
Operationalizing Machine Learning Models - A Systematic
Literature Review

Ask Berstad Kolltveit
Norwegian University of Science and Technology

Trondheim, Norway
askbk@stud.ntnu.no

Jingyue Li
Norwegian University of Science and Technology

Trondheim, Norway
jingyue.li@ntnu.no

ABSTRACT
Deploying machine learning (ML) models to production with the
same level of rigor and automation as traditional software systems
has shown itself to be a non-trivial task, requiring extra care and
infrastructure to deal with the additional challenges. Although
many studies focus on adapting ML software engineering (SE) ap-
proaches and techniques, few studies have summarized the status
and challenges of operationalizing ML models. Model operational-
ization encompasses all steps after model training and evaluation,
including packaging the model in a format appropriate for deploy-
ment, publishing to a model registry or storage, integrating the
model into a broader software system, serving, and monitoring.
This study is the first systematic literature review investigating the
techniques, tools, and infrastructures to operationalize ML models.
After reviewing 24 primary studies, the results show that there are
a number of tools for most use cases to operationalize ML mod-
els and cloud deployment in particular. The review also revealed
several research opportunities, such as dynamic model-switching,
continuous model-monitoring, and efficient edge ML deployments.

CCS CONCEPTS
• General and reference→ Surveys and overviews; • Comput-
ing methodologies → Machine learning; • Software and its
engineering → Software development techniques.

KEYWORDS
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1 INTRODUCTION
Industry adoption of ML is still in its early stages and is rapidly
growing. The SE aspect of ML is an active field of research, with
the vast majority of work having been done only in the past five
years. Existing studies have shown that operationalization of ML is
an area that presents practitioners with real challenges [38]. Op-
erationalization, in the context of this paper, consists of taking a
trained and evaluated ML model to a serving state in the intended
production environment, including necessary support functions,
such as monitoring. Tackling operationalization challenges requires
adopting good practices and utilizing suitable tooling. Earlier stud-
ies have focused mostly on mapping out general SE challenges and
practices for ML. This study focuses on 1) researching ML oper-
ationalization indepth, and not as part of a broader study of SE
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for ML and 2) putting more focus on tooling and infrastructure by
identifying how current tools are used and what is reported to need
further research. The study tries to answer the following research
questions.

• RQ1: How are ML models operationalized in the state
of the art?

• RQ2:What are themain challenges in operationalizing
ML models?

• RQ3: What tools and software infrastructure are used
to operationalize ML models?

• RQ4: What are the feature gaps in the tooling and in-
frastructure used to operationalize ML models?

In order to answer the research questions (RQs), a systematic
literature review (SLR) was conducted based on the guidelines
presented by [25] and [51]. After study selection and quality as-
sessment were performed, 24 primary studies were selected and
analyzed. The review results summarise the state-of-the-art tech-
niques and tools for operationalizing ML models. The review also
revealed several opportunities for research into better tooling and
infrastructure, such as automatic model-switching approaches to
meet service level objectives, tools to monitor data and model drift,
and efficient solutions for deploying ML models to edge devices.

The rest of this paper is organized as follows. A brief background
on ML and DevOps is given in Section 2. Related work is presented
in Section 3. The research design and implementation are described
in Section 4. The results of the study are presented in Section 5.
Section 6 dicusses the research results. Finally, Section 7 concludes
the paper.

2 BACKGROUND
ML models have become increasingly prevalent in virtually all
fields of business and research in the past decade. [2] reported that
50% of businesses surveyed have adopted artificial intelligence in
some business function. With all the research that has been done
on the training and evaluation of machine learning models, the
difficulty for most companies and practitioners now is not to find
new algorithms and optimizations in training, but rather how to
actually deploy models to production in order to deliver tangible
business value. Most companies are still in the very early stages of
incorporating ML into their business processes [46].

2.1 Software Engineering for ML Systems
While traditional SE for non-ML systems is a mature and well-
understood field, software engineering for ML systems is still a
young and immature knowledge area. Traditional software systems
are largely deterministic, computing-driven systems whose behav-
ior is purely code-dependent. ML models have an additional data
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dependency, in the sense that their behavior is learned from data,
and they have even been characterized as non-deterministic [18, 36].
The additional data dependency is one of the factors contributing
to the fact that ML systems require a great amount of supporting
infrastructure.

2.2 DevOps for ML Systems – MLOps
DevOps is a subset of software engineering focused on tightening
the coupling between the development and operation of software
systems. DevOps principles advocate for end-to-end automation
[15], which is expressed through the use of version control systems,
automated build and deploy pipelines, etc. Some motivating factors
for automation are shortening the time to delivery, increasing re-
producibility and reducing time spent on automatable processes
[14]. DevOps for Machine Learning, named MLOps, is a subset of
SE for ML and a superset/extension of DevOps, focusing on adopt-
ing DevOps practices when developing and operating ML systems
[50]. [13] defines that “ML Ops is a cross-functional, collaborative,
continuous process that focuses on operationalizing data science
by managing statistical, data science, and machine learning models
as reusable, highly available software artefacts, via a repeatable
deployment process.” [13] identifies four main steps of MLOps:
Build, Manage, Deploy and Integrate, and Monitor. Fig. 1 shows the
MLOps pipeline proposal in [3].

Figure 1: MLOps Pipeline [3]

3 RELATEDWORK
Several systematic mapping studies (SMS) and systematic literature
reviews (SLRs) have been conducted to summarize SE challenges
for ML. [52] was a SMS on the lifecycle of the AI models and found
that AI model deployment was underexplored. [36] performed an
extensive SMS of SE for AI, investigating reported SE approaches
and challenges for developing AI systems. [27] performed an SLR
of SE challenges for ML and mapped them to the 12 knowledge
areas (KAs) of the SWEBOK [8]. The author found that challenges
in SE for ML are found in all KAs, and that safety/security and
non-technical areas, in particular, have received a lot of attention in

the literature. [37] performed an SLR of challenges and practices in
SE for ML. The challenges and practices were mapped to the KAs
of the SWEBOK. The authors found that studies from laboratory
environments are mainly concerned with building and testing mod-
els, which could indicate that more literature produced by industry
practitioners should be studied when looking to review the state of
the art and state of the practice of deploying models to production.
This was further illustrated when the authors highlighted that de-
ployment is one of the areas with the fewest suggested practices
in published literature. [35] conducted an SLR on SE for ML using
a two-dimensional scheme, categorizing challenges according to
quality attributes (adaptability, scalability, privacy and safety) and
ML development workflow step (data acquisition, training, evalua-
tion, deployment). The authors also identified solutions to some of
the challenges but noted that areas such as privacy and safety, eval-
uation, and deployment are missing solutions. [18] conducted an
SLR of SE for ML in which challenges and solutions were grouped
by areas suggested in SWEBOK, similarly to [27], and [37], while
including an even greater number of papers than any previous SLR
in the field. [31] conducted an SLR of ML model development, iden-
tifying phases, techniques, gaps and trends in the ML development
lifecycle. The deployment aspect was only briefly mentioned. [41]
surveyed the development lifecycle of ML-based IoT application
and covered model deployment from declarative ML and deploy-
ment, deployment optimization, and Model and action composition
perspectives.

Other studies have tried to understand the state of the practice
through multivocal literature reviews (MLRs) and interviews or sur-
veys with practitioners. [48] identified 29 best practices of SE for ML
by conducting an MLR before conducting a practitioner survey to
investigate the adoption and impact of the practices. [23] performed
an MLR of the SE lifecycle of ML models, outlining challenges and
best practices in each step of the lifecycle. [24] performed an MLR
on the adoption of MLOps practices and how companies evolve
through different stages of adoption. [24] concludes that success-
ful AI/ML operationalization ensures proper model deployment
and updating in different environments. However, the authors of
[24] did not study tools and infrastructures for operationalizing
ML models. [4] surveyed the academic literature for challenges in
deploying ML models. The authors also conducted eleven semi-
structured expert interviews with ML practitioners from a wide
variety of industries. The authors found that the practitioners’ ex-
periences generally confirmed challenges reported in the academic
literature. [49] studied software architecture for machine learning,
conducting an SLR and practitioner interviews to find architectural
challenges and solutions in ML while validating the findings with a
practitioner survey. [38] did a survey of case studies on deploying
ML models with the goal of outlining a research agenda for ad-
dressing the challenges that practitioners were found to encounter.
The authors identified practical challenges in 16 different steps of
ML deployment, and suggested further research to be done in the
areas of tooling and services for individual challenges, as well as
new holistic approaches for dealing with ML systems engineering.
[33] did an exploratory case study on continuous deployment (CD)
for ML. The authors also performed an MLR to create a five-step
conceptual process improvement model for the ML deployment
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process. The results were validated by conducting a focus group
with ten ML practitioners at a telecommunications company.

A common characteristic of existing studies, e.g., [4, 18, 23, 24,
27, 31, 35–38, 41, 48, 49, 52], is that they tend to be quite broad in
scope, covering many areas of SE for ML. Only a few of the studies
reviewed, e.g., [4, 23, 33, 38, 41], focused on the operationalization
aspects of ML models. However, none of the studies focused
on related tooling and infrastructure issues.

4 RESEARCH DESIGN AND
IMPLEMENTATION

The research motivation of this study is to understand the state-of-
the-art in ML deployment. Differently from those in existing studies,
the research questions RQ1 to RQ4 focus on tooling and trying to
identify feature gaps reported in studies where model deployment
is discussed.

4.1 Primary study search and selection
We followed the SLR guidelines of [25] and [51] with some slight
modifications.

Typically, candidate papers in an SLR are identified by construct-
ing a search string for querying digital libraries. However, our
string-based searches (using strings such as "machine learning de-
ployment," "MLOps deployment," etc.) in Oria [1], a search engine
aggregating research papers from scientific databases, including
IEEE Xplore, Springer, ACM Digital library, and Scopus, in late
September 2021 failed to produce sufficiently relevant articles on
the topic. The articles found did not report deployment details re-
lated to the operationalization aspect of SE for ML, with which this
study is concerned. This motivated the use of snowballing as an
alternative approach for identifying candidate papers. In order to
start the snowballing, an initial set of studies was assembled. The
studies were mainly found through the reference lists of earlier
related work, such as [23] and [36]. Some manual searching with
Google Scholar was also done using search strings such as "Mlops
deployment" and "machine learning deployment." The study selec-
tion criteria found in Table 1 were applied to the start set. The year
2015 was chosen as the earliest year of publication, as this was
when research on SE for ML began to gain traction [27], possibly
in part due to [47]. From the starting set of 19 papers, 8 satisfied
the selection criteria and minimum study quality score, and were
thus selected for further snowballing.

The snowballing procedure followed the process proposed by
[51], with the exception that forward and backward snowballings
were limited to a single iteration each. Backward snowballing from
the 8 selected papers provided an additional 21 candidate papers
based on skimming of the title/abstract/content of all referred pa-
pers from the starting set. Of the 21 candidate papers, 6 papers
satisfied the selection criteria and minimum study quality criteria.
The quality of included studies was assessed using the criteria found
in Table 2, adapted from criteria used by [18] and suggested by [17].
Studies are subject to assessment criteria marked with X depending
on whether or not they are empirical. For each criterion, the study
was awarded 1 point for yes, 0.5 for partly and 0 for no. Sources with
an average of 0.5 points or less were excluded. Forward snowballing
was conducted using the Cited by functionality of Google Scholar.

Forward snowballing from the start set yielded 29 initial candidate
papers. After selection criteria were applied, 10 candidate papers
remained, all of which satisfied the minimum study quality criteria.
The total number of papers to review was thus 24.

Table 1: Study selection criteria used in the SLR.

Inclusion criteria Written in English
Published in a peer-reviewed journal,
conference or workshop
Published after 2015
Discusses one of the following aspects
of ML operationalization: challenges, so-
lutions, tooling, processes, requirements
Available online

Exclusion criteria One of the inclusion criteria is not satis-
fied

4.2 Data extraction and analysis
Data extraction involved reading the literature, extracting informa-
tion, and entering the data in a spreadsheet. Data synthesis with
thematic analysis [30] was performed with the help of TreeSheets1,
a hierarchical spreadsheet application. For each research question,
relevant extracted data for each author was entered in the hierar-
chy. The data pieces were then coded according to their content.
Lastly, the hierarchy swap feature was used to reorganize the data
from being author-oriented to being code-oriented, which enabled
discovery of commonalities and differences between studies.

5 RESEARCH RESULTS
This section presents the results from the SLR by research question.
1https://strlen.com/treesheets/

Table 2: Study quality assessment criteria based on criteria
from [17] and [18]. Empirical studies are subject to two extra
criteria compared with non-empirical studies.

Criteria Empirical Non-empirical
Does the author have authority on
the subject?

X X

Does the source have a clearly
stated aim?

X X

Is the author free of any vested in-
terests?

X X

Have key related sources been
linked to or discussed?

X X

Is relevance (to industry or
academia) discussed?

X X

Does the source have a stated
methodology?

X

Are any threats to validity clearly
stated?

X

https://strlen.com/treesheets/
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5.1 RQ1: How Are ML Models Operationalized
in the State-of-the-Art?

5.1.1 Packaging and Integration. Packaging models in containers
is a commonly reported method of integration, in which the model
is accessible through representation state transfer (REST) or remote
procedure call (RPC) interfaces [12, 16, 28, 45]. When deploying nu-
merous different models, using a consistent standard for application
programming interfaces (APIs), such as OpenAPI2, across models
can facilitate system integration [16]. Another reported method
of integration is to serialize the model (e.g., into ONNX3, HDF5,
Joblib4) and load it at runtime, possibly with an ML framework
that is optimized for production [9, 21, 39, 40]. The model could
also be packaged in a format specific to an end-to-end framework
such as MLflow5 [10]. The model may be integrated directly into
the application code [19, 29, 45], traditionally first having to be
rewritten for production [21].

5.1.2 Deployment. Deployment, the transitioning of a packaged
and integrated model into a serving state, may occur through a
few different methods. Models packaged in containers are simply
run directly as standalone services [16, 19, 28, 29, 45]. However,
models may be deployed in a target environment that is different
from where they are packaged, in which case a model transfer must
occur, which may happen through either a push- or a pull-pattern.

In a pull-pattern deployment, the target environment (host ap-
plication running on, e.g., server or edge device) periodically polls
for model updates and downloads when available [28, 39, 40].

In a push-pattern deployment, the target environment is noti-
fied of the availability of a new model by a master server, e.g., by
the server where the model was trained. This will happen either
through a messaging service [16, 29], where a message contains
metadata including the location of the updated model, or by the
model being pushed directly to the target environment through
some receiving interface [40].

When an updated model has reached the target environment,
subsequent redeployments can happen in a few different ways. For
models packaged as standalone containers, a container orchestra-
tion service (e.g., Kubernetes6) can roll out updated models with-
out downtime. On the other hand, serialized models may simply
be loaded into memory by the application, potentially leading to
downtime. If the hosting application is containerized, model re-
deployment may be orchestrated by deploying an entirely new
application instance with the new model data alongside the old
instance. When the new application instance is finished initializing,
it can start serving requests, and the old instance may be evicted
[40]. To avoid high response latencies for the first query (cold-start
issues), models may be queried with an empty request (or an ex-
plicit warmup function call may be used if available) which forces
lazy-loaded model components to initialize [28]. When using an
ML deployment service (e.g., SageMaker7), the service may handle
the deployment of serialized models [9]. Models intended for batch

2https://www.openapis.org/
3https://onnx.ai/
4https://joblib.readthedocs.io/en/latest/
5https://mlflow.org/
6https://kubernetes.io/
7https://aws.amazon.com/sagemaker/

predictions may simply be plugged into a computing pipeline such
as Apache Spark8, computing predictions and storing them in a
database or data warehouse [28].

5.1.3 Serving and Inference. Models are commonly made available
for serving predictions through a REST [12, 16, 26, 29, 40, 45] or RPC
[12, 28, 45] API. There are several reported techniques for meeting
inference service level objectives (SLOs). One is model-switching,
where less accurate but more performant models are used during
periods of high load in order to meet required SLOs [54]. Another
is using adaptive batching queues with a timeout, so that queries
are batched together in batch sizes that are tuned to the individual
model and framework. During periods of low traffic, the timeout
is reached before the query batch is filled, and inference is run on
the batch in order to not exceed the SLO [12]. Additionally, a cache
layer may be put on top of the model to reduce computation [12].
In order to avoid cold-start issues caused by model loading and
initialization, models should be warmed up at deployment and be
kept perpetually warm over the course of their lives [54]. Model
warmup can be achieved either through a method provided by the
ML framework [28] or more generally through issuing an empty
query against the model [16].

5.1.4 Monitoring and Logging. Runtime monitoring is important
for operationalized ML in order to increase trust and detect per-
formance degradations [28, 42]. When a model is operational, the
whole application stack is constantly monitored for performance
metrics such as latency, throughput, disk utilization, etc. [39, 45].
Predictions are logged, and when available joined with actual out-
comes [28]. Model accuracy should be used to determine when
a new model is needed [39]. The application should be validated
against predefined key performance indicators of the project [45].

5.2 RQ2: What Are the Main Challenges in
Operationalizing ML Models?

5.2.1 Packaging and Integration. ML frameworks are not all created
equal, and some may be better suited for research than production
or vice versa, typically because of performance characteristics ver-
sus support for rapid experimentation and debugging. [12] noted
several challenges in deploying ML frameworks: interface incon-
sistency across frameworks, changes over time in what is the best
framework for the job, and frameworks that are not optimized for
deployment. Developers then have to make the choice of either
using a suboptimal framework or incurring technical debt in or-
der to support and integrate multiple frameworks. [21] reported
solving this tradeoff by decoupling the frameworks from the model
by transferring it from research to production using an exchange
format for neural networks. [12] also used decoupling as a solution
to this problem, but opted for adding an abstraction layer with a
simple interface on top of all models. This solution is more general,
as it is not specific to neural networks. [7] reported the extensive
use of glue code as a challenge with which companies struggle. Glue
code is code that merely glues together different parts of the pro-
gram without itself providing any functionality. The authors also
highlight the integration of data-driven models with computation-
driven software components as a potentially non-trivial task.
8https://spark.apache.org/

https://www.openapis.org/
https://onnx.ai/
https://joblib.readthedocs.io/en/latest/
https://mlflow.org/
https://kubernetes.io/
https://aws.amazon.com/sagemaker/
https://spark.apache.org/


Operationalizing Machine Learning Models - A Systematic Literature Review , ,

5.2.2 Serving. Serving-related challenges are some of the ones
most often reported in the literature [5–7, 9, 11, 12, 16, 20, 28, 34,
44, 53, 54], usually from a performance perspective.

Achieving a low inference latency and high throughput is widely
reported as a challenge in serving ML models [6, 7, 12, 28, 34]. [6]
found that there is a statistically significant negative correlation
between latency and conversion rate at Booking.com, highlight-
ing the business impact of serving performance. Several potential
solutions for improving serving performance have been proposed
in the literature. [20] suggested deploying ML models to the edge
in order to reduce network latency. However, edge deployment
brings a whole host of its own challenges, which will be discussed
in Subsubsection 5.2.3. In a system utilizing publish/subscribe mes-
saging services, [44] observed that 33% of application latency is a
result of internal communication frameworks, and by experimenta-
tion, found that the messaging system becomes congested when
faced with an eightfold increase in inference performance. With a
growing amount of specialized ML accelerator hardware, it is not
inconceivable for such performance bottlenecks to appear in the
near future. The authors found that a solution to the problem could
be to increase the number of broker node instances used in the
messaging system, which clears up the congestion issue. However,
ML models typically do not make inferences based on raw data but
may require data transformations both before and after inference.
[44] warns that the data pre- and post-processing code in streaming
ML systems could soon become another performance bottleneck.

Start-up/cold-start latency is a typical serving challenge for ML
models [53]. It is mainly caused by the ML model being loaded into
memory and initialized, and is typically solved by warming up the
model after it has been deployed, and then keeping it perpetually
warm [54]. There are, however, problems with this solution, which
will be discussed in Subsection 5.4.

[54] discussed the problem of meeting performance SLOs during
significant variations in model query traffic, a problem also ob-
served by [53]. The authors noted that currently, the options are to
either accept degraded throughput or latency during high-demand
scenarios, or to scale up the hardware resources (as suggested by
[6]) and thereby incurring increased costs. The difficulty in achiev-
ing cost-effective and performant inference was also corroborated
by [9], in which the authors observed that increasing hardware
instances and network bandwidth both improve inference laten-
cies. The model-switching technique was proposed by [54] to solve
the problem of upholding SLOs while minimizing costs. In this
technique, high-accuracy/low-performance models are traded for
lower-accuracy/high-performance models during load spikes in
order to meet the effective accuracy SLO, i.e., the average accuracy
of predictions that meet latency requirements.

5.2.3 Edge. Edge deployments are often reported as being more
challenging than cloud deployments because of hardware resource
heterogeneity, the typically distributed nature of edge devices, and
possibly varying network connection quality [7, 10, 20, 22, 39, 53].
Our reviewed studies reporting deployment of ML models to Inter-
net of Things (IoT) devices tended to construct custom deployment
systems in order to deploy to edge devices [39].

5.2.4 Monitoring and Logging. Monitoring ML models is challeng-
ing [6, 28, 41], but is required in order to detect performance degra-
dations and build confidence in the models [7, 10]. [32] observes
that "There is a strong desire for continuous monitoring and valida-
tion of AI systems post deployment for responsible AI requirements,
where current MLOps practices provide limited guidance." After
an inference is made, the true label may not be available for an
extended period of time, making it difficult to monitor prediction
quality [6]. One solution used in practice is to look at the distribu-
tion of predictions and determine if there is a significant deviation
from what the response distribution of an ideal model would look
like [6].

5.3 RQ3: What Tools and Software
Infrastructure Are Used to Operationalize
ML Models?

In the space of ML-specific platforms, there are a wide array of
options reviewed by [45] covering all or parts of the project and
model lifecycle. Polyaxon9, MLflow10, TFX11, ZenML12, Flyte13, Sel-
don Core14 and BentoML15 are some of the more fully-integrated
platforms that exist [10, 45], along with the Amazon-exclusive Sage-
Maker16 [9, 45]. An overview of various tools for operationalizing
ML can be found in [45].

Containerization is a commonly reported method of packaging
ML models [39, 42, 45], and Docker17 is by far the most frequently
reported solution [12, 16, 20, 26, 28, 40, 44]. Models packaged in con-
tainers are typically accessed through either a REST API [16, 40],
such as Flask18 [20], or RPC interface [12, 45], such as Apache
Thrift19 [28]. Having multiple containers deployed will often neces-
sitate the use of a container orchestration tool such as Kubernetes20
[29, 40, 43, 44] or Apache Mesos21 [16]. However, when deploying
on edge clusters, K3s22 may be preferrable [40]. Services running
on Kubernetes and K3s may be defined with service descriptors like
Helm23 [40]. In order to manage multiple clusters of containers, a
Kubernetes-as-a-service tool such as Rancher24 may be used [40].
Serverless frameworks like Apache OpenWhisk25 and Knative26
may be used to deploy models as functions and provide horizontal
scaling [16, 43], both building on top of Kubernetes. When models
are downloaded by the target deployment environment, a static
storage service such as AWS S327 may be used for model stor-
age [9, 29]. A commonly reported messaging and communications
9https://polyaxon.com/
10https://mlflow.org/
11https://www.tensorflow.org/tfx/
12https://zenml.io/
13https://flyte.org/
14https://www.seldon.io/tech/products/core/
15https://www.bentoml.ai/
16https://aws.amazon.com/sagemaker/
17https://www.docker.com/
18https://flask.palletsprojects.com/en/2.0.x/
19https://thrift.apache.org/
20https://kubernetes.io
21https://mesos.apache.org/
22https://k3s.io/
23https://helm.sh/
24https://rancher.com/
25https://openwhisk.apache.org/
26https://knative.dev
27https://aws.amazon.com/s3/
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https://mlflow.org/
https://www.tensorflow.org/tfx/
https://zenml.io/
https://flyte.org/
https://www.seldon.io/tech/products/core/
https://www.bentoml.ai/
https://aws.amazon.com/sagemaker/
https://www.docker.com/
https://flask.palletsprojects.com/en/2.0.x/
https://thrift.apache.org/
https://kubernetes.io
https://mesos.apache.org/
https://k3s.io/
https://helm.sh/
https://rancher.com/
https://openwhisk.apache.org/
https://knative.dev
https://aws.amazon.com/s3/
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framework is Apache Kafka28, used for logging predictions [28], no-
tifying model hosts of updates [16, 29] and general inter-container
communication [44]. A large amount of infrastructure and tooling
for ML is Kubernetes-based, reflecting the active ecosystem around
the popular container orchestration tool. This could be a barrier to
MLOps adoption, as [45] has noted that setting up a Kubernetes
cluster is an expensive task.

5.4 RQ4: What Are the Gaps in Current Tooling
and Infrastructure Used to Operationalize
ML Models?

Many opportunities for further work and research have been identi-
fied in the reviewed literature. In particular, [53] and [54] identified
a large number of research directions in the area of model serving
performance. [7], [42] and [20] have also proposed several areas of
research for edge ML deployment.

5.4.1 Model-switching. In the context of an ML system with multi-
ple available variants of the same model (with different accuracy
and performance characteristics) and multiple hardware resources
to choose from, [53] presents a series of interrelated open problems
concerned with serving performance. The automatic selection of
model variant based on a given SLO will be referred to as model-
switching based on the terminology used in [54] and challenges dis-
cussed in [41]. The overarching question is that of how the serving
system should automatically select a model variant and underlying
hardware, given some SLO specified by a client application.

First, given an inference query, how should it be placed/scheduled
by the serving system? The options are to either generate a new
model variant, load an existing model variant, or query an already
loaded model. The choice will depend on the individual application
requirements, e.g., whether the inference is online or offline, what
the SLOs are, etc. [53] and [54] have proposed that further research
be conducted into how to synergistically combine model-switching
and hardware resource selection. Further, given the choice of place-
ment, a new model may need to be loaded, additional hardware
resources may need to be launched, or loaded models may need to
be evicted to free up resources. As [54] has pointed out, keeping
all models warm at all times is prohibitively expensive and scales
poorly. The model management operations add latency to the query
response, affecting the system’s ability to meet SLOs.

The next question is how to capture and organize the data needed
for making a decision on query placement. In addition to the set
of possible hardware resources and model variants, the serving
system must also take into account the current state of the system,
which is continually changing. The current state of the system
is described by which model variants are loaded on which hard-
ware resources, which model variants exist but are not loaded,
which model variants do not exist but are able to be generated, the
CPU/memory/disk/network usage of each hardware instance, and
inference query traffic. All of this data needs to be captured and
organized in a way that enables fast and efficient decision making
on query placement.

Not only does the logical aspect of hardware and model vari-
ant selection need to be considered, the geographical location of

28https://kafka.apache.org/

hardware resources must also be taken into account. Given that
resources may lie anywhere on the core-edge continuum, [53] re-
quested research into the questions of where models should be
loaded, where resource management decisions should be made, and
where query placement decisions should be made. [43] pointed out
that edge resource management from the cloud is complex, partly
because nodes may be on private networks or behind firewalls. In
addition, edge resources may have unreliable or limited network
access, making it challenging to maintain constant communication
channels. The authors reported that no out-of-the-box solution
currently solves these issues, and request research into transparent
edge-cloud resource consolidation/orchestration without the use
of point-to-point integrations like VPNs.

[54] further proposed research into combining model-switching
with performance optimization techniques like query caching and
batching. Several batching techniques have been reported for ML
serving systems. [12] used a batching technique with a static maxi-
mum batch size with a timeout window which is both tuned on a
per-model basis, while [11] proposed an adaptive batching scheme
specifically for neural networks, reducing latency during low-traffic
scenarios. Combining caching and batching with model-switching
is an open problem requiring further work.

[54] proposed research into extending model-switching to ad-
ditional types of computing resources. CPUs are currently the
most widely used for inference in existing ML as a service (MLaaS)
platforms. Other types of hardware exist that are suited for neu-
ral network inference, such as GPUs, TPUs, etc. Research into
model-switching which takes into account these additional types
of hardware resources should be conducted to identify possible
performance benefits. Further, the additional hardware heterogene-
ity could pose an interesting challenge when combining model-
switching and hardware selection during dynamic query placement.

5.4.2 Edge Deployment. [43] observed that the performance of the
Kubernetes scheduler begins degrading with 5,000 nodes and fewer
than 10 constraints, struggling to process more than 15 functions
per second. It is conceivable that the number of edge devices may
reach the thousands and beyond in an IoT scenario, e.g., in indus-
try 4.0, suggesting that the scheduler may become a performance
bottleneck in the future. The authors, therefore, proposed research
into more scalable function scheduling.

[7] and [42] reported a lack of generic solutions for deploying
ML models to embedded and edge devices. [42] reported that con-
ventional IoT provisioning frameworks are not suited for deploying
ML models, while [20] reported that there is a lack of solutions
for deploying to edge devices that do not support containerization
techniques. [43] reported that support for non-x86 architectures is
lacking.

Edge devices present greater heterogeneity in computing capa-
bilities, storage and networking. In the context of having multiple
models deployed in an edge architecture, some models may have
to be evicted from time to time in order to free up resources for
new deployments. [42] and [43] proposed research into strategies
for intelligently evicting models from edge devices. According to
[42], monitoring edge-deployed ML models can potentially present
two different challenges. First, some metrics, such as concept drift
and model drift, require continuous access to the original training

https://kafka.apache.org/
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set. However, edge devices may not have access to the training set
for multiple reasons, including storage space constraints and data
privacy concerns. Secondly, [42] identified the problem of trigger-
ing centralized model retraining. Retraining triggers require that
monitoring data be continuously streamed from the edge devices
to the (possibly centralized) ML pipeline. Not only could this be
difficult because of unreliable network connections, bandwidth
restrictions or data usage constraints, handling large volumes of
incoming monitoring data from edge devices may itself present a
challenge of scalability. On the topic of monitoring, [10] highlighted
a need for framework-agnostic model telemetry solutions to en-
able the capture of statistical performance metrics with a broad set
of supported deployment environments. [10] also noted the need
for a general representation format for multistep ML workflows.
Many processes in ML pipelines contain multiple subtasks, where
changing a single step may cause regressions. A new format should,
according to the authors, provide explicit IO interfaces and enable
parallel execution of independent subtasks with existing workflow
execution systems (e.g., Airflow29).

6 DISCUSSION
Comparedwith related work, this study focusedmore on the tooling
and infrastructure aspects of MLOps. The results of the review
highlight two areas where further research should be pursued. The
first major area is performance and scalability in prediction serving,
possibly using a combination of existing techniques for batching,
caching and dynamic model selection. The second major area with
a reported need for further research is deployment and monitoring
of models in edge environments.

The results of the study could be of value to industry practition-
ers as a reference for various techniques and patterns for opera-
tionalizing ML. In addition, the study could also serve as a starting
point for understanding what tools are used in different stages and
contexts of operationalization, as well as what challenges may be
expected when operationalizing ML models.

There are certain inherent threats to validity in an SLR, such
as the possibility that not all relevant literature is found or in-
cluded. To mitigate this, the starting set included papers spanning
multiple years (2017-2021), venues (IEEE, ACM, Sciendo, Frontiers,
Sciencedirect, Zenodo, IGI Global, Wiley, MDPI, Springer) and au-
thors. However, as the snowballing procedure was only limited to
a single iteration of forward and backward snowballing, instead of
continuing until no new studies are found, it is quite probable that
this review is not exhaustive. Furthermore, qualitative data analysis
is closely tied to the researchers’ background, identity, assumptions
and beliefs. To address this issue, the data analysis results were dis-
cussed between the authors to arrive at a consensus when needed.
The initial string-based search possibly failed because too many
aspects were attempted covered in just a few keywords, instead
of using a more specific search string (such as "machine learning
AND (serving OR deployment OR packaging)").

7 CONCLUSION AND FUTUREWORK
After reviewing 24 primary studies and focusing on understanding
the state of the art and the challenges of operationalizingMLmodels,
29https://airflow.apache.org/

our study has contributed the following new knowledge: 1) HowML
models are operationalized with respect to tools and infrastructure.
This includes various techniques for packaging and integration,
deployment, serving and monitoring, which, to the best of the
authors’ knowledge, have not been investigated in any previous
SLR. 2) An overview of what tools have reportedly been used to
operationalize ML models in the literature. 3) An overview of areas
for further research into ML operationalization as suggested by the
literature.

The study potentially misses out on practitioner knowledge. A
natural next step would thus be to conduct a GLR to investigate
practitioner knowledge on the subject.
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