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ABSTRACT
Hyperledger Fabric is another development of blockchain tech-
nology after Ethereum, which is more suitable as an operating
platform for smart contracts. However, the testing technology of
Hyperledger Fabric smart contracts (also known as chaincode) is
not yet mature currently. Based on this, this paper studies the vul-
nerability detection of Golang chaincodes. Firstly, we summarize 17
kinds of Golang chaincode vulnerabilities by investigating existing
research. Secondly, taking the high accuracy of dynamic detection
and the high efficiency of static detection into consideration, we
propose a chaincode vulnerability detection framework that com-
bines the dynamic symbolic execution and the static abstract syntax
tree analysis technology. We also implement a supporting-tool that
can detect the above 15 types of vulnerabilities. Finally, we test the
tool by 15 chaincodes collected from GitHub and unknown vulnera-
bilities were detected in 13 projects. The precision turned out to be
91% after manual inspection. In order to verify the recall rate, we
manually inject 30 vulnerabilities into the collected chaincodes and
all of them are detected. The evaluation results show the accuracy
of the proposed vulnerability detection method for Hyperledger
Fabric smart contracts.
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1 INTRODUCTION
Blockchain is a new application mode of computer technology
proposed by Satoshi Nakamoto in 2008 [22]. Smart contract is a
computer transaction protocol between two or more parties with
self verification but without intermediary. In recent years, smart
contracts have attracted much attention with the popularization of
Internet and blockchain technology [24]. On the one hand, smart
contract on the blockchain can flexibly embed various assets and
data to help realize efficient value transfer, asset management and
information exchange. On the other hand, neither party is allowed
to deny or withdraw in the process of contract execution, which
ensures the implementation without trust. Blockchain with smart
contract has been more and more widely used in finance, manage-
ment, medical treatment, Internet of things, supply chain and other
fields [18, 24].

In recent years, as the application scenarios of smart contracts
become more and more complex, many security problems begin
to expose. Compared with ordinary programs, smart contract vul-
nerabilities are more likely to cause serious losses once they are
exploited by hackers. For example, the Dao event in 2016 resulted
in the loss of approximately $60 million worth of Ether [7]. Smart
contract has obviously become the hardest hit area of blockchain
security. Therefore, the detection of security vulnerabilities of smart
contract has become an urgent problem to be solved in blockchain
technology.

At present, there are a few research on smart contract vulnera-
bility detection under Ethereum. In 2016, Lu et al. proposed four
possible vulnerabilities of smart contract in Ethereum environment,
which includes reentry, and implemented Oyente, a static analysis
tool based on symbol execution running on EVM bytecode [19].
Mythril [21] is also a smart contract security analysis tool based on
EVM bytecode, developed by Bernhard et al. It integrates technolo-
gies such as stain analysis and symbol execution, which can detect
common security problems such as integer overflow. Tsankov et al.
developed a static analysis tool for smart contract based on formal
verification, Securify [28], which defines two modes of compliance
and violation for each security attribute, extracts semantic facts
from byte code or source code, then matches patterns and classi-
fies all contract behaviors into violation, warning and compliance.
ContractFuzzer [15] is the first security vulnerability ambiguity
testing framework for the Ethereum Solidity contract, which sup-
ports more vulnerability types and has lower false positives than
other tools.

Hyperledger Fabric (HF) is a modular and scalable open source
system for deploying and operating consortium blockchain created
by the Linux foundation in 2016. Smart contracts are usually writ-
ten in specific languages, such as Solidity in Ethereum, but they can
also be written using high-level languages, such as Golang and Java
in HF [9], which reduces the learning cost of developers. Anyone
can participate in the public blockchain represented by Ethereum.
For consortium blockchain, only specific licensed participants can
participate, which aims to provide a way of transaction for a group
of individuals or organizations with common goals but incomplete
trust. The public blockchain usually uses the consensus mechanism
such as Proof-of-Work, which has limitations on performance. HF
allows to customize the consensus mechanism for each smart con-
tract when it is instantiated, which provides efficient personalized
support for specific business scenarios and shorter delay [5, 26].
Therefore, for many application scenarios, HF is more suitable as
the operation platform of smart contract.
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At the same time, due to the above differences in development
and operating mechanisms of smart contracts, the vulnerabilities
under Ethereum and HF are quite different. First, some common vul-
nerabilities under Ethereum, such as gas exhaustion, are irrelevant
to HF. The same type of vulnerability can have different mani-
festations in two different systems. In addition, abuse of general
programming languages have also brought more problems.

As HF smart contract is relatively new, the research on HF smart
contracts (also known as chaincode) is very limited so far. To our
knowledge, there are few public tools to detect chaincode vulnera-
bilities. Therefore, this paper aims to design a method for automatic
vulnerability detection of Golang chaincodes and implement the
open sourced supporting tool 1 to fill this research blank.

There are two contributions of this paper: First, this paper com-
bines symbolic execution technology and abstract syntax tree tech-
nology to design chaincode vulnerability detection framework
HFCCT and implement the support tool. We verified the feasibility
of the method and the effectiveness of the tool. Second, this paper
analyzes the current situation of chaincode security through the
frequency statistics of vulnerability types in 15 HF chaincodes. This
paper gives a slice of analysis and suggestions on the development
of chaincodes.

The structure of this paper is as follows: Section 2 introduces
the technical background and related work of this paper; Section 3
summarizes 17 types of Golang chaincode vulnerabilities; Section 4
introduces in detail the design of chaincode vulnerability detection
framework based on the combination of dynamic symbol execution
and static abstract syntax tree; Section 5 presents the evaluation
results of the framework based on the 15 chaincodes collected from
GitHub; Section 6 summarizes the work of this paper, analyzes
the current shortcomings, and points out the direction for further
exploration in the future.

2 BACKGROUND AND RELATEDWORK
2.1 Hyperledger Fabric and Chaincode
HF is a consortium blockchain, a distributed ledger technology that
eliminates the need for anonymous miners to verify transactions,
and the need for associated currencies to be used as incentives.
All participants must be authenticated before they can participate
in transactions in the blockchain. HF does not require expensive
mining calculations to submit transactions, so it helps to build
blockchains that can be expanded in a shorter delay [4].

Chaincodes are the smart contracts running on HF platform,
which can read and write key value pairs in the ledger to realize
complex business logic [24].

Chaincode operation includes three stages: (1) Endorsement: the
client creates a transaction proposal to update the ledger and sends
it to all endorsement nodes specified in the chaincode endorsement
policy. Each endorsement node independently simulates the exe-
cution chaincode, and returns its response value, read-write set,
signature to the client. (2) Sorting: after the client verifies the sig-
nature of each endorsement node and confirms that the response
is consistent, the transaction is submitted to the sorting node. The
sorting node sorts the transactions received, packs them into data

1https://github.com/PerryLee69/HFCCT

blocks in batches, and broadcasts them to all connected peer nodes.
(3) Verification: the peer node verifies the transactions in the data
block one by one to ensure that the transaction is signed and en-
dorsed by the corresponding node according to the endorsement
strategy determined during chaincode instantiation. After verifica-
tion, all peer nodes add new data blocks to the end of the current
blockchain and update the ledger [4].

At present, HF smart contracts have a wide range of application
scenarios. Walmart built a Fabric-based food tracking system [3],
reducing the tracking time from 7 days to 2.2s. Change Healthcare
applies Fabric to improve efficiency and transparency in the Medi-
care reimbursement process [1]. Dltledgers is a blockchain-based
commodity trading financing platform that digitizes the transaction
and financing process, greatly reducing transaction times [2]. Based
on Fabric, Ian Zhou et al. proposed a blockchain-based paper review
system, which not only protects the anonymity of authors and re-
viewers, but also solves the problem of unfair review or inconsistent
indicators [35]. Tomas Mikula proposes an identity and access man-
agement system that applies Fabric to entity authentication and
authorization in digital systems [20]. Christopher Harris leverages
Fabric’s ordering transactions to improve back-end tasks in the
telecom industry, such as roaming and settlement between carriers
[11]. We forsee the demand for HF smart contract development will
be more popular.

2.2 Symbolic Execution
The main idea of symbolic execution is to use symbolic values
to represent the inputs and all variables related to inputs in the
program. In the process of symbolic execution, when a branch is
encountered, the branch condition will be added to the constraint
condition set of the current path. By reversing the condition, differ-
ent paths can be selected under the same branch. Finally, test cases
reaching the target area codes are generated through the constraint
solver, so as to complete the path coverage of the program [31, 34].

After obtaining test cases, the program can be executed to detect
whether there are vulnerabilities in each path, And save constraints
and test cases, so as to apply symbolic execution technology into
vulnerability detection.

Influenced by the structures such as branches and loops, symbolic
execution often faces path explosion problem, which will produce
large time overhead when analyzing large programs. In order to
solve this problem, many path exploration strategies have been
introduced into symbolic execution [17]. However, compared with
traditional programs, the code amount of smart contract is smaller
and the number of branches is less, so it is appropriate to apply
symbolic execution into the analysis of smart contract.

2.3 Abstract Syntax tree
Static analysis is a method of analyzing the source code of the
target program through syntax and semantics to explore potential
security vulnerabilities [34]. Abstract syntax tree (AST) represents
the syntax structures of the program in the form of tree. Each node
on the tree represents a structure in the program, which can be
code semantic structures such as method call, structure declaration
and package reference, or control flow structures such as branch,
loop and exception handling [13].

https://github.com/PerryLee69/HFCCT
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Compared with other static detection methods such as syntax
analysis and control flow analysis, AST based analysis not only has
the inherent advantages of static analysis such as high efficiency
and full code coverage, but also retains the information of source
code to the greatest extent, and has the characteristics of strong
readability and easy traversal [10]. In addition, the extraction and
traversal of the AST are implemented by interfaces in high-level pro-
gramming languages such as Golang and Java, which is convenient
for vulnerability detection.

2.4 Related work
In terms of smart contract, vulnerability detection technologies
include fuzzing, symbolic execution, static analysis, and formal
verification. A lot of research works have achieved great results e.g.
[23]. However there still exists challenges.

Echidna [25] and ContractFuzzer are the representative works of
early smart contract vulnerability detection using fuzzing. However
the fuzzing strategies adopted by them are elementary and difficult
to achieve high code coverage. ILF [12] and Harvey [32] attempt
to generate better test cases to improve coverage through deep
learning and procedural instrumentation respectively. However
their solutions are only geared to specific contracts, making it
difficult to carry on large-scale expansion.

Oyente [19] and Mythril [21] are mature symbolic execution
tools for smart contracts vulnerability detection. In addition, Osiris
[27] uses symbolic execution techniques to detect integer related
vulnerabilities in contracts, including integer overflow. Osiris is
combined with stain analysis technology to filter out harmless
overflow operation, and reduces false positives significantly. This
provides an idea to combine two or more technologies to comple-
ment each other.

Zeus [16] is an automatic smart contract formal validation tool
that translates source code into the LLVM intermediate language,
writes validation rules using XACML, and uses validators for formal
validation. Securify infers semantic facts from bytecode of smart
contract programs and describes them in Datalog syntax, then
checkes them against a predefined security attribute rule. Compared
with using LLVM and Datalog to describe contracts, AST has the
advantages of clear structure, strong readability, convenience to
traverse and is applicable to high-level programming languages.

However, most of the above tools aim at Ethereum contracts.
There are limited researches on chaincode vulnerability detection.
HFContractFuzzer [8] mentioned in Section 5 is one of them. How-
ever, inefficiency is its main drawback. In addition, ChainCode
Scanner [14] is a static security analysis tool designed for Fabric
smart contracts. The tool uses automatic security analysis meth-
ods, such as control flow graph analysis and dependency graph
analysis, which is developed by ChainSecurity and available as a
web application. Fujitsu [33] can detect 14 risk items mainly re-
lated to non-determinism risk and logical security risk. This tool
is a command-line tool implemented in Golang, which has more
effective coverage and better performance than ChainCode Scanner.
However, these tools are all not open sourced.

Table 1: Golang Chaincodes Vulnerability Types

ID Vulnerability Type Source of Vulnerability

1 Global Variable
2 Random Number Generation
3 System Timestamp Non-determinism arising from
4 Map Structure Iteration language instructions
5 Reified Object Addresses
6 Concurrency of Program
7 Web Service
8 External Library Calling Non-determinism arising from
9 System Command Execution external access
10 External File Accessing
11 Range Query Risks

HF platform12 Field Declarations
13 Cross Channel Chaincode Invocation
14 Read-Write Conflict
15 Unchecked Input Arguments

Practical experience16 Unhandled Errors
17 Golang Grammar Error

3 CHAINCODE VULNERABILITIES
HF chaincode is written in high-level languages such as Golang,
Java, and Nodejs. This paper focuses on Golang chaincode. We
have studied the vulnerability types of Golang chaincode and their
manifestations, which is beneficial to design detection methods for
specific vulnerabilities in Section 4.

At present, the studies on Golang chaincode vulnerability are
limited. Based on references [33] and [6] , we summarizes the types
of the existing chaincode vulnerability. A total of 17 vulnerabilities
are summarized, as shown in Table 1.

(1) Global Variable. Global variables can be changed locally. If
global variables are involved in writing to the ledger, this can cause
inconsistencies in the ledger status of each peer nodes.

(2) Random Number Generation. Since the chaincode is sim-
ulated independently by each peer in the endorsement phase, the
values generated randomly in each peer are different.

(3) System Timestamp. Similar to random number generation,
there is no guarantee that each peer node in the endorsement phase
will simultaneously call the timestamp function.

(4) Map Structure Iteration. Because of the implementation
details of Golang, the order of key-value pairs is not unique when
iterating Map Structure.

(5) Reified Object Addresses. Developers can handle the value
of a variable with a pointer, which is the address of memory, and the
value stored at that address depends on the environment. Thus, the
value fetched at a specific address may vary from one environment
to another.

(6) Concurrency of Program. If concurrent programs are not
handled properly, it is easy to cause a conflict condition problem
that results in an non-deterministic execution.

(7) Web Service. It is common for business logic to call an API
to reuse web service to provide data outside the blockchain to
chaincode. If the service returns different results to each peer node,
this can result in inconsistent endorsements.

(8) External Library Calling. Similar to web services, when
using third-party libraries to reduce development effort, developers
should pay attention to the behavior of the library and understand
what is happening in the library.
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(9) System Command Execution. Golang supports external
command execution, but does not guarantee the same results be-
tween each node.

(10) External File Accessing. Similar to system command exe-
cution, Golang supports access to external files, but does not guar-
antee that the same results will be returned by the nodes in their
separate environments.

(11) Range Query Risks. HF provides methods for accessing
the status database, including range query methods such as Get-
QueryResult(), getprivatedataquaeryresult(), etc. , which are not
re-executed during the validation phase, meaning that the phantom
problem will not be detected. This is not necessarily a vulnerability,
but it should be warned.

(12) Field Declarations. There should be no field declarations in
the chaincode structure. Chaincode needs to implement interfaces
Init and Invoke, where fields can be accessed if they are defined in
the structure. However, since each peer node does not necessarily
perform every transaction, the field values of the chaincode may
be inconsistent among the peer nodes.

(13) Cross Channel Chaincode Invocation. If two chaincodes
are on the same channel, there is no problem calling each other. If
not, it is difficult to guarantee that no other data will be submitted
to the channel of the chaincode and that only the data returned by
the chaincode method will be accepted.

(14) Read-Write Conflict. HF does not support read-write
consistency, and in the same transaction, even if the key value is
updated before reading it, it will return the value before the update,
which may cause the code to execute differently than expected.

(15) Unchecked Input Arguments. This is common in any
programming language. An error occurs if the input parameters
are not checked and the program accesses a no-exist element.

(16) Unhandled Errors. In Golang, developers can skip receiv-
ing the return value by assigning it to the "_" variable, which might
ignore the error if the return value is Error type.

(17) Golang Grammar Errors. These include a library that
is imported but not used, a variable is declared but not used, or
incorrect assignment, etc.

Hackers can take advantage of these above vulnerabilities to call
specific functions maliciously, or cause chaincode misfunction and
termination, or cause the endorsement of the endorsement node to
be inconsistent and can not carry out normal transactions.

4 VULNERABILITY DETECTION METHOD
The static detection method has high efficiency and low false nega-
tive rate, but high false positive rate. The dynamic detection method
has high accuracy but has problems of low detection efficiency and
difficulty in generating high-quality test cases [30]. Based on the
technology of combining dynamic symbolic execution and static
abstract syntax tree, we designed the HFCCT (Hyperledger Fab-
ric Chaincodes Test) framework and implemented supporting tool
for the chaincode vulnerabilities investigated in Section 3. The
overview of HFCCT framework is shown in Figure 1, consisting of
two parts: symbolic execution and abstract syntax tree, which will
be introduced in detail in later sections.

Test ReportContract

HFCCT

Symbolic Execution

Abstract Syntax Tree

Constraints 
Collector 

Constraints 
Solver 

Test File 
Generator 

Vulnerability 
Rule Sets 

AST
Parser 

Rule 
Matcher 

Figure 1: Overview of HFCCT

4.1 Method Design
We design detection methods for the 15 vulnerabilities investigated
in Section 3. There are generally two types of methods: dynamic
symbolic execution and static abstract syntax trees. The former has
the characteristics of dynamic methods, that is, the accuracy of vul-
nerability detection is high, but with the problems of low efficiency
and difficulty in generating high-quality test cases; the latter, like
other static methods, has high efficiency, low false positive rate, but
high false positive rate [30]. According to the characteristics of dif-
ferent technologies, we combined dynamic and static technologies,
adopted different methods according to different types of vulnera-
bilities, and designed specific methods for each vulnerability. The
outline are shown in Table 2.

For nine kinds of vulnerabilities with fixed and obvious features
in form, in order to improve the efficiency, AST method is used to
detect them. The specific designs are as follows:

(1) Web Service, External Library Calling, System Com-
mand Execution, External File Access. We use the ImportSpec
node of AST to detect the imported libraries in the chaincode,
and put the libraries that communicate with the ones outside of
the chaincode or lead to non-determinism into blacklist, such as
"os/exec", "oracle", etc.

(2) Program Concurrency. Since concurrency is discouraged
in chaincode, we check whether there is a GoStmt node in AST, that
is, whether goroutine is used in chaincode to make the program
concurrent.

(3) Range Query Risks. We collect all range query methods
such as "GetQueryResult()" and check if any methods that involve
these query statements are called in AST.

(4) Field Declarations. We extract the name for chaincode
structure from AST, and check whether the structure is empty.

(5) Read-Write Conflict. We extract all PutState method calls
from AST, then find the next GetState method call that reads the
same key value, and check whether the two calls are in the same
function.

(6) Unchecked Errors.We detect whether there are "_" variables
in AST, which means that a variable of the error type may be
accepted with "_", so that possible errors are not checked, although
it may lead to false positives.

For the other six types of vulnerabilities that are not very fixed
in form and may be caused by multiple statements, in order to avoid
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Table 2: Detection Methods for Each Vulnerability

ID Vulnerability Detection Method Specific Method

1 Web Service Check whether blacklisted packages such as "net/http" are imported
2 External Library Calling Check whether blacklisted packages such as "database/sql" are imported
3 System Command Execution Check whether blacklisted packages such as "os" are imported
4 External File Access Abstract Check whether blacklisted packages such as "os/exec" are imported
5 Program Concurrency Syntax Check whether "goroutine" is used
6 Range Query Risks Tree Check whether range query methods such as "GetQueryResult" are used
7 Field Declarations Check whether chaincode structure is not empty
8 Read-Write Conflict Check whether GetState is used after PutState for same key in same function
9 Unchecked Errors Check whether "_" is used as a variable
10 Random Number Generation Check whether multiple executions lead to consistent ledger state
11 System Timestamp Check whether multiple executions lead to consistent ledger state
12 Map Structure Iteration Symbolic Check whether multiple executions lead to consistent ledger state
13 Global Variables Execution Modify global variables and check whether the execution lead to consistent ledger state
14 Unchecked Input Arguments Generate special test cases
15 Golang Grammar Errors Execute a test case at random

false positives with static analysis, dynamic symbolic execution
method is used to detect them. The specific designs are as follows:

(1) Random Number Generation, System Timestamp, Map
Structure Iteration. If these uncertain values exist in operations
that involve modifying the ledger, a vulnerability will arise, which
can be detected by executing the same test case multiple times
and comparing whether the ledger state is consistent after each
execution.

(2) Global Variables.We detect global variable in the chaincode.
If there is one, we assign it to different values, execute the code
multiple times, and compare whether the ledger state is consistent
after each execution.

(3) Unchecked Input Arguments. The default test cases gen-
erated for string array type parameters are empty arrays and arrays
with only one empty string element. So if the parameter length
is not checked in the function, using subscript to get value in the
function will fail.

(4) Golang Grammar Errors. For example, no using after im-
porting a package. It can be detected by running any unit test case.

Symbolic execution is based on multiple unit tests. Unit test
allows the chaincode to execute according to the designed test
cases. HF provides the MockStub class for unit test. It maintains a
map[string][]byte to simulate the key-value pair state database. The
chaincode calls PutState and GetState functions to act on the map in
memory, thus to operate the state database in blockchain network.
The MockStub class mainly provides two functions: MockInit calls
the Init interface of the chaincode to complete the initialization of
the chaincode, and MockInvoke calls the Invoke interface to call
different functions according to the parameters.

Using the MockStub class to unit test the chaincode does not
need to configure or run Docker image environments. Executing go
test command could complete calling of chaincode interface locally.
The testing process is the same as unit test of ordinary Golang
programs, which has the advantages of concision and efficiency.

4.2 Framework Design
We design the framework HFCCT for chaincode vulnerability detec-
tion, which is implemented based on dynamic symbolic execution
and static abstract syntax tree technology.

4.2.1 Dynamic Symbolic Execution. The core of symbolic execution
is to generate test cases that enter each branch path by extracting
and solving constraints. First, we design the process of generating
test cases for the function to be tested, as shown in the white area
of Figure 2.

Step A1: We extract all conditions in the function to be tested
and reverse them respectively.

Step A2: We combine the conditions with each other. N condi-
tions will form 2𝑁 combinations.

Step A3: For each condition group, we solve the conditions in
turn. If it is a numerical condition, including integer and float types,
we use the z3 solver [29].If it is a string condition, including string
and string array types, we take the following logic strategies: orig-
inal value for equivalent conditions; random value for unequal
conditions.

Step A4: We integrate the solution set and generate the test cases
to enter each branch path.

Based on the above method, we design the process for detecting
the chaincode, as shown in Figure 2.

Step B1: We extract the parameter list of Init interface, and use
symbolic execution to solve constraints and solution sets for Init
interface. Then, we generate the MockInit function codes in the
test file according to solution sets.

Step B2: We extract the parameter list of Invoke interface, and
use symbolic execution to solve constraints and solution sets that
enter branches of calling each function and do not enter any branch.

Step B3: According to solution sets of Invoke interface, we use
symbolic execution to solve constraints and solution sets for other
functions that called in the branch of Invoke interface. Then, we
generate the MockInvoke function codes in the test file based on
the solution sets.

Step B4: We randomly match a MockInvoke of each function for
each MockInit, and shuffle the order to generate test files and save
them.

Step B5: We execute each test file more than one times, which
relies on MockStub class, and save the results.

Step B6: We compare the results of multiple executions, then the
test report will be generated.

4.2.2 Static Abstract Syntax Tree. The process is shown in Figure
3.
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Figure 2: Process of Symbolic Execution

Step C1: Take the specific detection methods designed in Section
4.1 as vulnerability matching rules.

Step C2: Extract the features of the chaincode to be tested through
AST. Golang provides "go/ast", "go/parser" and "go/token" three
libraries to extract AST of Golang programs, including package,
declaration, scope, import library information, etc.

Step C3: Matching is performed by sequentially traversing the
rules of each vulnerability in the information extracted from the
AST. If there is a vulnerability, the number of source code lines
and the reason that caused the vulnerability will be extracted and
written into the test report.

4.2.3 Framework Implementation. We combine dynamic symbolic
execution with static abstract syntax tree and design HFCCT frame-
work to detect vulnerabilities in chaincodes, which can detect the
15 types of vulnerabilities described in Section 3.

HFCCT consists of four core components: CCAST.go parses
the Golang chaincode into AST and provides external interfaces.
CCSE.py implements symbolic execution for vulnerability detection.
CCSA.py implements AST for vulnerability detection. HFCCT.py
invokes the above components to perform chaincode vulnerability
detection and generates the final test report, which is also the entry
of HFCCT.

5 EVALUATION
We conducted an experiment to evaluate the effectiveness of the
method proposed as well as the framework implemented. We used
"Hyperledger Fabric contract" or "chaincode" as keywords to re-
trieve projects on GitHub. At last, we chose 15 chaincodes from

Abstract Syntax Tree

Step C1

Vulnerability
characteristics

Design rules

Step C3

AST extract
features

Rule match

Step C2

Contract

Test report

Figure 3: Process of Abstract Syntax Tree

projects with the highest star ranking, which as well as involve
multiple application fields. Then, we use HFCCT to detect vul-
nerabilities in the 15 typical chaincodes. This experiment runs on
Windows ten professional 64-bit operating system, and the proces-
sor model used is Intel (R) Core (TM) i5-8250U CPU @ 1.60GHz
1.80 GHz. The experimental environment of detecting projects is
Python 3.7.6 and Golang 1.14.6.

5.1 Results
Vulnerability detection results of the 15 chaincodes are shown in
Table 3. The vulnerability type numbers in the third column are the
same as those in Section 2.We take themarbles02 project as example
to show the generated test report in Figure 4. The report shows the
path of the tested chaincode file, including the detected vulnerability
types, a brief summary of the source of each vulnerability, and the
corresponding number of lines in the source file.

Accuracy. Among the 15 chaincodes, thirteen were detected
with vulnerabilities, involving 22 places. Since all detected vulner-
abilities are unknown, it is necessary to verify whether there are
false positives one by one. After manual verification, there are two
false positives in the "unchecked error" vulnerability, both of which
are accepting one of the return values of the GetFunctionAndPa-
rameters function with "_". Because the two return values are not
error type, it does not ignore error checks. Therefore, from the
statistics of small sample data, the precision of HFCCT is 91%. How-
ever, we must state that the vulnerabilities identified by our manual
verification have not been confirmed by the project developers.
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Table 3: Vulnerability Detection Results of Projects

ID Projects Detected Vulnerability Types

1 FabricTest2 (16), (17)
2 charity3 (11), (16)
3 abac4 (16)
4 marbles025 (2), (3), (4), (11), (16)
5 marbles02_private6 (11), (16)
6 sacc7 no vulnerability
7 chaincode_example028 (16)
8 fabcar9 (2), (3), (4), (11), (16)
9 test10 16)
10 marbles11 no vulnerability
11 multiorgledger12 (16)
12 MySmartContract13 (16)
13 Simple-Fabric-Web-Project14 (11)
14 supplychain-blockchain-network15 (16), (17)
15 vehiclesharing16 (2), (3), (4), (11)

Figure 4: Test Report of Project marbles02

Recall. Since the full set of vulnerabilities of the 15 chaincodes
are unknown, in order to evaluate the recall, we manually injected
30 vulnerabilities of the 15 types introduced in Section 4 into ran-
dom chaincodes. All of them were detected by HFCCT, thus the
recall is 100%.

Performance and effectiveness. In order to evaluate the per-
formance and effectiveness, we compared with HFContractFuzzer
[8] proposed by Ding et al. on the above 15 chaincodes. Table 4
shows the results, each cell is "number of detected vulnerabilities
2https://github.com/WaterSh/FabricTest/blob/master/chaincode_AtoreAndAccess.go
3https://github.com/cloudframeworks-blockchain/user-guide-Fabric-smart-
contract/blob/master/chaincode/charity/charity_contract.go
4https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/sacc
5https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/marbles02
6https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/marbles02_
private
7https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/sacc
8https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/chaincode_
example02
9https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/fabcar
10https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/test
11https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/marbles02
12https://github.com/Deeptiman/multiorgledger
13https://github.com/HeartWillGo/MySmartContract
14https://github.com/BIGyellowPIE/Simple-Fabric-Web-Project
15https://github.com/subhashmeena/supplychain-blockchain-network/blob/master/
solution.go
16https://github.com/tomxucnxa/vehiclesharing

Table 4: Results of Comparison with HFContractFuzzer

ID Projects HFCCT HFContractFuzzer

1 FabricTest 2/104s 0/1h
2 charity 2/68s 1/20min
3 abac 1/88s 0/1h
4 marbles02 3/74s 0/1h
5 marbles02_private 2/61s 0/1h
6 sacc 0/117s 0/1h
7 chaincode_example02 1/92s 0/1h
8 fabcar 3/64s 0/1h
9 test 1/101s 0/1h
10 marbles 0/69s 0/1h
11 multiorgledger 1/15s 0/1h
12 MySmartContract 1/24s 0/1h
13 Simple-Fabric-Web-Project 1/57s 0/1h
14 supplychain-blockchain-network 2/15s 1/54min
15 vehiclesharing 3/66s 1/13min

/ costed time". It should be noted that HFContractFuzzer is based
on fuzzing technology. In principle, it will automatically generate
test cases to execute continuously. Therefore, we chose 1h as the
time cutoff. If a vulnerability is detected within 1h, the time taken
to find the first vulnerability will be displayed.

The time HFCCT takes in each chaincode varies, depending on
its complexity and the number of branches. The average time is
68s, as a measure of HFCCT performance. The shortest time for
HFContractFuzzer to find the first vulnerability is 13min, thus its
performance is much lower than that of HFCCT.

It can be seen in Table 4 that HFCCT can detect more vulnera-
bilities, therefore it has better effectiveness than HFContractFuzzer.
On the other hand, as for the display of vulnerability detection
results, HFContractFuzzer is more difficult to understand, which
requires professionals to analyze the types of vulnerabilities and
their causes. HFCCT is more friendly in this regard.

5.2 Other Findings
After manual verification to remove false positive vulnerabilities, a
pie chart is drawn for the number of occurrences of each vulnera-
bility type in 15 chaincodes, as shown in Figure 5.

The proportion of "unchecked error" vulnerability is 45%, indicat-
ing that many chaincode developers are accustomed to accepting
return value of error type with "_", ignoring the error handling.
Although in most cases it has no problem, once it is exploited by
hackers, the cost of loss can be huge. Because it means that some
failed operations are not identified. The second popular vulnerabil-
ity is "range query risk" vulnerability. It is just a warning. Because
the range query will not be executed again during the verifica-
tion phase, chaincode developers should pay more attention when
using it, and try not to let the results of the range query involve
the modification of the ledger. The third popular one is the "ran-
dom number/system timestamp/Map iteration" vulnerability, which
means that developers have led non-determinism into the chain-
code, and it involves ledger modification operations, which need
to be avoided. The next popular one is "Golang syntax error". For
example, the "strconv" library in the FabricTest project is imported
but not used. This has nothing to do with the chaincode charac-
teristic. Howecer, developers still need to be more familiar with
chaincode programming languages.

https://github.com/WaterSh/FabricTest/blob/master/chaincode_AtoreAndAccess.go
https://github.com/cloudframeworks-blockchain/user-guide-Fabric-smart-contract/blob/master/chaincode/charity/charity_contract.go
https://github.com/cloudframeworks-blockchain/user-guide-Fabric-smart-contract/blob/master/chaincode/charity/charity_contract.go
https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/sacc
https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/marbles02
https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/marbles02_private
https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/marbles02_private
https://github.com/Hyperledger/Fabric-samples/tree/main/chaincode/sacc
https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/chaincode_example02
https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/chaincode_example02
https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/fabcar
https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/test
https://github.com/sslinml/Fabric_e2e_app/tree/master/chaincode/marbles02
https://github.com/Deeptiman/multiorgledger
https://github.com/HeartWillGo/MySmartContract
https://github.com/BIGyellowPIE/Simple-Fabric-Web-Project
https://github.com/subhashmeena/supplychain-blockchain-network/blob/master/solution.go
https://github.com/subhashmeena/supplychain-blockchain-network/blob/master/solution.go
https://github.com/tomxucnxa/vehiclesharing
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The types of vulnerabilities that chaincode developers are usually
prone to make are concentrated, but they exist popularly. Therefore,
the security of chaincode still needs attention from both academic
research and industrial practice.

Unhandled Errors

Range Query 
Risks

Random Number 
Generation/

System Timestamp/
Map Structure Iteration

Golang Grammar 
Errors

45%

30%

15%

10%

Figure 5: Percentage for Occurrences of Vulnerability Types

6 CONCLUSION
In recent years, with the increasing security attacks on smart con-
tracts, its vulnerability detection has become an urgent problem to
be solved. At present, the research of smart contract vulnerability
detection of Ethereum has been mature. However the research of
HF is still in the early stage. Based on this, this paper created an
open-source chaincode automatic vulnerability detection tool.

In the future research, we will focus on the following aspects:
Datasets: public available data sets for HF projects are limited,

which are detrimental to the evaluation of vulnerability detection
methods and tools. We will pay more attention to the collection
and arrangement of HF data sets.

Vulnerability types: because current research on the types of
chaincode vulnerability is very limited, the summary of vulnerabil-
ity types may not be perfect. We will also do more in-depth research
on chaincode mechanism, and practice the chaincode deployment
to explore new vulnerability types.

Method: based on the test results, HFCCTmisreports the "unchecked
error" vulnerability type. And two of the 17 vulnerability types we
studied can not be detected by HFCCT. In the future, We will con-
tinue to optimize the design of the methods, and also consider
combining other technologies for mutual complementation to im-
prove the recall.
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