with
propagation-stabilized flames. Adapted from Paschereit et al. (2001).

Figure 1.4 summarizes the commonly observed interaction mechanisms
resulting in combustion instability in combustors with propagating flames.
Propagating flames are usually stabilized at low mean flow Mach numbers.
This is because, the kinematic balance between the consumption speed and
the local flow velocity dictates the stabilization location of these flames.
Flame speeds typically observed for lean mixtures used in low-emission
gas turbines are of the order of a few cm/s, resulting in very low values
of mean flow Mach numbers. The normalized fluctuations in temperature
(𝑇 ′/𝑇0) and pressure (𝑝′/𝑝0) associated with an acoustic wave can be re-
lated to the normalized fluctuation in velocity (𝑢′/𝑢0) as (Dowling, 1995):

𝑝′

𝑝0
= 𝛾𝑀0

𝑢′

𝑢0
,

𝑇 ′

𝑇0
= (𝛾 − 1)𝑀0

𝑢′

𝑢0
,

(1.3)

where 𝑀0 is the mean flow Mach number, and 𝛾 is the ratio of specific
heats. Equation (1.3) suggests that at low Mach numbers characteristic of
propagating flames, the magnitudes of the normalized pressure and tem-
perature fluctuations are very small in comparison to the magnitudes of
the normalized velocity fluctuations. Therefore, propagating flames are
mainly ‘velocity-sensitive’. In other words, propagating flames mainly re-
spond to velocity fluctuations upstream of the flame induced by an acous-
tic wave. In the following, a short summary of the thermoacoustic inter-
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action mechanisms of a velocity-sensitive propagation-stabilized flame is
given.

• Mechanism 𝑝1: Heat release rate fluctuations associated with the
propagation flame act as a monopole source of sound (Strahle, 1971)
generating acoustic disturbances. These acoustic disturbances get re-
flected from the combustion chamber boundaries and create velocity
oscillations locally at the flame. The velocity oscillations created loc-
ally at the flame generate flame area oscillations which create heat
release rate fluctuations (Schuller et al., 2003) in accordance with the
expression

¤𝑄 (𝑡) =
∫

flame
𝜌𝑢𝑆

𝑐
𝑇Δℎ𝑐𝑑𝐴, (1.4)

which closes the feedback loop. In the above expression, ¤𝑄 represents
the integrated heat release rate, 𝜌𝑢 denotes the unburnt gas density,
𝑆𝑐
𝑇

is the local consumption speed of the flame, and Δℎ𝑐 is the unburnt
mixture heat of reaction.

• Mechanism 𝑝2: Velocity oscillations induced by the flame-generated
acoustic disturbances force the fuel-injection system creating fluctu-
ations in the mixture equivalence ratio (𝜙). For an ‘acoustically-stiff’
injector, a positive velocity oscillation results in a leaner-mixture and
vice-versa. These equivalence ratio fluctuations convect to the flame
creating heat release rate oscillations due to a variety of factors as
summarized in Shreekrishna et al. (2010). First, 𝜙 ′ oscillations cre-
ate fluctuations in the local flame speed and heat of reaction along
the flame surface resulting in heat release rate fluctuations which is a
direct effect. Additionally, local flame speed oscillations create flame
wrinkles which propagate along the flame creating an indirect non-
local influence. The heat release rate oscillations created by these ef-
fects, in turn generate acoustic waves which closes the feedback loop.

• Mechanism 𝑝3: Gas turbine combustors typically employ swirl or
bluff-bodies to enable flame anchoring (Lefebvre and Ballal, 2010).
The mean flow fields associated with these flows are particularly
prone to unsteady hydrodynamic phenomenon which can drive flame
front oscillations. On the one hand, some of these flows can be con-
vectively unstable. For a convectively unstable flow, disturbances
introduced at any point are convected downstream and amplify spa-
tially (Schmid and Henningson, 2001). In such flows, velocity os-
cillations introduced by the acoustic wave create vortical structures
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which convect along the flame creating flame area and heat release
rate oscillations which, in turn, generate acoustic waves. Indeed,
the work of Oberleithner et al. (2015a) and the work of Hemchandra
et al. (2018) has shown that convectively unstable flows which are
receptive to acoustic forcing create significant heat release response
of the flame. In particular, the frequency at which the flame trans-
fer function peaks coincides with the frequency at which the spatial
growth rate of the flow is highest to acoustic velocity perturbations.
On the other hand, flows can also be absolutely unstable. In an ab-
solutely unstable flow, disturbances introduced at a point grow both
in space and time and eventually, given enough time, contaminate
the entire flow. These flows behave as self-excited oscillators with
a characteristic frequency. Large regions of absolute instability in a
flow can result in global flow oscillations such as the precessing vor-
tex core (Moeck et al., 2012; Oberleithner et al., 2015b). These global
flow oscillations can also result in thermoacoustic instability if the
frequency associated with them is close to one of the natural acous-
tic modes of the combustion chamber (Hemchandra et al., 2018). An
additional type of hydrodynamic mechanism has been presented in
the work of Komarek and Polifke (2010). In their work, the different
propagation speeds of axial and azimuthal velocity disturbances as-
sociated with a swirl flow in response to an acoustic wave, resulted
in fluctuations in swirl number which also creates heat release rate
perturbations.

• Mechanism 𝑝4: The unsteady heat release rate oscillations associated
with the flame, in addition to generating acoustic disturbances, also
generate entropy waves. Entropy waves are temperature inhomo-
geneities which are convected with the flow. When these entropy
waves are accelerated downstream of the combustor by, for example,
a nozzle or a turbine blade row, they act as a source of acoustic waves
propagating upstream and downstream. This can be deduced by
looking at the linearized momentum equation derived for a quasi-1D
compressible flow with area change in the famous paper of Marble
and Candel (1977) as(

𝜕

𝜕𝑡
+ 𝑢0

𝜕

𝜕𝑥

)
𝑢′

𝑢0
+
𝑐2

0

𝑢0

𝜕

𝜕𝑥

(
𝑝′

𝛾𝑝0

)
+
(
2
𝑢′

𝑢0
− (𝛾 − 1) 𝑝

′

𝛾𝑝0

)
𝑑𝑢0

𝑑𝑥
=
𝑑𝑢0

𝑑𝑥

𝑠′

𝐶𝑝

, (1.5)

which clearly shows that for entropy waves (𝑠′) propagating in a
nozzle which is characterized by an area change (𝑑𝐴/𝑑𝑥 or 𝑑𝑢0/𝑑𝑥), a
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source term in the RHS of the linearized momentum equation shows
up acting as a source of sound. These upstream traveling acoustic
waves generated by the accelerating entropy disturbances also per-
turbs the flame and generates ¤𝑄 ′.

To summarize, self-sustained thermoacoustic oscillations are observed due
to two main processes. First, the unsteady flame generating acoustic and
entropy disturbances which propagate away from the flame. These flame
generated acoustic and entropy disturbances either get reflected from the
boundaries or get accelerated through a contraction to produce acoustic
disturbances, which in turn force the flame and result in an unsteady flame
response. This unsteady response of the flame to an acoustic disturbance
can be due to a wide variety of reasons: equivalence ratio fluctuations,
swirl number modulation, hydrodynamic flow instabilities, and so on. All
these effects can be lumped into a single frequency (𝜔) dependent function
which relates the heat release response of the flame to acoustic forcing. This
frequency dependent function, famously called the flame response transfer
function (FTF), can be mathematically expressed as

ℱ(𝜔) =
¤̃𝑄/ ¤𝑄0

𝑢ref/𝑢0
, (1.6)

which relates the heat release rate perturbations to the velocity perturb-
ations at some reference point. It is vital to realize that the flame trans-
fer function is most meaningful for a linear system since it is amplitude-
independent. In other words, the magnitude of the heat release perturba-
tions linearly scale with the magnitude of the velocity perturbations at that
frequency. In practice, at large amplitudes of disturbances, a saturation of
the flame response amplitude is usually seen (Oberleithner et al., 2015a),
at which point an amplitude-dependent describing function is required to
describe the flame dynamics (Noiray et al., 2008).

The flame transfer function, for a given combustor and flow configura-
tion, can be determined either using experiments (Æsøy et al., 2020) where
acoustic forcing is applied or using high-resolution forced CFD compu-
tations in combination with advanced system identification methods (Tay
Wo Chong et al., 2010). Once determined, these transfer functions act as the
source term to the equations which govern the generation and propaga-
tion of acoustic disturbances in a combustor domain (the linearized Euler
or Navier–Stokes equations). Under the assumption of an inviscid flow
and zero Mach number for the propagation-stabilized flame, these equa-



10 Introduction

tions reduce to a single wave equation for pressure, also called as the ther-
moacoustic Helmholtz equation (Nicoud et al., 2007):

∇ ·
(

1
𝜌0

∇𝑝′
)
− 1
𝛾𝑝0

𝜕2𝑝′

𝜕𝑡2 = −𝛾 − 1
𝛾𝑝0

𝜕 ¤𝑞′
𝜕𝑡
. (1.7)

The Helmholtz equation, in combination with a flame response model, has
shown great success in computing the linear thermoacoustic modes for a
wide range of combustor configurations (Silva et al., 2013; Orchini et al.,
2020; Buschmann et al., 2020). To determine the thermoacoustic stability
eigenvalues, Equation (1.7) is first transformed into the frequency domain
by representing the pressure and heat release rate as

𝑝′(x, 𝑡) = 𝑝 (x)𝑒 i𝜔𝑡 . (1.8)

When Equation (1.8) is inserted into Equation (1.7), an eigenvalue problem
for 𝜔 is obtained. The real part of 𝜔 gives the frequency of thermoacoustic
oscillations, and the imaginary part of 𝜔 gives the decay rate of the oscilla-
tions.

Another way to qualitatively deduce the occurrence, or otherwise, of ther-
moacoustic instability in a combustion system is to look at the balance of
acoustic energy. An equation for the acoustic energy in zero Mach number
flows can be written as (Poinsot and Veynante, 2005)

𝜕

𝜕𝑡

(
1
2
𝜌0u’ · u’ + 1

2
𝑝′2

𝜌0𝑐
2
0

)
+ ∇ · (𝑝′u′) = 𝛾 − 1

𝛾𝑝0
𝑝′ ¤𝑞′, (1.9)

which is applicable at every point in the combustor. A global criterion
can be obtained by integrating Equation (1.9) over the entire combustor
volume. Applying this integration to Equation (1.9) and using the diver-
gence theorem of Gauss results in

𝜕

𝜕𝑡

∫
𝑉

(
1
2
𝜌0u’ · u’ + 1

2
𝑝′2

𝜌0𝑐
2
0

)
𝑑𝑉 +

∫
𝐴

𝑝′u′ · n𝑑𝐴 =

∫
𝑉

𝛾 − 1
𝛾𝑝0

𝑝′ ¤𝑞′𝑑𝑉 . (1.10)

Equation (1.10) suggests that the time rate of change of acoustic energy in
a combustor is due to two reasons. First, due to the flux of the acoustic
energy across the boundaries, and second, due to the volumetric produc-
tion of acoustic energy due to unsteady combustion. Since Equation (1.10)
is also time-dependent, it is common to also integrate all terms over one
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period of the acoustic oscillation to give a global criterion of thermoacous-
tic instability for a given combustor. Combustion will be unstable if

𝛾 − 1
𝛾𝑝0

∫
𝑉

1
𝜏

∫ 𝜏

0
𝑝′ ¤𝑞′𝑑𝑡𝑑𝑉 >

∫
𝐴

1
𝜏

∫ 𝜏

0
𝑝′u′ · n𝑑𝑡𝑑𝐴. (1.11)

To summarize, combustion instabilities are a consequence of a coupled
feedback loop involving the burner, flame front, combustion chamber and
the fuel/air supply. Unsteady heat release rate perturbations associated
with the flame generate acoustic waves (Strahle, 1971), which propagate
upstream and downstream and get reflected by the chamber boundaries
and perturb the flame. If the heat release rate and pressure perturbations
constructively interfere such that the driving term is greater than the flux
of the acoustic energy at the boundaries [Equation (1.11)], an instability is
favoured. In this established framework of understanding, thermoacoustic
instability is thought of as the coupling between the flame dynamics and
the resonant acoustic modes of the combustion chamber. Therefore, in-
stability cannot be established in a system with fully non-reflecting bound-
aries.

The pivotal works of Hoeijmakers et al. (2014), Emmert et al. (2015) and
Bomberg et al. (2015) showed that thermoacoustic instabilities can be es-
tablished even in a system with fully non-reflecting boundaries. The fun-
damental mechanism for these ‘flame-intrinsic’ thermoacoustic instabilit-
ies can be deduced by going back to Figure 1.4. The block ‘combustion
chamber’ represents the reflection of the flame-generated acoustic disturb-
ances which consequently create velocity oscillations locally at the flame
and at the fuel-injector or the swirler. However, it is easy to deduce that
these velocity oscillations can also be created due to the upstream traveling
acoustic disturbances generated by the flame and do not essentially require
reflection from the boundaries. Therefore, upstream-traveling acoustic dis-
turbances generated by the flame can perturb the fuel-injection system or
perturb the shear layers resulting in equivalence ratio and vorticity fluctu-
ations which convect to the flame and create a flame response, which closes
the feedback loop. This intrinsic thermoacoustic (ITA) feedback mechan-
ism will be the primary focus of this work.

1.3 Intrinsic thermoacoustic (ITA) feedback
This section serves to introduce the reader to intrinsic thermoacoustic feed-
back. The ITA feedback is schematically depicted in Figure 1.5 for a velocity-
sensitive propagation-stabilized flame. The ITA feedback occurs as a res-
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rate fluctuations 
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𝑝2

𝑝3
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Figure 1.5: ITA feedback for a velocity-sensitive propagation-stabilized flame.
Adapted from Paschereit et al. (2001).

𝑆𝑖𝑗 𝑅2𝑅1

𝑓1

𝑔1

𝑓2

𝑔2

FlameUpstream 
boundary

Downstream 
boundary

Figure 1.6: Block diagram of a simple thermoacoustic system consisting of a flame
and the boundaries. Adapted from Hoeijmakers et al. (2014).

ult of interactions between the upstream-traveling acoustic disturbances
generated by the unsteady flame and the flame response, in turn, created
by the velocity oscillations induced by these disturbances. The presence
of intrinsic thermoacoustic modes are now shown, via a simple analytical
framework, for an elementary thermoacoustic system consisting of a flame
and the boundaries (see Figure 1.6). Much of the material presented in this
section is adapted from Hoeijmakers et al. (2014) and Emmert et al. (2015)
with minor deviations with regards to the nomenclature.

The simple thermoacoustic system that we consider is depicted in Fig-
ure 1.6. The system is composed of the flame, which is characterized by
the scattering matrix. The scattering matrix relates the emanating charac-
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teristics to the incident characteristics, and can be written as
𝑓2

𝑔1

 =


𝑆11 𝑆12

𝑆21 𝑆22



𝑓1

𝑔2

 , (1.12)

where 𝑓 = 1
2 (𝑝

′ + 𝜌0𝑐0𝑢
′) denotes the downstream propagating character-

istic, and 𝑔 = 1
2 (𝑝

′ − 𝜌0𝑐0𝑢
′) denotes the upstream propagating character-

istic. In addition, the upstream and downstream boundaries are character-
ized by the reflection coefficients which relate the reflected to the incident
wave:

𝑓1 = 𝑅1𝑔1,

𝑔2 = 𝑅2 𝑓2.
(1.13)

Equations (1.12) and (1.13) can be combined to form the matrix equation
for the complete system as

−1 𝑅1 0 0

0 0 −𝑅2 1

𝑆11 0 −1 𝑆12

𝑆21 −1 0 𝑆22





𝑓1

𝑔1

𝑓2

𝑔2


= 0. (1.14)

For non-trivial solutions, the determinant of the matrix in Equation (1.14)
should be zero, which gives the thermoacoustic eigenmodes of the com-
plete system. In the following, however, our main interest is in the in-
trinsic thermoacoustic sub-system of Figure 1.6, which is only composed
of the flame and the associated acoustic waves propagating upstream and
downstream. Therefore, our main focus only lies in the scattering matrix
[Equation (1.12)] which relates the outgoing characteristics to the incoming
characteristics associated with only the burner and flame.

To investigate the occurrence of intrinsic thermoacoustic modes, a one-
dimensional flame placed in a combustor with fully non-reflecting bound-
aries is considered in Figure 1.7. As such, Figure 1.7 represents a generic
one-dimensional flow at non-negligible values of Mach numbers where hot
spots created at the unsteady flame are convected with the mean flow. In
the limit of vanishing Mach number, the flow, at least in the sense of acous-
tic wave propagation, is treated as frozen and only acoustic waves travel
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𝐿1𝐿2

𝑔2

𝐿5

ignition front𝑝0, 𝑢0, 𝑇0, 𝜌0

𝑋ig0𝑥

1 2

𝑓1

ℎ1
ℎ2

𝑔1 𝑓2

Figure 1.7: Schematic of the one-dimensional combustor used for all computa-
tions in the present work. The various waves propagating in the domain are
shown. The green box shows the waves nomenclature adopted in the NSCBC
formulation. Waves coloured in black are acoustic, while the ones coloured in red
are entropic.

upstream and downstream (Bauerheim et al., 2015). At this low Mach
number limit, the equations governing the propagation and generation of
acoustic waves across the flame are given by (Kopitz and Polifke, 2008):

𝑝′2
𝜌02𝑐02

= Z
𝑝′1

𝜌01𝑐01
,

𝑢′2 = 𝑢′1 + \𝑢01
¤𝑄 ′

¤𝑄0
,

(1.15)

where the subscript ‘1′ represents quantities in the unburnt side, and the
subscript ‘2′ denotes quantities in the burnt side. The fluctuations are de-
noted by the primed ()′ symbols and the mean quantities are denoted by
the ()0 symbols. Additionally, Z = 𝜌01𝑐01/𝜌02𝑐02 denotes the ratio of spe-
cific impedances, and \ = 𝑇02/𝑇01 − 1 denotes the dimensionless increase in
temperature. At low Mach numbers, we can relate \ and Z as

\ = Z 2 − 1. (1.16)

Equation (1.15) is a direct consequence of the linearization of the 1D mo-
mentum and energy balance Rankine–Hugoniot jump conditions for a sta-
tionary heat source at low Mach numbers. The mass balance equation
is relevant only for non-negligible Mach numbers as shown in the work
of Bauerheim et al. (2015), and is therefore neglected in the present scen-
ario. The pressure and velocity fluctuations in Equation (1.15) are obtained
from the acoustic wave ansatz (Dowling, 1995).
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In region 1:

𝑝′1(𝑥, 𝑡) = ei𝜔𝑡
(
𝑓1e−i𝜔𝑥/(𝑐01+𝑢01 ) + 𝑔1ei𝜔𝑥/(𝑐01−𝑢01 )

)
,

𝑢′1(𝑥, 𝑡) = ei𝜔𝑡
(

𝑓1

𝜌01𝑐01
e−i𝜔𝑥/(𝑐01+𝑢01 ) − 𝑔1

𝜌01𝑐01
ei𝜔𝑥/(𝑐01−𝑢01 )

)
.

(1.17)

In region 2:

𝑝′2(𝑥, 𝑡) = ei𝜔𝑡
(
𝑓2e−i𝜔 (𝑥−𝑙 )/(𝑐02+𝑢02 ) + 𝑔2ei𝜔 (𝑥−𝑙 )/(𝑐02−𝑢02 )

)
,

𝑢′2(𝑥, 𝑡) = ei𝜔𝑡
(

𝑓2

𝜌02𝑐02
e−i𝜔 (𝑥−𝑙 )/(𝑐02+𝑢02 ) − 𝑔2

𝜌02𝑐02
ei𝜔 (𝑥−𝑙 )/(𝑐02−𝑢02 )

)
,

(1.18)

where the characteristic waves 𝑓1 and 𝑔1 are measured at the combustor
inlet (𝑥 = 0), and the characteristic waves 𝑓2 and 𝑔2 are measured at the
combustor exit (𝑥 = 𝑙). The final piece of the puzzle is to relate the heat re-
lease rate perturbations in Equation (1.15) to the characteristic waves. This
is done using Equation (1.6), where the heat release rate perturbations are
related to the velocity perturbations just upstream of the flame with a fre-
quency dependent function ℱ. Equations (1.17) and (1.18) evaluated at the
mean flame location (𝑥 = 𝑋ig0) together with Equation (1.6) are substituted
into Equation (1.15) to give

𝑒
−i𝜔 (𝑋ig0−𝑙 )/(𝑐02+𝑢02 )

𝜌02𝑐02
−Z 𝑒

i𝜔𝑋ig0/(𝑐01−𝑢01 )

𝜌01𝑐01

𝑒
−i𝜔 (𝑋ig0−𝑙 )/(𝑐02+𝑢02 )

𝜌02𝑐02
(1 + \ℱ) 𝑒

i𝜔𝑋ig0/(𝑐01−𝑢01 )

𝜌01𝑐01



𝑓2

𝑔1


=


Z 𝑒

−i𝜔𝑋ig0/(𝑐01+𝑢01 )

𝜌01𝑐01
−𝑒

i𝜔 (𝑋ig0−𝑙 )/(𝑐02−𝑢02 )

𝜌02𝑐02

(1 + \ℱ) 𝑒
−i𝜔𝑋ig0/(𝑐01+𝑢01 )

𝜌01𝑐01

𝑒
i𝜔 (𝑋ig0−𝑙 )/(𝑐02−𝑢02 )

𝜌02𝑐02



𝑓1

𝑔2

 .
(1.19)

The scattering matrix associated with the flame can be obtained from equa-
tion (1.19) by multiplying both sides by the inverse of the matrix in the
LHS. This process reveals that all the elements of the scattering matrix have
a common set of poles (𝑠), which are obtained by solving the dispersion re-
lation

1 + Z + \ℱ(𝑠) = 0, (1.20)
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where 𝑠 is the Laplace variable, which can be related to 𝜔 as 𝑠 = i𝜔 .

The poles of the scattering matrix are very important for the ITA feedback
because, from Equation (1.12), at these frequencies an infinitesimal forcing
applied onto the system (either by the wave 𝑓1 or 𝑔2, for example) creates
significantly large system responses. This means that an internal resonance
happens within the system at that frequency. In other words, the applied
forcing resonates with the ITA mode leading to large system responses. In-
deed, the works of Hoeijmakers et al. (2014) and Bomberg et al. (2015) have
shown that the poles of the scattering matrix are the eigenvalues associated
with the intrinsic thermoacoustic feedback.

Equation (1.20) can be analytically solved for 𝑠 by assuming a simple 𝑛 − 𝜏
model for the flame response given by ℱ = 𝑛𝑒−𝑠𝜏 , which yields the poles

𝑠 =
1
𝜏

ln
(
𝑛\

1 + Z

)
+ i

(2𝑘 + 1)𝜋
𝜏

, (1.21)

where 𝑘 is the set of integers 0, 1, 2, · · ·

Therefore, from Equation (1.21), intrinsic thermoacoustic instability is ex-
pected to occur if Re(𝑠) > 0, which gives the limiting condition for the
flame response gain as

𝑛 >
1 + Z
\

, (1.22)

which implies that the ITA mode is unstable if the flame response gain
reaches above a certain critical value.

Next, we discuss the importance of intrinsic thermoacoustic feedback for
autoignition fronts. Autoignition fronts reside at locations in the combus-
tor where the ignition time of the reactant mixture is equal to the resid-
ence time. Unlike the case of a propagating flame where the advection–
diffusion–reaction balance governs the flame position to leading order, the
balance between the advective and the chemical time scales governs the
location of an autoignition front. In Figure 1.7, which depicts an autoigni-
tion front stabilized in a one-dimensional combustor, the ignition location
(𝑋ig0) is given by the balance

𝜏ig = 𝜏res, (1.23)

where 𝜏res is the residence time, and 𝜏ig is the mixture ignition time. Typ-
ical ignition times of vitiated hydrogen–air mixtures at reheat conditions
are usually very small, i.e., of the order of a few milliseconds or less. At
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these conditions, mean flow velocities of the order of a few hundred m/s
are required to maintain the ignition front at desirable locations inside
the combustor, which correspond to non-negligible values of Mach num-
bers (0.25 − 0.3). At such finite values of Mach numbers, the normalized
pressure and temperature fluctuations have comparable magnitudes to the
normalized velocity oscillations [Equation (1.3)]. The pressure and tem-
perature oscillations induced by the upstream-traveling acoustic waves
modulate the chemical kinetic processes associated with spontaneous igni-
tion, which modulates the ignition time of the reactant mixture, and there-
fore the ignition front position, over one cycle of acoustic forcing. The
fluctuations in the ignition front position create significant oscillations in
the global and local heat release rate (Gant et al., 2020b; Gopalakrishnan
et al., 2021), which in turn induces upstream-traveling acoustic disturb-
ances (Chen et al., 2016), thereby closing the feedback loop.

Figure 1.8(a) plots the variation of the ignition time (𝜏) of a reactant mixture
with temperature (𝑇 ). A constant-pressure reactor calculation in Cantera
(Goodwin et al., 2022) with static variations in temperature is used to gen-
erate Figure 1.8(a). As expected, an increase in temperature accelerates the
ignition chemistry and results in a decrease in ignition time. A parameter
(𝜓 ) can now be defined to quantify the sensitivity of the ignition time to
small changes in temperature as:

𝜓 (𝑇0) =
(𝜕𝜏/𝜕𝑇 )𝑇0

𝜏0/𝑇0
. (1.24)

In the preceding equation, a small change in temperature 𝛿𝑇 centered over
a temperature 𝑇0 results in a small change in ignition time 𝛿𝜏 centered
around an ignition time 𝜏0. The quantity𝜓 , which is plotted in Figure 1.8(b),
measures the relative change in ignition time induced by a change in tem-
perature. Figure 1.8(b) shows that in the band of temperatures between
950 to 1000 K, small changes in reactant temperatures (created by an acous-
tic wave, say) result in much larger changes in the mixture ignition time,
which leads to significant oscillations in the ignition front position and
heat release rate, potentially driving intrinsic thermoacoustic oscillations.
Therefore, intrinsic thermoacoustic feedback can be quite important for
autoignition fronts, given that small changes in temperature and pressure
can significantly change the ignition front position and heat release rate by
perturbing the ignition chemistry. In the context of Equation (1.22) applied
to an autoignition front modeled by an 𝑛 − 𝜏 transfer function, due to the
high sensitivity of the ignition time of the autoigniting reactant mixture to
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Figure 1.8: (a) Variation of the ignition time of a hydrogen–air mixture with tem-
perature. The equivalence ratio of the reactant mixture is 0.12, which corresponds
to the mass fractions: 𝑌H2 = 0.0028, 𝑌O2 = 0.1832, 𝑌H2O = 0.0518 and 𝑌N2 = 0.7622.
(b) Sensitivity of the ignition time to small changes in temperature. The inset in
(b) shows the frequency and growth rate of the ITA oscillations of the autoignition
front with varying inlet reactant temperature. The mass fractions and the temper-
ature range chosen is typical of reheat combustor conditions (Aditya et al., 2019),
and the pressure is 1 atm.

temperature fluctuations, the critical gain could be easily attained, thus,
favouring intrinsic thermoacoustic instability. The inset in Figure 1.8(b)
plots the frequency and growth rate of the ITA oscillations associated with
the autoignition front obtained from a reactive Euler equation computation
where the mean temperature of the reactant mixture at the inlet is varied
as a parameter. It can be clearly seen that the autoignition front tends to be
progressively less-stable, in an intrinsic thermoacoustic sense, as the mean
temperatures approach the maxima of the𝜓 vs 𝑇 curve.

The acoustic–flow–flame interactions causing the ITA feedback in autoigni-
tion fronts is schematically depicted in Figure 1.9, which represents the sig-
nal flow graph of an active flame placed in an anechoic environment. This
signal flow graph is inspired by similar ones constructed for propagation-
stabilized flames by Emmert et al. (2015) and Bomberg et al. (2015). The
configuration considered is a simplified one-dimensional combustor (Fig-
ure 1.7) with reactants entering the inlet at a sufficiently high temperature,
resulting in autoignition at some location 𝑋ig0 downstream. The boundar-
ies are perfectly non-reflecting and acoustic (𝑓1, 𝑔2) and entropy (ℎ1) forcing
are applied at the inlet (𝑓1, ℎ1) and the exit (𝑔2). The autoignition front, cre-
ating a jump in temperature, reflects and transmits these waves which ap-
pear as outgoing waves 𝑔1 at the inlet and 𝑓2, ℎ2 at the exit. In addition, the
autoignition front responds unsteadily to the imposed forcing resulting in
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Figure 1.9: Signal flow graph of an active flame in an acoustic environment with
no reflection from the boundaries. Each block represents a frequency dependent
transfer function relating the output to the input. The intrinsic thermoacoustic
feedback loop is represented by the dashed lines composed of: the upstream-
traveling (𝑔1) wave modifying the flow, the flame response to the 𝑔1 wave - 𝒢,
and the unsteady flame response generating a 𝑔1 wave - 𝒮𝑔1.

heat release rate ( ¤𝑄 ′) and ignition front position (𝑋 ′
ig) fluctuations, which

act as sources of sound and also contribute to the outgoing acoustic and
entropy waves.

Returning to Figure 1.9, it is to be noted that for the sake of compactness,
the entropy wave imposed at the inlet is assumed to be zero. This does not
change the dynamics of the ITA feedback, and is done purely to make the
signal flow graph more presentable. Each of the blocks in Figure 1.9 rep-
resent a frequency dependent transfer function relating the output to the
input. The outgoing waves are generated, partly, by the transmission and
reflection of the imposed acoustic and entropy waves due to the change
in acoustic impedance associated with the ignition front. For example, the
𝑔1 wave is created by the reflection of the wave 𝑓1 via the transfer func-
tion 𝑅1 and transmission of the wave 𝑔2 via the transfer function 𝑇1. In
addition to this mechanism, the waves 𝑓1 and 𝑔1 introduce temperature,
pressure and velocity perturbations in the unburnt reactant mixture, mod-
ulating the ignition chemistry and the front kinematics, thereby creating
harmonic heat release rate ( ¤𝑄 ′) and flame position (𝑋 ′

ig) fluctuations via
the flame response functions ℱ and 𝒢. Finally, these heat release rate and
front position fluctuations associated with an autoignition front also gen-
erate outgoing acoustic and entropy waves 𝑓2, 𝑔1 and ℎ2 via the transfer
function 𝒮𝑓 2,𝒮𝑔1 and 𝒮ℎ2. Thus, we have the intrinsic thermoacoustic feed-
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back loop, shown in dashed lines in Figure 1.9, consisting of the 𝑔1 wave
modifying the flow and creating a flame response via 𝒢 and the unsteady
flame generating a 𝑔1 wave via 𝒮𝑔1.

To summarize, unstable thermoacoustic oscillations due to the ITA feed-
back, if manifested in a reheat stage of the sequential combustor, can lead
to severe performance losses and impact the stable operation of the com-
bustion system. Therefore, it is vital to get insight into these intrinsic ther-
moacoustic oscillations and develop modeling tools to enable prediction of
these oscillations, which is the main aim of this work. Section 1.4 presents
the current state of the art with respect to thermoacoustic modeling of re-
heat combustors, and Section 1.5 lists the main objectives of the present
work.

1.4 Current state of the art
Prior studies related to thermoacoustic modeling of reheat combustors can
be broadly subdivided into two categories: (i) detailed high-resolution
CFD computations and experiments on reheat combustor configurations,
and (ii) analytical physics based modeling studies on simplified reheat
combustor configurations. First, the studies falling in category (i) are briefly
discussed.

Bothien et al. (2019a) considered the autoignition-stabilized flame in a com-
bustor geometry consisting of a backwards-facing step mimicking the An-
saldo Energia GT36 gas turbine (Pennell et al., 2017). Large eddy simula-
tions (LES) were performed by forcing the autoignition front by velocity,
pressure and temperature fluctuations at the domain boundaries. The full
3x3 transfer matrix relating the pressure, velocity and temperature fluctu-
ations across the flame front was determined. A key result from this study
was the importance of pressure and temperature fluctuations in describ-
ing the flame dynamics. The classical method of expressing the fluctuating
heat release rate of the ignition front to the velocity fluctuations [Equa-
tion (1.6)] was not found to be sufficient, and the importance of temper-
ature and pressure fluctuations was established. Additionally, the heat re-
lease response of the flame was found to be highly sensitive to temperature
and pressure perturbations, while being relatively insensitive to velocity
fluctuations.

Schulz and Noiray (2018) studied the response of an autoignition front sta-
bilized in the second stage of a sequential combustor to temperature per-
turbations using LES computations. Their computations revealed that the
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flame response was extremely sensitive to operating conditions and forcing
amplitudes. Furthermore, they observed the formation of local autoigni-
tion kernels in the upstream mixing section, which convect downstream
to the ignition front and result in a sudden increase in the heat release
rate. This mechanism was identified as the primary reason for the non-
linear flame response behaviour of the autoignition front. In a separate
study, Schulz et al. (2019) also showed the occurrence of thermoacoustic
oscillations in a sequential combustor system. The thermoacoustic oscil-
lations were attributed to the modulation of the inlet temperature at the
reheat stage by the acoustic and convected entropy disturbances, which
resulted in significant flame front oscillations.

Gruber et al. (2021) performed detailed and comprehensive DNS compu-
tations on autoignition fronts at laminar and turbulent conditions. They
investigated the effect of varying temperature, pressure, velocity and equi-
valence ratio on the flame stability and the initial ignition process of hy-
drogen autoignition fronts. One key aspect to note in their work was the
occurrence of self-excited thermoacoustic oscillations associated with the
autoignition front at certain conditions. A hypothesis involving the modu-
lation of the inlet temperature by the flame generated acoustic waves was
proposed to be the reason for this unsteady flame behaviour.

Experiments performed at TU Munich by McClure et al. (2022) on a re-
heat combustor rig observed the occurrence of two high-frequency trans-
verse thermoacoustic modes. The first mode, which happened at a fre-
quency of 1600 Hz, was mainly attributed to the reactive shear layer modu-
lation by the acoustically induced vortex shedding. Conversely, the second
mode, which occurred at 3000 Hz, exhibited limit cycle oscillations and
was driven by the modulation of the autoignition delay time by the acous-
tic perturbations.

The preceding studies demonstrated that even in simple laboratory scale
burners, thermoacoustic instability resulting from autoignition front and
acoustic wave interaction mechanisms can be very important, and there-
fore, should be understood and modeled in greater detail. This leads us to
a discussion on studies which attempted to model and predict reheat flame
dynamics.

Most of the studies performed to date on modeling of reheat flame dy-
namics focused on simplified reheat combustor geometries. Indeed, most
of the studies that will be presented in the next paragraph focused on the
one-dimensional configuration of Figure 1.7, which consists of a perfectly
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premixed reactant mixture undergoing spontaneous ignition downstream.
The beauty of this configuration is that it allows us to study the mechanism
of flame-acoustic interactions without the complexity of hydrodynamic in-
stabilities, equivalence ratio oscillations, multi-dimensional effects, and so
on. In other words, the one-dimensional configuration allows us to un-
derstand the mechanisms by which acoustic waves modify the chemical
kinetic processes involved in spontaneous ignition and result in unsteady
flame response. In addition, detailed chemical kinetic schemes can be used
to study the flame dynamics without much worry about computational
costs.

The earliest attempt to model the response of an autoignition-stabilized
flame to acoustic waves was performed by Zellhuber et al. (2014), who
treated the one-dimensional flow in Figure 1.7 as a series of independently
evolving fluid particles and derived an analytical expression for the heat
release response of the autoignition front to acoustic pressure perturba-
tions. Recently, Gant et al. (2020b) extended this model to entropy waves.
Results in Gant et al. (2020b) and Gant et al. (2020a) showed that this model
was able to predict, with excellent accuracy, the unsteady ignition front be-
haviour observed in 1D DNS computations, and was also able to predict,
with good accuracy, the autoignition front transfer function in the full-scale
GT26 engine. A key aspect to note in these models was that, an analytical
approach was adopted and an exponential model for the ignition time vari-
ation with temperature was assumed, i.e., 𝜏 = 𝜏0𝑒

𝐵𝑇 .

1.5 Objectives
The overarching goal of this thesis is to gain insight into thermoacoustic
phenomena in reheat combustors with autoignition fronts and to develop
predictive modeling tools to efficiently compute the linear thermoacoustic
stability of reheat combustion systems. A variety of thermoacoustic in-
teraction mechanisms as depicted in Figure 1.4 may, either individually
or in combination, cause thermoacoustic instability in a reheat combustor.
In this thesis, however, the focus is mainly placed on the intrinsic ther-
moacoustic interaction mechanism (see Figure 1.9). The aim, therefore, is
to compute and model intrinsic thermoacoustic oscillations in reheat com-
bustion systems. To address this overall objective, four objectives/goals
are proposed to be achieved.

1. To demonstrate the occurrence of intrinsic thermoacoustic oscilla-
tions in a reheat combustor and characterize the linear dynamics of
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Figure 1.10: Schematic of a linear thermoacoustic stability analysis framework.

these oscillations.

In order to meet this objective, a compressible reactive Euler equa-
tion solver, which numerically solves the Euler equations in one-
dimension with detailed chemistry is developed. Forced and un-
forced Euler equation computations are performed to demonstrate
the occurrence of intrinsic thermoacoustic modes in a simplified 1D
reheat combustor configuration (Figure 1.7).

This objective is met through Article 3 and Article 4. In Article 3,
ITA oscillations are demonstrated by unforced flow computations,
and the effect of diffusive effects on these oscillations are studied. In
Article 4, the ITA oscillations are demonstrated and characterized by
using forced flow computations.

2. Develop a simplified framework to compute the unsteady response
of autoignition-stabilized flames to acoustic and convective dis-
turbances.

While detailed flow computations yield valuable insight into ther-
moacoustic phenomena in gas turbine combustors (Staffelbach et al.,
2009), these computations are expensive and require many hours of
compute time. A simplified linear stability analysis tool can be very
useful to get quick and leading-order insight into the occurrence of
thermoacoustic oscillations in a given combustor. Prediction of the
linear stability of thermoacoustic oscillations requires two key ele-
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ments (see Figure 1.10). First, a model for the flame response to
acoustic and convective disturbances, and second, a model for the
combustor acoustics. This objective aims to develop a flame response
model. While separate analytical models have been developed in
the past (Zellhuber et al., 2014; Gant et al., 2020b) to compute the
flame dynamics of autoignition fronts, all these models assume an
exponential dependence of ignition time with temperature, which is
not strictly valid over the entire temperature range (see Figure 1.8a).
Therefore, a numerical framework which is capable of predicting the
flame response to one-dimensional disturbances would be useful in
this regard. This framework could also be easily incorporated into
linearized Navier–Stokes or Euler solvers to predict the thermoacous-
tic stability of the system.

Article 1 and Article 2 address this objective. A numerical frame-
work based on Lagrangian particle tracking is developed to compute
the flame response to acoustic and convective perturbations. This
framework is also validated with one-dimensional DNS and three-
dimensional LES computations. The Lagrangian framework is ap-
plied to a 1D configuration in Article 1 and to a two-dimensional
backward-facing step configuration in Article 2

3. Develop a simplified numerical framework to predict the acoustic
field in reheat combustors with unsteady autoignition fronts.

A simplified model which accurately describes the acoustic field as-
sociated with unsteady autoignition fronts is very essential to pre-
dict the thermoacoustic stability of the system. Acoustic field asso-
ciated with one-dimensional flame fronts have been described using
the Rankine–Hugoniot jump conditions in the past (Dowling, 1995;
Chen et al., 2016; Gant et al., 2022). However, such a model treats the
flame as a discontinuous jump in the mean flow variables and the
detailed spatial variations of the mean flow parameters is not taken
into account. Additionally, both propagation and autoignition fronts
harmonically change their position in response to acoustic and con-
vective disturbances. This results in additional sources of sound due
to gas property fluctuations, which cannot be trivially incorporated
within a Rankine–Hugoniot framework. Therefore, it is essential to
develop a more robust framework to compute the acoustic field gen-
erated by unsteady autoignition fronts.

Article 3 addresses this objective. A time domain linearized Euler
equation (LEE) solver is developed to compute the acoustic field as-
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sociated with unsteady autoignition fronts. This LEE framework is
validated by means of a comparison to forced DNS computations
and is shown to compute the acoustic field in reheat combustors with
good accuracy.

4. Predict the linear intrinsic thermoacoustic modes in a reheat com-
bustor configuration using the simplified frameworks and compare
the predictions with detailed computations.

The simplified frameworks developed to meet the prior objectives
are used to predict the linear stability of the ITA modes associated
with an ignition front in the one-dimensional configuration. Article
4 addresses this objective, where the LEE framework developed to
meet Objective 3 is used to compute the thermoacoustic eigenvalue
of the ITA mode. These predictions are then compared with the Euler
computations revealing a very good match.
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Chapter 2

Computational and theoretical
methods

This section describes the computational and theoretical methods used in
this thesis to meet the objectives listed in Section 1.5. Most of the flow
computations in this work are performed in an Euler equation framework,
which is described in Section 2.1. An analytical expression of the disper-
sion relation governing the linear dynamics of the ITA oscillations is de-
rived in Section 2.2, based on which predictions of the linear stability of
the ITA modes are performed. The simplified frameworks for the flame
response prediction and the acoustic field computation are described in
Sections 2.3 and 2.4, respectively.

2.1 Flow solver: Euler equation framework
The geometrical configuration considered for all flow computations repor-
ted in this thesis is the simplified one-dimensional combustor configur-
ation of Figure 1.7. This configuration is chosen, since the aim is to study
the interaction between acoustic waves and the autoignition front, i.e., how
does the acoustic wave modulate the autoignition chemistry and produce a
self-sustained flame oscillation. In this configuration, the time scales of the
advective and chemical processes are much smaller than the viscous time
scale. Therefore, all computations are performed in an inviscid framework.
Comparison of the Euler and Navier–Stokes computations of autoignition
fronts presented in Articles 3 and 4, revealed very negligible differences.

The Euler equations for an inviscid reacting flow in one-dimension can be

27
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written as (Poinsot and Veynante, 2005)

𝜕𝜌

𝜕𝑡
+ 𝜌 𝜕𝑢

𝜕𝑥
+ 𝑢 𝜕𝜌

𝜕𝑥
= 0,

𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 1
𝜌

𝜕𝑝

𝜕𝑥
= 0,

𝜕𝑝

𝜕𝑡
+ 𝑢 𝜕𝑝

𝜕𝑥
− 𝛾𝜌𝑇 𝜕𝑅

𝜕𝑡
− 𝛾𝜌𝑢𝑇 𝜕𝑅

𝜕𝑥
+ 𝛾𝑝 𝜕𝑢

𝜕𝑥
= −(𝛾 − 1)

𝑛∑︁
𝑖=1

ℎ𝑖MW𝑖 ¤𝜔𝑖 ,

𝜕𝑌𝑖

𝜕𝑡
+ 𝑢 𝜕𝑌𝑖

𝜕𝑥
=

MW𝑖 ¤𝜔𝑖

𝜌
,

(2.1)

where 𝜌,𝑢, 𝑝, 𝑌𝑖 denote the primitive variables density, velocity, pressure
and species mass fraction, respectively. The specific gas constant of the
mixture, temperature and species molecular weight are denoted by 𝑅,𝑇

and MW𝑖 . The subscript ‘𝑖’ denotes the species number, and ¤𝜔𝑖 denotes
the production rate of the 𝑖th species. In writing the above equations, body
forces are neglected and ideal gas behaviour is assumed.

Before discussing the numerical techniques to solve the above set of equa-
tions, the boundary condition formulation is presented. The method of
characteristics is used to impose the boundary conditions for this flow.
This procedure expresses the Euler equations at the boundary points in
terms of the characteristic waves propagating in and out of the domain.
Information about the boundary conditions and the mean flow quantities
to be imposed are communicated to the flow by specifying the incoming
characteristics.

2.1.1 Boundary condition implementation

The Euler equations (2.1) at the boundary points are first written in com-
pact form as

𝜕U
𝜕𝑡

+ A
𝜕U
𝜕𝑥

= S, (2.2)

where U is the vector containing the primitive variables: [𝜌,𝑢, 𝑝, 𝑌𝑖]T, the
second term represents all the terms involving the spatial derivatives, and
S is the vector of the source terms: [0, 0, 𝑆𝑝 , 𝑆𝑌𝑖 ]T of the Euler equations. The
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expanded form of Equation (2.2) reads

𝜕

𝜕𝑡



𝜌

𝑢

𝑝

𝑌𝑖


+



𝑢 𝜌 0 0

0 𝑢 1/𝜌 0

0 𝛾𝑝 𝑢 0

0 0 0 𝑢





𝜕𝜌

𝜕𝑥

𝜕𝑢
𝜕𝑥

𝜕𝑝

𝜕𝑥

𝜕𝑌𝑖
𝜕𝑥


=



0

0

𝑆𝑝

𝑆𝑌𝑖


, (2.3)

where the terms involving the temporal and spatial derivatives of the gas
property (𝑅) in the energy equation are neglected at the boundary points.

Equation (2.2) can be rewritten by employing a similarity transformation
for the matrix A as

𝜕U
𝜕𝑡

+ RΛR−1 𝜕U
𝜕𝑥

= S =⇒ R−1 𝜕U
𝜕𝑡

+ ΛR−1 𝜕U
𝜕𝑥

= R−1S. (2.4)

The matrices listed in Equation (2.4) can be written as

R−1 =



0 1/2 −1/(2𝜌𝑐) 0

1 0 −1/(𝑐2) 0

0 1/2 1/(2𝜌𝑐) 0

0 0 0 1


, Λ =



𝑢 − 𝑐 0 0 0

0 𝑢 0 0

0 0 𝑢 + 𝑐 0

0 0 0 𝑢


(2.5)
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Equation (2.4) can now be written in expanded form as(
𝜕𝑝

𝜕𝑡
− 𝜌𝑐 𝜕𝑢

𝜕𝑡

)
+ (𝑢 − 𝑐)

(
𝜕𝑝

𝜕𝑥
− 𝜌𝑐 𝜕𝑢

𝜕𝑥

)
︸                     ︷︷                     ︸

ℒ1

= 𝑆𝑝︸︷︷︸
𝒮1

,

(
𝑐2 𝜕𝜌

𝜕𝑡
− 𝜕𝑝

𝜕𝑡

)
+ 𝑢

(
𝑐2 𝜕𝜌

𝜕𝑥
− 𝜕𝑝

𝜕𝑥

)
︸             ︷︷             ︸

ℒ2

= −𝑆𝑝︸︷︷︸
𝒮2

,

(
𝜕𝑝

𝜕𝑡
+ 𝜌𝑐 𝜕𝑢

𝜕𝑡

)
+ (𝑢 + 𝑐)

(
𝜕𝑝

𝜕𝑥
+ 𝜌𝑐 𝜕𝑢

𝜕𝑥

)
︸                    ︷︷                    ︸

ℒ5

= 𝑆𝑝︸︷︷︸
𝒮5

,

𝜕𝑌𝑖

𝜕𝑡
+ 𝑢 𝜕𝑌𝑖

𝜕𝑥︸︷︷︸
ℒ𝑌𝑖

= 𝑆𝑌𝑖︸︷︷︸
𝒮𝑌𝑖

.

(2.6)

Under the variable transformation R−1𝑑U = 𝑑W, Equation 2.4 reduces to a
set of advection equations, which can be written compactly as

𝜕W
𝜕𝑡

+ Λ
𝜕W
𝜕𝑥

= R−1S, (2.7)

where W is the vector of characteristic variables, and Λ represents the velo-
cities associated with these characteristics. Equation (2.6) shows that these
characteristics are simply the acoustic and entropy waves propagating at
speeds𝑢−𝑐,𝑢+𝑐 and𝑢, respectively. The final characteristic is the convected
wave which conveys information about the species mass fractions

Equation (2.7) is commonly written in the literature as (Poinsot and Lele,
1992; Sutherland and Kennedy, 2003)

𝜕𝒲𝑗

𝜕𝑡
+ℒ𝑗 = 𝒮𝑗 , (2.8)

where 𝒲𝑗 are the elements of the vector W representing the character-
istic variables, ℒ𝑗 are the characteristic wave amplitudes, and 𝒮𝑗 are the
source terms in the characteristic direction. The characteristic wave amp-
litudes ℒ𝑗 ’s are composed of the upstream-traveling acoustic wave (ℒ1),
the downstream-traveling acoustic wave (ℒ5), the downstream traveling
entropy wave (ℒ2), and the downstream traveling convected wave (ℒ𝑌𝑖 ),
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which conveys information about the species mass fractions. The direction
of propagation of the acoustic and entropy waves (ℒ1,ℒ5 and ℒ2) are de-
picted in Figure 1.7 for a subsonic flow in the positive x-direction. At the
inlet boundary, the acoustic and entropy waves ℒ5 and ℒ2, in addition to
the convected wave ℒ𝑌𝑖 , enter the computational domain from the exterior,
while the acoustic wave ℒ1 travels from the interior of the computational
domain towards the exterior. Similarly, at the exit boundary, the waves
ℒ2,ℒ5 and ℒ𝑌𝑖 leave the computational domain while the acoustic wave
ℒ1 enters it.

For the sake of convenient computational implementation, it is beneficial
to recast Equation (2.6) as

𝜕𝜌

𝜕𝑡
+ 1
𝑐2

(
ℒ2 +

1
2
(ℒ1 +ℒ5)

)
= 0,

𝜕𝑢

𝜕𝑡
+ 1

2𝜌𝑐
(ℒ5 −ℒ1) = 0,

𝜕𝑝

𝜕𝑡
+ 1

2
(ℒ1 +ℒ5) = 𝑆𝑝 ,

𝜕𝑌𝑖

𝜕𝑡
+ℒ𝑌𝑖 = 𝑆𝑌𝑖 .

(2.9)

Implementation of the boundary conditions effectively amounts to solving
Equation (2.9) by specifying the wave amplitudes entering the computa-
tional domain and computing the wave amplitudes leaving the compu-
tational domain using the spatial derivative expressions in Equation (2.6)
and the interior data. Many different types of boundary condition can be
implemented for flows. The reader is referred to Thompson (1987, 1990)
and Poinsot and Lele (1992) for more details. In this thesis, two types of
flow computations are performed: (i) unforced flow computations with
non-reflecting boundary conditions, and (ii) forced flow computations with
non-reflecting boundary conditions. Fully non-reflecting boundary condi-
tions are realized when the time rate of change of the characteristic vari-
ables entering the computational domain are zero (Hedstrom, 1979), i.e.,

𝜕𝒲𝑗

𝜕𝑡
= 0 =⇒ ℒ𝑗 = 𝒮𝑗 , (2.10)

for any wave ℒ𝑗 entering the computational domain.

The wave amplitudes imposed for unforced flow computations are given
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first. At the inlet boundary

ℒ5 = 𝑆𝑝 + 𝜌𝑐
𝜎𝑐 (1 −𝑀2)

𝑙
(𝑢 − 𝑢01𝑡 ),

ℒ2 = −𝑆𝑝 + 𝑐2𝜎𝑐 (1 −𝑀2)
𝑙

(𝜌 − 𝜌01𝑡 ),

ℒ𝑌𝑖 = 𝑆𝑌𝑖 ,

(2.11)

and at the outlet boundary

ℒ1 = 𝑆𝑝 +
[𝑐 (1 −𝑀2)

𝑙
(𝑝 − 𝑝02𝑡 ) . (2.12)

In the above equations, 𝑐 denotes the local speed of sound, 𝑙 denotes the
length of the combustor taken to be 0.3 m for all computations performed
in this work, and 𝑀 represents the local flow Mach number. The second
term in the RHS of Equations (2.11) and (2.12) are relaxation terms which
are imposed to ensure that the mean values of the primitive variables at the
boundary points are close to the target values of inlet velocity (𝑢01𝑡 ), inlet
density (𝜌01𝑡 ) and exit pressure (𝑝02𝑡 ). These terms are added to ensure
that the primitive variables at the boundary point do not drift away too
much from the target values. The parameters 𝜎 and [ control the degree
of non-reflectiveness of the inlet and exit boundaries. Lower the value of 𝜎
and [, more non-reflective are the boundaries.

The wave amplitudes imposed for the forced flow computations are writ-
ten next, following Polifke et al. (2006) and Daviller et al. (2019). Acoustic
and entropy forcing are applied at the inlet boundary by specifying

ℒ5 = 𝑆𝑝 +
{
− 2𝜌𝑐

𝜕𝑢𝑡

𝜕𝑡
+ 𝐾𝜌𝑐 (𝑢 − 𝑢01𝑡 − 𝑢𝑡 − 𝑢−)

}
,

ℒ2 = −𝑆𝑝 +
{
− 𝑐2 𝜕𝜌𝑡

𝜕𝑡
+ 𝐾𝑐2(𝜌 − 𝜌01𝑡 − 𝜌𝑡 − 𝜌− − 𝜌ℒ5)

}
,

ℒ𝑌𝑖 = 𝑆𝑌𝑖 ,

(2.13)

and acoustic forcing is applied at the outlet boundary by specifying

ℒ1 = 𝑆𝑝 +
{
− 2

𝜕𝑝𝑡

𝜕𝑡
+ 𝐾 (𝑝 − 𝑝02𝑡 − 𝑝𝑡 − 𝑝+)

}
, (2.14)

where the terms within the curly braces essentially impose the acoustic and
entropy forcing at the boundaries, and the term involving the source term
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is used to maintain the non-reflective nature of the boundaries (waves ori-
ginating from the interior of the computational domain should leave the
domain unaltered and unreflected). In Equations (2.13) and (2.14), 𝑝𝑡 , 𝑢𝑡
and 𝜌𝑡 represent the target values of the pressure, velocity and density
oscillations induced by the imposed disturbances ℒ1,ℒ5 and ℒ2, respect-
ively. 𝐾 is a parameter representative of an inverse time constant given by
𝜎𝑐 (1 −𝑀2)/𝑙 , where a constant value of 0.5 is used for 𝜎 . It is important to
note that 𝑝𝑡 , 𝑢𝑡 and 𝜌𝑡 only represent the fluctuating quantities associated
with the incoming waves and not the fluctuating values of the primitive
variables themselves at the boundary points. The pressure fluctuations
at the exit boundary, for example, will be the sum of 𝑝𝑡 and the pressure
fluctuation (𝑝+) induced by the downstream traveling acoustic wave ℒ5.
Similarly, the velocity perturbations at the inlet boundary will be the sum
of 𝑢𝑡 and the velocity fluctuation (𝑢−) imposed by the upstream-traveling
acoustic wave ℒ1.

In Equations (2.13) and (2.14), the flow perturbations induced by the acous-
tic waves traveling from the interior of the computational domain towards
the boundaries are determined from a simple time integration as follows
(Daviller et al., 2019)

𝑢− =

∫ 𝑡

0

1
2𝜌𝑐

ℒ1(0, 𝑡)𝑑𝑡,

𝜌− = −
∫ 𝑡

0

1
2𝑐2ℒ1(0, 𝑡)𝑑𝑡,

𝑝+ = −1
2

∫ 𝑡

0
ℒ5(𝑙, 𝑡)𝑑𝑡,

𝜌𝐿5 = −
∫ 𝑡

0

1
2𝑐2ℒ5(0, 𝑡)𝑑𝑡 .

(2.15)

Special care should be taken when performing the numerical integration
in Equation (2.15). This is because, the wave amplitudes traveling from the
interior of the computational towards the boundaries [ℒ1(0, 𝑡) and ℒ5(𝑙, 𝑡)]
are typically computed from the spatial derivative expressions in Equa-
tion (2.6) and can sometimes have non-zero mean values which are small
but finite. These non-zero mean values of the wave amplitudes are not
physical and are numerically induced. When numerically performing the
integration in Equation (2.15), these non-zero mean values cause a drift in
the quantities 𝑢−, 𝜌− and 𝑝+, eventually resulting in a drift in the primitive
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variables at long times. To avoid this problem, the quantities computed
in Equation (2.15) are filtered temporally using a high-pass filter (Daviller
et al., 2019) to remove the spurious drift.

The transfer function (in the 𝑧−domain) of a digital Butterworth filter is
given by

𝑌 (𝑧)
𝑋 (𝑧) =

𝑐0 + 𝑐1𝑧
−1 + 𝑐2𝑧

−2 + · · · + 𝑐𝑁𝑧−𝑁

𝑑0 + 𝑑1𝑧−1 + 𝑑2𝑧−2 + · · · + 𝑑𝑁𝑧−𝑁
, (2.16)

where 𝑋 (𝑧) is the input signal, 𝑌 (𝑧) is the filtered signal, and 𝑁 is the order
of the filter.

Equation (2.16) can be rearranged to

𝑌 (𝑧) = 𝑐0

𝑑0
𝑋 (𝑧) + 𝑐1

𝑑0
𝑧−1𝑋 (𝑧) + 𝑐2

𝑑0
𝑧−2𝑋 (𝑧) + · · · + 𝑐𝑁

𝑑0
𝑧−𝑁𝑋 (𝑧)

−𝑑1

𝑑0
𝑧−1𝑌 (𝑧) − 𝑑2

𝑑0
𝑧−2𝑌 (𝑧) − · · · − 𝑑𝑁

𝑑0
𝑧−𝑁𝑌 (𝑧),

(2.17)

and can be converted to discrete time domain by taking the inverse 𝑧 trans-
form. The discrete time domain form of Equation (2.17) is

𝑦 [𝑛] = 𝑐0

𝑑0
𝑥 [𝑛] + 𝑐1

𝑑0
𝑥 [𝑛 − 1] + 𝑐2

𝑑0
𝑥 [𝑛 − 2] + · · · + 𝑐𝑁

𝑑0
𝑥 [𝑛 − 𝑁 ]

−𝑑1

𝑑0
𝑦 [𝑛 − 1] − 𝑑2

𝑑0
𝑦 [𝑛 − 2] − · · · − 𝑑𝑁

𝑑0
𝑦 [𝑛 − 𝑁 ],

(2.18)

where 𝑥 [𝑛] denotes the value of the input signal at the discrete time instant
𝑛. Without loss of generality, 𝑑0 can be put to 1 which gives

𝑦 [𝑛] = 𝑐0𝑥 [𝑛] + 𝑐1𝑥 [𝑛 − 1] + 𝑐2𝑥 [𝑛 − 2] + · · · + 𝑐𝑁𝑥 [𝑛 − 𝑁 ]
−𝑑1𝑦 [𝑛 − 1] − 𝑑2𝑦 [𝑛 − 2] − · · · − 𝑑𝑁𝑦 [𝑛 − 𝑁 ] .

(2.19)

A second order Butterworth filter with a cutoff frequency of 𝑓𝑐 = 0.1𝑓forcing
is used for all forced response computations in this work. The frequency
domain characteristics of this filter is plotted in Figure 2.1, where it can
be seen that the filter only cuts off the low frequency components and the
gain and phase near the forcing frequency are close to 1 and 0 rad, respect-
ively. The interior flow perturbations calculated using Equations (2.15) are
filtered at each time step using Equation (2.19) to eliminate the spurious
low-frequency drift.

Therefore, the Euler equations at the interior points [Equation (2.1)] to-
gether with the boundary conditions [Equation (2.9)], along with the wave
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Figure 2.1: (a) Gain and (b) phase characteristics of the high pass filter used for all
the forced flow computations in this work.

amplitude expressions [Equations (2.11) and (2.12) or Equations (2.13) and
(2.14)], and the interior flow perturbations [Equation (2.15)] are solved nu-
merically to determine the evolution of the reacting flow in time. The nu-
merical method used to solve these equations is presented next.

2.1.2 Numerical method

The main objective of the flow computations performed in this work is
to understand the interactions between the acoustic perturbations and the
autoignition front. Therefore, the numerical scheme that we employ should
both capture the propagation of acoustic waves and handle the rapid spa-
tial variations in the flow quantities due to combustion. Finite volume
schemes are highly effective in capturing rapid variations in flow quant-
ities caused, for example, by flames or shocks (LeVeque, 2002). However,
these schemes are highly dissipative and do not capture the propagation
of acoustic waves with high accuracy. Finite difference schemes, on the
contrary, are very effective in capturing the propagation of acoustic waves
but give rise to numerical instabilities when used to compute flames and
shock waves (Tam, 2012). These numerical instabilities arise in the com-
puted solution in the form of high wave number oscillations, which even-
tually contaminate the entire solution. However, previous research on
these spurious high wave number oscillations have shown that they can be
avoided with proper application of a spatial filter (Kennedy and Carpenter,
1994), or by adding artificial damping terms to the discretized form of the
equations (Tam, 2012). Therefore, for its effectiveness in computing wave
propagation problems and for its ease of computational implementation,
we chose a finite difference scheme for the flow solver.
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The dispersion relation preserving scheme originally proposed by Tam
et al. (1993) is used in this work. The scheme was initially designed for
computational aeroacoustics problems, and is fourth-order accurate in the
spatial dimension and second-order accurate in time. The spatial derivat-
ive of any arbitrary function (𝑓 ) at an interior point can be written as

𝜕𝑓

𝜕𝑥
=

1
Δ𝑥

3∑︁
𝑗=−3

𝑎 𝑗 𝑓 (𝑥 + 𝑗Δ𝑥), (2.20)

where the coefficients of the scheme are listed in Table 2.1. Before employ-
ing this numerical scheme for the flow computations, it is first important
to understand the characteristics of the scheme in wave number space. In
other words, it is important to understand how well the scheme computes
the derivative of a wave characterized by a spatial wave number. A few
steps of this process, also referred to as Fourier analysis (Gustafsson, 2007),
is illustrated below.

Table 2.1: Coefficients of the spatial discretization scheme at an interior point

Scheme coefficient Value

𝑎0 0.0

𝑎1 = −𝑎−1 0.79926643

𝑎2 = −𝑎−2 −0.18941314

𝑎3 = −𝑎−3 0.02651995

We assume that the arbitrary function in Equation (2.20) takes the form of
a wave 𝑓 (𝑥) = 𝑓 𝑒𝑖𝑘𝑥 , where 𝑘 is the spatial wavenumber (= 2𝜋/𝜆) char-
acterising the wave. The analytical expression for the first-order spatial
derivative can be written as

𝑑 𝑓

𝑑𝑥
= 𝑖𝑘 𝑓 𝑒𝑖𝑘𝑥 . (2.21)

The continuous variable 𝑥 can be converted to discrete form using 𝑥 𝑗 = 𝑗Δ𝑥 ,
where 𝑗 are the set of positive integers, and Δ𝑥 is the constant grid spacing.
Therefore, the exact value of the spatial derivative of the function 𝑓 at the
grid point 𝑥 𝑗 is

𝑑 𝑓

𝑑𝑥

����
𝑥=𝑥 𝑗

= 𝑖𝑘 𝑓 𝑒𝑖𝑘 ( 𝑗Δ𝑥 ) . (2.22)
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The approximate value of the spatial derivative, computed from the finite-
difference stencil, can be analytically written using Equation (2.20) as

𝑑 𝑓

𝑑𝑥

����num

𝑥=𝑥 𝑗

=
1
Δ𝑥

(
𝑎−3 𝑓 𝑒

𝑖𝑘Δ𝑥 ( 𝑗−3) + 𝑎−2 𝑓 𝑒
𝑖𝑘Δ𝑥 ( 𝑗−2) + 𝑎−1 𝑓 𝑒

𝑖𝑘Δ𝑥 ( 𝑗−1) + 𝑎0 𝑓 𝑒
𝑖𝑘Δ𝑥 ( 𝑗 )

+𝑎1 𝑓 𝑒
𝑖𝑘Δ𝑥 ( 𝑗+1) + 𝑎2 𝑓 𝑒

𝑖𝑘Δ𝑥 ( 𝑗+2) + 𝑎3 𝑓 𝑒
𝑖𝑘Δ𝑥 ( 𝑗+3)

)
.

(2.23)
The preceding equation can be simplified to

𝑑 𝑓

𝑑𝑥

����num

𝑥=𝑥 𝑗

=
1
Δ𝑥

𝑓 𝑒𝑖𝑘 ( 𝑗Δ𝑥 )
(
𝑎−3𝑒

−3𝑖𝑘Δ𝑥 + 𝑎−2𝑒
−2𝑖𝑘Δ𝑥 + 𝑎−1𝑒

−𝑖𝑘Δ𝑥 + 𝑎0

+𝑎1𝑒
𝑖𝑘Δ𝑥 + 𝑎2𝑒

2𝑖𝑘Δ𝑥 + 𝑎3𝑒
3𝑖𝑘Δ𝑥

)
.

(2.24)

We can now express the numerical derivative expression in the form of
Equation (2.22) as

𝑑 𝑓

𝑑𝑥

����num

𝑥=𝑥 𝑗

= 𝑖𝑘 𝑓 𝑒𝑖𝑘 ( 𝑗Δ𝑥 ) , (2.25)

where 𝑘 is the modified wave number given by

𝑘 =
1
𝑖Δ𝑥

(
𝑎−3𝑒

−3𝑖𝑘Δ𝑥 + 𝑎−2𝑒
−2𝑖𝑘Δ𝑥 + 𝑎−1𝑒

−𝑖𝑘Δ𝑥 + 𝑎0

+𝑎1𝑒
𝑖𝑘Δ𝑥 + 𝑎2𝑒

2𝑖𝑘Δ𝑥 + 𝑎3𝑒
3𝑖𝑘Δ𝑥

)
.

(2.26)

The modified wave number can now be written in non-dimensional form
as

𝑘Δ𝑥 =
1
𝑖

(
𝑎−3𝑒

−3𝑖𝑘Δ𝑥 + 𝑎−2𝑒
−2𝑖𝑘Δ𝑥 + 𝑎−1𝑒

−𝑖𝑘Δ𝑥 + 𝑎0

+𝑎1𝑒
𝑖𝑘Δ𝑥 + 𝑎2𝑒

2𝑖𝑘Δ𝑥 + 𝑎3𝑒
3𝑖𝑘Δ𝑥

)
.

(2.27)

The variation of the non-dimensional modified wave number for the DRP
scheme is plotted in Figure 2.2. The 𝑥-axis is in the range [0 , 𝜋], since the
lowest wavelength that can be captured in a grid with a spatial resolution
of Δ𝑥 is 2Δ𝑥 . The ideal finite difference scheme is expected to have the
behavior 𝑘Δ𝑥 = 𝑘Δ𝑥 over a significant range of wave numbers. The DRP
scheme exhibits this nature over the range of small wave numbers (long
waves), but fails to capture the correct wave propagation for short waves.
However, the DRP scheme performs exceptionally well in comparison to
the classical second-order central scheme.
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Figure 2.2: Modified wave number for the DRP scheme.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

3.5

4

(a)

0 0.5 1 1.5 2 2.5 3

-1

0

1

2

3

4

5

6

(b)

Figure 2.3: Modified wave number for the boundary stencils of the DRP scheme.
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At the boundary points of the computational domain, one-sided seven
point stencils are used to approximate the derivatives. The coefficients of
these stencils are given in Tam (2012) and are not repeated here. As an
example, the approximation of the derivative at the first grid point can be
written as

𝑑 𝑓

𝑑𝑥

����bdy

𝑥=𝑥 𝑗

=
1
Δ𝑥

(
𝑎0 𝑓𝑗 + 𝑎1 𝑓𝑗+1 + 𝑎2 𝑓𝑗+2 + 𝑎3 𝑓𝑗+3 + 𝑎4 𝑓𝑗+4 + 𝑎5 𝑓𝑗+5 + 𝑎6 𝑓𝑗+6

)
, (2.28)

where 𝑗 = 0 for the first grid point. The modified wave number for the
boundary stencil is plotted in Figure 2.3. Unlike the modified wavenum-
ber of the symmetric interior stencil, which is purely real (Figure 2.2), the
boundary stencil also has an imaginary part. However, longitudinal com-
bustion instabilities are usually characterized by long waves. In this re-
gime, the imaginary part of the boundary stencil is close to zero and the
real part is equal to 𝑘Δ𝑥 , as desired.

For marching the governing equations in time, the following multi-level
time stepping scheme proposed by Tam et al. (1993) is used.

U𝑛+1 = U𝑛 + Δ𝑡
3∑︁
𝑗=0

𝑏 𝑗

(
𝜕U
𝜕𝑡

)𝑛− 𝑗

, (2.29)

where U is the vector of the primitive variables, the superscript 𝑛 − 𝑗 de-
notes the time level, and 𝑏 𝑗 are the coefficients of the time-stepping scheme,
which are listed in Table 2.2. The quantity 𝜕U/𝜕𝑡 at any time level is ob-
tained from the governing equations and boundary conditions, and is com-
posed of the terms involving spatial derivatives and source terms.

Table 2.2: Coefficients of the time-stepping scheme

Scheme coefficient Value

𝑏0 2.3025580888383

𝑏1 −2.4910075998482

𝑏2 1.5743409331815

𝑏3 −0.3858914221716
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2.1.3 Spatial filtering

In well resolved computations, numerical errors are mainly introduced at
high wave numbers. This is apparent from Figure 2.2, where it is observed
that the derivative operator has no resolution at 𝑘Δ𝑥 = 𝜋 . Nonlinear in-
teractions between these unresolved waves generates high wave number
information, which eventually contaminates the entire solution (Kennedy
and Carpenter, 1994). From the personal experience of the author, numeric-
ally induced spurious (high wave number) oscillation is probably the worst
nightmare of the CFD solver developer. During the course of the computa-
tion, grid to grid oscillations appear, seemingly out of nowhere, and in just
a matter of a few hundred time steps contaminates and ruins the computed
solutions.

Kennedy and Carpenter (1994) propose an ingenious method to remove
these high wave number components from the solution. The analysis is
performed in the wave number space. The idea proposed by Kennedy
and Carpenter (1994) is to multiply the computed solutions every few time
steps by a quantity, which, when transformed to the wave number space,
should cutoff all high wave number components of the solution and retain
only those components at low wave numbers.

The proposed filter functions have the form

𝐹 (𝜉) = 1 − sin2𝑛
(
𝜉

2

)
, (2.30)

where 𝜉 = 𝑘Δ𝑥 is the Fourier variable (non-dimensional wave number),
and 𝐹 is the filter function. The filter function 𝐹 is plotted in Figure 2.4 for
varying values of 𝑛 from 1 to 5. As desired, the value of the function is 1 for
low wave numbers and goes to zero at higher wave numbers. Additionally,
at higher values of 𝑛, the filter preserves the information over a longer
range of low wave numbers.

Filters with the mathematical form given by Equation (2.30) in Fourier
space can be realized in physical space by performing the following op-
eration on the discrete function 𝑓𝑗

D{𝑓𝑗 } = Υ𝑓𝑗 + 𝑎(𝑓𝑗+1 + 𝑓𝑗−1) + 𝑏 (𝑓𝑗+2 + 𝑓𝑗−2) + 𝑐 (𝑓𝑗+3 + 𝑓𝑗−3) + · · · . (2.31)

The above operation in the physical space on the function 𝑓𝑗 = 𝑓 𝑒𝑖𝑘 ( 𝑗Δ𝑥 ) can
be transformed to wave number space resulting in a multiplicative factor

Υ + 2𝑎 cos(𝜉) + 2𝑏 cos(2𝜉) + 2𝑐 cos(3𝜉) + · · · . (2.32)
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Figure 2.4: Transfer function of the spatial filter of Equation (2.30) for varying 𝑛.

When the coefficients 𝑎, 𝑏, 𝑐, · · · , in the above equation are taken to be the
second-order accurate stencils of the derivative −𝜕2𝑛 𝑓 /𝜕𝑥2𝑛, the mathemat-
ical form of Equation (2.30) will be recovered. This is best illustrated by
examples. Let us first consider the case where 𝑛 = 1. The coefficients for
the second-order accurate versions of the second derivative operator are:
Υ = 2, 𝑎 = −1. Substituting these values in Equation (2.32) yields

2 − 2 cos(𝜉) = 4 sin2
( 𝜉
2

)
(2.33)

Similarly, when 𝑛 = 2, Equation (2.32) simplifies to

−6 + 8 cos(𝜉) − 2 cos(2𝜉). (2.34)

The above expression can be successively simplified as

−6 + 8 cos(𝜉) − 2 cos(2𝜉) = −6 + 8 cos(𝜉) − 2
(
1 − 8 sin2

(
𝜉

2

)
cos2

(
𝜉

2

))
= −8(1 − cos(𝜉)) + 16 sin2

(
𝜉

2

)
cos2

(
𝜉

2

)
= −16 sin2

(
𝜉

2

)
+ 16 sin2

(
𝜉

2

)
cos2

(
𝜉

2

)
= −16 sin4

(
𝜉

2

)
.

(2.35)
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Therefore, application of the operator D for any value of 𝑛 in physical space
translates to multiplication by the quantity

(−1)𝑛+1
[
2 sin

( 𝜉
2

)]2𝑛
(2.36)

in the wave number (Fourier) space. Thus, filter function of the form of
Equation (2.30) can be accomplished by performing the following opera-
tion in physical space

Ufilt = (1 + 𝛼D)U, (2.37)

where 𝛼 is given by (−1)𝑛 (2)−2𝑛, U is the vector of primitive variables
which need to be filtered, and Ufilt is the filtered solution vector. Boundary
stencils for the filter are developed by taking low-order accurate versions
of the second derivative operator. These stencils can be found in Kennedy
and Carpenter (1994).

2.1.4 Chemical kinetics

The final, and probably one of the most important, component of the CFD
solver is presented in this sub-section: chemistry routines. These are the
sub programs of the code which compute the source terms of the species
mass balance and energy equations. The source terms are composed of the
species production rates, which are computed for each species from the
chemical mechanism. Any generic chemical mechanism can be written in
compact form as (Turns et al., 1996)

𝑁∑︁
𝑗=1

𝜈 ′𝑖 𝑗𝑋 𝑗 −−−⇀↽−−−
𝑁∑︁
𝑗=1

𝜈 ′′𝑖 𝑗𝑋 𝑗 for 𝑖 = 1, 2, · · · , 𝐿, (2.38)

where 𝑋 𝑗 symbolically represents the 𝑗 th species, 𝑁 is the number of spe-
cies, 𝐿 is the number of reactions, 𝜈 ′𝑖 𝑗 are the stoichiometric coefficients of
the reactants, and 𝜈 ′′𝑖 𝑗 are the stoichiometric coefficients of the products.

Considering, for just the purpose of illustration, the incomplete hydrogen-
oxygen reaction mechanism in Turns et al. (1996):

H2 + O2 −−−⇀↽−−− HO2 + H (2.39)
H + O2 −−−⇀↽−−− OH + O (2.40)

OH + H2 −−−⇀↽−−− H2O + H (2.41)
H + O2 + M −−−⇀↽−−− HO2 + M (2.42)
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Assuming the species order is: O2, H2, H2O, HO2, O, H, OH, M, the matrices
𝜈 ′𝑖 𝑗 and 𝜈 ′′𝑖 𝑗 can be written as

𝜈 ′𝑖 𝑗 =



1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 1


, (2.43)

𝜈 ′′𝑖 𝑗 =



0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 0 0 0 1


. (2.44)

The production rate of the species 𝑗 is given by

¤𝜔 𝑗 =

𝐿∑︁
𝑖=1

𝜈𝑖 𝑗𝑞𝑖 , for 𝑗 = 1, 2, · · · , 𝑁 , (2.45)

where
𝜈𝑖 𝑗 = (𝜈 ′′𝑖 𝑗 − 𝜈 ′𝑖 𝑗 ), (2.46)

and the rate of progress of the reaction is given by

𝑞𝑖 = 𝑘𝑓 𝑖

𝑁∏
𝑗=1

[𝑋 𝑗 ]𝜈
′
𝑖 𝑗 − 𝑘𝑟𝑖

𝑁∏
𝑗=1

[𝑋 𝑗 ]𝜈
′′
𝑖 𝑗 , (2.47)

where 𝑘𝑓 𝑖 and 𝑘𝑟𝑖 are the rate constants of the forward and reverse re-
actions, [𝑋 𝑗 ] represents the molar concentration of the species 𝑗 , given
by 𝜌𝑌𝑗/MW𝑗 . The forward and reverse reaction rate constants are ob-
tained from the chemical reaction mechanism. In all flow computations
performed in this work, the chemical mechanism proposed by Li et al.
(2004) for hydrogen-air combustion is used. This mechanism is composed
of 9 species which participate in 21 reactions. Three types of chemical re-
actions are present in this mechanism, each characterized by a different
method to compute the rate constants (Goodwin et al., 2022), which are
presented next.
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1. Elementary reaction: An elementary reaction is one of the basic types
of reactions with pressure independent rate coefficient. Consider, for
example, the elementary reaction

A + B −−−⇀↽−−− C + D. (2.48)

The forward rate constant for this reaction is given by

𝑘𝑓 = 𝐴𝑇𝑏𝑒−𝐸𝑎/𝑅𝑢𝑇 , (2.49)

where 𝐴 is the pre-exponential factor, 𝑏 is the temperature exponent,
𝐸𝑎 is the activation energy associated with the reaction, 𝑇 is the tem-
perature, and 𝑅𝑢 is the universal gas constant.

2. Three-body reaction: A three-body reaction takes the form

A + B + M −−−⇀↽−−− AB + M, (2.50)

where M is a collision partner that takes away the excess energy to
stabilize the AB molecule in the forward direction or supplies energy
to break the bond in AB to form A and B in the reverse direction. All
the species in the chemical reaction need not be equally efficient as
the collision partner. Therefore, a third body efficiency is associated
with each species. For a three-body reaction, the forward rate con-
stant is calculated by multiplying Equation (2.49) by the factor [M]
which is defined as

[M] =
∑︁
𝑘

Y𝑘𝐶𝑘 , (2.51)

where𝐶𝑘 is the concentration of the species 𝑘 , and Y𝑘 is the third-body
efficiency factor, which is taken to be 1.0 unless otherwise specified
in the reaction mechanism.

3. Falloff reaction: A falloff reaction has a rate that is first order in [M]
at low pressure, but becomes zero order in [M] at higher pressures.
The forward rate constant for such a reaction can be written in the
form

𝑘𝑓 (𝑇, [M]) = 𝑘0 [M]
1 + 𝑘0 [M]/𝑘∞

. (2.52)

At low pressures (low concentrations of third body molecule), 𝑘𝑓 ap-
proaches 𝑘0 [M]. At high pressures (high concentrations of third body
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molecule), 𝑘𝑓 approaches 𝑘∞. A non-dimensional pressure can be
defined as 𝑃𝑟 = 𝑘0 [M]/𝑘∞, and Equation (2.52) can be modified to

𝑘𝑓 (𝑇, [M]) = 𝑘∞
𝑃𝑟

1 + 𝑃𝑟
. (2.53)

Some reactions also exhibit more complex forms of dependence of
the forward rate constant on the reduced pressure. These can be ac-
counted for by multiplying the rate expression in Equation (2.53) by a
falloff function 𝐹 (𝑇, 𝑃𝑟 ). A Troe falloff function (Goodwin et al., 2022)
is used for all falloff reactions in the chemical mechanism used in this
work.

The reverse reaction rates are calculated from the forward reaction rates
by assuming equilibrium and using the Gibbs free energy change (Δ𝐺0

𝑇
)

for that reaction (Turns et al., 1996). If we consider a generic single step
reaction

aA + bB −−−⇀↽−−− cC + dD. (2.54)

At equilibrium, the rate of formation of any species (for example, A) is
zero. This gives

−𝑎
(
𝑘𝑓 [A]𝑎 [B]𝑏 − 𝑘𝑟 [C]𝑐 [D]𝑑

)
= 0, (2.55)

which can be simplified to give a relation involving the forward and re-
verse rate constants:

𝑘𝑟 = 𝑘𝑓
[A]𝑎 [B]𝑏

[C]𝑐 [D]𝑑
=
𝑘𝑓

𝐾𝑐
, (2.56)

where 𝐾𝑐 is the equilibrium constant based on concentrations. 𝐾𝑐 can be
related to 𝐾𝑝 , the equilibrium constant based on partial pressures, using
the relation

𝐾𝑐 = 𝐾𝑝

(
𝑃0

𝑅𝑢𝑇

)∑
𝜈 ′′𝑖 −∑

𝜈 ′𝑖
, (2.57)

where 𝑃0 is taken to be 1 atm, and 𝐾𝑝 is given by

𝐾𝑝 = exp (−Δ𝐺0
𝑇 /𝑅𝑢𝑇 ). (2.58)

The Gibbs free energy change for the reaction (2.54) is given by

Δ𝐺0
𝑇 =

(
𝑑𝑔0

𝑑
(𝑇 ) + 𝑐𝑔0

𝑐 (𝑇 ) − 𝑏𝑔0
𝑏
(𝑇 ) − 𝑎𝑔0

𝑎 (𝑇 )
)
. (2.59)
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The Gibbs free energy for each species as functions of temperature are
given by the NASA seven coefficient polynomial fits (Burcat and Ruscic,
2005):

𝑔0
𝑇

𝑅𝑢𝑇
= 𝑎1(1 − ln𝑇 ) − 𝑎2𝑇

2
− 𝑎3𝑇

2

6
− 𝑎4𝑇

3

12
− 𝑎5𝑇

4

20
+ 𝑎6

𝑇
− 𝑎7. (2.60)

In a similar manner, the specific heats and total enthalpies (sum of form-
ation and sensible) of the species are also determined by Polynomial fits
(Burcat and Ruscic, 2005) as

𝐻𝑇

𝑅𝑇
= 𝑎1 +

𝑎2𝑇

2
+ 𝑎3𝑇

2

3
+ 𝑎4𝑇

3

4
+ 𝑎5𝑇

4

5
+ 𝑎6

𝑇
, (2.61)

𝐶𝑝

𝑅
= 𝑎1 + 𝑎2𝑇 + 𝑎3𝑇

2 + 𝑎4𝑇
3 + 𝑎5𝑇

4. (2.62)

2.2 Prediction of intrinsic thermoacoustic modes: the-
ory

In this section, an analytical expression which will be used to predict the
thermoacoustic eigenvalues of the intrinsic thermoacoustic feedback loop
is presented. We consider the simple geometrical configuration of Fig-
ure 1.7, where an autoignition front is stabilized in the one-dimensional
duct and forced by acoustic and entropy disturbances. As previously dis-
cussed in Section 1.3, the linear dynamics of the intrinsic thermoacoustic
feedback, specifically the frequencies and growth rates of the oscillations,
can be obtained from the poles of the scattering matrix (Hoeijmakers et al.,
2014). Therefore, the aim of this section is to derive an expression for the
poles of the scattering matrix associated with an autoignition front.

For the flow configuration in Figure 1.7, the scattering matrix can be writ-
ten as 

𝑓2

𝑔1

ℎ2


=


𝑆11 𝑆12 𝑆13

𝑆21 𝑆22 𝑆23

𝑆31 𝑆32 𝑆33



𝑓1

𝑔2

ℎ1


, (2.63)

where the mathematical expressions for the various characteristic waves
are derived in Appendix A.

We start by writing expressions for each of the outgoing characteristics.
The outgoing characteristics in the configuration of Figure 1.7 are created
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by three distinct mechanisms: (i) transmission of the incoming characterist-
ics by the temperature jump associated with the flame front, (ii) reflection
of the incoming characteristics by the temperature jump associated with
the flame front, and (iii) generation by the unsteady ignition front due to
heat release rate and ignition front position perturbations. Mathematically,
the above statement can be expressed as


𝑓2/𝑝0

𝑔1/𝑝0

ℎ2/𝑝0


=


𝑇2 𝑅3 𝑇3

𝑅1 𝑇1 𝑅2

𝑇4 𝑅4 𝑇5

︸           ︷︷           ︸
Transmission and reflection


𝑓1/𝑝0

𝑔2/𝑝0

ℎ1/𝑝0


+


𝑆3

𝑆1

𝑆5


¤̃𝑄
¤𝑄0

+


𝑆4

𝑆2

𝑆6


𝑋ig

𝑋ig0

︸                    ︷︷                    ︸
Generation by the ignition front

, (2.64)

where the 𝑅𝑖 ’s and 𝑇𝑖 ’s denote the frequency dependent functions which
govern the reflection and transmission of the incoming characteristics to
the outgoing characteristics by the ignition front. These terms are present
even in the hypothetical case wherein the flame does not actively respond
to the imposed disturbances ( ¤𝑄 ′ = 𝑋 ′

ig = 0). The frequency response
functions 𝑆𝑖 ’s govern the outgoing characteristics generated by the integ-
rated heat release rate and ignition front position fluctuations, i.e., the
sound/entropy generated by an unsteady ignition front. While integrated
heat release rate fluctuations ( ¤𝑄 ′) behaves as a monopole source of sound
(Strahle, 1971), fluctuations in ignition front position (𝑋 ′

ig) acts like an axi-
ally oriented acoustic dipole. Equation (2.64), in essence, simply states that
the outgoing characteristics are a linear combination of transmission and
reflection of the incoming waves and the generation by the unsteady igni-
tion front. Of course, care should be taken when applying Equation (2.64)
to combustor domains with complicated geometries. In such cases, addi-
tional terms due to, for example, acoustic reflection by solid walls can also
show up.

It is important to realize that, as such, Equation (2.64) represents an open
loop system where ¤̃𝑄 and 𝑋ig are treated as autonomous inputs, while in
reality, they are dependent on the acoustic and entropy perturbations. In-
deed, for autoignition fronts, ¤̃𝑄 and 𝑋ig intricately depend on how the vari-
ous perturbations associated with an acoustic/entropy wave modify the
ignition chemistry and the front kinematics and therefore, depend on the
flow perturbations in a non-trivial manner. Closed loop dynamics of the
ITA feedback can be obtained from Equation (2.64) when the heat release
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rate and ignition front fluctuations associated with the autoignition front
are related back to the acoustic and entropy perturbations via the flame
transfer functions. For propagation-stabilized flames, it is common to write
the integrated heat release rate fluctuations in terms of the velocity oscil-
lations at some reference location upstream of the flame (McManus et al.,
1993). This makes perfect sense because, as already pointed out before,
propagating flames stabilized at low Mach numbers mainly respond to ve-
locity oscillations induced by an acoustic wave. For autoignition fronts, on
the other hand, it makes more sense to relate the flame response to the in-
dividual waves rather than to the fluctuations in primitive variables. This
is because prior works (Gant et al., 2020b; Gopalakrishnan et al., 2021) have
shown that acoustic and entropy waves modify the ignition chemistry dif-
ferently and produce qualitatively different frequency responses in terms
of the ignition length and integrated heat release rate fluctuations. Addi-
tionally, writing the heat release rate response in terms of velocity fluctu-
ations does not take into account the influence of temperature disturbances
induced by the entropy wave on the flame dynamics (Bothien et al., 2019a;
Gant et al., 2020b).

Thus, the flame response written in terms of the characteristic waves for
the integrated heat release rate reads

¤̃𝑄
¤𝑄0

= 𝐹1(𝑠)
𝑓1

𝑝0
+ 𝐹2(𝑠)

𝑔1

𝑝0
+ 𝐹3(𝑠)

ℎ1

𝑝0
, (2.65)

and for the ignition length

𝑋ig

𝑋ig0
= 𝐺1(𝑠)

𝑓1

𝑝0
+𝐺2(𝑠)

𝑔1

𝑝0
+𝐺3(𝑠)

ℎ1

𝑝0
. (2.66)

In writing Equations (2.65) and (2.66), it is assumed that the autoignition
front only responds to the fluctuations created by the characteristic waves
upstream of the ignition front - 𝑓1, 𝑔1 and ℎ1. This is reasonable as it is these
waves which modulate the autoignition chemistry and also introduce ve-
locity oscillations upstream of the ignition front, creating fluctuations in
the front position and the integrated heat release rate. In Equations (2.65)
and (2.66), 𝐹𝑖 represents the transfer function relating the heat release rate
fluctuations to the characteristic waves, and𝐺𝑖 represents the transfer func-
tion relating the ignition length fluctuations to the characteristic waves.

Equation (2.64) is now modified to give insight into the dynamics of the
ITA feedback by substituting Equations (2.65) and (2.66) for the flame re-
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sponse. The second row in Equation (2.64), after this modification, reads

𝑔1

𝑝0
= (𝑅1 + 𝑆1𝐹1 + 𝑆2𝐺1)

𝑓1

𝑝0
+ (𝑅2 + 𝑆1𝐹3 + 𝑆2𝐺3)

ℎ1

𝑝0
+ (𝑇1)

𝑔2

𝑝0
+ (𝑆1𝐹2 + 𝑆2𝐺2)

𝑔1

𝑝0
.

(2.67)

Equation (2.67) reveals that the term 𝑔1/𝑝0 is present in both the LHS (re-
sponse) and the RHS (excitation), suggesting that a closed loop feedback
is set up by the 𝑔1 wave. Further simplification of Equation (2.67) and
comparison with the second row of the scattering matrix [Equation (2.63)]
yields

𝑔1

𝑝0
=

(
𝑅1 + 𝑆1𝐹1 + 𝑆2𝐺1

1 − 𝑆1𝐹2 − 𝑆2𝐺2

)
︸                   ︷︷                   ︸

𝑆21

𝑓1

𝑝0
+

(
𝑇1

1 − 𝑆1𝐹2 − 𝑆2𝐺2

)
︸                  ︷︷                  ︸

𝑆22

𝑔2

𝑝0
+

(
𝑅2 + 𝑆1𝐹3 + 𝑆2𝐺3

1 − 𝑆1𝐹2 − 𝑆2𝐺2

)
︸                   ︷︷                   ︸

𝑆23

ℎ1

𝑝0
.

(2.68)

The first and third rows of the Equation set (2.64) can also be expanded
by substituting Equations (2.65), (2.66) and (2.68) into them. The steps
involved in this procedure are omitted and only the final expression is
presented.

First row of Equation (2.64):

𝑓2

𝑝0
=

(
(𝑆3𝐹1 + 𝑆4𝐺1 +𝑇2) + (𝑆3𝐹2 + 𝑆4𝐺2)𝑆21

)
︸                                               ︷︷                                               ︸

𝑆11

𝑓1

𝑝0
+

(
𝑅3 + (𝑆3𝐹2 + 𝑆4𝐺2)𝑆22

)
︸                         ︷︷                         ︸

𝑆12

𝑔2

𝑝0

+
(
(𝑆3𝐹3 + 𝑆4𝐺3 +𝑇3) + (𝑆3𝐹2 + 𝑆4𝐺2)𝑆23

)
︸                                               ︷︷                                               ︸

𝑆13

ℎ1

𝑝0
.

(2.69)

Third row of Equation (2.64):

ℎ2

𝑝0
=

(
(𝑆5𝐹1 + 𝑆6𝐺1 +𝑇4) + (𝑆5𝐹2 + 𝑆6𝐺2)𝑆21

)
︸                                               ︷︷                                               ︸

𝑆31

𝑓1

𝑝0
+

(
𝑅4 + (𝑆5𝐹2 + 𝑆6𝐺2)𝑆22

)
︸                         ︷︷                         ︸

𝑆32

𝑔2

𝑝0

+
(
(𝑆5𝐹3 + 𝑆6𝐺3 +𝑇5) + (𝑆5𝐹2 + 𝑆6𝐺2)𝑆23

)
︸                                               ︷︷                                               ︸

𝑆33

ℎ1

𝑝0
.

(2.70)

Equations (2.69), (2.68) and (2.70) analytically express each row, and there-
fore each element, of the scattering matrix [Equation (2.63)] in terms of the
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frequency response functions governing the flame dynamics (𝐹𝑖 ’s and𝐺𝑖 ’s),
the sound and entropy generation by the unsteady ignition front (𝑆𝑖 ’s), and
the reflection and transmission of acoustic and entropy waves by the igni-
tion front (𝑅𝑖 ’s and 𝑇𝑖 ’s). A vital aspect to notice in Equations (2.69), (2.68)
and (2.70) is that all the terms of the scattering matrix have a common de-
nominator, which is given by the expression 𝐷 (𝑠) = 1 − 𝑆1𝐹2 − 𝑆2𝐺2. When
𝐷 (𝑠) goes close to zero, 𝑆21, 𝑆22 and 𝑆23 reach high magnitudes, which res-
ults in significant amplifications of the 𝑔1 wave. Additionally, also observe
from Equations (2.69) and (2.70) that both 𝑓2 and ℎ2 are linear combina-
tions of terms involving 𝑆21, 𝑆22 and 𝑆23. Therefore, when 𝐷 (𝑠) goes close
to zero, significant amplifications of 𝑓2 and ℎ2 are also expected due to the
high magnitudes of the elements 𝑆21, 𝑆22 and 𝑆23. This suggests that the fre-
quency dependent function 𝐷 (𝑠) = 1−𝑆1𝐹2 −𝑆2𝐺2, can be factored out from
the denominators of all the individual elements of the scattering matrix
resulting in 

𝑓2

𝑔1

ℎ2


=

1
𝐷 (𝑠)


𝑆∗11 𝑆∗12 𝑆∗13

𝑆∗21 𝑆∗22 𝑆∗23

𝑆∗31 𝑆∗32 𝑆∗33



𝑓1

𝑔2

ℎ1


, (2.71)

where the zeros of the dispersion relation 𝐷 (𝑠) govern the oscillation fre-
quencies and growth rates of the intrinsic thermoacoustic modes. Interest-
ingly, 𝐷 (𝑠) only involves the frequency dependent functions governing the
thermal response of the ignition front to a 𝑔1 wave (𝐹2 and𝐺2) and the gen-
eration of a 𝑔1 wave by the unsteady ignition front (𝑆1 and 𝑆2). This is to be
expected as the ITA feedback mechanism, as depicted in Figure 1.9, only
involves the 𝑔1 wave and the associated thermal and acoustic responses
that it consequently produces. The ITA feedback loop initially depicted in
Figure 1.9 is schematically shown in terms of the relevant flame response
and sound generation transfer functions in Figure 2.5.

To summarize, the prediction of the linear stability of the ITA oscillations
associated with an autoignition front reduces to finding the complex val-
ued quantity 𝑠 satisfying the dispersion relation

𝐷 (𝑠) = 0, where 𝐷 (𝑠) = 1 − 𝑆1𝐹2 − 𝑆2𝐺2. (2.72)

Therefore, the aim of simplified models used to predict the linear stability
of the ITA oscillations is to compute the transfer functions 𝐹2,𝐺2 and 𝑆1, 𝑆2
accurately. In this thesis, we use a Lagrangian framework to compute the
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𝐹2

𝐺2 𝑆2

𝑆1

ሶ𝑄′/ ሶ𝑄0

𝑋ig
′ /𝑋ig0

+

+

𝑔1/𝑝0

thermal 
response

acoustic 
response

Figure 2.5: Intrinsic thermoacoustic feedback loop in terms of the flame response
and sound generation transfer functions.

thermal response of the flame (discussed in Section 2.3), and a linearized
Euler equation solver to compute the acoustic response of the flame (dis-
cussed in Section 2.4).

2.3 Lagrangian flame response framework
In this section, the Lagrangian flame response framework, which is used
to predict the thermal response of the autoignition front to acoustic and
convective disturbances is presented. This framework is formulated in this
section for the one-dimensional flow configuration of Figure 1.7. However,
extension to multiple dimensions is straightforward and is discussed in
Article 2.

To compute the flame response to the imposed disturbances, the reacting
flow is visualized as a series of non-interacting independently evolving
fluid particles. We first consider discrete time instants

𝑡𝑖 = 0,Δ𝑡, 2Δ𝑡, · · · ,T ,

where T is the time period of the imposed acoustic/convective disturb-
ances, and Δ𝑡 is the injection time interval. At each time instant 𝑡𝑖 , a fluid
particle is injected at the combustor inlet (see Figure 2.6). The evolution
of each fluid particle in Lagrangian time 𝑡∗ is then computed by time in-
tegrating the governing equations for each particle. It is important to note
that 𝑡∗ is a fictitious local time assigned to each particle for the purpose
of tracking that particle. For any given particle, 𝑡∗ = 0 at the instant this
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Figure 2.6: Schematic of the combustor geometry with the particle injection
scheme used for the Lagrangian framework. The green box shows the acoustic
and entropy perturbations

particle is injected at the combustor inlet. The time 𝑡∗, which can be visual-
ized as a ‘clock’ attached to a fluid particle which starts ticking the moment
the particle is injected, is different from the physical global time 𝑡 . If 𝑡𝑖 is
the time at which a particle is injected at the combustor inlet, the relation
between global time and particle time is given by 𝑡 = 𝑡𝑖 + 𝑡∗. The global
flame response is computed by stitching together the individual particle
evolution.

In the following, the method to compute the Lagrangian evolution of tem-
perature of a fluid particle injected at the combustor inlet at time 𝑡𝑖 is
presented. The following process has to be repeated for different particles
injected at various time instants to get the overall flame response. The
change in temperature (Δ𝑇 ) of a fluid particle over a small time interval of
Δ𝑡∗ is a combination of the temperature change due to chemical reactions
(Δ𝑇𝑐) and the temperature change due to acoustic and entropy disturb-
ances (Δ𝑇𝑑 ). Thus, we can write

Δ𝑇 = Δ𝑇𝑐 + Δ𝑇𝑑 . (2.73)

The above equation can be written in terms of derivatives by taking the
limit Δ𝑡∗ → 0:

𝐷𝑇

𝐷𝑡∗
=
𝐷𝑇𝑐

𝐷𝑡∗
+ 𝐷𝑇𝑑
𝐷𝑡∗

. (2.74)

The first term in the RHS of the above equation, which is the time rate
of change of temperature of a fluid particle due to chemical reactions, is
given by the Lagrangian form of the energy equation (Poinsot and Veyn-
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ante, 2005).

𝐷𝑇𝑐

𝐷𝑡∗
= − 1

𝜌𝐶𝑝

𝑛∑︁
𝑖=1

ℎ𝑖MW𝑖 ¤𝜔𝑖 , (2.75)

where the notation convention adopted is the same as in Section 2.1. In
writing the above equation, diffusive terms (viscosity, heat conduction and
species diffusion) were neglected. In Article 2, a method to include the heat
conduction terms into the Lagrangian framework is presented. Addition-
ally, the variation of the pressure associated with the fluid particle due to
chemical reactions is also neglected. This is a valid assumption, since we
are interested only in the evolution of the fluid particle till ignition, during
which time the pressure change due to chemical reactions will be small.
For the purpose of the present discussion, all diffusive terms in the en-
ergy and species mass balance equations are neglected. Most importantly,
all terms in the RHS of Equation (2.75) are evaluated at the instantaneous
temperature (𝑇 ) and pressure (𝑝) of the fluid particle at 𝑡∗.

To obtain closure for the Lagrangian particle tracking, the particle position
and the species production rates need to be obtained. These are governed
by the species mass balance and the kinematic equations

𝐷𝑌𝑖

𝐷𝑡∗
=

MW𝑖 ¤𝜔𝑖

𝜌
, (2.76)

𝐷𝑥∗

𝐷𝑡∗
= 𝑢 (𝑡∗) . (2.77)

The instantaneous pressure and velocity associated with the particle at
time 𝑡∗, which are required to compute the RHS of Equations (2.75), (2.76)
and (2.77), are given by a linear combination of the mean and the fluctu-
ations induced by the disturbances:

𝑢 (𝑡∗) = 𝑢0(𝑥∗) + ei𝜔 (𝑡𝑖+𝑡∗ )
(
𝐴

𝜌0𝑐0
e−i𝜔𝑥∗/𝑐0 (1+𝑀0 ) − 𝐵

𝜌0𝑐0
ei𝜔𝑥∗/𝑐0 (1−𝑀0 )

)
︸                                                                 ︷︷                                                                 ︸

𝑢′ (𝑡∗ )

,

𝑝 (𝑡∗) = 𝑝0(𝑥∗) + ei𝜔 (𝑡𝑖+𝑡∗ )
(
𝐴e−i𝜔𝑥∗/𝑐0 (1+𝑀0 ) + 𝐵ei𝜔𝑥∗/𝑐0 (1−𝑀0 )

)
︸                                                       ︷︷                                                       ︸

𝑝′ (𝑡∗ )

,

(2.78)
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Figure 2.7: Sample graph showing the temperature evolution 𝑇 (𝑡∗) of a fluid
particle.

where 𝐴 and 𝐵 are the Fourier transform of the pressure fluctuations as-
sociated with the downstream-traveling and upstream-traveling acoustic
waves, respectively, at the inlet. These disturbance quantities are assumed
to be the inputs to the Lagrangian framework. The angular frequency of
the imposed disturbances is given by 𝜔 , and 𝑀0 is the mean flow Mach
number.

The second term in the RHS of Equation (2.74) is obtained by differenti-
ating the equation governing the temperature fluctuations induced by the
acoustic and entropy waves at any time, which is given by

𝑇 ′(𝑡∗) = 𝛾 − 1
𝛾

𝑇0

𝑝0
𝑝′(𝑡∗) − 𝑇0

𝜌0
𝑆1ei𝜔 (𝑡𝑖+𝑡∗ )e−i𝜔𝑥∗/𝑢0, (2.79)

where 𝑆1 is the Fourier transform of the density fluctuations induced by
the entropy wave at 𝑥 = 0.

Integration of Equations (2.74), (2.76) and (2.77) yields the particle temper-
ature 𝑇 (𝑡∗). A sample plot of this variation for a particle is given in Fig-
ure 2.7. The temperature exhibits a sharp rise at a specific time (𝜏𝑖), which
signifies the time taken for the particle to ignite from the moment it is injec-
ted. The ignition location of this particle is given by 𝑥∗(𝑡∗ = 𝜏𝑖). Therefore,
performing the Lagrangian computation for the fluid particle which was
injected at time 𝑡𝑖 , yields that this particle ignites 𝜏𝑖 seconds after it is in-
jected at a location 𝑥∗(𝜏𝑖). Therefore, the location of the autoignition front
(𝑋ig) is given by

𝑋ig(𝑡𝑖 + 𝜏𝑖) = 𝑥∗(𝜏𝑖) . (2.80)
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Figure 2.8: Gain and Phase of the flame transfer functions 𝐹2 and 𝐺2 computed
from the Lagrangian framework and compared with the forced Euler computa-
tions.

Repeating the above process for various particles injected at different time
instants 𝑡𝑖 , provides the global ignition front response as a function of time.
From this data, the instantaneous heat release rate response of the autoigni-
tion front can be computed using

¤𝑄 (𝑡) = ¤𝑚𝑓 Δℎ𝑐 = 𝜌Δℎ𝑐 (𝑢 − 𝑢𝑠) , (2.81)

where ¤𝑚𝑓 is the mass flow rate of the reactants consumed by the autoigni-
tion front, 𝑢𝑠 is the velocity of the flame front in the laboratory frame of
reference, and 𝜌,𝑢 are the instantaneous density and velocity values at the
ignition front. The ignition front velocity in the lab frame of reference can
be obtained from the ignition front location using

𝑢𝑠 =
𝑑𝑋ig

𝑑𝑡
. (2.82)

The validation of this Lagrangian flame response framework is presented
in Article 1, where the flame response predicted by the Lagrangian frame-
work is compared with results from DNS computations. These computa-
tions were performed for the one-dimensional configuration in the low-
frequency range (100 − 1000 Hz). In Article 2, the Lagrangian framework
presented in this section is extended to multi-dimensional configurations,



56 Computational and theoretical methods

and the results are validated with forced LES computations of an autoigni-
tion front in a backward-facing step geometry. These comparisons revealed
that the Lagrangian framework performs very well in predicting the flame
dynamics in these configurations. In this section, we present a result which
is not included in the articles but is, nevertheless, very relevant for this dis-
cussion.

Figure 2.8 plots the gain and phase of the transfer functions 𝐹2 and 𝐺2,
which represent the thermal response of the autoignition front, in terms
of the integrated heat release rate and ignition front position fluctuations,
to a 𝑔1 wave. These are the flame transfer functions which govern the lin-
ear dynamics of the intrinsic thermoacoustic feedback (see Figure 2.5). The
predictions of the Lagrangian framework are compared with forced Euler
computations described in Section 2.1. While the ignition length response
is predicted to very good accuracy by the Lagrangian framework, the pre-
dictions of the heat release rate response deviate from the forced Euler
computations, especially at higher frequencies. While the exact reason for
the mismatch cannot be pinpointed by the author at this point, a possible
reason could be the inaccuracies in Equation (2.81). In Equation (2.81),
the effective mass flow consumed by the flame per unit time is given by
𝜌 (𝑢 − 𝑑𝑋ig/𝑑𝑡). At higher frequencies, where the thickness of the flame
relative to the wavelength of the acoustic wave is no longer negligible, a
modification of this equation might be essential.

2.4 Linearized Euler equation solver
In the previous section, a simplified framework to compute the thermal re-
sponse of the autoignition front to acoustic and convective perturbations
was presented. To be able to predict the intrinsic thermoacoustic oscilla-
tions using Equation (2.72), simplified tools which are able to predict the
acoustic response of the autoignition front are also essential. These tools
should be able to, with good accuracy, compute the 𝑔1 wave generated by
an unsteady autoignition front. The simplest and most efficient way to do
this analytically is to solve the Rankine–Hugoniot jump conditions (Chu,
1953; Chen et al., 2016). These equations are a set of relations linking the
flow perturbations upstream and downstream of the ignition front. They
are derived by regarding the ignition front as a jump in the mean flow
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variables, and can be written in compact form in the frequency domain as

M


𝑓2

𝑔1

ℎ2


= N


𝑓1

𝑔2

ℎ1


+ K ¤̃𝑄 + J𝑋ig, (2.83)

where M,N are 3x3 matrices, and K, J are 3x1 vectors. The elements of the
matrices M, N and the vectors K, J are given in the Appendix of Article 3.

While this analytical approach has been used recently in the work of Gant
et al. (2020a) to compute the transfer matrix of an autoignition front, a few
key aspects are unclear, which are discussed next.

1. Effect of thin flame approximation: In the Rankine–Hugoniot ap-
proach, the ignition front is regarded as a discontinuous jump in
the mean flow variables. This approximation is reasonable for low-
frequency acoustic wave propagation, where the wavelength of the
acoustic waves are much longer than the ignition front thickness.
However, longitudinal ITA modes associated with autoignition fronts
need not occur at low frequencies. Euler and DNS computations re-
vealed that at certain conditions, the frequencies of the ITA modes
can be as high as 2500 Hz. At these frequencies, the thickness of the
ignition front is no longer negligible in comparison to the acoustic
wavelength. Furthermore, entropy disturbances are characterized by
wavelengths which are smaller than the wavelengths of the acoustic
disturbances. Therefore, to capture the correct generation of entropy
disturbances from the ignition front, proper resolution of the ignition
front might be essential. Indeed, the recent papers of Meindl et al.
(2021) and Heilmann et al. (2022) show that inconsistent resolution
of the mean flow quantities can result in the spurious generation of
entropy perturbations from linearized frameworks.

2. The presence of gas property fluctuations due to ignition front mo-
tion: Ignition fronts which harmonically oscillate in time, in addition
to causing heat release rate perturbations, also cause fluctuations in
gas properties. This is illustrated in Figure 2.9, where the back and
forth movement of the ignition front results in a back and forth trans-
lation of the gas property profiles, which creates gas property fluctu-
ations.
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Figure 2.9: Schematic illustrating fluctuations in gas properties and heat release
rate due to ignition front motion.

Both propagation and autoignition fronts respond unsteadily to per-
turbations induced by acoustic disturbances by harmonically chan-
ging their position. For flames stabilized by propagation, the fluc-
tuations in the flame position are due to local velocity oscillations
kinematically modulating the flame position. In other words, for a
freely propagating flame in a 1D duct, the flame will move in accord-
ance with the acoustic forcing:

𝑋 ′
ig =

∫ 𝑡

0
𝑢′(𝑋ig0, 𝑡) 𝑑𝑡 . (2.84)

If the velocity disturbances induced by an acoustic wave are small,
the flame position fluctuations will also be small. For autoignition
fronts, in addition to the kinematic effect, the flame position fluctu-
ations are created by an additional altogether different mechanism,
i.e., modulation of the ignition chemistry by the temperature and
pressure perturbations. Even for small values of these perturbations,
the ignition length fluctuations need not necessarily be small (see Fig-
ure 1.8). This is because of the the modulation of the ignition chem-
istry by the acoustic temperature fluctuations, resulting in significant
fluctuations in the ignition time. Therefore, the effect of gas property
fluctuations can be especially relevant for autoignition fronts. The in-
fluence of gas property fluctuations cannot be trivially incorporated
in the analytical Rankine–Hugoniot framework.

To overcome these drawbacks of the Rankine–Hugoniot approach, in this



2.4. Linearized Euler equation solver 59

work, the acoustic field generated by autoignition fronts is computed us-
ing a time-domain linearized Euler equation (LEE) solver. This approach
involves in numerically solving the LEE by specifying the boundary con-
ditions and the time-dependent source terms.

The linearized Euler equations can be written by applying the ansatz

Φ(𝑥, 𝑡) = Φ0(𝑥) + 𝜖Φ′(𝑥, 𝑡) (2.85)

to any flow variable or gas property (Φ) into the Euler equations (2.1).
Separating out terms which are 𝑂 (𝜖) gives the linearized Euler equations
which can be written as

𝜕𝜌 ′

𝜕𝑡
+ 𝜌0

𝜕𝑢′

𝜕𝑥
+ 𝜌 ′ 𝜕𝑢0

𝜕𝑥
+ 𝑢0

𝜕𝜌 ′

𝜕𝑥
+ 𝑢′ 𝜕𝜌0

𝜕𝑥
= 0,

𝜕𝑢′

𝜕𝑡
+ 𝑢0

𝜕𝑢′

𝜕𝑥
+ 𝑢′ 𝜕𝑢0

𝜕𝑥
− 𝜌 ′

𝜌2
0

𝜕𝑝0

𝜕𝑥
+ 1
𝜌0

𝜕𝑝′

𝜕𝑥
= 0,

𝜕𝑝′

𝜕𝑡
+ 𝑢0

𝜕𝑝′

𝜕𝑥
+ 𝑢′ 𝜕𝑝0

𝜕𝑥
+ 𝛾0𝑝0

𝜕𝑢′

𝜕𝑥
+ 𝛾0𝑝

′ 𝜕𝑢0

𝜕𝑥

−𝛾0𝜌0𝑇0𝑢
′ 𝜕𝑅0

𝜕𝑥
− 𝛾0𝜌0𝑢0𝑇

′ 𝜕𝑅0

𝜕𝑥
− 𝛾0𝜌

′𝑇0𝑢0
𝜕𝑅0

𝜕𝑥
= (𝛾0 − 1) ¤𝑞′

+
{
𝛾 ′ ¤𝑞0 − 𝛾 ′𝑝0

𝜕𝑢0

𝜕𝑥
+ 𝛾0𝜌0𝑇0

𝜕𝑅′

𝜕𝑡
+ 𝛾0𝜌0𝑇0𝑢0

𝜕𝑅′

𝜕𝑥
+ 𝛾 ′𝜌0𝑇0𝑢0

𝜕𝑅0

𝜕𝑥

}
,

(2.86)
along with the linearized ideal gas equation of state

𝑝′ = 𝜌0𝑅0𝑇
′ + 𝜌0𝑅

′𝑇0 + 𝜌 ′𝑅0𝑇0. (2.87)

The boundary conditions for the LEE are imposed in an analogous man-
ner to the procedure employed to impose the boundary conditions for
the Euler equations (see Section 2.1). The locally one-dimensional invis-
cid (LODI) equations (2.9) at the boundary points are first linearized (also
see Appendix A) to give

𝜕𝜌 ′

𝜕𝑡
+ 1
𝑐2

0

(
ℒ

′
2 + 1

2
(ℒ′

1 +ℒ
′
5)

)
= 0,

𝜕𝑢′

𝜕𝑡
+ 1

2𝜌0𝑐0
(ℒ′

5 −ℒ
′
1) = 0,

𝜕𝑝′

𝜕𝑡
+ 1

2
(ℒ′

1 +ℒ
′
5) = (𝛾0 − 1) ¤𝑞′,

(2.88)
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where the expressions for the linearized versions of the characteristic wave
amplitudes (ℒ′

𝑖 ), which propagate from the interior of the computational
domain towards the boundaries, are

ℒ
′
1 = (𝑢0 − 𝑐0)

(
𝜕𝑝′

𝜕𝑥
− 𝜌0𝑐0

𝜕𝑢′

𝜕𝑥

)
,

ℒ
′
2 = 𝑢0

(
𝑐2

0
𝜕𝜌 ′

𝜕𝑥
− 𝜕𝑝′

𝜕𝑥

)
,

ℒ
′
5 = (𝑢0 + 𝑐0)

(
𝜕𝑝′

𝜕𝑥
+ 𝜌0𝑐0

𝜕𝑢′

𝜕𝑥

)
.

(2.89)

Acoustic and entropy forcing at the boundaries are realized by appropri-
ately specifying the amplitudes of the incoming characteristic waves. If
we denote the time-varying target values of fluctuations due to the down-
stream traveling acoustic wave at the inlet, the downstream traveling en-
tropy wave at the inlet and the upstream traveling acoustic wave at the exit
as 𝑝′in(𝑡), 𝜌

′
in(𝑡) and 𝑝′out(𝑡), respectively. The wave amplitudes to achieve

these target fluctuations are imposed in the form of relaxation terms (Poin-
sot and Lele, 1992) given by

ℒ
′
5 (0, 𝑡) = −2

𝜕𝑝′in
𝜕𝑡

+ 2𝐾 (𝑝′ − 𝑝′in − 𝑝′−),

ℒ
′
2 (0, 𝑡) = −𝑐2

0

𝜕𝜌 ′in
𝜕𝑡

+ 𝐾𝑐2
0 (𝜌

′ − 𝜌 ′in − 𝜌 ′− − 𝜌 ′𝐿5),

ℒ
′
1 (𝑙, 𝑡) = −2

𝜕𝑝′out

𝜕𝑡
+ 2𝐾 (𝑝′ − 𝑝′out − 𝑝′+),

(2.90)

where 𝐾 is a constant relaxation parameter akin to an inverse time con-
stant with the unit 1/s, 𝑝′− and 𝜌 ′− are the pressure and density fluctuations
induced at the inlet due to the upstream traveling acoustic wave ℒ1, 𝑝′+
is the pressure fluctuation induced at the exit by the downstream travel-
ing acoustic wave ℒ5, 𝜌 ′

𝐿5 is the density fluctuation induced at the inlet
by the downstream traveling acoustic wave ℒ5. These quantities can be
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computed by a simple time integration as follows

𝑝′− = −1
2

∫ 𝑡

0
ℒ

′
1 (0, 𝑡)𝑑𝑡,

𝜌 ′− = 𝑝′−/𝑐2
0,

𝑝′+ = −1
2

∫ 𝑡

0
ℒ

′
5 (𝑙, 𝑡)𝑑𝑡,

𝜌 ′𝐿5 = − 1
2𝑐2

0

∫ 𝑡

0
ℒ

′
5 (0, 𝑡)𝑑𝑡 .

(2.91)

Therefore, to impose the boundary conditions, Equation (2.88) is solved
at the boundary points in a time-dependent manner. The wave amplitudes
approaching the computational domain are specified using Equation (2.90),
while the wave amplitudes propagating away from the computational do-
main are computed using Equation (2.89) and the interior data. These
boundary conditions, along with the LEE at the interior points, are then
numerically marched in time to get the flow fluctuations. The discretiza-
tion of the governing equations in space and time are performed using the
dispersion relation preserving scheme (Tam et al., 1993), previously dis-
cussed in Section 2.1.2.

The final point to discuss is the construction of the source terms in the lin-
earized energy equation and the mean flow profiles. To allow us to time-
march the LEE, specification of the mean flow profiles and time-dependent
source terms are essential. In the following, we propose a method to con-
struct these quantities using the following inputs: mean values of the prim-
itive variables on either side of the ignition front, the position (𝑋ig0) and
the thickness ([) of the ignition front, and the integrated heat release rate
and ignition front position fluctuations. The mean quantities can be ob-
tained, for example, from an unforced Euler/DNS computation or a RANS
solution. The integrated heat release rate and ignition front position fluc-
tuations are arbitrary inputs, which are specified as inputs in order to com-
pute the frequency response functions 𝑆1 and 𝑆2.

The spatial variation of the mean heat release rate can be constructed by as-
suming a Gaussian model for the heat release rate distribution (Gant et al.,
2020b) as

¤𝑞0(𝑥) =
¤𝑄0

[
√

2𝜋
exp

(
−
(𝑥 − 𝑋ig0)2

2[2

)
, (2.92)
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where [ represents the thickness parameter of the ignition front, and ¤𝑄0 is
the mean integrated heat release rate given by

¤𝑄0 =
𝛾

𝛾 − 1
(𝑢02𝑝02 − 𝑢01𝑝01) +

1
2
(𝜌02𝑢

3
02 − 𝜌01𝑢

3
01), (2.93)

where ()01 and ()02 denote mean quantities on the unburnt and burnt side,
respectively. The instantaneous heat release rate at any time instant 𝑡 is
given by

¤𝑞(𝑥, 𝑡) =
¤𝑄0 + 𝜖 ¤𝑄 ′

[
√

2𝜋
exp

(
−
(𝑥 − 𝑋ig0 − 𝜖𝑋 ′

ig)
2

2[2

)
, (2.94)

where 𝜖 is a small parameter, and ¤𝑄 ′, 𝑋 ′
ig are the integrated heat release

rate and ignition length oscillations, which are inputs which need to be
specified. Equation (2.94) is written by making use of the fact that the
Gaussian profile translates axially due to ignition front fluctuations and
changes in area due to integrated heat release rate oscillations. The linear-
ized form of the fluctuating heat release rate can be obtained by subtracting
Equation (2.92) from Equation (2.94), expanding the exponential term in a
Taylor series, and then simplifying the resulting expression by only retain-
ing terms which are 𝑂 (𝜖) and neglecting all terms of higher order. This
procedure yields the following expression for the fluctuating heat release
rate:

¤𝑞′(𝑥, 𝑡) = exp

(
−
(𝑥 − 𝑋ig0)2

2[2

) {
¤𝑄 ′

[
√

2𝜋
+ 𝑄0

[
√

2𝜋

𝑋 ′
ig(𝑥 − 𝑋ig0)

[2

}
. (2.95)

This can be visualized as two contributors to heat release rate fluctuations
at any given point: (i) due to integrated heat release rate fluctuations, and
(ii) due to harmonic ignition front motion, which creates heat release rate
fluctuations locally even in the absence of global heat release rate oscilla-
tions.

The spatial variation of the mean values of any primitive variable or gas
property (Φ) can be constructed from the values of the corresponding vari-
ables in the unburnt and burnt side and the ignition front thickness by
using a smooth transitional model profile as

Φ0(𝑥) = Φ01 +
1
2
(Φ02 − Φ01)

(
1 + erf

𝑥 − 𝑋ig0

[

)
. (2.96)

To construct the fluctuating gas properties at any point at a time instant,
the instantaneous value of any gas property (for example, the specific heat
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ratio 𝛾) is written utilizing the form of Equation (2.96) as

𝛾 (𝑥, 𝑡) = 𝛾01 +
1
2
(𝛾02 − 𝛾01)

(
1 + erf

𝑥 − 𝑋ig0 − 𝜖𝑋 ′
ig

[

)
. (2.97)

In writing Equation (2.97), it is implicitly assumed that the acoustic and
entropy disturbances create negligible changes in gas properties and the
main contributing factor to gas property fluctuations is the back and forth
movement of the ignition front (therefore, gas property fluctuations are
zero everywhere in the domain except in the region close to the ignition
front). The linearized fluctuations of the gas property 𝛾 can be obtained by
subtracting Equation (2.96) (for 𝛾0) from Equation (2.97), writing the terms
involving the error function in terms of its series expansions (Abramowitz
and Stegun, 1964), and then only retaining the terms which are of order
𝑂 (𝜖). The resulting fluctuations in gas property can be written as

𝛾 ′(𝑥, 𝑡) = 1
√
𝜋
(𝛾02 − 𝛾01)

(
−
𝑋 ′

ig

[
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exp
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−
(𝑥 − 𝑋ig0)2

[2

)
. (2.98)

Equations (2.92) and (2.96) for the spatial profiles of the mean heat release
rate, primitive variable and gas properties, along with Equations (2.95)
and (2.98) describing the fluctuations in heat release rate and gas prop-
erties, enable us to time march the LEE to determine the primitive variable
fluctuations. Now, this procedure of constructing the source terms and
mean profiles using model functions is, evidently, not physical because,
the Gaussian profile for the mean heat release rate [Equation (2.92)] and
the error function profile for the mean primitives/gas properties [Equa-
tion (2.96)] are not actual solutions of the time-averaged non-linear Navier–
Stokes/ Euler equations. Nevertheless, this approach of using model pro-
files, constructed using common mathematical functions, to represent mean
flows has been used repeatedly in the past in the context of linear flow in-
stability analysis (for example, Schmid and Henningson (2001) for bound-
ary layers and mixing layers, Oberleithner et al. (2011) for swirling jets,
and Manoharan and Hemchandra (2015) for a backward-facing step flow).
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Chapter 3

Summary of research articles,
conclusions and future work

The aim of this thesis is to gain insight into the occurrence of intrinsic ther-
moacoustic oscillations in reheat combustors with autoignition fronts and
to develop predictive modeling tools to allow the efficient prediction of
these oscillations in simplified geometries. In order to achieve this over-
all goal, four objectives were formulated in Section 1.5. These objectives
are accomplished in 4 research articles which are summarized in technical
detail next.

Article 1

Response of Auto-Ignition-Stabilized Flames to One-Dimensional Dis-
turbances: Intrinsic Response
Harish S. Gopalakrishnan, Andrea Gruber, and Jonas Moeck
Journal of Engineering for Gas Turbines and Power, Volume 143, Issue 12, 2021

Article 1 contributes to Objective 2 by developing a simplified framework
to compute the dynamics of one-dimensional autoignition fronts to acous-
tic and convective perturbations. The simplified framework is based on
Lagrangian particle tracking briefly discussed in Section 2.3. The flow is
treated as a collection of independently evolving reacting fluid particles.
Each of the fluid particles are evolved in time by integrating the Lagrangian
form of the energy and species-mass balance equations. The global flame
response over one cycle of acoustic oscillation is computed by stitching to-
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gether the evolution of all the particles. This framework is compared with
forced DNS computations of autoignition fronts, revealing an excellent
match in the predicted flame dynamics. Next, the flame response to up-
stream traveling acoustic perturbations is computed using this framework.
The results show that autoignition fronts are highly sensitive to acoustic
temperature fluctuations and exhibit a characteristic frequency-dependent
response. Acoustic pressure and velocity fluctuations can either construct-
ively or destructively superpose with temperature fluctuations, depending
on the mean pressure and relative phase between the fluctuations.

Article 2

Prediction of autoignition-stabilized flame dynamics in a backward-facing
step reheat combustor
Harish S. Gopalakrishnan, Tarjei Heggset, Andrea Gruber, and Jonas Moeck
Presented at the Combustion Institute - Canadian Section, Spring Technical Meet-
ing, 2022, Ottawa

Article 2 is a short conference paper which builds upon the work per-
formed in Article 1. The Lagrangian framework proposed in Article 1 for
a one-dimensional configuration is extended to multiple dimensions. The
results obtained from this framework are compared to forced LES compu-
tations of autoignition fronts stabilized in a backwards-facing step com-
bustor configuration. These results show an excellent match both in terms
of the flame surface and the integrated heat release rate. This article also
contributes to meeting Objective 2 in Section 1.5.

Article 3

Computation of Intrinsic Instability and Sound Generation From Autoigni-
tion Fronts
Harish S. Gopalakrishnan, Andrea Gruber, and Jonas Moeck
Journal of Engineering for Gas Turbines and Power, 2022, published online (ht-
tps://doi.org/10.1115/1.4055421)

Article 3 meets both Objective 1 (in part) and Objective 3 in Section 1.5.
A one-dimensional reactive Euler equation framework is formulated and
computationally implemented (see also Section 2.1 in this thesis). This
framework is used to compute the initial ignition process of autoigniting
mixtures in one-dimensional geometries with very low acoustic reflection.
These flow computations revealed the occurrence of intrinsic thermoacous-
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tic oscillations, which manifest as harmonic oscillations in heat release rate
and ignition front position. Comparison of Euler and Navier–Stokes com-
putations revealed that viscous effects have a relatively minor role on the
linear behaviour of these intrinsic thermoacoustic oscillations.

In the second part of Article 3, a simplified framework, based on the linear-
ized Euler equations, to compute the acoustic field in reheat combustors is
presented (see also Section 2.4 in this thesis). This framework is validated
by means of a comparison to forced DNS computations. Additionally, res-
ults from Article 3 indicate that autoignition fronts, by virtue of the back
and forth motion in response to acoustic perturbations, create fluctuations
in gas properties and significant magnitudes of velocity oscillations locally
close to the ignition front.

Article 4

Computation and prediction of intrinsic thermoacoustic oscillations as-
sociated with autoignition fronts
Harish S. Gopalakrishnan, Andrea Gruber, and Jonas Moeck
Under consideration for publication in Combustion and Flame

Article 4 meets both Objective 1 and Objective 4 in Section 1.5. In the first
part of Article 4, forced computations of the autoignition front in the sim-
plified one-dimensional reheat combustor are performed to demonstrate
the occurrence of intrinsic thermoacoustic oscillations. The full 3x3 scat-
tering matrix of the autoignition front is derived from these forced flow
computations. All elements of the scattering matrix have a common pole
corresponding to a frequency of 2500 Hz and a growth rate of −75 s−1,
which characterize the linear dynamics of the ITA feedback. Significantly
amplified flame responses are observed when the flow is forced close to
the frequency of the ITA mode.

In the second part of Article 4, a theoretical framework used to predict the
linear stability of the ITA oscillations is developed (also see Section 2.2).
This framework is used, along with the linearized Euler equation solver
developed in Article 3, to predict the thermoacoustic eigenvalues. The
thermoacoustic eigenvalues predicted using this approach showed very
good agreement with the detailed flow computations.
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3.1 Conclusions
This thesis aims to further our understanding of unsteady combustion phe-
nomena in combustors used for power generation in stationary gas tur-
bines. Such systems use a sequential combustor architecture for efficiently
burning fuels with high hydrogen contents. In this thesis, thermoacous-
tic phenomena in the second-stage of a sequential combustor are studied
by means of computation and theory. More specifically, a simplified ‘aca-
demic’ reheat combustor configuration was considered, and the dynamics
of the intrinsic thermoacoustic feedback were studied in this configuration.

Intrinsic thermoacoustic feedback is caused, in combustion systems with
propagation-stabilized flames, when an upstream-traveling acoustic wave
generated by the unsteady flame front introduce flow perturbations, which
result in a flame response. The unsteady flame response can be caused
either by exciting hydrodynamic oscillations or by creating convected equi-
valence ratio fluctuations or by modulating the flame front kinematics.
This unsteady flame response, in turn, generates upstream-traveling acous-
tic perturbations which close the feedback loop. In combustors containing
autoignition fronts, the ITA feedback is caused by the upstream-traveling
acoustic disturbances modulating the ignition chemistry by introducing
local temperature and pressure perturbations in the reactant mixture. The
modulations in the ignition chemistry result in ignition time oscillations,
which result in ignition front position fluctuations causing heat release rate
oscillations, which in turn generate acoustic disturbances.

The first significant contribution of this work is the demonstration of the
occurrence of ITA oscillations in autoignition fronts. Unforced Euler equa-
tion computations of autoignition fronts revealed that the ITA mode mani-
fests as harmonic oscillations prior to the establishment of a stable ignition
front. Furthermore, it was also shown that these oscillations tend to be
unstable at reactant temperatures where the ignition time is highly sensit-
ive to small temperature changes. Forced computations revealed that the
ITA mode shows up as a pronounced peak in the scattering matrix of the
autoignition front. The second contribution of this work has been the de-
velopment of simplified frameworks to enable efficient prediction of the
ITA oscillations in a simple reheat combustor configuration.

With regards to the simplified frameworks, first, a Lagrangian particle
tracking based methodology was developed to compute the unsteady re-
sponse of autoignition fronts to acoustic and convective perturbations. This
framework treats the flow as a collection of independently evolving re-
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acting fluid elements, from which the global flame response is computed.
Second, a linearized Euler equation framework was developed to accur-
ately calculate the acoustic field generated by unsteady autoignition fronts.
Both these approaches compared very well with corresponding results ob-
tained using more detailed approaches such as forced DNS and Euler com-
putations. Armed with these tools, the prediction of the linear stability of
the thermoacoustic oscillations was attempted. Consistent spatial resolu-
tion of the mean flow profiles and the fluctuating source terms was found
to be most essential for obtaining accurate estimates of the thermoacoustic
eigenvalue. Nevertheless, the predictions of the intrinsic thermoacoustic
eigenvalues from the simplified approaches showed very good agreement
with detailed flow computations. This suggests that the tools developed
in this work can form a foundation for more sophisticated thermoacoustic
stability analysis frameworks for complex industrial scale combustor geo-
metries.

3.2 Future work
In this thesis, prediction of intrinsic thermoacoustic oscillations were per-
formed in a simplified one-dimensional geometry. A natural extension of
this work would be to extend the frameworks developed in this thesis
to more complicated (and more realistic) industrial-scale combustor geo-
metries. These geometries would feature a number of additional physical
mechanisms which were not considered in this work. To name a few, ac-
celeration of entropy perturbations downstream to generate indirect noise,
hydrodynamic instabilities, diffusive effects, turbulence, and so on. To
make this work applicable to such realistic geometries, the following dir-
ections of future work are envisaged.

• Throughout this work, diffusive effects were neglected in all the flow
computations and simplified models. While this is valid for the ele-
mentary one-dimensional combustor configuration with an autoigni-
tion front, this configuration is far from what is observed in an actual
engine. In realistic reheat combustors, the stabilization mechanism
of reheat flames would be partly due to propagation and partly due
to autoignition. Diffusive effects can play a vital role in such a situ-
ation. Furthermore, diffusive effects also play an important role in
governing the advective transport of entropy fluctuations from the
first stage of the sequential combustor to the second stage. Incorpor-
ating diffusive and multi-dimensional effects would be most essen-
tial for robust models attempting to study the unsteady response of
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reheat flames.

• A key observation from this work is the following. Fine-grained spa-
tial resolution of the mean flow profiles and the time-dependent source terms
is most essential to predict the thermoacoustic eigenvalues accurately. In-
deed, Article 4 has shown that, even in the one-dimensional configur-
ation, approximating the flame and flow by analytically constructed
profiles resulted in the generation of spurious entropy waves. When
a nozzle is present downstream of the autoignition front, these spuri-
ous entropy waves can result in the generation of spurious acoustic
perturbations, which can impact the stability predictions. Therefore,
future work should focus on developing methods to consistently de-
scribe the mean flow and the source terms created due to ignition
front motion. A first step towards this objective has already been laid
out by the work of Avdonin et al. (2019) and Meindl et al. (2021).
In their work, instead of adopting the conventional (divide and con-
quer) path of supplying a flame transfer function to an acoustic solver
to compute the thermoacoustic modes, the full Navier–Stokes equa-
tions (including the chemical source terms) were linearized. How-
ever, these works used a simple global two-step reaction mechanism.
More work is needed to extend this framework to complex reaction
mechanisms such as the ones used in this work.

• Throughout this work, vorticity perturbations were neglected. This
was done keeping in mind that the main objective of this work was
to get insight into the interactions between acoustic waves and the
autoignition front. However, realistic reheat combustors have flame-
stabilization mechanisms such as bluff-bodies and swirling flows,
which are a strong source of hydrodynamic instabilities. Future work
should focus on studying the interaction between the autoignition
front and vorticity perturbations in a turbulent flow.

• The Lagrangian framework used in this work predicts the ignition
front response to acoustic perturbations with excellent accuracy. How-
ever, the result of Figure 2.8 shows that at high frequencies, the accur-
acy of the heat release response prediction decreases. While the pre-
cise reasons for this behaviour is unknown at this point, we believe
that the finite thickness of the ignition front could become important
at higher frequencies, warranting modifications to Equation (2.81).
More work is required to improve the predictions at higher frequen-
cies.
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Appendix A

Characteristic waves from
linearized Euler equations

The Riemann invariants for the flow depicted in Figure 1.7 is derived in
this section. We start with the linearized Euler equations at the boundary
point which can be written as

𝜕

𝜕𝑡


𝜌 ′

𝑢′

𝑝′


+


𝑢0 𝜌0 0

0 𝑢0 1/𝜌0

0 𝛾𝑝0 𝑢0


𝜕

𝜕𝑥


𝜌 ′

𝑢′

𝑝′


= 0 (A.1)

In writing the above equation, the fluctuations in the source terms and gas
properties are assumed to be zero at the boundary points. This is a valid
assumption as these quantities are non-zero only in the region close to the
flame front, and the magnitudes of these fluctuations are very small at the
boundary points. The above equation can be written in compact form as

𝑞𝑡 + A𝑞𝑥 = 0 (A.2)

Applying a similarity transformation to the matrix 𝐴 results in

𝑞𝑡 + RΛR−1𝑞𝑥 = 0 =⇒ R−1𝑞𝑡 + ΛR−1𝑞𝑥 = 0 (A.3)
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The eigenvalues and eigenvectors of the matrix A can be written as

Λ =


𝑢0 − 𝑐0 0 0

0 𝑢0 0
0 0 𝑢0 + 𝑐0

 , R =


1 1 1

−𝑐0/𝜌0 0 𝑐0/𝜌0
𝑐2

0 0 𝑐2
0

 . (A.4)

The inverse of the matrix R is

R−1 =



0 − 𝜌0
2𝑐0

1
2𝑐2

0

1 0 − 1
𝑐2

0

0 𝜌0
2𝑐0

1
2𝑐2

0


. (A.5)

Applying the inverse of the matrix into Equation (A.3) gives the set of three
equations, which are

1
2
𝜕

𝜕𝑡

(
𝑝′ − 𝜌0𝑐0𝑢

′
)
+ 1

2
(𝑢0 − 𝑐0)

𝜕

𝜕𝑥

(
𝑝′ − 𝜌0𝑐0𝑢

′
)
= 0

𝜕

𝜕𝑡

(
𝑝′ − 𝑐2

0𝜌
′
)
+ 𝑢0

𝜕

𝜕𝑥

(
𝑝′ − 𝑐2

0𝜌
′
)
= 0

1
2
𝜕

𝜕𝑡

(
𝑝′ + 𝜌0𝑐0𝑢

′
)
+ 1

2
(𝑢0 + 𝑐0)

𝜕

𝜕𝑥

(
𝑝′ + 𝜌0𝑐0𝑢

′
)
= 0.

(A.6)

The above equation shows that the characteristic variables𝑊 : 𝑝′ − 𝜌0𝑐0𝑢
′,

𝑝′ − 𝑐2
0𝜌

′ and 𝑝′ + 𝜌0𝑐0𝑢
′ are governed by the equations

𝐷𝑊

𝐷𝑡
= 0 (A.7)

along the curves given by 𝑑𝑥/𝑑𝑡 = 𝑢0 −𝑐0, 𝑢0, 𝑢0 +𝑐0. Therefore, the Riemann
invariants are given by 

𝑔

ℎ

𝑓


=



1
2 (𝑝 − 𝜌0𝑐0𝑢)

𝑐2
0𝜌 − 𝑝

1
2 (𝑝 + 𝜌0𝑐0𝑢)


. (A.8)
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