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a b s t r a c t

This paper proposes a novel, observer-based, nonlinear control strategy aimed at facilitating the pursuit
of nanomechanical measurements within the noisy environments of industrial production lines. The
investigation makes use of a laboratory-prototype emulating an architecture composed by a sample
to be analyzed, and by a metrology platform whose task is to carry out in-line measurements,
while the whole system is being affected by exogenous vibrations. The control objective is to lock
the distance between the metrology platform and the sample, thereby allowing the pursuit of
the measurement task. The proposed solution achieves robustness with respect to unknown plant
parameters and exogenous disturbances by means of a combination of high-frequency and high-gain
tools, and by relying on a novel ‘‘learning observer’’. The proposed design is formally analyzed, and
then experimentally validated by providing a comparative study with a PID-based control-strategy.
The experimental results indicate, overall, a favorable performance of the proposed control algorithm
over the PID counterpart.

© 2020 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Keeping track of nanomechanical properties such as adhesion,
ardness or roughness is of major significance for quality-control
urposes, as the latter are at the root of phenomena such as en-
rgy loss, reduced tool-lifetime and loss of accuracy (Leach, 2009).
owever, as opposed to the ‘‘protected’’ vibration-free scientific
nvironments, where such measurements are typically carried
ut by means – for instance – of atomic force microscopes (Eaton
West, 2010), industrial production lines pose the additional

hallenge of being inherently affected by disturbances (in the
orm of detrimental vibrations) due to the presence of several
achines and personnel (Subrahmanyan, 1999). Because of this

urther complication, instruments such as the atomic force micro-
cope, for the purpose of being used in-line, need to be equipped
ith a component devoted to the pursuit of the disturbance
ejection task.

Up to the author’s knowledge, the problem under consider-
tion has only been addressed in Ito et al. (2015) and Thier
t al. (2016), from a mechatronics standpoint. In line with such
hilosophy, in the cited works a major emphasis was placed –
ather than on the control design – on the study, design and

✩ This work was partially supported by the ‘‘aim4np’’ (Norway) project,
within the EU FP7 scheme. The material in this paper was not presented at
any conference. This paper was recommended for publication in revised form by
Associate Editor Angelo Alessandri under the direction of Editor Thomas Parisini.
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physical realization of ad hoc mechanical structures aimed at de-
coupling the environmental disturbances from the measurement
instrumentation. The proposed strategies were then completed
by a control system which was derived within the frequency
domain (hence, by not leaving any room for a possible nonlinear
design) and that was based on the prior identification of the
system to be controlled — hence producing an inherently non-
robust control design. On the other hand, and to the best of the
author’s knowledge, this problem has never been addressed from
a control-system standpoint. Hence, the main contribution of this
paper is to fill this gap by proposing – in a dual fashion with
respect to the works in Ito et al. (2015) and Thier et al. (2016)
– a novel nonlinear and robust control system design, that solves
the problem under consideration. The focus is on control-design,
and no mechanical design is considered.

For such purpose, a pre-existing laboratory-prototype is em-
ployed for the task of emulating a system composed by a sample
to be analyzed, and by a metrology platform (equipped with
an actuation system to control its motion) aimed at performing
nanomechanical measurements, in the presence of detrimental
vibrations. Then, within this experimental framework, a novel
control system design is proposed with the aim of enforcing a
desired constant distance between the sample and the metrology
platform, so as to facilitate the measurement task in the pres-
ence of exogenous vibrations. As opposed to the works in Ito
et al. (2015) and Thier et al. (2016), the proposed solution will

be robust with respect to the model parameters (in that, their

cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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rior knowledge shall not be assumed, and so that, the proposed
trategy shall function for a set of model parameters as large as
esired), and it will do so by exploiting the possibilities offered by
he theory of nonlinear control in the form of high-frequency and
igh-gain tools. In addition, aided by a dedicated sensor measur-
ng the distance between the metrology platform and the sample,
he proposed control design shall make use of a novel ‘‘learning
bserver’’ devoted to the reconstruction of the missing velocity
nformation. The observer is derived by exploiting techniques
ithin the area of the second-order sliding mode control and in
articular, by a re-visitation of the work in Xian et al. (2004),
nd will display the capability of achieving perfect asymptotic
elocity-reconstruction in spite of unknown model parameters,
ut without having to resort to parameter-reconstruction (hence
ielding a non-model based estimation). Being such the case, then
he proposed observer naturally provides an improvement over
he on-line differentiators (known as ‘‘High-gain observers’’) pre-
ented in the seminal work in Esfandiari and Khalil (1992), as the
atter could only yield an approximated reconstruction (however,
p to a desired level of precision) of the derivative information.
his constitutes the second contribution of the paper. Then, on
he basis of the reconstructed quantity, the control design is
ursued in a certainty-equivalence fashion, and a separation-
rinciple will be formally shown to hold for the proposed non-
inear control architecture, providing the third contribution of the
aper.
The paper is organized as follows: Section 2 describes the

xperimental setting and provides a mathematical model for con-
rol. In Section 3, the control problem is formulated.
ection 4 presents the observer strategy, followed by the control
ystem design in Section 5. Experimental results are presented
nd discussed in Section 6, followed by concluding remarks.

. Modeling

In this section, first a description of the experimental setting
s given, then, a mathematical model for control is derived.

.1. Experimental setting

With reference to Fig. 1 depicting the experimental scale-
odel, the sample is emulated by a mass attached to the bottom
oving-coil loudspeaker. The latter is employed as a sample-
haker, which, by exploiting the Lorentz force (denoted by Fl in
he sketch of the laboratory prototype in Fig. 1), shall be ac-
ively driven in order to produce vibrations. Similarly, the metrol-
gy platform is emulated by a second mass attached to the top
oving-coil loudspeaker. By employing an eddy current sensor
ounted between the two masses, and, as such, measuring their

elative distance, the role of the top loudspeaker is providing
he actuation force (denoted by F in the sketch of the labora-
ory prototype in Fig. 1) necessary to enforce a motion on the
etrology-platform mass (henceforth referred to as ‘‘metrology
latform’’). Both sample and metrology platform are addition-
lly affected by the laboratory environmental vibrations. On the
ontrary, because the mass of the top base (formed by the top
oudspeaker stator and a wooden structure) is far greater than
he one of the subsystem composed by the top loudspeaker and
he metrology platform, then the reactive forces directed from the
atter towards the top base are neglected.

The real-time control system is implemented on a dSpace
S1103 controller board hosted by a PC. The sensor signals are
onnected to the dSpace board by means of 16-bit ADC convert-
rs, whereas 16-bit DAC converters, along with power amplifiers
re used for actuation.
 c

2

Fig. 1. Laboratory-prototype (top left); sketch of the laboratory-prototype (top
right); laboratory-prototype zoomed view (bottom).

2.2. Coordinates definition and mathematical modeling

In Fig. 1 (top right) a sketch of the experimental setup is shown
along with a definition of references and coordinates. Consider
all coordinates positive when pointing upwards, and regard the
lab where the actual experiments are carried out (devoid of any
vibration arising from the ground) as an inertial frame. Then, the
motion x1(t) of the metrology platform is defined with respect
to the inertial frame (henceforth denoted by Σ) whose origin
coincides with the metrology platform rest position relative to
the lab, when the gravity force contribution is taken into account,
but in absence of both Lorentz force exerted by the actuator
and vibrations arising from the ground. The sample motion ξ (t)
is defined with respect to the inertial frame Σ as well: this is
done so that the quantity x1(t)− ξ (t) corresponds to the distance
etween the metrology platform and the sample; hence, x1(t) =

(t) if and only if the sample and the metrology platform are in
ontact. The motion xb(t) of the top base is defined with respect
o an inertial frame whose origin, xb = 0, coincides with the rest
osition of the base-structure with respect to the lab, when no
xternal vibrations arise from the ground.
With reference to Egeland and Gravdahl (2003, pag. 109-

10), and by accounting for the vibrations affecting the base, the
ynamics of the system composed by the top loudspeaker and
he metrology platform, reads as

L
di
dt

= −Ri − Ke(ẋ1 − ẋb) + v (1)

ẍ1 = −k0(x1 − xb) − d0(ẋ1 − ẋb) + F (2)

ith (1) describing the electrical dynamics, and (2) the mechan-
cal ones. In system (1)–(2), L stands for the circuit inductance,
the resistance, Ke(ẋ1 − ẋb) the induced voltage, v the voltage

ontrol input, m the mass, k the stiffness, d the damping,
0 0
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= Kei the Lorentz force and Ke the force factor. As a result
of the specifically adopted coordinate-system, it is seen that the
contribution of the acceleration of gravity g does not explicitly
enter the dynamics in (2). For control-design purposes, a choice
is made to neglect the fast electrical dynamics in (1); hence, by
assuming L di

dt = 0, one obtains i =
v
R −

Ke
R (ẋ1− ẋb). From the latter

and from Eq. (2), by defining k̄ =
k0
m > 0, d =

1
m (d0 +

k2e
R ) > 0,

=
ke
mR > 0, and x2 = ẋ1, the system to be controlled can be

iven the following form

˙1 = x2
˙2 = −k̄(x1 − xb) − d(x2 − ẋb) + bv (3)

here k̄, d and b are positive parameters by construction.

. Control problem

The problem addressed herein consists in seeking a robust
ontrol strategy capable of locking the distance between the
etrology platform and the sample to a constant prescribed value
> 0, in spite of the disturbances affecting the system. In view of
his, by defining the regulation error as e1 = x1 − ξ (t)− c , by de-
oting its derivative by e2 = ė1, by collecting the ‘‘disturbances’’
nto ζ (t) = −k̄(ξ (t) + c − xb(t)) − d(ξ̇ (t) − ẋb(t)) − ξ̈ (t) (which is
a uniformly bounded quantity by construction), and by applying
the preliminary control action v = −k̄1e1 + u, with k̄1 > 0, then
system (3) can be written in error coordinates as

ė1 = e2
ė2 = −ke1 − de2 + ζ (t) + bu (4)

where k = k̄ + bk̄1 in (4) is a positive quantity by construction.
System (4) shall be regarded as the plant to be controlled, with u
playing the role of the control input. The sought control solution
will be derived under a rather standard assumption, which is
reported below:

Assumption 3.1. The plant parameters in (4) are such that
k ∈ [km, kM ], d ∈ [dm, dM ] and b ∈ [bm, bM ], with km, dm and
bm positive.

The control task can hence be formally cast as follows: Given
system (4) and given compact sets as in Assumption 3.1, find
a robust control law such that the closed loop-trajectories are
bounded, and such that, for any desired c > 0 and ϵ > 0, there
exists a time t∗ > 0 such that, for any t ≥ t∗, the regulation error
satisfies |e1| ≤ ϵ.

It is additionally noted that the regulation error e1 is a mea-
sured quantity, whereas e2 is not. Hence, an observer that esti-
mates e2 will be designed, as described next.

4. Learning observer

The proposed observer is defined as follows:

Definition 4.1. By denoting by ê1 and ê2, the estimates of
the regulation error e1, and, respectively, of the regulation error
derivative e2 in system (4), the observer dynamics is chosen as:
˙̂e1 = γ1ẽ1 + ê2

˙̂e2 = γ2ẽ1 +
ẽ1p2⏐⏐ẽ1⏐⏐ p + δ(t)

(5)

with ẽ1 = e1−ê1 representing the estimation error in reconstruct-
ing e1, where γ1, γ2 and p are positive gains, and where δ(t) is
elected as a positive function for any t ≥ 0 which must satisfy:
(t) → 0 as t → ∞, while having

∫ t
0 δ(τ )dτ as a uniformly

ounded function of time.
3

Furthermore, by defining ẽ2 = e2−ê2 (denoting the estimation
error in reconstructing e2), the dynamics in (5) can be given the
following alternative characterization to be used in subsequent
derivations:
˙̃e1 = −γ1ẽ1 + ẽ2

˙̃e2 = −γ2ẽ1 −
ẽ1p2⏐⏐ẽ1⏐⏐ p + δ(t)

+ ė2. (6)

4.1. Observer convergence analysis

In order to analyze the convergence properties of the proposed
observer, the following property shall be used

Property 4.1. Define e = (e1, e2)T and ê = (ê1, ê2)T , then there
xists a family C of controllers, such that:

(1) whenever u = u∗(t, e, ê) ∈ C in (4), then the trajectories (4)–
(5) are globally well-defined for any t ≥ 0

(2) whenever u = u∗(t, e, ê) ∈ C, then the trajectories e1(t), e2(t)
(and hence ė2(t)), within the closed-loop system (4)–(5), are
globally bounded

(3) whenever u = u∗(t, e, ê) ∈ C, then, for any given compact set
K ⊂ R2, any given set in Assumption 3.1, and any given ζ (t)
in (4), there exists a number e∞ > 0, independent of ê, p, γ1
and γ2 in (5), such that |e2(t)| ≤ e∞ and |ė2(t)| ≤ e∞, for
any t ≥ 0, for any initial condition e(0) ∈ K, and ê(0) ∈ R2,
within the closed-loop system (4)–(5).

roof. The proof is deferred to the Appendix. □

In view of Property 4.1, the following can be derived:

roperty 4.2. Select u = u∗(t, e, ê) in (4); then the trajectories
f system (5) and the ones of system (6) are globally bounded.
oreover, ˙̃e1 is uniformly continuous.

roof. Since u = u∗(t, e, ê) in (4), then Property 4.1 holds. Then
efine the ‘‘filtered regulation error’’ (Xian et al., 2004) r(t) as
= ˙̃e1 + αẽ1, where α > 0 determines the bandwidth of the

esulting first order system. In addition define γ1 = k1 + α and
2 = k1α, with k1 > 0. Then, from (6), the following dynamics
an be derived:

˙̃
1 = −αẽ1 + r

ṙ = −k1r −
ẽ1p2⏐⏐ẽ1⏐⏐ p + δ(t)

+ ė2. (7)

Since δ(t) > 0, then |ẽ1|p2

|ẽ1|p+δ(t) ≤ p, and since ė2 ∈ L∞, system
(7) can be regarded as an asymptotically stable linear system
forced by a uniformly bounded disturbance given by the sum
of the second and third terms on the right-hand side of the
second equation in (7). As a result, the following properties can
be inferred: ẽ1 ∈ L∞, r ∈ L∞, which in turn implies that ˙̃e1 ∈ L∞

and ṙ ∈ L∞; moreover, since ṙ = ¨̃e1 + α ˙̃e1, then ¨̃e1 ∈ L∞ as well.
In addition, since e1 ∈ L∞ and ẽ1 ∈ L∞, then ê1 ∈ L∞, too. From
the first equation in system (6), by using ẽ2 = e2 − ê2, it is seen
that boundedness of both ẽ1 and ˙̃e1 along with the fact that e2 ∈

L∞, implies that ê2 ∈ L∞ and hence that ẽ2 ∈ L∞, too. Finally,
boundedness of ¨̃e1, implies that ˙̃e1 is uniformly continuous. □

To proceed with the analysis, the following two theorems will
be exploited (both of them being a straightforward application of
Barbalat’s lemma (Khalil, 2002, p. 323)):

Theorem 1. If limt→∞

∫ t
0

˙̃e1(τ )dτ exists and is finite, since ˙̃e1 is
uniformly continuous, then lim ˙̃e = 0.
t→∞ 1
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heorem 2. If ẽ1 ∈ L2, since ẽ1 ∈ L∞ and ˙̃e1 ∈ L∞, then
limt→∞ ẽ1 = 0.

In the following, convergence to zero of both ˙̃e1 and ẽ1 will
be shown to hold, by proving that the conditions of Theorems 1
and 2 are fulfilled. In this way, from the first equation in (6),
convergence of ẽ2 to zero will follow as well. To this aim, the
following property will be used:

Property 4.3. Consider system (7), and in particular, the gains
p and α within it. Then, whenever u = u∗(t, e, ê) ∈ C in (4), it
follows that, for any given compact set K ⊂ R2, any given set in
Assumption 3.1, and any given ζ (t) in (4), there exist p∗ > 0 large
enough and α∗ > 0 large enough, and a time t1 > 0, such that:

|ė2| +
1
α

|ë2| ≤ p for p ≥ p∗, α ≥ α∗, t ≥ t1 (8)

or any e(0) ∈ K, ê(0) ∈ R2, within system (4)–(5).

roof. The proof is deferred to the Appendix. □

The following lemma can now be proven:

emma 3. Define J =
∫ t
0 r

(
ė2 −

ẽ1p2

|ẽ1|p+δ(τ )

)
dτ . Then, whenever

u = u∗(t, e, ê) ∈ C in (4), it follows that, for any given compact set
K ⊂ R2, any given set in Assumption 3.1, and any given ζ (t) in (4),
there exist p∗ > 0, α∗ > 0, and a finite number J∞ > 0 such that:

J ≤ J∞ for p ≥ p∗, α ≥ α∗ (9)

for any e(0) ∈ K, ê(0) ∈ R2, within the closed-loop system (4)–(5),
with p and α in (7).

Proof. Fix arbitrarily: the compact set K ⊂ R2, the sets in
Assumption 3.1, and ζ (t) ∈ L∞ in (4). Then consider the closed-
loop system (4)–(5), with e(0) ∈ K and u = u∗(t, e, ê) ∈ C
in (4). A straightforward application of the arguments in Xian
et al. (2004, Lemma 1) yields: J ≤ −

∫ t
0 α

⏐⏐ẽ1⏐⏐ |ẽ1|p2

|ẽ1|p+δ(τ )dτ +∫ t
0 α

⏐⏐ẽ1⏐⏐ (|ė2| +
1
α

|ë2|
)
dτ + ẽ1ė2|t0 + 2p

⏐⏐ẽ1(0)⏐⏐. By then using
Property 4.3, it follows that there exist p∗ > 0, α∗ > 0 and a
time t1 > 0 such that, for any p ≥ p∗, α ≥ α∗ and t ≥ t1,
then:

∫ t
t1

α
⏐⏐ẽ1⏐⏐ (|ė2| +

1
α

|ë2|
)
dτ ≤

∫ t
t1

α
⏐⏐ẽ1⏐⏐ pdτ . As a result, by

electing once and for all p and α such that p ≥ p∗ and α ≥ α∗,
nd by noticing that

⏐⏐ẽ1⏐⏐ (− |ẽ1|p2

|ẽ1|p+δ(τ ) + p
)

=
|ẽ1|pδ(t)
|ẽ1|p+δ(t) ≤ δ(t), it

s possible to write J ≤
∫ t1
0 α

⏐⏐ẽ1⏐⏐(−
|ẽ1|p2

|ẽ1|p+δ(τ ) + |ė2| + 1
α

|ë2|
)
dτ +

˜1ė2|t0+α
∫ t
t1

δ(τ )dτ+2p
⏐⏐ẽ1(0)⏐⏐. Since t1 is finite, since no quantity

n the right-hand side of the previous inequality has finite escape
ime, since ẽ1, ė2 and α

∫ t
t1

δ(τ )dτ are uniformly bounded, then

there exists a finite number J∞ > 0 such that J ≤ J∞, as
required. □

The following theorem shows that the observer (5) asymptot-
ically learns (i.e., estimates) the state e2.

Theorem 4. Whenever u = u∗(t, e, ê) ∈ C in (4), then, for any
given compact set K ⊂ R2, any given set in Assumption 3.1, and
ny given ζ (t) in (4), there exist p∗ > 0, γ ∗

1 > 0 and γ ∗

2 > 0, such
that, for any p ≥ p∗, γ1 ≥ γ ∗

1 and γ2 ≥ γ ∗

2 within the observer
dynamics in (5), and for any e(0) ∈ K, and ê(0) ∈ R2 within the
closed-loop system (4)–(5), the following holds: limt→∞ ẽ2 = 0.

Proof. Fix arbitrarily: the compact set K ⊂ R2, the sets in
Assumption 3.1, and ζ (t) ∈ L∞ in (4). Then, consider the closed-

loop interconnection (4)–(5), whose trajectories satisfy e(0) ∈ K,

4

with u = u∗(t, e, ê) ∈ C in (4). Since γ1 = k1+α and γ2 = k1α, the
theorem will be proven by demonstrating that there exist p∗ > 0,
and, for any given k1 > 0, there exists α∗∗ > 0, such that, for
any p ≥ p∗ and α ≥ α∗∗, then limt→∞ ẽ2 = 0 holds. Then the
result will follow by setting γ ∗

1 = k1 + α∗∗ and γ ∗

2 = k1α∗∗.
To proceed, it is firstly recalled that global boundedness of the
trajectories of system (4)–(5) (hence of ė2(t)), has already been
established in Properties 4.1 and 4.2. Then, consider system (7)
(whose trajectories have been proven globally bounded within
the Proof of Property 4.2), and regard the forcing term ė2(t) as
a bounded exogenous disturbance. By selecting the Lyapunov
function candidate V =

1
2 ẽ

2
1 +

1
2 r

2
1 , it follows that the derivative

of V around the trajectories of (7) satisfies (after an application
of Young’s inequality): V̇ ≤ −

α
2 ẽ

2
1 −

k1
2 r2 + r

(
ė2 −

ẽ1p2

|ẽ1|p+δ(t)

)
−

α
2 ẽ

2
1 −

k1
2 r2 +

δ̄
2 r

2
+

1
2δ̄
ẽ21, where δ̄ > 0. It is then seen that, for

any fixed k1 > 0, it suffices to choose δ̄ ≤ k1 and, in turn, α ≥
1
δ̄

to obtain −
α
2 ẽ

2
1 −

k1
2 r2 +

δ̄
2 r

2
+

1
2δ̄
ẽ21 ≤ 0. Hence, once having

fixed k1, δ̄ and, in turn, α as described so as to fulfill the previous
inequality, it follows: V̇ ≤ −

α
2 ẽ

2
1 −

k1
2 r2 + r

(
ė2 −

ẽ1p2

|ẽ1|p+δ(t)

)
.

y integrating both sides of the previous inequality, one obtains
(t) +

∫ t
0

α
2 ẽ

2
1 +

k1
2 r2dτ ≤ V(0) +

∫ t
0 r

(
ė2 −

ẽ1p2

|ẽ1|p+δ(τ )

)
dτ . From

emma 3, it is seen that there exist p∗ > 0 and α∗ > 0 such
that (9) holds. Hence, by defining α∗∗

= max{ 1
δ̄
, α∗

}, by selecting
and α such that p ≥ p∗ and α ≥ α∗∗, since V(t) ≥ 0, by using (9),

one obtains:
∫ t
0

α
2 ẽ

2
1 +

k1
2 r2dτ ≤ V(0) + J∞. From the right-hand

side of the previous inequality it follows that ẽ1 ∈ L2 (and that
∈ L2); this, from Theorem 2, shows that limt→∞ ẽ1 = 0. This

mplies that
∫ t
0

˙̃e1(τ )dτ has a finite limit as t converges to infinity,
ence, by using Theorem 1, it can be established that limt→∞

˙̃e1 =

. The proven convergence to zero of both ẽ1 and ˙̃e1, along with
he first equation in (6), finally implies that limt→∞ ẽ2 = 0. Hence
ˆ2 asymptotically learns e2. □

. Control system design

In preparation for control design, system (4) is conveniently
e-arranged in state–space form as

˙ = Ae + B(u + ζ (t)) (10)

here the values of the matrices A and B are uniquely determined
rom (4). By defining then

=

(
α1 α3
α3 α2

)
, Q =

(
−β1 0
0 −β2

)
(11)

he following Lyapunov equation is considered

A + ATP = −Q . (12)

ext, the task is to show how to choose α1, α2 and α3 in P
uch that Eq. (12) be fulfilled while guaranteeing, at the same
ime, that both matrices P and Q be positive-definite. To hence
roceed, fix arbitrarily the compact sets in Assumption 3.1. Then,
bserve that Eq. (12), by virtue of (11) and (4), translates into the
ollowing set of three independent equations

− 2α3k = −β1

α1 = α2k + α3d

(α3 − α2d) = −β2. (13)

rom the first equation in (13), one obtains α3 =
β1
2k , which

implies that for any chosen α3 > 0, the resulting β1 in Q in (11)
is always positive, since k is positive. As for β2 in Q , from the
third equation in (13) it follows that α22d − 2α3 = β2, which
implies that, once α > 0 has been fixed, since d ∈ [d , d ], with
3 m M
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m > 0, it is possible to choose α2 > 0 large enough such that
β2 > 0 in Q in (11); in particular, α2 must fulfill α2 >

α3
d . Next, a

sufficient condition for having P in (11) positive-definite is that its
leading minors be positive, that is: α1 > 0 and α1α2 − α2

3 > 0. A
way to fulfill the first condition is yielded by the second equation
in (13) which implies that α1 is positive, since α3 and α2 have
been chosen positive, and since k and d are both positive. As for
he second condition, by replacing α1 within it with the term on
he right-hand side of (13), one obtains α2

2k + α3α2d − α2
3 > 0,

hich is implied by α3α2d − α2
3 > 0, which is in turn fulfilled

henever α2 >
α3
d . This is summarized in the following property.

Property 5.1. For any given [km, kM ], [dm, dM ] and [bm, bM ]

in Assumption 3.1, it is always possible to choose α3 > 0, and,
consequently, α2 > 0 large enough to fulfill α2 >

α3
d , so that the

Lyapunov equation (12) be satisfied, while having P and Q in (11)
ositive definite.

Inspired by Wang et al. (2013, eq. (21)), the following two
efinitions will be used to characterize the control action u in (4):

efinition 5.1. The class C is the set of controllers:

∗(t, e, ê) = −
(ᾱ3e1 + ᾱ2ê2)ζ̄ 2

∞⏐⏐ᾱ3e1 + ᾱ2ê2
⏐⏐ ζ̄∞ + η

(14)

such that the constants ᾱ2, ᾱ3, ζ̄∞ and η are all positive.

Definition 5.2. Consider prescribed compact sets in
Assumption 3.1. Then, define the class C2 ⊂ C as the set of
controllers belonging to C, such that:

(1) ᾱ2 = α2 and ᾱ3 = α3 in (14), where α2 and α3 are elements
of the matrix P in (11) and are selected as a function of the
compact sets in Assumption 3.1, as dictated by Property 5.1

(2) ζ̄∞ = ζ∞ in (14), where ζ∞ satisfies ζ∞ > |ζ (t)|.

The class C2 can hence be defined as the set of controllers:

u∗∗(t, e, ê) = −
(α3e1 + α2ê2)ζ 2

∞⏐⏐α3e1 + α2ê2
⏐⏐ ζ∞ + η

(15)

here the positive constants α2, α3 and ζ∞ satisfy points (1) and
2) above, and where η is a positive constant.

The following theorem establishes the convergence properties
of the regulation error e whenever u ∈ C2:

heorem 5 (Regulation-error Convergence). For any given compact
et K ⊂ R2, any given set in Assumption 3.1, any given ζ (t) in (4),
and for any desired ϵ > 0, it is possible to choose a controller
u∗∗(t, e, ê) in (15) with η > 0 small enough, and a learning observer
in (5) with p > 0, γ1 > 0 and γ2 > 0 large enough, so that there
exists t∗ > 0, such that the regulation error e within the closed-
loop trajectories (5)–(10) satisfies ∥e∥ ≤ ϵ, for any initial condition
(0) ∈ K and ê(0) ∈ R2, and for any t ≥ t∗.

Proof. Fix arbitrarily: the compact set K ⊂ R2, the sets in
Assumption 3.1, and ζ (t) ∈ L∞ in (4). Then, consider the closed-
loop system (5)–(10) satisfying e(0) ∈ K, ê(0) ∈ R2, with u =

u∗∗(t, e, ê) ∈ C2 in (10). Because u∗∗(t, e, ê) ∈ C2 ⊂ C, then
Properties 4.1 and 4.2 hold, and hence the closed-loop trajectories
are well-defined for any t ≥ 0 and uniformly bounded. Hence
it is possible to regard the interconnection (5)–(10), as the sole
system (10) forced by time-varying, uniformly bounded signals
u = u∗∗(t, e, ê) and ζ (t). Consider then the Lyapunov function-
candidate W = eTPe, where the matrix P is defined in Eq. (11)
and the parameters α2 and α3 within it are chosen as dictated
by Property 5.1: in this way, matrices P and Q in Eq. (11) are
5

Fig. 2. Bode plot of identified plant (1)–(2).

positive-definite, the quadratic form eTPe is positive-definite, and
the Lyapunov equation (12) is satisfied. As a consequence, the
derivative of W along the trajectories of system (10), with u =

∗∗(t, e, ê), can be shown to satisfy (after some algebra) Ẇ ≤

eTQe+2b
(

ζ∞|α3e1+α2 ê2|η
ζ∞|α3e1+α2 ê2|+η

)
+2bα2ẽ2(u+ ζ (t)). From the latter,

y exploiting the existence (by construction) of a constant γ > 0
uch that −eTQe ≤ −γW , and by using ζ∞|α3e1+α2 ê2|η

ζ∞|α3e1+α2 ê2|+η
≤ η, one

an finally derive

˙ ≤ −γW + 2bη + 2bα2ẽ2(u + ζ (t)). (16)

y then appealing to Theorem 4, it follows that there exist p∗ > 0,
∗

1 > 0 and γ ∗

2 > 0, such that, for any p ≥ p∗, γ1 ≥ γ ∗

1 and
2 ≥ γ ∗

2 within the observer dynamics in (5), the estimation error
˜2 converges to zero. Hence, by indeed selecting p, γ1 and γ2 so
that p ≥ p∗, γ1 ≥ γ ∗

1 and γ2 ≥ γ ∗

2 in (5), then, the term 2bα2ẽ2(u+
ζ (t)) in (16) converges to zero as well. Hence, by applying the
Comparison Lemma (Khalil, 2002, p. 102) to inequality (16), it is
seen that once ϵ > 0 has been fixed, it is possible to choose η > 0
small enough in (15), hence in (16), such that there exists a time
t∗ > 0, such that for any t ≥ t∗, then ∥e∥ ≤ ϵ, as requested. □

6. Experimental results

The proposed control strategy is evaluated experimentally by
driving the bottom loudspeaker with random noise, with the aim
of emulating vibrations experienced in fabrication environments.
The experimental investigation is additionally complemented by
comparing the performance of the proposed algorithm to the one
of a PID controller, under the same experimental conditions.

By setting the sampling frequency to 1 kHz, the PID controller
is designed on the basis of a preliminary system-identification
shown in Fig. 2. By using the ‘‘PID tuner’’ feature in Simulink, and
by selecting the PID transfer function as P(s) = kp +ki 1s +kd s

Tf s+1 ,
he desired closed-loop bandwidth is pushed to 100 Hz with the
im of enforcing a fast transient performance in terms of rise
ime, settling time and peak time, whereas the phase-margin
s set to 64.5 degrees so as to dictate a good performance in
erms of the percentage-overshoot indicator. The resulting PID
ontroller gains are as follows: kp = 647, ki = 3.35 × 104,
d = 3.08, and Tf = 1.39 × 10−5. Whereas, the resulting overall

closed-loop system performance reads as: rise time = 0.00217 s,
settling time = 0.0363 s, overshoot = 10.7%, peak = 1.11, and
gain margin = 30.8 dB at 2.68 × 104 rad/s.

The nonlinear control strategy is tuned by exploiting the re-
sults derived in the convergence analysis, aided by computer
simulations. With reference to the control action defined in (15),
in view of the inequality in (16), the gain η is selected by seeking
a trade-off between the achievable tracking performance and the
control system’s physical capability of generating high-frequency
commands. The parameters α2 and α3 are chosen in conformity
with Property 5.1, whereas the gain ζ∞, because of Definition 5.2,
point (2), is selected to reflect an upper bound on the magnitude
of the expected disturbance affecting the error system in (4). This
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Fig. 3. Setpoint regulation comparative performance: actual distance x1(t)−ξ (t)
vs desired distance c = 1.5 × 10−4 . Plots on the left for the proposed strategy,
plots on the right for the PID strategy. Plots (a) and (b) feature the entire time
history; plots (c) and (d) zoom on the transition from control off to control on;
plots (e) and (f) display the steady-state.

Fig. 4. Observer performance: tracking (e1 vs. ê1) over the entire experiment
(a); zoomed tracking during the initial transient (b); zoomed tracking on the
transition from control off to control on (c); zoomed tracking during (part of)
the steady-state (d); estimated regulation-error velocity ê2 (e).

results in: η = 10, α2 = 0.8, α3 = 100, and ζ∞ = 10. The
tuning of the control system is completed by fixing k̄1 = 1 within
the preliminary control action defined in Section 3. The observer
parameters γ1, γ2 and p in (5) are selected in conformity with
Theorem 4, whereas the function δ(t) is chosen as a decaying
exponential so that

∫ t
0 δ(τ )dτ be a uniformly bounded function

of time, as required by Definition 4.1. The resulting observer
parameters are: γ1 = 1000, γ2 = 20, p = 4× 104, and δ(t) = e−t .

For both strategies, the desired distance is set to c = 1.5×10−4

m, while driving the sample with random noise. The experiments
are carried out by initially keeping the control signal inactive, so
6

as to highlight the effect of the uncompensated vibrations on the
time evolution of the distance between the metrology platform
and the sample (see Fig. 3). Upon turning the control system on,
Fig. 3 shows that both strategies are capable to steer the systems’
trajectories towards an attractor within which the regulation er-
ror e1 is substantially reduced. Moreover, both strategies display a
similar settling time towards their respective attractor. However,
from Fig. 3 it is seen that the proposed strategy exhibits a lesser
overshoot along with a more favorable steady-state in which the
set-point regulation is indeed carried out with superior accuracy
as compared to the PID strategy. The performance of the learning
observer is synthetically displayed in Fig. 4, from which it can be
seen that the observer is capable to effectively reconstruct the
measured distance, whose information is in turn used to produce
the estimated regulation-error velocity ê2 (Fig. 4(e)).

7. Conclusions

In this work, a nonlinear control strategy is presented for
locking the distance between a metrology platform and a sample
within a laboratory prototype. The sample is driven with ran-
dom noise with the aim of recreating environmental vibrations
in fabrication environments. The proposed control strategy re-
lies on a novel observer capable of reconstructing the missing
velocity-information, in spite of unknown system parameters.
Robust stability is then secured by a combination of high-gain and
high-frequency tools. A comparative experimental study with a
PID-based control-strategy shows that the proposed algorithm is
effective in achieving the control task, and that it is capable to do
so, overall, in a more effective way than its PID-based counterpart.
Future investigations will consider the extension of the present
design to a six-degree of freedom problem.

Appendix

A.1. Proof of Property 4.1

Proof. The proof of points (1), (2) and (3) follows by noticing that,
by virtue of inequalities |e1−ê1|p2

|e1−ê1|p+δ(t) ≤ p, and
⏐⏐⏐ (ᾱ3e1+ᾱ2 ê2)ζ̄2

∞

|ᾱ3e1+ᾱ2 ê2|ζ̄∞+η

⏐⏐⏐ ≤

¯
∞, system (5)–(10), with u = u∗(t, e, ê) ∈ C, can be re-
arded as a linear system forced by perturbations which are
niformly bounded, continuous in t and locally Lipschitz in the
tate (ê, e)T . □

.2. Proof of Property 4.3

roof. Fix arbitrarily: the compact set K ⊂ R2, the sets in
ssumption 3.1, and ζ (t) ∈ L∞ in (4). Then, consider system (5)–
10), with e(0) ∈ K, ê(0) ∈ R2 and u = u∗(t, e, ê) ∈ C in (10).
hoose arbitrarily ϵ > 0; then Property 4.1 shows that there
xists p∗ > 0 such that

|ė2| + ϵ ≤ p for p ≥ p∗, t ≥ 0. (A.1)

n view of (A.1), inequality (8) will be demonstrated by showing
hat there exist α∗ > 0, and t1 > 0 such that:
1
α

|ë2| < ϵ for α ≥ α∗, t ≥ t1. (A.2)

ith this aim, define z ≜ ᾱ3e1 + ᾱ2ê2, and f (z) ≜
zζ2

∞

|z|ζ∞+η
. From

ystem (10), it follows that 1
α
ë2 =

1
α

(
−kė1 − dė2 + b

(
−

∂ f
∂z

∂z
∂t

+
ζ̇ (t)

))
, whereas Property 4.1, point (3), implies the existence
b
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f ᾱ1 > 0 such that: 1
α

(
|kė1| + |dė2| + |ζ̇ (t)|

)
< ϵ

2 for α ≥ ᾱ1.

Hence, by finding α∗
≥ ᾱ1 and t1 > 0 such that

1
α
b
⏐⏐⏐⏐∂ f∂z

∂z
∂t

⏐⏐⏐⏐ <
ϵ

2
for α ≥ α∗, t ≥ t1 (A.3)

hen inequality (A.2) will follow. To this end, by considering that
∂ f (z)
∂z =

ζ2
∞η

(|z|ζ∞+η)2
≤

ζ2
∞

η
, since 1

α
∂z
∂t =

1
α
(α3ė1 + α2

˙̂e2), it is seen

that (A.3) is implied by:

b
ζ 2
∞

η

1
α

⏐⏐⏐α3ė1 + α2
˙̂e2

⏐⏐⏐ <
ϵ

2
for α ≥ α∗, t ≥ t1. (A.4)

ecause of Property 4.1, there exists ᾱ2 ≥ ᾱ1 such that b 1
α

ζ2
∞

η

α3ė1| <
β̄2
α

< ϵ
4 holds for α ≥ ᾱ2. This implies that for

proving (A.4) it is sufficient to show that there exist ᾱ3 ≥ ᾱ2 and
1 ≥ 0, such that b 1

α

ζ2
∞

η

⏐⏐⏐α2
˙̂e2

⏐⏐⏐ < ϵ
4 holds for α ≥ ᾱ3 and t ≥ t1.

urthermore, by virtue of the identity 1
α
˙̂e2 = k1ẽ1+ 1

α

ẽ1p2

|ẽ1|p+δ(t) , the

previous inequality translates into b ζ2
∞

η
α2

⏐⏐⏐k1ẽ1 +
1
α

ẽ1p2

|ẽ1|p+δ(t)

⏐⏐⏐ <
ϵ
4 for α ≥ ᾱ3, t ≥ t1, which is in turn implied by:

b
ζ 2
∞

η
α2

⏐⏐⏐⏐⏐ 1α ẽ1p2⏐⏐ẽ1⏐⏐ p + δ(t)

⏐⏐⏐⏐⏐ <
ϵ

8
for α ≥ ᾱ3, t ≥ t1

ζ 2
∞

η
α2

⏐⏐k1ẽ1⏐⏐ <
ϵ

8
for α ≥ ᾱ3, t ≥ t1. (A.5)

he final task is hence to prove the inequalities in (A.5). To this
nd, Property 4.1 shows that ẽ1p2

|ẽ1|p+δ(t) + ė2 ∈ L∞, hence, the

teady state evolution of r(t) in (7) must possess an upper bound
which is dictated by p, ė2 and k1, but not by ẽ1. As a result, once
k1 and p have been fixed, for any ϵ̄ > 0 it is possible to choose
ᾱ(ϵ̄) > 0 large enough such that there exists t̄1 > 0, such that
for any α ≥ ᾱ(ϵ̄) and for any t ≥ t̄1, then

⏐⏐ẽ1⏐⏐ < ϵ̄. This implies
that there exists ᾱ3 > 0 and, in turn, t1 ≥ 0 such that the second
inequality in (A.5) holds. In addition, inequality |ẽ1|p2

|ẽ1|p+δ(t) ≤ p

mplies the existence of α4 > 0 such that b ζ2
∞

η
α2

⏐⏐⏐ 1
α

ẽ1p2

|ẽ1|p+δ(t)

⏐⏐⏐ < ϵ
8

or α ≥ α4 and t ≥ 0. Hence, by choosing ᾱ3 > α4, the first
7

inequality in (A.5) is fulfilled, too. Fixing α∗
= ᾱ3, concludes the

roof. □
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