Forensic Science International: Digital Investigation 37 (2021) 301191

journal homepage: www.elsevier.com/locate/fsidi

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

Digital

g
Investigation

DFRWS 2021 USA - Proceedings of the Twenty First Annual DFRWS USA

Chip chop — smashing the mobile phone secure chip for fun and

digital forensics

Check for
updates

Gunnar Alendal * ", Stefan Axelsson *°, Geir Olav Dyrkolbotn °

2 Norwegian University of Science and Technology (NTNU), Norway
b DSy, Stockholm University, Sweden

ARTICLE INFO ABSTRACT

Article history: Performing mobile phone acquisition today requires breaking—often hardware assisted—security. In
recent years, Embedded Secure Element (eSE) hardware has been introduced in mobile phones, with a
view towards increasing the security of critical system features and encrypted user data. The idea being
that the eSE should remain secure even if the rest of the system is compromised. The eSE is set to become
crucial to modern mobile phone security, challenging Digital Forensics. The eSE is designed to withstand
both logical and physical attacks, including side channel attacks, and to keep the attack surface towards
the rest of the system/phone small, and complexity low to minimise the risk of implementation errors.

In this paper we adapt current state-of-the-art attacks to the eSE platform and present an attack on an
eSE by Samsung, recently introduced in their premium mobile phones. We show how, with limited
resources, our approach discovered a vulnerability that could be exploited, leading to a complete
compromise of all the eSE security goals and a full loss of future eSE trust, as mitigation of our attack in
already fielded devices is challenging. This eSE is Common Criteria EAL 5+ certified and our attack ex-
poses the gap between intended and achieved security, undermining the implied trust in such

Keywords:

CC EAL

Mobile security

Digital forensic acquisition
Secure element security
S3K250AF

certifications.

We explain the eSE security design, the details of our attack, and discuss how a single vulnerability can
have such devastating security results. The ultimate result of our research facilitates acquisition of
affected devices, demonstrating use of offensive methods in advanced Digital Forensic Acquisition.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The increased mandatory security and encryption of mobile
phones is challenging digital forensics. This hindrance is discussed
in the general media (Venturebeat, 2016; Focus, 2016) as well as
research circles (Lillis et al., 2016). Security and encryption seem to
be the major challenges in the years to come. Trusted computing
(TC) in form of a stand-alone eSE HW, in addition to the existing
TrustZone (ARM, 2009), is adding an extra layer of security that
needs to be broken. All these security features motivate digital
forensic acquisition (DFA) to turn to offensive techniques, like se-
curity vulnerability research and exploitation (Alendal et al., 2018).

Trusted computing is the concept where a system is expected to
behave as intended, withstanding outside influence, and enforced
by trusted, stand-alone hardware and software. The concept is not

* Corresponding author.
E-mail address: gunnaale@stud.ntnu.no (G. Alendal).

https://doi.org/10.1016/.fsidi.2021.301191

without controversy and has caused discussion of its benefits, and
risks (Fournaris and Keramidas, 2014; Anderson, 2003). However,
the idea is still implemented by many vendors, and to support
trusted computing, several hardware (HW) solutions exist today.
Intel Software Guard Extensions (SGX) (Intel, 2020), Trusted Plat-
form Modules (TPM) (Group, 2020), Trusted Execution Environ-
ment (TEE) (Sabt et al., 2015), Hardware Security Modules (HSM)
(Mavrovouniotis and Ganley, 2014) and Secure Element (SE)
(Vauclair, 2011) are all examples of technology providing physical /
HW assisted separation inside a system to provide trusted, tamper-
proof and secure environments for system critical security ele-
ments. One common design principle is the need for a separate root
of trust, to prevent security breaches even if the overall system is
compromised (Pfleeger, 2009). This isolated system-within-the-
system is to be made secure by keeping complexity low, and
implementation quality high. One advantage of lower complexity is
that the probability of software bugs and side-channel attacks is
reduced as a consequence of the smaller code size (Hatton, 1997;
Ozment and Schechter, 2006). Increased quality can be achieved by

2666-2817/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gunnaale@stud.ntnu.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2021.301191&domain=pdf
www.sciencedirect.com/science/journal/26662817
www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2021.301191
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.fsidi.2021.301191

G. Alendal, S. Axelsson and G.O. Dyrkolbotn

improving development methodology, e.g. by working according to
certain standards, such as those meeting Common Criteria Evalu-
ation Assurance Level (CC EAL) certification requirements (Criteria,
2020). The intention being that a higher CC EAL level increases the
reliability of the security features implemented.

In general terms, the eSE concept consists of specialised HW
providing certain system critical security features to the host system
without depending on that host system for any execution of code nor
storage of data. This “black-box” principle means the eSE has full
control of its own processor, RAM and storage. This setup is meant to
prevent a compromised host system from reading the eSE embedded
code and data, and to make it more difficult to perform side-channel
attacks, like observing or influencing execution of eSE sensitive code.

An advantage of this physical separation is that development
and production of eSE HW can be outsourced to specialised vendors
with a secure production environment. The host system vendor
need only to follow the documented eSE interface to incorporate it
in end products. However, one major drawback is that this
approach risks the introduction of a single point of failure. A failure
in the eSE can have devastating effects on the operation of all
systems using the eSE as a basis for their security. Another draw-
back is that the host system vendor needs some form of trust in the
eSE HW, to certify that the eSE security features are securely
implemented and working as intended. This is one of the intentions
of performing a CC EAL certification.

A concept corresponding to eSE was presented in the Android
Operating System (OS) version 9. Mayrhofer et al. (2019) explain
Google's views on the “The Android Platform Security Model”, dis-
cussing a. o. the different threat model for mobile devices. They
discuss the use of a strongbox that “... implements the Android
keystore in separate tamper resistant hardware (TRH) for even better
isolation. This mitigates [T1] and [T2] against strong adversaries ...”
(Mayrhofer et al., 2019, p. 8). Their definition of threats [T1] is
“Powered-off devices under complete physical control of an adver-
sary (with potentially high sophistication up to nation state level
attackers), e.g. border control or customs checks” and [T2] is “Screen
locked devices under complete physical control of an adversary, e.g.
thieves trying to exfiltrate data for additional identity theft.”
(Mayrhofer et al., 2019, p. 3). T1 and T2 clearly identifies the most
advanced and resourceful adversaries. We will use the term eSE in
place of Google's term TRH for consistency throughout this paper.

In this paper we present a remote attack on a state-of-the-art
eSE HW utilised by the major Android mobile phone vendor Sam-
sung. The attack is remote as we attack the logical interface, as
opposed to local attacks in need of physical access. Our attack by-
passes the security of the eSE, protecting sensitive encryption key
material, and facilitates digital forensic acquisition (DFA) of user
data. This attack will work on powered off devices, known as the
before-first-unlock (BFU) state, with no knowledge of user creden-
tials. We show that although placing all trust in a single, well
protected, entity may be tempting, it also means the introduction of
a single point of failure, and if done wrong the whole trusted
computing design falls, leaving the system totally exposed. This eSE
is present in Samsung's high-end mobile phone models and rep-
resents the state of the art in modern Android security. The eSE HW
is CC EAL 5+ certified, and is thus expected to provide a very high
level of security. Samsung uses CC EAL certifications to promote the
security of their eSE (Samsung, 2020d) and also to justify the high
security level of the Samsung Galaxy S20 mobile, needed in mobile
elD solutions for use in Germany (Samsung, 2020b; fiir Wirtschaft
und Energie, 2020). CC EAL certifications have been proven prob-
lematic by other authors as well (Nemec et al., 2017; Moghimi et al.,
2020), and our attack shows that such certifications are no guar-
antee the proper security level has been achieved. Our attack
demonstrates the failure of all CC EAL 5+ goals for the eSE HW.

Forensic Science International: Digital Investigation 37 (2021) 301191

Further, our analysis shows that patching isolated eSE HW is
challenging, making it hard to regain the expected CC EAL 5+ se-
curity level in already shipped mobiles.

Our contribution can be summarised as:

e The adaptation and improvement of state-of-the-art black-box

attack techniques applied to the eSE HW platform. The stand-

alone eSE significantly changes the attack path compared to

conventional TEEs, like ARM TrustZone implementations.

The discovery of previously unknown, remotely exploitable, se-

curity vulnerabilities that fully breaks the confidentiality and

integrity of the CC EAL 5+ certified eSE HW.

e A demonstration of the gap between the intended and achieved

security, and how certifications, like Common Criteria EAL, fails

to deliver the needed trust in implemented solutions.

A presentation of the full attack development and exploitation

of the eSE, with example attacker use.

Analysis of the effect of a vulnerability exploit in the eSE HW and

the lack of eSE countermeasures.

¢ A demonstration of digital forensic goals: off-device brute force
of user screen lock credential, necessary for digital forensic
acquisition of encrypted user data.

The rest of this paper is organised as follows. In Section “Back-
ground” we introduce needed background and the targeted eSE.
Related work is discussed in Section “Related Work” and Section
“The Attack” contains the attack steps performed and the technical
details on the vulnerability and its exploitation. In Section “Attack
Implications” we present example implications of the attack.
Finally we will present our discussion and conclusions in Sections
“Discussion” and “Conclusion and Future Work”.

Background

In this section we introduce some needed background material.
First an introduction to the specific eSE HW targeted by our attack
and its CC EAL 5+ certification. The eSE threat model is then dis-
cussed to clarify our attack approach, communicating with the
logical interface using a protocol based on the “Application Protocol
Data Unit” (APDU). Refer to “APDU primer” in Appendix for a brief
APDU introduction.

Embedded Secure Element

The eSE HW under investigation is the Samsung S3K250AF
embedded Secure Element (Samsung, 2020d). This eSE was intro-
duced in February 2020 by Samsung, with the release of the Sam-
sung Galaxy S20 product line. Our test devices were the Samsung
Galaxy S20 Ultra 5G (SM-G988B), the Samsung Galaxy S20 (SM-
G980F) and the Samsung Galaxy Note 20 Ultra 5G (SM-N986B). All
these models use the Exynos SoC. The upcoming Galaxy S21 models
with the Exynos SoC are also believed to include the S3K250AF, but
this has not been confirmed at the time of writing, and was not part
of our research.

We will mostly refer to the “S3K250AF eSE” simply as the “eSE”
throughout the rest of the paper.

The S3K250AF eSE is a single chip solution, soldered to the
printed circuit board (PCB) of the mobile. It has a small form factor,
pictured in the Samsung promotion material (Samsung, 2020d).
The eSE processor is an ARM SecurCore SC000 (Limited, 2020b),
according to the NIST Cryptographic Algorithm Validation Program
(CAVP) for the S3K250AF (NIST, 2020). The architecture is ARM BE8
mode (Limited, 2020a). This architecture uses little-endian for code
and big-endian for data and pointers. The S3K250AF contains 252
kilobytes (kB) on-board flash storage, according to the CC EAL

G. Alendal, S. Axelsson and G.0. Dyrkolbotn

documents (Samsung, 2020a). Samsung promotes an eSE standard
development kit (SDK) (Samsung, 2020c), but we have not evalu-
ated this SDK as this entails us signing a non-disclosure agreement.

CC EAL

The S3K250A holds a CC EAL 5+ certification
(commoncriteriaportal.org, 2020) from Agence Nationale de Ia
Sécurité des Systemes d’'Information (ANSSI) (de la Sécurité des
Systemes d’Information, ANSSI). The certification is accompanied by
two documents. The security target (ST) document (Samsung, 2020a)
by Samsung describes the S3K250A and its security requirements,
and the second document (AG et al., 2014) by third parties describes
the intended protection profile, which is generic and not specific to
the S3K250A.

The main security goals for the eSE (SG1-SG3) ((Samsung,
2020a, p. 46)) are to maintain integrity of user data (SG1), to
maintain confidentiality of user data (SG2), and to maintain correct
operation of the services provided by the eSE (SG3). So an attacker
should not be able to change any stored eSE data, read any stored
eSE data (without authorisation), and not influence the operation of
any of the eSE features offered.

The CC EAL 5+ certification is an aid to achieving these goals, and
it states “Certification does not in itself constitute a recommendation
of the product by the National Information Systems Security Agency
(ANSSI), and does not guarantee that the certified product is
completely free from exploitable vulnerabilities.“! (de la Sécurité des
Systemes d’Information, ANSSI, p. 2). As such a guarantee is impos-
sible to give, some effort has been done to lower the probability of
the existence of such vulnerabilities. One such effort is the Common
Criteria Advanced methodical vulnerability analysis (AVA_VAN)
(Criteria, 2017). This vulnerability assessment aims to determine
potential vulnerabilities. AVA_VAN is divided into levels ranging
from 1 to 5 with “increasing rigour of vulnerability analysis by the
evaluator and increased levels of attack potential required by an
attacker to identify and exploit the potential vulnerabilities”
(Criteria, 2017, p. 184). Level 5: “AVA_VAN.5 Advanced methodical
vulnerability analysis”, is the highest level. This level specifies that “A
methodical vulnerability analysis is performed by the evaluator to
ascertain the presence of potential vulnerabilities.” (Criteria, 2017, p.
188). AVA_VAN.5 is part of the S3K250A CC EAL 5+ certification (de
la Sécurité des Systemes d’Information, ANSSI, p. 3). Thus AVA_-
VAN.5 is a best effort to reveal any vulnerabilities of the S3K250A. It
is unclear to us what exact analysis steps were performed by the
evaluator in this particular case, but AVA_VAN.5 is referenced in the
certification document (de la Sécurité des Systemes d’Information,
ANSSI), assuring that sufficient analysis was performed to achieve a
CC EAL 5+ certification with AVA_VAN.5.

eSE threat model

Adapting the threat model of Mayrhofer et al. (2019), we consider
the eSE against threats [T1] and [T2], as these are the threats this TRH
| eSE is designed to mitigate. These scenarios assume an attacker
with physical control of the eSE. Attacking an isolated HW compo-
nent, like the eSE, two main attack vectors present themselves: The
logical interface between eSE and the host system, known as the Rich
Execution Environment (REE), and (possibly HW assisted) side-
channel attacks on the eSE. The logical interface between the eSE
and REE uses “Application Protocol Data Units” (APDU), originally a
communication protocol for smart-cards. APDU based communica-
tion, accepting attacker commands and data, could be vulnerable to

1 Qur translation from French.

Forensic Science International: Digital Investigation 37 (2021) 301191

design and implementation bugs. A simplified view of the logical
interface between eSE and the REE is shown in Fig. 1.

Related Work

Attacks on black-box physical separation implementations are not
new. Anderson et al. (Anderson et al., 2006; Bond and Anderson,
2001) discusses the security of tamper-resistant cryptographic pro-
cessors. They discuss their use and attacks with focus on two different
attack scenarios: attacks involving physical access and logical attacks.
Attacks involving physical access are referred to as local attacks and
most side-channel attacks fall into this category, needing some
physical interaction to mount an attack. Logical attacks are referred to
as remote: These are attacks on the logical interface and they do not
require physical access, and are thus independent of the distance
between the attacker and the attacked device. Anderson et al. refer to
these attacks as API attacks, using the provided Application Pro-
gramming Interface (API). Exploitation of design and code flaws fall
into this category. Anderson et al. discuss several attacks, including a
cryptographic API attack on the IBM 4758 cryptoprocessor. The attack
demonstrated design flaws leading to information leaking via the API,
which could be used to mount a brute force attack on embedded DES
keys. The security of the IBM 4758 HW was rendered moot because of
flaws in the software running on the device. Anderson et al. predict in
their conclusions that logical attacks “..are likely to remain the weak
spot of most high-end systems”.

More advanced attacks via the logical interface, relevant to
physical separation implementations, can be found in more recent
research. Bittau et al. (2014) demonstrate how to write a remote
buffer overflow attack without knowledge of the target binary.
Where traditional attacks use known gadgets within the target bi-
nary to craft ROP attacks, Bittau et al. improve on this technique by
using a so called blind ROP (BROP). The BROP technique can be used
to attack closed source and unknown implementations using
leaked information. Thus useful ROP gadgets can be found simply
by trial and error, building a complete attack using only simple
information leak oracles, like a program crash. Lee et al. (2017) use a
similar approach to attack Intel SGX Secure Enclaves. Their attack,
named Dark-ROP, uses information leak oracles from the Intel SGX
to locate ROP gadgets and from there to build a functional ROP
attack against selected Secure Enclaves. Dark-ROP demonstrates
that critical implementation errors in secure enclave code can still
be exploited by attackers, without knowledge of the target code.
Van Bulck et al. (Van Bulck et al, 2018; Weisse et al., 2018)
demonstrate another powerful attack, Foreshadow, attacking the
CPU cache to retrieve secure enclave secrets. There are several
published papers on the security of Intel SGX (Jang et al., 2017;
Biondo et al., 2018; Schwarz et al., 2019; Nilsson et al., 2020).

Moghimi et al. (2020) recently demonstrated an attack on TPMs,
some CC EAL 4+ certified. Their attack uses black-box timing
analysis to reveal secret key information during signature genera-
tion based on elliptic curves. Using this attack they demonstrate
retrieval of 256-bit private keys. A key element in their attack is the

REE

/dev/k250a

Fig. 1. eSE logical interface using APDU.

G. Alendal, S. Axelsson and G.O. Dyrkolbotn

magnitude of increased operating frequency of the main SoC
compared to the TPM, facilitating high frequency timing of the
“slow” TPM execution.

Numerous attacks exist on TrustZone implementations
(Beniamini, 2016a, 2017, b; Chen et al., 2017), demonstrating that
code vulnerabilities, like design and coding quality, are crucial for
security, often with devastating effect on security when such vul-
nerabilities are found. Cerdeira et al. (2020) have summarised
current security challenges of TrustZone-based TEE systems.

The Attack

The completely stand-alone eSE HW affects how an attack can
be designed and performed. Compared to attacks published on
other secure execution environments, discussed in the previous
section, this requires a different approach. The major difference is
the changed attack surface, requiring a different attack chain, with
new attack oracles.

Our attack adapts elements from both BROP by Bittau et al.
(2014) and Dark-ROP by Lee et al. (2017) to the physical separated
black-box eSE HW, and we are, to the best of our knowledge, the
first to do so. Although partly available for this particular eSE, our
attack does not require knowledge of the binary (FW). We incor-
porate information leak oracles to aid in the attack on the eSE HW.

The attack was developed following these generic steps:

o Information Gathering Gain knowledge of the target eSE and
how it is used.

o Identify Attack Vectors Gain knowledge of the eSE attack sur-
face with potential attack vectors.

e 0-day Information Leakage Locate at least one information
leakage oracle to aid in 0-day vulnerability discovery.

o 0-day Vulnerability Discovery and Exploitation Locate at least
one new exploitable vulnerability and use the discovered
vulnerability to break confidentiality (secure data exposure)
and/or break integrity (writing to code or data memory).

The resulting attack on the Samsung S3K250AF eSE HW
(Samsung, 2020d) will follow, with the last section discussing the
technical capabilities of our attack.

Attack Assumptions

Our attack is based on the assumption that we have access to the
logical interface of the chip. This logical interface is exposed by the
/dev/k250a virtual device (see Fig. 1). Access to this device enables
the attacker to communicate, using APDUs, with all exposed func-
tionality of the eSE HW. Thus, in this case, we can operate as a
privileged REE process similar to the process depicted in Fig. 1. In a
test environment this is achieved simply by executing a binary we
provide with system privileges. We implemented all attack func-
tionality to communicate with the eSE. We call this tool chip_-
breaker. Our setup executed this tool through a “root” adb shell
(Gunasekera, 2020), connected to test devices either with a cable or
over a network connection. In a more realistic attack scenario,
depending on how the attacker gains access, this can be achieved by
infecting a process with system privileges and then communicating
with the eSE. The next section identifies one such target process.

Our assumption seems realistic, as the design of the eSE is to
withstand attacks against a fully compromised REE. Note that we
do not require physical access to the chip, which might be a pre-
requisite for many side-channel attacks. Hence, our attack can even
be performed remotely, over the air, assuming we have gained
privileges to communicate with the eSE logical interface. So our
attack can be performed using any remote, local or physical attack

Forensic Science International: Digital Investigation 37 (2021) 301191

that gains elevated execution, like “root”, on the device. Elevated
execution can be achieved without triggering user data wipe. One
path is to break the secure boot of the device to introduce attacker
code (Chao et al., 2020; Alendal et al., 2018). As history has shown
that gaining such access is not necessarily difficult or uncommon
(Google, 2020b), we do not address that problem further in this
paper. Even de-soldering the eSE chip and communicating directly
on the I2C lines is an option to perform our attack.

Information gathering

Several important initial information sources were identified:

CC EAL certification documents (Samsung, 2020a; de la Sécurité

des Systemes d’'Information, ANSSI; AG et al., 2014).

An android service process, hermesd. This privileged process

communicates with the eSE using the APDU-based logical

interface and it is the only REE process with this ability (Fig. 1).

Processes communicating with the eSE were revealed by

observing access to the eSE virtual device, /dev/k250a.

e Vendor specific libraries supporting hermesd. The most
important being 1ibese-grdg. so. This library implements the
low level communication with the eSE. This communication
uses APDUs. APDUs are communicated over the eSE logical de-
vice /dev/k250a.

e FW files found to be accessed by hermesd: /vendor/etc/

secnvm/k250a_00000009. img and /vendor/etc/secnvm/

k250a_00000009_dev.img.

These files contain partly encrypted FW updates for the eSE.
These files were revealed by observing files accessed by hermesd.

Unencrypted parts of k250a_00000009.img and k250a_
00000009_dev.img revealed code in ARM THUMB mode
(Limited, 2020c). The file k250a_00000009.img was assumed
to be a “production” FW container. We refer to this as Fw_prod.
Correspondingly the k250a_00000009_dev. img is assumed to
be a “development” FW container. We refer to this as Fw_dev.
Our research only recovered one version each of both these files,
on all tested models, and analysed model FW (Appendix, Table 1).

We inspected the partially unencrypted Fw_prod and Fw_dev.
These turned out to be container files for different “images” for the
eSE. The different image names are: BOOT, CRPT, CORA, CORB, SNVM,
and 1Twea. We developed a simple script to parse and extract im-
ages from this proprietary container format (Appendix, Table 1).
This revealed that most of the images are encrypted, while the
images SNVM and IWEA are not. Images sNvM and IWEA are also
signed, thus an attack on these images using simple FW modifi-
cations seems less probable. In later attack steps we recovered the
encryption key to the encrypted images, and the decrypted images
all included image signatures (Section “Attack Capabilities and AES
Key Exposure”).

The logical eSE interface attack vector

The logical eSE interface utilises APDUs for communication
(Appendix, “APDU primer”). Thus all eSE APDU communication is
considered a potential attack vector and we need to expose as many
eSE APDU handlers as possible. These APDU handlers are imple-
mented by code running on the eSE ARM processor. The handlers
will potentially accept attacker controlled input, which could lead
to an input validation vulnerability. In addition to all APDU han-
dlers, the APDU transport layer is an additional attack vector. Both
the APDU handlers and the APDU protocol handling are part of the
logical eSE interface.

All valid APDU CLA and INS values correspond to APDU handler
functions within the eSE code. Observing the hermesd process

G. Alendal, S. Axelsson and G.O. Dyrkolbotn

communicating with the eSE using APDU and reverse engineering
the REE library, libese-grdg.so, enabled us to reveal the
communication logic between the REE (hermesd) and the eSE. The
exposed eSE specific functions in 1ibese-grdg.so are listed in
Table 2 (Appendix) with their corresponding grdg_* name. These
functions revealed valid APDU CLA and INS values, each commu-
nicating with different APDU handlers inside the eSE. As these
functions only expose eSE features utilised by 1ibese-grdg.so,
additional eSE APDU handlers might exist. Some were indeed
exposed by brute force of the APDU logical interface. By design, all
the different APDU CLA and INS handlers inside the eSE are ex-
pected to return valid SW values, indicating success or various error
states. Gkaniatsou et al. (2015) demonstrated REPROVE, a system to
aid in the reverse engineering of APDUs used in smart-cards.
Inspired by their work, we produced a simple brute force process
shown in Listing 1, simply trying various combinations of (CLA,INS)
pairs and observing returned SWs. The unknown SW response
“unknown_command” classification is vendor implementation
dependent and might vary from vendor to vendor, and even from
CLA to CLA. However, it should be easily spotted as being the most
common SW reply from a specific (valid) CLA and random (thus
most probably not implemented) INS.

for (all possible CLA) {
for (all possible INS) {
SW = APDU_communicate_with_eSE(CLA, INS)
if (SW != unknown_command) {
// potential wvalid (CLA,INS) found
// optional next step:
P1_P2_Lc_Data_Le_brute_force(CLA, INS)

Listing 1 Simple APDU brute force pseudo code

Be warned that brute forcing valid APDU handlers might trigger
an unwanted effect in the eSE if a valid (CLA,INS) pair is hit with
valid P1, P2, Lc and Le values. One example could be a “factory
reset” APDU, not in need of any valid P1, P2, Lc or Le values. Thus
unknown (CLA,INS) pairs with SW values indicating success,
0x9000, should be treated with some caution.

Table 2 in the Appendix lists eSE APDU handlers discovered
through reverse engineering the 1ibese-grdg.so library, APDU
brute forcing, and confirmed by reverse engineering of the dumped
eSE flash recovered later in the attack (Section “Arbitrary ash and
RAM read”). Knowing the available APDU handlers for the eSE
allowed us to establish communication with eSE using its own
protocol. All APDU handlers could potentially be exploited to have
eSE perform unintended actions and is the most important attack
vector for this eSE.

0-day information leak oracles

Attacking a black-box entity like this eSE requires “blind” attack
techniques, as introduced in Section “Related Work”. Such attacks
depend on information leaks from the device (oracles). That is, an
attacker needs a way to know if an attack vector behaved unex-
pectedly, such as a crash. Any observable execution specific infor-
mation from the eSE could potentially be a useful oracle. Potential
oracles are e. g crash dumps, exception handling, page fault ad-
dresses, execution timing, etc. Such oracles could leak valuable
information in the trial-and-error progress of a “blind” attack. For
an eSE this could mean leaking information on code addresses,
stack addresses, code content, data content, etc.

The physical separation of eSE makes such observation of
(erroneous) behaviour challenging, reducing the existence of

Forensic Science International: Digital Investigation 37 (2021) 301191

oracles. With a stand-alone eSE there is no returned crash response,
no exception handler observation, no observable page faults, etc.
Timing attacks can also be difficult, measuring execution time from
outside the eSE. In our case we looked for logical information leak
oracles, where information could be obtained through observable
(mis)behavior by the normal logical interface.

We identified two information leak oracles that both play an
important role in the attack.

Oracle 1

The first oracle is a common observable behaviour in black-box
implementations: the lack of response. This is often the result of a
crash. This is also the case with this eSE, which is expected to al-
ways reply with a status word (SW). Thus any crashing APDU
handler will result in no SW being returned (a timeout error).

Oracle 2

An attacker can also try to look for logical information leak or-
acles in the ADPU handlers. Candidate APDU handlers are especially
those that read and write data. If any of these functions can be
manipulated to return more data than expected, leaked informa-
tion can be used to mount a ROP attack.

Candidates are all get, put, read and write functions in
Table 2 (Appendix).

The eSE handlers corresponding to 1ibese-grdg. so functions
grdg_readWeaver and grdg_writeWeaver were identified as
an information leak oracle, when combined. We could not use the
libese-grdg. so functions grdg_readweaver and grdg_wri-
teWeaver directly because of checks performed by the library
before submitting the APDU to the eSE, so we re-implemented
these REE functions. Our chip_breaker tool contains new ver-
sions of grdg write-/readWeaver named chip_breaker_
write-/readWeaver. We call the corresponding eSE APDU han-
dlers APDU_write-/readWeaver. One implementation of these
two eSE ADPU handler functions can be found in the Twea image in
FW_dev (Appendix, Table 1). These eSE handler functions could
together become an oracle in the following way: The eSE ApDU_ -
writeWeaver receives two buffers of data from chip_breaker
_writeWeaver: CHALLENGE and SECRET. APDU_readWeaver
would send back a secreT buffer from the eSE iff the caller sub-
mitted a matching CHALLENGE, written to on-board storage with
APDU_writeWeaver. The oracle revealed itself by manipulating a
SECRET length of >32, as this seemed to be a fixed length used
inside the eSE. The SECRET size variable sent is only one byte, so
SECRET length can be in the interval >1 and <256. Thus
APDU_readWeaver would return a SECRET buffer with up to 256
bytes of data. This leaked valuable stack data.

A stack leak from this oracle can be seen in Fig. 2.

Thus we had two information leak oracles: lack of APDU
response if the eSE crashes (Oracle 1) and a stack leak from
APDU_writeWeaver/APDU_readwWeaver (Oracle 2).

The Oracle 2 stack leak in Fig. 2 gave us valuable information,
indicating memory pointers at offsets 0x44 (0x20001428), 0x48
(0%200027¢c0), 0x50 (0x20001480), 0x5c (0x20001480), and so
on. Keeping in mind this is ARM BE8, memory pointers are 32 bit
big-endian. This makes these point to memory locations all in the
0x2000xxxx range. Further, code pointers can be found at offsets
0x58 (0x000285f9), 0x64 (0x0002858b), 0x78 (0x00010423),
and so on. The reason is that they can all be interpreted as 32-bit
ARM BE8 THUMB mode addresses, where the least significant bit
(LSB) is always 1 to indicate THUMB mode to the processor. These
code pointers are pop'ed from the stack during a typical ARM
THUMB function epilogue: pop {PC}.

The leaked addresses gave valuable information both for further
reverse engineering efforts and for exploitation.

G. Alendal, S. Axelsson and G.0. Dyrkolbotn

0000 53 65 63 72 65 74 00 00O 00 00 OO 00 00 OO 00 OO
0010 00 00 00 00 00 00O 00 00 00 00 OO 00 00 00 00 00
0020 00 00 00 01 00 OO 00 DO 00 00 OO 00 00 0O 00 00
0030 00 00 00 00 00 OO 00 00O 00 00 OO 01 00 OO 00 05
0040 01 22 49 31 20 00 14 28 20 00 27 CO 00 00 00 00
0050 20 00 14 80 FF FF FF FF 00 02 85 F9 20 00 14 80
0060 20 00 27 CO 00 02 85 8B 00 00 00 00 20 00 OB 50
0070 00 00 00 OO0 FF FF FF FF 00 01 04 7F 00 00 00 00

Fig. 2. eSE stack leak using the APDU_writeWeaver [APDU_readWeaver oracle.

0-day vulnerability discovery and exploitation

Oracle 2 is crucial for both vulnerability discovery and revealing
information to further understand the attack vectors, but more
importantly to reveal information needed for successful exploita-
tion, revealing memory addresses for use in for example a ROP
attack.

Oracle 2 was further developed by submitting larger SECRET
buffers to APDU_writeWeaver, and not only to manipulate the
returned size in APDU_readWeaver. Submitting a SECRET buffer
larger than 84 bytes led to Oracle 1 activating with no reply from
the eSE. This indicated a crash and we assumed from the leaked
stack contents in Fig. 2 that we were overwriting important stack
pointers. However, since Fig. 2 shows the leaked stack from
APDU_readWeaver, this did not necessarily match the stack of
APDU_writeWeaver. Without knowledge of APDU_writeWeaver
code, we could now implement a simple brute force attack for
secret [84:88] based on the assumption that this was a code
pointer and not a data pointer. If this was the case, there should be
at least one address that responds with a SW, indicating an attacker
controlled ROP. The leaked stack from Fig. 2 already gave valuable
ranges for brute forcing. Having access to the TweEa code image
extracted from Fw_dev, this step can also be solved by reverse
engineering the eSE APDU handlers APDU_writeWeaver and
APDU_readWeaver. We manually estimated the stack use by both
eSE handlers and adapted to any changes between the two. This
enabled us to correctly guess the stack layout of the APDU_-
writeWeaver function based on observation of the apDU_r-
eadweaver stack leak.

Analysing the trigger of Oracle 1 showed that ApDU_-
writeWeaver suffered from a standard stack buffer overflow (One,
1996), enabling a full overwrite of the Iwea slot storage
(SECRET + FOOTER) and then APDU_wr i teWeaver stack data. Fig. 3
shows a simplified view of the effect of the buffer overflow: The first
32 bytes are written to the normal SECRET buffer. The next 36 bytes
overwrite the FOOTER and the next 16 bytes overwrite values of
registers R4-R7 stored on the stack. Finally, the next 4 bytes over-
write the stored LR register, which will get pop'ed into PC when
APDU_writeWeaver returns. This leads to the now well known
subversion of control flow and could be used for a ROP attack.

Arbitrary flash and RAM read

The APDU_writeweaver buffer overflow can be used to read
flash and RAM memory by locating a special ROP gadget that takes
an attacker controlled address as input and will return 16 bytes. The
ROP gadget in Listing 2 can be set up by crafting the stack overflow
with correct values of R4-R7 which are identical to those stored on
the stack for APDU_readweaver (Fig. 2). This is due to the semi-
static nature of the eSE running with a 100% predictable execu-
tion and memory layout. So we control R4-R7 and pc, which is set
to the address of the ROP gadget.

Forensic Science International: Digital Investigation 37 (2021) 301191

MOVS RO, #0x10 ; size to read
STR R7, [R4] ; Store address
STR RO, [R4,#4] ; Store size
MOVS RO, #0x90 ; SW1

STRB RO, [R4,#8] ; Store SWi1

MOV RO, Rb5 ; SW2

STRB R5, [R4,#9] ; Store SW2

POP {R1-R7,PC} ; pop and return

Listing 2 ROP gadget for arbitrary ash and RAM read

This simple ROP gadget can be used to read the full flash and
RAM of the eSE by setting the rR7 to the address to read 16 bytes
from, and iterate. Indeed, we used this ROP gadget to read both the
complete eSE flash and RAM. The resulting layout of the dumped
252K eSE flash can be seen in Fig. 4. The code image names, 0—8, are
matched with the corresponding image names from the FW file
Fw_dev. The names of the secure storage data images, 9—12, are
based on reverse engineering code images and their use of various
secure storage addresses.

Arbitrary code execution

The APDU_writeWeaver buffer overflow can even be used to
execute attacker provided code. As there is no NX or other “no
execute” protection of the eSE stack memory, we can simply
execute supplied shellcode. Embedding ARM code in the SECRET
buffer and setting the pc to this stack address will execute arbitrary
attacker controlled code in the eSE. The address of this stack buffer
was located by using the ROP gadget (Listing 2) to dump the stack
memory, in the range 0x20000000 - 0x200002800.

This provided us with full read and write control of the eSE HW
flash and RAM. All code and secure storage from Fig. 4 could thus be
read and written to. The use of this exploit is demonstrated in
Section “Attack Capabilities and AES Key Exposure” and Section
“Attack Implications”.

Our developed chip_breaker tool fully implements the exploit
of this vulnerability, executing any provided shellcode on the eSE
processor.

Persistence

The code images BOOT, CORA, CORB, CRPT, SNVM, and IWEA are
all stored unencrypted and unsigned on the eSE flash. The only
integrity checks performed on any image after flash write (as part
of a FW update) are simple CRC32 and SHA256 hash verifications.
These hashes are also stored on the eSE flash. This means that we
can freely modify any code image on the flash and simply update
the corresponding integrity check hashes. This means that the eSE
has no root-of-trust and there is no secure boot present. The
consequence is that there is no way the eSE can verify any code
stored on the eSE flash during boot, where the eSE starts executing
on-board ROM before continuing execution of BooT. This BOOT
image is writable by us, without any signature verification, and this
completely breaks the code trust of the eSE. We confirmed this by
developing a writeflash shellcode that was capable of modifying
any code image. These changes were persistent across reboot of the
device and thus reboot of the eSE. This shellcode was tested with
our chip_breaker tool.

Attack Capabilities and AES Key Exposure

With the full dumping of eSE flash (Section “Arbitrary ash and
RAM read”), all eSE secure storage is now readable to us (data
images 9—12 in Fig. 4). Also, full reverse engineering of the eSE

G. Alendal, S. Axelsson and G.0. Dyrkolbotn

©)

Forensic Science International: Digital Investigation 37 (2021) 301191

eSE RAM (stack)

\i

8: "IWEA"

®

CHALLENGE (32)

APDU_writeWeaver(slotID, challenge,

challenge_length, secret, secret_length) char slotdata[100];

REE

memcpy(&slotdata[0], challenge, challenge_length);
memcpy(&slotdata[32], secret, secret_length);

SECRET (32) slotdata

FOOTER (36)

STORED R4-R7 (16)

®

| response ‘

stored registers

Fig. 3. Buffer overflow in eSE APDU_writeWeaver handler.

start: 0x00020000

L " end 0x00028000
[size : 0x8000

type : code

start: 0x00028000

o " end 0x00030000
aE L= size : 0x8000

type : code

start: 0x00030000

. end 0x00033000
oh e size : 0x3000
type : vendor

start: 0x00033000

. end 0x0003b000
2 Sz size : 0x8000

type credentials

) start: 0x0003b000

11: IWEA secure end 0x0003d000
storage size 0x2000

type credentials

start: 0x0003d000

. end 0x0003f000
12{Siorage size : 0x2000
type unknown

start: 0x00000000

end 0x00005000 o m
size 0x5000 terEoey
type code

start: 0x00005000

end 0x00005100 1: BOOT
size 0x100 METADATA
type BOOT header

start: 0x00005100

end 0x00005200 .

size 0x100 2: METADATA
type pointers

start: 0x00005200

end 0x0000fe00 3: "CRPT"
size 0Oxac00 '

type code

start: 0x0000fe00

end 0x00010000 .

size 0x200 4: METADATA
type vendor info

start: 0x00010000

end 0x00018000 . m
size : 0x8000 26 IR
type code

start: 0x00018000

end 0x00020000 o m
size 0x8000 & HEOIRE
type code

Fig. 4. Full eSE flash layout.

images BOOT, CORA and CORB is now possible. These images are not
encrypted on the eSE flash, which suggests that they are decrypted
as part of the FW update process. This turned out to be performed
with an embedded eSE AES key and initialisation vector (IV)
embedded in the dumped BoOT and CORa images. As this key is
now exposed by our attack, any attacker with knowledge of this key
can decrypt any previous, and future, FW updates for the eSE. We
verified this by decrypting the BoOT, CORA and CORB images in the

FW_dev FW file (Appendix, Table 1). Updating this pre-shared AES
key and IV can thus not be done by supplying a new eSE FW update
file, as part of a normal over-the-air (OTA) phone FW update, as this
would leak the new key to an attacker already aware of the present
one. This update can only be done by a secure update mechanism,
such as physically attaching to the eSE HW at a secure vendor site.

Although our attack has fully compromised the security of the
S3K250AF eSE HW, our research is by no means exhaustive. More

G. Alendal, S. Axelsson and G.O. Dyrkolbotn

eSE FW security vulnerabilities might exist, including the previ-
ously encrypted eSE images, now available for vulnerability
research. Our research did not evaluate any side-channel attacks
and such vulnerabilities might also exist, as our research identified
non-constant time execution functions in the eSE FW. One example
is the data dependent execution of the internal memcmp () func-
tions, used for example in authentication functions (grdg_read-
Weaver in Table 2). As the S3K250AF, containing the exposed
vulnerability, can be flashed with arbitrary researcher provided
code, it is an ideal research platform for future research of the eSE
HW and its resistance against side-channel attacks.

Attack Implications

Our full compromise of the eSE has devastating effects on the
system security of affected devices. All eSE security features are
made moot by our attack, as an attacker can read and write arbi-
trary flash and RAM, in addition to making persistent changes to
any code and data stored in the on-board flash. This is trivial due to
the eSE lacking security features like NX, ASLR, Stack canaries and
secure boot. All code in the eSE is running in a single thread of
execution, with no privilege separation. This means that a single
compromise, like that demonstrated by our attack, gives access to
all code and data from both flash and RAM.

In this section we demonstrate a confirmed example of a secu-
rity feature that fails as a consequence of our attack. We note that
Android Keymaster and device attestation also seem to be affected
by a vulnerable eSE as both features seem to rely on eSE security
features. However, we have not confirmed this.

The following example has been implemented and verified as
working.

Android user screen lock brute force

This section demonstrates how to recover the user screen lock
credential. The user screen lock credential is used, together with
the encryption key material contained in the eSE secure storage, to
reproduce the Credential Encrypted (CE) storage encryption key
needed for Android's file-based encryption (FBE) (Google, 2020c).
The CE storage contains most of the sensitive user data on the
device and thus the eSE is crucial in protecting the needed key
material. Recovering the screen lock credential is therefore
mandatory to facilitate digital forensic acquisition (DFA) of
powered-off devices and devices seized before the user has
unlocked the device at least once since power on, known as the
before-first-unlock (BFU) state.

The Android user screen lock protection supports the use of a
“weaver” hardware abstraction layer (HAL). Google has docu-
mented this HAL (Google, 2020d). The documentation states that
the weaver provides secure storage for secret values and that these
may only be read if a corresponding key, or challenge, has been
provided. The S3K250AF eSE provides the weaver functionality in
the Twea image (Fig. 4), accessible through the grdg_writewea-
ver and grdg_readwWeaver functions in 1ibese-grdg.so (Ap-
pendix, Table 2). With our attack in Section “The Attack” an attacker
can read of all the eSE secure storage, including storage belonging
to IweA (image 11 in Fig. 4). This means that sensitive TWEA storage
belonging to the Android user screen lock protection can be read by
an attacker without knowledge of the corresponding challenge. A
fragment of the Google screen lock verification code (Google,
2020a) running on affected test devices can be seen in Listing 3.

Forensic Science International: Digital Investigation 37 (2021) 301191

// Weaver based user password

result.gkResponse = weaverVerify(weaverSlot,
— passwordTokenToWeaverKey (pwdToken)) ;

if (result.gkResponse.getResponseCode() !=
— VerifyCredentialResponse.RESPONSE_OK) {
return result;

}

applicationId = transformUnderWeaverSecret (
— pwdToken ,result.gkResponse.getPayload());

Listing 3 unwrapPasswordBasedSyntheticPassword () code

A user-entered credential, a pattern, pin or password, is trans-
formed by a key derivation function (KDF) into pwdToken, which
again is transformed into a CHALLENGE by passwordTokenTo-
WeaverKey (). This CHALLENGE is verified by the eSE using
grdg_readwWeaver. If the eSE successfully verifies the CHALLENGE,
weaverVerify () will return the corresponding eSE stored SECRET,
accessible through the call result .gkResponse.getPayload().
Both the pwdToken, derived from CHALLENGE, and SECRET are
needed in the screen lock verification. These are also used to unlock
the encryption keys used for the on-device file-based encryption
(FBE) of user data (Google, 2020c).

As we can bypass the weaververify verification step and
instantly retrieve the correct CHALLENGE and SECRET from the eSE,
off-device brute force of user credentials can be achieved by per-
forming a brute force attack outlined in Listing 4. The password-
TokenToWeaverKey () simply produces a SHA512 hash and KDF ()
is currently scrypt ().The salt canbe retrieved from the on-device
file /data/system_de/0/spblob/<id>.pwd, available under the
same attack assumptions as before (Section “Attack Assumptions”).

if (passwordTokenToWeaverKey (KDF (
< passcode_candidate, salt)) [0:32] ==
<~ eSE_CHALLENGE) {
// correct passcode found

}

Listing 4 Simplified screen lock brute force pseudo code

We successfully implemented a simple CPU based python
version of this off-device screen lock brute force attack, and the
results showed that an attacker could recover any four digit pin or
3 x 3 pattern in less than 1 h on a modest dual-core laptop. This
attack could of course be highly optimised on dedicated HW to
drastically improve performance.

With the user screen lock credential recovered by this brute
force attack, we gain full access to the contents of the mobile de-
vice. The credential can be used to authenticate and retrieve FBE
keys protecting user data. This fully breaks the confidentiality of the
device and the encrypted user data.

Discussion
Our attack shows how recent (and not so recent) research in

attack techniques ((Anderson et al., 2006; Bittau et al., 2014; Lee
et al., 2017)) can be adapted to new areas, in this case the eSE

G. Alendal, S. Axelsson and G.O. Dyrkolbotn

HW platform. This improves the probability of success by mini-
mising the necessary knowledge of the target eSE HW and FW.
Though the information gathering phase of our attack revealed
some unencrypted FW code that could be analysed for security
vulnerabilities, this is not a mandatory step. Thus our attack
methodology, using information leak oracles from the eSE logical
interface, can be applied with no prior knowledge of FW contents.

Our attack demonstrates a complete compromise of the eSE
integrity, confidentiality and availability, thus all the main security
goals for the eSE CC EAL (SG1-SG3) in Section “CC EAL” are violated. A
single software security vulnerability is enough, and a single attacker
can with limited resources easily discover, and exploit, this vulner-
ability. Our research required nothing but access to commercially
available (COTS) test devices and publicly available information.
Vulnerability discovery and exploit development work were done by
a single person in approximately one man-month's worth of time,
with no special tools required. Our attack does not require physical
access to the eSE and can therefore be performed remotely, over-the-
air, needing only a privilege escalation vulnerability to be able to
communicate via the logical interface of the eSE. This shows that the
threat model from Section “eSE Threat Model” does not match this
eSE, as physical control is not required to perform our attack.

Restoring the eSE CC EAL (SG1-SG3) security goals (Section “CC
EAL”)and trust through an eSE FW update seems infeasible, due to the
lack of a root-of-trust and secure boot. The eSE can simply not validate
its own code as there does not seem to be any on-board cryptographic
integrity checks. The only integrity checks performed are simple
CRC32 and SHA256 hash comparing. These hashes can be updated by
an attacker and thus have no effect on security. In addition, integrity
verification of an installed eSE FW cannot be performed by the host
system (REE), as the black-box design of the eSE leaves no way to
perform external validation of the installed eSE code. A stealthy
backdoor implementation by an attacker could be very hard to reveal,
making it challenging to detect if the eSE FW has been tampered with.
Our discovered vulnerability thus completely breaks any forward
trust in the eSE HW. Our results should make users question the
validity of this CC EAL 5+ certification.

Furthermore, the exposure of the AES key used for encrypted
FW updates of the eSE secure OS and boot images, makes updating
this key using normal OTA FW updates difficult, if not impossible, as
an attacker with knowledge of this AES key can decrypt any attempt
of additional secret sharing with the eSE, such as replacement of
the AES key. The effect is that Samsung can no longer exchange
confidential information with the eSE HW through FW updates,
exposing any encrypted parts of previous and future FW updates
(Section “Attack Capabilities and AES Key Exposure”). Samsung is of
course free to change the key on newly manufactured devices, but
this key cannot also be used in updated firmware for already
shipped devices, as that would leak it.

To be able to regain trust in the eSE HW on already shipped
devices, the authors believe the only secure option is a physical
replacement of the eSE HW, which is probably unreasonable.

Conclusions and future work

We have presented a remote attack on the S3K250AF eSE HW,
using our discovered 0-day security vulnerability, exploitable
through the logical interface. The attack contributes to the devel-
opment of new DFA methods of affected devices. The attack was
done by building on attacks from other security research areas and
applying this to the physically separate eSE HW platform. The eSE
HW is designed to withstand high level, and resourceful attackers,
relying on a small code base, mostly unavailable to attackers, and
resistance to side-channel attacks. Our vulnerability discovery and
exploit development required no special tools or access, and the

Forensic Science International: Digital Investigation 37 (2021) 301191

complete attack was developed with very limited resources, far
from “state actor” capabilities. The attack enables an attacker to
execute arbitrary shellcode to facilitate both reading and writing of
both code and data, in both flash and RAM. This completely breaks
all the eSE security goals stated in its CC EAL certification, and also
enables an attacker to install hard-to-discover, persistent, back-
doors and modifications to the eSE FW. Regaining trust in this eSE
HW seems challenging, with physical replacement being the only
realistically secure option. As this eSE HW is soldered to the PCB in
the mobile device, such replacement is not trivial.

We conclude that one simple exploitable buffer overflow
vulnerability enables full attacker takeover of the eSE HW,
permanently.

Our attack facilitates digital forensic acquisition of devices in a
before-first-unlock (BFU) state, with no prior knowledge of user
credentials. With the aid of a more readily available privilege
escalation vulnerability in Android, this becomes a complete solu-
tion for digital forensic acquisition of affected devices.

Our attack demonstrates the gap between the intended and ach-
ieved security level of this state-of-the-art eSE HW utilised by a major
Android mobile phone vendor. The CC EAL 5+ certification gave no
guarantee that the eSE was free from exploitable security vulnera-
bilities, only that some unidentified amount of effort had been made
in an attempt to prevent them. We argue that the trust in the value
certifications such as CC EAL provide, needs to be evaluated carefully
on a case-by-case basis. Our attack also shows that such certifications
should not discourage research into new DFA methods based on
offensive techniques.

Our research is not exhaustive, and further attacks, including
side-channel attacks, are left for future work. Further research is
needed to reveal if other physical separation black-box solutions
fall to similar attacks as the ones demonstrated in this research. A
new testing methodology for logical interfaces of black-box HW can
arise from our work, to potentially improve the CC Advanced
methodical vulnerability analysis (AVA_VAN).

We believe our research further emphasises the challenges
inherent in trusted computing, and that it demonstrates how
fragile the trust put in such solutions is, whether this trust comes
from certifications like CC EAL, or not.

Responsible disclosure

Samsung is informed of the vulnerabilities discovered in this
research and the authors have collaborated with Samsung to
mitigate the risks they exposed. A patch for affected devices has
been released, assigned with CVE-2020-28341 (MITRE, 2020) and
SVE-2020-18632 (Samsung, 2020e). We thank Samsung for their
professional cooperation.

Acknowledgements

The research leading to these results has received funding from
the Research Council of Norway programme IKTPLUSS, under the
R&D project Ars Forensica grant agreement 248094/070.

Appendix
APDU primer

ISO/IEC 7816 is an international standard for smart-cards. This
standard is divided into 15 sub-parts specifying different aspects of
smart-card characteristics. ISO 7816—4 (ISO/IEC, 2020) describes
security aspects, and commands to communicate with smart-cards.
This includes a protocol specification, using what's called an
“Application Protocol Data Unit” (APDU). An APDU defines the

G. Alendal, S. Axelsson and G.O. Dyrkolbotn

structure used to send/receive commands, and data. All commu-
nication is of the request—reply form, and is always initiated by the
host. The smart-card never initiates communication. An APDU
consists of a mandatory 4 byte header with the elements: CLA, INS,
P1 and P2, each one byte long. The CLA is referred to as the “class”,
often tied to the logical handler of the INS: the “instruction” or
simply command. Inter-industry commands (INS) are defined in
CLA 0. ISO 7816—4 (ISO/IEC, 2020) defines a whole range of stan-
dard INS commands, all belonging to the CLA 0. Vendors are free to
implement vendor specific commands using for example CLA 0x80.
P1 and P2 are parameters for use in the specific (CLA,INS) pair and
can thus be viewed as normal function parameters to the (CLA,INS)
handler on the smart-card.

Forensic Science International: Digital Investigation 37 (2021) 301191

Additional APDU fields are optional, giving the possibility of
appending any necessary data required by the specific (CLA,INS)
pair: Lc, DATA and Le. Lc defines the size of appended DATA, and Le
is the size of the expected data returned from the smart-card.

The smart-card is expected to reply with a valid return value, SW
(Status Word). The SW is a 16-bit value consisting of bytes SW1 and
SW2, respectively. This reply is mandatory even if the requested
(CLA,INS) pair is not implemented by the smart-card. SW is used to
give informative error values back to the caller. Although the ISO
7816-4 defines some standardised error codes, these can be vendor
defined for all proprietary CLA values. If the (CLA,INS) successfully
completes the request, it is expected to return the SW value
0x9000 (SW1 = 0x90, SW2 = 0x0).

Table 1
Analysed eSE FW images

Image filename Image name Size Version int / string SHA256sum

k250a_00000009.img (whole file) 33280 0 x 47000101 / 638dad7cbf79ede847331516¢118ff5b /
“191128145540” d27002818ab35356987dcfa498e3262¢

k250a_00000009.img SNVM 33024 0 x 47000101 / cc8349038e84313a3354459285deade2
“191128145539” bclaa9ccb6eb3eef9c3a38689d46320b

k250a_00000009_dev.img (whole file) 198808 0 x 100/ 9914566a795b081fee 2040c1f530fba0 /
“191120090956" 3ec1b57521d4dd4b1352a86600ffde5a

k250a_00000009_dev.img BOOT* 20992 0 x 100 / 3e64599b94e36ed6746a7b15cb48859b
“191120090947" a2ec0d419ce954e0b285e104ea711bc6

k250a_00000009_dev.img CRPT 43928 0 x 100 / 37fcff13acda015611d6d0c3ec8576b4
“191120090947" 52642e509b5bd799d83c716356ea8a57

k250a_00000009_dev.img CORA* 33792 0 x 100 / 622¢75c652d637775f92e9b37c03c2fc
“191120090947" 0c00494c¢52d14fa61bd6229d05df4328

k250a_00000009_dev.img CORB* 33792 0 x 100 / 71967cacde8d30d8f5597eba808e6d97
“191120090947" 39025a4cc434c8c137ba42b4d9b4dedc

k250a_00000009_dev.img SNVM 33024 0 x 100/ aa82c¢67c9b545b35f6da05baebfb3549
“191120090955" 1402cf27f99e27f81a12a1fdfof028dc

k250a_00000009_dev.img IWEA 33024 0 x 100 / 57c0a4e9033d0c9106bb0cde3af6ff82
“191120090955” 5a79a4e8efc0de6b445ab7dd14e61c11

* Image encrypted with eSE embedded AES key + IV.

Table 2
eSE attack vectors: Exposed valid eSE APDU CLA and INS

CLA INS libese-grdg.so function Comment

0x0 0 x 82 grdg_provisionAK Provisioning

0x0 Oxea grdg_updateFW FW Update (APP)
grdg_getinfo /

0x0 0xb1 grdg_updateFW | Retrieves various eSE info
grdg_updateCrypto

0x0 0xf1 grdg_selfTest | grdg_IOTest eSE on-board testing

0x0 0xf7 <not exposed > Unknown

0x0 0xf8 <not exposed > Unknown

0x0 0xf9 < not exposed > Unknown

0x0 Oxfa grdg_updateFW FW Update (CORA/CORB)

0x0 0xfb grdg_updateFW | grdg_updateCrypto FW Update (CRYPT)

0x0 oxfd < not exposed > FW Update (BOOT)

0x0 Oxa4 grdg_snvmlnit APP (SNVM) Init

0 x 80 Oxe4 grdg_factoryReset APP (SNVM) Factory reset

0 x 80 0 x 84 grdg_getRandomNonce APP (SNVM) Get 32 random bytes

0 x 80 0xb1 grdg_getApplInfo APP (SNVM) Retrieve APP version info

0 x 80 0xdb grdg_putCredential / APP (SNVM) Put credential data
grdg_putPersistentCredential

0 x 90 0xdb grdg_putCredential / APP (SNVM) Put credential data (large)
grdg_putPersistentCredential

0 x 80 0xcb grdg_getCredential / APP (SNVM) Get credential data
grdg_getPersistentCredential

0 x 80 Oxee grdg_deleteCredential / APP (SNVM) Erase credential data
grdg_deletePersistentCredential

0x1 Oxa4 grdg_iweaverlnit APP (iWEAVER) Init

0 x 81 0xb1 < not exposed > APP (iWEAVER) Retrieve APP version info

0 x 81 0 x 35 grdg_getWeaverConfig APP (iWEAVER) Retrieve configuration

0 x 81 0xdb grdg_writeWeaver APP (iWEAVER) write credential slot (secret/challenge)

0 x 81 0xcb grdg_readWeaver APP (iWEAVER) read credential (secret) using challenge

0 x 81 oxdf grdg_updateWeaver APP (IWEAVER) Update all slots throttle data

G. Alendal, S. Axelsson and G.0. Dyrkolbotn

References

Ag, LT, Secure, I, GmbH, N.S.G., STMicroelectronics, 2014. Security ic platform
protection profile with augmentation packages. URL: https://www.
commoncriteriaportal.org/files/ppfiles/pp0084b_pdf.pdf. (Accessed 26 August
2020).

Alendal, G., Dyrkolbotn, G.O., Axelsson, S., 2018. Forensics acquisition—analysis and
circumvention of samsung secure boot enforced common criteria mode. Digit.
Invest. 24, S60—S67.

Anderson, R., 2003. Cryptography and competition policy: issues with ’trusted
computing’. In: Proceedings of the Twenty-Second Annual Symposium on
Principles of Distributed Computing, pp. 3—10. https://dl.acm.org/doi/abs/10.
1145/872035.872036.

Anderson, R., Bond, M., Clulow, J., Skorobogatov, S., 2006. Cryptographic processors-
a survey. Proc. IEEE 94, 357—369. https://ieeexplore.ieee.org/document/
1580505.

ARM, 2009. Trustzone model. URL: http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0301h/Chdebaee.html. (Accessed 12 January 2021).
Beniamini, G., 2016a. Qsee privilege escalation vulnerability and exploit (cve2015-
6639). https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-

vulnerability.html. (Accessed 1 December 2020).

Beniamini, G., 2016b. War of the worlds - hijacking the linux kernel from gsee.
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-
kernel.html. (Accessed 1 December 2020).

Beniamini, G. 2017. Trust issues: exploiting trustzone tees. https://
googleprojectzero.blogspot.com/2017/07/trust-issues-exploitingtrustzone-tees.
html. (Accessed 1 December 2020).

Biondo, A., Conti, M., Davi, L., Frassetto, T., Sadeghi, A.R., 2018. The guard's dilemma:
efficient code-reuse attacks against intel {SGX}. In: 27th {USENIX} Security
Symposium ({USENIX} Security 18), pp. 1213—1227. https://www.usenix.org/
conference/usenixsecurity18/presentation/biondo.

Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., Boneh, D., 2014. Hacking blind. In:
2014 IEEE Symposium on Security and Privacy. IEEE, pp. 227—242. https://
ieeexplore.ieee.org/abstract/document/6956567/.

Bond, M., Anderson, R., 2001. Api-level attacks on embedded systems. Computer 34,
67—75. https://ieeexplore.ieee.org/abstract/document/955101/.

Cerdeira, D., Santos, N., Fonseca, P, Pinto, S., 2020. Sok: understanding the pre-
vailing security vulnerabilities in trustzone-assisted tee systems. In: 2020 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alamitos,
CA, USA, pp. 1416—1432. https://doi.org/10.1109/SP40000.2020.00061. URL:

Chao, CY,, Su, H.C, Wu, CY., 2020. Breaking samsung's root of trust: exploiting
samsung s10 secure boot. Black Hat USA. https://www.blackhat.com/us-20/
briefings/schedule/breaking-samsungs-root-of-trust-exploiting-samsung-s-
secure-boot-20290.

Chen, Y, Zhang, Y., Wang, Z., Wei, T., 2017. Downgrade attack on trustzone. arXiv:
1707.05082. https://arxiv.org/abs/1707.05082.

commoncriteriaportalorg, 2020. Certified products. URL:
commoncriteriaportal.org/products/. (Accessed 26 August 2020).

Criteria, C., 2017. Common criteria for information technology security evaluation -
part 3: security ~ assurance components. URL: https://www.
commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf. (Accessed 26
August 2020).

Criteria, C., 2020. Publications. URL: https://www.commoncriteriaportal.org/cc/.
(Accessed 1 September 2020).

de la Sécurité des Systémes d'Information (ANSSI), A.N., 2019. Rapport de certifi-
cation anssi-cc-2019/61. URL: https://www.commoncriteriaportal.org/files/
epfiles/anssi-cc-2019_61fr.pdf. (Accessed 26 August 2020).

Focus, F, 2016. Current challenges in digital forensics. URL: https://articles.
forensicfocus.com/2016/05/11/current-challenges-in-digital-forensics/.
(Accessed 30 November 2020).

Fournaris, A.P.,, Keramidas, G., 2014. From Hardware Security Tokens to Trusted
Computing and Trusted Systems. Springer International Publishing, Cham,
pp. 99—117. https://doi.org/10.1007/978-3-319-00663-5_6. URL:

fiir Wirtschaft und Energie, B., 2020. Optimos 2.0. URL: https://www.digitale-
technologien.de/DT/Redaktion/DE/Standardartikel/SmartServiceWeltProjekte/
Wohnen_Leben/SSWII_Projekt_OPTIMOS_20.html. (Accessed 14 September
2020).

Gkaniatsou, A., McNeill, F,, Bundy, A., Steel, G., Focardi, R., Bozzato, C., 2015. Getting
to know your card: reverse-engineering the smart-card application protocol
data unit. In: Proceedings of the 31st Annual Computer Security Applications
Conference, pp. 441—450. https://dl.acm.org/doi/pdf/10.1145/2818000.2818020.

Google, 2020a. Android code search. URL: https://cs.android.com/android/platform/
superproject/+/master:frameworks/base/services/core/java/com/android/
server/locksettings/SyntheticPasswordManager.java. (Accessed 21 September
2020).

Google, 2020b. Android security bulletins. URL:
security/bulletin. (Accessed 6 October 2020).
Google, 2020c. File-based encryption. URL: https://source.android.com/security/

encryption/file-based. (Accessed 21 September 2020).

Google, 2020d. Google git. URL: https://android.googlesource.com/platform/
hardware/interfaces/+/refs/heads/master/weaver/1.0/IWeaver.hal. ~ (Accessed
21 September 2020).

Group, T.C., 2020. Tpm 1.2 main specification. URL: https://trustedcomputinggroup.

https://www.

https://source.android.com/

1

Forensic Science International: Digital Investigation 37 (2021) 301191

org/resource/tpm-main-specification/. (Accessed 13 October 2020).

Gunasekera, S., 2020. Rooting Your Android Device. Apress, Berkeley, CA,
pp. 173—223. URL: https://doi.org/10.1007/978-1-4842-1682-8_8.

Hatton, L., 1997. Reexamining the fault density-component size connection. IEEE
Softw 14, 89—97. https://doi.org/10.1109/52.582978. URL: https://ieeexplore.
ieee.org/abstract/document/582978/.

Intel, 2020. Intel software guard extensions. URL: https://software.intel.com/
content/www/us/en/develop/topics/software-guard-extensions.html.
(Accessed 6 October 2020).

ISO/IEC, 2020. Iso/iec 7816-4:2020 identification cards — integrated circuit cards —
part 4: organization, security and commands for interchange. URL: https://
www.iso.org/standard/77180.html. (Accessed 26 August 2020).

Jang, Y., Lee,], Lee, S., Kim, T,, 2017. Sgx-bomb: locking down the processor via
rowhammer attack. In: Proceedings of the 2nd Workshop on System Software
for Trusted Execution, pp. 1—6. https://dl.acm.org/doi/abs/10.1145/3152701.
3152709.

Lee,], Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C,, Kim, T., Peinado, M., Kang, B.B.,
2017. Hacking in darkness: return-oriented programming against secure en-
claves. In: 26th {USENIX} Security Symposium ({USENIX} Security 17),
pp. 523—539. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/lee-jaehyuk.

Lillis, D., Becker, B., O'Sullivan, T., Scanlon, M., 2016. Current challenges and future
research areas for digital forensic investigation. In: The 11th ADFSL Conference
on Digital Forensics, Security and Law (CDFSL 2016).

Limited, A., 2020a. Arm compiler toolchain linker reference. URL: https://developer.
arm.com/documentation/dui0493/g/linker-command-line-options/-be8.
(Accessed 26 August 2020).

Limited, A., 2020b. Securcore sc000. URL: https://developer.arm.com/ip-products/
processors/securcore/sc000-processor. (Accessed 26 August 2020).

Limited, A., 2020c. The thumb instruction set. URL: http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html. (Accessed 26 August
2020).

Mavrovouniotis, S., Ganley, M., 2014. Hardware Security Modules. Springer New
York, New York, NY, pp. 383—405. URL: https://doi.org/10.1007/978-1-4614-
7915-4_17.

Mayrhofer, R., Stoep, J.V., Brubaker, C., Kralevich, N., 2019. The android platform
security model. arXiv preprint arXiv:1904.05572. https://arxiv.org/abs/1904.
05572. (Accessed 4 September 2020).

MITRE, 2020. CVE-2020-28341. Available from MITRE, CVE-ID CVE-2020-28341.
URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28341.

Moghimi, D., Sunar, B., Eisenbarth, T., Heninger, N., 2020. Tpm-fail:{TPM} meets
timing and lattice attacks. In: 29th {USENIX} Security Symposium ({USENIX}
Security 20), pp. 2057-2073. https://www.usenix.org/conference/
usenixsecurity20/presentation/moghimi-tpm.

Nemec, M., Sys, M., Svenda, P, Klinec, D., Matyas, V., 2017. The return of copper-
smith's attack: practical factorization of widely used rsa moduli. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 1631—1648. https://dl.acm.org/doi/abs/10.1145/3133956.3133969.

Nilsson, A., Bideh, P.N., Brorsson, J., 2020. A survey of published attacks on intel SGX.
Technical report. Tech. rep. https://arxiv.org/abs/2006.13598.

NIST, 2020. Cryptographic algorithm validation program. URL: https://csrc.nist.gov/
projects/cryptographic-algorithm-validation-program/details?product=11431.
(Accessed 26 August 2020).

One, A., 1996. Smashing the stack for fun and profit. Phrack 7. http://www.phrack.
com/issues.html?issue=49&id=14.

Ozment, A., Schechter, S.E., 2006. Milk or wine: does software security improve
with age?. In: Proceedings of the 15th Conference on USENIX Security Sym-
posium, vol. 15. USENIX Association, USA. https://www.usenix.org/legacy/
events/sec06/tech/full_papers/ozment/ozment.pdf.

Pfleeger, C.P., 2009. Security in Computing. Pearson Education India.

Sabt, M., Achemlal, M., Bouabdallah, A., 2015. Trusted execution environment: what
it is, and what it is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA, pp. 57—64.
https://ieeexplore.ieee.org/abstract/document/7345265. (Accessed 13 October
2020).

Samsung, 2020a. S3k250a/s3k232a/s3k212a 32-bit risc microcontroller for smart
card with optional at1 secure libraries including specific ic dedicated software.
URL: https://www.commoncriteriaportal.org/files/epfiles/anssi-cible-cc-2019_
61en.pdf. (Accessed 26 August 2020).

Samsung, 2020b. Samsung, bsi, bundesdruckerei and telekom security partner to
bring national id to your smartphone. URL: https://www.samsungmobilepress.
com/pressreleases/samsung-bsi-bundesdruckerei-and-t-systems-partner-to-
bring-national-id-to-your-smartphone. [Online; accessed 14-September-2020].

Samsung, 2020c. Samsung ese sdk. URL: https://developer.samsung.com/ese/
overview.html. (Accessed 26 August 2020).

Samsung, 2020d. Samsung introduces best-in-class data security chip solution for
mobile devices. URL: https://news.samsung.com/global/samsung-introduces-
best-in-class-data-security-chip-solution-for-mobile-devices [Online; accessed
26-August-2020].

Samsung, 2020e. SVE-2020-18632. November 2020, SVE-2020-18632. URL: https://
security.samsungmobile.com/securityUpdate.smsb.

Schwarz, M., Weiser, S., Gruss, D., 2019. Practical enclave malware with intel sgx. In:
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, pp. 177—196. https://link.springer.com/
chapter/10.1007/978-3-030-22038-9_9.

Van Bulck,], Minkin, M., Weisse, O. Genkin, D., Kasikci, B., Piessens, F,

https://www.commoncriteriaportal.org/files/ppfiles/pp0084b_pdf.pdf
https://www.commoncriteriaportal.org/files/ppfiles/pp0084b_pdf.pdf
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref2
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref2
https://dl.acm.org/doi/abs/10.1145/872035.872036
https://dl.acm.org/doi/abs/10.1145/872035.872036
https://ieeexplore.ieee.org/document/1580505
https://ieeexplore.ieee.org/document/1580505
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Chdebaee.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Chdebaee.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0301h/Chdebaee.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://bits-please.blogspot.com/2016/05/war-of-worlds-hijacking-linux-kernel.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploitingtrustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploitingtrustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploitingtrustzone-tees.html
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://www.usenix.org/conference/usenixsecurity18/presentation/biondo
https://ieeexplore.ieee.org/abstract/document/6956567/
https://ieeexplore.ieee.org/abstract/document/6956567/
https://ieeexplore.ieee.org/abstract/document/955101/
https://doi.org/10.1109/SP40000.2020.00061
https://www.blackhat.com/us-20/briefings/schedule/breaking-samsungs-root-of-trust-exploiting-samsung-s-secure-boot-20290
https://www.blackhat.com/us-20/briefings/schedule/breaking-samsungs-root-of-trust-exploiting-samsung-s-secure-boot-20290
https://www.blackhat.com/us-20/briefings/schedule/breaking-samsungs-root-of-trust-exploiting-samsung-s-secure-boot-20290
https://arxiv.org/abs/1707.05082
https://www.commoncriteriaportal.org/products/
https://www.commoncriteriaportal.org/products/
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R5.pdf
https://www.commoncriteriaportal.org/cc/
https://www.commoncriteriaportal.org/files/epfiles/anssi-cc-2019_61fr.pdf
https://www.commoncriteriaportal.org/files/epfiles/anssi-cc-2019_61fr.pdf
https://articles.forensicfocus.com/2016/05/11/current-challenges-in-digital-forensics/
https://articles.forensicfocus.com/2016/05/11/current-challenges-in-digital-forensics/
https://doi.org/10.1007/978-3-319-00663-5_6
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SmartServiceWeltProjekte/Wohnen_Leben/SSWII_Projekt_OPTIMOS_20.html
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SmartServiceWeltProjekte/Wohnen_Leben/SSWII_Projekt_OPTIMOS_20.html
https://www.digitale-technologien.de/DT/Redaktion/DE/Standardartikel/SmartServiceWeltProjekte/Wohnen_Leben/SSWII_Projekt_OPTIMOS_20.html
https://dl.acm.org/doi/pdf/10.1145/2818000.2818020
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/locksettings/SyntheticPasswordManager.java
https://source.android.com/security/bulletin
https://source.android.com/security/bulletin
https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/file-based
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/weaver/1.0/IWeaver.hal
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/weaver/1.0/IWeaver.hal
https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/master/weaver/1.0/IWeaver.hal
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://trustedcomputinggroup.org/resource/tpm-main-specification/
https://doi.org/10.1007/978-1-4842-1682-8_8
https://doi.org/10.1109/52.582978
https://ieeexplore.ieee.org/abstract/document/582978/
https://ieeexplore.ieee.org/abstract/document/582978/
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.iso.org/standard/77180.html
https://www.iso.org/standard/77180.html
https://dl.acm.org/doi/abs/10.1145/3152701.3152709
https://dl.acm.org/doi/abs/10.1145/3152701.3152709
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-jaehyuk
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref34
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref34
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref34
https://developer.arm.com/documentation/dui0493/g/linker-command-line-options/--be8
https://developer.arm.com/documentation/dui0493/g/linker-command-line-options/--be8
https://developer.arm.com/ip-products/processors/securcore/sc000-processor
https://developer.arm.com/ip-products/processors/securcore/sc000-processor
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0210c/CACBCAAE.html
https://doi.org/10.1007/978-1-4614-7915-4_17
https://doi.org/10.1007/978-1-4614-7915-4_17
https://arxiv.org/abs/1904.05572
https://arxiv.org/abs/1904.05572
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28341
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-28341
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-tpm
https://dl.acm.org/doi/abs/10.1145/3133956.3133969
https://arxiv.org/abs/2006.13598
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11431
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11431
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11431
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14
https://www.usenix.org/legacy/events/sec06/tech/full_papers/ozment/ozment.pdf
https://www.usenix.org/legacy/events/sec06/tech/full_papers/ozment/ozment.pdf
http://refhub.elsevier.com/S2666-2817(21)00099-8/sref47
https://ieeexplore.ieee.org/abstract/document/7345265
https://www.commoncriteriaportal.org/files/epfiles/anssi-cible-cc-2019_61en.pdf
https://www.commoncriteriaportal.org/files/epfiles/anssi-cible-cc-2019_61en.pdf
https://www.samsungmobilepress.com/pressreleases/samsung-bsi-bundesdruckerei-and-t-systems-partner-to-bring-national-id-to-your-smartphone
https://www.samsungmobilepress.com/pressreleases/samsung-bsi-bundesdruckerei-and-t-systems-partner-to-bring-national-id-to-your-smartphone
https://www.samsungmobilepress.com/pressreleases/samsung-bsi-bundesdruckerei-and-t-systems-partner-to-bring-national-id-to-your-smartphone
https://developer.samsung.com/ese/overview.html
https://developer.samsung.com/ese/overview.html
https://news.samsung.com/global/samsung-introduces-best-in-class-data-security-chip-solution-for-mobile-devices
https://news.samsung.com/global/samsung-introduces-best-in-class-data-security-chip-solution-for-mobile-devices
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://link.springer.com/chapter/10.1007/978-3-030-22038-9_9
https://link.springer.com/chapter/10.1007/978-3-030-22038-9_9

G. Alendal, S. Axelsson and G.0. Dyrkolbotn

Silberstein, M., Wenisch, TF, Yarom, Y., Strackx, R. 2018. Foreshadow:
extracting the keys to the intel {SGX} kingdom with transient out-of-order
execution. In: 27th {USENIX} Security Symposium ({USENIX} Security 18),
pp-. 991-1008. https://www.usenix.org/conference/usenixsecurity 18/
presentation/bulck.

Vauclair, M., 2011. Secure Element. Springer US, Boston, MA, pp. 1115—1116. https://
doi.org/10.1007/978-1-4419-5906-5_303. URL: (Accessed 1 September 2020).

12

Forensic Science International: Digital Investigation 37 (2021) 301191

Venturebeat, 2016. Apple vs. fbi: a timeline of the iphone encryption case. URL:
http://venturebeat.com/2016/02/19/apple-fbi-timeline/. (Accessed 30
November 2020).

Weisse, 0., Van Bulck,], Minkin, M. Genkin, D., Kasikci, B., Piessens, F,
Silberstein, M., Strackx, R., Wenisch, T.F, Yarom, Y., 2018. Foreshadow-ng:
breaking the virtual memory abstraction with transient out-of-order execution.
https://lirias.kuleuven.be/2089352?limo=0.

https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1007/978-1-4419-5906-5_303
https://doi.org/10.1007/978-1-4419-5906-5_303
http://venturebeat.com/2016/02/19/apple-fbi-timeline/
https://lirias.kuleuven.be/2089352?limo=0
https://lirias.kuleuven.be/2089352?limo=0

	Chip chop — smashing the mobile phone secure chip for fun and digital forensics
	Introduction
	Background
	Embedded Secure Element
	CC EAL
	eSE threat model

	Related Work
	The Attack
	Attack Assumptions
	Information gathering
	The logical eSE interface attack vector

	0-day information leak oracles
	Oracle 1
	Oracle 2

	0-day vulnerability discovery and exploitation
	Arbitrary flash and RAM read
	Arbitrary code execution
	Persistence
	Attack Capabilities and AES Key Exposure
	Attack Implications
	Android user screen lock brute force

	Discussion
	Conclusions and future work
	Responsible disclosure
	Acknowledgements
	Appendix
	APDU primer

	References

