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Abstract

Surprisingly unexplored, and ripe with possibilities; the ocean is a key cog
in Earth’s planetary clockwork. The field of robotics is gradually extend-
ing to underwater environments along with technological advancements,
allowing the ocean’s potential to be harnessed.

This project aims to develop the foundation for an easily deployable Un-
manned Underwater Vehicle (UUV) configuration for the purpose of sim-
plifying and encouraging field testing, ultimately enabling research within
underwater multi agent operations. To navigate underwater environments
is one of the main challenges when transitioning into autonomous under-
water operations.

In this project, a navigational scheme consisting of an error-state
Kalman filter (ESKF) is implemented and tested. Experimental results
show drift in position and heading, as is expected when using only
interoceptive sensors, which leads to an unbounded growth in the un-
certainty of the estimates. Performing detection in SSS images can help
limit the estimate error. However, basic SSS images suffer from intensity
variations and geometric distortions, complicating the use of computer
vision methods. To address this, an image construction pipeline for SSS
performing echo intensity normalization, slant range correction, blind
zone removal, and geometric correction, is implemented. The pipeline
is found to construct acoustic images which more accurately represent
the sea floor, accounting for variations and distortions. This means that
detection for the purpose of limiting navigational error can be performed
on the resulting acoustic images.

Further research should focus on the development and implementation
of a detector to use on processed acoustic images. Doing so, the complete
system should be re-tuned and re-evaluated to accommodate the detector’s
performance.
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Sammendrag

Havet er en essensiell brikke i jordens komplekse puslespill, be-
merkelsesverdig uoppdaget og fullt av muligheter. Hånd i hånd med
teknologisk utvikling er robotikk-feltet i ferd med å bokstavelig talt ta seg
vann over hodet, slik at potensialet under vannoverflaten kan utnyttes.
Formålet med denne oppgaven er å danne grunnlaget for en ubemannet
undervannsfarkost som enkelt kan benyttes i forskningsøyemed. Det
vil bidra til å forenkle og muliggjøre felteksperiment for å bane vei
for multiagent undervannsforskning. Navigasjon under vann er én av
hovedutfordringene knyttet til autonome undervannsoperasjoner.

I forbindelse med dette prosjektet har en navigasjonsløsning bestående
av et error-state Kalman filter (ESKF) blitt implementert og evaluert.
Eksperimentelle forsøk viser forflytting i tilstandsestimatene av farkostens
posisjon og bevegelsesretning, noe som er forventet når kun interoseptive
sensorer benyttes. Dette medfører en ubegrenset vekst i usikkerhet knyttet
til estimatene. Veksten kan begrenses ved å utføre deteksjon i akustiske
bilder fra en sidesøkende sonar, men bruk av deteksjonsmetoder er på
ingen måte uproblematisk grunnet intensitetsvariasjoner og geometriske
forvrengninger. I denne oppgaven implementeres en sekvens av pros-
esseringssteg bestående av intensitetsnormalisering, avstandskorreksjon,
eliminering av blindsone, og geometrisk korreksjon. De ferdigprosesserte
akustiske bildene framstår som mer presise representasjoner av havbun-
nen. Derfor er bildene bedre egnet for deteksjon i navigasjonsøyemed.

Videre arbeid bør omfatte implementasjon av en detektor for pros-
esserte akustiske bilder. Deretter bør hele systemet justeres og reevalueres
i kontekst av detektorens ytelse.

v
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Chapter 1

Introduction

1.1 Motivation

The oceans cover more than two-thirds of the Earth’s surface, consequently
playing an essential role when assessing solutions to tough challenges such
as climate change and increasing population density. As all scientific, eco-
nomic, political, and social decisions at some point depend on knowledge
of the Earth, the importance of technology enabling underwater explo-
ration and operations can not be understated.

Along with technological advancements, the field of robotics has
extended to underwater environments through development of the
Unmanned Underwater Vehicle (UUV). Set to perform surveying tasks
such as sea floor mapping [1], ship hull inspections [2], environmental
monitoring [3], and search operations [4], the UUVs have a wide field
of application. Further, UUVs help reduce time, economic costs, and risk
related to underwater tasks, making them prominent tools.

To reliably perform these tasks, UUVs are fundamentally dependent on
robust and accurate navigation. Navigating underwater environments is
challenging due to the attenuation of radio signals, severely restricting the
availability of Global Positioning System (GPS) or other Global Navigation
Satellite Systems (GNSS). Commonly, UUV navigation systems are based
on dead reckoning and the use of inertial navigation systems, integrating
accelerations and velocities to obtain position and orientation estimates
[5]. Better accuracy can be obtained by fusing measurements from other
sensors using state estimation solutions such as particle filters, high-gain
observers, or one of many flavors of the Kalman filter.

However, all these solutions suffer from unbounded growth in esti-
mate uncertainty due to the integration of noisy and biased measurements.
The growth can be limited through the time and power consuming act of

1



Chapter 1: Introduction 2

resurfacing for GNSS updates. Doing so may be unfeasible for operations
in confined spaces such as under ice [6]. Acoustic range methods can be
employed to alleviate resurfacing, where the deployment of infrastructure
such as long baseline and ultra-short baseline provides accurate position
estimates of the UUV [7]. The main disadvantages of such methods are the
time and cost related to deployment, the need for support vessels, and the
limited range. Thus, acoustic range methods are well suited for operations
in restricted areas like aquaculture and fish farming [8].

The inherent drift may be addressed through the use of Simultane-
ous Localization And Mapping (SLAM) solutions. SLAM aims to construct
a model of the environment, while simultaneously locating the vehicle
within it. The map allows the limiting of estimate uncertainty through re-
lating location to previously observed parts of the environment [9]. More-
over, the ability to recognize and distinguish landmarks in the environment
is a pivotal prerequisite.

Underwater images are known to be degraded due to factors such as
light attenuation, lens distortion, and suspended particles, which is why
acoustic sensors such as sonars are often preferred. Sonar technology has
been around for over a century, and a wide variety of sonars are available;
forward facing, synthetic aperture, and Side-Scan Sonar (SSS) to mention
a few. The SSS is capable of efficiently ensonifying large areas of the sea
floor [10]. Fusing SSS data for navigational purposes is done in [11, 12]
with reduction in performance due to infrequent observation of targets.
The construction of acoustic images which accurately represents the sea
floor is imperative to enable proper detection. To this extent, processing of
SSS data is required to address inherent intensity variations and geometric
distortion.

In this thesis, an error-state Kalman filter (ESKF) based on Solà’s formu-
lation [13] and an image construction pipeline performing echo intensity
normalization, blind zone removal, slant range correction, and geometric
correction on SSS data has been implemented, tested, and evaluated. In
addition to the ESKF and the pipeline, this thesis has made contributions
to the foundation of an easily deployable Unmanned Underwater Vehicle
(UUV) configuration through developing, modifying, and unifying1

• sensor drivers (IMU, DVL, pressure sensor, SSS, GPS),
• a hysteretic controller, a PD controller, a teleoperation solution,
• a trajectory planner, a trajectory publisher,
• a text user interface,

and automating start-up procedures using Tmuxinator.

1See Appendix B for a distinction of the developed, modified, and unified software.



Chapter 1: Introduction 3

1.2 Outline

This thesis covers the two partially disconnected subjects of state estima-
tion and processing of sonar data for the purpose of connecting them in
future work. Due to the fundamental differences between these subjects,
it was beneficial to structure the thesis into the four following parts:

• Part I: Introducing and contextualizing the work, describing contri-
butions, and outlining the thesis (this part).

• Part II: Presenting state estimation related theory, the hardware con-
figuration, the error-state Kalman filter (ESKF) implementation, re-
sults from testing, and evaluation of the ESKF performance.

• Part III: Presenting relevant acoustic theory, the image construction
pipeline for Side-Scan Sonar (SSS) data, results from testing, and
evaluation of the pipeline performance.

• Part IV: Presenting suggested improvements and the conclusion of
this work.

Although the thesis does not conform to the classic IMRAD-structure, an
effort has been made to keep this structure within the separate parts. Con-
sequently, separate parts can be read individually if the reader wishes to
do so.



Part II

Where Are We Now?
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Chapter 2

Primer on State Representation

Our ability to navigate surroundings greatly affects how we live life on
planet earth and perform the tasks we are set to do. Much like humans, this
fact also concerns robotics which inherently deals with things that move
in the world. Within mobile robotics, navigation is to a great extent about
estimating the state of a vehicle (e.g., robots, satellites, aircraft). The state
is a set of quantities that seek to describe a vehicle’s motion over time, and
the act of estimating it is referred to as state estimation.

Reminiscent of how humans use various senses to obtain information
about their surroundings, robots depend on various sensors with limited
precision to do the same. Such sensors are often divided into two cate-
gories, namely proprioceptive and exteroceptive sensors. These terms were
first introduced in 1906 by C. Sherrington [14] to describe the human ner-
vous system, but have since become rather common also in engineering. In
general proprioceptive sensors measure the state of the vehicle itself, such
as accelerometer and gyrometer sensors do. Exteroceptive sensors on the
other hand measure the state of the environment, such as time-of-flight
transmitter/receiver sensors do. Thus, various sensor measurements can
be combined into a state estimate, where the uncertainties involved should
be tracked to provide information about the certainty of the estimate. As
stated by T. Barfoot [15]:

In a way, state estimation is about doing the best we can with the
sensors we have.

If the state should fully describe a vehicle’s motion over time, then the
question of how the state is constructed is a fair one. A vehicle is typically
free to both translate and rotate in its environment, consequently giving
it 6 Degrees Of Freedom (DOF). Thus, the mathematical representation of
translation and rotation should also have 6 DOF. This geometric configu-

5



Chapter 2: Primer on State Representation 6

ration combining position and orientation is referred to as the pose of the
vehicle.

This chapter will present mathematical representations of the transla-
tion and rotation, accentuating cross-relations through brief the use of Lie
theory, in addition to presenting a selection of integration techniques.

2.1 Reference Frames

Position, orientation, and motion are all relative to the point of view of
which they are observed. As a result the concept of reference frames should
be properly defined prior to delving into the representation of translation
and rotation.

Oa

F a x a Ob

F b

Figure 2.1: The coordinate vector x a describes the origin of reference
frame F b with respect to the reference frame F b.

The position of a point in space can be described by a coordinate vector
x a ∈ R3 consisting of three components, which represents the displace-
ment in Euclidean space with respect to the frame of reference F a, as
shown in Figure 2.1. Consequently, coordinate vectors are considered suf-
ficient to represent the 3 DOF related to translation. Rotational motion is
described by expressing the orientation of one frame, F b, with respect to
another frame, F a. Both reference frames F a and F b are Cartesian coordi-
nate frames, each of which defines a set of orthogonal axes which intersect
at the origin Oa and Ob respectively [16].

Defining both Earth-centered and geographic reference frames is useful
when analyzing the motion of a vehicle. As mentioned by T. Fossen [17],
two examples of earth centered reference frames are the ECI frame and the
ECEF frame:

• The Earth-centered inertial (ECI) frame F EC I is an inertial frame for
navigation where Newton’s laws of motion apply. The origin of F EC I
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is located at the center of the Earth and axes fixed with respect to
the stars.

• The Earth-Centered Earth-Fixed (ECEF) frame F EC EF also has its ori-
gin located at the center of the Earth, but the axes rotate relative to
the ECI frame. This angular rate of rotation is ωε = 7.2921 · 10−5

rad/s, which can be neglected for slow-moving vehicles. By doing so
F EC EF may be considered inertial.

On the other hand, the NED frame and the ENU frame are examples of
geographic reference frames:

• The North, East, Down (NED) reference frame FN ED is the coordi-
nate system with origin defined relative to Earth’s reference ellipsoid,
x axis pointing towards true North, y axis towards true East, and z
axis downwards normal to Earth’s surface.

• The East, North, Up (ENU) reference frame F ENU has the same origin
as FN ED, although for ENU the x axis is pointing towards true East,
the y axis towards true North, and z axis upwards normal to Earth’s
surface.

In general, F EC I is primarily used in space applications, F EC EF is used in
navigation on Earth and systems such as the GPS, F ENU is often used in
aerial navigation, while FN ED is typically used in marine applications. The
various reference frames are visualized in Figure 2.2.

In addition to Earth-centered and geographic reference frames, body-
fixed frames are also of great use. The body-fixed reference frame is the
moving coordinate system that is fixed to the vehicle. The position and
orientation are often described using world frames such as F EC EF , while
the linear and angular velocities and accelerations are described in the
body frame.

2.2 Rotations

Unlike translation which can be sufficiently represented by coordinate vec-
tors, the degrees of freedom related to rotation must be handled with care.
Rotations do not live in a vector space1, as they form a non-commutative
group called the Special Orthogonal group denoted SO(3). As such, rota-
tions must be parameterized to provide mathematical representations of a
vehicle’s orientation. This section will inspect orientation representations
such as rotation vectors, Euler angles, rotation matrices, and unit quater-
nions.

1In the mathematical sense of a set whose elements may be added together and scaled.
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XECEF
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Figure 2.2: Visualization of the reference frames F EC I , F EC EF and F ENU .

Rotation Vectors

Rotation vectors, also referred to as the angle-axis representation, describe
rotations in three-dimensional Euclidean space using vectors co-directional
with the rotation axis. The rotation vector can be written as

φ ≜ φu (2.1)

where the length of the vector φ describes the magnitude of the rotation
in radians, and the unit vector u is co-directional with the axis of rotation
following the right-hand grip convention [13]. Note that a specific rotation
can be represented by infinitely many rotation vectors, since a rotation
vector with length φ+2πK , for any integer K , describes the same rotation
as a rotation vector with length φ. Thus, the representation of rotation
vectors can not be global.

Euler Angles

Euler angles constitute one of the most popular representations of rotation,
a representation which dates back to 1751 and the works by L. Euler [18,
19]. They can be defined by composition of elemental rotations, where a
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specific orientation can be represented through rotations around the axes
of a coordinate system. Depending on the coordinate system, the elemental
rotations can be considered either intrinsic or extrinsic:

• Intrinsic rotations occur around the axes of a moving coordinate
system.

• Extrinsic rotations occur around the axes of a fixed coordinate sys-
tem.

In addition to these conventions, there are numerous possible sequences
defining different variants of Euler angles. For navigational purposes the
set of Euler angles to parameterize the yaw, pitch, and roll of a vehicle is a
popular choice, as presented by G. Bryan [20]:

• ψ denotes rotation around the z-axis in radians equivalent of yaw.
• θ denotes rotation around the y-axis in radians equivalent of pitch.
• φ denotes rotation around the x-axis in radians equivalent of roll.

A visualization of this parameterization using the intrinsic convention is
shown in Figure 2.3.

Figure 2.3: Euler angles parameterizing yaw ψ, pitch θ , and roll φ using
a z-y-x sequence and intrinsic rotations. [21] (Licensed under CC BY 3.0)

Euler angles are a representation with exactly three parameters and
they are associated with singularities, where certain sequences may fail to
sufficiently represent a given rotation. This phenomena is better known
as gimbal lock. To avoid gimbal lock certain restrictions must be enforced.
However, independent of the representation used there are always only 3
underlying Degrees Of Freedom (DOF) associated with rotation. As proven
by J. Stuelpnagel [22], no 3-dimensional parameterization can be both
global and non-singular. This fact motivates the inspection of representa-
tions of higher dimensions than rotation vectors and Euler angles, such as
rotation matrices and unit quaternions.

https://creativecommons.org/licenses/by/3.0/deed.en
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Rotation Matrices

A rotation matrix is a matrix R ∈ R3×3 producing rotations to vectors
through the matrix product, while maintaining the orthogonality condition
and the relative orientation condition resulting in the following constraints

R⊤R = I = RR⊤ det(R) = 1 (2.2)

These constraints limit the number of Degrees Of Freedom (DOF) from 9
to 3, thus matching up with the underlying number of DOF associated with
rotation. As such, rotation matrices belong to SO(3) [13].

Rotations about one basis vector of a coordinate system, also referred to
as principle rotations, are represented by a specific set of rotation matrices.
Rx(•), Ry(•), and Rz(•) rotate vectors anticlockwise by a specified angle
about the x-, y-, and z-axis using the right-hand rule with the following
definitions:

Rx(φ)≜





1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)



 (2.3)

Ry(θ )≜





c(θ ) 0 s(θ )
0 1 0

−s(θ ) 0 c(θ )



 (2.4)

Rz(ψ)≜





c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1



 (2.5)

Here, the abbreviations s(•) ≜ sin(•) and c(•) ≜ cos(•) have been used.
Any rotation can be expressed as a product of these using matrix multipli-
cation. For instance, the same rotation parameterized through Euler angles
and visualized in Figure 2.3 can be expressed as follows using the principle
rotations:

Rproduct = Rz(ψ)Ry(θ )Rx(φ)

=





c(ψ)c(θ ) c(ψ)s(θ )s(φ)− s(ψ)c(φ) c(ψ)s(θ )c(φ) + s(ψ)s(φ)
s(ψ)c(θ ) s(ψ)s(θ )s(φ) + c(ψ)c(φ) s(ψ)s(θ )c(φ)− c(ψ)s(φ)
−s(θ ) c(θ )s(φ) c(θ )c(φ)





(2.6)
The rotation matrix equivalent to a specific rotation vector φ can be

obtained through the Rodrigues rotation formula

R(φ)≜ I cosφ + [u]× sinφ + uu⊤(1− cosφ) (2.7)
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Here, [•]× is the skew operator producing the cross-product matrix,

[a]× ≜





0 −az ay

az 0 −ax

−ay ax 0



 (2.8)

also known as the Lie algebra of SO(3). Lie theory is touched upon in Sec-
tion 2.3.

Unit Quaternions

A unit quaternion q is defined as a complex number with one real part qw

and three imaginary parts qv = [qx , qy , qz], see Equation (2.9), where the
unit norm constraint q⊤q = 1 is satisfied.

q =
�

qw

qv

�

(2.9)

Quaternions come with certain rules for addition and multiplication, which
are used as part of their definition. The sum of two quaternions is defined
as in Equation (2.10).

p ± q =
�

pw

pv

�

±
�

qw

qv

�

=
�

pq ± qw

pv ± qv

�

(2.10)

The multiplication of two quaternions is defined as in Equation (2.11).

p ⊗ q =
�

pwqw − p⊤v qv

qwpv + pwqv + pv × qv

�

(2.11)

Quaternions satisfy the associative property, but the presence of a cross
product in the definition of multiplication means that the quaternion prod-
uct is non-commutative. Lastly, the inverse of a unit quaternion equals
the conjugate according to q−1 = q∗, where the conjugate is defined as
q = [qw,−q⊤v ]

⊤ [23].
Handling cross-relations, the rotation matrix equivalent to a specific

quaternion denoted by R ≜ R{q} can be obtained through the quaternion
to rotation matrix conversion formula defined as:

R = (q2
w − q⊤v qv)I + 2qvq

⊤
v + 2qw[qv]× (2.12)

Further, the quaternion equivalent to a specific rotation vector denoted
by q ≜ q{φ} can be obtained through the rotation vector to quaternion
conversion formula defined as:

q ≜ Exp(φu) = eφu/2 = cos
φ

2
+ u sin

φ

2
=
�

cosφ/2
u sinφ/2

�

(2.13)
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It should be noted that unit quaternions as a representation define a dou-
ble cover of SO(3), where a quaternion and its negative encode the same
rotation. As such, any provided conversion formula going from SO(3) rep-
resentations to quaternions will only give one of two possible quaternion
representations [13].

2.3 Matrix Lie Groups

To better understand the Special Orthogonal group SO(3) formed by ro-
tations, a small detour via the realm of Lie theory will be made. More
specifically, this section will be limited to matrix Lie groups of which SO(3)
is an example. Note that Lie groups are highly abstract constructions and
the theory is by no means simple. This section serves as an exceptionally
brief introduction to the topic, intended to accentuate the cross-relations
between rotation vectors and parameterizations of higher dimensionality.
It is based on the work of Solà et al. [24] and the summary provided by T.
Haavardsholm [16].

Lie theory, concerning the theory of continuous symmetry applied to
geometry and differential equations, was largely created by the Norwegian
mathematician S. Lie. A crucial mathematical object within this theory is
the Lie group, defined as a smooth differentiable manifold whose elements
satisfy the group axioms. A group (G, ◦) is a set G with a composition
operation ◦ that satisfies the axioms

Closure under ◦ : X ◦Y ∈ G (2.14)

Identity E : E ◦X = X ◦ E = X (2.15)

Inverse X−1 : X−1 ◦X = X ◦X−1 = E (2.16)

Associativity ◦ : (X ◦Y) ◦Z = X ◦ (Y ◦Z) (2.17)

for elements X ,Y,Z ∈ G. For matrix Lie groups, the elements are matrices,
◦ is matrix multiplication, and the inversion operation is equivalent with
the matrix inverse. The group action of matrix Lie groups on vectors is
R · v ≜ Rv for rotations R ∈ SO(3).

The smooth manifold of matrix Lie groups is a topological space that
locally resembles linear space, and the manifold looks the same at every
point. Thus, the manifold has a unique tangent space at each point which
is a vector space. In Figure 2.4, the manifold M is visualized as a curved,
smooth surface with a tangent vectors space T MX at the point X . The
tangent space at the identity T ME is called the Lie algebra of M, and
its elements can be identified with vectors in Rm, where m = dimR(M).
Further, elements of the Lie algebra can be mapped into elements of the
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T MX

M M

T MX

XX

Ẋ

Figure 2.4: Visualization of a manifold M with a tangent vectors space
T MX at the point X [24]. (Cropped; licensed under CC BY-NC-SA 4.0)

group using the exponential map exp : T ME → M. The log map is the
inverse operation. This relation between the matrix Lie groups and the Lie
algebra is visualized in Figure 2.5. A great incentive for the use of matrix
Lie groups is found in the fact that local properties of the manifold allow
for the use of linear algebra and calculus while maintaining the global
properties of groups [16].

The reader might recall from Section 2.2 how the skew operator is
known as the Lie algebra of SO(3). This relation can be demonstrated
through the orthogonality condition from Equation (2.2). The tangent
space of SO(3) can be found by taking the time derivative of this
constraint, resulting in the following:

T SO(3)R = R⊤Ṙ = −(R⊤Ṙ)⊤ (2.18)

Being the negative of its transpose, T SO(3)R is by definition a skew-
symmetric matrix. Thus, evaluating the tangent space at the identity
rotation matrix I verifies how [a]× is in the Lie algebra of SO(3). Further,
since the tangent space vector φ = φu corresponds to a rotation vector,
the exponential map exp([φ]×)mapping such vectors into SO(3) is simply
the Rodrigues rotation formula from Equation (2.7).

Another example of a matrix Lie group is the Special Unitary group
SU(2) which topologically is the 3-sphere identifying as the unit quater-
nions group S3. The 3-dimensional manifold embedded in 4-dimensional
space is defined by the unit norm constraint, and the S3 group resembles
the linear space locally, not globally. The Lie algebra is the space of pure
imaginary quaternions, isomorphic to the hyperplaneR3 visualized as a red
grid in Figure 2.5. Tangent vectors τ1,τ2, v t of the Lie algebra wrap the
manifold along the corresponding great arc through the exponential map.
The exponential map is defined through the rotation vector to quaternion
conversion formula from Equation (2.13).

https://creativecommons.org/licenses/by-nc-sa/4.0/
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T ME

E
exp(⌧1)

exp(⌧2)

⌧2

⌧1

M

vt

exp(vt)

log(X3)
X3

Figure 2.5: Visualization of the relation between the matrix Lie group and
the Lie algebra. The Lie algebra T ME is the tangent space to the manifold
M at the identity E . The exponential map wraps tangent vectors on T ME
over the manifold M along the corresponding great arc. Contrarily, the
logarithmic map unwraps elements on the manifold onto the Lie algebra
[24]. (Licensed under CC BY-NC-SA 4.0)

2.4 Evolution of States

With a better understanding of how translation and rotation can be rep-
resented mathematically, such representations can be combined to form
the geometric configuration of poses. However, being able to represent the
state of a vehicle constitutes only one half of the story; the other half be-
ing the description of how the state evolves. The evolution of states can
commonly be modeled as a set of nonlinear differential equations of the
form

ẋ = f (t, x ), x (t0) = x0 (2.19)

where x is the state and f (t, x ) is a nonlinear function of time and state.
Finding exact or approximate solutions for such systems implies the use of
integration methods, of which a selection will be presented in this section.

Closed-form Integration

In certain cases it is possible to do integration through closed-form expres-
sions, that is formulas in terms of named functions as opposed to approx-
imations using numerical techniques. Closed-form solutions are often de-
sirable, as they tend to be computationally and analytically superior. How-
ever, such solutions can be difficult to derive, if they exist at all. As an ex-
ample provided by J. Solá [13], consider the first-order linear differential

https://creativecommons.org/licenses/by-nc-sa/4.0/


Chapter 2: Primer on State Representation 15

equation,
ẋ (t) = A · x (t) (2.20)

where the relation is linear and constant over the interval of integration
[tk, tk +∆t]. In such cases, integration results in

xk+1 = eA·∆t xk = Φxk (2.21)

Here, Φ is the transition matrix with its Taylor expansion defined as

Φ= eA·∆t = I + A∆t +
1
2

A2∆t2 +
1
3!

A3∆t3 + · · ·=
∞
∑

k=0

1
n!

An∆tn (2.22)

Certain instances of A may allow for writing the integration in closed form.
Other means of integration must be used in the cases of inaccessible closed-
form solutions.

Runge-Kutta Integration

One of the most utilized families of implicit and explicit iterative methods
are the Runge-Kutta (RK) methods stemming from the work of C. Runge
[25] and W. Kutta [26]. These methods estimate changes over the interval
of integration, before summing up these changes over the interval through
integration. The general RK method is formulated as follows

xk+1 = xk +∆t
s
∑

i=1

biKi (2.23)

Ki = g(tk ∆ · ci, xk +∆t
s
∑

j=1

ai jK j) (2.24)

where the coefficients ai j, bi, c j define the RK method, and s is the num-
ber of stages of the method. A specific method can be considered either
explicit or implicit depending on the the terms ai j. Embedded in the RK
formulation there are several integration methods; the Euler method, the
midpoint method, the RK4 method to mention some.

The Euler method constitutes the simplest Runge-Kutta method with
one stage, where derivatives are assumed constant over the integration
interval. Given a nonlinear differential equation as Equation (2.19), the
forward Euler method for integration is given by the formula

xk+1 = xk +∆t f (tk, xk) (2.25)

Although the Euler method can be numerically unstable and has a slow
convergence of error, it does function as a simple integration technique
[13]. More advanced RK methods can improve on efficiency, accuracy and
stability.
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Monte Carlo Integration

For high-dimensional problems, solving multidimensional integrals can
become a computationally exhaustive task when using deterministic
approaches. The method of Monte Carlo integration addresses this through
approximating solutions employing a non-deterministic approach relying
on the law of large numbers. From a statistical point of view, an integral
of the form

I =

∫

f (x )π(x ) dx (2.26)

can be approximately evaluated through drawing samples x i from the
Probability Density Function (PDF) π(x ) taking the average of f (x i). Let-
ting {x i}Ni=1 be N independent and identically distributed samples from
π(•), defining the corresponding sample mean of f (x ) as

IN =
1
N

N
∑

i=1

f (x i) (2.27)

Then the approximation IN will converge to I as the number of samples
goes towards infinity [23]. As such, the error scales dependent on the num-
ber of samples and is considered independent of the number of dimensions.
Furthermore Monte Carlo integration works for both smooth and discon-
tinuous integrands.



Chapter 3

State Estimation

To accurately navigate underwater environments is a challenging task
which requires multiple sensors and performing state estimation. The
properties of such environments constrain the set of sensors applicable.
Moreover, the chosen sensor suite will ultimately influence what state
estimation approach to choose. This chapter will present a selection of
sensors used in this project, alternative solutions to the state estimation
problem, and the quaternion based error-state Kalman filter (ESKF)
formulation implemented and tested in this project.

x0

δ̂x 0

P0

Initial
State

δ̂x ← Fx (x , um) · δ̂x

P ← Fx PF⊤x + FiQi F
⊤
i

The Prediction Step

k← k+1

K = PH⊤(HPH⊤ + V)−1

δ̂x ← K(y − h(x̂ t))

P ← (I − KH)P(I − KH)⊤ + KV K⊤

The Update Step

Figure 3.1: Visualization of the error-state Kalman filter (ESKF) formula-
tion.

17
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3.1 Sensors in Underwater Applications

Attenuation of radio signals combined with poor visibility greatly con-
strains the set of sensors suited for underwater applications, making sen-
sors such as RAdio Detection And Ranging (RADAR), GPS and cameras
unfit. However, sound waves travel significantly faster in water than they
do in air, and this property justifies the use of acoustic sensors. As a result,
acoustic sensors are commonly used in underwater applications. This sec-
tion will present a selection of important sensors used in this project, and
explain the working principles and usage for these. The Side-Scan Sonar
(SSS) sensor will be omitted from this section as it is covered in detail in
Chapter 7.

Inertial Measurement Unit (IMU)

An Inertial Measurement Unit (IMU) is a device for determining move-
ments in terms of acceleration, angular velocity, and rotation using a com-
bination of several sensors. The IMU usually combines a linear accelera-
tion sensor with a gyroscope measuring along three axes each, resulting
in a 6 DOF device. Depending on the IMU, orientation estimates may be
maintained and supplied through integration of the gyroscope measured
rotation rates. In such cases, long term pitch and roll stability is achieved
through selective use of earth’s gravity vector measured by the accelerom-
eter. Further, a magnetometer can be added to provide heading reference
and maintain the long-term heading accuracy [5], resulting in a three sen-
sor IMU with 9 degrees of freedom.

As with any sensor, the various measurements from an IMU will to a cer-
tain degree be corrupted by noise. However, due to temperature, time, and
mechanical stress the accelerometer and gyrometer are inherently prone
to drift; a slow-changing random process accumulating over time. As a re-
sult, measurements will also be corrupted by bias noise, which should be
taken into consideration when utilizing IMU measurements. Upon adding
a magnetometer, the presence of magnetic variation, magnetic anomalies,
and electromagnetic interference (EMI) will also have an impact on the
IMU’s performance.

Pressure Sensor

A pressure sensor is a device for measuring pressure, and it is commonly
used in maritime applications involving submersed vehicles. Utilizing pres-
sure measurements p, the depth z at which a vehicle is positioned can be
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estimated. This can be done using the least squares fitted UNESCO formula
[27], included here for completeness:

z =
C1p+ C2p2 + C3p3 + C4p4

g(φ) + 1
2γ
′p

+
∆D
9.8

γ′ = 2.184 · 10−6 m/s2/dbar

g(φ) = 9.780318(1.0+ 5.2788 · 10−3 sin2φ + 2.36 · 10−5 sin4φ)

(3.1)

Here, γ′ is the mean vertical gradient of gravity, g(φ) is gravity at the
ocean surface as a function of latitude, ∆D is the geopotential anomaly in
the water column, and the constants are {Ci} = {9.73,−2.25 · 10−5, 2.28 ·
10−10,−1.82 · 10−15} assuming pressure is given in decibar. The resulting
depth z is given in meters. Further, salinity, temperature, and fluid density
are factors affecting depth estimates. If pressure measurements are suffi-
ciently accurate, a pressure sensor resolves position along the vertical axis
due to the steep pressure gradient underwater.

Doppler Velocity Log (DVL)

A Doppler Velocity Log (DVL) is an acoustic device commonly used in
maritime applications to provide information about the velocity of a
vehicle relative to the sea floor. Typically, it has four transceivers mounted
at an angle, emitting acoustic pulses. When the DVL is sufficiently close
to the bottom, the transceivers will receive reflected pulses and acquire
bottom lock, meaning that a sufficient number of beam measurements are
available. If the vehicle and thus the DVL is moving with regard to the sea
floor, the reflected pulses will be subject to a Doppler shift [5].

The Doppler shift measured from one transceiver is directly propor-
tional to velocity. As the Doppler shift only works with radial motion,
and not angular motion, a velocity component parallel to the transceiver
can be calculated. Using multiple transceivers pointed in different di-
rections allows for calculation of different velocity components. With
three oriented transceivers one can obtain velocity in three dimensions
with the assumption of uniform (homogeneous) currents across layers of
constant depth. An additional fourth transceiver can be used to evaluate
data quality, namely errors due to inhomogeneties in the water and errors
caused by malfunctioning equipment [28].

By combining the velocity components in three dimensions with built-in
roll, pitch and heading sensors, a DVL can compute the vehicle’s speed vec-
tor in a world-referenced frame [5]. The quality of measurements can be
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prohibited by bubbles inhibiting the transmission of sound. Bubbles may
reduce profiling range, and can in extreme cases block the signal com-
pletely [28].

3.2 Alternative State Estimation Solutions

Complex problems often tend to generate a myriad of good and not-so-
good solutions, and state estimation is no exception. When operating in
challenging and constraining underwater environments, the act of choos-
ing the right tool for the job becomes ever so important. However, making
a choice is just as much about what not to choose. This section will present
a selection of alternative solutions to the state estimation problem visual-
ized in Figure 3.3, while Section 3.3 will address the error-state Kalman
filter (ESKF) solution used in this project.

The Bayes Filter

Functioning as the basis for the majority of state estimate solutions men-
tioned here is the Bayes filter. This general probabilistic approach seeks to
estimate a Probability Density Function (PDF) to represent the likelihood
of the state using measurements up to and including the current time. The
filtering is done in a cyclic manner consisting of a prediction step and an
update step as visualized in Figure 3.2. In the prediction step, the current
estimate is propagated forward in time using a process model describing
how the state evolves in time. In the update step, the predicted estimate is
then corrected using a measurement alongside with a measurement model
relating said measurements to the state vector. Performing these steps as
measurements arrive results in the exact recursive filter that is Bayes filter
[29]. Regardless, the Bayes filter is nothing more than a mathematical arti-
fact and it cannot be implemented in practice. As mentioned by T. Barfoot
[15], there are two primary reasons for this:

1. Probability density functions live in an infinite-dimensional space.
Thus, an infinite amount of memory would be needed to completely
represent the likelihood of the state.

2. Exact evaluation of integrals involved in the prediction step would
be computationally very expensive requiring infinite computing re-
sources.

As a result, the Bayes filter is considered intractable, and limiting assump-
tions and approximations must be made to provide utilizable solutions.
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Prediction Step
Propagate estimate
using process model

Update Step
Correct estimate using
measurement model

Figure 3.2: Visualization of the cyclic filtering process of the Bayes filter.

The Particle Filter

An approximation of the Bayes filter can be found the technique of parti-
cle filters. The particle filter approximates PDFs through random sampling
using a finite number of samples, thereby handling the memory-related is-
sue of the Bayes filter. Each sample can be passed through nonlinearities
and be recombined to create an approximation of the transformed PDF.
To overcome the computational resource issue, the prediction step can be
approximated through employing Monte Carlo integration as presented in
Section 2.4. Within the context of localization, the particle representation
comes with a set of advantages as mentioned by S. Thrun [30]:

• Particle filters can accommodate a large range of arbitrary sensor
characteristics, motion dynamics, and noise distributions.

• Particle filters focus computational resources in areas that are most
relevant.

• Finally, particle filters are surprisingly easy to implement, which
makes them an attractive paradigm for mobile robot localization.

However, there are also disadvantages related to particle filters to be men-
tioned. Most importantly, the number of samples needed increases expo-
nentially with the dimension of the state space. As a result, the particle
filter can become computationally intractable for high-dimensional state
estimation problems1. Further, and somewhat counter-intuitive, is the fact

1Although rarely a problem when performing 6 DOF estimation.
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that performance degrades when sensors are too accurate. This is a re-
sult of the cluster-generating effect of particle depletion, where the particle
cloud gradually collapses with all the probability mass centered around one
single cluster of particles [23]. There exists many flavors of particle filters
handling the various pitfalls arising from their stochastic nature, neverthe-
less this line of thought will not be pursued further.

High-Gain Observers

Given the nonlinear nature of the state estimation problem, the class of
nonlinear observers should naturally be taken into account. However, the
realm of nonlinear observers does cover a wide range of solutions such
as sliding mode observers, bounding observers, and extended observers to
mention some. Prior to viewing the Kalman filter and some of its variations,
a slight digression in the direction of high-gain observers are in order. As
stated by H. Khalil [31]:

The technique, known as high-gain observers, works for a wide
class of nonlinear systems and guarantees that the output feed-
back controller recovers the performance of the state feedback
controller when the observer gain is sufficiently high.

High gains translates to fast observer dynamics, and sufficiently high gains
will result in observer dynamics that are considerably faster than the dy-
namics of the system to control, thus attenuating uncertainty in estimates.
High-gain observers are well suited for systems where large perturbations
occurs on account of being nonlinear converging observers of which sta-
bility can be proven. In addition, they are typically less computationally
expensive than alternative methods. However, the high gain ensuring con-
vergence will in the presence of measurement noise also increase noise
effects. Consequently, there will be a trade-off between steady-state errors
and noise-induced errors when operating with such observers. Worth men-
tioning, sufficiently high gains could give rise to the peaking phenomenon,
introducing impulsive behavior into the system which could destabilize the
closed-loop system in the lack of global growth conditions [31].

The Kalman Filter and Its Many Flavors

Another approach to overcome the issues of the Bayes filter can be found
in the legacy of R. Kalman, namely the Kalman filter [32] and its many
variations. Given normally distributed variables and linear transitions, the
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Bayes filter becomes equal to the Kalman filter which provides the best lin-
ear unbiased estimate. Nevertheless, in its original form the Kalman filter
is not applicable to nonlinear problems as the optimality of Kalman filter-
ing will only hold under linear and Gaussian systems. Fortunately, since its
conception the Kalman filter has been the subject of extensive research and
application. Today there exists numerous generalizations of the method al-
lowing the state estimation of nonlinear systems, although the sheer num-
ber of abbreviations alone can push one’s mind into the right half-plane.
Out of concern2, this section will limit the variations being viewed to the
EKF, IEKF, UKF, and EnKF.

The original Kalman filter can be extended to use on nonlinear systems,
resulting in the famous extended Kalman filter (EKF). Like the original for-
mulation, the EKF approximates the likelihood of the state as a Gaussian
PDF, assuming noise terms to be Gaussian. However, through linearizing
the process and measurement models of the Bayes filter, the EKF allows
for evaluation of integrals involved in the prediction and update steps in
closed form [33]. By doing so, both primary issues of the Bayes filter are
handled at the cost of losing optimality. The validity of the assumption of
Gaussian noise terms can be questioned, as the noise affecting the system
will typically vary a lot with time. However, it is desirable from a perspec-
tive of simplicity to describe noise using fixed standard deviation [23]. The
performance of the EKF for a general nonlinear system depends on the non-
linearity close to the operating point of the linearization. The fact that the
operating point is the mean of the state estimate, and not the true state,
may often cause the estimate to being biased and inconsistent [15]. This
can be improved by iteratively recomputing the operating point, allowing
linearization about increasingly better estimates. Doing so results in the it-
erated extended Kalman filter (IEKF), although the improved performance
do come at the cost of increased computational requirements.

Another approach to improve on the EKF is found in the unscented
Kalman filter (UKF), first proposed by S. Julier et al. [34]. Rather than lin-
earizing, the UKF make use of a sigmapoint transformation to pass PDFs
through the nonlinear prediction and measurement models. The method is
not restricted to assuming Gaussian noise, somewhat reminiscent of Monte
Carlo-type methods such as the particle filter. However, samples are drawn
according to a specific, deterministic algorithm, avoiding the problems of
statistical convergence. Because of this fundamental difference, high or-
der information about distributions of the state can be captured using a
significantly small number of points [34]. Consequently, the UKF provides
a balance between low computational effort and high performance. The

2For both the author and the reader.
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method is computationally expensive compared to the EKF, although it
does not require analytical derivatives.

For high-dimensional estimation problems the ensemble Kalman filter
(EnKF), introduced by G. Evensen [35], is a sought-after solution as the
number of ensemble members used can be much smaller than the state
dimension. The EnKF solution is closely related to particle filters; much
like particles, the state representation and propagation is done through an
ensemble of vectors. However, the EnKF updates ensembles by a linear shift
based on the assumption of Gaussian PDFs, thus avoiding reweighting,
resampling, and the issue of particle depletion related to such methods
[36]. In theory, as the number of ensembles tends to infinity, the EnKF
converges to the exact Kalman filter for linear Gaussian models. Due to its
properties, the EnKF is mainly used for very high-dimensional problems
as found in e.g. meteorology. Compared to such problems, the estimation
problem of underwater navigation is considered low-dimensional, and the
EnKF is visited for the sake of completeness.

To summarize, there exist a great number of state estimation solutions
out there, and only a limited selection of them has been covered here. Note,
a statistical Bayesian approach has been taken, explaining the lopsidedness
of Figure 3.3. Nevertheless, all of the above-mentioned solutions have been
cast aside in favor of the solution selected for this project, the error-state
Kalman filter (ESKF).

State Estimation Solutions

High-gain Observers Bayes filter

Particle filter Kalman filter

EnKF UKF EKF IEKF

Figure 3.3: Visualization of the presented alternative state estimation so-
lutions. Children of the Bayes filter node correspond to respective approx-
imations.
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3.3 Quaternion based error-state Kalman filter
(ESKF)

In this project, the quaternion based error-state Kalman filter (ESKF) as pre-
sented by J. Solà [13] is adopted and implemented for the purpose of data
acquisition. The ESKF has been selected on account of the filter’s assets as
mentioned by Solà,

• The orientation error-state is minimal, avoiding issues related to
over parametrization and the consequent risk of singularity of the
involved covariance matrices, resulting typically from enforcing
constraints.

• The error-state system is always operating close to the origin, and
therefore far from possible parameter singularities

• The error-state is always small, meaning that all second-order prod-
ucts are negligible and the computation of Jacobians easy and fast.

• The error dynamics are slow because all the large-signal dynamics
have been integrated in the nominal-state. This means that we can
apply filter corrections at a lower rate than the predictions.

in addition to the essential property of allowing bias estimation. As empha-
sized in Section 3.1, the bias noise corrupting IMU measurements should
be taken into consideration in order to minimize drift in the state estimates.
Other formulations of the ESKF include the work of K. Gade [37], as well
as the work of S. Roumeliotis et al. [38, 39]. However, due to use of a min-
imalist notation, and a quaternion-based, passive body-to-world Hamilton
convention coinciding with the conventions of software libraries such as
ROS and Eigen, the ESKF as presented by Solà is adopted in this project.

The error-state Kalman filter (ESKF) is formulated such that the true
state of the system can be decomposed into a nominal state and an error-
state. The nominal state arises from integrating high-frequency IMU data
without considering noise and model imperfections. As a consequence, the
nominal state will accumulate errors which are attributed to the error-
state. In parallel with integration of the nominal state, the ESKF predicts a
Gaussian estimate of the error-state which has a evolution function defined
by a time-variant linear dynamic system. Integration and prediction is per-
formed when new input through IMU measurements is available. Further,
filter correction is performed upon the arrival of other information such
as velocity or depth measurements rendering the error-state observable.
This correction provides a posterior Gaussian estimate of the error-state,
before the error-state is injected into the nominal state and reset to zero
[13]. The workflow of the error-state Kalman filter (ESKF) is visualized in
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Table 3.1: All variables in the error-state Kalman filter (ESKF) [13].

Magnitude True Nominal Error Composition Measured Noise
Full state x t x δx x t = x ⊕δx
Position pt p δp pt = p +δp
Velocity vt v δv vt = v +δv
Quaternion qt q δq qt = q ⊕δq
Rotation matrix Rt R δR Rt = RδR

Angles vector δθ
δq = eδθ/2

δR = e[δθ ]×

Acc. bias abt ab δab abt = ab +δab aw

Gyro. bias ωbt ωb δωb ωbt =ωb +δωb ωw

Gravity vector gt g δg gt = g +δg
Acceleration at am an

Angular rate ωt ωm ωn

Figure 3.1.
The definitions of all variables used in the error-state filter formulations

are summarized in Table 3.1. It is worth noting that both the angular rates
ω and the angular error δθ are defined locally with respect to the nom-
inal orientation following the so-called classical approach. Orientation is
represented through quaternions using the Hamilton convention, which is
right-handed and describes rotation in a local-to-global fashion. Following
common practice, the Earth’s rotation rate ωε has been neglected in the
rotational kinematics described in Equation (3.2c), which would otherwise
be q̇t =

1
2qt ⊗ (ωm−R⊤t ωε−ωbt −ωn). This is considered valid due to the

magnitude of the noises and biases associated with the IMU sensor.

3.3.1 The True-State Kinematics in Continuous Time

The true-state kinematics in continuous time are described by the following
system

ṗt = vt (3.2a)

v̇t = Rt(am − abt − an)− g (3.2b)

q̇t =
1
2

qt ⊗ (ωm −ωbt −ωn) (3.2c)

ȧbt = aw (3.2d)

ω̇bt =ωw (3.2e)

ġt = 0 (3.2f)
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which can be summarized as ẋ t = ft(x t , u, w ). This system has state x t ,
takes noisy IMU readings um as inputs, and is perturbed by white Gaussian
noise w , all defined by:

x t =















pt

vt

qt

abt

ωbt

gt















u =
�

am − an

ωm −ωn

�

w =
�

aw

ωw

�

(3.3a)

3.3.2 The Nominal State Kinematics in Discrete Time

As previously mentioned, the true state x t will be estimated through the
decomposed nominal and error-state. This estimation is performed in dis-
crete time and both states must be formulated as difference equations ac-
counting for discrete time intervals∆t > 0. Following Solà’s approach, the
Euler method of integration described in Section 2.4 is applied to acquire
the discrete time kinematics of both the nominal and the error-state. In
doing so, the difference equations of the nominal-state are written as

p ← p + v∆t +
1
2
(R(am − ab)− g )∆t2 (3.4a)

v ← v + (R(am − ab)− g )∆t (3.4b)

q ← q ⊗ q{(ωm −ωb)∆t} (3.4c)

ab← ab (3.4d)

ωb←ωb (3.4e)

g ← g (3.4f)

where x ← f (x ,•) constitute a time update of the type xk+1 = f (xk,•k). As
defined in Equation (2.12), R ≜ R{q} is the rotation matrix associated with
the current nominal orientation q , and q{v} is the quaternion associated
with the rotation v, according to Equation (2.13).

3.3.3 The Error-State Kinematics in Discrete Time

The error-state kinematics are composed of both deterministic and stochas-
tic elements, where integration of stochastic elements results in random
impulses. Thus, the discrete time kinematics of the error-state are written
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as

δp ← δp +δv∆t (3.5a)

δv ← δv + (−R[am − ab]×δθ −Rδab)∆t + vi (3.5b)

δθ ← R⊤{(ωm −ωb)∆t}δθ −δωb∆t + θi (3.5c)

δab← δab + ai (3.5d)

δωb← δωb +ωi (3.5e)

δg ← δg (3.5f)

where vi , θi , ai and ωi are the random impulses applied to the velocity,
orientation, and bias estimates, modeled by white Gaussian processes with
zero mean and covariance matrices obtained through integration of the
covariances of an, ωn, aw and ωw over the time step ∆t. The resulting
covariance matrices become

Vi = σ
2
ãn
∆t2I (3.6a)

Θi = σ
2
ω̃n
∆t2I (3.6b)

Ai = σ
2
ãw
∆t I (3.6c)

Ωi = σ
2
ω̃w
∆t I (3.6d)

where the values of the standard deviation of accelerometer and gyrom-
eter noise and bias terms σãn

, σω̃n
, σãw

and σω̃w
must be specified. The

definition of the skew operator [•]× used in Equation (3.5b) is found in
Equation (2.8).

3.3.4 The ESKF Prediction Step

Making use of a more compact form considering the nominal state vector
x , the error-state vector δx , the input vector um, and the perturbation
impulse vector i as follows

x =















p
v
q
ab

ωb

g


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







δx =


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





δp
δv
δq
δab

δωb

δg
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
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um =
�

am

ωm

�

i =







vi

θi

ai

ωi






(3.7a)

the error-state system becomes

δx ← f (x ,δx , um, i) = Fx (x , um) ·δx + Fi · i (3.8)
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Further, the ESKF prediction equations are defined as

δ̂x ← Fx (x , um) · δ̂x (3.9)

P ← Fx PF⊤x + FiQi F
⊤
i (3.10)

where δx ∼N (δ̂x , P) ; Fx and Fi are the Jacobians of f () with respect to
the error and perturbation vectors; and Qi is the covariance matrix of the
perturbation impulses [13]. The Jacobians and the covariance matrix are
extracted from the filter kinematics and stated as follows

Fx =
∂ f
∂ δx

�

�

�

x ,um

=















I I∆t 0 0 0 0
0 I −R[am − ab]×∆t −R∆t 0 −I∆t
0 0 R⊤{(ωm −ωb)∆t} 0 −I∆t 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I


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







Fi =
∂ f
∂ i
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x ,um
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0 0 0 I
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Qi =


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

Vi 0 0 0
0 Θi 0 0
0 0 Ai 0
0 0 0 Ωi







The prediction step alongside with integration of the nominal state will be
performed upon arrival of new IMU measurements.

3.3.5 The ESKF Update Step

Accompanying the IMU measurements used for prediction are orientation
estimates from the IMU itself, as well as velocity and depth measurements
from the DVL and the pressure sensor. These will be used to correct the
filter and thus observe the bias errors. The ESKF update step consist of
observation of the error-state, injection of errors into the nominal state,
and reset of the error-state.

Supplementary measurements from a sensor delivering information de-
pendent on the state are modeled as

y = h(x t) + v (3.11)

where h() is a general nonlinear function of the true state, and v is a white
Gaussian noise with covariance V . In the case of orientation estimates,
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velocity measurements, and depth measurements observations are respec-
tively modeled as

yI MU = qt + vI MU vI MU ∼N (0, VI MU V⊤I MU) (3.12a)

yDV L = vx y_t + vDV L vDV L ∼N (0, VDV LV⊤DV L) (3.12b)

yPS = pz_t + vPS vPS ∼N (0, V 2
PS) (3.12c)

where qt is the true orientation, vx y_t is the true velocity along the x-axis
and y-axis in FN ED, pz_t is the true position along the z- in FN ED, VI MU

is the IMU standard deviation, VDV L is the DVL standard deviation, and
VPS the standard deviation related to pressure sensor noise. The Jacobian
matrix H with respect to the error-state evaluated at the nominal state x
is defined as

H ≜
∂ h
∂ δx

�

�

�

x
=
∂ h
∂ x t

�

�

�

x

∂ x t

∂ δx

�

�

�

x
= Hx Xδx (3.13)

where the chain rule has been utilized to compute H . The Jacobian of h()
with respect to its own argument, Hx , has the following form for orien-
tation estimates, velocity measurements and depth measurements respec-
tively

Hx ,I MU ≜
∂ qt

∂ x t

�

�

�

x
=
�

04×3 04×3 I4×4 04×3 04×3 04×3

�

(3.14a)

Hx ,DV L ≜
∂ vt

∂ x t

�

�

�

x
=
�

02×3 I2×3 02×4 02×3 02×3 02×3

�

(3.14b)

Hx ,PS ≜
∂ pz_t

∂ x t

�

�

�

x
=
�

0 0 1 01×3 01×4 01×3 01×3 01×3

�

(3.14c)

while the Jacobian of the true state with respect to the error-state, Xδx , is
defined as

Xδx ≜
∂ x t

∂ δx

�

�

�

x
=





I6×6 06×3 06×9

04×6 Qδθ 04×9

09×6 09×3 I9×9



 (3.15)

Qδθ ≜
∂ δ(q ⊗δq)
∂ δθ
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−qx −qy −qz

qw −qz qy

qz qw −qx

−qy qx qw
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(3.16)

Utilizing the previously defined Jacobian H , the filter correction equa-
tions can at last be written as

K = PH⊤(HPH⊤ + V)−1 (3.17)

δ̂x ← K(y − h(x̂ t)) (3.18)

P ← (I − KH)P(I − KH)⊤ + KV K⊤ (3.19)



Chapter 3: State Estimation 31

Here, both the Jacobian H and the covariance matrix V to be used will
depend on the type of measurement received. The symmetric and posi-
tive Joseph form is chosen over the classic covariance update function on
account of being less sensitive to round-off errors [40].

Having observed the error-state, the nominal state must be updated
through injection of the error:

p ← p + δ̂p (3.20a)

v ← v + δ̂v (3.20b)

q ← q ⊗ q{δ̂θ } (3.20c)

ab← ab + ˆδab (3.20d)

ωb←ωb + ˆδωb (3.20e)

g ← g + δ̂g (3.20f)

Lastly, a reset of the error-state mean δ̂x and covariance P must be
performed to conclude the ESKF update step:

δ̂x ← 0 (3.21)

P ← GPG⊤ (3.22)

where the Jacobian matrix G is defined by

G ≜
∂ (δx ⊖ δ̂x )
∂ δx

�

�

�

δ̂x
=





I6×6 06×3 06×9

03×6 I3×3 − [
1
2 δ̂θ ]× 03×9

09×6 09×3 I9×9



 (3.23)

The complete ESKF update step is executed for every valid orientation
estimate from the IMU, and velocity and depth measurement arriving re-
spectively from the DVL and the pressure sensor.
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Hardware and Implementation

Implementation of the error-state Kalman filter (ESKF) formulation pre-
sented in the previous chapter is dependent on the hardware configura-
tion. To this extent, various methods and solutions have been utilized in
an attempt to minimize process noise and properly tune the filter. This
chapter will present the relevant parts of the hardware configuration used
in this project, alongside with sensor specific solutions, Welford’s method
for computing running variance, and the filter consistency metrics.

(a) Raspberry PI 4
[41] (licensed un-
der CC BY-SA 4.0)

(b) BlueROV2 (c) BNO055

(d) Bar30 (e) DVL A50 (f) OSM Ethernet
Sonar System

Figure 4.1: Visualization of the relevant parts of the hardware configura-
tion used in this project.
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4.1 Hardware Configuration

The UUV configuration used in this project consists of a repurposed ROV
equipped with a Raspberry PI (RPI) 4 model B and sensor suite. This section
presents the essential parts of the hardware-setup which has been used to
perform field tests and experiments. See Figure 4.1 for a visualization of
all separate parts.

Blue Robotics BlueROV2

The ROV used is the BlueROV2 in heavy configuration from Blue Robotics
Inc set up with four lumen subsea lights and 200 meter Fathom ROV tether.
The BlueROV2 is rated for a maximum depth of 100 meters, and it has a
maximum forward speed of 1.5 meters per second [42]. The ROV is com-
pact and lightweight compared to a general AUV setup, making it deploy-
able for a single researcher.

Raspberry PI 4 Model B

At the core, tying hardware and software together, is the single-board com-
puter Raspberry PI 4 model B with 32GB memory. For the purpose of this
project, the Raspberry PI is set up with Ubuntu 20.04 focal fossa, ROS2
Galactic, enabled I2C and necessary libraries.

Adafruit Fusion Breakout Board - BNO055

The IMU used to measure angular velocity, linear acceleration, and
estimate absolute orientation is the 9-DOF fusion breakout board from
Adafruit with a BNO055 sensor from Bosch. The BNO055 provides linear
acceleration measurements, angular velocity measurements, and absolute
orientation estimates at a frequency of 100 Hz [43].

Water Linked DVL A50

The DVL used to measure linear velocity is the DVL A50 from Water Linked
AS. The A50 has an operational range from 0.05 to 50 meters with perfor-
mance possibly degrading over 35 meters depending on the conditions.
It communicates velocity, transducer, and position updates at varying fre-
quencies. However, the ping rate of velocity and transducer updates are
commonly in the range of 4 to 15 Hz, as the sensor is adaptive to altitude
[44].
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Blue Robotics Bar30

The pressure sensor used to measure depth is the Bar30 from Blue Robotics
Inc. The Bar30 can measure up to 30 Bar (300 meters depth) with a depth
resolution of 2 millimeters. It communicates depth measurements at a fre-
quency of 10 Hz [45].

DeepVision OSM Ethernet Sonar System

The side-scan sonar used to perform sonar imaging is the OSM Ethernet
sonar system with 680 kHz transducers from DeepVision AB. The sonar
system has a max operating depth of 100 meters, operating with a chirp
signal. Depending on settings, the sonar system may deliver images with
resolution down to 1 centimeter [46]. The transducers have a vertical beam
width of α = 60◦ and horizontal beam width of φ = 0.7◦, and they are
symmetrically mounted facing down with an angular sensor placement of
θ = 45◦.

4.2 Sensor Placement in Body Frame

Both state estimation and control of the BlueROV2 are performed using
the body frame as the reference frame. The various sensor frames are all
aligned with the body frame. However, the DVL, the IMU and the pres-
sure sensor are all placed at various locations. Figure 4.2 shows how the
various sensor frames are located with respect to the body frame, and the
offset vectors are summarized in Table 4.1. The placement of each sensor
is of interest because the positional offset from body origin will ultimately
affect the measurements coming from the respective sensor. Thus, these
positional offsets are taken into account when the measurements are used
in the error-state Kalman filter (ESKF).

Table 4.1: Table of positional offset vectors of the origin of each sensor
frame with respect to the body frame origin in meters.

Sensor xF bod y
yF bod y

zF bod y

rI MU 0.057 0.027 -0.025
rDV L -0.020 -0.095 0.133
rPS -0.175 -0.015 -0.050

For the IMU, the offset rI MU give rise to a linear acceleration component
when the vehicle experiences a change in orientation. This linear acceler-
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ℱ𝐼𝑀𝑈

ℱ𝑏𝑜𝑑𝑦

ℱ𝑃𝑆
ℱ𝑃𝑆

ℱ𝑏𝑜𝑑𝑦
ℱ𝐷𝑉𝐿

Figure 4.2: Visualization of the various sensor frames with respect to the
body frame, F bod y .

ation component ao f f set,I MU can be described as

ao f f set,I MU =
d
d t

vo f f set,I MU =
d
d t
(ω× rI MU) =ω× (ω× rI MU) (4.1)

where vo f f set,I MU is the resulting linear velocity component which can be
analogous written asω×rI MU , andω is the measured angular velocity with
the bias component removed, ω=ωm −ωb. Thus, the linear acceleration
component can be computed and subtracted from the linear acceleration
measurements coming from the IMU.

In a similar fashion, the offset of the DVL rDV L give rise to a linear
velocity component upon changes in the vehicles orientation. This linear
velocity component can be described as

vo f f set,DV L =ω× rDV L (4.2)

where the same relationship between angular velocity and linear velocity
has been used to define the resulting linear velocity component vo f f set,DV L.
Again, this linear velocity component can be computed and subtracted
from the linear velocity measurements coming from the DVL.

Lastly, the positional offset of the pressure sensor rPS will cause an off-
set between the depth measurements and the position along the z-axis of
the body frame. This offset can be described as

po f f set,PS = RrPS (4.3)

where R ≜ R{q} is the rotation matrix associated with the current nomi-
nal orientation q . Note that only the element corresponding to the z-axis
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pz_o f f set,PS is used when subtracting the offset in the measurement function
of the pressure sensor. An interesting detail is found in the fact that orien-
tation is part of the state, and consequently the subtraction must be ac-
counted for in the Jacobian Hx ,PS. Thus, the Jacobian changes from Equa-
tion (3.14c) to the following

Hx ,PS ≜
∂ pz_t

∂ x t

�

�

�

x
=
h

0 0 1 01×3
∂ pz_o f f set,PS

∂ qt

�

�

�

q
01×3 01×3 01×3

i

(4.4)

where the offset differentiated with respect to orientation
∂ pz_o f f set,PS

∂ qt

�

�

�

q
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∂ qt

�

�

�

q
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2qy rx_PS − 2qx ry_PS + 2qwrz_PS

2qz rx_PS − 2qwry_PS − 2qx rz_PS

2qwrx_PS + 2qz ry_PS − 2qy rz_PS

2qx rx_PS + 2qy ry_PS + 2qz rz_PS




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⊤

(4.5)

4.3 Axis Convention of the IMU

The BNO055 IMU can be reconfigured to new reference axes to match the
orientation of the body frame. However, the orientation estimate provided
by the IMU is given in East, North, Up (ENU) and can not be changed
onboard the sensor [47]. To solve this matter, the orientation estimate from
the IMU qENU is transformed into North, East, Down (NED) through the
following quaternion multiplication:

qN ED = [0,−
Æ

1/2,−
Æ

1/2, 0]⊗ qENU (4.6)

This is equivalent to a 90 degree rotation around the z axis followed by
a 180 degree rotation around the x axis. Further, the re-oriented estimate
qN ED gets fused into the error-state Kalman filter (ESKF) as described in
Section 3.3.5.

4.4 Erroneous DVL Velocity Information along
the Z-axis

The Doppler Velocity Log (DVL) provides velocity measurements along all
three axes of its local frame. However, due to the working principles of the
DVL and the fact that the sea floor is not flat, the DVL will inevitably output
erroneous velocity information along the z-axis of the world frame. The
case of the vehicle moving deeper towards the sea floor is from the DVL’s
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point of view equivalent with the sea becoming shallower as visualized in
Figure 4.3. Bathymetric data could be fused into the state estimate to adjust
for the erroneous measurements. However, detailed bathymetric maps are
not necessarily available and depth measurements from the barometer are
reasonably accurate. For these reasons the velocity information along the
z-axis of the world frame are not used. In practice, the DVL measurement
v and its covariance matrix V are transformed from the local frame to NED
frame as follows:

vN ED = Rv (4.7)

VN ED = RVR⊤ (4.8)

Here, R is the rotation matrix associated with the current nominal orienta-
tion, which is described using the Hamilton convention. Note that only the
information along the x- and y-axis are kept and fused into the error-state
Kalman filter (ESKF).

4.5 Computing Running Variance

Knowledge about process and measurement noise statistics is required
when using the error-state Kalman filter (ESKF), and physical con-
siderations are considered mandatory. Depending on the sensor, such
information can be acquired from the respective sensor’s data sheet. How-
ever, noise statistics are not necessarily available, and even if they are,
environmental factors such as vibrations, electromagnetic interference
(EMI) and build quality can impact the respective sensor’s performance.
Because of this, the various noise components of the ESKF should be
measured during operation, ensuring the use of statistics which reflect the
respective sensor performance during real-world employment.

As mentioned in Sections 3.3.3 and 3.3.5, the process and measurement
noise are modeled as white Gaussian noise with zero mean. These can be
measured through the respective sample variance, which mathematically
can be computed as:

σ2 =
1

n(n− 1)
(n

n
∑

i=1

x2
i − (

n
∑

i=1

x i)
2) (4.9)

For the purpose of noise estimation x i represents measurement i from a
sensor, while for bias noise estimation x i represents the difference between
two successive measurements i and i − 1. The naive way to compute vari-
ance would be to accumulate both the sum of measurements and the sum
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of the squares of the measurements for a given number of measurements
n. Large measurements with minor differences would require computing
a small number as the difference of two large numbers, evidently leading
to loss of precision. In extreme cases, Equation (4.9) may evaluate to neg-
ative sample variance values, thus emphasizing the need for an alternate
method.

In 1962 B. Welford presented a method for accurately computing run-
ning variance, guaranteeing positive sample variance [48]. The algorithm
is summarized in Algorithm 1, and the reader may observe how the vari-
ance is computed in a running fashion as consecutive measurements arrive.
This method is adopted for the computation of noise statistics used in the
ESKF on account of its superior numerical properties, as well as being well
suited for iterative use.

Algorithm 1 Computing running variance estimate, σ̂2.

1: Initialize:
M1← x1

S1← 0
2: while True do
3: if New measurement x i arrives then
4: Mi = Mi−1 + (x i −Mi−1)/i
5: Si = Si−1 + (x i −Mi−1)(x i −Mi)
6: if i ≥ 2 then
7: σ̂2 = Si/(i − 1)

4.6 Filter Consistency

The process of tuning an error-state Kalman filter (ESKF) can be both time
consuming and challenging, are physical considerations are not always suf-
ficient to reach the desired performance. However, a more systematic way
approach to tuning is by the means of filter consistency. As stated by E.
Brekke [23], a filter is usually considered consistent if its errors on average
are well described by the filters output, leading to the following require-
ments:

1. The state errors should be acceptable as zero mean.
2. The state errors should have magnitude commensurate with the state

covariance yielded by the filter.
3. The innovations should be acceptable as zero mean.
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4. The innovations should have magnitude commensurate with the in-
novation covariance yielded by the filter.

5. The innovations should be acceptable as white.

Tools for testing criteria 2 and 4 can are respectively normalized estimation
error squared (NEES)

εN EES = (x̂ t − x t )
⊤P−1(x̂ t − x t ) (4.10)

and normalized innovation squared (NIS)

εN IS = (y − h(x̂ t))
⊤V−1(y − h(x̂ t)) (4.11)

Nonetheless, in the absence of a ground truth only NIS can be utilized to
evaluate the filter’s state of consistency. High NIS-values may indicate an
overconfident filter, where the magnitude of innovations are not propor-
tional with the innovation covariance.
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(a) Vehicle moving deeper towards the sea floor.

(b) Vehicle moving in the xy-plane while the sea becomes shallower.

Figure 4.3: Case (a) and (b) are considered equivalent with respect to the
DVL velocity measurements.



Chapter 5

Evaluation of the ESKF

The accuracy of state estimates affects the ROV’s ability to perform. To this
extent, evaluation of the error-state Kalman filter (ESKF) is imperative to
know what performance can be expected. Further, quantifying drift will
help accentuate the need for limiting the unbounded uncertainty growth,
motivating Side-Scan Sonar (SSS) related work.

The error-state Kalman filter (ESKF) presented has been implemented,
tuned, and tested using indoor facilities at Gløshaugen and Tyholt, as well
as the fjord of Trondheim. Moreover, the filter has been used to gather
sonar data sets from various locations such as Trondhjem Biological Sta-
tion (TBS), Ilsvika, Kyvannet, and Dora. This chapter will present and eval-
uate results related to the measurement of ESKF noise statistics, drift, and
filter consistency. In addition, a benchmark evaluation of the RPI will be
presented.

Figure 5.1: Testing of the ROV at the MC-lab utilizing the Qualisys real-
time positioning system.
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5.1 ESKF Noise Statistics

Using the error-state Kalman filter (ESKF) formulation requires knowledge
of both measurement and process noise. When operating, the ESKF is set
up with a combination of values from both data sheets and experimen-
tal measurements, whichever provides the largest uncertainty value. Note
how the DVL is not considered here, since the sensor itself provides uncer-
tainty estimates accompanying its velocity measurements.

Experimental measurements of the uncertainties related to the IMU and
the pressure sensor were taken using Welford’s method for computing run-
ning variance as presented in Section 4.5. Due to the lack of ground truth
during the tuning process, the experimental measurements were taken
while keeping the ROV motionless. Nonetheless, tests were conducted both
with and without the thrusters running. All noise measurements were gath-
ered in 10 second runs to avoid the influence of drift, while bias measure-
ments were gathered in 2 minute runs. Results from experiments with and
without thrusters running is presented in Table 5.1. The statistics from the
data sheet [47] and the largest values from experimental measurements
are presented in Table 5.2.

Table 5.1: Table of noise statistics from experimental measurements with
and without thrusters running.

Statistic Variable No thrust Full thrust
Acceleration noise σãn

1.077 · 10−2 6.973 · 10−1

Angular rate noise σω̃n
6.739 · 10−4 1.139 · 10−2

Orientation noise VI MU 0 9.167 · 10−4

Accelerometer bias σãw
1.643 · 10−2 6.766 · 10−2

Gyrometer bias σω̃w
9.436 · 10−4 1.426 · 10−2

Pressure sensor noise VPS 9.529 · 10−4 2.468 · 10−3

Comparing the runs with and without thrusters running reveals how
all noise statistics1 presumably are affected by the thrusters. Table 5.1 re-
veals how all statistics were measured to higher values with the thrusters
running. Small movements may have occurred during testing despite the
efforts to keep the ROV stationary, which may have affected the variance
measurements. However, since the observed trend is consistent for all mea-
surements it is assumed to be a result of vibrations and electromagnetic
interference (EMI) introduced by power electronics and thrusters. Com-
paring measured and data sheet values in Table 5.2 shows how the accel-

1Excluding the linear velocity noise of the DVL.
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Table 5.2: Table of noise statistics from data sheet [47] and experimental
measurements. The largest value used in the ESKF formulation is marked
as bold.

Statistic Variable Data sheet value Computed value
Acceleration noise σãn

1.864 · 10−2 6.973 · 10−1

Angular rate noise σω̃n
5.236 · 10−2 1.139 · 10−2

Orientation noise VI MU 5.236 · 10−2 9.167 · 10−4

Accelerometer bias σãw
1.400 · 10−3 6.766 · 10−2

Gyrometer bias σω̃w
3.800 · 10−3 1.426 · 10−2

Pressure sensor noise VPS - 2.468 · 10−3

eration noise and bias terms are in fact larger when measured, emphasizing
the necessity of performing such measurements.

5.2 ESKF Performance

Proper assessment of the performance of the error-state Kalman filter
(ESKF) requires access to some sort of ground truth. The lack of GPS fix
makes assessment in field challenging. Because of this, the system was
tested using the indoor test facilities of the Marine cybernetics laboratory.
The MC-lab contains a water tank equipped with a real-time positioning
system provided by Qualisys AB, see Figure 5.1. The tank itself measures
40 by 6 meters with a depth of 1.5 meters. However, the Qualisys system
provides motion measurements only for a restricted area of the pool, thus
limiting the area of operation. The ESKF’s performance will be evaluated
through comparing the state estimates to ground truth measurements
from the Qualisys system. Note, one of the cameras was inoperative
during testing, explaining the occasional loss of track. All testing has been
performed using the hysteretic controller from Basso et al. [49]2.

To accommodate the limited area of operation, the trajectory visualized
in Figure 5.2 was generated. The trajectory consists of two set-points and
three consecutive rounds in a circle with a radius of 1 meter, where surge
speed is set to 0.2 meters per second. Pitch and roll is set to 0, while the
heading is 0 for the set-points and follows the direction of travel for the
circle. By mistake, the filter was initialized using the square of the noise
statistics in Table 5.2 when executing the trajectory3. As a result, the ESKF
was initialized to be overly confident in acceleration, angular velocity and

2Consult the project thesis for more information [50]
3See Appendix A.
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depth measurements. However, this was not discovered in time to perform
new experiments, and the filter performance will be assessed using these
values.

−1 −0.5
0 0.5

1
−1

0

1

1

1.1

1.2

1.3
start

end

x [Meters]y [Meters]

z
[M

et
er

s]

Figure 5.2: Trajectory consisting of two set-points and 3 overlapping cir-
cles in the xy-plane.

Comparing the state estimates to the corresponding ground truth mea-
surements for the executed trajectory reveals the error of the ESKF. Fig-
ure 5.6 shows the position along each axis plotted against time for both
the ESKF estimates and the Qualisys measurements. The depth estimates
are rather noisy with occasional severe spikes, which can be attributed to
the wrongfully initialized pressure sensor noise statistic amplifying noise
from the pressure sensor. Nevertheless, the underlying trend of the esti-
mate seem to be matching well with the ground truth. Further, the posi-
tional estimates in the xy-plane are also fairly accurate, as can be seen in
Figure 5.3. Visual inspection shows some error in position along the x-axis.
After completing the trajectory, the ROV suffered a positional drift of 0.15
meters. Per hour, this amounts to a positional error of 3.8 meters. This po-
sitional error is attributed to the biased measurements of the IMU, as well
as the imprecise integration technique of Euler integration.

Throughout execution of the trajectory, the ROV also suffered drift in
heading. Figure 5.5 shows the heading plotted against time for both the
ESKF and the Qualisys measurements. Visual inspection shows how the
estimate appears to follow the ground truth accurately. However, by the
end of the trajectory the ROV had drifted 4.9 degrees. Over an hour, this
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Figure 5.3: State estimate vs. ground truth: Cross-sectional result of x and
y from execution of planned trajectory.

amounts to a drift of 123 degrees. There are several factors contributing to
the accumulation of drift in orientation. Most apparent is the accuracy of
the IMU, which is by far the most inexpensive sensor of the sensor suite4.
Furthermore, the loosely coupled solution of fusing orientation estimates
from the IMU may degrade the performance of the ESKF. Lastly, the impre-
cise integration technique of Euler integration may also contribute to the
error observed. The severe drift in heading is concerning as it will cause
the ROV to veer off course over time.

The accuracy of the state estimate is heavily dependent on the avail-
ability of DVL measurements. In the absence of such measurements, the
filter relies entirely on acceleration measurements from the IMU to pro-
vide positional estimates in the xy-plane. Figure 5.4 shows a snippet of a
data set gathered during a field test at Trondhjem Biological Station (TBS),
where the DVL experienced a temporary loss of fix. Within 10 seconds, the
state estimate drifted 45 meters along the x-axis before fix was acquired
again. Similar drift was also observed along the y-axis. This severe drift
in position can be attributed to the act of integrating biased acceleration
measurements twice. Because of this, the ROV will veer significantly off
track when experiencing continuous absence of DVL measurements.

4The BNO055 is priced at 350 NOK.



Chapter 5: Evaluation of the ESKF 46

0 10 20 30 40 50 60
0

20

40

60

Time [Seconds]

Po
si

ti
on
[M

et
er

s]
Reference, px
ESKF, px

DVL fix lost

Figure 5.4: Loss of fix: Positional drift along x-axis after the DVL lose fix.
Section of data set from Trondhjem Biological Station (TBS).

0 20 40 60 80 100 120 140

−180

−120

−60

0

60

120

180

Time [Seconds]

H
ea

di
n

g
[D

eg
re

es
]

ESKF, ψ
Qualisys, ψ

Figure 5.5: State estimate vs. ground truth: Resulting heading from exe-
cution of planned trajectory.
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z from execution of planned trajectory.
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5.3 ESKF Consistency

To better understand the behavior of the error-state Kalman filter (ESKF),
a filter consistency analysis is in order. For this purpose, normalized in-
novation squared (NIS) values related to measurements have been stored
during a 2 minute run along with the respective innovations. Since the ori-
entation estimates, velocity measurements, and depth measurements are
all modeled as previously shown in Equation (3.12), the respective inno-
vation should be normally distributed. Figures 5.7 to 5.9 shows histograms
of all elements of the innovations related to orientation estimates, veloc-
ity measurements, and depth measurements. The histograms reveal how
all innovations can be interpreted as normally distributed with a mean of
approximately zero. However, the variance of the orientation and depth
innovation distributions does not coincide with the measurement variance
from Table 5.2. The standard deviation of the depth innovation was calcu-
lated to be 1.235 · 10−2, which is higher than the expected measurement
standard deviation of 2.468 · 10−3. Meanwhile, the standard deviation of
the orientation innovations appear to be significantly lower with values for
qw, qx , qy , qz of 1.779 · 10−6, 3.780 · 10−5, 4.250 · 10−5, 3.756 · 10−5 com-
pared to the expected measurement standard deviation of 5.236 · 10−2.
Consequently, the distributions do not exhibit the expected variance.

Squaring the assumed normally distributed innovations to form NIS
metrics will result in χ2 distributed random variables with degrees of free-
dom equivalent to the dimension s of the innovation. For orientation inno-
vations, velocity innovations, and depth innovations, s is equal to 4,2, and
1, respectively. Adding N different realizations of the NIS metric will re-
sult in a new χ2 distributed random variable with Ns degrees of freedom.
Hence, the average NIS should obey a scaled χ2 distribution. Figure 5.10
shows histograms of the respective NIS metrics related to orientation esti-
mates, velocity measurements, and depth measurements. Once again, the
histograms can more or less be interpreted as the expectedχ2 distributions.
However, the averaged NIS for all cases are exceptionally large. Table 5.3
shows the averaged NIS, alongside with the upper and lower bound given
by a confidence interval of 90% for each distribution. In all cases the av-
erage NIS is exceeding the upper bound, indicating a overconfident filter.
All information coming from measurement updates are heavily prioritized,
and the magnitude of the innovations are not proportional with their re-
spective innovation covariances. Further tuning may improve the situation,
however the inconsistency may indicate a faulty implementation and/or a
poor filter model.
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Table 5.3: Averaged normalized innovation squared (NIS) metrics, and
lower/upper bound defined by 90% confidence interval for the respective
distribution of NIS.

Averaged NIS Lower bound Upper bound Computed value
Orientation, q 3.906 4.095 38.788
Linear velocity, v 3.902 4.098 149.087
Position, pz 3.907 4.093 14.305
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Figure 5.7: Histogram of innovation related to depth measurement con-
taining 1766 innovations, alongside with the fitted normal distribution.
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Figure 5.8: Histograms of innovations related to orientation elements
qw, qx , qy , qz , containing 1708 innovations.
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containing 1664 innovations.
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Figure 5.10: Histograms of normalized innovation squared (NIS) metrics
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surements, alongside with the fitted χ2 distributions.



Chapter 5: Evaluation of the ESKF 52

5.4 Benchmarking the Raspberry PI (RPI)

Operating underwater and pushing in the direction of autonomy, the Rasp-
berry PI (RPI) must be able to run all separate parts of the system simul-
taneously. When performing field experiments this includes

• various sensor drivers (DVL, sonar, IMU, GPS, pressure sensor),
• the ESKF,
• the trajectory publisher,
• the control code (hysteretic controller and actuator driver),
• the camera stream,
• not to mention the logging of data from all separate parts of the

system.

The RPI’s system-on-chip may under sustained heavy workload reach dan-
gerously high temperatures, at which point the operating speed will be
reduced. This action of lowering the CPU clock’s frequency due to high
temperatures goes by the name of thermal throttling, and it indicates an
overload of the RPI. Figure 5.11 shows the RPI’s clock frequency and CPU
temperature during a 1 hour and 15 minute long run from field testing
in Ilsvika. The clock frequency never deviates from 1500 MHz, indicating
no thermal throttling. However, the CPU reaches temperatures over 80◦C ,
and thermal throttling will occur when passing 85◦C .

To circumvent the temperature build-up, a better heat-sink solution can
be employed. For now, the RPI rests against the enclosure made of cast
acrylic plastic, although aluminium enclosures providing increased trans-
ferring of excess heat are available. However, the problems of high temper-
atures and thermal throttling are only to be considered symptoms of the
sickness. Figure 5.12 shows the total CPU usage5 through the same run, re-
vealing that the RPI is being pushed to the limit of its processing abilities.
The averaged total CPU usage throughout the full run is 96.53%, explain-
ing the resulting high CPU temperatures. This problem can be addressed
through optimizing the system, namely rewriting Python-implementations
to achieve better efficiency. However, note that the RPI performs no pro-
cessing related to sonar data for now. As computer vision is known to be
computationally demanding, the final system may require more computing
power than a single RPI can deliver alone. Introducing multiple comput-
ers can solve this, in addition to opening for the possibility of separating
performance critical tasks such as control from other tasks.

5Total CPU usage constituting the average of all 4 cores at a given time.
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Figure 5.11: CPU clock frequency and CPU temperature of the RPI during
field testing.
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Chapter 6

Primer on Acoustic Imaging

Acoustic imaging is the act of ’seeing with sound’, where acoustic waves
traveling freely1 through fresh or salt water, tissue, and a variety of other
materials are utilized to construct acoustic images. Acoustic waves will re-
flect from boundaries between different materials and provide information
about changes in sound speed, density, and object shape. Consequently,
acoustic images essentially becomes maps of density variations [51]. The
technique of acoustic imaging remain particularly useful in contexts where
imaging with electromagnetic waves is not possible or desirable. As such,
the technique has been applied extensively to a wide range of fields includ-
ing medical imaging, non-destructive testing, geophysical exploration, and
underwater imaging [52].

This chapter will provide a brief introduction to acoustic waves and
physical phenomenons related to sound propagation and attenuation, and
the manipulation of sound to perform acoustic imaging.

6.1 Acoustic Waves

The description of acoustic waves and how such waves propagate in a
medium constitute the premise of acoustic imaging. From a physics per-
spective, acoustic waves are considered mechanical vibrations transferring
energy through the medium in which it passes. Stemming from the work
of J. d’Alembert [53], general waves can be mathematically described by
the two-way wave equation:

∂ 2u
∂ t2

= k2(
∂ 2u
∂ x2

1

+
∂ 2u
∂ x2

2

+ · · ·+
∂ 2u
∂ x2

n

) (6.1)

1Relative to electromagnetic waves.
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Here, u = u(x1, x2, · · · , xn; t) describes scalar functions of time and
space, and k is a fixed non-negative real coefficient. A solution to the
2-dimensional case to the wave equation is visualized in Figure 6.1.
However, physical solutions to the wave equation are usually obtained by
specifying further conditions, such as initial and boundary conditions. The
basic equations of acoustics in fluids can be formulated by considering
the equations for an inviscid2 and compressible fluid, using the principles
of the momentum equation, the continuity equation, and the equation
of state. Doing so while assuming constant entropy, no mean flow, linear
elasticity3, and constant density in space4 results in the acoustic wave
equation

∇2p′ −
1
c2

0

∂ 2p′

∂ t2
= 0 (6.2)

where ∇2 is the Laplacian operator, p′ is the pressure term dependent on
time and spatial positions, and c0 is the sound speed at the ambient condi-
tions [54]. Note that changes to the operating conditions such as pressure,
temperature, and salinity will affect the speed of sound. As such, varying
conditions have a great impact on how acoustic waves interact with its
medium.

(a) t = t1 (b) t = t2 (c) t = t3

Figure 6.1: Visualization of a 2-dimensional solution to the wave equation
at different time steps [55]. (Picturized; licensed under CC BY-SA 4.0)

6.2 Propagation and Attenuation

As acoustic waves propagate through a medium they will inevitably be
subjected to various phenomenons affecting propagation energy and direc-

2Viscosity equal to zero.
3Linear relationship between the changes in pressure and volume.
4Not in time, and allowing for a small time and spatial dependent fluctuation term.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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tion. The varying speed of sound mentioned in the previous section is such
a phenomenon. Given two mediums with distinct properties resulting in
different sound speeds, these will act as an interface. This interface would
cause the direction of propagation to change, since acoustic waves follow
Snell’s law of reflection and refraction [56]. Having the angle of incidence
θi, the reflection angle θR, and the angle of the through-transmitted wave
θT , it follows from Snell’s law that







θi = θR
C1

sinθi
=

C2

sinθT

(6.3)

Here C1 and C2 are the speed of sound in the first and second mediums,
respectively [57]. Snell’s law and the change of propagation direction it
describes is visualized in Figure 6.2. In practice, the angles can be calcu-
lated using pressure amplitudes of the incident, reflected, and through-
transmitted wave, as well as acoustic impedances for the mediums. The
varying sound speed is consequently something to be aware of when de-
signing acoustic systems.

Medium 1
Medium 2

θT

θi θR

Figure 6.2: Visualization of Snell’s law: A planar wave impinging upon the
interface separating two mediums for which the speed of sound is different
will be partially reflected and partially through-transmitted [57].

In addition to being subject of direction changes, the energy of acoustic
waves are also attenuated as they propagate through a medium. Given a
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point source, acoustic waves will spread out uniformly in all directions un-
der the assumptions of an unbounded, iso-velocity, non-absorbing medium.
Due to the conservation of energy, the intensity times the surface area at
any range would have to be constant as visualized in Figure 6.3, resulting
in the following expression

I(R) =
I04πR2

0

4πR2
(6.4)

Here, I0 is the intensity at the reference range R0, and I(R) the intensity at
range R. This is the so-called inverse square law for spherical sound waves
[58]. Using the equation for transmission loss

T L = −10 log(
I(R, D)

I0
) (6.5)

and a reference range of R0 = 1 meter results in the inverse square law
spreading loss given by

T L = 20 log(R) (6.6)
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Figure 6.3: Visualization of the inverse square law for spherical sound:
Given a point source, acoustic waves will spread out uniformly in all direc-
tions under the assumptions of an unbounded, iso-velocity, non-absorbing
medium [58].

Another factor contributing to the attenuation is the dissipation of
acoustic energy to viscous losses, heat conduction losses, and losses asso-
ciated with internal molecular processes. Inhomogenities in the medium
such as fog droplets, suspended particles, bubbles, thermal microcells, or
regions of turbulence may also cause additional attenuation arising from
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absorption and scattering [59]. Dependent on the situation the dissipation
can be so slight that it may be neglected, as was done when stating the
acoustic wave equation in Equation (6.2). However, ultimately all acoustic
energy will be converted into random thermal energy. This heating of
the medium as acoustic waves propagate is equivalent with an increase
in entropy. Note how the assumption of constant entropy of which the
acoustic wave equation depend does not hold in general [54].

6.3 Transducers and Imaging

Essential to acoustic imaging is the ability to generate, transmit, and re-
ceive suitable acoustic signals. Most acoustic sensing systems are com-
monly based on transducers made by piezoelectric materials. A piezoelec-
tric element will produce an electric charge in response to mechanical
stress. Furthermore, when subject to electric voltage a piezoelectric ele-
ment will exert force on its surroundings. This effect is visualized in Fig-
ure 6.4. Consequently, this property allows for the transmission and recep-
tion of acoustic signals [54].

P

+

−

±

(a) Subject to electric voltage.

P
+

−

∓

(b) Subject to mechanical stress.

Figure 6.4: Visualization of the piezoelectric effect: A piezoelectric ele-
ment will produce an electric charge in response to mechanical stress,
and exert force on its surroundings in response to an applied electrical
field [54].

The number and arrangement of transducers in an acoustic sensing
system will depend on the application, as will the acoustic pulse selected
to acquire information. Often, multiple transducers are organized in ar-
rays with specific directivity patterns, offering flexibility in beam steering
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and dynamic focusing. The frequency, amplitude and length of the acoustic
pulse governs the range and resolution achievable for an acoustic sensing
system. In general, high frequencies and short spatial pulse lengths will
yield narrow echoes which can be better resolved resulting in higher reso-
lution. However, long spatial pulse lengths tend to yield better range. The
compromise of choosing a suitable acoustic signal will thus depend on the
application [57].

Transmitting and receiving acoustic signals can be done using both
pulse-echo and through-transmission techniques. However, for practical
reasons pulse-echo imaging is often preferred. Once an acoustic signal has
been both emitted and received by the transducers, the raw measurement
can be used to generate an acoustic image. The basic process of converting
raw measurements into displayable images consist of three fundamental
steps [57]: Firstly, the raw data should be filtered to remove noise compo-
nents not stemming from the acoustic process. Secondly, the signal’s enve-
lope is to be extracted through the use of the Hilbert transform. Through
shifting all phase angles by 90 degrees and taking the absolute value, the
signal will be substantially smoothed allowing for a better visual represen-
tation. Lastly, the processed amplitude signal must be converted into pixels
utilizing spatial coordinates and dynamic range to construct the acoustic
image. Here, spatial coordinates are found using travel time of the signal,
Time Of Flight (TOF), combined with approximations of the sound speed.
The resulting image will contain information about the medium of which
the acoustic signal has passed through.

To summarize This chapter has provided a brief introduction to the be-
havior of sound, and how it can be manipulated to perform acoustic imag-
ing. However, the field of acoustic theory is vast and this chapter is only
scratching the surface of a few selected topics with the main takeaway be-
ing that the real world is complex and challenging to accurately model. This
complexity warrants the use of approximations and simplifications when
performing acoustic imaging, as will be the case with the technology of the
Side-Scan Sonar (SSS).
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Side-Scan Sonar (SSS)

Performing acoustic imaging in underwater environments is commonly
done using SOund Navigation And Ranging (SONAR) technology. Through
the means of sound propagation, SONAR can be applied to navigation,
ranging, communication, and detection of objects on or under the surface.
The first successful underwater transducer was developed by R. Fessenden
in 1912, and through continuous research incentivized by both war and
exploration the technology has matured into the acoustic systems of today
[60]. There are commonly two categories of sonar systems; passive sys-
tems made to only receive signals, and active systems emitting signals and
listening for echoes. Among the active systems there exist a wide assort-
ment of solutions, such as forward facing sonar, synthetic aperture sonar,
towed array sonar to mention a few. For efficient mapping of large areas
of the sea floor, the Side-Scan Sonar (SSS) stands out as a convenient tool.

This chapter will introduce the technology of Side-Scan Sonar (SSS),
alongside some of its working principles and signal types. In addition, a
basic acoustic image will be constructed from SSS data.

7.1 Working principles

A standard Side-Scan Sonar (SSS) setup consist of two sensing heads com-
monly mounted symmetrically on port and starboard side of a vehicle or
a tow fish. The angle at which the sensing heads are mounted, θ , is fixed.
Each sensing head is made up of multiple transducers functioning as trans-
mitters and receivers of acoustic signals. Relying on sound propagation, the
sensing heads periodically emit acoustic pulses to reach objects or the sea
floor, before listening for backscatter energy. Consequently, each sensing
head will record echo intensities into a data vector at fixed time intervals.
This data vector is often referred to as a swath, and its elements contain-
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ing information about object and sea floor reflectivity are so-called bins.
The shape of swaths acquired by each sensing head are direct results of
the sensor openings, α and φ, respectively modeling how sound expand
in the YZ and XY planes [61]. Commonly, swaths are considered thin lines
along-track covering large areas across-track due to a relatively large α and
equally small φ. The characteristics of a SSS sensing head is visualized in
Figure 7.1.
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𝛼
ℎ

Figure 7.1: Visualization of the SSS sensing heads: The angles α andφ are
known as the sensor openings respectively modeling how sound expand
in the YZ and XY planes [61].

Under the assumption of sound propagating along straight paths, ef-
fectively disregarding the possible effect of Snell’s law, the Time Of Flight
(TOF) corresponding to each bin will determine the slant range rs. More-
over, the SSS range depends on time elapsed between emitted pulses and
the sampling period of the acoustic signal determines the slant range reso-
lutionδs. Note how each bin ultimately correspond to the diagonal distance
of rs rather than a direct horizontal distance on the sea floor.

An important aspect of SSS systems is the separation of energy originat-
ing from the signal of interest from energy related to unwanted noise. In
general, the portion of the acoustic energy reflected back will be of several
orders of magnitude lower. The attenuation of acoustic signals undeniably
affect the amount of backscatter. However, the geometry of the sensor-
target system is of greater importance [56]. Dependent on the angle of
incidence, most of the acoustic energy will reflect in a specular direction
as visualized in Figure 7.2. Moreover, energy may be lost in the sea floor,
as well as reflected along other angles. Relating received signal power to
transmitted signal power for two-way propagation is done through the ac-
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tive sonar equation. The signal-to-noise ratio often measured in decibel is
formulated as

SNR= SL − 2T L − (N L − DI) + TS (7.1)

where SL is the transmitter’s source level, 2T L is the two-way transmission
loss, N L is the noise level, DI is the directivity index1, and TS is the target
strength [54].
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Figure 7.2: Visualization of specular scattering of Side-Scan Sonar (SSS)
signal. Only a small portion of acoustic energy will scatter back and be
received by the SSS [56].

7.2 Continuous and Pulsed Signals

The sonar equation accentuates how active sonar systems are designed to
improve the signal-to-noise ratio, in consequence improving the imaging
capabilities. To this extent, the properties of the signal that is used in the
sonar system will be defining for the system’s performance. Active sonars
may use either a continuous or a pulsed signal, where the frequency, am-
plitude and shape of the signal can differ depending on the use case. Tra-
ditionally, pulsed signals have been used when designing sonar systems,

1Ratio of the total noise power emitted and received along the main response axis.
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although the scientific interest in the use of continuous signals has been
growing along with advances in hardware and computing power. Contin-
uous signals allow for maximization of pulse energy through a 100% duty
cycle [62]. However, the concept of continuous active sonars are mostly
motivated by the use case of target tracking in anti-submarine warfare,
and will not be investigated further.
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Figure 7.3: Visualization of sinusoidal, linear modulated frequency, and
hyperbolic modulated frequency signals.

Among pulsed signals, most active sonar systems rely on either short
sinusoidal or frequency modulated signals, and the choice is application



Chapter 7: Side-Scan Sonar (SSS) 65

dependent. A simple example can be found in the constant amplitude si-
nusoidal waveform function, which suppresses reverberations well in envi-
ronments with Doppler induced scatter [63]. However, sinusoidal signals
provide relatively poor range resolution relative to frequency modulated
signals. The linear frequency modulated pulse, better known as chirp, pro-
vides long range and high resolution. Furthermore, the chirp has a strong
resistance to white Gaussian noise on account of its self-correlation charac-
teristics [64]. As such, it is well suited for SSS applications. The hyperbolic
frequency modulated pulse has similar properties to the chirp, in addition
to the ability to also suppress Doppler induced scatter. See Figure 7.3 for
a visualization of all three signals. Other signals such as the pseudo ran-
dom noise BPSK2 coded and the ricker are also available. Nevertheless, the
chirp is often the signal of choice in SSS systems.

7.3 Imaging using Side-Scan Sonar (SSS)

So far, physical phenomenons, working principles, underlying assump-
tions, and acoustic senors and signals related to SSS technology has been
addressed. Henceforth, this foundation will be used to interpret acoustic
images constructed from SSS data, and explicate the need for processing
of these images for them to usable for navigational purposes.

A basic acoustic image can be constructed through simply stacking con-
secutively gathered swaths. Figure 7.4 shows such acoustic images where
each row correspond to a single swath and the echo intensities are mapped
to a gray scale and a copper colored scale, respectively. Further, dark and
bright pixels indicate low and high echo intensities. Traditionally, the cop-
per colored scale have been utilized to visualize echo intensity in the lit-
erature. However, the gray scale mapping provides higher contrast and
more detailed images3, and is therefore the preferred mode of visualiza-
tion. The black strip along the center line of the acoustic image is referred
to as the blind zone. This region corresponds to distances from the trans-
ducers where no sea floor is detected, and it should not be confused with
the nadir; the region directly beneath the ROV not ensonified by the sonar.

The basic acoustic images constructed by consecutive swaths are not
suited for navigational purposes. This is because the image without fur-
ther processing does not accurately represent the sea floor due to intensity
variations and geometric distortions. The pipeline addressing these prob-
lems is presented and evaluated in Chapter 8 and Chapter 9, respectively.

2Binary Phase Shift Keying
3In the eyes of the colorblind author.
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(a) Gray scale. (b) Copper scale.

Figure 7.4: Basic acoustic image of consecutively gathered swaths. Each
row correspond to a single swath, and the echo intensities are mapped to
two separate color scales.



Chapter 8

Processing of Sonar Data

The Side-Scan Sonar (SSS) provides weak and ambiguous sensory informa-
tion, where data easily becomes altered as a result of multiple environmen-
tal and situational factors. To enable the use of computer vision methods
for navigational purposes, processing of sonar data is imperative. In this
project, the image construction pipeline consists of performing intensity
normalization, blind zone removal, slant range correction and geometric
correction, as visualized in Figure 8.1. This chapter will present each step
of the pipeline, addressing the respective problems to solve, alternative
solutions and the specific methods implemented.

Raw Sonar Data Echo Intensity Correction

Blind Zone Removal

Slant Range Correction

Geometric Correction

Constructed Image

Figure 8.1: Visualization of the image construction pipeline transforming
raw sonar data into a processed acoustic image.

8.1 Echo Intensity Correction

The phenomenon of uneven ensonification patterns and brightness varia-
tions in sonar images are referred to as echo decay. The most noticeable
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visual artifact arising from echo decay is the presence of an artificial gra-
dient of intensity values, as seen in Figure 7.4. This intensity variation
poses a challenge as landmark detection relies exclusively on the backscat-
ter energy to recognize landmarks. Depending on range and direction of
the sonar head relative to the sea floor, a single landmark may appear dif-
ferent in the acoustic image, further complicating the task at hand [65].

The majority of the echo decay can be attributed to the high absorption
rate of sound by the water combined with the spreading loss of sound de-
scribed by the inverse square law for spherical sound waves, as described in
Section 6.2. The attenuation of acoustic signals will naturally become more
severe the further the signal travels. Although not as prominent, the gain of
the receiver’s sensor is also a factor affecting all swaths, inducing bright-
ness variations in the acoustic images. The highest values are achieved
when the received echo is perpendicular to the sensor, while echos received
at an angle will appear with less strength. Consequently, the strength of the
received echo will depend on the angular sensor placement θ and the graz-
ing angle. All previously mentioned factors combined render single swaths
to have a distribution close to a Rayleigh distribution, as can be seen in
Figure 8.2.
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Figure 8.2: Swath from right transducer with a shape reminiscent of a
Rayleigh distribution.

The problem of echo decay is well known, and several solutions have
been proposed to deal with the resulting brightness variations in the acous-
tic images. A simple solution is to compress the dynamic range of the in-
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tensity values through applying a logarithmic transform, log(x). As men-
tioned by Al-Rawi et al. [65], log transformed images will have a higher
across-track coefficient of variation indicating lower image quality. In the
literature, normalization is often handled through the technique of Time
Variable Gain (TVG), where the receiver’s amplification is adjusted accord-
ing to the transmission loss expected as a function of distance or time after
pulse transmission. Needless to say, accuracy will depend on whether the
actual transmission loss is equal to the loss included in the gain control
[54].

In addition to TVG, a rich selection of normalization techniques is avail-
able when handling the echo decay. Burguera et al. [61] model the sea
floor as a Lambertian surface and normalize acoustic images using a sen-
sitivity pattern model. Significant work has also been carried out as part
of the SWARMs project (http://www.swarms.eu/), where normalization is
handled using methods such as Dark Channel Prior (DCP) [66], MIxed ex-
ponential Regression Analysis (MIRA) [66], and non-uniformity correction
techniques [67].

In this project, the approach of image enhancement through cubic
spline regression, as proposed by Al-Rawi et al. [65], is adopted to perform
the echo intensity correction. Through the process of polynomial fitting,
the underlying distribution of intensity values in single left and right
swath are estimated separately. This is done using a smoothing spline f
minimizing

p
n
∑

j=1

|y j − f (x j)|
2 + (1− p)

∫

|D2 f (t)|2d t (8.1)

where the first term is the error measure and the second term is the rough-
ness measure. Here, n is the number of entries in x and y describing the
samples and the intensity values in a swath, respectively. The integral is
over the smallest interval containing all the entries of x , while D2 f de-
notes the second derivative of the function f . Lastly, p is the smoothing
parameter ranging from 0 to 1 weighting the error measure versus the
roughness measure where the bounds are:

• 0: The smoothing spline is the least-squares straight line fit to the
data

• 1: The natural cubic spline interpolant

As such, the cubic smoothing spline can be used as an effective data mod-
eling tool for noisy data and is well suited for estimating the swath dis-
tribution. Further, samples from this distribution are used as weights to
normalize the across-track signal profile using the general enhancement

http://www.swarms.eu/
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model

Î(z) =
I(z)
w(z)

(8.2)

where I(z) is the signal value (at location z) that has been acquired by the
sonar, w(z) is the weight value estimated through polynomial fitting for
each location z, and Î(z) is the normalized signal value [65].

The main advantage of the cubic spline regression based enhancement
is how normalization can be performed in-situ, making the technique ap-
plicable for online processing as swath measurements arrive. Furthermore,
normalization techniques based on across-track signal profiles may be pre-
ferred when processing side-scan sonar images, since the across-track sig-
nals are highly correlated compared to along-track samples. As previously
mentioned, swaths are close to Rayleigh distributed and across-track sig-
nals are consequently not suitably modeled by exponential shapes as done
by MIRA. Thus, utilizing cubic spline regression to estimate the weights
w(z) will improve correction of non-uniformities, as well as more accu-
rately address the effect of the sensor gain [65].

8.2 Blind Zone Removal

Intensity values in the blind zone attribute to sensor noise, and the pres-
ence of suspended particles and other possible objects in the water column.
Changes in the width of the blind zone reflect changes in the altitude of the
sonar head. Due to the working mechanics of the side-scan sonar, higher
altitudes results in a wider blind zone. As the blind zone does not hold any
useful information for navigational purposes it is of interest to detect and
remove it, thus performing the process of blind zone removal [61].

Detecting the edge of the blind zone is equivalent to detecting the first
significant echo corresponding to the first sea floor point producing an
echo. This specific echo is the so-called First Bottom Return (FBR). Thus,
all echoes arriving before the FBR in a swath will be part of the blind
zone, making detection of the FBR an essential part of blind zone removal.
There exists numerous of methods for doing bottom detection, to mention
a few: Al-Rawi et al. [68] proposed detection through the use of both cubic
spline regression and moving window average filtering, Yu et al. [69] pro-
posed detection through a combination of threshold methods, denoising
algorithms, spatial-temporal matching and extreme value detection, while
more recently Zheng et al. [70] proposed automatic detection based on
semantic segmentation.

If the platform altitude h is available at each time step, the need for ad-
vanced bottom detection schemes can be alleviated. As presented by Bur-
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guera et al. [61], the altitude h and the ground range rFBR corresponding
to the First Bottom Return (FBR) are related through the angular sensor
placement θ and the sensor opening α as follows

rFBR =
h

tan(θ + α
2 )

(8.3)

under the flat-floor assumption as visualized in Figure 8.3. Given a sym-
metrical set-up of the separate sonar heads, the blind zone removal can be
performed through rejection of data points whose ground ranges lie in the
interval of [−rFBR, rFBR] as these contain no useful information. This ap-
proach is adopted to perform blind zone removal due to its simplicity, and
on the account of altitude measurements being available from the DVL. The
specific sensor placement and sensor opening values used are specified in
Section 4.1.
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Figure 8.3: Visualization of the First Bottom Return (FBR) alongside with
other SSS characteristics: h constitutes platform altitude, θ the angular
sensor placement, α the sensor opening, rs the slant range, and rg ground
range.
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8.3 Slant Range Correction

Inherent to the side-scan sonar is the slant range effect which can be con-
sidered a geometric distortion. This effect is a consequence of the fact that
across-track coordinates originate from the sonar slant range rather than
the horizontal distance on the bottom as emphasized in Chapter 7. The pro-
cess of computing the ground range for every slant range signal is referred
to as slant range correction. Under the flat-floor assumption, the slant range
correction becomes a simple geometric problem as visualized in Figure 8.3.
The ground range rg can be computed for every slant range rs in a single
swath through

rg(rs, h) =
Æ

r2
s − h2 (8.4)

where h is the platform altitude at the moment of emission [71]. However,
as pointed out by Burguera et al. [61] it is preferable to have slant range
as a function of ground range to avoid gaps in the corrected swath. Conse-
quently, slant range correction will be performed through implementation
of Algorithm 2.

Algorithm 2 Slant range correction.
Input: Input swath, corresponding altitude, swath resolution
Output: Corrected swath

1: procedure SLANTRANGECORRECTION(I , h,σs)
2: for all bins b in swath I do
3: b̂←

p
(σs·b)2+h2

σs

4: w1← b̂− ⌊b̂⌋
5: w2← 1−w1

6: Ig(b)← w2 · I(⌊b̂⌋) +w1 · I(⌈b̂⌉)
7: return Ig

8.4 Geometric Correction

Another source of geometric distortion is variation in trajectory, speed, or
orientation of the sonar head. Such variations produce discrepancies be-
tween the relative location of features in the acoustic image and the true
feature locations on the sea floor. Ideally, the sonar head should be moving
above the sea floor at a constant speed, on a straight path, with the head-
ing aligned with the trajectory. These are not reasonable constraints for
an UUV performing various underwater operations, thus the sonar head
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will be exposed to certain motion instabilities. As specified by Cobra et al.
[72], motion instabilities may be divided into two types: translational and
rotational.

Speed of vehicle
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same sea floor area

Figure 8.4: Visualization of how speed variations cause changes to the
aspect ratio of the resulting acoustic image.

Translational instabilities correspond to speed variations, as well as
lateral and vertical displacements from the ideal straight path. Forming
an acoustic image by stitching consecutive swaths may in the presence of
such instabilities cause large-scale distortions. Further, speed variations
will cause changes to the aspect ratio of the resulting image, as seen in
Figure 8.4, due to the constant scanning rate of the side-scan sonar. Thus,
small objects will appear wide and large upon speed reduction, while
speeding up may shrink or even conceal objects. In addition, high speeds
may cause black gaps in the processed image corresponding to unscanned
regions. Such regions indicate a mismatch between the sonar scanning
rate and the speed of the vehicle.

Rotational instabilities correspond to deviations from the ideal orien-
tation of the sonar head, where the heading of the vehicle is aligned with
the trajectory and the transducers are pointing toward the sea floor with
no variations in pitch, roll, or yaw. Pitching and yawing may cause geo-
metric distortions as a result of double scanning, while rolling may cause
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intensity distortions due to the beam rotating within its own plane. Objects
in a backscanned area will appear in triplicate in the acoustic image, con-
sequently complicating the use of computer vision. Rotational instabilities
are illustrated in Figure 8.5.

Roll

Yaw

Pitch

Figure 8.5: Rotational instabilities of the sonar head: pitching and yawing
produce geometric distortions by causing the beams to scan ahead or back,
either simultaneously on both sides, in the case of pitching, or alternately
on the port and starboard sides, in the case of yawing; rolling produces
intensity distortions due to the beam rotating within its own plane [72].

Depending on the amount of motion instabilities, the severity of the
resulting geometric distortions may render the use of computer vision in-
feasible. Hence, it is of interest to perform geometric correction as part of
the processing pipeline. Performing along-track corrections to account for
speed variations can be done through the process of anamorphosis. Striv-
ing to produce an acoustic image where inter-pixel spacing is equal in both
along-track and across-track, the along-track spacing is determined by ei-
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ther the width of the horizontal beam on the ground or the distance trav-
eled by the transducer during the reception interval, whichever is small-
est. Successive lines are thus replicated or sub-sampled depending on the
vehicle speed, resulting in an image with a 1:1 aspect ratio. Other solu-
tions include UUV localization or SLAM techniques to account for motion
between swaths: Ye et al. [73] perform speed correction using GPS infor-
mation, while Teixeira et al. [74]model the complete reconstruction using
factor graphs in tandem with the SLAM problem.

However, the BlueROV2 utilized in this project is far less stable in orien-
tation in relation to surge speed compared to an Autonomous Underwater
Vehicle (AUV). Furthermore, when accounting for rotational instabilities
the system is not restricted to straight sections which enables extraction of
more information. Since all geometric distortions resulting from motion in-
stabilities are of a geometric nature, the proposed method from Sheffer et
al. [71] of exploiting the geometric relations for correction purposes will be
adopted. Hence, correction of geometric distortions and the reconstruction
of sonar images will be done using state estimates. By combining informa-
tion about the location, speed and orientation of the platform, each swath
is located in a specific geometrical position in the acoustic image under
the flat floor assumption. Thus, 3-dimensional sonar samples are mapped
onto a 2-dimensional map creating a geocorrected acoustic image. Note,
the geometric correction only accounts for platform movement between
separate swaths, consequently disregarding the movement occurring as a
single swath is gathered.

Accounting for translational instabilities, the location and speed correc-
tions are performed through projection of the integrated location of the nth

swath, P Ln ∈ Ω, into the processed sonar image. For every swath n, this
projection defines the location of the platform in the sonar image at the
moment of emission. The integrated location of the nth swath corresponds
to the positional estimate p in Equation (3.7a) provided by the error-state
Kalman filter (ESKF).

Geometric distortion resulting from rotational instabilities are handled
using the inherent geometric relations, where every swath is mapped from
the platform’s frame of reference to the sonar image through a linear trans-
formation. Under the flat-floor assumption, the altitude coordinates of all
samples have the same value in the platform’s frame of reference as all
samples are perpendicular to the platform [71]. Thus, the coordinates of a
sample i in swath n can be written as

Ln,i =





0
rg(i)
hn



 (8.5)
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where rg(i) is the ground range of sample i and hn is the altitude of the
sonar head at the moment of emission of swath n, see Section 8.3. Further,
the linear transformation of each swath can be written as

Tn =





0 cos(ψn) − sin(θn) sin(ψn)
0 sin(ψn) sin(θn) cos(ψn)
0 0 0



 (8.6)

Here, θn and ψn are the pitch and the yaw of the platform at the emission
of swath n, respectively. Following the argument of Sheffer et al. [71], the
first column of Tn is set to zero as motion along the roll axis is not reflected
as a geometric distortion in the acoustic image. Mapping 3-dimensional
samples onto a 2-dimensional map is done setting the third row of Tn to
zero.

Combining the proposed correction solutions for both translational and
rotational instabilities results in the complete geometric correction step of
the image construction pipeline. The location of sample i in swath n of the
processed acoustic image, adopting the formulations of Sheffer et al. [71],
is defined as

In,i = P Ln + Tn ∗ Ln,i (8.7)

where

In,i is the image coordinate and intensity of sample i of swath n in
the acoustic image;
P Ln is the location of the platform in the acoustic image at the mo-
ment of emission of swath n;
Tn is the linear transformation of swath n; and
Ln,i is the location of sample i of swath n in the platform frame of
reference.

The resulting geocorrected image consists of a set of matching image
coordinates and intensity values. However, due to the motion changes ex-
perienced by the vehicle, the image will inevitably suffer from gaps and
overlapping data. The gaps can be addressed through the use of interpo-
lation, while the overlapping data can be handled through blending tech-
niques. It is of interest to make use of an interpolation/blending scheme
capable of preserving the information and details in the processed image.
In this project, the approach of storing corrected data in a k-d tree and
performing a K-Nearest Neighbor (KNN) search will be adopted. The KNN
search finds the k nearest neighbors to each spatial point of a defined grid,
and corresponding intensity values are defined based on these neighbor-
ing points. This approach provides flexibility with regard to the handling of
data, where parameters such as the number of neighbors, and range limits
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between neighboring points are adjustable. More importantly, the inten-
sity values may be defined as the mean or percentile of a given amount of
neighbors, or removed all together if the computed variance at a specific
point in the image is too high. By enabling the computation of variance,
the KNN solution allows assessment of conflicting information, as well as
the amount of information to be lost due to the KNN processing. Conse-
quently, the approach is capable of handling both gaps and overlapping
swaths while sufficiently preserving details in the image.



Chapter 9

Evaluation of the Image
Construction Pipeline

The image construction pipeline as presented in Chapter 8 has been imple-
mented and tested on data sets acquired through field experiments. Each
data set consist of a recording containing altitude measurements from the
DVL, state estimates provided by the error-state Kalman filter (ESKF), and
raw sonar data in the form of swaths as they arrived. This allows for playing
back a data set to simulate online processing of sonar data from the com-
fort of the office1. Hence, all testing have been conducted locally rather
than onboard on the Raspberry PI (RPI).

(a) Straight section. (b) Turning section.

Figure 9.1: Basic acoustic images created from data set acquired in Ilsvika,
Trondheim. Each section consists 1000 consecutive pings.

1Far, far away from seagulls suffering from rectal tenesmus.
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This chapter will present results from and evaluate each step of the
pipeline, showcasing how raw measurements and estimates are combined
to construct processed acoustic images. For this purpose, a data set ac-
quired at Ilsvika in Trondheim has been divided into two separate sections;
a section where the ROV follows a straight line and a section where it turns.
Serving as a nice visual cue, the acoustic images of consecutively gathered
swaths shown in Figure 9.1 will be used in every step of the pipeline. Note
that all processing is performed on data from both left and right transduc-
ers, although for the purpose of demonstration the following sections will
mainly use right transducer data.

9.1 Pipeline Evaluation: Intensity Correction

The cubic spline regression based enhancement technique presented in
Section 8.1 constitutes the first step of the pipeline. The technique has been
tested using different values for the smoothing parameter p, and evalua-
tion is based on visual inspection of swaths, histograms, and acoustic im-
ages, as well as the CV for across-track signals. The Coefficient of Variation
(CV) is defined as the ratio of the standard deviation to the mean,

cCV =
σ

µ
(9.1)

and it will be used to measure across-track intensity changes. As stated
by Al-Rawi et al. [65], low CV values indicate less intensity variation and
possibly better image quality.

In the search of an appropriate value for the smoothing parameter p,
the average CV after normalization, c̄CV,Normalized , has been calculated using
a data set containing 10 000 successive swaths. The results are summarized
in Table 9.1.

Table 9.1: Table of average Coefficient of Variation (CV) after normaliza-
tion of data set containing 10 000 successive swaths, while varying the
smoothing parameter p.

p c̄CV,Normalized p c̄CV,Normalized

10−0 1.23251 · 10−18 10−5 0.02507
10−1 0.01364 10−6 0.02779
10−2 0.01602 10−7 0.03083
10−3 0.01881 10−8 0.03643
10−4 0.02203 10−9 0.03838
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In terms of average CV, normalization using cubic spline regression
generates lower values regardless of the smoothing parameter, as the av-
erage CV prior to normalization was calculated to be 0.04295. In general,
setting the smoothing parameter high provides a small average CV, where
p = 1 results in practically no intensity changes. Figure 9.3 shows swath
line from the right transducer of ping 183 for the data set, the respective
cubic spline fitted curve with p = 1, and the resulting normalized swath.
Visual inspection reveals how the technique has removed all information
from the swath in an attempt to normalize it, resulting in a constant across-
track signal. Here, the fitted curve coincides with the natural cubic spline
interpolant. Hence, the CV metric alone can’t provide sufficient informa-
tion when trying to find an appropriate value for the smoothing parameter
p, but must be combined with visual inspection to avoid complete loss of
all intensity information.

(a) Raw image. (b) Normalized image.

Figure 9.2: Normalization of the acoustic image from the straight section
using smoothing parameter p = 1 · 10−6.

The suggestion from Al-Rawi et al. [65] of using p = 1 · 10−8 has been
attempted. However, visual inspection indicated that the fitted curve be-
came somewhat linear, not sufficiently representing the underlying distri-
bution of the swath. Reflecting this observation, the smoothing parameter
was adjusted to a value of p = 1 · 10−6. Figure 9.4 shows the same swath
line as previously mentioned, the cubic spline fitted curve, and the result-
ing normalized swath using the adjusted smoothing parameter. Here, the
impact of across-track signal attenuation is visibly reduced while overall
preserving the intensity information inherent in the swath line. To substan-
tiate this observation, the CV of the signal has been reduced from 0.03847
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to 0.02694. Figure 9.2 shows the resulting image after performing inten-
sity correction of the acoustic image from the straight section. Comparing
the two, the reader may observe how the artificial gradient in the images
is severely reduced. However, further tuning of the smoothing parameter
may result in increased normalization performance.
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Figure 9.3: Across-track signal from right transducer of ping 183 from the
data set, respective cubic spline fitted curve with smoothing parameter
p = 1, and resulting normalized across-track signal.
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Figure 9.4: Across-track signal from right transducer of ping 183 from the
data set, respective cubic spline fitted curve with smoothing parameter
p = 1 · 10−6, and resulting normalized across-track signal.



Chapter 9: Evaluation of the Image Construction Pipeline 84

9.2 Pipeline Evaluation: Blind Zone Removal

The blind zone removing technique presented in Section 8.2 constitutes the
second step of the pipeline. Utilizing altitude measurements from the DVL,
the angular sensor placement θ = 45◦, and the sensor opening α = 60◦,
the First Bottom Return (FBR) is calculated for every swath line. Figure 9.6
shows the normalized across-track signal of ping 183 from the right trans-
ducer alongside with bin corresponding to the calculated FBR, and the
resulting signal after removal. The first 110 bins contain intensity values
mainly attributed to sensor noise and suspended particles in the water col-
umn, thus providing no useful information. Hence, the information is re-
moved accordingly. Figure 9.5 shows the resulting images after performing
blind zone removal of the acoustic images from Figure 9.2. Comparing the
two, the reader may observe how the black strip along the center line is
removed, leaving the intensity information of interest.

(a) Raw image. (b) Normalized image without blind
zone.

Figure 9.5: Normalized image with blind zone removed using the acoustic
image from the straight section.

Visual inspection of the resulting acoustic images indicates that this
technique removes the blind zone with sufficient accuracy. However, the
technique is crucially dependent on accurate altitude measurements,
where noisy measurements will result in poor performance. The approach
will remain completely useless during continuous absence of altitude
measurements, further emphasizing the system’s dependency on the DVL
sensor.
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Figure 9.6: Normalized across-track signal from right transducer of ping
183 with bin corresponding to First Bottom Return (FBR), and resulting
blind zone removed signal.
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9.3 Pipeline Evaluation: Slant Range Correc-
tion

The slant range correction technique presented in Section 8.3 constitutes
the third step of the pipeline. Utilizing altitude measurements from the
DVL and the slant range resolution corresponding to each swath line, the
swath line is corrected to represent the horizontal distance on the sea floor.
Figure 9.7 shows the resulting images after performing slant range correc-
tion on the same straight section of the data set. The most visible effect of
the slant range correction step is how the size of the blind zone is reduced.
For the straight section, the ROV kept an altitude of 3.2 meters. Prior to
slant range correction, the blind zone of the acoustic image had an average
magnitude of 6.16 meters. However, at the given altitude and under the
flat floor assumption, the horizontal distance expected to be covered by the
blind zone can be calculated to be 1.71 meters using Equation (8.3). Thus,
the blind zone should be reduced by a factor of approximately 4 such that
the across-track signal accurately describes the horizontal distance it cov-
ers. The reader may through visual inspection of the resulting image verify
how the blind zone is more or less correctly reduced. As it happens, the
average magnitude of the slant range corrected blind zone is 1.51 meters.

(a) Normalized image without blind
zone.

(b) Slant range corrected, normalized
image without blind zone.

Figure 9.7: Slant range corrected, normalized acoustic image with blind
zone removed using the acoustic image from the straight section.

Much like the second step in the pipeline, the slant range correction step
is also crucially dependent on accurate altitude information. Furthermore,
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the performance of the correction technique also depends on the validity
of the flat floor assumption. A tilting sea floor along the across-track di-
rection will result in a shift in the actual horizontal distance covered. As
such, the performance of the slant range correction will vary depending on
conditions.

9.4 Pipeline Evaluation: Geometric Correction

The geometric correction technique presented in Section 8.4 constitutes
the last step of the pipeline. Utilizing state estimates from the error-state
Kalman filter (ESKF) corresponding to each swath line, the processed data
is mapped to the corresponding 2 dimensional location of the sea floor.
Figure 9.8 shows the resulting image after performing intensity normaliza-
tion, blind zone removal, slant range correction, and geometric correction
on the full turn in the data set. Although the section visualized in Figure 9.1
only constitutes a fraction of the complete turn, comparing the two goes
to show the necessity of processing the sonar data.
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Figure 9.8: Geometrically corrected, slant rage corrected, normalized im-
age without blind zone using the full turn in the Ilsvika data set.
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The performance of the geometric correction technique is dependent
on the accuracy of the corresponding state estimates, where poor esti-
mates will result in poor mapping of the sonar data. The effect of inac-
curate state estimates on the mapping is visible in Figure 9.8, where some
data is wrongfully mapped into the blind zone. Similar to the slant range
correction, the technique’s performance depends on the validity of the flat
floor assumption.

Finally, the image is usable for navigational purposes as detection of
landmarks now can provide information to help localize the ROV. However,
orientation changes of the platform will cause both gaps and overlapping
data in the geometrically corrected image. This can be seen in Figure 9.8;
several gaps are visible at the outer edge of the turn, while swaths severely
overlap each other in the pivoting point of the turn.

To address both issues, the K-Nearest Neighbor (KNN) solution pre-
sented in Section 8.4 was implemented and tested. Figure 9.9 shows the
KNN filtered image using k = 4, a range limit of 0.3 meters, a variance
ceiling of 5 · 10−3, and intensity values defined by the 10% percentile. Vi-
sual inspection reveals how the gaps are filled and the overlapping swaths
averaged out. Moreover, the filtering process appears to smooth over the
blind zone in the areas where data is inaccurately mapped. As such, the
KNN filtering is dependent on the performance of the geometric correction
solution.

Figure 9.10 shows the computed variance map of the turn using the
KNN solution with k = 4 and a valid distance of 30 cm. With this specific
configuration, the computed variance is rather low ranging from 5 ·10−4 to
5·10−3 compared to the intensity values ranging from 0.88 to 1.25. Further,
the reader may observe how variations are prominent in areas where there
are significant returns. This may be a result of pose uncertainty causing in-
accurate mapping of intensity values, or conflicting information rooted in
the change of view when moving. Regardless, it is a cause for concern;
the areas containing significant returns are also the areas where detec-
tion is likely to happen when using the images for navigational purposes.
If so, a landmark may be detected using conflicting information due to
the overlapping swaths. However, as mentioned the KNN solution allows
for removing conflicting information, hence possibly avoiding faulty land-
marks. Note, the variance may also increase naturally with return strength
in which it should not degrade the detector performance.
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Figure 9.9: Geometrically corrected, KNN filtered acoustic image using
k = 4, a range limit of 0.3 meters, a variance ceiling of 5 ·10−3, and a 10%
percentile.
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Figure 9.10: Variance map of the geometrically corrected, KNN filtered
acoustic image using k = 4, a range limit of 0.3 meters, a variance ceiling
of 5 · 10−3, and a 10% percentile.
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All Good Things Come To An End.

90



Chapter 10

Improvements for the Future

The error-state Kalman filter (ESKF) and image construction pipeline im-
plementations come with limitations and caveats. This chapter addresses
some of these, suggesting solutions and future work to improve the capa-
bilities and performance of the overall configuration.

10.1 Computational Efficiency

Performing all tasks related to control, navigation, and processing of sonar
data is computationally demanding. Doing so with the current implementa-
tions requires more processing power than the Raspberry PI (RPI) is able to
deliver. The benchmarking results presented in Section 5.4 reveals how the
RPI is being pushed to the limit of its processing capabilities prior to pro-
cessing sonar data, not to mention performing detection for navigational
purposes. For now, the majority of software implemented in this project is
written in Python, and rewriting in more performant languages will obvi-
ously improve the situation. As previously mentioned, another solution can
be found in switching or complementing the RPI with more capable com-
puters. Future hardware upgrades will include switching to Khadas com-
puters, which provides more computational power. Additional upgrades
may also include the adding of NVIDIA Jetson to make use of the paral-
lel processing power of GPUs. Doing so, the image construction pipeline
can be significantly sped up, consequently relieving the CPU of significant
work.
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10.2 DVL Dependency

One major shortcoming of the system is the severe dependency on the DVL,
as continuous loss of fix in practice will render both the ESKF and the image
construction pipeline incapacitated. As shown in Section 5.2, the ESKF will
drift immensely when dead reckoning. Regardless of the filter’s effort of
tracking the estimate uncertainty, the ROV will quickly veer off course and
continue doing so until fix is acquired again. Because of this, the geometric
correction step will perform poorly resulting in inaccurate processed sonar
images. Moreover, a continuous lack of altitude measurements affect both
blind zone removal and slant range correction. In its current state, the
system can only handle a momentary loss of fix.

Measures can be taken to address and reduce the system’s dependency
on the DVL sensor. Enhancing dead reckoning capabilities of the ESKF can
be done through an upgrade of the IMU. In the future, the BNO055 will be
swapped with the STIM300*1 providing more reliable measurements, and
consequently better filter performance. Doing so will also alleviate the fus-
ing of orientation estimates from the filter. Further, the blind zone removal
step can be complemented with alternative signal processing techniques to
determine the FBR, adding redundancy to the system. Thus, the altitude
can be computed using Equation (8.3), and the slant range correction step
can be performed regardless of available altitude measurements from the
DVL.

10.3 Improving System Performance

To further improve the performance of the ESKF more tuning is in order. As
specified in Section 5.1, the noise statistics used in this project were mea-
sured while keeping the ROV motionless due to the lack of ground truth
while moving. However, this approach does not necessarily provide statis-
tics reflecting the uncertainty present when the ROV is moving. Because of
this, further tuning should be done in facilities capable of providing ground
truth measurements. Moreover, in the current implementation the respec-
tive statistics are used directly in a naive fashion, where the uncertainties
related to sensor offsets2 and the transformation of DVL measurements are
not considered. Nevertheless, there will be uncertainty related to angular
velocity measurements and orientation estimates, and these should be ac-
counted for in the filter. Not doing so contributes to the overconfidence

1Purchase not confirmed, upgrading to ADIS is also possible.
2This does not include the positional offset of the pressure sensor, since it is accounted

for through the Jacobian, see Equation (4.4).
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observed in the filter consistency analysis. Lastly, the ESKF performance
may also be improved through the use of more advanced integration tech-
niques with higher accuracy and better numerical stability.

Improving state estimate accuracy will consequently improve the per-
formance of the image construction pipeline. Further improvements of the
pipeline may include tuning of the intensity correction smoothing parame-
ter and the KNN parameters. In this thesis the evaluation of the pipeline has
been heavily based on visual inspection. However, further tuning should be
done in combination with performing detection in the resulting acoustic
images, as this is the reason why processing is necessary in the first place.



Chapter 11

Conclusion

Through this thesis a foundation for an easily deployable Remotely Op-
erated Vehicle (ROV) configuration has been developed. The foundation
consist of an error-state Kalman filter (ESKF) performing state estimation,
and an image construction pipeline for Side-Scan Sonar (SSS) construct-
ing acoustic images which more accurately represent the sea floor. With
the current hardware configuration, the ESKF estimates appear to drift 1.2
meters per hour in the xy-plane and 120 degrees per hour in heading,
accentuating the need for detection methods to limit uncertainty in the es-
timates. Based on visual inspection, the pipeline appears to provide images
well suited for detection.

Serving as an Achilles heel of the system, testing has revealed how
both the ESKF and the pipeline is severely dependent on measurements
from the Doppler Velocity Log (DVL) sensor to function properly. Further,
simultaneously performing tasks related to navigation, control, sensing,
and processing is not computationally feasible using the current hardware
configuration and implementations.

Future work should aim to address these issues through a combina-
tion of hardware upgrades, as well as adding redundancy to the pipeline.
Accuracy of state estimates can be improved through better uncertainty
handling, and more accurate integration techniques. Following this, fur-
ther research should focus on development of a detector to be used on
processed acoustic images. Accordingly, the complete system should be re-
tuned and re-evaluated to accommodate the detector’s performance.
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Appendix A

Alternative Preface Remarks

$ export PR="Now I know what pain is."
$ export PR="I should probably document this."
$ export PR="I should have documented this."
$ export PR="Unfortunately my computer does exactly what I tell it to do."
$ export PR="Variance ain’t standard deviation."
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Appendix B

Distinction of Software

The itemized software below is embedded with a hyperlink to the respec-
tive repositories. Note, part of the API related to the SSS sensor driver is
not publicly available due to proprietary rights.

Software developed by the author:

• error-state Kalman filter (ESKF)
• Image construction pipeline
• Trajectory planner/publisher
• DVL sensor driver
• Pressure sensor driver
• GPS sensor driver
• Text user interface
• Start-up procedures

Software modified by the author:

• IMU sensor driver
• SSS sensor driver

Software unified by the author:

• Hysteretic controller
• PD controller
• Teleoperation solution
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https://github.com/bjornrho/Navigation-brov2/tree/main/src/brov2_qekf
https://github.com/bjornrho/Navigation-brov2/tree/main/src/brov2_sonar_processing
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https://github.com/bjornrho/Navigation-brov2/tree/main/src/brov2_gps
https://github.com/bjornrho/Navigation-brov2/tree/main/src/brov2_tui
https://github.com/flynneva/bno055
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