
Frontiers in Marine Science | www.frontiers

Edited by:
Anthony Grehan,

National University of Ireland Galway,
Ireland

Reviewed by:
Erik Cordes,

Temple University, United States
Alessandra Savini,

University of Milano-Bicocca, Italy

*Correspondence:
Aksel Alstad Mogstad

aksel.a.mogstad@ntnu.no

Specialty section:
This article was submitted to

Deep-Sea Environments and Ecology,
a section of the journal

Frontiers in Marine Science

Received: 05 January 2022
Accepted: 01 March 2022
Published: 28 March 2022

Citation:
Mogstad AA, Løvås HS, Sture Ø,

Johnsen G and Ludvigsen M (2022)
Remote Sensing of the Tautra Ridge:
An Overview of the World’s Shallowest

Cold-Water Coral Reefs.
Front. Mar. Sci. 9:848888.

doi: 10.3389/fmars.2022.848888

ORIGINAL RESEARCH
published: 28 March 2022

doi: 10.3389/fmars.2022.848888
Remote Sensing of the Tautra
Ridge: An Overview of the World’s
Shallowest Cold-Water Coral Reefs
Aksel Alstad Mogstad1*, Håvard Snefjellå Løvås2, Øystein Sture2, Geir Johnsen1,3

and Martin Ludvigsen2

1 Centre for Autonomous Marine Operations and Systems, Department of Biology, Norwegian University of Science and
Technology (NTNU), Trondheim, Norway, 2 Centre for Autonomous Marine Operations and Systems, Department of Marine
Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, 3 Arctic Biology Department,
University Centre in Svalbard (UNIS), Longyearbyen, Norway

On the Tautra Ridge – a 39-100 m deep morainic sill located in the middle of the
Trondheimsfjord, Norway – some of the world’s shallowest known occurrences of the
scleractinian cold-water coral (CWC) Desmophyllum pertusum can be found. The earliest
D. pertusum records from the Tautra Ridge date back to the 18th century, and since then,
the location has provided easy access to physical coral specimens for numerous scientific
studies. In 2013, the ridge was declared a marine protected area by the Norwegian
Government due to its unique CWC reefs. However, few attempts have to our knowledge
yet been made to characterize the distribution, extent and condition of these reefs
extensively. The aim of the current study was therefore to add geospatial context to the
Tautra CWC reef complex. In the study, data from multibeam echo sounding, synthetic
aperture sonar imaging and underwater hyperspectral imaging are used to assess CWC
reef occurrences from multiple perspectives. The study demonstrates how
complementary remote sensing techniques can be used to increase knowledge
generation during seafloor mapping efforts. Ultimately, predictive modeling based on
seafloor geomorphometry is used to estimate both distribution and areal coverage of
D. pertusum reefs along the majority of the Tautra Ridge. Our findings suggest that
D. pertusum reef distribution on the Tautra Ridge is affected by several geomorphometric
seafloor properties, and that the total reef extent in the area likely is close to 0.64 km2.
Better description of current patterns across the Tautra Ridge will improve our
understanding of the interaction between hydrography and geomorphology at the
Tautra CWC reef complex in the future.

Keywords: cold-water corals, Desmophyllum pertusum, Lophelia pertusa, habitat mapping, predictive modeling,
multibeam echo sounding (MBES), synthetic aperture sonar (SAS) imaging, underwater hyperspectral imaging (UHI)
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1 INTRODUCTION

Situated between 63°40’N 9°45’E and 64°0’N 11°30’E, the 135 km
long Trondheimsfjord is one of Norway’s largest fjord systems.
The fjord system consists of three main basins: the 617 m deep
outer basin, the 440 m deep middle basin and the 270 m deep
inner basin (Jacobson, 1983). These basins – respectively denoted
as B1, B2 and B3 in Figure 1A – are separated by morainic sills of
glacial debris deposited during the Younger Dryas cooling period
(Sakshaug and Sneli, 2000). Whereas the surface layer of the
Trondheimsfjord (0-25 m deep) to a large extent is characterized
by freshwater influx from surrounding rivers, the fjord’s deeper
water layers (>50 m during summer) are dominated by a mixture
of saline and well-oxygenated Atlantic water (AW) and
Norwegian coastal water (NCW). The annual influx of AW
and NCW into the fjord system exchanges all water masses
below the surface layer twice a year. This provides a relatively
stable deep-water environment, with salinities >34, temperatures
typically ranging from 7 to 7.5°C and oxygen levels >6 mL L-1

throughout the year (Sakshaug and Sneli, 2000). At the morainic
sills, the fjord’s rapid water exchange rate and semidiurnal tidal
patterns are manifested as strong currents with speeds typically
ranging from 0.4 to 1m s-1 (Jacobson, 1983). These currents, and
the suspended food particles they carry, provide suitable
conditions for sessile suspension feeders, and at the sill
separating the outer basin from the middle basin – the Tautra
Ridge – a particularly spectacular suspension feeder assemblage
can be found (Sakshaug and Sneli, 2000; Mortensen and
Fosså, 2001).
Frontiers in Marine Science | www.frontiersin.org 2
Extending from 63°36’30”N 10°30’E to 63°34’N 10°35’E, the
~6-km Tautra Ridge supports some of the world’s shallowest
cold-water coral (CWC) reefs (39 m; Brooke and Järnegren,
2013). A reef is here defined as a biogenic framework consisting
of both living and dead coral. Radiocarbon labelling suggests that
the Tautra Ridge was formed 10,800-10,500 14C years BP (Reite,
1995; Lyså et al., 2008), and with depths generally ranging from
39 to 100 m, it spans the full width of the Trondheimsfjord
(Figure 1B). The CWCs associated with the Tautra Ridge do not
form a continuous reef structure, but rather a complex of
discrete, adjacent CWC build-ups ranging from 10 to 105 m2

in size (Mortensen and Fosså, 2001). The currents across the
ridge are influenced by season, tide and local bathymetry, but can
invariably be considered strong. At 80-m depth, eastward
currents with speeds up to 0.7 m s-1 have for instance been
recorded (Jacobson, 1983). Over the past decades, the biological
value of the Tautra Ridge has become increasingly acknowledged
by the Norwegian Government, and in 2013, the ridge was
named one of Norway’s first marine protected areas (MPAs;
Lovdata, 2013).

The species that dominates the Tautra CWC reef complex is
the scleractinian coral Desmophyllum pertusum (Linnaeus,
1758), formerly known as Lophelia pertusa. Desmophyllum
pertusum is a cosmopolitan coral species that so far has proven
to be particularly abundant in the North Atlantic and its
associated fjord systems (Davies et al., 2008). Its known depth
range spans all the way from 39 m at the Tautra Ridge to a
maximum recorded depth of 3,383 m in the Northwest Atlantic
(Squire, 1959). On the Norwegian continental shelf, D. pertusum
FIGURE 1 | The area surveyed in the current study. Panel (A) shows a map of the Trondheimsfjord with the fjord’s geographic position indicated in the upper left
corner. B1, B2 and B3 correspond to the fjord’s outer, middle and inner basin, respectively. The red square indicates the position of the Tautra Ridge and the extent
of panel (B). Panel (B) shows a depth contour map of the most pronounced part of the Tautra Ridge (depths are given in meters) and the spatial extent of the
datasets utilized in the study. The data were obtained using three different techniques: multibeam echo sounding (MBES), synthetic aperture sonar (SAS) imaging
and underwater hyperspectral imaging (UHI). The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). The
depth contour maps are based on data from the Norwegian Mapping Authority (Kartverket), available at https://kartkatalog.geonorge.no/Metadata/dybdedata/
2751aacf-5472-4850-a208-3532a51c529a under CC BY 4.0 license. Projection: UTM 32N. Datum: WGS 1984.
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is most common at 200-400-m depths, but in Norwegian fjords,
it is frequently encountered in shallower waters (Mortensen
et al., 1995; Fosså et al., 2002). On a general basis, D. pertusum
can be considered relatively tolerant with respect to
environmental variables (Järnegren and Kutti, 2014). In the
Northeast Atlantic, it does, however, seem to prefer salinities
close to 35, temperatures of 6-9°C and oxygen levels of 6.0-6.2
mL L-1 (Davies et al., 2008; Roberts et al., 2009), which coincides
well with the environmental conditions at the Tautra Ridge.

Desmophyllum pertusum’s ability to create complex, three-
dimensional reef structures makes it an important ecosystem
engineer in cold waters (Jones et al., 1994; Mortensen et al.,
2010). Despite its slow growth rate (typically <1 cm year-1;
Sabatier et al., 2012), the species is capable of forming vast
bioherms, and the biggest D. pertusum reef complex known to
date is the ~40 km long Røst Reef off the coast of northern
Norway (Fosså et al., 2005). As a structure-forming ecosystem
engineer,D. pertusum provides substrate and shelter to a range of
benthic and demersal organisms. In the Northeast Atlantic as a
whole, it is known to co-occur with >1,300 species (Roberts et al.,
2006), and at the Tautra Ridge, >120 macrofaunal species have so
far been documented (Mortensen and Fosså, 2001; Costello et al.,
2005; Mortensen and Fosså, 2006). Historically, published
studies of the Tautra CWC reef complex have relied heavily on
physical point sampling. However, there also exist non-invasive
methods of obtaining coral information that hitherto have
remained relatively unexplored in the current study area.

Desmophyllum pertusum’s eco-geographical preferences and
morphological properties make the Tautra CWC reef complex an
interesting target for acoustic remote sensing surveys. From a
geomorphometric perspective, D. pertusum in the Northeast
Atlantic is for instance known to be associated with
bathymetric highs, steep slopes and irregular seafloor surfaces
(Mortensen et al., 2001; Davies et al., 2008; Davies et al., 2017), all
of which are seafloor variables that can be quantified using, e.g.,
multibeam echo sounding (MBES; Wilson et al., 2007).
Furthermore, the corals themselves may on multiple levels
serve as suitable targets for acoustic detection. Firstly, being a
scleractinian coral species, D. pertusum deposits calcium
carbonate in the form of aragonite in order to grow. In
Norwegian waters, the solid aragonite skeletons of dense D.
pertusum frameworks have been shown to produce stronger
MBES backscatter than, e.g., soft-bottom sediments, which
may provide a partial means of reef identification (Fosså et al.,
2005). It should, however, be noted that this is not necessarily
thought to be the case if the corals grow in less dense
frameworks. Secondly, vertical coral growth may generate
abrupt angles between the reef perimeter and the surrounding
seafloor. This is an attribute that can be identified by side-
scanning sonar systems, which produce imagery where
protruding seafloor features typically display strong acoustic
backscatter and cast distinctive acoustic shadows (Fosså et al.,
1997; Blondel, 2009). Finally, and perhaps most importantly, D.
pertusum’s complex three-dimensionality potentially gives its
reefs characteristic acoustic signatures in sonar imagery. In
Norwegian waters, D. pertusum often has a tightly branching
Frontiers in Marine Science | www.frontiersin.org 3
and hemispherical growth pattern, which typically is manifested
as noisy, rough-textured areas, sometimes referred to as
“cauliflower patterns” (Freiwald et al., 2002; Fosså et al., 2005;
De Clippele et al., 2018). In 2012, the Tautra Ridge was
acoustically surveyed using a HUGIN 1000 autonomous
underwater vehicle (AUV) from Kongsberg Maritime AS
(Kongsberg, Norway). The HUGIN AUV was equipped with a
synthetic aperture sonar (SAS), and the recorded sonar imagery
clearly revealed the presence of cauliflower-patterned reef
structures (Ludvigsen et al., 2014). Sture et al. (2018) later
demonstrated that these D. pertusum reefs could be accurately
identified in SAS imagery by applying a convolutional neural
network (CNN) classification algorithm.

The morphological properties of D. pertusum also permit reef
detection by means of optical remote sensing. Most notably, D.
pertusum is known to have two distinct color phenotypes: white
and orange. Both phenotypes spectrally differ considerably from
dead coral structures, which potentially may constitute >70% of
the reef framework (Vad et al., 2017). The reason as to why the
two phenotypes exist and grow side by side is currently a topic
under investigation. What is known, is that the color difference
as such likely is caused by carotenoid pigments, such as
astaxanthin, which are more than twice as abundant in the
orange phenotype (Elde et al., 2012). What is yet to be
determined, is the exact mechanism behind the difference in
carotenoid contents. One of the leading hypotheses is currently
that the coloration is linked to the bacterial composition of theD.
pertusum mucus layer, which further is thought to influence the
coral’s nutritional uptake (Neulinger et al., 2008; Provan et al.,
2016). From a physiological perspective, the difference between
the two phenotypes is also unclear, but findings from a recent
study by Büscher et al. (2019) suggest that the orange phenotype
may be more resistant to stress than its white counterpart. At
present, only a few published studies feature optical survey
results from the Tautra CWC reef complex. In September
2000, the northwestern part of the Tautra Ridge was optically
investigated using a remotely operated vehicle (ROV) equipped
with two video cameras (Mortensen and Fosså, 2001). The
survey was performed by the Norwegian Institute of Marine
Research and aimed to map D. pertusum occurrences and
associated biodiversity. In total, ~6,200 m of video transect
were analyzed, and the documented biodiversity was found to
be greater than that of equivalent seafloor areas on the
Norwegian continental shelf. In 2012, a small area (200-300
m2) of the Tautra Ridge was surveyed in detail using an ROV
equipped with two video cameras, a downward-facing digital
camera and an underwater hyperspectral imager (Ludvigsen
et al., 2014; Johnsen et al., 2016). During the survey, D.
pertusum was optically confirmed to be present, but the
resulting data were not analyzed extensively. More recently,
ROV-acquired video from the Tautra Ridge was used to verify
coral presence in acoustic SAS imagery (Sture et al., 2018). Here,
the optical information served as a useful qualitative guide, but
the video data were not assessed quantitatively.

Over the past decade, the Norwegian University of Science
and Technology (NTNU) has collected both acoustic and optical
March 2022 | Volume 9 | Article 848888
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remote sensing datasets from the Tautra Ridge and its associated
D. pertusum reefs. However, very little of this material has to date
been published in a geospatial context. The aim of the current
study was therefore to synthesize available data to provide
enhanced insight into the frequently referenced but poorly
documented Tautra CWC reef complex.

The study utilized data from three major remote sensing
techniques: (1) ship-based MBES, (2) AUV-based SAS imaging
and (3) ROV-based underwater hyperspectral imaging (UHI;
Figure 1B). Data from the first of these techniques were used to
estimate seven geomorphometric seafloor variables covering
most of the Tautra Ridge, whereas data from the latter two
techniques were used to outline and characterize D. pertusum
occurrences at two different spatial scales. Ultimately,
geomorphometric variable values from areas with and without
corals present were compared, and an attempt was made to
predict CWC reef distribution along the ridge. Figure 2 shows a
flowchart that outlines the steps presented in the Materials and
Methods section.
2 MATERIALS AND METHODS

2.1 MBES Data
In April 2016, a georeferenced MBES point cloud from the most
pronounced part of the Tautra Ridge was obtained from the
Norwegian Mapping Authority’s Hydrographic Service
(Kartverket Sjødivisjonen, Stavanger, Norway). The point
cloud had been collected using a Kongsberg EM 710 MBES
system (Kongsberg Maritime AS, Kongsberg, Norway) onboard
the survey vessel MS Hydrograf. The data were initially classified,
but approved for release to NTNU’s Applied Underwater
Robotics Laboratory (AURLab) for the purpose of research and
education. The released MBES data featured detailed
bathymetric information but did not contain information on
Frontiers in Marine Science | www.frontiersin.org 4
acoustic backscatter intensity. Based on the MBES point cloud, a
gridded bathymetric dataset with a spatial resolution of 2 m x 2
m was generated. This dataset covered an area of 6.23 km2

and served as the basis for all geomorphometric analyses
presented herein.

2.2 SAS Data
The SAS data utilized in the current study were collected in
December 2012 during a joint research cruise arranged by
NTNU’s AURLab and the Norwegian Defense Research
Establishment (FFI, Kjeller, Norway). To record sonar imagery,
a Kongsberg HiSAS 1030 synthetic aperture sonar system
(Kongsberg Maritime AS, Kongsberg, Norway) was deployed
on a HUGIN 1000 AUV. As opposed to regular side-scanning
sonar systems, SAS systems utilize more than a single ping to
reconstruct a given location in the output imagery, which
improves spatial resolution both across- and along-track
(Hansen et al., 2004; Sture et al., 2018). Using the SAS-
equipped HUGIN AUV, the northwestern region of the Tautra
Ridge was surveyed in a systematic lawnmower pattern at a mean
seafloor altitude of 26 m. The resulting imagery was post-
processed in Kongsberg Maritime’s “Reflection” software, and
ultimately georeferenced at a pixel resolution of 4 cm x 4 cm. The
final SAS mosaic covered a seafloor area of ~1 km2.

2.3 UHI Data
A Tautra Ridge CWC reef situated at 80-m depth at
approximately 63°35’43”N 10°31’3”E was optically surveyed by
NTNU’s AURLab in March 2017. The survey utilized a SUB-
fighter 30k ROV (Sperre AS, Notodden, Norway) equipped with
a 4th generation underwater hyperspectral imager (UHI-4) from
Ecotone AS (Trondheim, Norway). UHI-4 is an optical imager
that contains two cameras: (1) a regular digital camera (red,
green, blue; RGB) and (2) a hyperspectral push-broom scanner
capable of recording imagery where each pixel holds a
FIGURE 2 | Flowchart of the steps presented in the Materials and Methods Section (sections 2.1-2.8). CNN, convolutional neural network; CWC, cold-water coral;
MBES, multibeam echo sounding; SAS, synthetic aperture sonar; SVM, support-vector machine; UHI, underwater hyperspectral imaging.
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contiguous light spectrum as opposed to an RGB value. The high
spectral resolution of the technique potentially provides an
enhanced data foundation with potential for the identification
of spectral signatures (“fingerprints”) that may be useful for
automated mapping of seafloor features based on color. Being a
push-broom scanner, the latter camera operates by capturing
hyperspectral pixel rows through a narrow light entrance slit at a
fixed frame rate. To provide spatially coherent hyperspectral
imagery, UHI-4 must therefore be maneuvered in straight lines
across the given area of interest, with the light entrance slit of the
hyperspectral camera oriented perpendicularly to the instrument
platform’s heading. Over the past decade, UHI-based seafloor
studies have been carried out within a variety of fields (e.g.,
marine biology and archaeology), and for an overview of the
technique, see Liu et al. (2020) and Montes-Herrera et al. (2021).

For the current study’s optical survey, UHI-4 was mounted on
the SUB-fighter 30k ROV in a nadir viewing position, with two
downward-facing 250-W Deep Multi SeaLite halogen lamps
(DeepSea Power & Light LLC, San Diego, USA) placed 35 cm
port and starboard of the instrument. The ROV was
subsequently deployed at the survey location, using NTNU’s
research vessel, RV Gunnerus. To provide geospatial context to
the data acquisition, the ROV utilized a dynamic positioning
system (Sørensen et al., 2012) and a navigation filter aided by an
acoustic ultra-short baseline (USBL) positioning system
mounted on the surface vessel. This permitted the ROV to
follow a pre-programmed lawnmower pattern at a seafloor
altitude of 2 m. The pattern consisted of 13 parallel, partially
overlapping transects and covered a reef area of approximately
800 m2. While following the pattern, UHI-4 captured optical
imagery according to the settings specified in Table 1.

Following the optical data acquisition, the imagery was
processed in a succession of steps, according to the procedure
described in Løvås et al. (2021). First, the acquired RGB imagery
(a total of 21,702 images) was used to generate a three-
dimensional (3D) model of the survey area in the
photogrammetry software Agisoft Metashape Professional (v.
1.6.2; Agisoft LLC, St. Petersburg, Russia). This model provided
highly detailed estimates of UHI-4’s position (northing, easting
and depth) and orientation (pitch, roll and yaw) over the course
of the survey. Using these estimates, the underwater
hyperspectral imagery was subsequently ray-casted onto the
3D model according to the hyperspectral push-broom
scanner’s known geometric model relative to the RGB camera.
By estimating the geographic intersections between the 3D
model and the push-broom scanner’s field of view (FOV), the
Frontiers in Marine Science | www.frontiersin.org 5
hyperspectral imagery was georeferenced on a pixel-specific basis
at a spatial resolution of 1 cm x 1 cm. Ultimately, the
georeferenced UHI data were converted from spectral radiance
(L(l)) to spectral reflectance (R(l)) using Beer-Lambert’s law for
non-scattering media modified from Mobley (1994). The final
UHI mosaic covered an area of ~787 m2 (see Supplementary
Figure S1).

2.4 Estimation of Geomorphometric
MBES Variables
The MBES-derived depth data from the Tautra Ridge were
analyzed in the geospatial processing software ArcMap (v. 10.8;
Esri Inc., Redlands, USA) using the Benthic Terrain Modeler
(BTM) 3.0 plug-in (Walbridge et al., 2018). In addition to depth,
six geomorphometric variables were estimated: broad
bathymetric position index (BPI broad), fine bathymetric
position index (BPI fine), slope, ruggedness, eastness and
northness. While depth corresponds to a grid cell’s vertical
position relative to the sea surface, BPIs are calculated based
on neighborhood analyses and indicate a grid cell’s bathymetric
position relative to its surroundings. The exact value range of a
BPI will depend on the dataset as well as the chosen analysis
settings. Positive and negative values respectively denote
bathymetric highs (e.g., ridges and mounds) and lows (e.g.,
valleys and troughs), whereas values close to 0 represent flat or
constantly sloping seafloor areas (Weiss, 2001). As a rule, finer-
scale BPIs (smaller neighborhood sizes) are potentially capable of
picking up smaller bathymetric features of interest. In the current
study, the broad- and fine-scale BPIs were standardized
according to Weiss (2001). The slope variable indicates the
maximum rate of bathymetric change between a grid cell and
its neighbors. Slope is typically given in degrees (°), and possible
values range from 0 (flat areas) to 90 (vertical drops). Ruggedness
can be characterized as the degree of three-dimensional variation
within a grid cell neighborhood. It is calculated based on
dispersion of orthogonal grid cell vectors within the given
neighborhood, and possible values range from 0 (completely
homogeneous surface) to 1 (completely heterogeneous surface).
Finally, the variables eastness and northness both relate to the
aspect (direction) of a grid cell’s downslope. Possible values for
the two variables range from -1 to 1, where -1 denotes an entirely
westward (eastness) or southward (northness) downslope
direction and 1 denotes an entirely eastward (eastness) or
northward (northness) downslope direction. The settings used
to derive the geomorphometric variables in the BTM 3.0 ArcMap
plug-in are listed in Table 2.
TABLE 1 | UHI-4 specifications relevant for the 2017 cold-water coral (CWC) survey on the Tautra Ridge.

UHI-4 survey specifications RGB camera Hyperspectral push-broom scanner

Spectral properties 3 wavebands (RGB) 380-750 nm spectral range, 1.65-nm spectral resolution (224 bands)
Spatial resolution 648 x 486 pixels 960 x 1 pixels
Bit resolution 8-bit 12-bit
Field of view (FOV) 62.2° transversal, 48.7° longitudinal 54.1° transversal, 0.4° longitudinal
Frame rate 5 Hz 50 Hz
Exposure time 10 ms 20 ms
March 2022 | Volume 9 | Article 848888
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2.5 Estimation of CWC Reef Distribution in
SAS Imagery
CWC reef distribution in the full Tautra Ridge SAS mosaic from
2012 was estimated using a CNN classifier. In recent years,
CNNs have grown to become powerful deep learning tools for
classifying data that are structured in multiple arrays (e.g., two-
dimensional imagery; LeCun et al., 2015). A CNN consists of a
set of alternating convolution and pooling layers. During
training, each kernel-based convolution layer generates a set of
unique feature maps, which subsequently are downsampled in a
pooling layer to reduce computational time in the next round of
convolutions. Ultimately, all feature maps and their neural
couplings are assembled to one or more fully connected layers
capable of recognizing patterns based on the utilized training data.
When new data are provided to a pre-trained CNN classifier, the
output is typically a vector or matrix of probabilistic values
corresponding to the input data’s likelihood of belonging to
different classes.

The CNN classifier used in the current study was
implemented in TensorFlow Keras (Abadi et al., 2016).
Structurally, the CNN consisted of four blocks of convolution/
pooling, followed by two fully connected layers. The classifier
was trained on a selection of SAS image subsets (100 x 100 pixels)
from three different HUGIN AUV deployments. All training
data had a spatial pixel resolution of 4 cm x 4 cm, and the total
CNN training set consisted of >30,000 images distributed among
two classes: images with D. pertusum present and images with D.
pertusum absent. Of the full training set, 20% of the images were
set aside for model validation, and for the final classification
model, an accuracy of 95% was reported. For further details on
the development and training of the CNN, see Sture et al. (2018).

Applying the pre-trained CNN to the full Tautra Ridge SAS
mosaic yielded a CWC reef distribution map with a spatial
resolution of 80 cm x 80 cm, where each grid cell contained a
georeferenced probability (0-1) of coral presence. These
probabilities were subsequently labeled into three discrete
classes: the coral class (grid cells with a probability of coral
presence >0.99), the control class (grid cells with a probability of
coral presence <0.50) and the intermediate class (all remaining
grid cells). The thresholds used to define the classes were chosen
subjectively based on their perceived ability to accurately isolate
coral regions (the coral class) from non-coral regions (the
control class). The seafloor regions outlined by the coral class
and the control class later provided the basis for the assessment
Frontiers in Marine Science | www.frontiersin.org 6
of geomorphometric trends related to D. pertusum coverage on
the Tautra Ridge.

2.6 Estimation of Live CWC Reef Coverage
in Underwater Hyperspectral Imagery
To estimate live CWC reef coverage in the UHI survey area, the
underwater hyperspectral imagery was analyzed using support-
vector machine (SVM) classification with a radial basis function
(RBF) kernel. The SVM algorithm uses vector-defined decision
surfaces to maximize the margins between the provided training set
classes and is known to be well-suited for high-dimensional datasets
(Cortes and Vapnik, 1995; Mountrakis et al., 2011). It has also
performed favorably in previous seafloor mapping studies featuring
UHI (Chennu et al., 2017; Dumke et al., 2018; Mogstad et al., 2020).
During the optical CWC survey in March 2017, the live fraction of
the present CWC reef framework was observed to primarily consist
of whiteD. pertusum, orangeD. pertusum and the spongeMycale cf.
lingua (Bowerbank, 1866). The spectral signatures of these species
were consequently chosen as supervised classification targets.

For the SVM classification, the georeferenced UHI mosaic
was spectrally subset to the range of 400-650 nm and binned
down to a spectral resolution of 3.3 nm, resulting in a total of 75
color bands (wavelengths). This was done to remove wavelengths
with low signal-to-noise ratio and to make the ensuing spectral
classification computationally less intensive. SVM training data
were subsequently obtained from pixel regions of the UHI
mosaic corresponding to white D. pertusum, orange D.
pertusum and Mycale cf. lingua. The total training set consisted
of 2,400 pixels, evenly distributed among the three spectral
targets (the R(l) signatures of the different targets are shown
in Supplementary Figure S2). By performing a ten-fold cross-
validation on the selected training data in the statistical software
environment R (v. 4.0.2; R Foundation for Statistical Computing,
Vienna, Austria) using the package “e1071” (Meyer et al., 2020),
the optimal values for RBF-SVM parameters g (kernel width)
and C (degree of regularization) were in the current study found
to be 1e-05 and 1e06, respectively (cross-validation accuracy =
100%). Using these parameter values, the SVM classification
algorithm was ultimately applied to the full UHI mosaic in the
software application ENVI (Environment for Visualizing Images,
v. 5.6; Harris Geospatial Solutions Inc., Broomfield, USA). The
full classification was performed with a probability threshold of
0.95, implying that only pixels with probabilities of belonging to
a training set class beyond 0.95 were classified.
TABLE 2 | Settings used to estimate six geomorphometric variables in the Benthic Terrain Modeler (BTM) 3.0 ArcMap plug-in.

Geomorphometric variable Neighborhood (grid cells) Neighborhood (size)

BPI broad (standardized) 225-cell radius 450-m radius
BPI fine (standardized) 75-cell radius 150-m radius
Slope (°) [0, 90] 3 x 3 cell grid 36 m2

Ruggedness [0, 1] 3 x 3 cell grid 36 m2

Eastness [-1, 1] 3 x 3 cell grid 36 m2

Northness [-1, 1] 3 x 3 cell grid 36 m2
March 2022 | Volu
The variables were calculated based on multibeam echo sounding (MBES)-derived depth data from the most pronounced part of the Tautra Ridge. The gridded bathymetric dataset had a
spatial resolution of 2 m x 2 m.
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2.7 Geomorphometric Comparison of
Coral and Non-Coral Regions
For the geomorphometric comparison of coral and non-coral
regions, all MBES-derived seafloor variables (depth, BPI broad,
BPI fine, slope, ruggedness, eastness and northness) were
combined into a single 7-band raster. From the combined
raster, values from grid cells covered entirely by either the
coral class or the control class of the classified CNN coral
distribution map were subsequently extracted for analysis. The
extracted dataset consisted of 24,388 coral cells and 122,963
control cells (each cell corresponding to a 2 m x 2 m area). For
each MBES-derived variable, the median and interquartile range
was calculated for both classes, and a two-sided Mann-Whitney
rank sum test was performed to investigate whether coral regions
differed significantly from control regions.

2.8 Geomorphometric CWC Reef
Classification
To assess the feasibility of CWC reef identification by means
of geomorphometry alone, the dataset extracted in
Geomorphometric Comparison of Coral and Non-Coral Regions
was also used to generate a random forest (RF) prediction model.
An RF is an assemblage of decision trees created from randomly
selected subsets (bootstrapped samples) of the provided training
data (Breiman, 2001). For classification purposes, RF training
data are typically composed of one categorical response variable
(class) and a set of corresponding explanatory variables
(predictors). When an unclassified sample is provided to a pre-
trained RF prediction model, all decision trees individually vote
for the most likely class based on the values of the provided
predictors. These votes are subsequently pooled together, and the
final output from the RF algorithm is the class that obtained the
majority vote (the dichotomization may alternatively be decided
by a user-defined probability cutoff). In the current study, the
RF algorithm was chosen due to its ability to handle complex
interactions, correlated predictors and irregular variable
distributions (Cutler et al., 2007). In addition, the RF
algorithm has yielded promising results in previous attempts to
classify CWC reef structures in MBES-derived data (De Clippele
et al., 2017; Diesing and Thorsnes, 2018).

For the RF classification, the extracted data were randomly
partitioned into a training set (80% of the samples), a validation
set (10% of the samples) and a test set (10% of the samples). The
ratio of coral samples to control samples was equal in all
partitions (approximately 1:5). The RF prediction model was
developed in the statistical software environment R using the
package “randomForest” (Liaw and Wiener, 2002). RF modeling
requires specification of two parameters: the number of decision
trees to grow (ntree) and the number of features (predictor
variables) to consider during each split (mtry). These
parameters were optimized using ten-fold cross-validation,
which revealed that ntree = 1000 and mtry = 5 yielded the best
tradeoff between accuracy (out-of-bag error rate = 0.08) and
processing time. By subsequently maximizing the model’s overall
classification accuracy (OCA) based on the validation set, the
optimal probability cutoff for differentiating coral samples from
Frontiers in Marine Science | www.frontiersin.org 7
control samples was found to be 0.42 (i.e., samples receiving
>42% of the decision tree votes in favor of the coral class were
considered to be coral). The final RF prediction model was
applied to the test set, and the results were evaluated with
respect to the performance metrics listed in Table 3.

Ultimately, CWC reef distribution was estimated along the
Tautra Ridge by applying the RF prediction model to all regions
of the full 7-band MBES raster that contained variable values
inside the range of the RF training set (amounting to 4.55 km2 of
the full raster; regions with variable values exceeding the training
set were omitted because RF predictions are known to be
unreliable for samples outside the modeled range). For this
classification, the results were dichotomized at three different
probability cutoffs: maximized validation set OCA (probability
cutoff = 0.42), validation set negative predictive value (NPV) =
0.95 (probability cutoff = 0.39) and validation set positive
predictive value (PPV) = 0.95 (probability cutoff = 0.72). The
former cutoff was chosen to provide a CWC reef coverage
estimate with optimized accuracy. The latter two cutoffs were
chosen to provide realistic upper and lower boundaries to the
optimized estimate. The rationale behind choosing 0.39 as
the upper boundary, was that at NPV = 0.95, at least 95% of
the negative (control) predictions could be expected to be
correct. Similarly, the rationale behind choosing 0.72 as the
lower boundary, was that at PPV = 0.95, at least 95% of the
positive (coral) predictions could be expected to be correct.
3 RESULTS

3.1 MBES and SAS Results
Figure 3A shows the MBES-derived bathymetric map used to
acquire geomorphometric information from the Tautra Ridge.
The structure of the ridge was evident in the map, with the ridge
crest oriented perpendicularly to the fjord’s direction (see
Figures 1, 3A) and notable downward slopes towards the
southwest and northeast. Geographic heatmaps of the variables
BPI broad, BPI fine, slope, ruggedness, eastness and northness
are shown in Supplementary Figure S3.

The AUV-acquired SAS dataset covered ~1 km2 of the 6.23
km2 MBES-surveyed area (Figure 3B), and acoustic cauliflower
patterns assumed to correspond to reef structures were
interspersed throughout the SAS survey area (an example is
shown in Supplementary Figure S4). Based on the results of the
CNN prediction model (Figure 3C) and the classification
thresholds defined in Estimation of CWC Reef Distribution in
SAS Imagery, CWC reefs (the coral class) were estimated to cover
0.12 km2 of the SAS-surveyed area, whereas non-coral regions
(the control class) were estimated to cover 0.63 km2 (Figure 3D).
The intermediate class covered the remaining 0.25 km2.

3.2 UHI Results
Overall, the UHI results agreed well with the acoustic findings
from the SAS analysis. The georeferenced UHI mosaic covered
an area of 786.7 m2, and 661.5 m2 of this area corresponded to
regions acoustically identified as coral by the CNN classifier
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(Figure 4A). Based on the hyperspectral SVM classification
(Figure 4B), live reef structures (i.e., white D. pertusum,
orange D. pertusum and the sponge Mycale cf. lingua) were
estimated to cover 15.5% of the total UHI survey area and 17.3%
of the UHI survey area identified as coral acoustically (Table 4).
Within the surveyed area, white D. pertusum was estimated to be
considerably more abundant than both orange D. pertusum and
sponges (Table 4).

3.3 Geomorphometric Comparison of
Coral and Non-Coral Regions
Probability densities of the geomorphometric variable values
extracted from coral and control regions on the Tautra Ridge
are shown in Figure 5. For all MBES-derived variables, the
distribution differed significantly between the two classes
(Table 5). Furthermore, for all but one of the variables
(BPI broad being the exception), slightly elevated values were
associated with the coral class. For the exception – BPI broad –
the coral class displayed the highest median value, but the lowest
overall value distribution (Figure 5B). The magnitude of the
observed class difference varied between variables, and the most
significant class discrepancies were observed for depth, slope,
ruggedness and eastness (Table 5).

3.4 Geomorphometric CWC Reef
Classification
The test set performance of the RF prediction model is
summarized in the Table 6 confusion matrix. In total, the
model performed well, with an OCA of 0.92 and an area under
the receiver operating characteristic (AUROC) curve value of
0.95 (Figure 6A). Moreover, the obtained kappa coefficient of
0.71 indicated substantial agreement between predictions and
true sample identities (Landis and Koch, 1977). However, the
model was not without imperfections, and based on the observed
Frontiers in Marine Science | www.frontiersin.org 8
sensitivity, specificity, PPV and NPV (Table 6), the model
appeared to display a slight tendency towards underestimating
coral abundance.

In terms of individual predictor importance, the variable
slope contributed the most to the prediction model’s accuracy
(Figure 6B). In descending order, the variables depth, eastness,
BPI broad and ruggedness made intermediate contributions,
whereas northness and BPI fine contributed the least. The
significance of these findings is further discussed in
Geomorphometric CWC Coverage Trends.

Applying the RF prediction model to the 7-band MBES raster
with the probability cutoffs defined in Figure 7A yielded the
CWC reef coverage estimates displayed in Figure 7B and
Table 7. The returned estimates ranged from 0.19 km2 to 0.72
km2, with the optimized OCA estimate suggesting a Tautra Ridge
CWC reef coverage of 0.64 km2. Figure 8 shows a spatial
representation of the RF classification results. Predicted CWC
reef units were interspersed along the entire ridge, and within the
regions surveyed by SAS and UHI, estimated coral coverage
largely appeared to agree between the different remote sensing
techniques (Supplementary Figure S4).
4 DISCUSSION

4.1 Survey Techniques and Assumptions
The current study illustrated the value of applying multiple
remote sensing techniques during the investigation and
mapping of CWC reefs. At present, MBES systems (typically
deployed on surface vessels) arguably represent the most efficient
way of geospatially mapping ≥km-scale benthic habitats
dominated by large biogenic structures. In previous CWC
studies, MBES-derived data have for instance been used to
TABLE 3 | Descriptions of performance metrics used to evaluate the random forest (RF) prediction model.

Performance
metric

Description

Overall
classification
accuracy (OCA)

The proportion of correctly classified outcomes.

Sensitivity The proportion of correctly classified positive outcomes (coral samples).
Specificity The proportion of correctly classified negative outcomes (control samples).
Positive predictive
value (PPV)

The proportion of correct positive predictions (also known as precision).

Negative
predictive value
(NPV)

The proportion of correct negative predictions.

Kappa coefficient A measure of overall classification accuracy (OCA) adjusted for the accuracy that could be expected due to chance alone. A kappa of 1 indicates
100% classification accuracy, whereas a kappa of 0 indicates that the classifier performs no better than a random classifier. For further details, see
Landis and Koch (1977).

Area under the
receiver operating
characteristic
(AUROC) curve

The integrated area under the curve obtained by plotting true positive rate (sensitivity) as a function of false positive rate (1 – specificity). The higher
the AUROC curve value (with 1 being the maximum value), the better the classifier is at discriminating between positive and negative outcomes. An
AUROC curve value of 0.5 indicates that the classifier performs no better than a random classifier.

Mean decrease in
accuracy (MDA)

The individual contribution of a given variable to the accuracy of a random forest (RF) prediction model. The MDA is estimated by calculating the
mean decrease in prediction accuracy (among individual decision trees) that occurs when the values of the variable under investigation are
permuted (randomized). The result is typically scaled by its standard deviation. Higher MDA values indicate higher variable importance, but the units
are arbitrary, and the output should not be treated quantitatively.
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address issues ranging from localized distribution of CWC reefs
(Roberts et al., 2005; Guinan et al., 2009a; De Clippele et al., 2017;
Diesing and Thorsnes, 2018) to D. pertusum habitat suitability
along the entire Norwegian continental shelf (Sundahl et al.,
2020). MBES also proved valuable in the current assessment of
the Tautra Ridge, especially with respect to its superior capacity
for areal coverage. To fully capitalize on its potential, a sufficiently
extensive ground truth dataset was, however, a vital prerequisite.
As shown in this study, the ground truthing requirements
concerning MBES mapping of D. pertusum reefs could be
fulfilled by combining AUV-based SAS imaging with an ROV-
based UHI survey. These two ground truthing techniques
represented incremental steps towards increased level of detail
in the remote sensing pyramid of observation. In the first step,
distinct acoustic patterns assumed to belong to D. pertusum
permitted estimation of CWC reef coverage in a ~1-km2 subset
of the MBES-surveyed area. In the second step, the identity of the
Frontiers in Marine Science | www.frontiersin.org 9
acoustic patterns assumed to belong to D. pertusum was verified
optically in an ~800-m2 area. This optical verification increased
the confidence not only in the SAS classification accuracy, but
also the georeferencing of the SAS dataset, which eventually were
to guide the MBES-based CWC reef classification along the entire
Tautra Ridge. In summary, all remote sensing techniques
employed in the current study played complementary roles in
the quest for holistic knowledge: ROV-based optical imaging
provided data with unprecedented spatial resolution and ground
truthing accuracy but was limited in terms of areal coverage;
AUV-based sonar imaging could detect acoustically distinct
biogenic structures in large areas but provided little information
besides from the geographic extent of the targets of interest; ship-
based MBES was limited with respect to spatial resolution but
generated data that covered the entire area of interest and brought
geomorphometric context to the identified targets. The potential
value of using data from multiple sensors and platforms during
FIGURE 3 | Multibeam echo sounding (MBES) and synthetic aperture sonar (SAS) imaging results. Panel (A) shows the MBES-derived bathymetric map of the most
pronounced part of the Tautra Ridge (declassified bathymetry, map courtesy of the Norwegian Mapping Authority). The black square indicates the spatial extent of
panels (B-D). Panel (B) shows the Tautra Ridge SAS mosaic. Panel (C) shows the georeferenced probabilities of coral presence obtained from the convolutional
neural network (CNN). Panel (D) shows the classified coral distribution map generated based on the probabilities in panel (C) and the thresholds defined in
Estimation of CWC Reef Distribution in SAS Imagery. The black square indicates the position of the underwater hyperspectral imaging (UHI) mosaic presented in
Figure 4. The maps were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.
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marine exploration efforts is further elaborated in, e.g., the
integrated mapping and monitoring approach proposed by
Nilssen et al. (2015), and in the future, application of such
approaches will likely become increasingly more important.

The validity of the presented Tautra Ridge findings rests on two
principal assumptions. Firstly, it was assumed that the
Frontiers in Marine Science | www.frontiersin.org 10
georeferencing of the different remote sensing datasets was
consistent. As in any marine seafloor survey, minor geospatial
discrepancies were expected, but upon inspection, the alignment
of the MBES-, SAS- and UHI-acquired data was considered more
than sufficient for the scope of the work. Supplementary Figure
S4 exemplifies the observed positional coherence. Secondly, it was
FIGURE 4 | Underwater hyperspectral imaging (UHI) results. Panel (A) shows the georeferenced UHI mosaic visualized in red (R; 590 nm), green (G; 530 nm) and
blue (B; 460 nm). Regions in the synthetic aperture sonar (SAS) imagery classified as “coral” by the convolutional neural network (CNN) classifier (see Estimation of
CWC Reef Distribution in SAS Imagery) are highlighted in pink for comparison. Panel (B) shows the results of the hyperspectral support-vector machine (SVM)
classification of UHI classes corresponding to live reef structures. Panels (C, D) show the areas indicated by white squares in panels (A, B), respectively. The maps
were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.
TABLE 4 | Results of the support-vector machine (SVM) classification of the underwater hyperspectral imaging (UHI) dataset from the Tautra Ridge.

UHI data selection Total area White coral Orange coral Sponge Live reef

m2 % m2 % m2 % m2 % m2 %

Full UHI mosaic 786.68 100 111.19 14.13 8.21 1.04 2.49 0.32 121.89 15.49
Acoustically identified coral regions* 661.47 100 103.95 15.71 7.82 1.18 2.39 0.36 114.16 17.26
March 2022 | Volum
e 9 | Article 8
The table shows the estimated areal coverage (m2 and %) of different spectral targets. The class “live reef” corresponds to “white coral”, “orange coral” and “sponge” combined. The
second row of the table only considers UHI data from geographic regions acoustically classified as “coral” by the convolutional neural network (CNN) classifier (see Estimation of CWC Reef
Distribution in SAS Imagery and Figure 4A).
*The regions of the UHI dataset encompassed by the acoustic “coral” class in Figure 4A.
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assumed that D. pertusum reef extent on the Tautra Ridge was
unaltered between the acquisition of the first (December 2012)
and the last (March 2017) dataset utilized in the study. It should be
noted that this is an inherently erroneous assumption. However,
consideringD. pertusum’s slow growth rate (<1 cm year-1; Sabatier
et al., 2012), and that the Tautra Ridge is an MPA where physical
seafloor intervention is prohibited, it was nevertheless deemed
reasonable for the analyses presented herein.

4.2 Optical CWC Coverage Trends
ROV-based UHI proved to be a valuable ground truthing
technique for optical verification of acoustic CWC reef
predict ions. This is exemplified in Figure 4A and
Supplementary Figure S4, where the CWC reef contours
predicted by the acoustic CNN classifier closely match the
coral distribution that can be observed in the recorded
hyperspectral imagery. In addition to serving as a means of
verifying reef presence, the optical UHI survey provided useful
information on the survey area’s biological reef composition.
Hyperspectral SVM classification for instance indicated that live
D. pertusum and associated sponges covered ~17% of the regions
in the survey area acoustically classified as coral (Table 4).
Although this estimate only is based on spatially two-
dimensional image analyses from a bird’s-eye view, it is
exceptionally consistent with findings from a study by Vad
et al. (2017), in which the ratio of live D. pertusum to whole
colony size (i.e., both live and dead coral structures) ranged from
Frontiers in Marine Science | www.frontiersin.org 11
0.10 to 0.27, with a mean value of 0.17. The study by Vad et al.
was carried out off the west coast of Scotland at relatively remote
locations. If these locations are assumed to represent healthy
CWC habitats and the estimated proportion of live coral (~17%)
is used as a proxy for health, it can further be speculated that the
Tautra Ridge CWC reef optically surveyed in the current study
was in good condition. Regarding D. pertusum phenotype
distribution, hyperspectral SVM classification revealed that the
white D. pertusum phenotype was an order of magnitude more
abundant than the orange phenotype within the UHI survey area
(Figure 4B and Table 4). This trend is in accordance with
observations from several other D. pertusum studies (Roberts,
2002; Larcom et al., 2014; Kellogg et al., 2017; Büscher et al.,
2019), but its underlying cause remains to be determined.
Overall, the UHI results showed that live D. pertusum easily
could be mapped based on its spectral properties. One of the
main benefits of applying UHI for the purpose of optical coral
mapping was that live coral coverage accurately could be
estimated using supervised classification (Figures 4C, D).
Notably, the hyperspectral SVM classification only utilized a
training set of 2,400 labeled pixels, which merely corresponded to
0.03% of the total UHI mosaic. This vastly increased data
processing efficiency and firmly illustrated the value of
employing automated approaches to optical seafloor mapping.
In the future, we recommend conducting similar optical surveys
at other CWC reefs on the Tautra Ridge. This will help
substantiate the trends observed in the current study and
A B D
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FIGURE 5 | Geomorphometric comparison of coral (n = 24,388 grid cells) and non-coral (control; n = 122,963 grid cells) regions on the Tautra Ridge. The data were
obtained from areas classified as “coral” and “control” by the convolutional neural network (CNN) classifier (see Estimation of CWC Reef Distribution in SAS Imagery). The
figure shows the class-specific median, interquartile range and probability density of seven multibeam echo sounding (MBES)-derived seafloor variables.
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improve our understanding of the Tautra CWC reef complex as
a whole.

4.3 Geomorphometric CWC
Coverage Trends
The comparison of coral and non-coral regions on the Tautra
Ridge revealed that D. pertusum appeared to have certain
preferences with respect to local geomorphometric seafloor
variables. In the Mann-Whitney rank sum tests performed to
compare coral-covered regions to their surroundings, the value
distributions of all investigated variables were for instance found
to significantly differ between the two seafloor classes (Table 5).
However, some variables displayed more pronounced trends
than others, and in terms of the observed probability densities,
the variables slope and eastness stood out the most (Figures 5D,
F). Specifically, the coral class was associated with steeper slopes
(median = 12.41°; median sample difference = 2.72°) and more
eastward-oriented terrain (median = 0.63; median sample
difference = 0.24) than the control class. The former
observation agrees well with findings from previous CWC
studies from the Northeast Atlantic, which also suggest that D.
pertusum prefers sloping terrain (Davies et al., 2008; Guinan
et al., 2009b; Howell et al., 2011). The main reason for this
preference is thought to be that slope-induced hydrodynamic
phenomena (e.g., localized current patterns) may enhance the
availability of suspended food particles (Frederiksen et al., 1992;
Thiem et al., 2006; Davies et al., 2009). The interpretation of the
latter observation is less clear-cut, as any preference with respect
to aspect direction (in this case eastness) likely is linked to the
directional dynamics of the surrounding currents. Being sessile
suspension feeders, CWCs are often found to be associated with
enhanced bottom currents (White and Dorschel, 2010).
Frontiers in Marine Science | www.frontiersin.org 12
However, laboratory-based studies by Purser et al. (2010) and
Orejas et al. (2016) suggest that excessive current velocities may
impede D. pertusum’s food uptake. These findings are supported
by a recent in situ study by Lim et al. (2020), in which current
velocities ≥75 cm s-1 were found to restrict live D. pertusum
coverage. Furthermore, at the Piddington Mound – a coral
mound in the Porcupine Seabight exposed to current velocities
of ~40 cm s-1 – live CWC reef framework was primarily found on
the lee side of the mound (Lim et al., 2017). Interestingly, the
interval of 40-75 cm s-1 coincides almost perfectly with the
maximum bottom current speeds measured across the Tautra
Ridge over the course of June 1974 (Jacobson, 1983). Since it also
is known that the prevailing direction of these currents is
eastward (Jacobson, 1983), a possible explanation for D.
pertusum’s apparent inclination towards eastness on the Tautra
Ridge (i.e., the lee side of the ridge) is therefore that it reduces
current exposure to a level that facilitates the corals’ food uptake.
To further investigate this hypothesis, we recommend deploying
acoustic Doppler current profilers (ADCPs) at multiple locations
on the Tautra Ridge over time, so that the spatiotemporal
complexities of the in situ current patterns can be elucidated.
In addition, routine surveys with ADCP-equipped AUVs along
the ridge should be carried out, so that site-specific current
measurements can be put into a broader spatial perspective.

Although less pronounced, some noteworthy coral coverage
trends were also observed for the variables depth, BPI broad and
ruggedness. Overall, the coral class was for instance found to be
associated with slightly deeper waters and slightly lower BPI
broad scores (Figures 5A, B and Table 5) than the control class.
This initially seemed counterintuitive, as D. pertusum commonly
is known to occur on bathymetric highs (Davies et al., 2008).
However, these observations are, in fact, in accordance with the
TABLE 5 | Geomorphometric comparison of coral and non-coral (control) regions on the Tautra Ridge.

Seafloor variable Coral(n = 24,388 grid cells) Control(n = 122,963 grid cells) Mann-Whitney rank sum test (p-value) Median sample difference

Q1 Median Q3 Q1 Median Q3

Depth (m) 73.10 83.00 97.68 70.70 83.35 92.58 <2.2e-16 2.76
BPI broad -32.00 33.00 94.00 -27.00 14.00 99.00 2.7e-05 -4.00
BPI fine -59.00 -9.00 74.00 -59.00 -9.00 40.00 2.1e-04 2.4e-06
Slope (°) 7.71 12.41 17.87 4.84 8.99 15.37 <2.2e-16 2.72
Ruggedness 7.7e-04 1.6e-03 3.4e-03 4.3e-04 1.0e-03 2.3e-03 <2.2e-16 4.5e-04
Eastness -0.08 0.63 0.91 -0.45 0.19 0.71 <2.2e-16 0.24
Northness -0.43 0.29 0.80 -0.66 0.35 0.86 1.3e-04 9.2e-03
March 2022
The data were obtained from areas classified as “coral” and “control” by the convolutional neural network (CNN) classifier (see Estimation of CWC Reef Distribution in SAS Imagery). The
class-specific median and interquartile range is shown for seven multibeam echo sounding (MBES)-derived seafloor variables. The latter two columns show the results of variable-specific,
two-sided Mann-Whitney rank sum tests comparing the two classes. The median sample difference is reported relative to the control class.
TABLE 6 | Confusion matrix displaying the test set performance of the random forest (RF) prediction model.

Predicted class True class
Coral (positive) Control (negative) Total

Coral (positive) 1,777 484 2,261
Control (negative) 661 11,812 12,473
Total 2,438 12,296 14,734
| Volume 9 | Article
Accuracy metrics are summarized below the table. The probability cutoff utilized for differentiating coral samples from control samples was 0.42 (see Geomorphometric CWC Reef
Classification).
Overall classification accuracy (OCA): 0.92; sensitivity: 0.73; specificity: 0.96; positive predictive value (PPV): 0.79; negative predictive value (NPV): 0.95; kappa coefficient: 0.71.
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hypothesis stated in the previous paragraph: assuming the
currents across the Tautra Ridge are strong enough to
potentially impede D. pertusum’s food uptake or inflict
unnecessary physical strain, it would be suboptimal for the
corals to settle on the summit of the ridge. This could partially
explain the observed patterns. It should be noted that the values
of both depth and BPI broad displayed highly irregular
probability densities, and their interpretation should
consequently be treated with caution. Regarding ruggedness,
the coral class was associated with significantly higher values
than the control class (Table 5). This agrees with coarse-scale
Frontiers in Marine Science | www.frontiersin.org 13
studies by Guinan et al. (2009b) and Davies et al. (2008), where
D. pertusum also was found to be associated with irregular
bathymetry. More importantly, it agrees with acoustic findings
from a fine-scale CWC study by De Clippele et al. (2017), which
was performed at a spatial resolution of 2 m. The reason for this
tendency could be that bathymetric complexity is linked to
increased access to suspended nutrition, reduced levels of
sedimentation and/or a wider variability of substrate types
(possibly favoring larval settling). However, at the high spatial
resolution utilized in the current study (Table 2), the enhanced
ruggedness could also be attributed to the three-dimensionality
A B

FIGURE 6 | Results of the random forest (RF) coral classification. Panel (A) shows the prediction model’s area under the receiver operating characteristic (AUROC)
curve for the test set. The dashed diagonal line symbolizes a hypothetical AUROC curve value of 0.5 (no ability to discriminate between coral and control samples).
Panel (B) shows the RF prediction model’s mean decrease in accuracy (MDA; scaled by standard deviation) among decision trees when individual variables are
randomized. Higher MDA values indicate higher variable contributions to the model’s performance.
A B

FIGURE 7 | Cold-water coral (CWC) reef coverage along the Tautra Ridge estimated by the random forest (RF) prediction model at different probability cutoffs. Panel
(A) shows the RF prediction model’s validation set negative predictive value (NPV), overall classification accuracy (OCA) and positive predictive value (PPV) plotted as
functions of probability cutoff. The black, gray and red vertical lines respectively correspond to probability cutoffs where NPV = 0.95, OCA is maximized (0.92) and
PPV = 0.95. Panel (B) shows estimated CWC reef coverage along the Tautra Ridge plotted as a function of RF probability cutoff. The vertical lines correspond to the
three cutoffs defined in panel (A).
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of the D. pertusum reef structures themselves. For instance, Price
et al. (2019) and Price et al. (2021) recently utilized 3D models
with sub-cm resolution to show that the structural complexity of
CWC reefs often is considerably greater than that of surrounding
non-reef regions. The least significant geomorphometric trends
were observed for BPI fine and northness (Figures 5C, G and
Table 5). For these variables, the coral class and the control class
displayed highly similar median values and probability densities.
This suggests that neither conveyed indispensable information
with respect to CWC reef distribution in the current study.

4.4 Performance of the Geomorphometric
CWC Reef Prediction Model
The RF model created to predict CWC reef coverage along the
Tautra Ridge performed very well on the test set. As an example,
all obtained accuracy metrics (Figure 6A and Table 6) were
comparable to or exceeded those reported in similar studies by
De Clippele et al. (2017) and Diesing and Thorsnes (2018). The
RF probability cutoff that yielded the highest OCA resulted in a
sensitivity of 0.73, a specificity of 0.96, a PPV of 0.79 and an NPV
of 0.95. These results – specifically that sensitivity < PPV and
specificity > NPV – indicate that the model was inclined to
Frontiers in Marine Science | www.frontiersin.org 14
predict false negatives (type II errors) rather than false positives
(type I errors). This may be interpreted as the model being
conservative rather than exaggerated. The five predictors that
contributed the most to the accuracy of the model were the
variables slope, depth, eastness, BPI broad and ruggedness
(Figure 6B). This was not surprising, considering that these
were also the variables where the greatest differences between
coral and non-coral regions had been observed previously
(Figure 5 and Table 5). As the RF model applied in the
current study only was based on seven geomorphometric
variables derived from the same MBES dataset, its favorable
performance can likely be attributed to the quality and size of the
utilized training set. This emphasizes the importance of high-
quality ground truthing, and attests to the value of applying
multiple sensors and platforms in future studies of CWC reefs.
Because the Tautra Ridge represents an unusual CWC habitat, it
is unlikely that the utilized model can be directly applied to other
locations. However, as the model was built and implemented in
open-source software, the methodology can easily be adapted for
other situations, provided that similar remote sensing data are
available. An interesting future project would be to apply
equivalent acoustic prediction models to CWC habitats where
TABLE 7 | Tautra Ridge cold-water coral (CWC) reef coverage estimated by the random forest (RF) prediction model at three different probability cutoffs.

RF probability
cutoff

Rationale behind chosen cutoff Estimated CWC reef cov-
erage (m2)

Estimated proportion of CWC reefs in raster regions within the
modeled RF range (%)

0.39 Validation set negative predictive value (NPV) =
0.95

719,288 15.82

0.42* Maximized validation set overall classification
accuracy (OCA; 0.92)

642,932 14.14

0.72 Validation set positive predictive value (PPV) =
0.95

190,248 4.18
*Cutoff used to evaluate test set performance (Table 6).
A B

FIGURE 8 | Estimated cold-water coral (CWC) reef distribution along the Tautra Ridge. Panel (A) shows floating point probabilities of coral presence estimated
by the random forest (RF) prediction model. Panel (B) shows CWC reef distribution estimated at different probability cutoffs (see Geomorphometric CWC Reef
Classification and Figure 7). The maps were generated in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N.
Datum: WGS 1984.
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D. pertusum is known to form other reef frameworks than the
dense cauliflower patterns present on the Tautra Ridge.
Examples of such frameworks include fan-like growth patterns
found in the Mediterranean Sea and columnar growth patterns
found in the Gulf of Mexico and the Florida Straits (Sanna and
Freiwald, 2021).

Although the RF prediction model performed favorably,
inclusion of certain additional predictors could likely have
enhanced its performance. Howell et al. (2011) for instance
found substrate type to be highly important for predictive
modeling of D. pertusum at coarser scales in the Northeast
Atlantic. Similarly, Georgian et al. (2014) found that the
availability of hard substrate was an important D. pertusum
predictor in the Gulf of Mexico. In the current study, it is possible
that acoustic backscatter intensity from MBES could have
improved the coral prediction model by serving as a proxy for
substrate type or capturing characteristic acoustic properties
associated with coral presence (Fosså et al., 2005; Roberts et al.,
2005). In addition to substrate, bottom current speed and
direction have also proven to be useful variables in previous
attempts to model CWC distribution (Davies et al., 2008; De
Clippele et al., 2017; Sundahl et al., 2020). Unfortunately,
sufficiently detailed data on the aforementioned variables were
to our knowledge not available during the writing of this study.
To increase the accuracy of future prediction models, it is
therefore recommended that maps of substrate distribution,
MBES backscatter intensity and current patterns on the Tautra
Ridge are acquired.
5 CONCLUSIONS

The motivation behind the current study was to provide
enhanced insight into the Tautra CWC reef complex, and
based on the presented work, we believe the following can be
presumed. Firstly, optical UHI analyses suggest that CWC reefs
on the Tautra Ridge are dominated by the white D. pertusum
phenotype. However, optical data were only acquired from a
limited area, and further information is thus needed to support
this claim. The underlying reason for the skewed phenotype
distribution is also a topic that warrants further investigation.
Secondly, acoustic analyses indicate that D. pertusum reef
distribution on the Tautra Ridge is partially determined by
bathymetric features. Specifically, relatively steep, eastward-
sloping areas that are situated off the summit of the ridge
appear to facilitate coral growth. The ultimate cause of this is
likely linked to the patterns of the prevailing bottom currents,
and further data on the surrounding hydrodynamic conditions
can likely help elucidate the observed trends. Lastly, predictive
modeling based on seafloor geomorphometry suggests that the
following three conclusions can be drawn regarding D. pertusum
reef extent on the Tautra Ridge: (1) D. pertusum reefs cover at
least 0.19 km2 of the Tautra Ridge; (2) it is likely thatD. pertusum
reef extent on the Tautra Ridge is close to 0.64 km2; and (3) it is
unlikely that D. pertusum reef extent on the Tautra Ridge
currently exceeds 0.72 km2.
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To our knowledge, this is the first attempt to characterize
distribution and areal coverage of D. pertusum reefs on the
Tautra Ridge extensively. Consequently, there are few data
available to verify CWC reef predictions beyond the areas
surveyed by SAS and UHI in the current study. Nevertheless,
we believe the modeled estimates presented herein represent a
valuable knowledge basis that decision-making authorities may
refer to in efforts to govern the Tautra Ridge MPA sustainably.
Furthermore, the results of this study may serve as a foundation
for future research carried out in the area. Although D. pertusum
is thought to be a relatively tolerant CWC species, its slow
growth rate and high importance as an ecosystem engineer
makes it a primary conservation target. In an era of climate
change and increasing anthropogenic pressure, mapping and
monitoring of such targets can arguably be considered more
important than ever. In the future, it is therefore recommended
that systematic ground truthing surveys are conducted along the
entire Tautra Ridge so that the coral estimates presented in this
study can be further refined. This will provide baseline
information that should be considered essential not only for
satisfactory MPA management, but also the continued existence
of some of the world’s least conventional CWC reefs.
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Supplementary Figure 1 | The georeferenced underwater hyperspectral imaging
(UHI) mosaic from the Tautra Ridge visualized in red (R; 590 nm), green (G; 530 nm) and
blue (B; 460 nm). The map was created in ArcMap (v. 10.8; Esri Inc., Redlands, USA;
https://desktop.arcgis.com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.

Supplementary Figure 2 | The training data used for support-vector machine
(SVM) classification of underwater hyperspectral imagery from the Tautra Ridge.
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Panels (A-C) show the spectral reflectance (R(l)) signatures of white Desmophyllum
pertusum, orange D. pertusum and the sponge Mycale cf. lingua, respectively (n =
800 hyperspectral image pixels per class). Mean R(l) signatures are shown in black.
Panel (D) shows all mean R(l) signatures plotted together for comparison.

Supplementary Figure 3 | Maps of six multibeam echo sounding (MBES)-
derived geomorphometric variables covering the majority of the Tautra Ridge (maps
based on declassified bathymetry, courtesy of the Norwegian Mapping Authority).
BPI, bathymetric position index. The maps were created in ArcMap (v. 10.8; Esri
Inc., Redlands, USA; https://desktop.arcgis.com/en/arcmap/). Projection: UTM
32N. Datum: WGS 1984.

Supplementary Figure 4 | Comparison of different mapping techniques. Panels
(A, B) show results of the synthetic aperture sonar (SAS) survey. Panels (C, D) show
results of the underwater hyperspectral imaging (UHI) survey. Panels (E, F) show
results of the multibeam echo sounding (MBES)-based random forest (RF)
prediction model. All panels correspond to the same geographic area. The maps
were created in ArcMap (v. 10.8; Esri Inc., Redlands, USA; https://desktop.arcgis.
com/en/arcmap/). Projection: UTM 32N. Datum: WGS 1984.
REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“TensorFlow: A System for Large-Scale Machine Learning,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16)
(USA).

Blondel, P. (2009). The Handbook of Sidescan Sonar (Berlin: Springer).
Breiman, L. (2001). Random Forests. Mach. Learn. 45, 5–32. doi: 10.1023/

A:1010933404324
Brooke, S., and Järnegren, J. (2013). Reproductive Periodicity of the Scleractinian

Coral Lophelia pertusa From the Trondheim Fjord, Norway. Mar. Biol. 160,
139–153. doi: 10.1007/s00227-012-2071-x

Büscher, J. V., Wisshak, M., Form, A. U., Titschack, J., Nachtigall, K., and
Riebesell, U. (2019). In Situ Growth and Bioerosion Rates of Lophelia
pertusa in a Norwegian Fjord and Open Shelf Cold-Water Coral Habitat.
PeerJ 7, e7586. doi: 10.7717/peerj.7586

Chennu, A., Färber, P., De’ath, G., de Beer, D., and Fabricius, K. E. (2017). A
Diver-Operated Hyperspectral Imaging and Topographic Surveying System for
Automated Mapping of Benthic Habitats. Sci. Rep. 7, 7122. doi: 10.1038/
s41598-017-07337-y

Cortes, C., and Vapnik, V. (1995). Support-Vector Networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Costello, M. J., McCrea, M., Freiwald, A., Lundälv, T., Jonsson, L., Bett, B. J., et al.
(2005). “Role of Cold-Water Lophelia pertusa Coral Reefs as Fish Habitat in
the NE Atlantic,” in Cold-Water Corals and Ecosystems. Eds. A. Freiwald and J.
M. Roberts (Berlin: Springer), 771–805.

Cutler, D. R., Edwards, T. C.Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J.,
et al. (2007). Random Forests for Classification in Ecology. Ecology 88, 2783–
2792. doi: 10.1890/07-0539.1

Davies, A. J., Duineveld, G. C., Lavaleye, M. S., Bergman, M. J., van Haren, H., and
Roberts, J. M. (2009). Downwelling and Deep-Water Bottom Currents as Food
Supply Mechanisms to the Cold-Water Coral Lophelia pertusa (Scleractinia) at
the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629. doi: 10.4319/
lo.2009.54.2.0620

Davies, J. S., Guillaumont, B., Tempera, F., Vertino, A., Beuck, L., Ólafsdóttir, S.
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