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Summary 
The recent technological advancements of Industry 4.0 technologies have shifted 

towards machine learning (ML) applications in predictive maintenance (PdM) and 

have been implemented in many industries. However, research on ML 

implementations to PdM for railway infrastructure assets is limited.  

This master thesis investigates the topic by these research questions; (1) Which 

ML algorithms are applied to PdM of railway infrastructure assets? (2) Which 

railway infrastructure assets are subjected to ML algorithms in PdM? (3) What 

inspection methods and tools are utilized for data acquisition for ML in PdM of 

railway infrastructure assets? (4) What are the main challenges of ML in PdM of 

railway infrastructure assets? 

To answer these research questions the following research methods are conducted:  

1. Literature review (LR) to collect necessary theoretical information on 

railway infrastructure maintenance, ML methods and algorithms, and 

challenges related to ML in PdM.  

2. A systematic literature review (SLR) for identifying and extracting 

materials and data from all relevant papers on the topic.  

3. Semi-structured interviews (SSI) with experts of railway infrastructure 

maintenance for further information on the progress of ML 

implementations to PdM.  

The main purpose was to uncover the progress towards ML in PdM of railway 

infrastructure assets. The papers identified in the SLR were screened against 

established eligibility criteria. This led to 20 relevant papers of the subject that 

were further analyzed. The analyses proved that the research on ML applications 

in PdM of railway infrastructure assets is relatively new and trending.  

The results found that 17 different algorithms are applied to railway infrastructure 

PdM purposes. The algorithms consists of supervised, unsupervised, ensemble, 

and deep learning (DL) methods. Railway tracks and switches are the most 

dominating assets of the SLR. Inspection methods of railway infrastructure assets 

are mainly inspection vehicles and sensors installed in the infrastructure. The most 

utilized datatypes are geometry, asset properties, and historical data. ML 
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algorithms are trained with data gathered from these methods, in combination 

with a variety of other data. The main challenges are associated with foundations, 

data collection, data quality, and data knowledge. Since ML implementations to 

PdM of railway infrastructure assets is a new research topic, several suggestions 

for further research are proposed.  
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Sammendrag 
De nylige teknologiske fremskrittene av Industry 4.0 teknologier har skapt et 

skifte mot applikasjoner innen maskinlæring (ML) for prediktivt vedlikehold 

(PdM) og har blitt tatt i bruk av mange bransjer. Derimot finnes det lite forskning 

på implementasjon av ML til PdM for komponenter i jernbaneinfrastrukturen. 

Denne masteroppgaven undersøker dette emnet med disse forskningsspørsmålene; 

(1) Hvilke algoritmer innen ML brukes i PdM av komponenter i 

jernbaneinfrastrukturen? (2) Hvilke komponenter i jernbaneinfrastrukturen har 

blitt underlagt av ML algoritmer i PdM? (3) Hvilke inspeksjonsmetoder og 

verktøy brukes for datainnsamling for ML i PdM av komponenter i 

jernbaneinfrastrukturen? (4) Hva er hovedutfordringene til ML i PdM av 

komponenter i jernbaneinfrastrukturen? 

For å svare på forskningsspørsmålene er følgende forskningsmetoder utført: 

1. Gjennomgang av relevant litteratur (LR) for å samle nødvendig teoretisk 

informasjon knyttet til vedlikehold av jernbaneinfrastrukturen, metoder og 

algoritmer innen ML, og utfordringer knyttet til ML i PdM. 

2. En systematisk litteraturgjennomgang (SLR) for å identifisere og trekke ut 

materialer og data fra alle relevante artikler i temaet. 

3. Semistrukturerte intervjuer (SSI) med eksperter i vedlikehold av 

jernbaneinfrastruktur for ytterligere informasjon om fremdriften av ML 

implementeringer i PdM. 

Hovedformålet var å avdekke fremgangen av ML i PdM av komponenter i 

jernbaneinfrastrukturen. Artiklene som ble identifisert gjennom SLR ble screenet 

mot etablerte kvalifikasjonskriterier. Dette førte til 20 relevante artikler som ble 

videre analysert. Ytterligere analyser viste at forskningen innen ML i PdM av 

komponenter i jernbaneinfrastrukturen er relativt ny og voksende. 

Resultatene viser at 17 forskjellige ML algoritmer brukes til PdM av 

jernbaneinfrastrukturen. Algoritmene består av «supervised», «unsupervised», 

«ensemble»- og dyp lærings (DL) -metoder. Jernbanespor og sporveksler er de 

mest dominerende komponentene. Inspeksjonsmetoder for komponentene er 

hovedsakelig inspeksjonskjøretøy og sensorer installert i infrastrukturen. De mest 
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brukte datatypene er komponentegenskaper, geometriske og historiske data. ML 

algoritmer trenes med data samlet fra disse metodene, i kombinasjon med en 

rekke andre data. Hovedutfordringene er knyttet til fundamentale grunnlag, 

datainnsamling, datakvalitet, og datakunnskap. Siden implementering av ML for 

PdM av komponenter i jernbaneinfrastrukturen er et nytt forskningstema, er flere 

forslag til videre forskning foreslått. 
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1 Introduction 
This study is motivated by the project thesis written by the author in the fall of 

2021. The project thesis studied the methods for implementing predictive 

maintenance (PdM) in railway infrastructure maintenance. Another objective was 

to identify the challenges associated with the maintenance, and methods for 

collecting and measuring data. The author found that PdM can beneficially impact 

the infrastructure performance, maintenance efficiency, and mitigate the potential 

consequences of the challenges. The project thesis established future research to 

be conducted. Amongst the suggestions was research on how Industry 4.0 

technologies can further improve the performance and efficiency of PdM of 

railway infrastructures (Matic, 2021). Therefore, the author chose to pursue the 

artificial intelligence technology named machine learning (ML) and uncover the 

progress of ML in PdM specifically in the railway industry. The following 

chapters defines the problem definition, research scope, thesis structure, and 

previous research.  

1.1 Problem Definition 
Large amounts of data are collected in the railway sector by the current inspection 

methods and tools (Kalathas and Papoutsidakis, 2021). This data must be 

reviewed, analyzed, and deployed to support decision-making procedures of 

maintenance. PdM is crucial for utilizing the data to predict and avoid faults in the 

railway infrastructure. Faults lead to replacement of assets and additional costs. 

Furthermore, it is critical to conserve resources, maintain customer service and 

passenger safety. The railway infrastructure consists of numerous assets, e.g., 

tracks, switches, embankment, catenary, and signaling systems. These require 

long-term and sustainable maintenance strategies to avoid and mitigate faults. Due 

to several differences in properties of assets, they need different maintenance 

plans and actions, including inspection methods for data collection. PdM can 

increase maintenance efficiency and support the existing challenges (Matic, 

2021).  

The ongoing industrial revolution called Industry 4.0 is linked to integrating 

physical and digital systems. This integration leads to larger amounts of data. 

Moreover, the emerging technologies from Industry 4.0 integrate a better 
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interaction between people and machines, allowing a quicker and more centered 

information-sharing platform. Alpaydin (2016) defines ML as “programming 

computers to optimize a performance criterion using example data or past 

experience”. As a result, the ML approach has become a vital tool for developing 

proper PdM strategies (Carvalho et al., 2019). With support from ML, PdM for 

infrastructure asset management can more accurately determine if an asset will 

fail within a specified time frame, known as failure prediction. Moreover, the 

technology can estimate the remaining useful life (RUL) of an asset (Bukhsh and 

Stipanovic, 2020, Matic, 2021). However, according to a survey by Haarman et al. 

(2017), only 11% of the participating companies have applied ML in PdM. This 

indicates that the implementation has much potential, but also implies that there 

are some inherent challanges 

With this background, the master thesis will research the PdM strategies with ML 

approaches in railway maintenance. With respect to the railway sector, the author 

seeks to establish the most suitable ML algorithms for PdM. In addition, 

researching which data collection methods (including data types and asset 

dimensions) are utilized, what infrastructure assets are most exposed to PdM with 

ML, and identifying the current inherent challenges. To achieve this purpose, the 

author will gather information on railway infrastructure PdM and ML methods 

through a LR, followed by research attempting to uncover all papers related to 

ML implementations in PdM of railway infrastructure assets. This is 

accomplished with SLR. Parallelly, to gain more knowledge and insight into the 

problem, interviews with experts in ML for railway PdM has been conducted. At 

the end, the author will present the results and analysis, followed by a discussion. 

Lastly, a conclusion of the whole report is conducted. 

1.2 Research Scope  
The primary objective is to identify ML algorithms applied to PdM for railway 

infrastructure assets. Regarding their application, railway infrastructure assets, 

inspection methods, and tools need to be addressed. Moreover, this research seeks 

to classify the data acquisition sources, description of datasets, and asset 

dimensions. In addition, to identifying ML algorithms, another objective is to 

determine which infrastructure assets are exposed to ML applications. Previous 

research implies that ML may benefit PdM, but companies still struggle with the 
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implementation, as stated in the problem definition. Therefore, the last objective is 

identifying the current challenges related to ML in PdM. Centered around these 

objectives, the following research questions (RQs) have been formulated: 

RQ1: Which ML algorithms are applied to PdM of railway infrastructure assets? 

RQ2: Which railway infrastructure assets are subjected to ML algorithms in PdM? 

RQ3: What inspection methods and tools are utilized for data acquisition for ML 

in PdM of railway infrastructure assets? 

RQ4: What are the main challenges of ML in PdM of railway infrastructure 

assets? 

1.2.1 Limitations 

The scope of the project is limited to ML in PdM of the railway industry. More 

precisely, ML applications to other assets (e.g., trains and inspection vehicles) 

than the railway infrastructure will not be researched. In terms of PdM, this thesis 

strictly focuses on methods that predict failure, not methods for detecting 

anomalies, which is sometimes related to PdM. Regarding the ML algorithms, the 

author will present their general functions, but not study them deeply in terms of 

programming implementation. In addition, the author will not describe the 

identified papers from the SLR in every detail, but provide an overview of 

inspection methods and tools, main findings, and expressed challenges.  
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1.3 Thesis Structure 
Chapter 1 – Introduction  This chapter introduces the project by 

expressing the motivation and background, 

justifying the research topic. It presents the 

problem definition, research scope, thesis 

structure, and previous research.  

Chapter 2 – Methodology  Presents the design of the conducted research. 

It consists of three parts, a LR, SLR, and a 

SSI, that are used to achieve the purpose of 

this thesis. 

Chapter 3 – Railway 

infrastructure maintenance 

Describes the relevant information of railway 

infrastructure maintenance found from the 

LR. The chapter investigates several sub-

topics in the area. 

Chapter 4 – Machine Learning Provides the theory explored in the LR. 

Establishes definitions of ML topics, and 

describes them from a general perspective, 

and presents the challenges related to ML in 

PdM. 

Chapter 5 – Results Presents the results from the SLR and the 

SSIs.  

Chapter 6 – Discussion This chapter discusses the results from 

chapter 5 in correlation to the research 

questions, previous work, and weaknesses.  

Chapter 7 – Conclusion  Concludes the thesis by presenting the key 

results and discussion of the problem 

definition. In addition, suggestions for further 

research areas are provided.  
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1.4 Previous Research 
Previous research in the literature of ML encompasses a wide range of models and 

methods for each learning type. Regarding PdM applications, the most prevalent 

ML types that may be utilized for failure prediction and RUL, are supervised and 

unsupervised learning (Arena et al., 2022). From a comparative study conducted 

by Ouadah et al. (2022), Random Forest (RF), Decision Tree (DT), and k-Nearest 

Neighbors (kNN) were selected as the most applied algorithms for PdM purposes 

based on a set of criteria. This study found that RF and DT achieved relatively 

similar accuracy and that kNN is a more robust classification algorithm for large 

datasets, but RF performs better for small datasets.   

Several research papers on PdM applications with ML approaches have been 

published. To the knowledge of the author, other SLRs are lacking in the railway 

infrastructure assets field. Nakhaee et al. (2019) focused on ML algorithms 

applied to purely railway tracks and no other assets. In contrast to failure 

prediction, the study was fixated on fault detection. Similarly, Xie et al. (2020) 

performed an SLR focused on railway tracks, but the research was centered on 

PdM. They found that unsupervised learning, DL, and ensemble methods for PdM 

are growing, but anomaly detection models will not fade away in the near time. 

Davari et al. (2021) conducted an SLR for ML-PdM applications in the railway 

industry. However, the research only obtained five papers for railway 

infrastructure assets, and the rest were outside of railway infrastructure assets, 

e.g., train components, train speed, and other industries. 

These observations gave the author further motivation and will to conduct the 

research.  
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2 Methodology 
This chapter presents the research design of the project. It consists of three parts: 

LR, SLR, and SSI. The LR is conducted to establish a solid theoretical 

background on the topic. The SLR is the primary method and is, along with the 

LR and the interviews, carried out to collect data and answer the RQs to support 

the findings of the project.   

2.1 Literature Review 
The LR was conducted to gain theoretical knowledge of primarily railway 

infrastructure maintenance, ML methods and algorithms, and challenges related to 

ML in PdM. A LR can be either qualitative or quantitative (Purssell and McCrae, 

2020). A qualitative LR of books and peer-reviewed papers were selected. The LR 

was done primarily through NTNUs bibliographic database, Oria, but the 

supervisor provided a few sources, and some sources from the project thesis were 

used.  

The search was organized with two primary search words to obtain the relevant 

literature (see Table 1). The primary and secondary search words were combined 

differently to obtain the needed literature. Primary search words were utilized 

alone and combined with one or more secondary search words. The theory 

gathered from the LR is presented in chapters 3 and 4.  

Primary search words Secondary search words 

Railway infrastructure 

maintenance 

Assets 

Predictive maintenance 

Inspection 

Characteristics 

Methods 

Tools 

Process 

Planning 

Machine learning 

 

Methods 

Algorithm 

Predictive maintenance 

Definition 

Process 

Type 

Task 

Challenges 

Issues 

Table 1: Search words used in the literature review 
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2.2 Systematic Literature Review 
Siddaway et al. (2019) describe a SLR as a review of a clearly formulated 

question(s) that employs systematic and explicit approaches to locate, select, and 

critically evaluate relevant research. Furthermore, to gather and analyze data from 

the studies. A SLR consists of a systematic search for all relevant works. The 

located work should address one or more of the research questions, and the 

criteria and takeaways of the search should be presented and summarized 

systematically.  

Prior to conducting the SLR, it is essential to consider if an identical SLR has 

been published previously (Purssell and McCrae, 2020). From what was found in 

1.4, this was not the case, and the author proceeded with the SLR.  

Based on methodological guidelines from Siddaway et al. (2019) and Purssell and 

McCrae (2020), Figure 1 presents the following developed SLR framework. This 

framework represents step-by-step the practice of conducting this SLR. The 

research scope is presented in chapter 1.2, and the results, discussion, and 

conclusion are elaborated in chapters 5, 6, and 7, respectively. 
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Figure 1: SLR Framework 

2.2.1 Eligibility Criteria 

Before the SLR can begin, inclusion and exclusion criteria must be established. 

As expressed by Siddaway et al. (2019), they should be formulated purely based 

on the RQs and should be reviewed consistently throughout the search process. 

The RQs presented in chapter 1.2 provide inclusion and exclusion criteria, shown 

in Table 2. In addition, the selected criteria are justified and built on theoretical 

grounds.  
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Inclusion Criteria Exclusion Criteria Justification 

Papers related to PdM, 
ML, and railway 
infrastructure assets 

Papers not related 
to PdM, ML, and 
railway 
infrastructure 
assets 

The selected paper must be 
related to using ML-PdM for 
railway infrastructure assets. 
This is demanded to answer the 
stated RQs. 

Presentation of 
model/method/technique, 
including testing and 
results 

Papers that only 
present an 
idea/hypothesis 
without any 
experimentation 

The criteria are set to ensure 
that the proposed methods have 
been experimentally tested, and 
that the results are expressed. 
The presented method is not 
helpful to this research without 
it being tested. 

Peer-reviewed papers 

Grey literature 
(unpublished work 
and not peer-
reviewed) 

Peer-reviewed papers have been 
published in scientific journals 
and have gone through a critical 
filter. This will improve the 
quality assessment and reduce 
biased papers (Purssell and 
McCrae, 2020). 

Papers published after 
2011 

Papers published 
before 2011 

The author chose to set a time 
restriction, due to the 
introduction of digital 
technologies resulting in 
advancements in PdM and ML, 
was in 2011 (Meindl et al., 
2021) 

Primary Sources 

Secondary Sources 
(Interprets and 
comments primary 
sources) 

This SLR targets papers that 
involve original research and 
new findings and is therefore 
restricted to primary sources. 

English papers Not English Papers 

The search was limited to the 
English language. While 
including other languages in the 
search can potentially improve 
the SLR, it is also challenging 
and time-consuming to obtain 
and translate. Therefore, 
restricting to English papers is 
commonly accepted (Purssell 
and McCrae, 2020). 

Table 2: Inclusion and Exclusion Criteria 
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Note that papers that did not involve the implementation of ML for railway 

infrastructure assets were excluded. One reason was to pursue the project report 

written by the author in the fall of 2021 (Matic, 2021), which focused on PdM 

implementation in railway infrastructure maintenance. Another primary reason 

was that the research would be too comprehensive if the field of interest were 

expanded. Thus, papers associated with ML implementations in PdM, e.g., 

inspection vehicles or components of a train, were not included in this research 

(See chapter 3 for a description of the railway infrastructure). For instance, 

Ribeiro et al. (2016) implemented a SVM algorithm to predict failures on train 

doors, and Kalathas and Papoutsidakis (2021) utilized a software built on DTs 

(amongst others) to predict failures on braking systems of trains. These papers are 

not related to the infrastructure of railways and were thereby excluded from the 

SLR.  

2.2.2 Searching  

When conducting a SLR, at least two different literature databases should be 

searched (Siddaway et al., 2019). For this method, the selected databases were 

Oria (NTNUs bibliographic database) and Scopus, which are relevant for the topic 

area. Searching in Google Scholar was also considered, but since Oria resulted in 

a comprehensive list of matches, a search in Google Scholar was deemed 

unnecessary. As priorly mentioned, peer-reviewed papers give better insurance of 

the quality of the paper. Both selected databases have a filter for showing only 

peer-reviewed papers. The search process was conducted using a systematic 

literature search. The search terms, databases, and procedures are organized and 

preplanned in a systematic literature search, and the author must evaluate the 

generated results throughout the process.  

The initial search was conducted from this formulated search string: (“railway 

infrastructure” AND “predictive maintenance” AND “machine learning”). This 

search string resulted in a total of 60 matches on Oria and Scopus (18.03.2022). 

After investigating a large portion of the search results, the author realized that the 

search string needed to be expanded and decided to update the search string due to 

the listed reasons: 
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• “Railway infrastructure” was too specific and did not necessarily include 

articles that used different terminology 

• A synonym for “predictive maintenance” was discovered that could 

increase the matches of relevant articles 

• Not all papers referred to “machine learning”, but used “deep learning” 

instead. DL is presented in chapter 4.3. 

Due to the listed reasons, the search string was updated, and other search 

operators were applied. The search term “railway infrastructure” was changed to 

“rail*”.  The truncation symbol “*” is used to look for all terms that begin with a 

specific letter combination (Purssell and McCrae, 2020). Therefore, the search 

term “rail*” would not only include both “rail” and “railway”, but also produce 

results that could include “railway (or rail) infrastructure”. The boolean search 

operator “OR”, was added to cover more similar search terms. The updated search 

string was: (“rail*” AND (“predictive maintenance” OR “failure prediction”) 

AND (“machine learning” OR “deep learning”)). This search resulted in 244 

matches in Oria and Scopus (20.03.2022).   

2.2.3 Screening 

The screening process was conducted to eliminate all papers that are either 

irrelevant or unnecessary for the research. This procedure consisted of three steps 

that were performed with the established eligibility criteria taken into 

consideration. In the first step, a good amount of the obtained papers were clearly 

irrelevant and eliminated by simply reading the titles. The abstracts of the papers 

were viewed in the next step to decide if the papers were relevant. This removed a 

significant number of papers. In the last step, the author was required to read 

various parts of the remaining papers, to be assured whether they should be 

included or excluded (Purssell and McCrae, 2020). This selection process is 

presented in Figure 2, which illustrates the elimination of papers in a Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart 

based on the eligibility criteria. Purssell and McCrae (2020) describe the 

flowchart as an important tool to illustrate the screening process. It is a top-down 

flowchart where all papers from both databases of the original search result are 

placed at the top. The level below illustrates the papers remaining after removing 

duplicates, executed in EndNote. The next level down presents the number of 
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papers remaining (and removed) after being screened (by title and abstract) with 

eligibility criteria. Then the remaining papers were assessed and eliminated 

reviewing the full-text. The final level shows the papers included in the SLR.  

 
Figure 2: Selection process of papers - a PRISMA flowchart 

The included papers were exported and listed in a spreadsheet. They were 

distributed by several categories of relevant information, e.g., publication date, 

author(s), inspection methods and data, main findings, and challenges. The full 

spreadsheet can be found in the appendix (9.3). The chosen categories were 

selected and updated to support the aim of this research. This spreadsheet was 

necessary for the author to get a structured overview of the included papers, 

facilitating the later analyses. 
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A citation analysis of the selected papers was also performed, measuring the 

journal impact factor. This analysis measures the total number of citations for 

each paper. The citations were obtained from Google Scholar, including citations 

by peer-reviewed articles and academic theses (Purssell and McCrae, 2020).  

2.2.4 Quality Assessment  

Inclusion and exclusion criteria are determined to ensure that all relevant papers 

have been identified (Siddaway et al., 2019). Regardless, the papers will have a 

different quality, and the possibility of some relevant papers being unidentified in 

the SLR is probable. Although the utilized search string is comprehensive and 

captures many papers, perhaps more relevant papers could have been identified 

with other search terms, in other databases, or by using more languages. This 

could have potentially changed the results and outcome of this SLR.  

Purssell and McCrae (2020) describe critical appraisal as “the balanced 

assessment of a piece of research, looking for its strengths and weaknesses and 

then coming to a balanced judgment about its trustworthiness and its suitability 

for use in a particular context”. The papers that had potential of being included 

were examined through a quality assessment form (see Appendix 9.1). This form 

focused on the quality of the methods, meaning an investigation of the research 

design of each paper and how well it was conducted (Purssell and McCrae, 2020). 

It comprises questions about the purpose and scope of the publication, research 

design, data collection, and outcomes, to mention a few. 

Most of the obtained papers in the SLR appeared strong by being innovative and 

presenting strong results. Therefore, limitations, challenges, and future work 

stated in each paper were thoroughly examined and listed in the spreadsheet, 

leading to an overview of the weaknesses of the papers. This created a balance 

between the strengths and weaknesses and established a weight from stronger to 

weaker papers. Additionally, as mentioned previously, this SLR was restricted to 

peer-reviewed papers, which should have ensured reliable and valid sources.  

Risk of Bias 

The mindset of this SLR is to be objective towards all conducted research and 

gather all relevant papers on the topic of interest. However, it is inevitable to 

prevent the research from being completely unbiased. Purssell and McCrae (2020) 
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define bias as “a systematic error, or deviation from the truth”. Regarding bias in 

this SLR, the researched topic does not provide a vast amount of papers. 

Therefore, it was inconvenient for the author to select papers that favored the 

outcome of this research. The criteria in 2.2.1 created a solid theoretical 

foundation for which papers to include and prevented a biased selection. Since the 

research was restricted to English might have created a bias. The fact that the SLR 

was conducted by the author alone, is another potential risk of bias and weakness. 

Ideally, it should be reviewed by more than one, leading to discussions of which 

papers to include and a cooperative evaluation of the risk of bias. The author may 

be biased by his thoughts on what methods and analyses should be utilized to 

produce the correct results and to reach the final goal of the SLR.  

The risk of bias within each included paper was also considered. This is not easily 

detected. When it is detected, the extent of the bias remains uncertain. However, 

the quality assessment form was applied to mitigate the risk of bias, e.g., bias in 

the selection of results, missing outcome measurements, and diversion from the 

initial scope of the research (Purssell and McCrae, 2020).  

2.3 Semi-Structured Interview  
During the project, two interviews were conducted. The first interview was 

carried out on 14.03.2022 and the second on 20.05.2022. Both were executed 

online through Microsoft Teams. The author desired to keep an open but 

structured dialogue with the participants, and therefore chose to arrange SSIs. A 

SSI is a qualitative approach for data collection where the questions are 

preplanned but open-ended, usually with follow-up questions, with one 

respondent at a time (Adams, 2015). In this type of interview, the researcher has 

more control over the interview topic than in an unstructured interview, but unlike 

structured interviews or surveys that incorporate closed questions, there is no set 

range of answers to each question (Given, 2008).  

SSIs are acknowledged as a conversation that might wander around the agenda 

topics and possibly uncover unexpected issues, but still be structured enough to 

not derail from the topic of interest (Adams, 2015). This can be seen as one of the 

major strengths of SSIs. On the other hand, SSIs also bear weaknesses. They 

require that the interviewer is knowledgeable to make the process effective and to 
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produce reliable results. In contrast to the benefits of follow-up questions, they 

also reduce the reliability of the findings since each interview might vary from 

one to another (Adams, 2015).  

To mitigate the degree of the abovementioned weaknesses, an interview guide 

should be constructed. Adams (2015) suggests the following recommendations for 

structuring an interview guide: 

1. Set aside enough time to formulate the questions 

2. Do not have too many questions on the agenda, but focus on the critical 

ones 

3. Closed questions can be ideal entrances to follow-up questions 

4. The order of the questions can change during the interview. If this 

happens, proceed with the topic of interest, and return to the question that 

was skipped later 

These recommendations were used when formulating the interview guide, which 

can be found in the appendix (9.2). The guide presents the main structure of the 

interview, but the author did not hesitate to ask relevant and unforeseen follow-up 

questions. Due to unforeseen follow-up questions in the first interview, a few 

questions were added in the second interview.  

2.4  Evaluation of Selected Methods 
The author spent the first weeks of the project to gain knowledge on the topic, 

mainly ML types, tasks, and algorithms. These areas were studied through the LR. 

This was beneficial for both the author and the report in its entirety. However, the 

time spent on the LR led to less time for conducting and analyzing the SLR. In 

addition, perhaps more interviews could have been performed, given this time. 

The following section reviews the reliability and validity of the selected methods.  

2.4.1 Reliability and Validity  

Purssell and McCrae (2020) define reliability as “the degree of which results 

obtained by a particular measurement can be replicated”. In terms of the SLR, the 

conducted research has an excellent level of reliability. The process of identifying 

relevant literature has been described thoroughly, by a detailed explanation of the 

eligibility criteria, search and screening process, and quality assessment. Purssell 
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and McCrae (2020) define validity as “the degree to which evidence and theory 

support the adequacy and appropriateness of the interpretations and actions that 

come from the results”. The validity of each paper was studied through the quality 

assessment form, mitigating the risk of bias. In addition, the search string was 

restricted to peer-reviewed papers and built on the problem definition of this 

report, ensuring a collection of valid and reliable material to pursue the purpose of 

the report. The findings are valid and reliable, but one can discuss the potential 

negative influence of the author conducting the SLR alone. As mentioned above, a 

SLR conducted alone can impact the selection of papers, methods for analysis, 

and results. The author has examined the analysis and findings several times, 

attempting to secure their reliability and validity. Despite this, it can be argued 

that the level of reliability and validity would be improved if more individuals had 

been involved to eliminate possible mistakes.  

Regarding the SSIs, reliability is mentioned as an issue. Reproducing the 

interview is difficult due to the nature of an SSI being somewhat loose in 

structure. The answers from the participants may gradually change over time, 

since the questions consider technological advancement. However, the SSI 

structure was based on an interview guide that slightly increased the reliability. 

Another issue that can be related to the SLR, is that the interview was conducted 

by the author alone. The outcome of the interview can be affected by personal 

bias. To mitigate this, the author sent a copy of the final contribution of the 

interview to the participants for confirmation, also increasing the validity of the 

SSI.   

The LR is reliable since the searches have been presented in detail. To ensure 

validity, the identified sources were constantly evaluated by, e.g., comparing one 

source to another on the same topic. Many sources were investigated that backed 

the relevant theory needed. Peer-reviewed sources were used since they have high 

validity and reliability. The sources provided by the supervisor are assumed to be 

quality assessed, and the author has previously verified the sources from the 

project thesis. 
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3 Railway Infrastructure Maintenance 
The railway conditions impact railway infrastructure maintenance, necessitating 

expert knowledge of each railway asset, its relationship to other assets, and their 

degradation patterns. As a result, scheduling maintenance for the asset groups is 

demanding, leading to challenging maintenance operations. For planning and 

scheduling maintenance and operations, geographic and geological characteristics, 

terrain, and climate conditions, among other factors, are critical. During 

maintenance planning, other aspects such as availability, pricing, resources, 

downtime, and more are actively considered. All these considerations are crucial 

for maintenance operations to avoid infrastructure disruptions, maximize capacity 

utilization, and minimize costs. The goal of railway maintenance is to accomplish 

the best approach for ensuring and optimizing efficiency, availability, and safety 

(Espling and Kumar, 2007, Patra, 2009, Connor, 2019, Lamberts, 2009, Matic, 

2021). This chapter briefly presents the railway infrastructure, its belonging 

assets, and PdM in railway infrastructures.  

3.1 Railway Infrastructure Assets 
An asset is defined differently depending on the railway infrastructure 

organization, and it might include both physical and non-physical assets. The 

following definition for an asset is provided by ISO 55000 (UIC, 2016):  

“An item, thing or entity that has potential or actual value to an organization.” 

The railway infrastructure is comprehensive, and the assets that make up the 

infrastructure can be separated into various groups. One group is superstructure, 

and it consists of, e.g., switches, sleepers, and rails. The next group is 

substructure, including assets such as track ground foundation, embankment, 

drainage elements, and fences. Another group is signaling systems for railway 

traffic control. Other groups are electrical assets such as catenary masts, cables, 

heating and illumination elements, and telecom systems, including systems for 

communication, detectors, and more (BaneNOR, 2020, Matic, 2021). Some of the 

railway infrastructure assets are depicted in Figure 3. 
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Figure 3: Railway infrastructure assets (adapted from Connor, 2019) 

Railway Infrastructure assets are increasing in complexity with regards to their 

quality, reliability, efficiency, and availability. This is the result of the continuous 

focus on globalization and technological advancement (Stenström, 2014). 

Therefore, the maintenance industry must adapt to emerging developments and 

offer new inventive solutions. Due to the same reasons, customer service is 

becoming increasingly important. Customer service is critical, which creates 

additional strain on railway maintenance activities in terms of planning, 

scheduling, and duration. To meet these asset requirements, a proper maintenance 

strategy is necessary (Matic, 2021, Pintelon and Parodi-Herz, 2008). According to 

Xie et al. (2020), railway tracks and switches are the most critical assets of the 

infrastructure. These assets are exposed to intense traffic levels, high axle loads, 

and different climate conditions, indicating that a minor fault may lead to 

infrastructure disruption. Disruptions cause stoppage of traffic, wasting time and 

resources, and can lead to potentially high costs. Railway track and switches are 

described below, each consisting of several complex sub-assets. 

3.1.1 Railway Track 

The main purposes of a railway track are to guide the vehicle and carry and 

distribute the weight safely. Figure 4 illustrates the assets of a railway track, 

which are rails, sleepers, fasteners, ballast, and joints. Rails are the longitudinal 

steel components that evenly and continuously guide the train wheels. Joints 

attach two rail segments, and sleepers are spans that extend over the track and 

connect the two rails. The main functions are to hold the fasteners to sustain the 
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correct track gauge, carry the rail load, and distribute it across the underlying 

ballast at an adequate pressure level. Rail fasteners keep the rails on the sleepers, 

maintain track gauges, and withstand vertical, lateral, longitudinal, and 

overturning rail motions. Sleepers are laid on top of crushed stone called ballast 

(Tzanakakis, 2013).  

 

Figure 4: Railway track assets (adapted from Németh and Fischer, 2019) 

Railway track defects can be categorized into structural defects and track 

geometry defects. Structural degradations of railway track assets, e.g., rails, 

sleepers, ballasts, and joints, refers to structural defects. For instance, joint and 

ballast deterioration, corrugation and wear, and loose or missing fasteners 

(Tzanakakis, 2013). Railway track geometry defects are associated with 

anomalies from desired values of track geometric parameters. For instance, 

anomalies in alignments, longitudinal level, twist, and gauge (Nakhaee et al., 

2019).  

3.1.2 Railway Switches 

Railway switches (also known as turnouts, and switches and crossings) come in 

many types, but they all provide the same main function, which is to redirect the 

vehicle onto a different track (BaneNOR, 2020). Switches consist of several 

components (see Figure 5), each requiring complicated engineering (Dindar and 

Kaewunruen, 2017).  
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Figure 5. Common layout of railway switches (Rama and Andrews, 2013) 

 

Rama and Andrews (2013) and Dindar and Kaewunruen (2017) provide the 

following description of the main components of switches: 

• A switch machine (also known as a point machine) is an electric, 

hydraulic, or pneumatic mechanism to perform the motion of switch rails 

to the redirected track 

• Stretcher bars are steel bars to maintain the rails in the correct position for 

passing railway vehicles 

• Switch rails that can be moved to direct the vehicle to the desired track 

• Stock rails have the same function as standard rails, keeping the rails at a 

correct distance 

• Crossing refers to the point where two rails cross paths 

• Switch heater (or point heater) maintains secure operability during 

extreme weather conditions. These weather conditions can be detected by 

utilizing sensors.   

Common failures to railway switches are faults related to the switch, stretcher 

bars, rails, geometry, ballast, and signal systems. Faults caused by the switch can 

be related to the switch being damaged, e.g., broken, worn, bent, or disconnected. 

Other faults can be linked to the stretcher bars not working sufficiently, and 

Switch 
Machine
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similar to geometry, ballast, and rails as with standard railway tracks. Signal 

system failures are also common, caused by the failure of signaling and sharing 

crucial information about the status of the railway switch (Dindar and 

Kaewunruen, 2017).  

3.2 Predictive Maintenance in Railways 
The EN 13306:2017 defines PdM as (BSI, 2017):  

“Condition-based maintenance carried out following a forecast derived from 

repeated analysis or known characteristics and evaluation of the significant 

parameters of the degradation of the item.” 

PdM has grown parallel to maintenance becoming increasingly digital, 

transforming from purely corrective and preventive maintenance (Matic, 2021). 

One big contributor to this change is cheaper and more accessible condition 

monitoring technology (Stenström, 2014). Condition monitoring equipment that 

monitors, analyzes, and evaluates railway assets, results in more frequent PdM 

intervals. A monitoring system identifies possible deterioration by determining an 

anomaly to the desired value (Tzanakakis, 2013, Matic, 2021). Compared to many 

other industries, PdM techniques in the railway sector are relatively new (Davari 

et al., 2021).  

The purpose of PdM is the failure prediction of an asset is to perform preventative 

activities before asset failure. Failure prediction investigates the chance of an asset 

fault occurring within a given time. This process leads to an extended lifetime for 

the asset and eliminates unexpected failures that may cause a breakdown of the 

entire system, reducing both cost and downtime. Another purpose is to estimate 

RUL of one asset or a set of assets. RUL uses data to identify when an asset is 

likely to fail (Davari et al., 2021, Tzanakakis, 2013, Matic, 2021, Bukhsh and 

Stipanovic, 2020).  

In contrast to these advantages, PdM also have challenges related to data 

collection and management, and implementation. Data is collected in huge 

amounts by different inspections and sensors, and is difficult to efficiently manage 

and process by using digital tools. Implementation of PdM brings more new 

technologies into the spotlight, and due to insufficient knowledge of prediction 

models, the output can be difficult to comprehend (Bukhsh and Stipanovic, 2020). 
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Predictive railway infrastructure maintenance must be supported by proper tools 

for monitoring and analyzing the condition (Matic, 2021). 

3.2.1 Inspection Methods and Tools 

Railway infrastructure inspection consists of several methods and tools for 

collecting relevant data. Certain inspections are carried out more frequently than 

others. The methods can be separated into manual inspection, vehicle inspection, 

and inspection by fixed sensors (Xie et al., 2020). Manual inspection is performed 

by operators visually inspecting the infrastructure to possibly detect faults or 

anomalies, such as missing or defect catenaries, fasteners, or rails. This inspection 

type is not related to failure prediction, but correlates to corrective maintenance. 

In vehicle inspection, different vehicles installed with measurement devices are 

exploited. These devices can be, for instance, cameras or sensors. Examples of 

sensors are thermals, accelerometers, and lasers. Since manual walking 

inspections are conducted along the track, they are somewhat dangerous and 

inefficient. Therefore, railway agencies have widely adopted measurements with 

cameras to detect surface defects or missing components. However, inspections 

with human eyes or with cameras are not able to detect faults within the assets. 

For this issue, ultrasonic testing and different sensors are applied. Sensors 

installed along the track use the inherent technologies to capture and measure 

relevant data such as vibration, data, temperature, sound, and geometry. This data 

is used for failure prediction and RUL in PdM (Xie et al., 2020, Jing et al., 2022).  
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4 Machine Learning 
ML has been given numerous formal definitions. Alpaydin (2016) defined ML as 

“programming computers to optimize a performance criterion using example data 

or past experience”. Burkov (2019) defined ML in his book as “a subfield of 

computer science that enables computer programs to perform prediction, 

diagnosis, planning, and recognition of behavior patterns by learning from 

historical data, i.e., without prior knowledge”. The various definitions all share the 

idea of teaching computers to execute tasks besides traditional calculations by 

learning from their surroundings through repeated instances.  

4.1 Machine Learning Types and Tasks 
A ML algorithm is a data processing technique that utilizes input data to 

accomplish a task without being explicitly designed to produce a particular output. 

These algorithms are programmed with the ability to automatically adjust or adapt 

their structure through repetition to progressively improve at accomplishing the 

desired task. This process is known as training, and it involves samples of input 

data along with targeted outputs. Afterwards, when given new and previously 

unknown data, the algorithm optimizes itself to produce wanted results. Over 

time, the algorithm proceeds to improve and learn from its mistakes (El Naqa and 

Murphy, 2015).  

ML algorithms have a variety of methods to respond and adapt to training. For 

example, the selection and weight of the input data, iterative optimization to alter 

the variable numerical parameters of the algorithm, and/or structuring pathways 

for the best results. As Figure 6 shows, ML can be classified as supervised, 

unsupervised, semi-supervised, or reinforcement learning (Kang et al., 2020, El 

Naqa and Murphy, 2015).  



24 
 

 
Figure 6. Machine learning types 

• Supervised Learning 

Based on the assumption that all previous training examples are labeled, 

the computer program develops a function mapped by input(s) and 

output(s) from a collection of labeled training data (e.g., classification and 

regression). Human interaction is crucial in supervised learning. People 

choose (based on assumptions) the features, algorithms, and control 

parameters, in addition to labeling the output for the training set. This 

learning type is frequently mentioned and utilized in sectors where people 

have specific expertise for a model (El Naqa and Murphy, 2015, Kang et 

al., 2020, Jo, 2021).  

• Unsupervised Learning 

In unsupervised learning, all training examples are assumed to be 

unlabeled, and it is only supplied with input data. This learning type is 

commonly used to define the similarity metric between unlabeled data. 

While supervised learning provides an output value, unsupervised learning 

defines a pattern of input variables and often displays several clusters 

based on the input data. Therefore, Data Clustering is a common task 

where unsupervised learning algorithms are applied (Jo, 2021, Kang et al., 

2020, El Naqa and Murphy, 2015).  
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• Semi-supervised Learning 

Text/image extraction systems are examples of semi-supervised learning 

types. It is a mixture of supervised and unsupervised learning. Here, a data 

segment is partially labeled, and the labeled segment is used to deduce the 

unlabeled segment. The goal is to utilize unlabeled examples, which are 

cheaper to obtain, in addition to the labeled examples for training the 

learning algorithms. By doing this, the model can be trained to improve 

accuracy compared to supervised learning, which operates with very 

limited labeled data (El Naqa and Murphy, 2015, Kang et al., 2020, Jo, 

2021). 

• Reinforcement Learning 

This type is defined as the interaction between the agents and the 

environment. The external environment provides the input, and the output 

is formed as an action. Positive actions are rewarded, and negative actions 

are penalized by the environment. To maximize the rewards and minimize 

the penalties, the parameters are updated whenever possible (Jo, 2021, 

Kang et al., 2020).  

ML algorithms are applied to perform different tasks, depending on what is 

desired. The tasks can be divided into four common tasks, as illustrated in Figure 

7.  

 

Figure 7: Machine learning tasks 

• Classification 

The action of assigning one or more of the predetermined classes to each 

item is known as classification (Jo, 2021). In classification, input features 

are mapped to one of the discrete output variables. The output variable 

represents the underlying problem (Kang et al., 2020). The classification 

types are depicted in Figure 8. They can be binary or multiple, where 
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binary classification is the least complicated. In binary classification, the 

output variable consists of two classifiers, positive and negative (or one 

and zero). In multiple classification, more predefined classes can be 

utilized (Kang et al., 2020, Jo, 2021).  

 

Figure 8: Classification types 

• Regression 

While classification predicts discrete outputs, the goal of regression is to 

predict continuous outputs through mapped input features (Bi et al., 2019). 

Regression can be defined as the action of estimating an output value 

consisting of several factors. The estimated output can be an integer or a 

floating-point number (Kang et al., 2020). There are two forms of 

regression, univariate and multivariate (Figure 9). The univariate 

regression estimates only one output value, and the multivariate regression 

estimates more than one output value. As stated previously, regression and 

classification are tasks applied in supervised ML (Jo, 2021).  

 

Figure 9: Regression types 

• Clustering 

Clustering is the action of segmenting data into groups, where each group 

contains data based on similar data characteristics (Kang et al., 2020). The 

data clustering is performed by creating clusters based on data structure 

similarities. The clusters or classes developed are then labeled. When 



27 
 

trained, the algorithm adds new unseen data to respective clusters (Alzubi 

et al., 2018). By automatically collecting labeled training examples 

through clustering, it can be integrated with classification to classify 

datasets (Jo, 2021). Contrary to classification and regression which are 

utilized in supervised learning, clustering is a common unsupervised 

learning implementation (Bi et al., 2019). A general view of a clustering 

model is illustrated in Figure 10. 

 

Figure 10: General view of a clustering model 

• Anomaly detection 

Anomaly detection groups the data similarly to clustering. It is the process 

of analyzing an established pattern and detecting anomalies or changes to 

this pattern. These outliers are identified in the dataset through specific 

algorithms. This detection task is commonly used in unsupervised learning 

(Kang et al., 2020, Alzubi et al., 2018). Figure 11 presents the general 

view of an anomaly detection model.  

 

Figure 11: General view of an anomaly detection model 

4.2 Machine Learning Algorithms 
As stated by Arena et al. (2022) in chapter 1.4, supervised and unsupervised 

learning techniques are the most common for PdM applications. Xie et al. (2020) 

argued that unsupervised learning, DL, and ensemble methods are growing. 

Therefore, these methods and algorithms are presented in the next subchapters. 

DL algorithms are presented in chapter 4.3.   
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4.2.1 Artificial Neural Network 

An artificial neural network (ANN) is a computational model inspired by 

biological neurons and their way of processing input data through several layers 

of interconnected neurons or nodes, to the final output (Baloglu et al., 2021, Çinar 

et al., 2020). This structure is the foundation for ANNs analysis of intricate 

interactions between a number of measurable variables to predict an output (Bi et 

al., 2019). ANNs can simultaneously execute any amount of classification and/or 

regression tasks, but one task is common for each network (Ouadah et al., 2022). 

The layers consist of an input layer, one hidden layer, and an output layer, as 

shown in Figure 12. Depending on the learning type, the algorithm can be 

classified as a supervised neural network or an unsupervised neural network 

(Alzubi et al., 2018). ANNs learn the basic principles from a series of provided 

symbolic situations, rather than following the set of laws established by human 

experts. Due to its capability to learn from examples, ANN models are broadly 

utilized in many industries. The algorithm is advantageous for systems with large 

quantity of complex and ambiguous information (Çinar et al., 2020).  

 

Figure 12: Diagram of Artificial Neural Network 

4.2.2 Decision Trees 

A decision tree (DT) groups the domain into several linear areas and predicts 

outputs using a rule-based method (Suthaharan, 2016). The grouping is based on 

attributes and their respective values, and the tree-network is built up of nodes and 
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branches (Ouadah et al., 2022). The nodes signify attributes or categories, and 

extending branches from a node corresponds to an attribute-related value or a 

value interval (Jo, 2021). As shown in Figure 13, the tree structure consists of a 

root node, sub-trees, decision nodes, and final nodes. Classification trees and 

regression trees (CART) are two types of ML decision trees. Regression trees 

predict continuous outputs, while classification trees predict discrete outputs (Bi 

et al., 2019).   

 

Figure 13: Structure of decision trees 

4.2.3 Random Forest 

Random Forest (RF) is an ensemble method that collects decision trees using a 

random data set with replacements (Ouadah et al., 2022). The trees can be 

classification or regression trees, and therefore RF can be utilized for 

classification tasks and regression tasks. In contrast to DT, which provides one 

trained decision tree, the RF provides several trained decision trees (Suthaharan, 

2016). The final decision trees and output category are determined by the 

combined output of all prior decision trees in the RF (Alzubi et al., 2018). The RF 

process is illustrated in Figure 14. The training dataset is divided into subsets, and 

each subset is used to build the decision tree. The trees then classify the data and 

the final output is determined by voting or averaging the decision tree outputs (Jo, 

2021). 
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Figure 14: The process of random forests 

4.2.4 Gradient Boosting 

Boosting is an ensemble method that improves the robustness of a single estimate 

by combining the predictions of numerous base estimators, creating a strong 

predictor (Ouadah et al., 2022). Gradient boosting (GB) utilizes gradient descent 

to improve the performance of classifiers. Gradient boosting tree (GBT) decision 

tree based on GB (Bi et al., 2019).  

4.2.5 Support Vector Machines 

Support Vector Machines (SVM) is a supervised learning algorithm that can be 

used for both classification and regression tasks. SVMs exercise around the theory 

of margin calculation and construct an optimal hyperplane that divides the dataset 

into two groups. The data is divided by determining their value of a number of 

features in a dimensional space, as illustrated in Figure 15 (Alzubi et al., 2018). 

Although, several data observations regularly need to be transformed before the 

hyperplane can separate them (Bi et al., 2019). It has been proven that maximizing 

the margin and therefore generating a big distance between the hyperplane and the 

data points on either side, reduces the predicted generalization error (Ouadah et 

al., 2022). SVMs provide high accuracy when solving big data problems, but they 

are computationally costly and time-consuming as it is mathematically complex 
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(Suthaharan, 2016). Support vector regression (SVR) is an expansion of SVM to 

predict continuous outputs (Bi et al., 2019).  

 
Figure 15: Functional view of support vector machine algorithm 

4.2.6 K-Nearest Neighbors 

K-Nearest Neighbors (kNN) is a supervised ML algorithm that can be used for 

both regression and classification tasks, but is commonly more used to solve 

classification problems (Ouadah et al., 2022). It is one of the simplest algorithms 

to implement and interpret. The objective is to store the training dataset and 

subsequently predict the label of all new instances based on its nearest neighbor 

label in the training dataset (Shai and Shai, 2014). The given input training 

datasets consist of k-values that are nearest to the new variable used in the 

featured set. The output depends on whether kNN is used as a classification or 

regression algorithm (Alsharif et al., 2020). Figure 16 illustrates the functionality 

of kNN.  
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Figure 16: Functional view of the k-nearest neighbor algorithm 

4.2.7 K-Means Clustering 

K-Means Clustering is an unsupervised ML clustering algorithm utilized for 

analyzing datasets and grouping them into clusters. In this algorithm, “k” 

indicates the number of clusters that should be determined prior to the algorithm 

(Alzubi et al., 2018). Figure 17 gives a simple representation of how an unlabeled 

dataset is grouped into labeled clusters. The grouping of x observations is 

randomly selected as the initial mean vectors. Each observation is sorted into the 

cluster with the most equivalent mean vector. The center of the cluster is 

established by the mean of the observations in the cluster, respectively. The mean 

vectors and sorting of observations of the cluster are updated and iterated until the 

mean vectors converge (Jo, 2021). 

 

Figure 17: Functional view of k-means clustering algorithm 
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4.2.8 Probabilistic Learning (Naïve Bayes) 

Probabilistic learning (PL) is a type of supervised ML that utilizes the Bayes rule 

(see equation 1) when calculating the probability of a group given an observation 

(Jo, 2021). Naïve Bayes is a classification algorithm that assumes independence 

between predictive variables (Bi et al., 2019). It is derived from a set of 

probabilistic classifiers, tolerates data with high dimensionality, and requires 

fewer datasets for training (Alsharif et al., 2020). The Bayes rule calculates the 

conditional probability, P(A|B), which calculates the possibility of event A, given 

that event B occurs (Alzubi et al., 2018).  

 
𝑃𝑃(𝐴𝐴|𝐵𝐵) =  

𝑃𝑃(𝐵𝐵|𝐴𝐴)𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

 

 

(1) 
 

Afterwards, it selects the optimal group with the highest probability (Bi et al., 

2019). The probability of an event occurring generates trees that are called 

Bayesian networks. The structure of these networks consists of an original node 

and several sub-nodes, with the same assumption of independence (Ouadah et al., 

2022).  

4.2.9 Linear Regression and Logistic Regression 

As previously mentioned, regression is used to predict a continuous value, and 

two common algorithms are linear regression (LnR) and logistic regression (LgR). 

Given a set of independent variables, linear regression estimates continuous 

output, while logistic regression provides discreet output (Çinar et al., 2020). 

Another difference is that linear regression is applied to regression tasks, and 

logistic regression is applied to classification tasks (Ouadah et al., 2022). Another 

type is called multiple regression (MR), which compromises more input variables 

than LnR to train the model.  

4.2.10 Dimensionality Reduction Algorithms 

Modern ML algorithms are inefficient and rigid when dealing with enormous 

amounts of data. Data with high dimensionality has been shown to be a burden in 

data processing. The sparsity of the data is another problem, and finding an 

optimum for such data is costly and time-consuming. Dimensionality reduction 

algorithms decrease the computing cost by lowering the number of dimensions of 
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the data. This is accomplished by decreasing excessive and unrelated data and 

thereby increasing accuracy (Alzubi et al., 2018). Some examples of 

dimensionality reduction algorithms are Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA), and Principal Component Regression 

(PCR). 

4.3 Deep Learning 
DL is a part of ML and utilizes ANNs on a “deeper” level. Instead of solving 

nonlinear problems with a single nonlinear model, it applies multiple steps of 

linear models. This means that it can have multiple hidden layers from the input 

data to the output value, rather than having one (such as ANN) hidden layer (Jo, 

2021, Xiao and Sun, 2021c). The reason for the growth of deep neural networks is 

due to innovative technologies and advancements. For example, sensors and IoT 

creates large amounts of data making it more demanding for traditional ML 

algorithms. Therefore, DL approaches will be one of the future PdM solutions 

(Davari et al., 2021). Hence, the following subsections present some DL 

algorithms.   

4.3.1 Deep Neural Network 

A Deep Neural Network (DNN) is an ANN with more than two hidden layers 

between the input and output layer (see Figure 18). The network calculates the 

probability of each output value through the flow that moves from one layer to the 

latter (Davari et al., 2021). Several DNN types are developed depending on the 

different forms of input data. For instance, a Convolutional Neural Network 

(CNN) is applied to modeling grid data (for example, images or time series), and 

Recurrent Neural Networks (RNN) are convenient for modeling sequential such 

as text sequences (Xiao and Sun, 2021b). 
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Figure 18: Diagram of deep neural network 

4.3.2 Convolutional Neural Network 

CNN is a type of DNN that processes large-scale images by learning its features 

to perform recognition and classification. As shown in Figure 19, it consists of 

layers of convolution, pooling layers, followed by fully connected layers (Xiao 

and Sun, 2021a). The convolution layer collects features from the input data and 

creates feature maps, while the pooling layer reduces the input samples and the 

dimension. (Rengasamy et al., 2020). This step of CNNs is often repeated 

multiple times before employing the fully connected layers to combine all 

features, generating more abstract features for classification tasks (Xiao and Sun, 

2021a). CNNs are applied to PdM practices such as RUL and fault diagnosis 

(Davari et al., 2021).  

 

Figure 19: Functional view of a convolutional neural network 
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4.3.3 Recurrent Neural Network 

Recurrent Neural Networks (RNN) are supervised types of deep neural networks 

for classification of sequential data or time-series data such as text records. RNN 

models carry input data as a series of vectors, and each vector is mapped to the 

related hidden layer. The hidden layer produces the output layer (Xiao and Sun, 

2021d). In RNN, internal feedback loops are possible in contrast to CNN, which 

uses pooling layers (Davari et al., 2021). These internal loops cause recursive 

behaviors in the networks, introducing delayed initiation dependencies throughout 

the network's processing elements (Marhon et al., 2013). Long short-term memory 

(LSTM) and gated recurrent unit (GRU) are two types of RNN that have grown in 

popularity, due to their ability to solve technical challenges associated with 

collecting long-term dependencies and managing sensor data to perform 

predictions (for interested readers, see: Davari et al. (2021), Xiao and Sun 

(2021d), Rengasamy et al. (2020)). 

4.4 Towards ML in PdM and Inherent Challenges 
The recent advancements in ML have been supported by novel algorithms and 

theory, as well as the continuous growth of more available and less expensive 

digital technologies (Çinar et al., 2020, Kumar and Galar, 2020). ML is a vital 

factor for analyses of massive datasets, due to its ability to generate predictions 

and uncover hidden information. ML is utilized in PdM for further analysis 

automation of railway inspection and condition monitoring data. Additionally, to 

reduce the bias of manual condition evaluations (Kumar and Galar, 2020). ML 

presents many changes to the original approach of companies and creates a 

significantly greater dynamic environment, which introduces new challenges 

(Dalzochio et al., 2020). 

A major challenge with ML in PdM is to develop the foundations to implement 

ML models, due to the absence of a general model that applies to various 

industries (Dalzochio et al., 2020). Firstly, ML algorithms need input data to 

work, and input data requires suitable inspection methods and tools for collection 

(Çinar et al., 2020, Kumar and Galar, 2020). Industries use different monitoring 

methods and tools, resulting in a varying selection of ML algorithms. Numerous 

ML algorithms exist, each of which has its advantages and disadvantages 
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(Alsharif et al., 2020). Therefore, choosing the most suitable ML algorithm for the 

PdM application can be a significant challenge, as wrong selection leads to a loss 

in time and costs (Dalzochio et al., 2020, Çinar et al., 2020).  

Another challenge comes from the data collection. Data collected through 

inspection procedures are difficult to acquire, organize and process using digital 

technologies. A significant amount of the data can consist of errors, e.g., missing 

labels or values, and inaccuracies. The parameters must be determined 

appropriately, and the data requires thorough processing and analysis. The sensors 

and other devices acquire massive volumes of data from real-time and continuous 

monitoring of railway assets. Furthermore, collected data accumulates rapidly 

over time and spreads across several systems. Another issue is related to the high 

levels of scalability and network bandwidth that are required for real-time 

monitoring and decision-making (Matic, 2021, Bukhsh and Stipanovic, 2020, 

Tretten et al., 2021, Dalzochio et al., 2020). 

Data quality is also an issue that consists of several problems. One of the issues is 

the consequence of several differences in datasets which leads to imbalanced data. 

Therefore, the process of preprocessing the data is critical (Dalzochio et al., 2020, 

Kaur et al., 2019). Another issue is acquiring data that indicates the probability of 

normal state behavior to failure. This data type is critical for model training since 

it can be necessary to use information related to failure (Dalzochio et al., 2020). 

Dealing with data of a wide variety of data types and formats is an issue, which is 

called data heterogeneity. This can have a negative impact on the model training. 

Both the small and large degrees of heterogeneity can affect the predictability of 

the algorithms (Dalzochio et al., 2020).  

A lot of time and resources are invested in establishing ML solutions. Therefore, 

understanding the data, which requires expert knowledge, is crucial, and it is 

essential to practice on various datasets to improve the ML knowledge. As a 

result, each application requires different nuance, data preprocessing, and 

modeling strategy. Additionally, the identification of required data to collect is a 

challenge. The company needs to have clear business goals, planning methods, 

and data evidence that provides value (Çinar et al., 2020, Dalzochio et al., 2020).  
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5 Results 
The following subchapters present the results from the SLR and the SSIs. 

5.1 Results from SLR 
A total of 244 papers were identified through Oria (205 papers) and Scopus (39 

papers). Seven articles were removed for being duplicates, and 183 papers were 

eliminated by viewing the titles and abstracts. The remaining 54 papers were 

assessed for eligibility by reviewing the full text. This led to the exclusion of 34 

papers, and the author was left with 20 papers obtained through the SLR. This 

selection process is presented as a PRISMA flow chart in Figure 2. Afterwards, 

the 20 remaining papers were gathered in a spreadsheet for further analysis (2.2.3) 

The analyses conducted in the spreadsheet assembled an overview of the papers in 

a table (see 9.3), with relating individual information distributed across columns. 

The table columns consists of references, PdM aim (RUL or failure prediction), 

ML algoritm(s), asset(s), acquisition source(s), data type(s), approach and main 

findings, bibliographic database, and citations. 
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Table 3: ML applications for PdM in the Railway Infrastructure 

 
1 Enterprise Resource Planning 
2 Electrically powered asset 
3 Attention Mechanism 
4 Track embankment of concrete or asphalt instead of ballast 
5 Residual Neural Network which is a type of CNN 

Aim ML 
Algorithm(s) Asset(s) Data Acquisition Source(s) Reference 

Failure 
Prediction 

RF, RNN, k-
means 

Railway 
Track 

Rail defects database and 
inspections database 

Lopes Gerum et 
al. (2019) 

DT, RF, GBT Switches ERP1 maintenance request process Allah Bukhsh et 
al. (2019) 

RNN 
Gas-

insulated 
Switchgear 2 

Data from power equipment Wang et al. (2020) 

SVM, RF, 
LDA, PCA 

Railway 
Track 

Manual inspection and inspection 
vehicles 

Lasisi and Attoh-
Okine (2018). 

AM3, CNN, 
GRU 

Railway 
track Inspection trains Hao et al. (2022) 

CNN Rails and 
joints Line scan cameras on recording car Hovad et al. 

(2021) 

PCA, k-means Switches Repair records and track recording 
car 

Vassos et al. 
(2021) 

RF  Railway 
track Public data Sharma et al. 

(2018) 

DNN, CNN, 
MR, SVM, GB, 

DT, k-means 

rail, rail 
joint, 

switches, and 
fastener 

Track geometry car 
 Sresakoolchai and 

Kaewunruen 
(2022) 

DNN, DT, RF Rail Track geometry car 
Mercy and 

Srinivasa Rao 
(2018) 

PCA, k-means, 
Bayesian 
method 

Switches Switch machine sensors Soares et al. 
(2021) 

ANN, SVM, 
naïve bayes, DT Switches Switch machine sensors Arslan and Tiryaki 

(2020) 

RUL 

PCA, LgR Railway 
Track 

Historical track condition data and 
inspection vehicle 

Vale and Simões 
(2022) 

ANN Railway 
track Vehicle and various devices Guler (2014) 

kNN Ballast Multivariate sensors from 
Instrumented revenue vehicle Tan et al. (2017) 

LgR, SVM Railway 
track Track geometry vehicles Cárdenas-Gallo et 

al. (2017) 

Bayesian 
Method Track slab4  Fiber bragg grating sensor Wang and Ni 

(2019) 

RNN (LSTM), 
CNN (ResNet5) Switches Sensors (accelerometer) on track Najeh et al. (2021) 

ANN, LnR Railway 
track Database and system Khajehei et al. 

(2022) 

ANN, SVR Railway 
Track ERP system Lee et al. (2018) 
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Additionally, challenges experienced of ML in PdM from the papers were noted 

and are discussed in 6.4. Table 3 presents a compromised version of the entire 

table. Twelve selected papers aimed at failure prediction, while eight aimed to 

predict RUL. The paragraphs below briefly summarize each paper, sorted by the 

respective assets.  

Railway tracks 

Lopes Gerum et al. (2019) presented a novel framework for optimal scheduling 

and rail and geometry defects prediction. They used k-means for feature selection 

and identifying the optimal number of clusters. For the failure prediction, they 

applied RNN and RF based on discrete rail value data and data from inspections. 

In addition, they created a framework for integrating prediction with inspection 

and maintenance activities. The results showed that the framework effectively 

predicted defects and developed long-term maintenance scheduling strategies with 

real-time track conditions.  

Lasisi and Attoh-Okine (2018) demonstrated how combined track geometry 

parameters with track quality indices simplified the track properties without losing 

variability in the data. SVM proved to be the most effective algorithm to predict 

track defects. In addition to SVM, they experimented with RF, LDA, and PCA. 

A model for predicting track irregularities with track geometry data, vehicle body 

acceleration data, and vehicle speeds was presented in Hao et al. (2022). The 

model was built of AM, CNN, and GRU to learn sequential features and shape 

features, to focus on the most crucial features. This model performed better than 

models without AM and models purely built on GRU.  

Hovad et al. (2021) created a computer vision system to predict and detect defects 

on rails and joints using CNN image classification. The recall rate for defects was 

84%, rarely missing surface defects. The results showed great versatility of the 

model, which can potentially reduce the need for visual inspections.  

Sharma et al. (2018) developed a failure prediction policy for track geometry 

defects with track geometry data. The prediction tool applied RF to predict the 

spot geometric defect occurrence probability. The policy produced approximately 

10% savings in total maintenance costs for every 1 mile of track.  
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By applying DNN, RF, and RT, Mercy and Srinivasa Rao (2018) presented a 

method for predicting rail surface defects using rail geometry data. DT had the 

highest accuracy for predicting twists and unevenness of right and left rails. RF 

and DT had equal accuracy when predicting alignment left. RF has the best 

prediction accuracy for alignment right and gauge. DNN underperformed 

compared to DT and RF. The presented method did not add any additional 

development costs.  

Vale and Simões (2022) estimated the RUL of track based on geometry data, 

using PCA and LgR. They utilized predictors of longitudinal level and alignment 

of the left and right rail, the time interval between inspection actions, and the 

sequential number of track segments. Their easily implemented model resulted in 

a 91.1% success rate.  

Guler (2014) modeled the track deterioration with ANN by data related to the 

track structure, layout, geometry, traffic characteristics, environmental factors, 

maintenance, and renewal. They argue that ANN is one of the best ways to predict 

track geometry degradation linked with considerable inherent complexity, and 

their model is designed without expert knowledge.  

Cárdenas-Gallo et al. (2017) created a method for developing an ensemble 

classifier using geometry data to predict the evolution of track geometry defects. 

The ensemble classifier consisted of LgR and SVM algorithms and outperformed 

the individual algorithms in every case. Their approach can be implemented to 

other tracks and other assets.  

Khajehei et al. (2022) presented a model for predicting track degradation rate by 

collecting track geometry data, asset information, and maintenance history. They 

applied LnR and ANN, which resulted in adequate performance. Historical 

maintenance data was the most critical contributor to the prediction, and the 

number of tamping activities highly influences the degradation rate due to its 

destructiveness.  

Lee et al. (2018) applied SVR and ANN to predict track deterioration with data 

from track properties, tamping ratios, measurement data, and track quality indices. 

They performed two case studies with different input parameters. ANN performed 

marginally better than SVR due to the retraining process. The results stated that at 
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least two years of maintenance data are needed to develop a stable prediction. 

Furthermore, they can be used to support the maintenance decision-making 

process.  

Sresakoolchai and Kaewunruen (2022) created a model for predicting several 

asset defects and tested DNN, CNN, MR, SVM, GB, and DT. The assets were 

rails, joints, switches, and fasteners. K-means investigated the insights of track 

defects. A track geometry car collected geometry data, asset defect data, and track 

profile data. DNN performed with the best accuracy of 94.3%, followed by CNN 

with 93.8%. Other algorithms had approximately a prediction accuracy of 50% or 

lower. The algorithm detected defects and categorized them into rails, joints, 

switches, and fasteners.  

Railway Switches 

Allah Bukhsh et al. (2019) utilized DT, RF, and GBT for failure prediction of 

railway switches with historical data from visual inspections, maintenance 

records, and condition data. GBT was the best performer for predicting 

maintenance, while RF was the most accurate algorithm for the prediction of 

activity type and trigger status. They state that the approach is applicable to or 

discrete types of infrastructure assets.  

Vassos et al. (2021) split data into two clusters (from historical repair data and 

switch geometry data) to predict the maintenance need of switches, supported by 

k-means and PCA. However, no clear boundary existed between the clusters, and 

it was difficult to assign a specific cluster label successfully. 

Soares et al. (2021) created a PdM model to predict failures of switch machines. 

They used k-means, PCA, and a gaussian method on data extracted from switch 

machine sensors. The results of the approach were impressive, and its success 

depended on the attention to necessary procedures conducted of the ones 

classified as faults.  

Arslan and Tiryaki (2020) predicted switch failures by utilizing SVM and ANN. 

They studied data consisting of switch movement, movement time, position, and 

status. The algorithms outperformed both DT and Naïve Bayes. However, ANN 

was more appropriate in the implementation face. If inputs were to change, the 

presented method would correctly determine the outputs and predict failures.  
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Najeh et al. (2021) developed an RNN and CNN framework to design an effective 

prediction system for switch deterioration using vibration data. Their system had 

an acceptable accuracy of wear estimation in the middle section of switches.  

Other railway assets 

Wang and Ni (2019) utilized real-time monitoring data to develop an online 

system based on a Bayesian algorithm to predict track slab deformation. The 

experimental results show improvements in terms of regression compared to the 

current algorithm. The method improves the prediction accuracy of all sensors for 

track slab monitoring.  

Tan et al. (2017) presented a kNN method for predicting ballast tamping 

effectiveness, achieving 68% accuracy. Sensors implemented on the vehicle 

collected data to predict effectiveness 12 weeks prior to tamping.  

Maintenance prediction of gas-insulated switchgear (electrical asset) was 

attempted by Wang et al. (2020). They developed a maintenance predictor 

powered by LSTM-RNN on historical data. The results were positive and proved 

the possibility of predicting future maintenance activities.  

 

5.1.1 Publication Year and Citation Analysis 

Figure 20 illustrates the papers sorted by publication year, with a descriptive trend 

line. Papers relating to the topic have been published from 2014 until this year, 

with a gap between 2014 and 2017. 2014 had the lowest number of published 

papers, and 2018, 2021, and 2022 had the highest amount, with one and four 

publications, respectively. There were four publications in 2022, before the 20th of 

March when the search was conducted (2.2.2). The average number of 

publications per year from 2014 to 2017 is 0.75, and 3.4 publications per year 

from 2018 to 2022.  
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Figure 20: Distribution of publication years of the selected papers 

Table 4 shows the top 10 most cited papers, and the average number of citations 

of the 20 papers is 24.15. Guler (2014) and Sharma et al. (2018) have the highest 

number of citations, with respectively 89 and 80 citations. Guler (2014) studied 

the RUL of railway tracks using a predictive model based on ANN, while Sharma 

et al. (2018) developed a failure prediction policy based on RF to predict track 

geometric defects.  

Reference Title Citations 

Guler (2014) Prediction of railway track geometry deterioration using artificial 

neural networks: a case study for Turkish state railways 
89 

Sharma et al. (2018) Data-driven optimization of railway maintenance for track 

geometry 
80 

Lasisi and Attoh-

Okine (2018) 

Principal components analysis and track quality index: A machine 

learning approach 
73 

Allah Bukhsh et al. 

(2019) 

Predictive Maintenance using tree-based Classification techniques: 

A Case of Railway Switches 
58 

Lopes Gerum et al. 

(2019) 

Data-driven Predictive Maintenance Scheduling Policies for 

Railways 
45 

Cárdenas-Gallo et 

al. (2017) 
An ensemble classifier to predict track geometry degradation 43 

Wang et al. (2020) Achieving Predictive and Proactive Maintenance for High-Speed 

Railway Power Equipment With LSTM-RNN 
29 

Lee et al. (2018) Prediction of Track Deterioration Using Maintenance Data and 

Machine Learning Schemes 
19 

Wang and Ni 

(2019) 

Measurement and Forecasting of High-Speed Rail Track Slab 

Deformation under Uncertain SHM Data Using Variational 

Heteroscedastic Gaussian Process 

17 

Arslan and Tiryaki 

(2020) 

Prediction of railway switch point failures by artificial intelligence 

methods 
7 

Table 4: Citation analysis 
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5.1.2 Distribution of ML Algorithms and Assets 

The distribution of papers per ML algorithm applied to PdM of railway 

infrastructure assets is illustrated in Figure 21. RF is the most utilized ML 

algorithm, with five papers, while the second placeholders consist of SVM, CNN, 

PCA, ANN, DT, k-means, and RNN. PL, which includes Naïve Bayes and 

Gaussian methods, are ranked third. DNN, GB, and LgR were applied in two 

papers each, and LDA, kNN, MR, LnR, and SVR are ranked last with one paper 

each.  

 

Figure 21: Number of papers per ML algorithm 

 

More than half of the papers have applied ML algorithms to railway tracks, as 

illustrated in Figure 22. This group of assets predicts faults to rails, sleepers, 

joints, fasteners, and track geometry. Slightly more than a quarter of the studies 

implemented ML algorithms to switches. The “Others” group consists of 

algorithms applied to the track embankment (ballast or slab) and electrical 

equipment, resulting in a minority of research.  
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Figure 22: Distribution of assets subjected in the papers 

Figure 23 is an extension of Figure 21, showing the allocation of assets to the ML 

algorithms. There is a slight difference between the figures. The reason is that one 

paper applied ML to both tracks and switches. Many algorithms were applied to 

both tracks and switches, except PL, LgR, LnR, LDA, SVR, and kNN. PL was 

used for switches and other assets. LgR, LnR, LDA, and SVR were purely related 

to tracks. On the contrary, kNN was associated with a single asset, which was 

ballast in this case. RNN is the only algorithm applied for every asset group out of 

all the algorithms.  

 

Figure 23: Distribution of ML Algorithms on Assets 
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5.1.3 Data Sources, Data types, and Asset Dimensions 

The data acquisition sources for each paper are presented in Table 3. The sources 

were from vehicle or sensor inspections, historical data, or a particular 

maintenance system or database. Certain papers acquired data from vehicle 

inspections, and other research acquired data from sensors on the track. No studies 

used purely manual inspection methods. However, Lasisi and Attoh-Okine (2018) 

gathered data from inspection vehicles together with manual inspections.   

Table 5 presents the types of data used in datasets for ML algorithms, with the 

referring number of papers. The numbers of papers are higher due to some papers 

applying multiple data types in their dataset. In addition, Wang et al. (2020) and 

Wang and Ni (2019) used artificial data and were excluded from this analysis. 

Geometry data, asset properties, and historical data were utilized in datasets by, in 

the subsequent order, 67%, 39%, and 33% of the papers. Geometric values are 

presented in chapter 3.1.1. Historical data consists of data related to maintenance, 

inspections, defects, and condition states. Fewer articles considered the remaining 

data types. Hovad et al. (2021) was the only paper that applied images to their 

algorithm. Furthermore, Guler (2014) was the single work that considered traffic 

characteristics and environmental factors.   

Data types Number of papers 
Geometry data 12 
Asset properties 7 
Historical data 6 
Acceleration/Vibration data 2 
Tamping data 2 
Switch machine data 2 
Images 1 
Traffic characteristics 1 
Environmental factors 1 

Table 5: Distribution of papers of data types used in datasets applied to ML algorithms 

The utilized dimensions related to ML in PdM of switches consisted of several 

parameters from many switches. Arslan and Tiryaki (2020), Soares et al. (2021), 

Najeh et al. (2021) collected data from six switches. Allah Bukhsh et al. (2019) 

collected data from 802 switches, while Vassos et al. (2021) gathered data from 

166 switches. Sresakoolchai and Kaewunruen (2022) acquired both track and 
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switch defect data from a 30 km long track without specifying the number of 

switches.  

In dimensions for ML in PdM of railway tracks, the length of the measured tracks 

varied, as Table 6 depicts. Hao et al. (2022), Khajehei et al. (2022), and Guler 

(2014) applied tracks more than 150 km in their cases. On the contrary, Hovad et 

al. (2021) and Lasisi and Attoh-Okine (2018) measured significantly shorter 

tracks. Cárdenas-Gallo et al. (2017) studied four track segments for predicting 

RUL of tracks, but did not state a total track length. Similarly, Lee et al. (2018) 

and Mercy and Srinivasa Rao (2018) did not state the total length of the measured 

track.  

Reference Track length (km) 
Hao et al. (2022) 300 
Khajehei et al. (2022) 216 
Guler (2014) 180 
Sharma et al. (2018) 80 
Vale and Simões (2022) 51 
Sresakoolchai and Kaewunruen (2022) 30 
Lopes Gerum et al. (2019) 17 
Hovad et al. (2021) 5,4 
Lasisi and Attoh-Okine (2018) 1,6 

Table 6: Track lengths used in datasets by each study for PdM of railway tracks 

Wang et al. (2020) was the only paper related to this topic that applied ML in 

PdM of electrical equipment. Their case study used deterioration and failure data 

to build a sample generator, resulting in a dataset consisting of 105 samples with 

20 observations in each sample.  

Wang and Ni (2019) and Tan et al. (2017) presented models for predicting RUL 

embankments (slab and ballast tracks). Wang and Ni (2019) collected data using 

five concrete blocks to represent slab tracks and field test data. Tan et al. (2017) 

performed their data collection with a sequence of 50 m blocks of track.  
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5.2 Results from Interviews 
This chapter presents the results from the two conducted interviews. 

5.2.1 Interview 1 – Veronica Brizzi 

The first participant was Veronica Brizzi, who is currently the Team leader and 

Data Scientist in the research and development team of MIPU – Predictive Hub. 

Veronica has a long industry experience and specializes in ML, energy, and PdM. 

MIPU is an Italian company developing ML and PdM solutions to improve 

industrial operations. One of their solutions to ML in PdM, is a CNN image 

classification model. The model analyzes images acquired by inspection vehicles 

on the track and categorizes them into 21 assets with an accuracy of nearly 90%. 

Additionally, with unsupervised learning and classification models based on 

current and voltage data, they can accurately predict an electromechanical failure 

of switches 2-3 months in advance.  

Veronica mentioned several challenges related to ML-based PdM of railway 

infrastructure assets, including data collection and quality. She said that it is 

essential to understand the data and define the needs with respect to the 

technology. Furthermore, she said that the data collection captures an extreme 

amount of data, commonly unbalanced data. Thus, involving people with data 

knowledge skills and technical infrastructure competence is crucial. She further 

explained that assets themselves are not very digitalized and therefore, can lack 

support to ML. In addition, she mentioned the existence of technology issues from 

edge computing to the cloud regarding the amount of data across many systems. 

She further mentioned that certain asset shapes are more difficult to classify than 

others in terms of image classification. When selecting algorithms, they 

sometimes train three potential algorithms before deciding. If the results are not 

sufficient, they do more research.  

5.2.2 Interview 2 – Kristine Tveit 

The next participant was Kristine Tveit from Bane NOR. Bane NOR is 

responsible for the railway infrastructure in Norway. She is the Smart 

Maintenance Team manager and has a long experience with railway infrastructure 
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maintenance. The Smart Maintenance team aims to predict faults before they 

occur in the infrastructure to avoid train disruptions.  

When asked about the current situation of ML in PdM in Bane NOR, she 

responded that, as of now, the maintenance is not very predictive, but more 

detection based. They use different monitoring equipment to receive alarms of 

incipient faults and anomalies of various assets, aiming to avoid breakdowns. 

However, she mentioned they will now begin an ML task to predict switch faults. 

This will be inserted in a criticality score, simplifying the prioritization of switch 

maintenance, and received alarms. Furthermore, she expressed that they have 

attempted implementing ML to track circuits. In their cases, there were issues 

regarding the sensors picking up too much noise, and instead of detecting faults, 

the algorithms detected track circuits working correctly.  

Regarding challenges related to ML, she emphasized that data quality is a 

concern. It is sometimes difficult to acquire documentation on what the actual 

errors are. With railway switches, the data must be compared to another identical 

switch machine, hence fewer observations. Additionally, there are issues related 

to the training of the ML algorithms due to a lack of data. She expressed that, 

apart from the many advantages of ML, some assets are very troublesome to 

predict with the current sensors, for instance, cable breakages. They have 

attempted prediction with other sensors gathering vibration data, but without 

success in this case.  
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6 Discussion 
This chapter discusses the findings from the results chapter. The first chapter 

discusses the growth of ML in PdM. The second chapter evaluates how methods 

for inspection and data should be selected, followed by a chapter on selecting ML 

algorithms. The next chapter discusses the challenges related to ML in PdM, and 

the last chapter elaborates on the weaknesses of this study.  

6.1 Growing Technology  
Even though research of ML in PdM is growing, this SLR resulted in only 20 

papers exclusively connected to the railway sector. This proves that the research 

on this topic is somewhat limited and suggests that challenges are delaying the 

development.  The distribution of publication year for each paper from the SLR 

validates that the research on ML in PdM of railway infrastructure assets is a 

relatively new technology, since no papers were published before 2014. 

Additionally, the trend line shows that the research is increasing in popularity. 

Before 2017, only one paper was published, and the average number of papers has 

increased since. Another contributor to this argument is that in 2022, as of March, 

already four papers have been published, which is likely to increase by the end of 

the year. This increase in publications can be linked to monitoring equipment 

becoming more available and less expensive, and the improvement of ML 

algorithms the recent years, as expressed in 3.2 and 4.4.  

The interviews provide further support to this argumentation. The first interview 

described a few cases where they had implemented ML, but technological issues 

still exist. Current railway infrastructures lack digitalized assets to support ML, 

and the edge to the cloud processes and systems struggle with the enormous 

amounts of data spread across systems. These challenges were also found in 

chapter 4.4. From the second interview, it was clearer that ML in PdM of the 

railway infrastructure is still developing and will be a more common approach in 

the future. Although Bane NOR will soon develop an ML method for predicting 

faults to switches, their current maintenance is more focused on anomaly 

detection, rather than predicting anomalies.  
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From what is discussed above, it is definite that the transition to purely ML in 

PdM of railways infrastructures is being researched and developed. Nevertheless, 

this transition may take time. Railway agencies need to be willing to invest in ML, 

both financially and organizationally, since it requires time and provides several 

changes to the organization and maintenance procedures. In addition, they need to 

consider the challenges (presented in chapter 4.4), which are further discussed in 

chapter 6.4. 

6.2 Selecting Methods for Inspection and Data 
The results showed that vehicles and sensors installed in the infrastructure were 

the most common inspection methods. Visual inspection was used by only one 

paper, implying that it may not be suitable as a data source for ML, which is 

linked to the theory found in chapter 3.2.1. The results highlight that ML in PdM 

of railway infrastructures should focus on the inspection methods used in the SLR 

papers. However, as learned from the second SSI, inspection methods for other 

assets are lacking and should be developed. 

Regarding data types, geometry, asset properties, and historical data were most 

utilized and implied strong argumentations for utilizing these three in ML training 

datasets. Yet, the geometry data applies to tracks and switches, and no other 

assets. Adding other data types should be considered since the ML algorithms 

could perform better with many datasets. For instance, Lee et al. (2018) used 

tamping data in addition to geometry and asset properties data, to investigate how 

this data impacted the accuracy of the ML algorithm. However, the degree of 

heterogeneity can affect the predictability of the algorithms and needs to be 

assessed.  

Asset dimensions consisted of various sizes for tracks and switches, which might 

imply that there are discussions between the researchers on the correct asset 

dimensions. Proper asset dimensions must be selected for a sufficient ML 

algorithm. The results presented in chapter 5.1.3 can assist the selection of other 

railway organizations and other studies, as it is important to find the optimal 

balance between the dimension and the amount of data to achieve accurate 

performance. Limited papers were found on other assets. Hence, few asset 

dimensions for other assets were determined.  
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6.3 Selecting the Suitable ML Algorithm 
Several works achieved cost savings and good performance accuracy with their 

respective ML applications. However, selecting the most suitable algorithm for a 

railway asset is complicated and often involves a training process of several 

algorithms, as evidenced in chapters 5.1 and 5.2.1. In addition to the purpose of 

the PdM (RUL or failure prediction), the desired ML type and tasks must be 

selected with respect to inspection methods, tools, and the railway asset. The 

theory from the LR and the results from the SLR verifies that several ML 

algorithms can be utilized in PdM of railway infrastructures. The distribution of 

SLR papers per algorithm is shown in Figure 21. Corresponding to the findings 

from Arena et al. (2022) and Xie et al. (2020), supervised, unsupervised, 

ensemble, and DL methods are most relevant for PdM practices in the railway 

infrastructure, suggesting that they should be evaluated in the selection process. 

Although this research covered the most relevant algorithms, there might be other 

algorithms that are applicable. Contrary to Ouadah et al. (2022), this study found 

only one paper that utilized the kNN algorithm. Speculations on the reasons might 

be that kNN has not achieved many successful implementations in the railway 

industry. 

In addition to selecting the algorithm, the process must take the railway asset into 

consideration, which is connected to developing the foundations of a ML model 

(4.4). As previously presented in Figure 22, railway tracks and switches are most 

researched, and works on other assets are few. While this was unanticipated, the 

results from the SLR and SSIs imply that it is due to the current railway 

monitoring methods. The railway track and switches have been equipped with 

more tools for inspection, in contrast to, e.g., catenary masts, illumination devices, 

drainage elements, and fences, amongst others. Another reason can be that tracks 

and switches are more critical for the railway infrastructure since faults in these 

assets, cause disruptions that affect the whole infrastructure and negatively 

influence customer service. Allah Bukhsh et al. (2019), Cárdenas-Gallo et al. 

(2017) and Arslan and Tiryaki (2020) argue that their ML method can be applied 

to other assets. However, not enough research exists to provide solid suggestions 

with assisting evidence. 
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Table 3 presented the papers sorted by the aim of PdM and can be used as 

guidelines for the evaluation of algorithms in the selection process. The following 

subchapter further discusses the selection of ML algorithms for PdM of railway 

tracks and switches. 

6.3.1 Selecting ML Algorithms for Tracks and Switches 

In terms of failure prediction of railway tracks, seven papers were identified that 

utilized several ML algorithms. Sharma et al. (2018) used RF, and Lopes Gerum 

et al. (2019) applied RNN and RF, while other works argued against RF. For 

instance, Lasisi and Attoh-Okine (2018) found that SVM was more effective than 

RF, and Mercy and Srinivasa Rao (2018) proved that DT, in some cases, 

performed better than RF. The other papers did not train RF for failure prediction 

of tracks. Hovad et al. (2021) performed image classification tasks with CNN, 

whereas Hao et al. (2022) applied an ensemble model with CNN, and argued that 

the model was better than the CNN alone. Sresakoolchai and Kaewunruen (2022) 

also trained CNN, amongst many other algorithms for predicting track defects. 

Their findings show that DNN had a slightly better performance accuracy than 

CNN, and performed much better than DT and RF. These argumentations might 

imply that there is an uncertainty of algorithm(s) decisions and enhances the 

importance of training several algorithms before deciding for one or more 

algorithms. However, the abovementioned algorithms are a good starting point 

and correlate to previous research from Ouadah et al. (2022), except for kNN. The 

kNN algorithm is not considered by any of the papers, which might indicate that it 

is not suitable for failure prediction of tracks. For image classification tasks, CNN 

should be examined, corresponding with information from the first interview.  

Regarding RUL of railway tracks, five papers were obtained from the SLR. 

Contrary to failure prediction of tracks, a much lower number of algorithms were 

trained. Guler (2014) applied ANN for predicting track deterioration, while 

Khajehei et al. (2022) used LnR in addition to ANN. Lee et al. (2018) found that 

ANN performed marginally better than SVR. In contrast to the other authors, Vale 

and Simões (2022) proposed PCA and LgR, and Cárdenas-Gallo et al. (2017) 

applied SVM and LgR for estimating RUL based on track geometry data. From 

these papers, argumentations for recommending ANN and LgR in RUL of railway 
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tracks can be made, but the use of PCA, SVM, and LnR, should also be 

investigated.  

A total of six research papers were found for ML in PdM of railway switches, and 

five papers were related to failure prediction. Najeh et al. (2021) was the only 

paper concerning RUL of switches and presented a solution consisting of RNN 

and CNN. Soares et al. (2021) and Vassos et al. (2021) applied the unsupervised 

learning algorithms, PCA and k-means, for failure prediction of switches. Arslan 

and Tiryaki (2020) found ANN most effective and Allah Bukhsh et al. (2019) 

selected GBT and RF as best performers. As mentioned above, Sresakoolchai and 

Kaewunruen (2022), who predicted failures of switches in addition to rails, found 

DNN and CNN as the best algorithms. Due to the various selection of algorithms 

from these papers, it is difficult to establish the most suitable algorithm. However, 

DL methods can be viewed as a priority for estimating RUL of switches, which is 

in line with some of the papers on RUL of tracks. For predicting failures of 

switches, the abovementioned algorithms should be evaluated.  

6.4 Challenges with ML in PdM 
From what is established in chapters 3.2 and 4.4, ML-related challenges in PdM 

can be divided into four main categories: foundational, data collection, data 

quality, and data knowledge.  

The foundational challenges are due to the selection of suitable algorithms and the 

lack of an existing universal ML model for all industries, corresponding to 

railway infrastructure assets. The inexistence of a ML model that applies to all 

assets is a main challenge, and chapters 6.3 and 6.3.1 provides further evidence to 

this statement. Compared to other assets, several ML methods were found for 

tracks and switches. Therefore, ML in PdM of other assets is another issue. The 

algorithms presented can be utilized for particular assets with a specific goal, but 

do not cover all of them. Arslan and Tiryaki (2020) supported this argument by 

expressing difficulties regarding algorithm selection. Cárdenas-Gallo et al. (2017) 

stated that their method could be implemented on other railway tracks and other 

types of asset defects. To the knowledge of this study, this remark remains 

unsettled because no other research has pursued it. On the contrary, Hao et al. 

(2022) and Allah Bukhsh et al. (2019) mentioned that data and algorithms could 
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not be settled forever. Certain assets will gradually change over time and require 

new data and retraining of the ML model. Another challenge is the foundations 

for data collection. Wang et al. (2020) experienced issues with data deficiency. 

This correlates to the interview findings. It is crucial to establish the needs of the 

implementation and assets lack data and support to ML since they are currently 

not digitalized enough to the desired degree.  

Data collection and quality consist of acquisition, processing, and organization 

issues. Inspection vehicles and sensors installed in the infrastructure are the main 

data collection methods for ML in PdM of railway infrastructure assets. Chapter 

5.1.3 illustrates that for ML algorithms to work, the types and dimensions of the 

datasets are decisive. On the opposite, it is not clear what the “perfect” asset 

dimensions are due to the various sizes, and data is often established from several 

years of inspection. This depends on the desired size or number of assets 

combined with the amount of data the ML algorithms need to work properly, 

concerning the heterogeneity issues. According to Lasisi and Attoh-Okine (2018), 

modern cloud systems have reduced the problem of data storage, but the 

enormous amounts of data collected still cause issues. The edge-to-cloud systems 

face data extended to several different platforms. Lee et al. (2018) reported issues 

concerning the big datasets used for training the algorithms. In addition, Guler 

(2014) had problems with datasets having large numbers of influencing 

parameters, and Soares et al. (2021) expressed the issues with selecting the proper 

parameters. Furthermore, inspection methods and tools gather data that contain 

errors, and in some cases lead to a reevaluation of the data features and retraining 

of algorithms, as experienced by Khajehei et al. (2022) and Soares et al. (2021). 

Accurate ML algorithms require detailed data preprocessing, which consumes 

time and resources for data cleaning and structuring. 

Regarding data quality, imbalanced data is a primary concern and was reported as 

an issue by both the interviews and Sresakoolchai and Kaewunruen (2022), Lasisi 

and Attoh-Okine (2018), and Allah Bukhsh et al. (2019). There are different 

causes for imbalanced data. Lopes Gerum et al. (2019) issued imbalanced data 

due to dealing with several rail segments, Hovad et al. (2021) image classification 

algorithm detected multiple and irrelevant objects, and Vale and Simões (2022) 

had dissimilar measurement data in different time intervals. To deal with 

imbalanced data issues, feature extraction and dimensionality reduction 
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algorithms such as k-means and PCA, can be implemented to potentially improve 

the ML method applied in PdM of the railway infrastructure. 

The last challenge is related to the knowledge required for implementing ML 

algorithms. Both the interviews and Arslan and Tiryaki (2020) stated that it is 

essential to understand the collected data, and this demands expert knowledge. 

For a successful ML implementation to railway assets, great expertise in ML 

algorithms must be combined with insights into the assets. Expert knowledge is 

required for dealing with the priorly stated implementation challenges due to the 

application complexity of algorithms, which is expressed by Vale and Simões 

(2022) 

These challenges must be assessed before establishing a ML solution, as an 

unknown issue can potentially cause consequences. Additionally, more solutions 

to the challenges should be established, preventing companies from possibly 

losing motivation to implement ML methods. 

6.5 Weaknesses 
The study has limitations related to the research design, which are presented in 

chapter 2.4. In addition, the number of interviews is a weakness of this study, as 

more interviews could have provided additional information and new perspectives 

on the problem. Another weakness is the number of papers gathered in the SLR. 

They were dominated by two asset types, tracks and switches. Few papers on 

other assets were identified, making it difficult to perform proper analysis to 

provide solid solutions.  

Another weakness is that the data analysis is from a general view. A thorough 

study of the parameters and values of the collected datasets allows for more solid 

argumentation on what data to utilize for the training and testing of ML 

algorithms. Additionally, a study that includes ML implementation for assets 

outside the infrastructure or fault and anomaly detection purposes, can provide 

more information about the current status of ML implementations in the railway 

industry. Regarding the presented ML methods in the theory, it could be argued 

that this research did not study the disadvantages of each method, which could 

have improved the recommendations for algorithm selections. 
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7 Conclusion 
This chapter concludes the project by addressing the four RQs, followed by the 

contribution of the thesis and suggestions to further research.  

One of the primary purposes of this study was to uncover the progress towards 

ML-PdM of railway infrastructure assets. The main conclusion is that this 

maintenance strategy is in its early stages but is progressively developing. The 

research on the topic was limited, as discovered from the SLR. A total of 20 

papers were identified, and the publication years show an increasing trend in 

popularity, since half of the papers were published in the last few years. This 

indicates that ML-PdM applications in the railway industry are a relatively new 

approach, which is also acknowledged from the interviews. This is due to several 

reasons, and they are connected to the challenges of ML and the lack of inspection 

methods and tools for certain infrastructure assets. The following paragraphs 

briefly present the findings concerning the RQs.  

RQ1: Which ML algorithms are applied to PdM of railway infrastructure 

assets? 

The results from the SLR and the first interview show that several algorithms can 

be applied. These are supervised, unsupervised, ensemble, and DL methods. A 

total of 17 algorithms were identified in the SLR, including algorithms that 

perform regression, classification, and clustering tasks. These findings contribute 

to railway organizations and other researchers developing a ML method for PdM 

of railway infrastructure assets. The author attempted to select a suitable ML 

algorithm for railway tracks and switches, where a few guidelines were 

established. However, due to the complexity of the connection between data 

collection, assets, tasks, and algorithms, the case of determining the “best” 

algorithm is troublesome.   

RQ2: Which railway infrastructure assets are subjected to ML algorithms in 

PdM? 

This research found that the assets subjected to ML algorithms related to PdM 

were mainly railway tracks and switches, with 57% and 29%, respectively. The 

remaining 14% were related to three papers regarding railway embankment (slab 
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track and ballast) and gas-insulated switchgear (electrical asset). The reason for 

the low research on other assets is discovered to be less digitalized inspection 

methods and tools. In addition, tracks and switches are more critical to the 

infrastructure, and since ML in PdM is an emerging technology, the research 

focus might be more directed to these.   

RQ3: What inspection methods and tools are utilized for data acquisition for 

ML in PdM of railway infrastructure assets? 

The inspection methods and tools for collecting data to support ML-based PdM of 

railway infrastructures are inspection vehicles and sensors installed along the 

track. There are various vehicles and sensors used for data acquisition. Geometry 

data, historical data, and asset properties data are the types of data usually applied 

to the ML algorithm. All these consist of several parameters that are gathered 

from various asset dimensions. For proper algorithm training, there must be a 

balance between the data amount and asset dimensions, which underlines the 

complexity involved and the importance of establishing the correct foundations 

for implementing ML in PdM. 

RQ4: What are the main challenges of ML in PdM of railway infrastructure 

assets? 

The results from the LR, SLR, and the SSIs characterized the challenges of 

railway infrastructure ML in PdM into four main categories. The challenges are 

related to, and the categories are related to foundations, data collection, data 

quality, and data knowledge. Each challenge consisted of several issues, and a few 

suggestions were expressed to mitigate them. These challenges might prevent 

railway infrastructure organizations from being willing to apply ML in their PdM 

practices, since the technology is possibly viewed in the light of the challenges 

and risks, rather than the advantages.  

7.1 Contribution 
The results of this thesis are valuable to railway organizations and other 

researchers developing a ML method for PdM of railway infrastructure assets. 

The thesis provides comprehensive insights into ML methods, explaining which 

algorithms are suitable for PdM of railway infrastructure assets. In addition, it 

detailedly describes the utilized data sources, data types, and asset dimensions. 
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Furthermore, challenges related to the topic have been presented, which justifies 

the focus areas that organizations and researchers need to consider to achieve a 

successful implementation. 

An important note is that some relevant papers may have been unidentified in the 

SLR. The search string was broad, but more papers could potentially have been 

detected in other databases, languages, or with other search strings. These could 

have impacted the results of the thesis. In addition, the quality of the papers may 

vary. The selected papers were peer-reviewed and went through citation analysis, 

hoping to ensure quality. However, one can not be certain that the selected papers 

are unbiased.  

7.2 Further Research 
Since ML in PdM in railway infrastructures is a relatively new topic, several areas 

are available for further research, and the prior paragraphs of this chapter provide 

suggestions. These are described in the paragraphs below. 

The first suggestion is to establish solid argumentations for the most suitable ML 

algorithm for a railway infrastructure asset. To the author's knowledge, not 

enough research has been conducted. The research could also focus on creating a 

universal model for several railway infrastructure assets. 

Another research can proceed on findings from this study, and investigate the 

disadvantages of the ML methods, to draw additional comparisons between 

algorithms, data types, asset dimensions, and the proposed methods from the 

papers. 

The next suggestion is to study the different data collection methods, parameters, 

and values in detail to analyze and establish the optimal data foundations for one 

or more specific railway infrastructure assets.  

The last suggestion is to investigate the main challenges described in this thesis, 

and develop more solutions to mitigate them. This could be very beneficial for the 

success of ML implementations in PdM, and could greatly support railway 

organizations and other researchers.   
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9 Appendix 
 

9.1 Quality Assessment Form 

Questions 

Were the aim and scope clearly stated? 

Was the research design appropriate for addressing the aim and scope? 

Was the data collected properly associated with the problem statement? 

Was the data analysis performed appropriately? Diversion from initial scope? 

Are the findings stated clearly? Are some results missing? 

Is the research valuable? 

 

9.2 Interview Guide 

Show gratitude for participation 

Shortly explain the topic and scope of the project  

Anonymity? 

What is the status of ML implementations to PdM? 

- How many projects are completed? 

- Have they been successful? Why, why not? 

Which ML algorithms/methods have you utilized? 

- Reason for selection? 

Which ML implementation challenges have you faced? 

- How did you solve these? 

Which railway infrastructure assets have been supported by ML? 

- Some more than others? 

Do you have related project documents that I can look at? 

Thanks for your time 

 

 

9.3 Table Overview of Selected Papers 
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Reference Aim ML 
Algorithm(s) Asset(s) Data Acquisition 

Source(s) Datatypes 
Asset 

dimensions and 
data size 

Main Findings Database Citations 

Lopes Gerum 
et al. (2019) 

Failure 
Prediction 

RF, RNN, k-
means 

Rail and track 
geometry defects 

Rail defects and 
inspection 
database 

Historical data, 
geometry data, 

Asset data 

Rail data - 2-yr 
period (2016 -

2017). Segments 
averaging 17 km 
in length. 26 000 
inspections and 
82 000 defects 

• Presented a new approach for 
rail and geometry defects 
prediction, and an optimal 
scheduling approach 
• Used RNN to predict the defects 
based on integrated defect and 
inspection data, before a 
discounted Markov decision 
process model determined the 
optimal inspection and 
maintenance scheduling strategies 
• New framework for integrating 
prediction with inspection and 
maintenance scheduling activities 
• The framework is effective for 
defect prediction and for 
developing long-term 
maintenance scheduling strategies 
with real-time track conditions  

Oria 45 

Allah Bukhsh 
et al. (2019) 

Failure 
Prediction DT, RF, GBT Railway switches 

SAP/ERP 
maintenance 

request process 

Historical data of 
visual inspection, 

maintenance 
records, and 

condition state 

802 switches 
(2011-2017) 

• Utilized tree-based methods for 
maintenance prediction of railway 
switches 
• Used maintenance input data, 
e.g., switch component, problem 
reason and/or cause, location, 
track type, age etc.  
• GBT performed best for the 
prediction of maintenance need, 
while RF was the most accurate 
prediction model for maintenance 
activity type and trigger's status 
• The approach is applicable to 
discrete types of railway 
infrastructure assets 

Oria 58 
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Wang et al. 
(2020) 

Failure 
Prediction RNN 

Gas-insulated 
switchgear (electrical 

equipment) 

Data from power 
equipment 

Historical sample 
data 

Sample 
generator from 
deterioration 

and failure data. 
105 samples with 
20 observations 

each 

• Proposed new solution for 
maintenance of power equipment, 
by combining both PdM and 
model-based approaches 
• Designed a sample generator 
and a maintenance predictor 
• The maintenance predictor 
powered by LSTM-RNN brought 
positive results to predict future 
maintenance activities based on 
historical sample data  

Oria 29 

Lasisi and 
Attoh-Okine 

(2018) 

Failure 
Prediction 

SVM, RF, LDA, 
PCA Railway Track 

Manual 
inspection or 

inspection 
vehicles 

Track geometry 
(includes wide 
gauge, cross 
level, vertical 

profile, 
warp/twist, 

alignment) data 

28 inspection 
dates of 1 mile 

of track. Dataset 
of 31 features 

collected from a 
section of US 
Railway track 

• Demonstrated how combined 
track geometry parameters with 
track quality indices, simplified the 
track properties without loss of 
variability in the data 
• The most effective technique 
was discovered to be SVM, which 
predicts track defects better than 
track quality indices 
• Since the defect data was very 
unbalanced, prediction 
performance was measured using 
TPR (true positive rate) and FPR 
(false positive rate) 

Oria 73 

Hao et al. 
(2022) 

Failure 
Prediction AM, CNN, GRU Railway track Inspection trains 

Track geometry 
data (vertical 

profile, 
alignment, gauge, 
cross-level, twist, 

etc.), vehicle 
body-

acceleration and 
vehicle speeds 

Inspection data 
collected at 0.25 

m increments 
along 600 km 
track (300 km 

for testing). Max 
management 
wavelength of 

track 
irregularities is 

120 m. 

• Proposed a model for predicting 
track irregularities using vehicle-
body accelerations from 
measurement data 
• Proposed AM-CNN-GRU model 
to learn shape- and sequential 
features and focus on the most 
important features 
• AM-CNN-GRU performs better 
than GRU and CNN-GRU models 

Oria 0 
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Hovad et al. 
(2021) 

Failure 
Prediction CNN Rails and joints 

Line scan 
cameras on 

recording car 

Vertically 
captured images 

Each image 
covers approx. 

2.507 m of track 
and do not 

overlap with 
other images. 

2155 total 
images. Ca. 5.4 

km in total 

• Proposed a computer vision 
system for automatic detection 
and prediction of defects on rails 
and joints through images 
• The results showed great 
versatility of the model which can 
potentially reduce the need for 
visual inspections 
• The recall rate for defects was 
84 %, rarely missing surface 
defects 

Oria 1 

Vassos et al. 
(2021) 

Failure 
Prediction PCA, k-means Switches 

Repair records 
and track 

recording car 

Historical repair 
data and track 

turnout geometry 
data 

Data from 166 
turnouts with 

similar 
geometric 
design and 

components 

• Predicted a turnout's 
maintenance need based on two 
clusters of data 
• Geometric track measures 
described one of the clusters to 
show problematic behavior, while 
the other cluster was the opposite 
• No clear boundary exists 
between the clusters, and it is 
difficult to assign a specific cluster 
label successfully 

Oria 0 

Vale and 
Simões 
(2022) 

RUL PCA, LgR Railway Track 

Historical track 
condition data 
and inspection 

vehicle 

 

Track geometry 
(includes 

longitudinal level, 
alignment, gauge, 

cross level, and 
twist) data 

 

 

51 km track, 14 
inspections 

• Developed a data-driven model 
based on LgR and PCA, to predict 
railway track condition 
• The utilized predictors are 
longitudinal level and alignment of 
left and right rail, time interval 
between inspection actions, and 
sequential number of track 
segments 
• The model is easy to implement 
and resulted in 91.1% success rate 

Oria 0 
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Guler (2014) RUL ANN Railway track Vehicle and 
various devices 

Track structure, 
traffic 

characteristics, 
track layout, 

environmental 
factors, track 

geometry, and 
maintenance and 

renewal data. 

180 km railway 
track gathered 

over 2 years 

• Modelled railway track 
degradation with ANN  
• The study proved that ANN is 
one of the best ways to predict 
track geometry degradation linked 
with a big inherent complexity 
• Presented a robust model 
without needing expert 
knowledge 

Oria 89 

Tan et al. 
(2017) RUL kNN Ballast 

Multivariate 
sensors from 
Instrumented 

revenue vehicle 

Tamping 
effectiveness 

data 

Three months of 
journey data. 50 
m block of tracks 

• The presented method achieved 
high accuracy in prediction of 
tamping effectiveness 
• Tamping effectiveness should 
improve maintenance efficiency 
• Achieved accuracy of 68% when 
predicting tamping effectiveness 
12 weeks prior tamping, and 70% 
accuracy 1 day prior 

Oria 4 

Cárdenas-
Gallo et al. 

(2017) 
RUL LgR, SVM Railway track Track geometry 

vehicles 
Track geometry 

data 

Dataset from 
four track 
segments. 

Unspecified 
total length 

• Created a method for 
developing an ensemble classifier 
to predict evolution of track 
geometry defects 
• The ensemble classifier 
outperformed the individual 
algorithms in every case 
• Can be implemented to other 
tracks and other types of defects 

Oria 43 

Wang and Ni 
(2019) RUL 

Variational 
heteroscedastic 

Gaussian 
process 

(Bayesian 
method) 

Track slab  Fiber Bragg 
Grating sensor 

Real-time 
monitoring data 

5 track slabs in 
laboratory and 

field test 
datasets 

• Developed, tested, and 
implemented a novel online SHM 
system using FBG sensing 
technology  
• Experimental results show 
improvement in terms of 
regression compared to the state-
of-the-art algorithm 
• The method improves the 
prediction accuracy for all sensors 

Oria 17 
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Sharma et al. 
(2018) 

Failure 
Prediction RF  Railway track Public data Track geometry 

data 
50 miles track, 

33 months 

• Developed a fault prediction 
maintenance policy for the railway 
track geometry  
• The developed policy results in 
an approximately 10% savings in 
the total maintenance costs for 
every 1 mile of track 
• Predicted the spot geometric 
defect occurrence probability 
using RF 

Oria 80 

Sresakoolchai 
and 

Kaewunruen 
(2022) 

Failure 
Prediction 

DNN, CNN, MR, 
SVM, GB, DT, k-

means 

rail, rail joint, switch 
and crossing, and 

fastener 

Track geometry 
car 

Track geometry 
data, track 
component 

defect data, and 
track profile data 

30 km, data 
collected from 

2016-2019 

• Developed models with 
supervised learning algorithms to 
predict component defects using 
track geometry 
• DNN performed with the best 
accuracy of 94.3%, followed by 
CNN with 93.8%. Other models 
were about 50% or lower 
• Detected defects and 
categorized into rail, rail joint, 
switch and crossing, and fastener 
• Insights of track component 
defects are investigated using k-
means 
• The method does not add any 
additional costs for developing the 
system 

Oria 0 

Najeh et al. 
(2021) RUL RNN (LSTM), 

CNN (RESNet) 
Switches and 

crossings 

Sensors 
(accelerometer) 

on track 
Vibration data 6 sensors on the 

S&C 

• Developed a RNN and CNN 
based framework to design an 
effective prediction system of S&C 
wear development 
• Resulted in acceptable accuracy 
estimation of wear in the middle 
section of the S&C 
• The solution will be 
implemented by the railway 
owner to predict the wear 
evolution and monitor and analyze 
the condition of S&Cs 

Oria 1 
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Khajehei et 
al. (2022) RUL ANN, LnR Railway track Database and 

system 

Track geometry 
data, asset 

information, and 
maintenance 

history 

5-line sections 
(total of 216km) 

• Presented a model for predicting 
track degradation rate, collecting 
track geometry data, asset 
information and maintenance 
history 
• Applied ANN which resulted in 
adequate performance 
• The most important contributor 
to the prediction of track 
geometry degradation rate is 
maintenance history 
• The amount of tamping activities 
highly influences the degradation 
rate du to its destructiveness 

Oria 3 

Lee et al. 
(2018) RUL ANN, SVR Railway Track ERP system 

Track properties 
(ERP), tamping 
data, geometry 

data 

Used datasets 
from external 

sources 

• Studied application of SVR and 
ANN to predict track degradation 
with simulation data similar to 
field conditions 
• Performed two case studies with 
different input parameters 
• ANN performed marginally 
better than SVR due to the 
retraining process 
• Results show that min. 2 yrs of 
maintenance data are needed to 
develop a stable prediction 
• The prediction results can be 
used in the DSS within the 
framework of ERP 

Scopus 19 
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Mercy and 
Srinivasa Rao 

(2018) 

Failure 
Prediction DNN, DT, RF Rail Track geometry 

car 
Rail geometry 

data 

9 attributes, 228 
instances. 

Unspecified 
total length. 

• Presented three ML methods for 
prediction of rail surface defects 
(e.g., unevenness, twist, alignment 
and gauge are used) 
• The results showed that DT had 
the highest accuracy for predicting 
twist, and unevenness right and 
left. RF and DT have equal 
accuracy when predicting 
alignment left. RF has the best 
prediction accuracy for alignment 
right and gauge.  
• DNN was outperformed by DT 
and RF 

Scopus 5 

Soares et al. 
(2021) 

Failure 
Prediction 

PCA, k-means, 
Gaussian 
method 

Switch machine Switch machine 
sensors 

Switch 
parameters data 

615 inspections 
of 6 switch 

machines with 
same 

specifications 

• Proposed a predictive 
maintenance model to prevent 
failures of switch machines 
• The model includes feature 
extraction and selection 
procedures based on 
unsupervised ML techniques 
• The approach showed 
impressive results and was 
efficient once it had considered 
critical operations conducted in 
the vicinity of the ones classified 
as faults 

Scopus 4 

Arslan and 
Tiryaki (2020) 

Failure 
Prediction 

ANN, SVM, 
naive bayes, DT Switches Switch motors 

Switch 
movement, 

position, status, 
movement time  

Data from six 
switch points. 
Consisted of 7 
inputs and 1 
output from 

each, and 6000 
switch point 

movements was 
utilized 

• Aimed to predict railway switch 
point failures by utilizing SVM and 
ANN 
• Compared ANN and SVM to 
other methods such as DT and 
Naive bayes. ANN and SVM 
outperformed all of them 
• ANN was observed to be more 
appropriate in the implementation 
of the established model 
• If inputs were to change, the 
presented method will correctly 
determine the outputs and 
correctly predict failures 

Scopus 7 
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