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Abstract 5 

The forest sector plays a key role in achieving low temperature stabilization targets, as woody 6 

biomass represents a cost-efficient alternative to fossil fuels for energy and material production. 7 

Estimates of future woody biomass demands vary in the Shared Socioeconomic Pathways (SSPs), 8 

depending on societal development trends, climate model projections, socioeconomic conditions, and 9 

climate and energy policies. The SSPs are qualitatively and quantitatively defined at global and macro-10 

regional level, and their implementation for individual sectors at a national basis is challenging. In this 11 

paper, we provide estimates for forest wood outtakes in Norway until 2100 using key drivers from the 12 

SSPs such as population and Gross Domestic Product (GDP) and specific aspects of land use sector. 13 

First, we analyze historical wood harvest trends from 1960 to 2016 for the main tree species and wood 14 

classes and construct a regression model based on population, GDP and time. The model is then adapted 15 

and modified according to salient characteristics of the different SSP scenarios for a developed country 16 

such as Norway to estimate future outtake volumes for each combination of tree species and wood class. 17 

These estimates are produced after interpretation and implementation in the model framework of SSP 18 

specific aspects like GDP and population trends, land-use change regulation, participation of the land-19 

use sector to climate change mitigation, and starting year for international cooperation for climate 20 

change mitigation. The produced estimates span a range of possible harvest rates and resource use 21 

potentials. Results show that SSP5 is the most resource intensive scenario, with harvest rates achieving 22 

27.5 million m3 in 2100. Driven by high population and GDP, SSP5 exceeds the forest maximum harvest 23 

potential in Norway. It is followed by SSP1, which achieves a maximum mean extraction rates of 17.7 24 

(in 2090), about 64% of the maximum extraction rate in SSP5. Forest wood outtake volumes are the 25 

lowest in SSP3, reaching a maximum of about 11.9 million m3 in 2040 and then declining. SSP2 and 26 

SSP4 generally lie in between SSP1 and SSP3. Variability in the estimates is larger when land use 27 

regulation is weak and market fluctuations are high, such as in SSP2, SSP3 and SSP5. The proposed 28 

model framework is an approach to interpret and translate the global qualitative SSP narratives into 29 

quantitative projections at a finer scale, and can favor the use of a consistent background setting such as 30 

the SSPs in interdisciplinary research activities across different spatial scales of analysis.  31 

Keywords: Forestry; bioenergy; SSP; climate change mitigation; regression models.  32 
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1 Introduction  33 

Forestry products are key for the climate-energy-material nexus (Creutzig et al., 2015, Sikkema 34 

et al., 2017, Fulton et al., 2015), and management of bioresources will play a major role to achieve low 35 

temperature stabilization targets (Popp et al., 2014b, Lauri et al., 2017). Forest products can contribute 36 

to supply of renewable biomass for energy and construction materials, which are predicted to increase 37 

in a more sustainable future (Lauri et al., 2017, Van Vuuren et al., 2011), and forestry projects are 38 

valuable instruments to achieve emission reduction targets (van der Gaast et al., 2016). High resolution 39 

information and future estimates of wood outtakes and material products is key for studying the 40 

biophysical basis of socioeconomic metabolism and resource potentials (Pauliuk et al., 2015), for 41 

characterizing the role of environmental stocks in human development and emission growth (Lin et al., 42 

2017), and, more particularly, for assessing the climate change impacts of transformation in the dwelling 43 

and wood industry subsectors (Pauliuk et al., 2013).  44 

The Shared Socioeconomic Pathways (SSPs) describe alternative societal development trends 45 

over the next decades through combinations of different scenarios for climate model projections, 46 

socioeconomic conditions, and climate and energy policies (O’Neill et al., 2014, Ebi et al., 2014, Van 47 

Vuuren et al., 2014). These integrated future scenarios are designed to serve the scientific community 48 

in facilitating the adoption of a common and harmonized framework for interdisciplinary research in the 49 

field of climate change mitigation and adaptations and to study future changes in technological, societal, 50 

and environmental systems. Extensive quantitative and qualitative information about the SSPs are today 51 

available, with descriptions of the characteristics of the different SSP components (Riahi et al., 2017, 52 

O'Neill et al., 2017, Popp et al., 2017, Fujimori et al., 2017, Kriegler et al., 2017, Calvin et al., 2017, 53 

Fricko et al., 2017). The SSPs are based on five narratives describing alternative socio-economic 54 

developments, including sustainable development, regional rivalry, inequality, fossil-fueled 55 

development, and middle-of-the-road development (Riahi et al., 2017). The five SSPs have different 56 

land-use change regulations and land-based mitigation policies (O'Neill et al., 2014). In SSP1 (“taking 57 

the green road”), the world shifts towards a sustainable path. There is a strong land-use change regulation 58 

with international efforts to minimize environmental impacts and tradeoffs. This scenario envisions a 59 

full participation of the land-use sector, and there is no delay (i.e., starting from 2020) in the international 60 

cooperation for climate change mitigation. In SSP2 (“middle of the road”), the world follows a path that 61 

does not shift markedly from historical patterns, and the land-use change regulation is incomplete 62 

(medium regulation). There is a partial participation of the land-use sector and the international 63 

cooperation for climate change mitigation is delayed to 2030. In SSP3 (“regional rivalry—a rocky road”), 64 

countries are more concerned about domestic issues and competitiveness, with lower attention to climate 65 

and environmental aspects. There is limited or almost no regulation on land-use change, and the 66 

participation of land-use sector is also limited. International cooperation for climate change mitigation 67 

is delayed to 2040 for high-income countries and to 2050 for the rest of the world. In SSP4 68 
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(“Inequality—A road divided”), there will be increasing inequalities in the development of the different 69 

countries. There is a partial participation of the land use sector, and only developed countries introduce 70 

strong regulation to land-use change with no delay in the international cooperation for climate change 71 

mitigation (starting in 2020). In SSP5 (“fossil-fueled development—taking the highway”), the world 72 

will strengthen the role of competitive markets, and the regulation of land-use change is incomplete. 73 

Compared to SSP2, there is full participation of the land-use sector with a delay of international 74 

cooperation for climate change mitigation to 2040. We refer to (O'Neill et al., 2014) for more detailed 75 

discussion on the narratives of SSPs, and to (Popp et al., 2017) for the specific focus on the land use 76 

component. 77 

The SSPs are defined at a global and macro level, and regional/sectorial extensions are seen as 78 

critical next steps for future applications (Riahi et al., 2017, Absar and Preston, 2015). The core 79 

principles of their different narratives can be used as drivers to estimate future developments of 80 

individual and smaller-scale sectors. This has the potential advantage to consolidate interdisciplinary 81 

research under a common framework and different spatial scales of analysis. Future forest wood outtakes 82 

can be estimated within an integrated impact assessment framework using sophisticated non-linear 83 

recursive dynamic optimization models or partial equilibrium models that are linked to spatially explicit 84 

biophysical constraints (Popp et al., 2014a, Humpenöder et al., 2015, Havlík et al., 2014). These models, 85 

such as the economic model GLOBIOM (Global Biosphere Management Model) (Havlik et al., 2011, 86 

IIASA, 2017, Havlík et al., 2012) and the recursive dynamic optimization model MAgPIE (Model of 87 

Agricultural Production and its Impact on the Environment) (Lotze-Campen et al., 2008, PIK, 2017), 88 

are rather complex and global in scope, although they can be used for regional and/or grid-level 89 

applications. In this study, we use a simpler approach and develop a bottom-up model framework based 90 

on historical data (from 1960 to 2016) of forest wood outtakes in Norway using country-specific 91 

information on tree species (birch, pine and spruce) and wood classes (sawn wood, pulpwood, bioenergy, 92 

and unsorted logs). Multiple linear models with GDP per capita and time as explanatory variables are 93 

adopted to describe the historical trends in harvest rates (normalized to population) for each combination 94 

of tree species and wood class. White Gaussian noise processes are introduced to capture the randomness 95 

of market fluctuations. The model is based on a double-logarithmic formula which allows to explicitly 96 

include the effects of GDP and populations. Future projections of wood outtakes from Norwegian forests 97 

over the twenty-first century are developed to be consistent with the narratives of the different SSPs, 98 

after introducing in the model the key drivers of the SSPs and an interpretation of specific aspects of 99 

land use sector. These include the specific GDP and population trends, and the values of estimated 100 

parameters for time regression and noise processes are modified according to different policies in terms 101 

of land-use change regulation, participation of the land-use sector to climate change mitigation, and 102 

starting year of international cooperation for climate change mitigation. This can bridge (and downscale) 103 

the major SSP global framework with the dynamics of an individual sector at a country level. 104 
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2 Methodology 105 

2.1 Data gathering 106 

The total forested area of Norway amounts to about 12 million hectares (about 38% of the 107 

country’s total surface area), of which more than 7 million hectares are productive forest. The most 108 

important tree species are coniferous, mostly Norway spruce (Picea abies) (47%) and Scots pine (Pinus 109 

sylvestris) (33%), and deciduous species (mostly Betula pubescens and Betula pendula) (18%). 110 

Historical data for the harvested wood product sector in Norway are gathered from the Norwegian 111 

national statistics in terms of commercial roundwood removals from 1960 to 2016 (SSB, 2017a).  The 112 

dataset includes information about wood harvests for three species of trees (spruce, pine, and birch) 113 

and four types of wood classes (sawlog, pulpwood, unsorted sawlog/pulpwood and fuelwood). In the 114 

period 1960-1979, official data are only available for individual tree species and not for the different 115 

wood classes. It is assumed that distribution of wood classes among species reflects the average shares 116 

for each tree species in the time interval 1980-1989.  117 

The historical population from 1960 to 2016 is obtained from the Norwegian national statistics 118 

(SSB, 2017d). The historical GDP by expenditure in fixed price per capita (relative to 2005) is obtained 119 

from the Norwegian Central Bank (Norges-Bank, 2017) for the period 1960-1969, and from the 120 

Norwegian National statistics for the period 1970-2016 (SSB, 2017b). The future national estimates of 121 

GDP and population from 2017 to 2100 are obtained from the SSP Public Database hosted at the 122 

International Institute for Applied Systems Analysis (IIASA) (SSP-Database, 2017). Data are available 123 

at a 10 year time step interval, and are connected through linear interpolation. The historical and future 124 

trends of population and GDP are shown in Figure 1. The strongest growth in population occurs under 125 

SSP5, where it increases from 5.21 million in 2016 to 13.9 million in 2100. On the other hand, 126 

population is expected to decline to 4.57 million in 2100 under SSP3. Similarly, GDP per capita shows 127 

the steepest increase under SSP5, and the smallest variations under SSP3. 128 

 

(a) 

 

(b) 

Figure 1 Population (a) and GDP per capita (b) in Norway from 1960 to 2100. Data from 1960 to 2016 are from historical 129 
records, and data from 2017-2100 are from the SSP public database. Units: Population: Person; GDP: NOK/person 130 
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2.2 Model framework and integration with SSP scenarios 131 

Three steps are used for generating future wood harvest scenarios in Norway under the different 132 

SSP scenarios. We first construct a multiple linear regression model of historical wood outtakes and 133 

estimate the parameters. We then integrate the key drivers of the different SSP scenarios and the aspects 134 

of the land use sector into the model framework to estimate future scenarios of wood harvest rates. 135 

Finally, the predicted wood harvest rates are aggregated for each SSP, and an analysis of the maximum 136 

harvest potential as a constraint is introduced to calibrate model outcomes. 137 

The first step is to use the historical wood harvest dataset to make a regression analysis. The 138 

model has the following form, which is adapted from the double-logarithmic formula (Houthakker, 139 

1965), 140 

 log log( ) ,         1, 2,3, 1,2,3,4
ij

ij t ij ij ij

t

Q
a G b t c i j

P


 
=  +  + + = = 

 
  (1) 141 

where the indexes i and j represent the species of trees and the wood classes, respectively. Pt and Gt 142 

stand for population and GDP per capita at year t, and Qij stands for the amount of harvested wood for 143 

different species and wood classes. The parameters aij and bij are the coefficients for the explanatory 144 

variables, and cij is the intercept parameter of the regression lines. εij is the white noise process, assumed 145 

to have a Gaussian distribution with mean zero and variance 2

ij . This regression model has a simple 146 

interpretation. The regression line captures the trend of the wood harvest, with parameters aij and bij 147 

indicating the influence of GDP per capita and time for wood species i and wood class j, and the white 148 

noise term captures the fluctuation of the market.  149 

The overview of the data distribution of the historical harvested wood per capita is shown in 150 

Figure 2 using boxplots. The figure shows the distribution of the data log(qij), where qij=Qij/Pt, for each 151 

individual combination of tree species and wood class. In order to obtain robust estimation, outliers in 152 

the dataset (indicated as red + in Figure 2) are detected and filtered out. The parameters 153 

 , , , ,  1,2,3, 1,2,3,4ij ij ij ij ija b c i j = = =  in Equation (1) are estimated from the dataset for each 154 

wood species and corresponding wood classes.  155 
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 156 

Figure 2 Boxplot of the harvested wood per capita in Norway for the different tree species and wood classes (unit: m^3 per 157 
capita in log scale). The central red line in each box indicates the median, and the bottom and top edges of the box are the 158 

25th and 75th percentiles, respectively. The whisker indicates 1.5 times of the 75th percentile-25th percentile to the bottom or 159 
top edge of the box. The outliers are the points that fall outside of the whisker and are indicated with the red '+' symbol. On 160 

the horizontal axis, there are the different wood species and classes. The first upper-case letters stand for the different species 161 
of trees, with S for spruce, P for pine and B for birch. The second and third lower-case letters stand for wood classes, with sl 162 

for sawlog, sp for unsorted sawlog and pulpwood, pw for pulpwood and fw for fuelwood. The boxplot of birch used as 163 
unsorted sawlog and pulpwood (Bsp) is not shown since the values are too small. 164 

In the second step, the key drivers of SSP scenarios such as population and GDP are used and 165 

the aspects of land use sector are integrated into the model framework by translating the qualitative 166 

narratives into quantitative formulas. We adjust the coefficients of the explanatory variable t and the 167 

variance parameter of the white Gaussian noise process according to the different degrees of 168 

participation of the land-use sector to climate change mitigation and different land-use change 169 

regulations. We also change future GDP and population in line with the different trends in the SSPs. In 170 

addition, a weight parameter ρ is introduced to better control and differentiate the rate of changes for the 171 

individual combinations of tree species and wood classes (see Table 1). Some tree species and wood 172 

classes will have different preferential applications, with different effects on future estimates. For 173 

instance, wood from birch trees is more suitable for fuelwood (ρ = 0.5) than other species (ρ = 0.25), 174 

whereas wood from spruce and pine is preferentially used as sawlog. We set the values of the parameters 175 

ij  to -0.5 for pulpwood because paper demand will likely decline in the future, whereas uses of wood 176 

for energy applications and construction materials are likely to increase. The other values are set with 177 

similar considerations. 178 

  179 
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Table 1 Values of weight parameter ρij. See caption of Figure 2 for the legend. 180 

Ssl Spw Ssp Sfw Psl Ppw 

0.25 -0.5 -0.25 0.25 0.25 -0.5 

Psp Pfw Bsl Bpw Bsp Bfw 

-0.25 0.25 -0.5 -0.5 -0.5 0.5 

 181 

In addition to the SSP key drivers GDP and population, the aspects of land use sector from 182 

different SSPs considered in our work are summarized in Table 2 with the parameters for their 183 

implementation in the model. The variance parameter 2

ij  is initially estimated from the historical 184 

dataset and its future changes follows the land use change regulations in the SSPs as defined in Table 1 185 

in (Popp et al., 2017). As it can be interpreted in terms of market fluctuations and lack of a clear policy, 186 

it is reduced to one-fourth (relative to the historical estimate) in case of strong regulations of the land 187 

use sector (SSP1 and SSP4), where market fluctuations can be expected to be less pronounced. It is 188 

decreased to one-half in case of incomplete regulations (SSP2 and SSP5) and remains of the same 189 

breadth for SSP3, where there is limited or no regulation. The parameter δ (in percentage) describes the 190 

mean change in the supply of the specific wood product connected to the participation of land use sector 191 

to climate change mitigation as specified in Table 1 in (Popp et al., 2017), and it scales the weighting 192 

factor ρ. When the participation is full (SSP1 and SSP5), there is a major supply of bioresources for 193 

renewable energy and material products, and the parameter δ is set to 1 (meaning that the weighting 194 

factor is fully deployed). When the participation is partial (SSP2 and SSP4), δ is set at 0.5, and it 195 

becomes 0 when there is limited or no participation of the land use sector to climate change mitigation 196 

(SSP3).  197 

Table 2 Overview of the SSP scenarios with the aspects in land use sector for tweaking model parameters. 198 

 SSP1 

(Sustainability) 

SSP2 

(Middle of the 

Road) 

SSP3 

(Regional 

Rivalry) 

SSP4 

(Inequality) 

SSP5 

(Fossil-fueled 

Development) 

Land-use change 

regulation 

Strong Incomplete Limited or no Strong Incomplete 

Participation in land-

use sector 

Full Partial Limited or no Partial Full 

Cooperation for 

climate change and 

mitigation 

No delay Delayed Limited or no No Delay Delayed 

Starting year of 

mitigation tk 

2020 2030 2040 2020 2040 

Parameter δ 1 0.5 0 0.5 1 

Variance parameter 

σp2 

Decreased  

to one forth 

Decreased to half No change Decreased to one 

forth 

 

Decreased to half 
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 199 

The model for predicting future wood harvest rates in Norway according to the SSPs can thus 200 

be written as follows: 201 

( )

( ) ( )

log ,2017                    1, 2,3, 1, 2,3, 4,
log

ˆ log ( ) , 2100,  1, 2,3, 4,5

p

ij kt ij ij ij kijk

l p

ijk ij kt ij ij k k ijk kkt

a G b t c t t i jQ

y a G b t t t t kP



  

   +  + +   = =
=    +  + +   − +   = 

  (2) 202 

where the indexes i, j and k indicate different wood species, wood classes and SSP scenarios, 203 

respectively. The parameters aij and bij are estimated from the historical wood harvest dataset using 204 

equation (1). The estimated future population Pkt and GDP per capita (Gkt) are obtained from the SSP 205 

public database for each SSP k and linearly interpolated. 
p p

ijk ijk ktq Q P=  is the predicted volume of 206 

harvested wood per capita for species i and wood class j in year t. The parameter tk denotes the starting 207 

year of participation of the land use sector to climate change mitigation. This means that the first 208 

expression of equation (2) refers to the extrapolation of the historical trend until tk, and the second 209 

expression includes the modified parameters according to the specific SSP scenario. The intercept term 210 

ˆ l

ijky  is the estimated wood harvest at the last year (tk – 1) before participation in the international 211 

cooperation for climate change mitigation for each species of trees i, wood class j, and SSP scenario k, 212 

and δk links the change of the trend with time t under SSP scenario k after participation of land use sector. 213 

The white noise process p

ijk  has the value of the variance 2p

ijk  estimated from the historical trend (1960-214 

2016) until tk, and it is then modified for the different land-use change regulations of the SSPs as shown 215 

in Table 2. A transition period of 10 years is also assumed to reflect the market response to the new 216 

policy after cooperation for climate change mitigation has started. In the period tk < t < tk +10, the 217 

variance 2

ij  linearly decreases to the new value 2p

ijk for each scenario k. 218 

The predicted total wood harvest p

kQ  for each SSP scenario is then obtained by aggregating the 219 

prediction of all tree species and wood classes, 220 

 

3 4

1 1

,      1,2,3, 1,2,3,4, 1,2,3,4,5p p

k ijk

i j

Q Q i j k
= =

= = = =   (3) 221 

with *p p

ijk ijk ktQ q P= . 222 

2.3 Wood harvest with resource constraint 223 

The total wood harvest p

kQ  under each SSP scenario k can be compared with the maximum 224 

harvest potential in Norwegian forests, which can be introduced as a constraint to calibrate model 225 

outputs. The mean annual increment of Norwegian woody biomass is approximately 25.8 million m3 226 

per year (SSB, 2017c), meaning that Norway is currently extracting 44% of the wood resources available. 227 
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This mean annual increment represents the upper limit of wood harvest and the potential for the growth 228 

of the harvest wood product sector in Norway. We use this as a constraint in the model applied to either 229 

the mean trend or the 95% of the confidence interval of the predictions for each SSP. Although it may 230 

change in the future under a changing climate and different extraction rates, we simply assume the mean 231 

annual increment of Norwegian forests as time-invariant. Its future changes are difficult to predict owing 232 

to the different factors at play, and its magnitude did not significantly change in the past years (it had 233 

little variations in the past couple of decades, oscillating between 24.5 million m3 in 2000 to 25.8 million 234 

m3 in 2017).  235 

The condition for which the predicted mean harvested wood should not exceed the resource 236 

constraint can be written as 237 

 325.8 million m ,       1,2,3,4,5p

kQ k  =   (4) 238 

p

kQ  denotes the predicted mean wood harvest with SSP scenarios k. On the other hand, when the upper 239 

bound of the predicted 95% confidence interval is taken into account, the wood resource constraint can 240 

be written as 241 

 325.8 million m ,       1,2,3,4,5pCI

kQ k  =   (5) 242 

pCI

kQ denotes the predicted upper bound of the 95% confidence interval of the aggregated wood harvest 243 

under SSP scenario k. In both equations (4) and (5), the parameter ɷ is defined in the interval 0 1   244 

and controls the fraction of the forest annual increment allowed to be harvested. We assume ɷ = 0.7 on 245 

the basis of the more extended harvested wood product sector in Sweden, where up to 70% of the mean 246 

annual increment is harvested. This makes the upper limit of wood harvest rates in Norway equal to 247 

18.06 million m3. This constraint is then applied to the model by introducing a factor α to modify the 248 

time coefficient, 249 

 ' * ,   1,2,3, 1,2,3,4, 1,2,4,5ijk ij k ijb b i j k  = + + = = =   (6) 250 

The value of α is estimated for each individual SSP by taking into account the relationship between the 251 

constraint and either the mean or the upper bound of the 95% of the confidence interval of the 252 

predictions. The factor α is independent of tree species, wood classes and different scenarios of 253 

population and GDP. Therefore, this setting can be uniformly applied to all tree species and wood 254 

classes with different SSPs, for which one independent value of α is computed. SSP3 is excluded 255 

because there is no or limited participation of the land use sector to climate change mitigation and 256 

land-use policies (δ = 0). The factor α is determined starting from zero with a step size of 1·10-5. The 257 

iteration is stopped when the harvest rate achieves the resource constraint in a certain year, which 258 

corresponds to the year of maximum harvest rate in each SSP. When α > 0 the harvested wood rates 259 

will increase, and it will decrease with α < 0. When α = 0, we return to the settings given in   260 
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Table 1 and Table 2. 261 

3 Results and discussion 262 

Firstly, the results from the regression analysis of the historical wood harvest dataset are 263 

presented. Secondly, we illustrate the results of the model for future wood harvest until 2100 according 264 

to different SSP scenarios. Model outputs are finally benchmarked and calibrated with the wood 265 

resource constraints of Norwegian forests. 266 

3.1 Regression of the historical dataset 267 

Using the historical harvested wood with population and GDP datasets, we estimate all the 268 

parameters of the linear model in equation (1) for different tree species and wood classes in Norway. 269 

The historical trends and the model outputs are shown in Figure 3. Spruce and pine are mainly used as 270 

sawlog and pulpwood, and Birch is mainly used as fuelwood (Figure 3a). Spruce as sawlog and 271 

pulpwood generally cover the largest fractions of the volume of harvested wood in Norway (around 58% 272 

on average), followed by pine as sawlog and pulpwood and birch as fuelwood with about 17 and 13%, 273 

respectively. Birch is rarely used as sawlog and pulpwood (less than 3%), whereas it is the dominant 274 

species for bioenergy use. On the other hand, pine and spruce are mostly used for material applications, 275 

with little fractions used for bioenergy. In general, data for total wood harvest rates in Norway show a 276 

historical increasing trend with large market fluctuations (Figure 3b). The peak in extraction rates was 277 

achieved from 1987 to 1989 and it is mainly driven by high demands for spruce and pine as pulpwood 278 

and sawlog. From 2003, the volume of harvest wood steadily increases and this might be correlated to 279 

increases in oil prices. The estimated coefficients αij and bij for explanatory variables Gt and t, the 280 

intercept parameters cij, and the standard deviations σij (square root of the variance 2

ij ) of the white 281 

noise process are given in Table 3 for each combination of tree species and wood classes. In general, 282 

GDP and time have different influence to the wood harvest rates, except for spruce as pulpwood where 283 

they have the same sign. Time positively contributes to pine as sawlog but negatively to spruce as sawlog. 284 

This means that spruce as sawlog has the tendency to decline whereas pine as sawlog has the tendency 285 

to increase with fixed GDP and population. For fuelwood, GDP positively contributes for all different 286 

tree species since aij is positive, but time has a negative effect (bij is negative). 287 
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(a) 

 

(b) 

Figure 3 Historical wood harvest rates from Norwegian forest in m3. (a) Breakdown of total outtakes per tree species and 288 
wood class (see caption in Figure 1 for the legend). (b) Trends for the total wood harvest rates from our linear regression 289 

model.  The blue solid line is the regression line with x indicating the estimated mean harvested wood using our model. The 290 
red dotted lines indicate the 95% confidence interval of the estimates. The observed total wood harvest is given in blue 291 

circles and connected with solid lines.  292 

Table 3 Estimated parameters of the regression model for historical wood harvest rates in Norway. The parameters a and b 293 
are the coefficients of GDP and time, respectively, c is the intercept of the regression line for different wood species and 294 

classes, and σ is the standard deviation of the Gaussian noise process. See caption of Table 1 for the legend.  295 

 Ssl Ssp Spw Psl Psp Ppw 

a 1.75·10-1 -7.59·10-1 -1.75·10-2 -2.45·10-1 1.40 -6.14·10-1 

b -7.22·10-3 5.24·10-3 -1.06·10-3 6.64·10-3 -5.91·10-2 1.55·10-2 

c -2.30 6.47 -2.09·10-1 1.45 -2.02·101 5.35 

σ 1.17·10-1 6.62·10-1 8.95·10-2 8.38·10-2 4.82·10-1 1.32·10-1 

 Bsl Bsp Bpw Sfw Pfw Bfw 

a 1.83 -9.38 2.75·10-1 2.19·10-1 2.19·10-1 2.19·10-3 

b  -8.78·10-2 9.68·10-2 -4.47·10-2 -6.39·10-3 -6.39·10-3 -6.40·10-3 

c -2.62·101 1.01·102 -5.22 -5.07 -5.07 -3.72 

σ 3.06·10-1 1.35 4.71·10-1 1.23·10-1 1.23·10-1 1.24·10-1 

3.2 Future wood harvest rates based on SSPs  296 

This section shows the scenarios for future wood harvest rates in Norway until 2100 under the 297 

five different SSPs. Under SSP3, there is no or limited land-use change regulation and no participation 298 

of land-use sector and international cooperation for climate change mitigation. This SSP scenario keeps 299 

the same values of the estimated parameters  , , , ,  1,2,3, 1,2,3,4ij ij ij ij ija b c i j = = =  from the 300 

historical dataset. This is thus a representation of a simple future projection of the historical trends, 301 

assuming that no major changes in policies will occur. The mean outtake volumes and market variability 302 

of the annual estimates are mainly determined by the temporal trend and the estimated population and 303 

GDP (Figure 4). The predicted mean wood harvest rates increase from 2017 and reach the maximum in 304 

2040 with 11.9 million m3, which corresponds to 46% of the mean annual increment of Norwegian forest. 305 

The 95% confidence interval is [9.45, 15.45] million m3, which is equal to [37%, 60%] of the potentially 306 

available wood resources in Norway. From about 2040 onwards, the predicted mean wood harvest rate 307 
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starts to decline. This can be mainly explained by the predicted decline in population under SSP3. The 308 

predicted harvested wood in 2100 is 9.49 million m3, less than the value in 2016 and about 37% of the 309 

mean annual increment of Norwegian forests. This means that under SSP3 the forestry sector in Norway 310 

is expected to shrink in the long-term, using less than two-fifth of the potential forest resources annually 311 

available. The 95% confidence interval of the prediction in 2100 is [7.56, 12.24] million m3, which is 312 

equal to [29%, 47%] of the potentially available wood resources. Both the annual mean and the 95% 313 

confidence interval are within the wood resource constraint of Norwegian forests. In Figure 4(b), there 314 

is a small step between 2016 and 2017. This is due to the small differences in the values for population 315 

and GDP between the SSP public database and the data from the Norwegian National statistics. The 316 

same step can be observed in the other SSP trajectories, although at a smaller extent. 317 

 

(a) 

 

(b) 

Figure 4 Predicted wood harvest rates from Norwegian forests under SSP3 until 2100 in m3.  (a) Breakdown of total outtakes 318 
per tree species and wood class (see caption in Figure 2 for the legend). (b) Trends for the total wood harvest rates. The thick 319 

blue solid line indicates the mean estimated harvested wood. The dotted lines are the 95% confidence interval of the 320 
estimated mean. The observed total harvested wood is given in blue circles and connected with solid lines. The predicted 321 

wood harvest is indicated as x with solid lines. The red solid thick line at the top is the constraint of forest resources.  322 

Under the other SSPs, the model framework is modified using the chosen key drivers described 323 

in Table 2 with equation (2). The results are shown in Figure 5, and the predicted mean volumes of total 324 

harvested wood in 2100 together with their 95% confidence intervals for all SSPs are given in Table 4. 325 

All the predicted means except SSP5 meet the resource constraint of potential forest resources available 326 

in Norway (that is, 70% of the mean annual increment). However, all the predicted upper bound of 95% 327 

confidence intervals exceed the resources constraint, except for SSP4. With SSP1, the mean harvested 328 

wood in 2100 reaches about 68% of the potentially available wood resources, and the corresponding 329 

results for SSP2, SSP4 and SSP5 are 67%, 48% and 107%, respectively. The mean volume of the 330 

harvested wood is increased 31%, 30%, 11% and 70% for SSP1, SSP2, SSP4 and SSP5, respectively, 331 

compared to SSP3. This is the result of different degrees of participation of the land-use sector to climate 332 

change mitigation together with different trends of population and GDP. With SSP1, the harvest wood 333 

rate gradually increases and reaches the maximum in 2090 with 17.7 million m3, and then starts to 334 

slightly decline, following the reduction in population. Under SSP4, the harvest wood rate reaches the 335 
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maximum in 2070 with 13.8 million m3 and then gradually decreases, again following population trends. 336 

In SSP2 and SSP5, the harvest wood rate increases nearly monotonically until 2100 with harvest wood 337 

rates given in Table 4. The predicted 95% confidence interval of the volumes of wood harvest rates in 338 

2100 are [61%, 77%], [57%, 80%], [43%, 55%], [91%, 126%] of the annual increment of Norwegian 339 

wood resource for SSP1, SSP2, SSP4, and SSP5, respectively. This means that they can contribute to 340 

market fluctuations up to 16%, 23%, 12%, and 35% of the harvest potential, respectively. Compared to 341 

SSP3, the market fluctuation is reduced by 11% and 33% for SSP1 and SSP4, and increased by 28% 342 

and 94% for SSP2 and SSP5. The increase relative to SSP3 despite the reduction in σ is driven by 343 

different population dynamics. The harvest wood rates achieve the highest volumes with SSP5, where 344 

there is full participation in the land-use sector to climate change mitigation and the most significant 345 

increase of population in Norway. Results also show that the upper bound of 95% confidence intervals 346 

of the harvested wood for SSP5 is the highest among all SSPs. This is primarily due to the joint effects 347 

of all drivers. The fast growth of population and GDP together with the full participation of the land-use 348 

sector lead to a high predicted mean wood harvest rate, which is at the same time sensitive to large 349 

market fluctuations (larger than SSP1) because there is an incomplete land-use change regulation with 350 

more uncertain policies. Under SSP3 the predicted mean wood harvest is the lowest due to no or limited 351 

participation of the land-use sector, no or limited cooperation for climate change mitigation and low 352 

population. However, the upper bound of 95% confidence interval under this scenario is higher than the 353 

corresponding values for SSP1 and SSP4. This is due to limited or no land-use change regulation with 354 

SSP3, which makes market fluctuation larger, leading to effects that compensate for the higher 355 

population in SSP1 and SSP4. The upper bound of 95% confidence interval under SSP4 is the lowest 356 

due to strong land-use policies but partial participation of the land-use sector. From Figure 5, we can 357 

notice that when there is strong land-use policy (SSP1 and SSP4), the market fluctuation is smaller than 358 

the cases with incomplete land-use policies (SSP2 and SSP5) due to different rates of changes in the 359 

variance parameter of the white Gaussian noise process.  360 

Future trends show that the mean predicted volumes of harvested wood will gradually decrease 361 

for pine as unsorted sawlog and pulpwood and birch for all kinds of wood classes except fuelwood. On 362 

the other hand, birch as fuelwood exhibit the steepest relative increase in all scenarios, followed by 363 

sawlog from pine. In particular, bioenergy from birch will increase fastest under SSP1 and SSP5, which 364 

are the most resource intensive scenarios. The future market fluctuations of each tree species and wood 365 

classes are dependent on the white Gaussian noise process with variance 
2p

ijk   for each scenario k, and 366 

this parameter is based on the land use policies by modifying the parameter 
2

ij  according to different 367 

scenarios (given in Table 2), and the parameter 
2

ij  is estimated with the historical dataset using 368 

equation (1). Therefore, given the population size, the market fluctuation is the same for all tree species 369 
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and wood classes within each SSP scenario k, but it differs among SSPs. The different population sizes 370 

amplify the market fluctuations. 371 

A direct comparison of the outcomes of this analysis with previous studies is challenging owing 372 

to the limited availability of perspective scenarios for the forestry sector on a country basis. In general, 373 

our estimates are in line with the major trends depicted in other studies. A recent analysis investigated 374 

the implications for global woody biomass use of achieving the 2 °C climate target in the SSP – RCP2.6 375 

framework, and shows that stringent climate mitigation policies can favor woody biomass use for energy 376 

and sawn wood production, whereas it can inhibit mechanical pulp production (Lauri et al., 2017). This 377 

is associated with increases in average wood outtakes globally and within EU28, where the mean 378 

intensity of use of forest resources can raise from about 70% up to more than 90% by the end of the 379 

century (Lauri et al., 2017). This level of potential forest resource use is in line with our findings under 380 

SSP1. Other studies are in line with this perspective, as they generally conclude that moving from a 381 

business as usual to a high mitigation scenario would increase woody biomass outtakes and use for 382 

energy, with a stabilization or minor increases in sawn wood production and decreases in pulp wood 383 

(Raunikar et al., 2010, Favero and Mendelsohn, 2017). A similar trend is also observed when taking into 384 

account the interconnections between woody biomass material and energy uses, and the by-products in 385 

the forestry sectors (Johnston and van Kooten, 2016, Jonsson and Rinaldi, 2017, Lauri et al., 2017). Our 386 

results are based on historical regression and bottom-up detailed data of national statistics of forest 387 

species and wood classes, combined with key drivers from the SSPs and aspects for land-use sector. 388 

Other models can derive similar projections of future development of forest wood outtakes (IIASA, 389 

2017, PIK, 2017, Havlík et al., 2012, Havlik et al., 2011, Lotze-Campen et al., 2008), although the level 390 

of detail and aggregation can differ. Future comparison with outcomes from model approaches using a 391 

top-down approach and different settings can help to understand dependencies of results on model 392 

parameterizations, characteristics, and their inherent uncertainty.  393 

  394 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 5 Predicted wood harvest rates from Norwegian forests under SSP1 (a, b), SSP2 (c,d), SSP4 (e,f) and SSP5 (g,h) until 395 
2100 in m3.  (a, c, e, g) Breakdown of total outtakes per tree species and wood class (see caption in Figure 2 for the legend). 396 
(b, d, f, h) Trends for the total wood harvest rates. The tick blue solid line indicates the mean estimated harvested wood. The 397 
dotted red lines are the 95% confidence interval. The observed total harvested wood is given in blue circles and connected 398 
with the thin blue line. The red solid thick line is the constraint of forest resources (70% of the mean annual increment of 399 

Norwegian forests) and the solid black thick line in (h) is the mean annual increment of Norwegian forests.  400 
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Table 4 Predicted volumes of harvested wood together with their 95% confidence intervals for different SSPs in 2100 (unit: 401 
million m3).  402 

 SSP1 SSP2 SSP3 SSP4 SSP5 

Mean 17.57 17.36 9.49 12.49 27.52 

95% CI [15.69, 19.77] [14.78, 20.60] [7.56, 12.24] [11.15, 14.07] [23.47, 32.54] 

3.3 Analysis of the resource constraint 403 

From the results above, under the model settings of the parameters given in   404 
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Table 1 and Table 2 all the predicted mean total volume of the harvest wood rates, except SSP5, 405 

do not exceed the resource constraint. Due to full participation in the land-use sector, and significant 406 

increases of population and GDP, the predicted harvest wood rates in SSP5 exceed the resource 407 

constraint and the annual maximum harvest potential. The upper bounds of 95% confidence interval of 408 

all the SSPs but SSP3 and SSP4 do not meet the resource constraint. These results show the resource 409 

constraint can become a critical parameter for future forest resource management in Norway, especially 410 

under high population and GDP growth, and increasing use of bioresources to promote the green shift 411 

to a more sustainable economy. Even though with SSP1 and SSP2 the predicted mean total volume of 412 

the harvest wood rates meet the resource constraint, there are still some chances that the wood harvest 413 

rates are too high since the upper bound of the 95% confidence intervals exceed it. Instruments to control 414 

future market fluctuations can mitigate this concern.  415 

We further perform a sensitivity analysis of the resource constraint by introducing the factor α 416 

in equation (6), which is used to directly link wood harvest rates in SSP, either with respect to the mean 417 

or to the 95% confidence interval, to the resource constraint in Norway. There is room to increase outtake 418 

volumes for SSP1, SSP2 and SSP4, but not for SSP5 as it already goes beyond the resource constraint 419 

(in this case α needs to decrease). Results of the values of the parameter α in the different SSPs and 420 

corresponding harvest volumes are shown in Table 5. In all the cases the predicted means is adjusted to 421 

match the resource constraint of 18.06 Mm3. In general, the lower the outtake volume in the SSP scenario 422 

the higher the value of α. With SSP1, the parameter α is 0.28·10-3 and it makes the predicted maximum 423 

wood harvest rates meet the resource constraint in 2090. The maximum values of the parameter α are 424 

0.56·10-3 and 4.48·10-3 in SSP2 and SSP4, respectively, and they reach the maximum wood harvest rates 425 

in 2100 and 2090, respectively. For SSP5, a negative value of the parameter is needed to shrink outtake 426 

volume down to the resource constraint. In this case, the estimated value of α is -7.53·10-3, and the 427 

maximum wood harvest ratio appears in 2080. The corresponding 95% confidence interval of these 428 

mean values are given in Table 5. In all the cases, the upper bounds of the 95% confidence intervals 429 

exceed the wood resource constraint. 430 

When the estimate of α is based on the upper bound of the 95% confidence interval, the wood 431 

harvest rates for SSP1 and SSP2 need to be decreased, whereas they can still be increased under SSP4. 432 

With SSP1, the estimated parameter α is -1.47·10-3, and the maximum of the upper bound of the 95% 433 

confidence interval reaches the resource constraint in 2080. With SSP2, the estimated parameter α is -434 

2.07·10-3, and the highest values of the upper bound of the 95% confidence interval occurs in 2090. In 435 

SSP4, α is equal to 2.69·10-3 and the upper bound of the 95% confidence interval reaches the resource 436 

constraint in 2080. The resource constraint analysis based on the chosen threshold ɷ cannot be 437 

performed for SSP5. In this case, the upper bound of the 95% confidence interval of the wood harvest 438 

rate exceeds the resource constraint already in 2030, and it reaches 20.4 million m3 (79% of the total 439 
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harvest potential in Norwegian forests) in 2040. With equation (6), we can only start to calibrate the 440 

parameter α from 2040 onwards (the starting year of cooperation for climate change mitigation in SSP5).  441 

            In this sensitivity analysis, we assume that the mean annual increment of Norwegian forests is 442 

time-invariant, although this value is subject to changes in the future as it is sensitive to climate change, 443 

forest age class distribution, and harvest intensities under the different SSPs. Its estimation is complex 444 

as it needs to take into account the interactions among these different parameters. However, future 445 

analysis can update the resource constraint threshold, or use a dynamic resource constraint. This can be 446 

easily implemented in our modeling framework by adapting ɷ and the national mean annual increment. 447 

Table 5 Results of wood harvest rates under the sensitivity analysis to the forest constraint (unit: million m3) applied to either 448 
the predicted mean or to the upper bound of the 95% confidence interval. The table shows the values of α, the predicted mean 449 

of harvested wood and its 95% confidence interval for the different SSPs (SSP3 and SSP5 not shown, see text).  450 

 SSP1 SSP2 SSP4 SSP5 

Focus on 

mean 

α 0.28·10-3 0.56·10-3 4.48·10-3 -7.53·10-3 

Mean 18.06 18.05 18.05 18.06 

95% CI [16.11, 20.33] [15.37, 21.42] [16.10, 20.33] [15.38, 21,39] 

Focus on 

95% CI 

α -1.47·10-3 -2.07·10-3 2.69·10-3 n.a. 

Mean 16.03 15.21 16.02 n.a. 

95% CI [14.30, 18.05] [12.95, 18.05] [14.29, 18.06] n.a. 

4 Conclusion  451 

This study provides a model framework to link the estimates of future scenarios for a specific 452 

sector of a country with major drivers of the SSPs and aspects of the land use sector. The approach is 453 

based on a modeling framework rooted in the historical dataset and their regression models for 454 

individual items of the sector, which are then modified and extrapolated until 2100. The method is 455 

applied to the harvested wood product sector in Norway and distinguishes for each combination of 456 

species of trees and wood classes. Parameters are changed and adapted to the different SSP scenarios 457 

on the basis of key aspects like different land use regulations, participation of the land use sector and 458 

starting year of the cooperation for climate change mitigation, and are dependent on different population 459 

and GDP trends. The available wood resources are used as a constraint to calibrate model outcomes of 460 

future wood harvest rates in Norway until 2100. Population dynamics, participation rate (and timing) of 461 

the land-use sector to climate change mitigation and land-use regulation are crucial for predicting the 462 

future mean volume of harvested wood and the uncertainty of the prediction. The starting year of 463 

participation in land use sector for climate change mitigation is key to shape market fluctuations and 464 

total outtake by the end of the century. A target on either the mean volume or the upper limit of the 95% 465 

confidence interval of the harvested wood rates results in different model settings and possible resource 466 

utilization potentials. 467 
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This work is one of the first to undertake a systematic interpretation of the global qualitative 468 

SSP narratives in terms of detailed quantitative studies for a specific national sector. Outcomes of the 469 

analysis can serve as a common basis to study possible developments of the forestry sectors and their 470 

products at a Norwegian level, and their link with the SSPs make them of simple interpretation. The 471 

approach presented in this paper is easy to interpret and to be controlled, as it relies upon a bunch of 472 

simple handles. In principle, it is suitable for being applied to other sectors and countries, after the 473 

required adaption and modification. The model framework definition is independent from the 474 

characteristics of the case study and the parameters used to incorporate the key drivers of the SSPs can 475 

be adjusted on a case-specific basis. Similar approaches can help to establish a bridge between global 476 

scenarios and more narrowed analysis for individual sectors, so to reinforce the use of a consistent 477 

background setting in interdisciplinary research activities at the interface between climate systems, 478 

resources, and society, and across different spatial scales of analysis, from global to national. 479 
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HUMPENÖDER, F., POPP, A., STEVANOVIC, M., MÜLLER, C., BODIRSKY, B. L., BONSCH, M., 519 

DIETRICH, J. P., LOTZE-CAMPEN, H., WEINDL, I. & BIEWALD, A. 2015. Land-use and 520 

carbon cycle responses to moderate climate change: implications for land-based mitigation? 521 

Environmental science & technology, 49, 6731-6739. 522 

IIASA. 2017. GLOBIOM [Online]. Available: http://www.globiom.org/ [Accessed 10 December 2017]. 523 

JOHNSTON, C. M. & VAN KOOTEN, G. C. 2016. Global trade impacts of increasing Europe's 524 

bioenergy demand. Journal of Forest Economics, 23, 27-44. 525 

JONSSON, R. & RINALDI, F. 2017. The impact on global wood-product markets of increasing 526 

consumption of wood pellets within the European Union. Energy. 527 

KRIEGLER, E., BAUER, N., POPP, A., HUMPENÖDER, F., LEIMBACH, M., STREFLER, J., 528 

BAUMSTARK, L., BODIRSKY, B. L., HILAIRE, J. & KLEIN, D. 2017. Fossil-fueled 529 

development (SSP5): an energy and resource intensive scenario for the 21st century. Global 530 

Environmental Change, 42, 297-315. 531 

LAURI, P., FORSELL, N., KOROSUO, A., HAVLÍK, P., OBERSTEINER, M. & NORDIN, A. 2017. 532 

Impact of the 2° C target on global woody biomass use. Forest Policy and Economics, 83, 121-533 

130. 534 

LIN, C., LIU, G. & MÜLLER, D. B. 2017. Characterizing the role of built environment stocks in human 535 

development and emission growth. Resources, Conservation and Recycling, 123, 67-72. 536 

LOTZE-CAMPEN, H., MÜLLER, C., BONDEAU, A., JACHNER, A., POPP, A. & LUCHT, W. 2008. 537 

Food demand, productivity growth and the spatial distribution of land and water use: a global 538 

modeling approach. Agricultural Economics, 39, 325-338. 539 

NORGES-BANK. 2017. The gross domestic product for Norway [Online]. Available: 540 

http://www.norges-bank.no/en/Statistics/Historical-monetary-statistics/Gross-domestic-541 

product/ [Accessed 20 November 2017]. 542 

O'NEILL, B. C., KRIEGLER, E., EBI, K. L., KEMP-BENEDICT, E., RIAHI, K., ROTHMAN, D. S., 543 

VAN RUIJVEN, B. J., VAN VUUREN, D. P., BIRKMANN, J., KOK, K., LEVY, M. & 544 

SOLECKI, W. 2017. The roads ahead: Narratives for shared socioeconomic pathways 545 

describing world futures in the 21st century. Global Environmental Change-Human and Policy 546 

Dimensions, 42, 169-180. 547 

O'NEILL, B. C., KRIEGLER, E., RIAHI, K., EBI, K. L., HALLEGATTE, S., CARTER, T. R., 548 

MATHUR, R. & VAN VUUREN, D. P. 2014. A new scenario framework for climate change 549 

research: the concept of shared socioeconomic pathways. Climatic Change, 122, 387-400. 550 

O’NEILL, B. C., KRIEGLER, E., RIAHI, K., EBI, K. L., HALLEGATTE, S., CARTER, T. R., 551 

MATHUR, R. & VAN VUUREN, D. P. 2014. A new scenario framework for climate change 552 

research: the concept of shared socioeconomic pathways. Climatic Change, 122, 387-400. 553 

PAULIUK, S., MAJEAU‐BETTEZ, G. & MÜLLER, D. B. 2015. A general system structure and 554 

accounting framework for socioeconomic metabolism. Journal of Industrial Ecology, 19, 728-555 

741. 556 

PAULIUK, S., SJÖSTRAND, K. & MÜLLER, D. B. 2013. Transforming the Norwegian dwelling stock 557 

to reach the 2 degrees Celsius climate target. Journal of Industrial Ecology, 17, 542-554. 558 

PIK. 2017. MAgPIE – Model of Agricultural Production and its Impact on the Environment [Online]. 559 

Available: https://www.pik-potsdam.de/research/projects/activities/land-use-560 

modelling/magpie/magpie-2013-model-of-agricultural-production-and-its-impact-on-the-561 

environment [Accessed 10 December 2017]. 562 

POPP, A., CALVIN, K., FUJIMORI, S., HAVLIK, P., HUMPENODER, F., STEHFEST, E., 563 

BODIRSKY, B. L., DIETRICH, J. P., DOELMANN, J. C., GUSTI, M., HASEGAWA, T., 564 

KYLE, P., OBERSTEINER, M., TABEAU, A., TAKAHASHI, K., VALIN, H., WALDHOFF, 565 

S., WEINDL, I., WISE, M., KRIEGLER, E., LOTZE-CAMPEN, H., FRICKO, O., RIAHI, K. 566 

& VAN VUUREN, D. P. 2017. Land-use futures in the shared socio-economic pathways. 567 

Global Environmental Change-Human and Policy Dimensions, 42, 331-345. 568 

http://www.globiom.org/
http://www.norges-bank.no/en/Statistics/Historical-monetary-statistics/Gross-domestic-product/
http://www.norges-bank.no/en/Statistics/Historical-monetary-statistics/Gross-domestic-product/
https://www.pik-potsdam.de/research/projects/activities/land-use-modelling/magpie/magpie-2013-model-of-agricultural-production-and-its-impact-on-the-environment
https://www.pik-potsdam.de/research/projects/activities/land-use-modelling/magpie/magpie-2013-model-of-agricultural-production-and-its-impact-on-the-environment
https://www.pik-potsdam.de/research/projects/activities/land-use-modelling/magpie/magpie-2013-model-of-agricultural-production-and-its-impact-on-the-environment


21 

 

POPP, A., HUMPENODER, F., WEINDL, I., BODIRSKY, B. L., BONSCH, M., LOTZE-CAMPEN, 569 

H., MULLER, C., BIEWALD, A., ROLINSKI, S., STEVANOVIC, M. & DIETRICH, J. P. 570 

2014a. Land-use protection for climate change mitigation. Nature Climate Change, 4, 1095-571 

1098. 572 

POPP, A., ROSE, S. K., CALVIN, K., VAN VUUREN, D. P., DIETRICH, J. P., WISE, M., STEHFEST, 573 

E., HUMPENÖDER, F., KYLE, P. & VAN VLIET, J. 2014b. Land-use transition for bioenergy 574 

and climate stabilization: model comparison of drivers, impacts and interactions with other land 575 

use based mitigation options. Climatic Change, 123, 495-509. 576 

RAUNIKAR, R., BUONGIORNO, J., TURNER, J. A. & ZHU, S. 2010. Global outlook for wood and 577 

forests with the bioenergy demand implied by scenarios of the Intergovernmental Panel on 578 

Climate Change. Forest Policy and Economics, 12, 48-56. 579 

RIAHI, K., VAN VUUREN, D. P., KRIEGLER, E., EDMONDS, J., O'NEILL, B. C., FUJIMORI, S., 580 

BAUER, N., CALVIN, K., DELLINK, R., FRICKO, O., LUTZ, W., POPP, A., CUARESMA, 581 

J. C., SAMIR, K. C., LEIMBACH, M., JIANG, L. W., KRAM, T., RAO, S., EMMERLING, J., 582 

EBI, K., HASEGAWA, T., HAVLIK, P., HUMPENODER, F., DA SILVA, L. A., SMITH, S., 583 

STEHFEST, E., BOSETTI, V., EOM, J., GERNAAT, D., MASUI, T., ROGELJ, J., 584 

STREFLER, J., DROUET, L., KREY, V., LUDERER, G., HARMSEN, M., TAKAHASHI, K., 585 

BAUMSTARK, L., DOELMAN, J. C., KAINUMA, M., KLIMONT, Z., MARANGONI, G., 586 

LOTZE-CAMPEN, H., OBERSTEINER, M., TABEAU, A. & TAVONI, M. 2017. The Shared 587 

Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: 588 

An overview. Global Environmental Change-Human and Policy Dimensions, 42, 153-168. 589 

SIKKEMA, R., DALLEMAND, J. F., MATOS, C. T., VAN DER VELDE, M. & SAN-MIGUEL-590 

AYANZ, J. 2017. How can the ambitious goals for the EU’s future bioeconomy be supported 591 

by sustainable and efficient wood sourcing practices? Scandinavian Journal of Forest Research, 592 

32, 551-558. 593 

SSB. 2017a. Commercial roundwood removals [Online]. Available: https://www.ssb.no/en/jord-skog-594 

jakt-og-fiskeri/statistikker/skogav [Accessed 10 August 2017]. 595 

SSB. 2017b. Gross domestic product [Online]. Available: 596 

https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=NRbnp&KortNavn597 

Web=knr&PLanguage=1&checked=true [Accessed 20 November 2017]. 598 

SSB. 2017c. The National Forest Inventory [Online]. Available: http://ssb.no/en/jord-skog-jakt-og-599 

fiskeri/statistikker/lst [Accessed 31 August 2017]. 600 

SSB. 2017d. Population and population changes [Online]. Online. Available: 601 

https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=Folkemengd1951&602 

KortNavnWeb=folkemengde&PLanguage=1&checked=true [Accessed 20 November 2017]. 603 

SSP-DATABASE. 2017. GDP and Population [Online]. Available: 604 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=countries [Accessed 20 605 

November 2017]. 606 

VAN DER GAAST, W., SIKKEMA, R. & VOHRER, M. 2016. The contribution of forest carbon credit 607 

projects to addressing the climate change challenge. Climate Policy, 1-7. 608 

VAN VUUREN, D., STEHFEST, E., DEN ELZEN, M., DEETMAN, S., BELTRAN, A. & 609 

OOSTENRIJK, R. 2011. Exploring the possibility to keep global mean temperature change 610 

below 2c. Climatic Change, 48. 611 

VAN VUUREN, D. P., KRIEGLER, E., O’NEILL, B. C., EBI, K. L., RIAHI, K., CARTER, T. R., 612 

EDMONDS, J., HALLEGATTE, S., KRAM, T. & MATHUR, R. 2014. A new scenario 613 

framework for climate change research: scenario matrix architecture. Climatic Change, 122, 614 

373-386. 615 

 616 

https://www.ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/skogav
https://www.ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/skogav
https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=NRbnp&KortNavnWeb=knr&PLanguage=1&checked=true
https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=NRbnp&KortNavnWeb=knr&PLanguage=1&checked=true
http://ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/lst
http://ssb.no/en/jord-skog-jakt-og-fiskeri/statistikker/lst
https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=Folkemengd1951&KortNavnWeb=folkemengde&PLanguage=1&checked=true
https://www.ssb.no/statistikkbanken/SelectVarVal/Define.asp?MainTable=Folkemengd1951&KortNavnWeb=folkemengde&PLanguage=1&checked=true
https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=countries

