
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Mathias Harper

The Digital Wheelchair Project:
Motion Tracking,
Mathematical Modeling and
Identification.

Master’s thesis in Cybernetics and Robotics
January 2022M

as
te

r’s
 th

es
is





Mathias Harper

The Digital Wheelchair Project: Motion
Tracking,
Mathematical Modeling and
Identification.

Master’s thesis in Cybernetics and Robotics
January 2022

Norwegian University of Science and Technology





The Digital Wheelchair Project: Motion Tracking,
Mathematical Modeling and Identification.

Mathias Furseth Harper

July 4, 2022



Preface

This thesis was written in the final semester of the Master’s programme in Cybernetics and
Robotics at the Norwegian University of Science and Technology (NTNU) in Trondheim. It
constitutes the completion of my studies at the Department of Engineering Cybernetics within
the field of Biomedical Cybernetics.

My interest in dynamical systems and biomedical cybernetics motivated me to work on this
topic. Working with a problem with such important real-life applications was very inspiring.
The potential of helping wheelchair users lead more healthy lifestyles has been a true motiv-
ation for completing this thesis.

I would like to thank my supervisors, Damiano Varagnolo and Roya Doshmanziari, for their
very helpful guidance and insight. A big thanks to Damiano for formulating the project and
entrusting me with it. I would especially like to thank Roya for her thorough help during the
research and writing phases of the project.

Finally, i would like to thank my family for their continuing support.

i



Abstract

Many wheelchair users lead physically inactive lifestyles due to limited movement options and
overall disabilities. This lack of physical activity may seriously affect their physical and mental
conditions. In this thesis, we investigate the possibilities of estimating the energy expendit-
ure and physical activity in wheelchair users using their motion-captured trajectories during
exercise.

Two models were derived with the intent to parameterize the movement of the participants
in the study, a model based on the double pendulum and a model based on the Van der pol
oscillator. The parameters were later determined using least squares estimation and derivative-
free optimization in order analyze their correlation to energy expenditure, heart rate, and other
demographic variables.

The results show that the double pendulum model performs poorly, and its estimated paramet-
ers show no correlation to energy expenditure or heart rate. On the other hand, the van der
pol model shows some promise, as, under specific circumstances, correlations between energy
expenditure and heart rate were observed.
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Sammendrag

Mange rullestolbrukere lever en fysisk inaktiv livsstil på grunn av begrensede bevegelsesmu-
ligheter og generelle funksjonshemminger. Denne mangelen på fysisk aktivitet kan ha alvorlige
implikasjoner på både deres fysiske og mentale helse. I denne oppgaven undersøker vi mu-
lighetene for å estimere energiforbruket og hjertefrekvensen hos rullestolbrukere ved å bruke
bevegelsesbanene til armene deres under trening.

To modeller ble utledet med hensikten å parameterisere bevegelsen til deltakerne i studiet,
en modell basert på det doble pendelet og en modell basert på Van der pol-oscillatoren. Para-
metrene ble så regnet ut ved bruk av minste kvadraters estimering og derivatfri optimalisering.
Videre ble de estimerte parametrenes korrelasjon til energiforbruk, hjertefrekvens og andre
demografiske variabler undersøkt.

Resultatene viser at den doble pendelmodellen yter dårlig, og dens estimerte parametere
viser ingen korrelasjon til energiforbruk eller hjertefrekvens. Van der pol-modellen viser mer
lovende resultater, siden det under spesifikke omstendigheter ble observert korrelasjoner mel-
lom de estimerte parametrene og energiforbruk og hjertefrekvens.
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Chapter 1

Introduction

1.1 Motivation and Background

Physical activity is related to many physiological and psychological benefits. For example, phys-
ical activity plays a vital role in the management of mild-to-moderate mental health diseases
(Paluska and Schwenk, 2000) and is associated with a marked decrease in cardiovascular and
all-cause mortality in both men and women (Fagard and Cornelissen, 2007), (Nocon et al.,
2008).

According to the World Health Organization, 65 million people in the world use a wheelchair
as their primary mode of ambulation (World Health Organization, 2008). The majority of these
wheelchair users have a lifestyle without much physical activity. In this population, the risk of
suffering from at least one of the numerous consequences of physical inactivity is threefold.
These consequences include obesity, diabetes, cardiovascular diseases, and some types of can-
cer (Wilby, 2019). Accordingly, the annual healthcare costs for people who use a wheelchair
due to a spinal cord injury range between 17.000 to 28.000 USD per individual (French et
al., 2007). Regular physical activity and an active lifestyle are among the best measures to
counteract the chronic illnesses mentioned and reduce the massive healthcare-related costs.
In this context, physical activity monitoring provides unique possibilities to facilitate healthy
behaviors and compliance with physical activity programs and measure the effectiveness of
physical activity promotion programs. However, despite numerous attempts by different re-
search groups and private companies, quantifying physical activity and energy expenditure in
wheelchair users still remains a challenge.

1.2 The cross-sectional study

The primary research aim of The Digital Wheelchair Project (digiW) is to develop and validate
a concept for estimating energy expenditure (EE) and physical activity (PA) in wheelchair users
with different disabilities during rest and free-living activities. This research will provide the
basis for reaching the long-term innovation goal of the project; to develop, optimize and patent
EE and PA estimation algorithms that can be incorporated into an affordable wearable device
for the wheelchair user group, which individuals and future home-based health services could

1



Chapter 1: Introduction 2

use to track inactivity and promote a healthy lifestyle (NTNU-Discovery, 2019).

1.2.1 Participants

In the first part of the project, 20 able-bodied participants matched for age and gender will
serve as a control group, and in the second part, 20 wheelchair users (10 men and 10 women)
will be tested (this thesis is based on the data collected from able-bodied participants)

1.2.2 Test protocol

Testing is performed over three separate days on which data is collected during activities ran-
ging from rest to high-intensity exercise. There is a minimum of 24 hours between the test
days to ensure recovery, and the first three test days are scheduled within a three-week period.
Prior to the tests, information on the demographic variables (age, body mass, body height,
gender, and disability-specific characteristics (type of disability, if they had a spinal cord in-
jury; injury level and ASIA score (Kirshblum et al., 2011)) will be registered. An International
Physical Activity Questionnaire (IPAQ) is completed to determine the participants’ physical
activity levels (Craig et al., 2003). Data is then collected during rest (lying and seated) and
wheelchair propulsion at different speed-incline combinations for test days 1-3 as shown in fig-
ure 1.1 and table 1.1. Participants will also have a 5-minute warm-up and setup-familiarization
in the wheelchair between the resting and propulsion measurements on all test days. The or-
der of the test days, which each target one incline (either 0.5, 2.5, and 5% incline), will be
counterbalanced. The speeds at each incline have been selected to cover three 4 min bouts
from low to high intensity (assessed through blood lactate measurements and heart rate). An
incremental test will be conducted at the end of the 2.5% incline day, with a speed increment
every minute at a set incline as shown in table 1.1. When the participant is unable to keep
up and hits the back of the treadmill, the speed is reduced 1 stage, and the incremental test
continues unchanged until exhaustion or steady-state VO2.

Figure 1.1: Experiment process in one test day.
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Stages 0.5% 2.5% 5.0%

Men Women Men Women Men Women

1 4 km/h 3 km/h 3 km/h 2 km/h 2 km/h 1 km/h

2 6 km/h 5 km/h 4 km/h 3 km/h 3 km/h 2 km/h

3 8 km/h 7 km/h 5 km/h 4 km/h 4 km/h 3 km/h

Incremental

Start at 3 km/h

1 km/h
increase

0.5 km/h
increase

Table 1.1: Experiment information describing incline and speed combinations for each test day.

1.2.3 Equipment

Heart rate monitor, inertial measurement unit (IMU, accelerometer including gyroscope and
magnetometer), Vyntus CPX/portable Metamax II (Metamax, n.d.), existing wearable devices
(Fitbit and Apple) and a Qualisys motion capture system (Qualisys, n.d.) are used to track/-
monitor physical activity.

1.3 Scope and Research Objectives

In this thesis, we will focus specifically on the interval stages completed by the participants
on each test day. We will try to fit different mathematical models to the motion-captured tra-
jectories from the participants and analyze how these trajectories are connected with heart
rate, energy expenditure, and other demographic variables provided by the participants. The
approach to this problem is made from a control engineering perspective; consequently, the
analysis is based upon trying to explain the motion-captured trajectories as dynamical systems.
The oscillating properties of the motion-captured trajectories will be modeled using known
relaxation-oscillators, and a simplified mathematical model of the human arm will be used to
analyze the arm movement trajectories.

Primary Objective: Provide an analysis upon whether motion captured trajectories of wheel-
chair users correlate with heart rate and energy expenditure.

Secondary Objectives:

• Present an analysis on whether the models derived can be generalized amongst the par-
ticipants.
• Examine how different interval stages and/or inclines impact the precision of the models.
• Provide an analysis on whether some of the demographic variables serve as indicators

on the properties of the motion captured trajectories.
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Theory

In this section, we provide the theoretical basis for our study.

In order to model the motion-captured trajectories, we have chosen to use the Van der Pol
oscillator and the double pendulum as our mathematical models. The Van der Pol oscillator
has a long history of being used to explain oscillatory behavior in both physical and biological
sciences (FitzHugh, 1961), (Nagumo et al., 1962). Therefore, we aim to investigate if there is
similar behavior in the oscillatory movements of the participants and the Van der Pol oscillator.
Furthermore, the double pendulum has also seen applications in modeling the human arm as
a dynamical system (Agarana and Akinlabi, 2018), (Bieda and Jaskot, 2018). Hence we will
try to derive a simplified model of the human arm based upon the double pendulum to model
the motion-captured trajectories.

2.1 The Van der Pol unforced oscillator

We consider the non-linear second order ordinary differential equation(ODE)

ẍ − ϵ
�

1− x2
�

ẋ + x = 0, (2.1)

where
x ≡ x(t) (2.2)

is the unknown real function of time, where x : R→ R is twice continuously differentiable i.e
x ∈ C2(R) and ϵ ∈ R is a constant control parameter.

We now write the second order equation described in equation (2.1) as two coupled first order
ODEs,

�

ẋ = y
ẏ = ϵ
�

1− x2
�

y − x
(2.3)

As the system described in equation (2.3) is autonomous it can be replaced by an equation of
integral curves where y ̸= 0, given as

4
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y ′ = ϵ
�

1− x2
�

−
x
y
⇐⇒ y y ′ = ϵ

�

1− x2
�

y − x . (2.4)

where

y ≡ y(x) and y ′ =
d

d x
y

In order to proceed analytically we need to approximate y(x) since we are not able integrate
to find a solution (Strumia, 2018).

2.1.1 The limit cycle of the Van der Pol oscillator

The Van der Pol oscillator is a relaxation-oscillator, meaning it has a stable limit cycle. In prac-
tice this means that given any initial condition, all trajectories will approach the limit cycle
when t →∞. The limit cycles from different ϵ values are depicted in the phase portrait of x
and ẋ in figure 2.1.

-6
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-2

0

2

4

6

-2 -1 0 1 2

4.0

3.5

3.0

2.5

1.5

1.0

0.5

2.0

0.1
0.01

Figure 2.1: A phase portrait of the limit cycles of the Van der Pol oscillator, (Widdma, n.d.)

The stable limit cycle of the Van der Pol oscillator exists in x ∈ [−2, 2] and ẋ ∈ R.
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2.1.2 Power expansion with respect to ϵ

In this section we will look for approximate analytical solutions of equation (2.4) through a
power expansion of the control parameter ϵ. Consider the Taylor expansion

f (x) =
∞
∑

k=0

hk(x)ϵ
k (2.5)

which under the assumption that ϵ ≪ 1, is convergent. However, we may drop higher order
contributions according to the desired order of approximation, n regardless of the assumptions
on the series convergence. So we consider the Taylor polynomial

f[n](x) = h0(x) + h1(x)ϵ + h2(x)ϵ
2 + · · ·+ hn(x)ϵ

n, (2.6)

which is to be introduced into the differential equation:

p(x ,ϵ)≡ f (x)
d f (x)

dx
− ϵ
�

1− x2
�

f (x) + x = 0 (2.7)

Further we consider the Taylor expansion of p(x ,ϵ) at order n, in a neighbourhood of ϵ = 0

p[n](x ,ϵ) = p(x , 0) +
∂ p
∂ ϵ
(x , 0)ϵ +

1
2
∂ 2p
∂ ϵ2
(x , 0)ϵ2 + · · ·+

1
n!
∂ np
∂ ϵn
(x , 0)ϵn (2.8)

which will be required to be zero.

The power expansion of order zero is calculated to be

f (±)[0] (x) = ±
p

4− x2 (2.9)

The power expansion of order one is calculated to be

f (±)[1] (x ,ϵ) = ±
p

4− x2 +

�

x −
x3

4

�

ϵ (2.10)

The power expansion of order two is calculated to be

f (±)[2] (x ,ϵ) = ±
p

4− x2 +

�

x −
x3

4

�

ϵ ±
x6 − 6x4 + 32

96
p

4− x2
ϵ2. (2.11)

The power expansion of order three is calculated to be

f (±)[3] (x ,ϵ) = ±
p

4− x2 +

�

x −
x3

4

�

ϵ ±
x6 − 6x4 + 32

96
p

4− x2
ϵ2+

+

�

sin−1
� x

2

�

48
p

4− x2
−

3x7 − 22x5 + 34x3 + 12x
2304

�

ϵ3.

(2.12)

More detailed calculations of equations (2.9), (2.10), (2.11) and (2.12) are provided in ap-
pendix A.1 (Strumia, 2018).
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2.2 Mathematical modelling of the double pendulum

In this section, we go through the necessary theory to describe the mathematical model of the
double pendulum.

2.2.1 Lagrangian mechanics

Lagrangian mechanics differ from from Newtonian mechanincs in a way that it uses the en-
ergies of a system compared to the forces. The central quantity of Lagrangian mechanics is
the Lagrangian, which is a function that summarizes the dynamics of the entire system. The
non-relativistic Lagrangian for a system of particles can be defined as

L = T − V (2.13)

where T is the kinetic energy and V is the potential energy.

The total kinetic energy of the system is given by

T =
1
2

N
∑

i=1

mi ∥ṗi∥
2 =

1
2

N
∑

i=1

mi ṗ
⊤
i ṗi (2.14)

where pi is a punctual mass whose position is fixed with respect to a reference frame given by
p ∈ RD, where D is the number of dimensions.

The potential energy of the system reflects the energy of interaction between particles, i.e
how much energy one particle will have due to the others and other external influences. The
potential energy is always a function of the particles position,

V = V (p1, p2, . . .) (2.15)

We define the generalized coordinates of a system as a vector of time-varying coordinates
q(t) ∈ Rnc that must be able to describe the "configuration" of the system at a given time t.
The generalized coordinates typically gather positions and angles, but can also include more
abstract representations of the system. If a system has the generalized coordinates q , then its
position p is a function of q. The mass velocity p is then a direct result of the chain rule;

ṗ =
∂ p
∂ q

q̇ (2.16)

Furthermore the kinetic energy can be rewritten with respect to q as

T =
1
2

N
∑

i=1

mi ṗ
⊤
i ṗi =

1
2

N
∑

i=1

mi q̇
⊤ ∂ p⊤i
∂ q
∂ pi

∂ q
q̇=

1
2

q̇⊤
� N
∑

i=1

mi
∂ pi

∂ q

⊤ ∂ pi

∂ q

�

q̇ (2.17)

where we can define
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W =
N
∑

i=1

mi
∂ pi

∂ q

⊤ ∂ pi

∂ q
(2.18)

where W is a semi-positive definite square matrix. Generally, the kinetic energy function will
take the form:

T (q, q̇) =
1
2

q̇⊤W (q)q̇ (2.19)

With rewriting the potential energy with respect to q we can write the Lagrange function from
equation (2.13) as the following:

L (q, q̇) =
1
2

q̇⊤W (q)q̇− V (q) (2.20)

The Euler-Lagrange equation then reads as:

d
dt
∂L
∂ q̇
−
∂L
∂ q
= 0 (2.21)

which defines the model of the mechanical system (Gros, 2021).

2.2.2 External forces in Lagrangian mechanics

The Lagrangian modelling approach is intrinsically an energy-based point of view of the mech-
anical system. As a result in the Lagrange approach, the external forces and moments must be
considered in terms of the energy they deliver to or remove from the system. In other words,
one must consider the work produced on the system by the external forces and moments. Work
is related to motions occurring under forces and moments, and motions are described in the
Lagrange approach as changes in the generalized coordinates q.

The generalized external forces in the system should satisfy

∂ E
∂ q
= Q (2.22)

where E is the energy and Q is the generalized forces with respect to q.

This concept is often presented in the literature as the following equation

δW = 〈Q,δq〉 (2.23)

where 〈.〉, denotes the inner product space between Q and δq. Here, equation (2.23) is es-
sentially saying the same as in equation (2.22), i.e a "small" motion δq combined with the
external forces and moments Q, produces a "small" amount of work δW .

Suppose that a force is given by a vector F ∈ Rn, where n is the number of dimensions in
which we are working in a given reference frameR is applied to a specific point p ∈ Rn in the
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same reference frame R . We then observe that a small change in the generalized coordinates
q yields a small displacement of the position p given by the Jacobian ∂ p

∂ q , and a small work

δW = F⊤
∂ p
∂ q
δq (2.24)

It follows that in this case the generalized force corresponding to F is given by

Q =
∂ p⊤

∂ q
F (2.25)

which can be included in the Lagrange formalism using the Euler-Lagrange equation from
equation (2.21) as

d
dt
∂L
∂ q̇
−
∂L
∂ q
=Q (2.26)

(Gros, 2021)

2.2.3 The dynamics of the double pendulum

Consider the double pendulum shown in figure 2.2. The double pendulum is formed by attach-
ing a pendulum directly onto another one. Each pendulum consists of one mass m connected
to a massless rigid rod with length l. The forces acting on the masses of the unforced double
pendulum are the tensions T and the gravitational forces mg .

l1

l2

T1

T2

m1g

m2g

m1

m2

θ1

θ2

Figure 2.2: The unforced double pendulum
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We consider the reference frame R , of which the double pendulum exists in as a two dimen-
sional cartesian coordinate system (x , y), with the origin placed at the pivot point of the upper
pendulum.

To describe the system in a Lagrangian framework, we begin with defining the general co-
ordinates of the system

q =

�

θ1
θ2

�

(2.27)

as it is simple and describes the "configuration" of the system.

We proceed with describing the positions p, of the two masses as a function of the generalized
coordinates.

Where the cartesian position of the upper mass m1, can be described as

p1 = R(θ1)

�

0
−l1

�

=

�

l1 sinθ1
−l1 cosθ1

�

(2.28)

where

R (θ1) =

�

cosθ1 − sinθ1
sinθ1 cosθ1

�

(2.29)

The lower mass m2, has the cartesian position

p2 = p1 + R (θ2)

�

0
−l2

�

=

�

l1 sinθ1 + l2 sinθ2
−l1 cosθ1 − l2 cosθ2

�

(2.30)

The kinetic energy function T (q), reads as

T (q) =
1
2

2
∑

k=1

mk ṗ⊤k ṗk (2.31)

Using both equation (2.16) and equation (2.17) we can describe the kinetic energy as a func-
tion of the general coordinates.

T (q) =
1
2

q̇⊤W (q)q̇ (2.32)

Using equation (2.18) we compute W (q) to be

W (q) =

�

(m1 +m2)l2
1 m2l1l2 cos (θ1 − θ2)

m2l1l2 cos (θ1 − θ2) l2
2

�

(2.33)

The potential energy function V (q) is given by
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V (q) = g
2
∑

k=1

mkpk,2 = −(m1 +m2)gl1 cosθ1 −m2 gl2 cosθ2 (2.34)

where pk,2 denotes the "y-coordinate" of the position pk with respect to R .

Now we can formulate the Lagriangian and the Euler-Lagrange equation respectively as

L (q , q̇) =
1
2

q̇⊤W (q)q̇ − V (q) (2.35)

and
d
d t
∇q̇L −∇qL = 0 (2.36)

where we use gradient notation i.e

∇q̇L =
∂L⊤

∂ q̇
, ∇qL =

∂L⊤

∂ q
(2.37)

We can then compute

∇q̇L =W (q)q̇
d
d t
∇q̇L =W (q)q̈ +

∂

∂ q
(W (q)q̇)q̇

∇qL =
�

−m2l1l2θ̇1θ̇2 sin(θ1 − θ2)− (m1 +m2)gl1 sinθ1

m2l1l2θ̇1θ̇2 sin(θ1 − θ2)−m2 gl2sinθ2

�

(2.38)

where

∂

∂ q
(W (q)q̇)q̇ = m2l1l2

�

−θ̇1θ̇2 sin(θ1 − θ2) + θ̇2
2

sin(θ1 − θ2)
−θ̇1

2
sin(θ1 − θ2) + θ̇1θ̇2 sin(θ1 − θ2)

�

(2.39)

We can now assemble the model in its explicit form by rearranging the Euler-Lagrange equation
from equation (2.36):

q̈ =W (q)−1
�

∇qL −
∂

∂ q
(W (q)q̇)q̇
�

(2.40)

However, the model in equation (2.40) is a second order ordinary differential equation. To be
able to use a numerical method to solve this equation we have to formulate the model as a
system of first order ordinary differential equations. We do this by introducing the state vector,
x ∈ R4, where

x =

�

q
ω

�

, ω=

�

θ̇1

θ̇2

�

(2.41)
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Now we can write the model as a system of coupled first order ordinary differential equations:

ẋ =

�

q̇
ω̇

�

=





ω

W (q)−1
�

∇qL −
∂

∂ q
(W (q)ω)ω
�



 (2.42)

which fully explains the dynamics of the unforced double pendulum (Bogdanov, 2004).

2.3 Numerical methods for solving ODEs

We make use of numerical methods in order to be able to to validate the analytical approxim-
ations of the Van der Pol oscillator from section 2.1.2 and to solve the initial value problem
of the nonlinear ODE describing the doble pendulum from section 2.2.3. The Runge-Kutta
method described is generally a robust and precise numerical ODE solver, however as shown
in (Chen, 2008) an Adams-Moulton style method might be better for solving the initial value
problem of the double pendulum.

2.3.1 Runge-Kutta 4

The most widely used and known Runge-Kutta method is the fourth order Runge-Kutta method
(RK4). The method can be used give a discrete approximate solution to ordinary differential
equations. Let an initial value proble be specified as

d y
d t
= f (t, y), y (t0) = y0 (2.43)

For some h> 0, the RK4 method reads as follows.

yn+1 = yn +
1
6

h
�

k1 + 2k2 + 2k3 + k4

�

tn+1 = tn + h
(2.44)

for n= 0,1, 2,3, . . . where
k1 = f (tn, yn) ,

k2 = f
�

tn +
h
2

, yn + h
k1

2

�

,

k3 = f
�

tn +
h
2

, yn + h
k2

2

�

,

k4 = f (tn + h, yn + hk3) .

(2.45)

(Butcher, 2016a).
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2.3.2 Adams–Moulton methods

The Adams–Moulton method is an implicit linear multistep method. Methods such as the
Runge kutta methods take some intermediate steps (for example, a half-step) to obtain a higher
order method, but then discard all previous information before taking a second step. Linear
multistep methods, on the other hand, attempt to gain efficiency by keeping and using the in-
formation from previous steps rather than discarding it. The Adams-Moulton methods of order
s = 0,1, 2, . . . reads as

yn = yn−1 + hf (tn, yn)

yn+1 = yn +
1
2

h ( f (tn+1, yn+1) + f (tn, yn))

yn+2 = yn+1 + h
�

5
12

f (tn+2, yn+2) +
8
12

f (tn+1, yn+1)−
1

12
f (tn, yn)
�

...

yn+s = yn+s−1 + h (β0 f (tn+s, yn+s) + · · ·+ βs f (tn, yn))

(2.46)

where

βs− j =
(−1) j

j!(s− j)!

∫ 1

0

s
∏

i=0
i ̸= j

(u+ i − 1)du, for j = 0, . . . , s (2.47)

(Butcher, 2016b).

2.4 Least squares estimation

To be able to fit our mathematical models to the data gathered from the participants, we make
use of least squares estimation. The method of least squares is about estimating parameters
by minimizing the squared discrepancies between observed data, on the one hand, and their
expected values on the other. Given a data set {(x i , yi)}

n
i=1, where x i is an independent variable

and yi is a dependent variable whose value is found by observation. The model function has the
form f (x ,β), where β ∈ Rm. The least squares method then aims to find the β that minimizes

n
∑

i=1

(yi − f (x i ,β))
2 (2.48)

(Van De Geer, 2005)

2.5 Measurements of performance

There are several ways to measure the performance of a model. In this study we will use three
methods to evalute the model parameter estimations in trajectory tracking; mean square error,
root mean square error and a version of R2 we call FIT.
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2.5.1 Mean Square Error

The mean square error between a vector of observed values y and a vector of a predicted or
estimated value ŷ is defined as

MSE=
1
n

n
∑

i=1

(yi − ŷi)
2 (2.49)

2.5.2 Root Mean Square Error

The root mean sqaure error between a vector of observed values y and a vector of a predicted
or estimated value ŷ is defined as square the square root of the mean square error. Using
equation (2.49) the root mean square error or RMSE reads as

RMSE=
p

MSE (2.50)

2.5.3 FIT

The R2 error between a vector of observed values y and a vector of a predicted or estimated
value ŷ is defined as

R2 = 1−
∥y − ŷ∥22
∥y − ȳ∥22

(2.51)

where ȳ is the mean of the observed values y .

Then we simply define the FIT as 100× R2.

2.6 Principal Component Analysis

PCA extracts the most important information from the data and expresses this a new set of
orthogonal variables called principal components (Abdi and Williams, 2010). This method is
very useful to perform dimensionality reduction, i.e capture the variance explained by some
data in fewer dimensions. This might prove useful for us when interpreting the parameters
estimated, if the parameters are of high dimension, dimensionality reduction may be put to
use.

2.6.1 Singular Value Decomposition

The components of PCA are obtained from a singular value decomposition (SVD). Given a real
valued matrix X ∈ Rm×n. The singular value decomposition is mathematically defined as

X = UΣV T , (2.52)

where U is an m × n matrix, Σ is an m × n diagonal matrix, and V T is an n × n matrix.
The columns of U and V are the left-singular vectors and right-singular vectors of X, respect-
ively. Both the left- and right-singular vectors form a a set of orthonormal vectors, making
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the matrices U and V unitary matrices. The matrix Σ contains the singular values, σi on its
diagonal entries. By convention the ordering of the singular vectors in Σ is from the highest
singular value to the lowest (Wall et al., 2003).

2.6.2 Derivation of PCA through singular value decomposition

Given some data set X ∈ Rm×n with mean centered columns. Then the n×n covariance matrix
C is given by C = X T X/(n− 1) and has the eigendecomposition

C = P LPT (2.53)

where P is a matrix of eigenvectors and L is a diagonal matrix containing the eigenvalues
λi in decreasing order on the diagonal. The eigenvectors of P are called principal axes of X .
Projecting the data, X on the principal axes are called principal components or scores often
denoted as T , given by the projection, T = X P.

If we perform a singular value decomposition on X , we obtain X = UΣV T as defined in equa-
tion 2.52. We can now write the correlation matrix, C as

C =
X T X
n− 1

=
VΣU T UΣV T

n− 1
= V

Σ2

n− 1
V T (2.54)

showing that the right-singular vectors V are the eigenvectors or principal axes of the cov-
ariance matrix, C and that the singular values of X are given from the eigenvalues of the
covariance matrix, C through λi = σ2

i /(n − 1). Furthermore the scores, T are given as T =
X V = UΣV T V = UΣ, giving us

X = UΣV T ⇒ X = T PT (2.55)

where T are the principal components or scores and P are the principal axes. In PCA the
loadings are the principal axes multiplied by square root of corresponding eigenvalues.

2.6.3 Dimensionality Reduction

Given a real valued matrix X ∈ Rm×n where X = T PT . PCA can also be written on vector form
as

X = t 1pT
1 + t 2pT

2 + · · ·+ E (2.56)

where on could choose a specific amount components to explain the data set X , eg.

X̂ =
A
∑

a=1

t apT
a , A< n (2.57)

Since the variance the singular values in Σ are in descending order, the first components ex-
plain the most variance. And the "essence" of X can be captured by the first few components.
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Method and set-up

This section provides insight into the specifics of our problem and how we will solve it. In
addition, this section contains the necessary processing methods to use our data as planned.
Moreover, the section contains a detailed description of the derivation of our estimators.

3.1 Motion trajectories

The motion trajectory data of the wheelchair users participating in this study is provided from
a Qualisys motion capture system. The markers tracked by the Qualisys motion capture system
are attached to the wheelchair users per figure 3.1.

Figure 3.1: Body markers tracked by the Qualisys motion capture system.

16
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Furthermore, four markers are placed on the wheelchair itself, where one pair is placed on the
shaft of each wheel, and the other pair is placed on the rim of each wheel, making it a total of
33 markers tracked by the Qualisys motion capture system.

The movement of these markers is tracked with a frequency of f = 120Hz and makes up the
trajectories shown in figure 3.2

(a) Raw motion captured trajectories. (b) Motion captured trajectories with respect to
the shaft.

Figure 3.2: Motion captured trajectories of a wheelchair user during a submax stage

3.2 Energy expenditure

To calculate the energy expenditure (EE∼ [kJ/min]), values for internal gas exchange, V̇O2
and V̇CO2, will be used. V̇O2 and V̇CO2 are provided from the Vyntus CPX/portable Metamax
II measurement system as mentioned in section 1.2.3. Furthermore, the calculation of energy
expenditure is based on the corrected Weir formula (Brockway, 1987) , with assumed zero
protein metabolism (Kipp et al., 2018). The energy expenditure calculation then reads as

EE=
�

16.62× V̇O2 + 4.51× V̇CO2

�

× 60 (3.1)
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3.3 Preprocessing of the data

In this thesis, the most interesting part of the motion-captured data is the trajectories produced
by the arm movement. It is from these trajectories we hope to find the correlations between
heart rate and energy expenditure measurements. Hence, we move forward with isolating
the hand, elbow, and shoulder trajectories of the right arm on each participant as depicted in
figure 3.3.

(a) Raw motion captured trajectories, with the
trajectories of interest in black

500 600 700 800 900 1000 1100 1200

300

400
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shoulder

elbow

hand

(b) Two dimensional projection of the isolated
trajectories.

Figure 3.3: Motion captured trajectories of a wheelchair user during a submax stage, where
the shoulder, elbow and hand trajectories have been isolated.

In this study, we will only use trajectories in two dimensions to not overly complicate the study.
We do this by simply diminishing the "width" dimension. Furthermore, the information on each
participant’s handedness is known and concludes that all participants are right-handed. Hence,
only the right-hand side of the motion-captured trajectories will be used.

Each trajectory of motion-captured data is represented by a time series of cartesian coordinates
and assumes the following shape.

d = {(x , y)}Ni=1 (3.2)

3.3.1 Preprocessing for the double pendulum estimator

When studying the arm as a double pendulum, we want to analyze the movement of the
elbow and hand with respect to the shoulder. Let ds, d e and dh denote the trajectories of the
shoulder, elbow and hand respectively. Furthermore, we subtract the shoulder trajectories from
the elbow and hand trajectories as follows

d̃ e = d e − ds

d̃h = dh − ds
(3.3)

The elbow and hand trajectories with respect to the shoulder trajectories as depicted in fig-
ure 3.4.
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For the pendulum experiment, it is necessary to represent the trajectories in polar coordinates.
Generally, polar coordinates take the form (r,θ ), where r denotes the distance from the ori-
gin to the coordinate and θ denotes the angle between the ray from the origin through the
coordinate and the ray from the origin to (∞, 0).

To be able to compare the data to the double pendulum model, we define our polar coordinates
as depicted in figure 3.4, which shows how the points (x , y)te and (x , y)th, from the same
timestamp t, are represented in polar coordinates.
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Figure 3.4: Demonstration on how the data the lengths and angles from the data are calculated.

The angles θe and θh are calculated as follows

θe = atan2(ye, xe) +
π

2

θh = atan2(yh − ye, xh − xe) +
π

2

(3.4)

where we are using atan2 as it is defined in A.2.

This done for all t, giving us a timeseries of θ e = {θe}
N
i=1 and θ h = {θh}

N
i=1.
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The lengths l1 and l2 are calculated as follows

l1 =
q

x2
e + y2

e

l2 =
Æ

(xh − xe)2 + (yh − ye)2)
(3.5)

Which is done for all t, giving us a timeseries of l1 = {l1}
N
i=1 and l1 = {l2}

N
i=1.

In the double pendulum model l1 and l2 are constants. However this is not the case in the
data. Due to hand movements and unaccounted movements in the "width" direction l1 and l2
will vary over time. Figure 3.5 shows how l1 and l2 develop over time.
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(a) Measured upper arm length over time.
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(b) Measured forearm length over time.

Figure 3.5: Measured upper arm and forearm lengths in two dimensions over time.

Since there are multiple wheelchair users with different anatomies participating in this study,
we choose to generalize the lengths for all participants. This makes it possible to compare the
estimated forces from the double pendulum approach between participants without account-
ing for different arm lengths. However, each participant will still have its own l1

l2
ratio.

From figure 3.5 we can see that both lengths oscillate between a mean value; hence we move
forward using their mean values, and we redefine l1 and l2 as follows.

l1 = 1

l2 =
l2

l1

(3.6)

Here, l1 and l2 denotes the mean values of l1 and l2.

The motion trajectories with constant l1 and l2 and with varying l1 and l2 are depicted in
figure 3.6.
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(b) Varying l1 and l2

Figure 3.6: Motion captured trajectories of a wheelchair user during a submax stage, where
the shoulder, elbow and hand trajectories have been isolated.

3.3.2 Preprocessing for the Van Der Pol estimator

When using the limit cycle of the van der pol oscillator as an estimator, we have to look at
the phase portraits of the motion-captured trajectories. In this study, we will only focus on the
elbow and hand-tracked trajectories with respect to the shoulder, namely d e and dh, which is
defined in equation (3.3) and depicted as red in figure 3.6b. However, to simplify the prob-
lem, we will only work in the horizontal dimension as most of the movement is done in this
direction, and the fact that the van der pol oscillator defined in section 2.1 is one dimensional.

Hence we denote the horizontal data from either d e or dh as

x = {x}Nn=1 (3.7)

In order to make a phase portrait of the horizontal position of the elbow and its speed fit the
limit cycle, we need to make sure x is bounded the same as the limit cycle of the van der pol
oscillator is bounded. From section 2.1.1 we have that x ∈ [−2,2], hence we scale x as shown
in equation (3.8)

x̃ = −2+ 4
(x −min(x ))

max(x )−min(x )
(3.8)

Furthermore, to be able to make a phase portrait of x̃ and ˙̃x we need to find the derivative ˙̃x .
The time series x̃ is discrete with a frequency f = 120Hz, hence we define the the numerical
derivative at each sample x̃[n] as

˙̃xn =
x̃n+1 − x̃n

∆t
, ∆t =

1
f

(3.9)
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Now we can make the phase portrait of x̃ and ˙̃x as shown in figure 3.7
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Figure 3.7: Phase portrait of x̃ and ˙̃x .

We once more make a simplification by only moving forward with the data points of (x̃ , ˙̃x )
that satisfies ˙̃xn > 0. Hence we define

(x̃ , ˙̃x )+ =
�

(x̃ , ˙̃x ) : ˙̃xn > 0
	

(3.10)

We make this simplification as the analytical solutions f ±, of the van der pol oscillator from
section 2.1 are piece-wise, i.e f + : [−2,2] → R+ and f − : [−2,2] → R−. Furthermore, the
part of the trajectories where ˙̃xn > 0 are the trajectories that explain the motion of pushing
the arm forward; these trajectories are far more interesting to this study in comparison to the
trajectories explaining retraction of the arm.

3.4 Energy expenditure and heart rate centroids

Figure 3.8 shows the heart rate and energy expenditure time series of participants 1 to 3 during
the second interval stage from the 2.5% test day.
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Figure 3.8: Heart rate and energy expenditure over time, from the second interval stage at the
2.5% incline test day.

In order to catch the essence of the heart rate and energy expenditure, we remove the first 60
seconds and the last 30 seconds from the heart rate and energy expenditure signals. We will
use centroids of each signal in a steady state to investigate the correlations between heart rate
and energy expenditure and the estimated parameters of each model. Therefore, to calculate
the heart rate and energy expenditure centroids, we simply take the mean value of the signals
in the newly defined interval.

3.5 Modeling of external forces and damping

The autonomous system derived in section 2.2.3 acts as a simplification of the dynamics of
the human arm. To further mimic the arm’s movements in the wheelchair experiment, some
external force must be applied. We picture this force as periodical signals acting on the masses
m1 and m2. Furthermore, the forces acting on the wheel from the arm are tangent vectors on
the wheel, mainly in the x-direction. Hence, we assume that these forces act horizontally on
the masses, i.e., only in the x-direction with respect to R . The forces F1 and F2 acting on the
masses m1 and m2 are depicted in figure 3.9.
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Figure 3.9: The forced and damped double pendulum

We assume that the periodical forces F1 and F2 take the form of a square wave as the arm
produces a force in the positive x-direction to push the wheel forwards and then a force in the
negative x-direction to retract the arm to its starting position. Hence, F1 and F2 are defined
as

F1 =
�

A1 sgn(sin(Ω1 t +φ1)) + B1 0
�⊤

F2 =
�

A2 sgn(sin(Ω2 t +φ2)) + B2 0
�⊤ (3.11)

where sgn(.) is the sign function, A, Ω, φ and B are constants and t ∈ R+ is time.

Furthermore, the forces F1 and F2 must be applied in the Lagrangian framework as described
in section 2.2.2. It follows from equation (2.25) that the generalized forces Q1 and Q2 corres-
ponding to F1 and F2 are given by

Q1 =
∂ p⊤1
∂ q

F1, Q2 =
∂ p⊤2
∂ q

F2 (3.12)

where Q1 and Q2 are computed to be

Q1 =

�

l1 cosθ1 l1 sinθ1
0 0

�

F1, Q2 =

�

l1 cosθ1 l1 sinθ1
l2 cosθ2 l2 sinθ2

�

F2 (3.13)

The frictional forces acting on the pendulum work as a dampening effect; they produce a force
in the opposite direction of the angular velocities q̇ . These forces are introduced to represent
the frictional properties of synovial joints in the human arm (G. Stachowiak et al., 1994).
Furthermore, we can model the effects of these frictional forces as a moment T working on



Chapter 3: Method and set-up 25

the masses m1 and m2 in the opposite direction of the angular velocities q̇ . This dampening
moment can be described as

T = −ζ
�

θ̇1

θ̇2

�

= −ζq̇ (3.14)

where ζ∼ [kgm2/s] is the dampening coefficient.

Here, T is already described by the generalized coordinates q and not the fixed reference frame
R which is the case for F1 and F2. Hence, we can directly introduce T into the equations of
motion from equation (2.40).

Using equation (2.26) and equation (2.40) we can rewrite the coupled system from equa-

tion (2.42) with the external forces Q1, Q2 and T with respect to the state-space x =

�

q
ω

�

as

ẋ =

�

q̇
ω̇

�

=





ω

W (q)−1
�

Q1 +Q2 − ζω+∇qL −
∂

∂ q
(W (q)ω)ω
�



 (3.15)

3.6 Estimating F1 and F2

Our main objective when estimating the forces F1 and F2 is to fit the model described in
section 3.5 to the data as best as possible.

First we define the λ as the vector containing the parameters we seek to estimate.

λ=
�

A Ω φ B
�⊤

(3.16)

where A=
�

A1 A2
�

, Ω=
�

Ω1 Ω2
�

, φ =
�

φ1 φ2
�

, B =
�

B1 B2
�

.

We then write our double pendulum model from equation (3.15) as a more compact equation.

ẋ = f (t, x ;λ), x (t0;λ) = x 0 (3.17)

Suppose x (t;λ) =
�

θ̂e(t;λ) θ̂h(t;λ) ω̂1(t;λ) ω̂2(t;λ)
�⊤

is the solution to equation (3.17)
with the initial condition (t0, x 0) and θ e and θ h is the time series from section 3.3.1. We then
describe the optimization problem as

min
λ

N
∑

n=1

�

(θ (n)e − θ̂e(tn;λ))2 + (θ (n)h − θ̂h(tn;λ))2
�

(3.18)

s.t λ ∈ O (3.19)
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where O denotes the space that λ is bounded by and the sample n and tn explains the same
point in time. Here, the least squares estimator in equation (3.18) seeks to minimize the dif-
ference between the angles from the data and the model.

However, the system in equation (3.17) is a nonlinear ordinary differential equation with no
known analytical solution, so we have to solve it numerically with a Runge-Kutta or some other
numerical method. This poses a problem as Runge-Kutta methods are iterative, which means
that when λ is unknown, the symbolic complexity of the solution will greatly increase for each
iteration.

To give an example, if we take the simplest case of a Runge-Kutta method, RK1 or Euler’s
Method and perform it to solve equation (3.17) with an unknown λ, we get the following.

Given the initial value problem of equation (3.17), the Euler method reads as

x n+1 = x n + hf (tn, x n;λ), (3.20)

for some step size h.

The first few iterations reads as

x 0 = x 0

x 1 = x 0 + hf (t0, x 0;λ)

x 2 = x 1 + hf (t1, x 1;λ) = x 0 + hf (t0, x 0;λ) + hf (t1, x 0 + hf (t0, x 0;λ);λ)

x 3 = . . .

(3.21)

equation (3.21) clearly shows that with each iteration the symbolic complexity increases massively.
This means that in practice, the optimization problem presented in equation (3.18) cannot be
solved using derivative-based optimization methods.

We present an objective function that takes in defined values of λ, the known data θ = {θ e,θ h}
and returns the value of some cost function J in algorithm 1.

Algorithm 1 Algorithm of the objective function to minimize

1: function OBJECTIVEFUNCTION(λ,θ , x 0, N)
2: solve ẋ = f (t, x ,λ) using a numerical solver for N samples
3: Compute the cost function J = ∥θ e − θ̂ e∥22 + ∥θ h − θ̂ h∥22
4: return J
5: end function

3.6.1 Parameter selection

The constants in the model derived in section 3.5 needs to be defined in order to solve the
optimazation problem from equation (3.18). The constants that have yet defined are l1, l2,
m1, m2, ζ and g. Estimates of l1 and l2 can be calculated directly from the data as shown
in section 3.3.1. However we cannot measure the the masses m1 and m2 and the damping
constant ζ from the data. From (Plagenhoef et al., 1983), we use the percentages of body
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weight measurements Forearm & Hand and Upper Arm which explains 2.52% and 3.25% of
the total body weight respectively. We then define m1 and m2 as

m1 =
Upper Arm

Forearm & Hand
= 1.29

m2 = 1
(3.22)

Here, m2 is defined as m2 = 1 and m1 is defined accordingly to keep the ratio m1/m2 intact,
as it is the ratio that affects the movement of the pendulum.

From (Drewniak et al., 2009) we have that the damping coefficient in synovial joints are cal-
culated to be 2.969× 10−5 ± 3.409× 10−5 kg m2/s. Hence, we will define ζ as the following.

ζ= 2.969× 10−5 (3.23)

Finally we define g as the earths gravitational acceleration

g = 9.81 (3.24)

3.6.2 Constraint selection

To be able to minimize the objective function of algorithm (1) we need to define O , which is the
space that constrains λ. Since there is not any straightforward way to find these constraints,
we need to define them based on what behavior of the model can be deemed as "acceptable"
and what behavior we want to penalize.

The parameters A and B explain the magnitude of the forces F , we do not want these large
enough to make either of the pendulums "flip". The upper pendulum flips when it reaches

either of the states x =
�

±π θ2 ω1 ω2
�⊤

and the bottom pendulum flips when reaching

either of the states x =
�

θ1 ±π ω1 ω2
�⊤

. Several value combination will be tried in order
to penalize behaviour sensitive to "flipping" without constraining A and B too harshly. Hence
A and B will be determined from trial and error using a simulation of the model.

The frequency parametersΩ are to be decided by the characteristics of the data.Ωwill be lower
bounded by zero and upper bounded by the highest frequency registered by a participant,
although with some margins.

The phase shift parameters φ are simply constrained by
�

0 0
�

≤ φ ≤
�

2π 2π
�

as this
contains all the unique phase shifts possible for the forces F .

3.7 The Van der Pol estimator

In this section we want fit the limit cycle of the van der pol oscillator to the the data described
in section 3.3.2, by estimating the parameters of the van der pol limit cycle.

3.7.1 Selection of approximation order

To get started with deriving the Van der Pol estimator, we have to choose which approximation
from section 2.1.2 we will use as the function to estimate. Figure 3.10 shows the root mean
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square error (RMSE) between approximated limit cycles of the Van der Pol oscillator and their
numerical RK4 solutions.

Figure 3.10: RMSE between approximated limit cycles and the RK4 solution.

In figure 3.10 we see that the RMSE for the third-order approximation rises immensely after
ϵ ≈ 2 compared to the lower order approximations. The power series approximations are
calculated assuming that ϵ retains values in the neighborhood of ϵ = 0. However, we also
want the estimator to be robust to higher values of ϵ. Figure 3.11 shows the phase portraits
of the limit cycles of the third-order approximation with different values of ϵ compared to the
RK4 solution with the same ϵ values.

(a) Third order approximations. (b) RK4 solutions.

Figure 3.11: Phase portraits of the third order approximations and RK4 solutions of the limit
cycle.

Both in figure 3.11 and figure 3.10 we clearly see that the third-order approximations are very
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sensitive to higher values of ϵ. Hence we exclude the third-order approximation of the limit
cycle as a viable estimator.

Figure 3.12 shows the same RMSE measurements as in figure 3.10 without the third-order
approximations.

Figure 3.12: RMSE between approximated limit cycles and the RK4 solution.

In figure 3.12 we can see that the second-order retains the highest accuracy until ϵ ≈ 6. For ϵ >
6, the zeroth-order approximation has the lowest RMSE. Figure 3.13 shows the phase portraits
of the limit cycles of the second-order approximation with different values of ϵ compared to
the RK4 solution with the same ϵ values.

(a) Second order approximations. (b) RK4 solutions.

Figure 3.13: Phase portraits of the second order approximations and RK4 solutions of the limit
cycle.
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In figure 3.13, we can see that the second-order approximations are quite robust to higher val-
ues of ϵ. However, when ϵ is increasing, we see that the second-order approximation becomes
increasingly deformed, and the values of ẋ get much higher than its RK4 solution counterpart.
Since the second-order approximation is undoubtedly the most accurate approximation when
ϵ ∈ [0, 6], we choose the second-order approximation of the limit cycle as our estimator, this
is done under the assumption that ϵ will be constrained between ϵ ∈ [0, 6].

3.7.2 Deriving the estimator

Given the data set (x̃ , ˙̃x )+ from section 3.3.2 and the second order approximation of the van
der pol limit cycle f (+)[2] from section 2.1.2. Treating ˙̃x as the response variable and x̃ as the

covariable and f (+)[2] as the regression function, then the least squares estimator, denoted by ϵ̂
is the value of ϵ that minimizes

N
∑

n=1

�

˙̃xn − f (+)[2] ( x̃n,ϵ)
�2

, ∀ϵ ∈ [0, 6] (3.25)

However, there is a few problems with the expression of equation (3.25). Firstly, as seen in
figure 3.13a, the domain and codomain of f (+)[2] can be expressed as, f (+)[2] : [−2,2]× [0,6]→

[0,12] i.e when ϵ ∈ [0, 6], ẋ , the codomain of f (+)[2] has the upperbound of 12. This is not the
case for the response variable x̃ which can contain higher values than 12. Hence, we introduce
the linear term K , which will scale the function f (+)[2] so its codomain can be increased. Figure

3.14b shows the phase portrait of x̃ , where we can clearly see that ˙̃x contains larger values
than the codomain of f (+)[2] .
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(a) Phase portrait of (x̃ , ˙̃x )+. (b) Distribution of samples with respect to x̃ .

Figure 3.14: Phase portrait and sample distribution from (x̃ , ˙̃x )+

In figure 3.14b we see that the distribution of ˙̃x values given evenly spaced intervals of x̃ is not
uniform. In practice, this means that intervals of x̃ with a higher density of samples will have
a greater influence in estimating ϵ̂. Hence we introduce the weighting matrix W to properly
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weight each sample with respect to the density of samples nearby. With the new variables K
and W, we can redefine the least-squares estimator as the following optimization problem.

min
K ,ϵ





W
1
2

�

˙̃x − K f (+)[2] (x̃ ,ϵ)
�







2

2
(3.26)

Where we define W as follows.

Let x̃ be split into M evenly spaced intervals. Then let {w}Mm=1 denote the number of samples
contained in each interval. Finally, we can define the diagonal entries of W as

W =









W1
W2

. . .
WM









(3.27)

Where Wm ∈ Rwm×wm is defined as

Wm =







1
wm

. . .
1

wm






(3.28)
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Results

4.1 Double Pendulum estimator

The optimization problem of algorithm 1 was solved in MATLAB using the Global Optimization
Toolbox (MATLAB, R2020b). The numerical solver used for solving the initial value problem in
algorithm 1 was a variable-step, variable-order Adams-Moulton predictor-corrector solver im-
plemented as "ode113" in MATLAB (Shampine and Reichelt, 1997). This solver was preferred
over the classical ode solver "ode45", as systems that exhibit chaotic behaviour requires more
precise solvers (Chen, 2008).

The parameters of λ were estimated for all the interval stages across all test days for every
participant.

4.1.1 Estimator Performance

The double pendulum model was simulated with the estimated parameters λ for all parti-
cipants (from a specific stage on a specific incline test day). The FIT and MSE errors between
θ̂ e and θ e and between θ̂ h and θ h were fit to a gaussian distribution using maximum like-
lihood estimation. Table 4.1 and 4.2 show the mean and standard deviation for the FIT and
MSE distributions, where µ denotes the mean and σ denotes the standard deviation.

32
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Elbow Hand

µ σ µ σ Stage Incline

5.00 34.58 -143.59 116.98 1

0.5%-13.65 32.49 -120.02 105.37 2

-18.95 29.23 -81.89 60.59 3

-4.25 36.85 -270.32 190.43 1

2.5%-9.92 30.08 -151.69 114.36 2

-7.08 24.92 -102.12 74.30 3

19.43 35.62 -350.31 235.23 1

5.0%-26.24 113.36 -1530.07 5818.87 2

-16.58 28.71 -90.39 48.54 3

Table 4.1: Double pendulum FIT distributions.

Elbow Hand

µ σ µ σ Stage Incline

0.15 0.05 0.07 0.04 1

0.5%0.20 0.08 0.10 0.06 2

0.21 0.10 0.11 0.08 3

0.15 0.07 0.06 0.03 1

2.5%0.16 0.07 0.07 0.04 2

0.15 0.05 0.08 0.07 3

0.09 0.04 0.06 0.05 1

5.0%0.17 0.19 0.14 0.39 2

0.13 0.05 0.04 0.02 3

Table 4.2: Double pendulum MSE distributions.

The FIT and MSE values clearly show that the model does not fit the observed values well.
Negative FIT values convey that the model fits the data worse than the mean values of the
data. This signifies that our model does not explain the essence of data.

In figures 4.1, 4.2 and 4.3 we can see the observed values θ e and θ h plottet againts the estim-
ated values θ̂ e and θ̂ h.



Chapter 4: Results 34

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Cartesian positions of θ̂e and θ̂h
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(b) Cartesian positions of θe and θh
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(c) θ̂e and θe with FIT = −484.6
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(d) θ̂h and θh with FIT = −26208.7

Figure 4.1: The worst performance of the simulated model with estimated parameters.

Figure 4.1 shows the estimation with the worst performance. Here we can clearly see that the
estimated values of λ did not produce stable oscillations, and the estimated values of θ̂ e and
θ̂ h behave somewhat chaotic.
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(a) Cartesian positions of θ̂e and θ̂h
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(b) Cartesian positions of θe and θh
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(c) θ̂e and θe with FIT = −15.1
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(d) θ̂h and θh with FIT = −137.4

Figure 4.2: Average performance of the simulated model with estimated parameters.

Figure 4.2 shows an estimation of θ̂ e and θ̂ h with average performance. We can observe in
figure 4.2a that the estimated values of θ̂ e and θ̂ h do oscillate in the same region as the
observed values in figure 4.2b. However, we can see that its shape does not transfer well to
the observed values. Figure 4.2c and 4.2d also show that both phase and values of θ̂ e and θ̂ h
are quite different from the observed data.
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(a) Cartesian positions of θ̂e and θ̂h
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(b) Cartesian positions of θe and θh
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(c) θ̂e and θe with FIT = 50.4
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(d) θ̂h and θh with FIT = 21.4

Figure 4.3: The best performance of simulated model with estimated parameters.

Figure 4.2 shows the estimation of θ̂ e and θ̂ h with the best performance. We can observe
in figure 4.3a that the estimated values of θ̂ e and θ̂ h do oscillate in the same region as the
observed values in figure 4.3b and share somewhat similar shape. Furthermore, we can see
figure 4.3c and 4.3d that the difference in phase from the estimated and observed values are
quite small and values of θ̂ e and θ̂ h are quite different from the observed data.

4.1.2 Heart Rate and Energy Expenditure Correlation

To examine if there is any correlation between the estimated parameters λ and the heart rate
and energy expenditure centroids, we perform PCA on λ for every experiment and substage.
We do this with the hopes of gathering the variance explained by λ in fewer dimensions.
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Figure 4.4: Explained variance from each principal component with plot of cumulative eex-
plained variance.

Figure 4.5: Correlation loadings heatmap between the parameters of λ and the principal com-
ponents.

Figure 4.4 shows the explained variance from each principal component and figure 4.5 show
what parameters of λ contributes to which of the principal components. In figure 4.5 we can
see that the first two principal components are explained well by all the parameters of λ. This
also provides the information that many of the parameters of λ are correlated to each other.
Hence we proceed with using the first two principal components for further analysis.

Figures 4.6 and A.5 shows the two first principal components plotted against the energy ex-
penditure and heart rate centroids for all participants and interval stages during the 0.5%
incline test day.
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(a) PC1 plotted againt EE. (b) PC1 plotted againt HR.

Figure 4.6: Scatter plot from the 0.5% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.

(a) PC2 plotted againt EE. (b) PC2 plotted againt HR.

Figure 4.7: Scatter plot from the 0.5% incline test day of the second principal component
against energy expenditure and heart rate. The center of the clusters from each stage are
marked as squares.

It is quite clear from the plots of figures 4.6 and A.5 that there is no clear clustering of the
values of the principal components. The values of the first and second principal component
during the different stages seems to be somewhat randomly distributed. Neither is there any
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visible correlation between the principal components and heart rate or energy expenditure.

Since the precision of the model is measured to be very inaccurate, the double pendulum will
not be used to perform any further analysis. The plots equivalent to figures 4.6 and A.5 for the
2.5% and 5.0% test days are provided in the appendix, A.3.

4.2 Van der pol estimator

The nonlinear optimization problem of equation (3.26) was solved in MATLAB using the Global
Optimization Toolbox (MATLAB, R2020b). The parameters K and ϵ were estimated for all the
interval stages across all test days for every participant.

4.2.1 Estimator Performance

The FIT and MSE errors between ˙̃x (+) and K̂ f (+)[2] (x̃ , ϵ̂)was calculated for all participants (from
a specific stage on a specific incline test day), and fit to a gaussian distribution using maximum
likelihood estimation. Table 4.3 and 4.4 show the mean and standard deviation for the MSE
and FIT distributions, where µ denotes the mean and σ denotes the standard deviation.

Elbow Hand

µ σ µ σ Stage Incline

57.42 27.16 54.71 17.91 1

0.5%44.56 29.55 47.12 23.70 2

35.35 29.70 36.03 21.92 3

59.23 27.12 46.12 19.83 1

2.5%46.05 28.70 37.56 22.89 2

46.19 32.73 36.11 24.76 3

65.44 17.49 57.34 18.26 1

5.0%56.70 17.32 39.51 22.67 2

44.14 28.57 32.97 21.18 3

Table 4.3: Van der pol estimator FIT distributions.
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Elbow Hand

µ σ µ σ Stage Incline

7.77 8.06 7.67 4.76 1

0.5%15.92 11.10 15.43 9.63 2

24.20 10.48 25.46 12.22 3

5.32 5.52 6.65 4.87 1

2.5%9.13 7.76 10.28 6.77 2

11.97 9.40 13.88 7.28 3

2.72 2.24 3.33 2.54 1

5.0%5.50 4.75 7.81 6.61 2

10.21 8.55 12.66 8.13 3

Table 4.4: Van der pol estimator MSE distributions.

From a first look at the error distributions in table 4.3 and 4.4, we can see that the overall
performance is quite good in comparison to the double pendulum estimator. This is a good
indicator that the arm movement exhibits some similar behavior to the Van der Pol limit cycle.

(a) Elbow data with a FIT value of -31.9. (b) Hand data with a FIT value of -9.7.

Figure 4.8: The observed values from (x̃ , ˙̃x )+ plotted with the estimated values from
K̂ f (+)[2] (x̃ , ϵ̂) with the worst FIT values.

Figure 4.8 shows the cases where the van der pol estimator performed the worst for the elbow
and hand-tracked data. For the elbow data, it is clear that the speed distribution during the
elbow movement is not similar to the van der pol limit cycle. For the hand data, the speed
distribution is clearly non-consistent for each cycle the data represents and consequently fits
poorly with the van der pol estimator.
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(a) Elbow data with a FIT value of 58.2. (b) Hand data with a FIT value of 44.3.

Figure 4.9: The observed values from (x̃ , ˙̃x )+ plotted with the estimated values from
K̂ f (+)[2] (x̃ , ϵ̂) with average FIT values.

Figure 4.9 shows how the average-case performance of the estimator looks for the elbow and
hand-tracked data. The shapes of the distributions in both figure 4.9a and figure 4.9a share
similarities with the van der pol limit cycle. For the elbow data, the speed distribution is slightly
inconsistent for each movement cycle, hence the high variance in the ˙̃x direction. For the hand
data, the speed distribution is a little skewed to the right, yielding a somewhat imprecise fit to
the van der pol estimator.

(a) Elbow data with a FIT value of 90.2. (b) Hand data with a FIT value of 84.7.

Figure 4.10: The observed values from (x̃ , ˙̃x )+ plotted with the estimated values from
K̂ f (+)[2] (x̃ , ϵ̂) with the best FIT values.

Figure 4.8 shows the cases where the van der pol estimator performed the best for the elbow
and hand-tracked data. Both fit the model very well, although there is a little more variance
in the ˙̃x direction for the hand data.
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4.2.2 Correlations with heart rate and energy expenditure

The estimated values K and ϵ are reduced to one variable using PCA. This is done because we
believe the relationship between the two variables is important. Hence, by using PCA, we can
find the linear combination of K and ϵ that explains the most variance in the space created by
K and ϵ.

Figure 4.11 shows the correlation loadings of the PCA performed on the elbow and hand data.
The heatmap indicates how much a variable contributes to a principal component. Further-
more, in figure 4.11a and figure 4.11b, we can see that K and ϵ both contribute a lot to the
first principal component, signifying that both parameters have high explanatory power.

(a) Correlation loadings for the elbow data. (b) Correlation loadings for the hand data.

Figure 4.11: The correlation loadings shows the correlation between the estimated values of
K and ϵ and the principal components.

The explained variance by the first principle component from the elbow data and hand data
are 68% and 80%, respectively.

Elbow data

Figures 4.12, 4.13 and 4.14 show the first principal component of K and ϵ form the elbow
data plotted against the energy expenditure and heart rate centroids for all participants and
interval stages during the 0.5%, 2.5% and 5.0% incline test days.



Chapter 4: Results 43

(a) PC1 plotted against EE. (b) PC1 plotted against HR.

Figure 4.12: Scatter plot from the 0.5% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.

(a) PC1 plotted against EE. (b) PC1 plotted against HR.

Figure 4.13: Scatter plot from the 2.5% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.
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(a) PC1 plotted against EE. (b) PC1 plotted against HR.

Figure 4.14: Scatter plot from the 5.0% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.

Figure 4.12 depicts the first principal component of K and ϵ plotted against HR and EE. We
can observe that there is a formation of clusters at each stage. There is also a visible correla-
tion between PC1 and HR or EE. Clearly, a decreasing value in the first principal component
indicates an increase in energy expenditure and heart rate. However, in figures 4.13 and 4.14
we observe that when the incline rises, the relations between PC1, EE and HR becomes more
vague and the clusters less dense.

Generally, we can see a high variance between participants in the PC1 direction within each
stage through all incline test days and a significant increase in variance as the incline increases.

Hand data

Figures 4.15, 4.16 and 4.17 show the first principal component of K and ϵ form the hand data
plotted against the energy expenditure and heart rate centroids for all participants and interval
stages during the 0.5%, 2.5% and 5.0% incline test days.
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(a) PC1 plotted against EE. (b) PC1 plotted against HR.

Figure 4.15: Scatter plot from the 0.5% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.

(a) PC1 plotted against EE. (b) PC1 plotted against HR.

Figure 4.16: Scatter plot from the 2.5% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.
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(a) PC1 plotted against EE. (b) PC1 plotted against HR.

Figure 4.17: Scatter plot from the 5.0% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.

Figure 4.15 depicts the first principal component of K and ϵ plotted against HR and EE. We
can observe that there is a formation of clusters at each interval stage. There also seems to be
a weak correlation between PC1 and HR or EE. However, it is generally a very high variance
of PC1 values within each interval stage.

For the 2.5 and 5.0% test days, depicted in figure 4.16 and figure 4.17, there is not much
information to be found at all as the PC1 values seem to be somewhat scattered randomly.

4.2.3 IPAQ and Gender correlation

IPAQ and Gender are two of the demographic variables we suspect may share correlations
with the estimated parameters from the Van der Pol estimator. IPAQ levels, described in sec-
tion 1.2.2, indicate how physically active a participant is. Of the 20 participants, 5 participants
score high on the IPAQ test, and the remainder of the participants score moderate. From
table 1.1, we can see the different thread mill speeds of the interval stages. The interval stages
for men are 1 km/h higher than for women; hence we expect to see overall higher K and ϵ
values for men than women.

Furthermore, in this section, we want to investigate if there is some connection between the
parameters K and ϵ and the variables IPAQ and Gender.
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(a) K plotted against ϵ from interval stage 1. (b) K plotted against ϵ from interval stage 2.

(c) K plotted against ϵ from interval stage 3.

Figure 4.18: K and ϵ from the elbow data for all participants during the 0.5% test day with
IPAQ levels marked as HIGH or MOD (moderate).
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(a) K plotted against ϵ from interval stage 1. (b) K plotted against ϵ from interval stage 2.

(c) K plotted against ϵ from interval stage 3.

Figure 4.19: K and ϵ from the elbow data for all participants during the 0.5% test day with
gender marked as M for male and F for female.

Figures 4.18 and 4.19 show the estimated values of K and ϵ from elbow data during the 0.5%
test day with marked IPAQ and gender values. In figure 4.19a we can see that participants
with HIGH IPAQ generate higher K values. Apart from this, there is not much information to
be found in the other interval stages and test days. The plots from the other 2.5% and 5.0%
incline test days are provided in the appendix A.3.2.

The same holds for the plots in figure 4.19 where there is also no clear connection between K ,
ϵ, and gender, even though men roll at higher speeds than women.
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Discussion

5.1 Model performances

5.1.1 The double pendulum estimator

To make a simplified mathematical model of the human arm, we went towards a design using
the double pendulum. Our goal was to express the forces acting upon the pendulum as signals
with unknown parameters to be decided from least-squares estimation. The least-squares es-
timation, which was solved with a derivative-free optimization method, produced poor results.
There may be numerous reasons why the performance of the model is so inaccurate.

Firstly the characteristics of the human arm and the forces it can produce are very complex.
The one-dimensional forces we modeled were a considerable simplification of these. To be able
to keep the number of unknown parameters down, we only modeled the forces in one dimen-
sion. These simplifications were also done to make the optimization problem computationally
feasible, as an increase in parameters vastly increased the computational complexity of the
optimization problem. Sacrificing a dimension of the forces acting on the pendulum may have
had a large impact on the precision of the model.

Secondly, the double pendulum is a dynamical system that exhibits chaotic behavior (Shinbrot
et al., 1992). Meaning that the system is very sensitive to initial conditions and inputs. As the
system is so sensitive to small changes, the choice of numerical solver is very important. This
is shown in (Chen, 2008), where the two MATLAB solvers used, ode45 and ode113, were used
to simulate the double pendulum and produced very different results. Furthermore, from (T.
Stachowiak and Okada, 2006) it is shown how amounts of energy in the double pendulum
system increases the chaotic behavior, and makes the system stray more from quasi-periodic
behavior. This might be relevant to our model as we increase total energy by introducing
external forces. The system’s high energy could make it more difficult for the estimator to find
quasi-periodic orbits similar to what we see in the data and possibly, as shown in figure 4.1,
not find any quasi-periodic orbits at all.

49
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5.1.2 The van der pol estimator

The van der pol oscillator described in section 2.1 was approached from an analytical perspect-
ive, where we approximated its limit cycle as a continuous function. We expected to see some
similar behavior between the phase portraits of the arm movements and the limit cycle itself.
This was done with relatively high precision with the help of a scaling parameter K . Although
the introduction of K made the model precise, it made the results harder to interpret. PCA was
put to use to find the best linear combination of the estimated parameters; however, it is hard
to say whether this linear combination acceptably represented all estimations.

One problem with the estimator was participants who reached their speed climax earlier in
their movement cycle. These cases were hard to explain with the model and made unreliable
parameter estimations. In figure 4.8a, we see an example of this.

5.2 Correlations with heart rate and energy expenditure

Generally, there was shown little correlation between heart rate and energy expenditure from
the estimated variables.

The parameters from the double pendulum estimator showed no potential in explaining the
participants’ heart rate and energy expenditure. Furthermore, it was so imprecise that any
found correlations would have been deemed untrustworthy.

The parameters estimated from the van der pol estimator, on the other hand, showed higher
potential as indicators of energy expenditure and heart rate. As shown in section 4.2.2, on
the 0.5% test day, there was visible clustering amongst the interval stages and correlations
between heart rate and energy expenditure. However, as the incline was increased, the estim-
ated parameters showed little potential as the clustering worsened and the variance increased.

5.3 Correlations with demographic variables

We examined the relationship between the estimated parameters K and ϵ and the demographic
variables IPAQ and Gender without finding any clear connections. It would have been inter-
esting to see if there was a connection between people living more physically active lifestyles
and their movement characteristics; however, this was not our observation. Furthermore, there
were neither found any connections between K and ϵ and gender. This was somewhat a sur-
prise as men rolled at higher speeds than women, although the difference in speed might have
been too small to be recognized from the estimated parameters.

5.4 Model Generalizability

Of the 20 participants in the study, there were seen lots of different shaped trajectories of arm
movement. In figures 4.1, 4.2 and 4.3 we see three cases with very different movement. The
participants show unique styles of movement, and this does pose a challenge when we have
the goal of parameterizing their movement.

Of the two models, the double pendulum is the model with the best potential to fit the unique
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movement of the participants. As it can theoretically, with the right external forces, fit any
movement the arm can do. However, with this versatility, problems in terms of model and
computational complexity arise.

The van der pol model, on the other hand, did fit the data quite well. However, when people
with unique movements or speed patterns do not fit the van der pol limit cycle shape, there is
a guaranteed mismatch between the model and the data.

5.5 Further Research

A central future objective is to increase the model performances. Regarding the double pen-
dulum, more mathematical modeling could prove useful. Constraining the model in likeness
to the human arm and making a more sophisticated model of friction are two things that were
not implemented due to a shortage of available time.

Of all 33 motion tracked points on the body and wheelchair, we only made use of 3 of them.
More advanced models could make use of even more trajectories to extract more information
from the experiments.

Through the results and discussion, we have seen that when the incline increases, the van
der pol estimator performance decreases, and the correlations between heart rate and energy
expenditure vanish. By using different preprocessing methods for the data, the increase in
incline could have been accounted for, and the results could have possibly been improved.
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Concluding remarks

In this study, we tried to explain the motion-captured trajectories of wheelchair users as math-
ematical models. The double pendulum model did show the potential of working as a general
model for the human arm but did not provide any useful information related to energy ex-
penditure or heart rate, possibly due to its low precision. Although, more precise modeling
and a different approach to the optimization problem could increase the performance of the
model

Correlation between the parameters estimated from the Van der Pol estimator and heart rate
and energy expenditure were observed on the 0.5% test day. This suggests that there is a
possibility to connect arm movement characteristics to heart rate and or energy expenditure.

No significant connections were found between the demographic variables and the estimated
parameters from the van der pol estimator. If there is a connection between arm movement
characteristics, IPAQ, or gender, the Van der Pol estimator was not able to explain it.

Further research should be conducted towards finding better models for motion-captured tra-
jectories, which may lead to more significant and interesting results.
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Appendix A

Additional Material

A.1 Power series of the Van der Pol limit cycle

A.1.1 Order zero [ϵ0]

Consider

f[0](x) = h0(x) (A.1)

which is to be introduced into
p[0](x ,ϵ)≡ p(x , 0) (A.2)

Using equation (2.7) and (2.8) we get

h[0](x)
dh[0](x)

dx
+ x = 0 ⇐⇒

d
dx

�

h[0](x)2 + x2

2

�

= 0 (A.3)

the solution to which provides the Cartesian equations

h(±)[0] (x) = ±
p

A2 − x2 =⇒ f (±)[0] (x) = ±
p

A2 − x2 (A.4)

where A is the a constant depending on the boundary conditions.

A.1.2 Order one [ϵ1]

Consider
f[1](x) = h[0](x) + h[1](x)ϵ (A.5)

where h[0](x) is given by the result in ??. Then we have to test the functions, related to two
branches of the integral curve

f (±)[1] (x) = ±
p

A2 − x2 + h(±)[1] (x)ϵ (A.6)

56



Chapter A: Additional Material 57

where h(±)[1] (x) are to be determined from when the Taylor polynomial

p[1](x ,ϵ) = p(x ,0) +
∂ p
∂ ϵ
(x , 0)ϵ (A.7)

equals zero when non-linear powers of ϵ are neglected. Calculations lead to the differential
equation

�

A2 − x2
�

dh(±)[1] (x)

dx
− xh(±)[1] (x) =
�

A2 − x2
� �

1− x2
�

(A.8)

to which the solution is given by

h(±)[1] (x) =
1
8

�

A2
�

4− A2
�

p
A2 − x2

sin−1
� x

A

�

+
�

A2 x − 2x3 + 4x
�

�

+
C (±)
p

A2 − x2
, (A.9)

where C (±) are integration constants. Using A2 = 4 and C (±) = 0 the solution becomes

f (±)[1] (x) = ±
p

4− x2 +

�

x −
x3

4

�

ϵ (A.10)

A.1.3 Order two [ϵ2]

At the second order of approximation we consider

f[2](x) = h[0](x) + h[1](x)ε+ h[2](x)ε
2, (A.11)

where h[0](x) and h[1](x) are provided from the equations (A.4) and (A.9), it follows that

f (±)[2] (x) = ±
p

A2 − x2 +
1
8

�

A2
�

4− A2
�

p
A2 − x2

sin−1
� x

A

�

+

+
�

A2 x − 2x3 + 4x
�

+
C (±)
p

A2 − x2

�

ε+ h(±)[2] (x)ε
2,

(A.12)

where h[2](x) is determined from when the third order Taylor polynomial

p[2](x ,ε) = p(x , 0) +
∂ p
∂ ε
(x , 0)ε+

1
2
∂ 2p
∂ ε2
(x , 0)ε2 (A.13)

equals zero when cubic powers of ϵ or higher are neglected. Substitution of equation (A.12)
into equation (A.13) leads to
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x sin−1
� x

A

�2
A8 +
p

A2 − x2

¨

−2x2 sin−1
� x

A

�

A6 +

�

4x4 sin−1
� x

A

�

+ 64
dh(±)2 (x)

d x

�

A4+

+

�

�

32x2 − 16x4
�

sin−1
� x

A

�

− 128x2 dh(±)2 (x)

d x
− 64xh(±)2 (x) + 16C (±)x2

�

A2+

+64x4 dh(±)2 (x)

d x
+ 64x3h(±)2 (x)− 32C (±)x4 + 64C (±)x2

«

+
�

x3 − 8x sin−1
� x

A

�2�

A6+

+
�

16x sin−1
� x

A

�2
− 16C (±)x sin−1

� x
A

�

− 5x5 + 8x3
�

A4 +
h

64C (±)x sin−1
� x

A

�

+

+8x7 − 24x5 + 16x3
�

A2 − 4x9 + 16x7 − 16x5 + 64
�

C (±)
�2

x = 0.
(A.14)

which becomes dramatically simplified with the parameter choices

|A|= 2, C (±) = 0 (A.15)

which results in

dh(±)[2] (x)

dx
−

xh(±)[2] (x)

4− x2
+

x3

16

p

4− x2 = 0 (A.16)

which, by integration yields

h(±)[2] (x) = ±
x6 − 6x4 + 32

96
p

4− x2
. (A.17)

Giving us the second order approximation of the Van der Pol limit cycle as

f (±)[2] (x) = ±
p

4− x2 +

�

x −
x3

4

�

ε±
x6 − 6x4 + 32

96
p

4− x2
ε2 (A.18)

A.1.4 Order three [ϵ3]

At the second order of approximation we consider

f[3](x) = h[0](x) + h[1](x)ε+ h[2](x)ε
2 + h[3](x)ε

3, (A.19)

where h[0], h[1] and h[2] are known from previous calculations. h[3] will be determined from
when the third order Taylor polynomial

p[3](x ,ε) = p(x , 0) +
∂ p
∂ ε
(x , 0)ε+

1
2
∂ 2p
∂ ε2
(x , 0)ε2 +

1
6
∂ 3p
∂ ε3
(x , 0)ε3 (A.20)

becomes zero where ϵ4 and higher orders are dropped.

Substitution of of equation (A.19) into equation (A.20) leads to
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�

96x2 − 384
�

dh(±)[3] (x)

dx
+ 96xh(±)[3] (x) + x8 − 9x6 + 24x4 − 16x2 = 0, (A.21)

which results in

h(±)[3] (x) =
sin−1
� x

2

�

48
p

4− x2
−

3x7 − 22x5 + 34x3 + 12x
2304

+
c(±)
p

4− x2
. (A.22)

Setting c(±) = 0 we obtain the the third order approximation of the Van der Pol limit cycle as

f (±)[3] = ±
p

4− x2 +

�

x −
x3

4

�

ε±
x6 − 6x4 + 32

96
p

4− x2
ε2+

+

�

sin−1
� x

2

�

48
p

4− x2
−

3x7 − 22x5 + 34x3 + 12x
2304

�

ε3

(A.23)

A.2 Atan2

atan2 is calculated as follows

atan2(y, x) =



































arctan
� y

x

�

if x > 0

arctan
� y

x

�

+π if x < 0 and y ≥ 0

arctan
� y

x

�

−π if x < 0 and y < 0

+π2 if x = 0 and y > 0

−π2 if x = 0 and y < 0

undefined if x = 0 and y = 0.

(A.24)
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A.3 Plots

A.3.1 Double pendulum estimator correlations with HR and EE

(a) Third order approximations. (b) RK4 solutions.

Figure A.1: Phase portraits of the third order approximations and RK4 solutions of the limit
cycle.

(a) Third order approximations. (b) RK4 solutions.

Figure A.2: Phase portraits of the third order approximations and RK4 solutions of the limit
cycle.
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(a) PC1 plotted againt EE. (b) PC1 plotted againt HR.

Figure A.3: Scatter plot from the 2.5% incline test day of the first principal component against
energy expenditure and heart rate. The center of the clusters from each stage are marked as
squares.

(a) PC2 plotted againt EE. (b) PC2 plotted againt HR.

Figure A.4: Scatter plot from the 2.5% incline test day of the second principal component
against energy expenditure and heart rate. The center of the clusters from each stage are
marked as squares.
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A.3.2 K and ϵ correlations with IPAQ and Gender

(a) K plotted against ϵ from interval stage 1. (b) K plotted against ϵ from interval stage 2.

(c) K plotted against ϵ from interval stage 3.

Figure A.5: K and ϵ from all participants during the 2.5% test day with IPAQ levels marked as
HIGH or MOD (moderate).



Chapter A: Additional Material 63

(a) K plotted against ϵ from interval stage 1. (b) K plotted against ϵ from interval stage 2.

(c) K plotted against ϵ from interval stage 3.

Figure A.6: K and ϵ from all participants during the 5.0% test day with IPAQ levels marked as
HIGH or MOD (moderate).
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(a) K plotted against ϵ from interval stage 1. (b) K plotted against ϵ from interval stage 2.

(c) K plotted against ϵ from interval stage 3.

Figure A.7: K and ϵ from all participants during the 2.5% test day with gender marked as M
for male and F for female.
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(a) K plotted against ϵ from interval stage 1. (b) K plotted against ϵ from interval stage 2.

(c) K plotted against ϵ from interval stage 3.

Figure A.8: K and ϵ from all participants during the 5.0% test day with gender marked as M
for male and F for female.
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