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Abstract: Protecting the remaining wild salmon stock in Norway is of utmost importance
and requires that farmed salmon cannot escape from aquaculture sites. As holes in net-cages
are responsible for a large fraction of the escaped salmon the industry has to perform frequent
inspections of the fish cage integrity. In this paper we propose an image processing and computer
vision based attention mechanism towards a more automated fish-cage inspection. The presented
algorithm allows to indicate areas in videos showing net-pen locations where potential holes are
present. We show the effectivity of the approach on video-recordings of holes also in commercial
fish-cages.
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1. INTRODUCTION

Within modern offshore based aquaculture, using grav-
ity net cages, net malfunction and escape of fish is a
threat to wild fish populations. From 2010 to 2018, a
total of 305 reported escape incidents with Atlantic salmon
(Salmo salar) or rainbow trout (Oncorhynchus mykiss)
were confirmed, involving in total 1.960.000 registered es-
capees (Føre and Thorvaldsen, 2021). To minimize escapes
due to malfunctioning of net cages, inspections must be
performed regularly to discover and repair damages as
early as possible, minimizing the time period with a non-
intact net structure. Today, net inspection is performed
manually by divers or farming personnel monitoring video
streams recorded by Remotely Operated Vehicles (ROVs)
tethered to, and operated from, a surface vessel. The ROV
is thereby remotely controlled to move in horizontal or
vertical direction close to the net while streaming the video
footage to a boat or operation center of the farming site.
Typical net cages are circular with a radius of approxi-
mately 25m and a depth of up to 50m (Jensen et al., 2010).
Using manual labor for inspecting such large net structures
is tedious and expensive. Hence, the inspection frequency
is limited by economic factors, and typically carried out on
a monthly basis, or after any operation involving the net
and weighting system (official requirement for Norwegian
fish farming companies). Manual operation also makes the
inspection quality highly operator dependent. Technology
that allows for an inspection to be carried out by an
autonomous underwater vehicle (AUV) was for example
proposed in Rundtop and Frank (2016), Potyagaylo et al.
(2015), Duda et al. (2015) and Schellewald et al. (2021)
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but full autonomy still requires some development efforts
before it will be reached.

Fig. 1. Net damage examples. Detecting holes manually within the
regular net-structure is a tedious and expensive task.

An AUV could be deployed from an underwater docking
station or manually from a surface vessel, and hence reduce
labour cost, allow for increased inspection frequency, avoid
operator dependent inspection results and allow for a sys-
tematic documentation of the net cage integrity. Within
our presented work the focus is on the development of a
machine vision system for net damage detection. This is
one of the key enabling technologies for the realization
of an autonomous inspection vehicle. Moreover, such a
system can be utilized as aid for the ROV-pilot indicating
possible mesh breakages. Within salmon aquaculture, the
main reasons for escapes are structural breakdowns due
to environmental loads, operational causes like erroneous



mounting, over straining or propeller/boat damage, abra-
sion between net and chain or ropes. Other damages come
from predators and external causes like flotsam/wreckage
or ice (Jensen et al., 2010). Depending on the cause, net
damages have different shapes and sizes (cf. Figure 1).
However, the most common type of failure is a single
mesh breakage. Detecting and repairing them is important
to avoid a subsequent enlargement of the hole. Larger
holes require immediate attention to avoid potential es-
cape of fish. Therefore, an important scenario towards an
autonomous net damage detection system is the ability
to detect small holes in a single net layer within a fish
cage. The challenges in automatic processing (Schellewald
et al., 2021) and analysis of underwater net cage structure
are manifold (Duda et al., 2015); due to the turbidity
of the water, caustics, reflections along with possible low
light conditions, the video quality might be poor even with
high quality cameras. Additionally, the water current and
waves can cause spatial deformations in the net structure,
fish can regularly occlude the net, and algae growth often
covers the net structure to a certain degree leading to net
irregularities (Madshaven et al., 2022).

1.1 Related Work

Automatic inspection operations of net cage structure
integrity utilize different sensor modalities such as cam-
eras or acoustic based sensors. The computer vision-based
approaches by (Zhao et al., 2020; Paspalakis et al., 2020;
Jovanovi et al., 2016) utilize image processing techniques
like Otsu’s thresholding method (Otsu, 1979) to generate
a binary image and the Hough Transform for line de-
tection (Illingworth and Kittler, 1988). The pixel count
for each grid cell was determined, indicating a possible
net structure damage if the count is largely above aver-
age. A modified version followed where line detection was
used to calculate the nearest net structure pixel within a
binary image mask. A similar approach combining both
techniques were proposed by (Betancourt et al., 2020) to
detect if net junctions are missing. The method was tested
on real fish cage image footage with a detection accuracy
of 79%. The team of (Zacheilas et al., 2021) proposed
a FPGA-based system utilizing image enhancement and
image processing methods. In contrary, this work focuses
on the regularity of the net pattern without accounting for
the patch size of the connected components.
Another category of methods are based on rejecting certain
feature detections on dynamic objects, like fish or floating
seaweed (Leonardi et al., 2020) as they complicate the
process of reconstructing mesh structures such as knot
points, and in certain situations resemble net holes. Image
enhancing methods and marine growth segmentation were
applied by (Qiu et al., 2020). Several underwater images
were collected and labeled with pixel-wise annotations.
Deep learning for net hole detection was applied by (Tao
et al., 2018). YOLO (Redmon et al., 2016) was utilized
for net structure and hole detection applied on images
taken under controlled lab conditions. (Madshaven et al.,
2022) utilized an ensemble of classical computer vision and
image processing techniques for tracking and made use of
neural networks for both segmentation of net structure
and classification of scene content, as the determination of
irregularity (fish, seaweed).

1.2 Contributions

In this paper a novel approach is proposed that targets the
net irregularity detection, a specific task needed within a
full fish-cage inspection processing chain. In particular, an
attentional mechanism is presented that allows to mark
areas where potential holes are present in an otherwise
regular net-structure. The underlying multi-stage regu-
larity check robustifies the selection process and declares
different levels of potential net irregularities/damages. The
proposed method works under realistic lighting condition
and was tested by using real world aquaculture fish net
recordings. The entire approach facilitates traditional com-
puter vision and image processing methods, preventing
time consuming and expensive training as performed when
using modern machine learning paradigms.

1.3 Overview

In the following, the suggested approach is explained in
detail by presenting in section 2 the main idea as well as
the needed theoretical background knowledge. After that,
in section 3, the algorithmic steps are explained, followed
by the result-section (section 4) along with a discussion
and the conclusion (section 5).

2. THEORETICAL BACKGROUND

The aim of the presented approach is to provide an
attentional mechanism that allows to mark areas where
potential holes are present in an otherwise regular net-
structure. This section explains the main idea and briefly
reviews some image processing techniques are exploited in
the approach. Then the algorithm is explained in more
detail.

2.1 Main idea

The main idea followed to automatically detect the pres-
ence of potential holes in the net-structure of a fish cage
is based on the fact that large areas of the net pen show a
regular net pattern. As a potential hole represents a devi-
ation of this regular pattern at first the regular structure
of the net is determined followed by a search for locations
in the image where the regularity of the neighborhood is
no longer present. This is done by testing if the locally
observed regular pattern continues into the close neigh-
borhood and keep track of locations where the regularity
is broken. The approach copes with two common lighting

Fig. 2. Video frame of a hole in a net pen. The left image is the
original where the net appears brighter than the background.
The right image is the result of a morphological ”black top-
hat” operation which – beside reducing the effect of a potential
brightness gradient – also inverts the image.

situations. In the first the net appears brighter than the



Fig. 3. The left image is an original image of a net which appears
darker than the background. The right image is the result of
a morphological white top-hat operation enhancing the black
structure and reducing the brightness gradient present in the
background.

background and in the second the net appears darker than
the background (see left images in Figure 2 and 3). After
the application of two related morphological operations
reducing the ”brightness gradient” in both, the resulting
images on the right side show net structure which appears
dark in front of a brighter background. The incorporated
inversion in the case of a bright net provides a common
basis to extract the net structure by finding points with a
local brightness maximum and using these for representing
the mesh-structure of the net. As the proposed approach
exploits morphological operations (i.e. black- and white-
top-hat) they are introduced in the next section.

2.2 Morphological image processing

Morphological operations (Soille, 2003) are non-linear op-
erations and are highly useful in computer vision to ana-
lyze and process geometrical and other structures in im-
ages. Here they are used to unify the subsequent processing
steps by representing the net as dark structure when the
original image contains a bright image and also to improve
the separability of the net-structure from the background
by enhancing the dark net-area and reducing the ”bright-
ness gradient” (transition from a brighter to a darker area)
that might be present in the background.

Dilation and erosion

The two fundamental mathematical morphology opera-
tions are dilation and erosion which we denote as ×d and
×e, repectively. They act on a structuring element b(x)
which consists of a set of pixels defining a neighborhood
and an origin. The origin is typically one pixel of the
neighborhood, although generally it can lie outside of the
structuring element. In our case we use a small circular
disk with the origin in the center as structuring element.
The dilation of image f by structuring element b is denoted
as

f ×d b. (1)
Performing this operation the structuring element is swept
over the image (like a filter-mask) and the new gray-value
for each pixel is defined as the maximum of the pixels
covered by the structuring element. Therefore, it extends
bright structures in the image.
The erosion of image f by structuring element b is denoted
as

f ×e b. (2)
Again, to perform this operation the structuring element
is swept over the image but the new gray-value of each

pixel is defined as the minimum of the pixels covered
by the structuring element. This operation darkens the
image. Definitions for basic morphological operations can
be found in (Soille, 2003).

Closing and opening

Closing (denoted by f • b) and opening (denoted by f ◦ b)
are two operations composed of erosion and dilation. The
closing of an image f by a structuring element b(x) is a
dilation ×d followed by an erosion ×e:

f • b = (f ×d b) ×e b. (3)

The opening of an image f by a structuring element b(x)
is an erosion followed by a dilatation:

f ◦ b = (f ×e b) ×d b. (4)

Black top-hat and white top-hat

In the case where the net is brighter than the background
the black top-hat transform (sometimes referred to as
bottom-hat transform) will be applied to invert the image
(resulting in net-structure that is represented by dark pix-
els) and to reduce a potential present brightness gradient
(cf. Figure 2).
The black top-hat transform is defined as the difference
between the closing and the input image:

Tb(f) = (f • b) − f. (5)

The black top-hat returns an inverted image where struc-
tures like the net which are ”smaller” than the structuring
element become more clearly visible as dark net structure.
In the case that the background detected is already
brighter than the net structure a white top-hat transfor-
mation will be performed.
The white top-hat transform is defined as the difference
between the input image and its opening by some struc-
turing element:

Tw(f) = f − (f ◦ b). (6)

The white top-hat transform returns an image enhancing
the dark net structure and reducing a potential present
brightness gradient (cf. Figure 3).

3. APPROACH

In this section the single steps of the Algorithm are ex-
plained. This starts with the pre-processing steps followed
by the determination of the regular net-structure to the de-
termination of irregularities representing potential holes.

3.1 Algorithmic steps

De-interlacing: Videos from ROVs that are used for
inspecting the fish cage are often transmitted as interlaced
signal containing the information of two video frames cap-
tured consecutively. An example illustrating the artifacts
resulting from interlacing is depicted in the left image of
Figure 4. Using the same bandwidth interlacing allows to
double the frame-rate at the cost of a reduced y-resolution
(each second row belongs to the same time). For image
processing the interlaced image has to be de-interlaced to
obtain time consistent images. In cases where the video
frames were interlaced we performed the de-interlacing by
substituting every second row with the interpolated color-
values from the neighboring rows (cf. right image of Figure
4).



Fig. 4. De-interlacing. Left: An interlaced image. Right: De-
interlaced version of the image.

Distinguishing dark and bright net: For distinguishing
between the two illumination conditions a adaptive thresh-
olding along with determining the size distribution of con-
nected components was exploited. If many small localized
dark/black segments are present and only a few wider
spread bright/white connected components indicate the
presents of a bright net (compare figure 5). The illumina-
tion case (bright/dark) determines which Morphological
filter is used in the next step.

Fig. 5. Left: Binary segmentation of the net from Figure 2. Right:.
Confirmed net structure.

Morphological pre-processing: As net videos taken under
real world conditions often show non-uniform illumination
we apply the previous discussed morphological filters to
the input image with the subsequent aim to robustly
determine the center location of the net masks (containing
the background) which are typically arranged in a regular
fashion. In case of a bright net the black top-hat transform
is used to reduce the effect of a potential brightness
gradient and also inverts the image such that the net-
structure appears dark and the background bright. In
the case where the net already appears dark we employ
the white top-hat transform. Both filters improve the
separability of the net structure from the background (see
right images of Figure 2 and Figure 3).

Non-maximum suppression: This step allows to find
the bright center locations of the net cells by searching
for all local brightness maxima in a smoothed version
of the image. We do so by employing a non-maximum
suppression (Neubeck and Van Gool, 2006) on the image.
The non-maxima-suppression on gray-value images finds
all pixels that belong to a local maximum including the
’plateaus’ with a value equal to the local maximum.
We mark the centroids of the maxima/plateaus as local
maximum. This helps to determine the location of the net
cells, particular in real world recordings, in a efficient and
robust way. Figure 6 shows the results of the non-maxima-
suppression when applied to the right image of Figure 2.
The subsequently extracted grid-points of the net consist
of the centroids of the found maxima/plateaus.
We note that the non-maximum suppression for extracting
the local maxima can be implemented efficiently using a
few basic morphological operations along with a smoothing

Fig. 6. Left: Binary image showing the pixels belonging to the
maximum plateaus extracted by a non-maxima-suppression.
Right: Extracted grid-points of the net are the centroids of
the maxima/plateaus.

and comparison operation: First, the image is converted
to a gray-value image and eroded using a disk shaped
structuring element and subsequently smoothed with a
Gaussian kernel. The resulting image is then subtracted
from a dilated version of this image. Resulting zero-valued
image regions (pixels) represent the desired local maxima
positions.

The next step aims to determine which of the found
local maxima agree to lie on a local regular grid and
simultaneous determine where the grid-structure is not
present.

k-nearest neighbor (kNN) testing: Starting from the
obtained local maxima positions a regularity check is
performed exploiting a k-nearest neighbor (kNN) test
verifying the regular grid structure of the net. The kNN

A B C

Fig. 7. Regularity check of the maxima nodes. A) The 4 nearest
neighbours (a, b, c, d) of the currently considered node n are
determined. B) Opposed nodes (here d and b) are tested to lie
approximately in line with node n. C) The vector between d
and b is then used to postulate expected grid points p1 and p2.
The same is done for the opposed nodes a and c that lie in the
other direction (not illustrated).

search can be efficiently realized by arranging the maxima
nodes into a kd-tree. Then for each node we find the 4
nearest neighbours. We illustrate this in Figure 7 for a
single node n. By sorting these 4 neighbours (a, b, c, d) in
clockwise order we can easily test if two opposed nodes
(illustrated in horizontal direction d and b) and the center
node n lie on a line by testing if the angles of the opposed
points are approximately 180 degrees plus a tolerance
(of about 23 degrees) apart from each other, in order to
compensate for small deformations of the net. The vector
between d and b is then used to postulate the positions
of the nodes p1 and p2 that should be present in both
directions in a regular net. If a local maximum is close
by to the postulated node position we mark the found
node as being ”re-confirmed”. If the postulated node is not
present a break in the regular pattern might be present and
the position gets marked as ”non-confirmed”. A similar



test is performed in the other direction defined by the
nodes a and c. We mark the center nodes that build a
regular cross with all their 4 neighbours as ”confirmed”.
Regular net-grid structures (i.e. ”confirmed” and ”re-
confirmed” nodes) are colored in green. The locations
of non-reconfirmed points are checked once more. If the
binary segmentation (into background and net-structure)
indicates that net-structure is present at the location of
a postulated node it gets the status of being irregular-
net and is colored orange. If background is present at the
postulated node location it gets the status of a confirmed-
irregularity (colored blue). Locations where two or more
irregularities are present in the close neighbourhood are
marked as hole/irregularity and colored in red.

Fig. 8. k-nearest neighbor check: Net damage locations shown in red,
irregular net structure shown in blue and regular net structures
shown in green. Left: Regular net structure with locations of
missing regularity. Right: Locations labelled as damaged net
represent potential holes.

4. RESULTS

The proposed method was implemented in C++ exploiting
the openCV library (Itseez, 2020) and the ”Fast Library
for Approximate Nearest Neighbors” FLANN (Muja and
Lowe, 2009) allowing the algorithm to perform in real
time (Videos with 512x512 pixels are typically processed
with > 20 fps using not highly optimized code). Results
for videos from field experiments are shown in Figure 9.
The proposed approach is able to detect the regular net
structure and properly determines present irregularities.
We wish to emphasize that the developed approach targets
to solve a specific task needed within a full fish-cage
inspection chain and accordingly has some limitations.

4.1 Limitations

In its current form, our algorithm detects all deviations
from a regular net-structure. This can, for example, also be
patches of seaweed from bio-fouling or other objects that
directly occlude a part of the net (See Figure 10). There-
fore, a subsequent object detection will be implemented in
the future to further separate potential holes from non-
holes. In addition, the algorithm currently performs a
frame by frame analysis ignoring any time information.
However, the tracking of potential holes over time will
increase the robustness by helping to remove spurious de-
tected irregularities and find holes/irregularities which are
consistent over time. Another assumption of the approach
is that the net is observed parallel to the net (±25 degrees)
and that the size of the net-cells do not vary too much
within one image frame due to the perspective projection.
The second image row in Figure 10 indicates the challenges
arising from a net tilted relative to the camera. Knowing

Fig. 9. Examples of net analysis results from videos of an ROV
filming a net with different holes. Detected irregularities are
marked.

the net orientation, a perspective correction could help to
cope with that.

5. CONCLUSION

In this paper, we presented an approach which is capable
to detect irregularities in inspection videos from net-pens
of salmon fish-cages. It allows for a more automated fish-
cage inspection and is intended to be used as a module in
underwater inspection vehicles that can traverse the net
pen in an autonomous manner. The presented computer
vision-based can serve as attention mechanism to indicate
locations in videos showing net-pen where potential holes
are present. The method is based on a two-stage regularity
check where at first neighboring points of the center
point are checked and in a second stage the connection
vectors between two aligned grid points and the center
node are used to postulate expected outer grid points.
An additional consistency check leads to a more robust
selection process for labeling net irregularities/holes. We
showed the effectivity of the approach on video-recordings
of holes also in commercial fish-cages.
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Fig. 10. Limitations: Top row: Objects occluding the net are
detected as irregularities but represent no hole. Bottom row:
The sizes of the net cells need to be similar which is violated
in projections of a net tilted largely relative to the camera.
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