
Phenotypic response of yeast
metabolic network to availability
of proteinogenic amino acids

Vetle Simensen1, Yara Seif2 and Eivind Almaas1,3*
1Department of Biotechnology and Food Science, NTNU—Norwegian University of Science and
Technology, Trondheim, Norway, 2Department of Bioengineering, University of California San Diego,
San Diego, CA, United States, 3K.G. Jebsen Center for Genetic Epidemiology Department of Public
Health and General Practice, NTNU—Norwegian University of Science and Technology, Trondheim,
Norway

Genome-scale metabolism can best be described as a highly interconnected

network of biochemical reactions and metabolites. The flow of metabolites,

i.e., flux, throughout these networks can be predicted and analyzed using

approaches such as flux balance analysis (FBA). By knowing the network

topology and employing only a few simple assumptions, FBA can efficiently

predict metabolic functions at the genome scale as well as microbial

phenotypes. The network topology is represented in the form of genome-

scale metabolic models (GEMs), which provide a direct mapping between

network structure and function via the enzyme-coding genes and

corresponding metabolic capacity. Recently, the role of protein limitations in

shaping metabolic phenotypes have been extensively studied following the

reconstruction of enzyme-constrained GEMs. This framework has been shown

to significantly improve the accuracy of predicting microbial phenotypes, and it

has demonstrated that a global limitation in protein availability can prompt the

ubiquitous metabolic strategy of overflow metabolism. Being one of the most

abundant and differentially expressed proteome sectors, metabolic proteins

constitute a major cellular demand on proteinogenic amino acids. However,

little is known about the impact and sensitivity of amino acid availability with

regards to genome-scale metabolism. Here, we explore these aspects by

extending on the enzyme-constrained GEM framework by also accounting

for the usage of amino acids in expressing the metabolic proteome. Including

amino acids in an enzyme-constrained GEM of Saccharomyces cerevisiae, we

demonstrate that the expanded model is capable of accurately reproducing

experimental amino acid levels. We further show that the metabolic proteome

exerts variable demands on amino acid supplies in a condition-dependent

manner, suggesting that S. cerevisiaemust have evolved to efficiently fine-tune

the synthesis of amino acids for expressing its metabolic proteins in response to

changes in the external environment. Finally, our results demonstrate how the

metabolic network of S. cerevisiae is robust towards perturbations of individual

amino acids, while simultaneously being highly sensitive when the relative

amino acid availability is set to mimic a priori distributions of both yeast and

non-yeast origins.
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Introduction

Constraint-based analysis of genome-scale metabolic models

(GEMs) have become an integral framework for predicting

metabolic phenotypes of biochemical networks at the genome

scale (Bordbar et al., 2014; Fang et al., 2020). Here, the network

topology of all metabolic transformations believed to occur

within an organism is transformed into a stoichiometric and

mathematically structured framework. By formulating mass

balance constraints from the reaction stoichiometries and

investigating their steady-state behavior, the attainable

reaction fluxes span a high-dimensional hyperspace containing

the set of feasible flux distributions (Orth et al., 2010). This

solution space can be analyzed by various techniques, such as

random flux sampling (Wiback et al., 2004), elementary flux

modes (Schuster et al., 1999), and flux balance analysis (FBA)

related approaches (Orth et al., 2010). A fundamental challenge

with this formulation, however, is the considerable size of the

solution space and the underlying uncertainty in prediction

(Bernstein et al., 2021). Consequently, extensive efforts have

been invested into increasing the predictive accuracy of

constraint-based analysis of GEMs by formulating and

integrating additional biological and physio-chemical

constraints on the metabolic network to further reduce the

size of this solution space. These constraints have included

adjusting the reversibilities of reaction fluxes using principles

of thermodynamics (Henry et al., 2006), integration of measured

exchange fluxes and growth rates (Sulheim et al., 2020), and

employing various omics data to constrain reaction fluxes or

construct strain- and condition-specific models (Hyduke et al.,

2013).

Enzyme-constrained GEMs have become an important

addition to this plethora of computational approaches. Here,

the fluxes of biochemical reactions are explicitly limited by the

availability and kinetic efficiency of the catalyzing enzymes

(Chen and Nielsen, 2021). In other words, weights

corresponding to capacity constraints are explicitly added to

the network. Many different methods have been developed to

account for these limitations in flux magnitudes (Beg et al., 2007;

Adadi et al., 2012; Sánchez et al., 2017), where GECKO (Genome-

scale metabolic models with Enzymatic Constraints using Kinetic

and Omics data) has become one of the more prominent players

in the field (Sánchez et al., 2017; Chen and Nielsen, 2021). In

GECKO, the metabolic reactions of the GEM are modified to

include pseudo-metabolites representing enzyme usage. These

pseudo-metabolites are by themselves constrained through the

integration of experimental proteomics measurements or by an

overall constraint on the cellular allocation of metabolic proteins.

With the latter strategy, the GECKO framework is able not only

to predict biochemical fluxes of the metabolic network, but also

the necessary enzyme levels required to attain a particular

metabolic phenotype (Moreno-Paz et al., 2022). When

applying the GECKO approach on a GEM of Saccharomyces

cerevisiae, the flux variability was considerably reduced

compared to that of the purely metabolic GEM, and the

enzyme-constrained model showed major improvements in

growth rate and secretion profile predictions across a range of

conditions (Sánchez et al., 2017; Moreno-Paz et al., 2022).

Additionally, the model gained the ability to correctly

simulate overflow metabolism (i.e., the Crabtree effect) at

higher growth rates without imposing any auxiliary ad hoc

constraints, substantiating the hypothesis that protein

limitation, i.e., network-link capacity constraints, is an

underlying cause for this physiological behavior.

Enzymes are biological polymers built from amino acids, and

the sequence of amino acids is the key determinant on how

proteins fold into a functional three-dimensional structure in

vivo (Whisstock and Lesk, 2003). These spatial configurations

give rise to a vast range of biological functions through their

impact on a protein’s ability to bind and interact with other

biomolecules (e.g., substrate metabolites in biochemical

reactions). The relative amino acid composition of predicted

proteomes has been shown to sharply segregate species according

to distinct phylogenetic clusters (Tekaia and Yeramian, 2006).

Additionally, experiments show that the relative amino acid

composition is, for the most part, conserved across

environmental conditions for S. cerevisiae (Chen and Nielsen,

2022). Being one of the largest and most differentially expressed

proteome sectors in S. cerevisiae (Yu et al., 2020), metabolic

proteins constitute a major sink for proteinogenic amino acids.

Here, we explore the role of these amino acids in supporting

optimal metabolic phenotypes and investigate how perturbations

in their availability affects utilization of the yeast metabolic

network at the genome-scale.

Expanding the GECKO framework, we formulate a

constraint-based metabolic approach, acidFBA, which

explicitly accounts for the absolute usage of proteinogenic

amino acids to express a given metabolic proteome. This is

done by introducing amino acid drain reactions which

concomitantly distribute flux from the growth-limiting protein

pool towards individual metabolic proteins at stoichiometric

amounts given by their respective amino acid sequences. As a

proof of concept, we implement our method using an enzyme-

constrained GEM of S. cerevisiae and investigate the amino acid

usage across a range of growth conditions, demonstrating the

amino acid distribution to be contingent on both the metabolic

phenotype and nutrient availability. By exploring the near-

optimal flux phenotype across a range of conditions, we also
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discover a significant degree of robustness within the metabolic

network when faced with perturbations in the availability of

individual amino acids. We further demonstrate how this

resilience is directly linked to inhomogeneous distributions of

protein-bound amino acids across the metabolic enzymes. Lastly,

we find that the growth phenotype of the yeast metabolic network

is very sensitive when the amino acid availability is hard-

constrained to mimic the experimental amino acid profile of

both yeast and other non-yeast organisms.

Materials and methods

AcidFBA formulation

In the following, we provide a brief summary of the GECKO

formalism and how acidFBA is constructed as an expansion of

the same methodology with regards to proteinogenic amino acid

usage. For a more comprehensive description of GECKO and its

underlying assumptions, we refer the reader to Ref. (Sánchez

et al., 2017).

The standard FBA problem can be expressed as the following

linear program

max z � ∑
N

j�1
cjvj (1)

s.t. ∑
N

j�1
sijvj � 0, ∀i ∈ M, (2)

vmin
j ≤ vj ≤ vmax

j , ∀j ∈ N, (3)

where vj is the flux (mmol gDW−1 h−1) through reaction j, sij is the

stoichiometric coefficient of metabolite i in reaction j, cj is the relative

contribution reaction j to the objective function, vminj and vmax
j denote

the lower and upper bounds on the flux through reaction j, whileM

and N denote the sets of metabolites and reactions, respectively.

Commonly, vmin
j and vmax

j are set at arbitrarily high values to

prevent these from being growth limiting. However, the maximal

flux (Vj,k
max) of reaction j catalyzed by a given enzyme k, as defined

by classical Michaelis-Menten-like kinetics in the saturation

regime, is determined by the product of enzyme

concentration, [Ek] (mmol gDW−1), and the corresponding

catalytic turnover number, kj,kcat (h
−1)

vj ≤ kj,kcat Ek[ ] � Vj,k
max. (4)

As the cell has a finite amount of available metabolic

enzymes, one may formulate a global protein constraint using

the following inequality

∑
K

k�1
MWkek ≤ σfPtotal. (5)

Here,MWk is the molecular weight (g mol −1) of protein Ek, ek
is the flux through the enzyme source reaction (in units mmol

gDW−1), Ptotal is the total protein fraction in the cell (g gDW−1), f

is the mass fraction of proteins that are accounted for in the

model, while σ is the average substrate saturation of enzymes in

vivo. In GECKO, this is implemented by adding a sink reaction

supplying the model with a protein pseudo-metabolite (flux in

units g gDW−1) representing the aggregated sum of available

enzyme mass

�����→epool
Epool.

We add K enzyme pseudo-reactions to the model, all of

which draw from this enzyme pool (flux in units mmol gDW−1)

towards each corresponding enzyme Ek

MWkEpool �����→ek Ek.

Constraining the flux through the enzyme pool reaction by

the total amount of available metabolic proteins, we get the

following inequality

Epool ≤ σfPtotal, (6)

which corresponds directly with that of Eq. 5. Each enzyme Ek is

then included as a substrate in the reactions they catalyze, using

their reaction-specific inverse turnover number (kj,kcat)−1 as its

stoichiometric coefficients.

In acidFBA, we also consider the necessary usage of

proteinogenic amino acids for expressing this metabolic

proteome. Each protein is composed of a specific amino acid

composition. The flux through the protein sink is therefore

allocated into L = 20 individual amino acid drain reactions

(flux in units g gDW−1) of the form

Epool �����→al Al.

Each enzyme Ek draws from these L amino acid drains by

introducing the following reactions

∑
L

l�1
ξklAl �����→ek Ek,

with stoichiometric coefficients given by the elements of the amino

acid composition matrix ξ. Note that the amino acids Al are distinct

entities from the amino acid metabolites of the GEM. Each entry ξkl
denotes the molecular weight of amino acid Al with respect to a

given enzyme Ek, i.e., gram amino acid per mmol protein (g

mmol−1), such that the flux ek has units of mmol protein per

gram dry weight (mmol gDW−1). Using these sets of reactions, we

can formulate the following mass balance for every amino acid Al

∑
K

k�1
ξklek � al ∀l ∈ 1, . . . , L. (7)

Adapting Eq. 6 to account for these amino acid drains, we

obtain an analogous inequality constraint defining the acidFBA

framework
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∑
K

k�1
∑
L

l�1
ξklek ≤ σfPtotal. (8)

Reconstruction of an acidFBA-Genome-
Scale metabolic models

We constructed an acidFBA-GEM of S. cerevisiae from the

consensus enzyme-constrained GEM (ecGEM) Yeast v. 8.3.4

(Domenzain et al., 2018). Sequence information for all model

proteins were retrieved from the UniProt database (Bateman

et al., 2021) (UPID UP000002311) and was used to construct the

amino acid composition matrix ξ using the polymeric molecular

formulas for every amino acid. The existing protein pseudo-

reactions were replaced by analogous amino acid pseudo-

reactions, drawing flux from the enzyme pool reaction

towards each metabolic protein at stoichiometric amounts

determined by the elements of ξ. Finally, an amino acid drain

reaction was added for each of the 20 proteinogenic amino acids,

bridging the enzyme pool with the metabolic proteins of the

model.

Computational modeling of exponential
growth and amino acid levels

To simulate early exponential growth in batch culture, we

used the protein availability as the only growth-limiting

constraint, assuming a total cellular protein fraction Ptotal =

0.5 g gDW−1 (Sánchez et al., 2017). The amino acid levels

were calculated by constraining the biomass flux at optimum,

then minimizing the overall sum of fluxes. We used absolute

quantitative proteomics data from Ref. (Di Bartolomeo et al.,

2020). to compare the simulated amino acid profile of the

GECKO-implemented proteins. The allowable variability of

amino acids was simulated using flux variability analysis

(FVA) at 99% of optimal growth to avoid numerical errors.

These flux ranges were subsequently normalized by the

corresponding mean flux (g gDW−1), awarding comparable

relative variability scores for each amino acid.

Computational modeling of growth-rate
dependency on amino acid usage

The growth-rate dependency of the proteinogenic amino acid

distribution was investigated by simulating chemostat growth.

Briefly, we constrained the growth rate and limited the

availability of metabolic proteins by fitting a non-linear

regression model to growth-rate dependent protein mass-

fractions of biomass from chemostat cultivations of S.

cerevisiae (Pejin and Razmovski, 1993). As proposed by Ref.

(Sánchez et al., 2017), we further added flux constraints on the

exchanges of pyruvate, (R,R)-2,3-butanediol, acetaldehyde, and

glycine to physological levels, as well as blocking the intracellular

transport of L-serine from the mitochondrial to the cytoplasmic

compartment (details can be found in the

aminoAcidGrowthRates.m file in the git repository). The

enzyme usage was then minimized to obtain a unique

distribution of amino acids.

The amino acid distributions of a fully fermentative and a

fully respiratory metabolism were simulated in a similar way to

that of batch growth, as described previously. In addition to

removing the availability of oxygen, anaerobic conditions were

achieved by changing the biomass composition, introducing

condition-specific constraints, as well as adjusting the growth-

associated and non-growth associated maintenance terms

(Sánchez et al., 2017). Respiratory conditions were enforced

by constraining the specific growth rate to a level where

protein availability was non-limiting (arbitrarily set to be 0.2 h−1).

Random sampling of nutrient conditions
and amino acid sensitivity analysis

To begin with, we identified the set of viable nutrient sources

in the model for each of the following elemental classes: carbon,

nitrogen, phosphorus, and sulphur. From these viable candidates,

we randomly selected N = 5, 000 combinations as boundary

conditions for the subsequent simulation of optimal growth

phenotypes. Limitations on the uptake fluxes of each

combination was removed, and growth was optimized by a

standard FBA formulation with the same protein limitation as

used for simulating exponential batch growth. Subsequently, the

overall sum of fluxes was minimized to obtain a singular

distribution of amino acids for each sampled condition. The

allowable variability of amino acids at an optimality threshold of

99% was calculated by FVA as described previously.

Robustness analysis of alternative amino
acid distributions

The amino acid mass distributions of the non-yeast

organisms were retrieved from the biomass objective functions

of their respective GEMs deposited in the BiGG database (King

et al., 2015): iML1515 for Escherichia coli (Monk et al., 2017),

iYO844 for Bacillus subtilis (Oh et al., 2007), and iJN1462 for

Pseudomonas putida (Nogales et al., 2020). The amino acid

distribution of S. cerevisiae was acquired from experimental

measurements of the GECKO-implemented proteins (Di

Bartolomeo et al., 2020). Initially, the relative amino acid

distribution of yeast was included as flux constraints on each

amino acid drain reaction of the acidFBA-GEM. The maximal

growth of the model was identified by performing a standard
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FBA, providing a reference optimal growth state. Secondly, a

hard constraint for the biomass reaction flux was introduced at a

fraction of this reference optimal growth rate. Then, for each

organism individually, a unique amino acid profile was simulated

by minimizing the Euclidean distance between the amino acid

profile of the acidFBA-model and the species-specific amino acid

distribution. The growth fraction was iteratively incremented

within an interval from 0.1 to an upper value defining the relative

improvement in growth rate of the acidFBA-model without any

constraints on the amino acid profile compared to the reference

state. Finally, the absolute relative differences between the

species-specific amino acid distributions and the simulated

amino acid profiles were calculated.

Results

AcidFBA accurately predicts metabolic
amino acid profiles

We constructed an acidFBA-GEM of S. cerevisiae metabolic

network by adapting the ecGEM Yeast v. 8.3.4 to account for

proteinogenic amino acid requirements for expressing its

metabolic proteome. Using absolute quantitative proteomics

from Ref. (Di Bartolomeo et al., 2020). of S. cerevisiae strain

CEN.PK113-7D sampled during exponential growth on glucose,

we compared the in vivo and in silico profile of amino acid usage.

Figure 1 shows that the amino acid profile of the acidFBA-GEM

displays a strong correlation with that of the experimental

measurements of the GECKO-implemented proteins (R2 =

0.98, p = 6.8e−14). This correspondence is further substantiated

in the predicted enzyme mass employed by the model and that of

the experimental data, where the overall protein usage in vivo and

in silicowas found to be 0.0928 and 0.0979 g gDW−1, respectively.

When also accounting for the mass contribution of the

metabolically active (i.e., model-predicted at non-zero levels),

but unmeasured GECKO proteins (0.0059 g gDW−1 in silico), the

simulated enzyme mass fraction closely mirror that of the

experimental data.

We also simulated the allowable flux variability to

quantitatively investigate the flexibility of amino acid supply

in supporting a close-to optimal growth phenotype. These flux

ranges were simulated by performing FVA on the amino acid

drains at 99% of the optimal objective value (error bars in

Figure 1). Normalizing the resulting flux ranges by their mean

flux values, we found that the relative variability of all amino

acids greatly exceeded the selected deviation from growth

optimality (S1_fig), displaying a mean relative variability of

~ 4%. Certain amino acids, such as tryptophan and cysteine,

displayed deviations at approximately 8% while effectively

maintaining the same growth phenotype through the use of

alternative subsets of the metabolic network with a different

proteinogenic amino acid distribution (Supplementary

Figure S1).

Amino acid levels are not invariant to
changes in metabolic phenotypes

Microbes adjust the expression of their metabolic proteome

in response to changes in growth conditions and availability of

extracellular nutrients, thus improving chances for survival and

proliferation (Schmidt et al., 2016). Through our inclusion of

amino acid usage within an enzyme-constrained framework, we

are able to explore the variation in proteinogenic amino acid

requirements under various nutrient and growth conditions.

To investigate the changes in relative amino acid utilization

under varying specific growth rates, we simulated the growth-rate

dependency of amino acid usage on a minimal glucose media by

constraining the biomass flux (i.e., growth rate) and subsequently

minimizing the flux through the protein pool reaction

(i.e., overall use of metabolic protein). While akin to

parsimonious FBA (pFBA) (Lewis et al., 2010), where the sum

of fluxes through all gene-associated reactions are minimized at

optimal growth to approximate efficient enzyme usage, this

choice of objective allows for a more explicit accounting of

catalytic efficiency and proteomic cost by directly minimizing

the use of metabolic proteins, i.e. the metabolic network capacity

weights.

We find that the relative distribution of amino acids largely

remains constant over the growth rates at which the acidFBA-

GEM is predicting a fully respiratory metabolism (Figure 2A,

FIGURE 1
Correlation between in vivo and in silico amino acid mass
fractions (g gDW−1) during exponential growth on a defined,
minimal glucose medium. Experimental mass fractions were
estimated from the GECKO-implemented proteins only.
Error bars denote the simulated variability of amino acid usage at
99% of the optimal objective value.
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non-shaded area). In this region, we find that the system is

unconstrained by the availability of metabolic proteins, and that

it employs the most energy efficient metabolic network pathways

to convert accessible nutrients to biomass precursors. However,

once the growth rate exceeds a critical value of around 0.33 h−1,

the available enzyme mass become growth-limiting, and the

optimal use of the acidFBA-GEM is to reduce the flux

through the energy efficient, but protein inefficient, pathways

of respiratory metabolism, and concurrently increase the flux

through the energy inefficient, but protein efficient, pathways of

fermentative metabolism. This transition into the region of

proteome-limited growth also entails a shift in the relative

distribution of amino acids (Figure 2A). The onset of the

prototypical mixed respiro-fermentative metabolism (Crabtree

effect) at higher growth rates caused by the concurrent activation

and reduction of fermentative and respiratory metabolism,

respectively, therefore appears to noticeably impact the

relative levels of amino acids needed to express the metabolic

proteome. This difference in levels of amino acids is even more

apparent when comparing the amino acid distribution of a purely

respiratory and a purely fermentative metabolism (Figure 2B).

We find that the absolute relative deviation exhibited a median

value of around 7%.

Proteinogenic amino acid usage is
contingent on the external nutrient
environment

The apparent growth-rate dependency of amino acid

usage begs the question to what degree the relative

distribution of protein-bound amino acids would need to

be modulated in response to condition-specific employment

of distinct groups of pathways in the metabolic network. To

investigate this, we simulated the amino acid usage on N = 5,

000 randomly selected nutrient combinations under protein-

FIGURE 2
(A) Simulated mass fraction (g gDW−1) of amino acids in the acidFBA-GEM at varying growth rates. For each simulation, the growth rate was
constrained and the resulting flux phenotype was predicted my minimizing the overall enzyme usage. Shaded areas denote the region of protein-
limited growth. (B) Rank-ordered, absolute relative amino acid mass-fraction deviations of the acidFBA-GEM of a fully fermentative versus a fully
respiratory metabolism.
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limited optimal growth conditions. These N = 5, 000

combinations were obtained from a set of 119 carbon

sources, 77 nitrogen sources, 47 phosphorus sources, and

14 sulphur sources. While representing only a small

fraction of the space of possible combinations, the amino

acid distributions were found to converge well to the final

distributions presented in Figure 3. For every combination,

the optimal flux phenotype was simulated by constraining the

growth rate at the maximal value and subsequently

minimizing the overall sum of fluxes. The result of this

approach is a unique distribution of amino acids for every

simulated condition. We assessed the corresponding

variability of the amino acid usage by calculating the

relative deviation in mass fractions between every sampled

condition versus that of the mean across all samples.

As evident from Figure 3, the degree to which a given amino

acid is shown to differ across conditions varies substantially. The

distributions of some of the individual amino acid are rather

narrow across the set of simulated conditions, being largely

unaffected by the changing boundary conditions and generally

appear to adhere to a species-specific amino acid distribution

(e.g., glutamate and isoleucine). Other amino acids, however, are

noticeably more variable across the sampled conditions (e.g.,

cysteine, phenylalanine, and methionine). Interestingly, some of

these amino acids also display rather unique and varied

distributions, some even in the form of more complex

bimodal (e.g., aspartate, leucine, and methionine), or even

trimodal distributions, as is the case of cysteine.

Heterogeneous monomer distributions of
metabolic proteins are key for robustness
against perturbations in amino acid
availability

Robustness is a universal property of complex biological

systems, and it is fundamental for the maintenance of

biological function in the face of internal and external

perturbations (Kitano, 2004). The integration of amino acid

drains allows us to directly assess the sensitivity of the

metabolic phenotype towards perturbations in amino acid

availability. These perturbations are directly analogous to

evaluating the allowable flux variability of amino acids at

close-to optimal growth, as performed on the default

FIGURE 3
Distributions of the relative deviations from the mean of proteinogenic amino acids across N = 5, 000 randomly sampled nutrient conditions.
Each condition was defined by a unique combination of viable nutrient sources belonging to each of the four elemental classes: carbon, nitrogen,
phosphorus, and sulphur.
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minimal glucose media (see Figure 1 and Supplementary

Figure S1).

To form an unbiased view of this metabolic plasticity, we

performed FVA on each amino acid drain using the

aforementioned N = 5, 000 randomly sampled nutrient

combinations at a growth optimality threshold of 99%.

Mirroring the findings from that of growth on the minimal

glucose media, we find that the distribution of feasible mean-

normalized flux ranges ubiquitously exceed the chosen deviation

from growth optimality for the 20 proteinogenic amino acids. In

fact, the median relative variability was found to be ~ 4.8%,

demonstrating an innate buffering capacity of the enzyme-

constrained metabolic network on the optimal growth

phenotype when subjected to perturbations in the availability

of any single amino acid.

The amino acids displaying the greatest flexibility over the

simulated nutrient conditions was found to be cysteine (8.6%),

methionine (8.1%), glutamate (7.4%), and histidine (6.6%), with

the denoted median relative variabilities. Save for glutamate, the

relative flexibility of these amino acids also showed a high degree

of variation between nutrient conditions (mean standard

deviation of 2.7%). Although to a lesser extent, we also found

this to be the case for the remaining amino acids, indicating that

the magnitude of metabolic robustness is directly contingent on

the growth condition.

Next, we sought to explore the underlying causes of this

phenotypic robustness by repeating the same condition-

dependent sensitivity analysis, but now instead assuming an

invariant amino acid distribution for all GECKO-implemented

proteins. Using the mean amino acid levels from Figure 1 as a

representative distribution, the amino acid composition matrix ξ

was recalculated and employed to construct a secondary

acidFBA-GEM. As evident from the Supplementary Figure S2,

we find that the relative flexibility of each proteinogenic amino

acid now directly aligns with the selected deviation from growth

optimality (1%). The buffering capacity is thereby lost, as any

differential employment of alternative pathways and isozymes

has no effect on the relative usage of amino acids. This

demonstrates that heterogeneous distributions of protein-

bound amino acids in metabolic enzymes is key for this

robustness in growth phenotype when faced with

perturbations in amino acid availabilities.

Yeast metabolic network is sensitive to a
priori constraints on amino acid levels

The relative amino acid profiles of expressed proteomes have

been shown to reflect species-specific distributions (Tekaia and

Yeramian, 2006).We therefore sought out to evaluate how robust

the growth performance of the yeast metabolic network is when

the availability of amino acids in the acidFBA framework is set to

mimic other unrelated organisms. This analysis was performed

on three separate bacterial species, each with a distinct amino

acid distribution: E. coli, B. subtilis, and P. putida. To provide a

reference optimal growth state, we enforced the experimental

amino acid distribution of yeast (Figure 1) on the acidFBA-GEM

and ran a standard FBA to identify the maximal growth rate. We

found this to be approximately 0.15 h−1, representing a

considerable growth reduction as compared to the default

acidFBA-GEM which has no constraints on the relative amino

acid profile (maximal growth rate of around 0.38 h−1).

Interestingly, we found the solution to be infeasible when

mimicking the amino acid distributions of the non-yeast

species, demonstrating the models inability to grow when the

amino acid distribution is hard-constrained and sufficiently

dissimilar from the one predicted by the default acidFBA-GEM.

In order to address this, we instead elected to simulate amino

acid profiles that were minimally different to the species-specific

distributions across a range of relative growth rates (relative to

the aforementioned reference optimal growth state). These

simulations were performed for all three non-yeast organisms,

calculating the absolute relative difference between the amino

acid levels of the model and those of the species-specific

distributions (Figure 5). As expected, we found that the non-

yeast amino acid distributions are unattainable across all the

evaluated growth rates. In order to grow at all, the model needs to

considerably adjust its amino acid levels to express the necessary

metabolic proteins. For the majority of amino acids, this absolute

relative difference is demonstrated to increase in magnitude as a

function of the relative growth rate as the amino acid profile of

the model approaches the one selected naturally by the model

when growing maximally without any amino acid constraints.

The same analysis was performed on yeast (blue points in

Figure 5). Here, we observe that the model is able to maintain

the experimental amino acid distribution at relative growth rates

below 1.0. At this critical point, any incremental increase in

growth rate forces the model to adjust its amino acid profile away

from this experimental distribution. Unlike the non-yeast

species, however, the total redistribution of amino acid levels

are generally quite minor.

Discussion

The integration of protein constraints with GEMs has

provided invaluable insight into the role of the cellular

proteome in shaping the landscape of feasible metabolic

phenotypes (Chen and Nielsen, 2021). By being one of the

largest cellular proteome sectors (Liebermeister et al., 2014),

metabolic proteins appropriate a considerable proportion of

the cellular supply of proteinogenic amino acids. In this work,

we extend the protein-limited GEM framework by performing a

systematic and quantitative analysis of the role of proteinogenic

amino acids in expressing metabolic proteomes to support

metabolic phenotypes, and thus, the use and flexibility of
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metabolic networks. This was implemented by expanding the

GECKO formalism by introducing amino acid drains which

reroute flux from the growth-limiting protein pool towards

the metabolic enzymes of the model. This allows for a direct

prediction of the distribution of amino acid mass fractions

necessary for achieving a particular metabolic phenotype, as

well as assessing the sensitivity of the metabolic network

towards perturbations in the availability of amino acids.

While the global amino acid profile of S. cerevisiae

experimentally has been found to be largely conserved

across growth conditions (Chen and Nielsen, 2022), we

here show that the metabolically active proteome, as an

isolated proteome sector, appears not to exhibit the same

degree of invariance when subjected to diverse nutrient

environments and growth conditions. In fact, we found

that the growth-rate dependency of pathway usage in

energy metabolism also impacts amino acid usage, as the

fermentative and respiratory pathways are shown to exert

different demands on the relative distribution of

proteinogenic amino acids (see Figure 2). Moreover, we

demonstrate a clear contingency of amino acid levels on

the nutrient environment by conducting a large-scale

evaluation of amino acid utilization over a wide range of

boundary conditions. Here, the relative distribution of the

majority of amino acids is shown to display considerable

variability across conditions, some even forming

characteristic multi-modal distributions. This indicates that

a differential expression of metabolic proteins and pathways

also entail a corresponding shift and adjustment in the relative

levels of necessary proteinogenic amino acids. These findings

imply that the S. cerevisiae metabolic network must have

evolved to efficiently fine-tune its synthesis of

proteinogenic amino acids needed for expressing its

metabolic proteome in response to fluctuations in the

external environment.

By incorporating amino acid levels as variables within the

optimization framework, we were able to directly assess the

robustness of the metabolic network towards perturbations in

the availability of individual amino acids. Interestingly, we

find that the metabolic proteome of S. cerevisiae has a

surprising potential to robustly adapt to perturbations in

amino acid availability, as is evident from the feasible flux

ranges all exceeding the selected deviation from growth

optimality (Figure 4). The effect on the (close-to) optimal

growth phenotype by perturbing the supply of any single

amino acid is shown to be largely buffered by a

redistribution of the remaining amino acids. These

reorganizations are caused by compensatory flux rerouting

through the use of alternative pathways and isozymes with an

altered demand on the particular amino acid. We further

showcase how this innate robustness is linked to sequence

heterogeneity, and that this ability is altogether lost when the

amino acid distributions are assumed universal and invariant

across the metabolic proteins of the model (Supplementary

Figure S2). The same tendency for robustness was not

observed when the amino acid profile was set to mimic that

of unrelated species (Figure 5). In fact, our findings suggests

that the yeast metabolic network is highly sensitive to any a

priori constraints on the relative availability of amino acids.

While our results are too insufficient to make grand assertions

of broad-scale evolutionary selection pressures for protein

sequence heterogeneity, they indicate that cellular

implementation of non-homogeneous amino acid

distributions has an additional benefit of metabolic

robustness when faced with perturbations in amino acid

availability.

In yeast, the starvation of any individual amino acid induces

the expression of a large number of genes (>500), including
metabolic proteins belonging to multiple amino acid biosynthetic

pathways (Ljungdahl and Daignan-Fornier, 2012; Takagi, 2019).

This supra-, cross-pathway regulatory mechanism is termed

“general amino acid control” (GAAC) and affects the

biosynthetic pathways of all amino acids save for cysteine

(Natarajan et al., 2001; Hinnebusch and Natarajan, 2002).

Interestingly, of the amino acids displaying the greatest

flexibility (Figure 3) and relative flux variability (Figure 4)

over the sampled nutrient conditions (i.e., cysteine,

methionine, glutamate, and histidine), we specifically found

cysteine to be the most variable. Additionally, the relative

levels of this amino acid was also shown to be highly affected

when contrasting the amino acid distribution of a fully

fermentative versus a fully respiratory metabolism (Figure 2).

This innate variability could be a reason for why the biosynthetic

pathway of cysteine is unaffected by the global upregulation of

GAAC, as the cellular availability of cysteine instead might

require specific metabolic regulations in a more condition-

dependent manner.

Yeasts are commonly used as cell factories for the

production of heterologous proteins, in particular the

synthesis of pharmaceutical proteins that require eukaryal

systems for proper folding and post-translational

modifications (Baghban et al., 2019). This recombinant

protein production subjects the cells to a considerable

metabolic burden which consumes important cellular

resources necessary for cell growth and maintenance such

as metabolic precursors, reducing power, and cellular

machineries necessary for all levels of gene expression

(Kastberg et al., 2022). The cellular supply of amino acids

has been found to be a key limiting factor for translational

rates (Gonzalez et al., 2003). Due to the potential differences

in amino acid composition of native yeast proteins and the

heterologous protein, this expression can potentially affect the

availability of specific amino acids (Kastberg et al., 2022). By

employing our presented framework, we can thereby explicitly

investigate the metabolic effects of expressing any protein

with a known amino acid profile and generate well-informed
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strategies for alleviating these adverse effects on the metabolic

network.

As each protein imposes a cost to the organism not only due to

peptide bond formation, but also due to the biosynthetic expense of

synthesizing its constituent amino acids, the acidFBA formulation

also allows for a direct calculation of cellular cost associated with

expressing a particular metabolic proteome. It has been

demonstrated that highly expressed proteins evolve to utilize less

FIGURE 4
Violin plots of the distributions of mean-normalized flux ranges across N = 5, 000 sampled nutrient combinations for the 20 proteinogenic
amino acids of the acidFBAmodel. The feasible flux ranges were simulated by performing a flux variability analysis (FVA) using an optimality threshold
of 99%. Dotted line in red denote the selected deviation from growth optimality.

FIGURE 5
Absolute relative difference of each amino acid between the species-specific amino acid distributions and the simulated amino acid profiles of
the acidFBA-GEM at increasing relative growth rates. The simulated profiles were obtained by minimizing the Euclidean distance to the species-
specific distributions. Sce: S. cerevisiae, Eco: E. coli, Bsu: B. subtilis, Ppu: P. putida.
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costly amino acids. This was exemplified by Akashi and Gojobori

who demonstrated a negative correlation between gene expression

and average protein cost when employing codon usage bias as a

predictor of translational rates in Escherichia coli and Bacillus subtilis

(Akashi and Gojobori, 2002). Subsequent work in the field added to

this hypothesis and showcased the universality of the principle of

cost-minimization as a key driver of microbial proteome evolution

(Seligmann, 2003; Wagner, 2005; Heizer et al., 2006; Raiford et al.,

2008). Recently, Chen and Nielsen demonstrated how the expressed

proteome of S. cerevisiae tends to minimize the use of amino acids

that are proteomically costly to synthesize, rather than those that are

costly energetically (Chen and Nielsen, 2022). Consequently, we are

of the opinion that AcidFBA is a highly suitable tool for investigating

the role of proteomic cost minimization in shaping the metabolic

phenotypes, and thereby patterns of metabolic network utilization,

of an organism. Additionally, the computational analysis of cost-

optimized metabolic states could prove quite valuable for

understanding pathway selection in metabolic engineering

applications.
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