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Abstract

Context: Software evolution and maintenance activities in today’s Free/Libre
Open Source Software (FLOSS) rely primarily on information extracted from
bug reports registered in bug tracking systems. Many studies point out that
most bugs that adversely affect the user’s experience across versions of FLOSS
projects are long-lived bugs. However, proposed approaches that support bug
fixing procedures do not consider the real-world lifecycle of a bug, in which bugs
are often fixed very fast. This may lead to useless efforts to automate the bug
management process.
Objective: This study aims to confirm whether the number of long-lived bugs
is significantly high in popular open-source projects and to characterize the pop-
ulation of long-lived bugs by considering the attributes of bug reports. We also
aim to conduct a comparative study evaluating the prediction accuracy of five
well-known machine learning algorithms and text mining techniques in the task
of predicting long-lived bugs.
Method: We collected bug reports from six popular open-source projects repos-
itories (Eclipse, Freedesktop, Gnome, GCC, Mozilla, and WineHQ) and used
the following machine learning algorithms to predict long-lived bugs: K-Nearest
Neighbor, Näıve Bayes, Neural Networks, Random Forest, and Support Vector
Machines.
Results: Our results show that long-lived bugs are relatively frequent (varying
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from 7.2% to 40.7%) and have unique characteristics, confirming the need to
study solutions to support bug fixing management. We found that the Neural
Network classifier yielded the best results in comparison to the other algorithms
evaluated.
Conclusion: Research efforts regarding long-lived bugs are needed and our
results demonstrate that it is possible to predict long-lived bugs with a high
accuracy (around 70.7%) despite the use of simple prediction algorithms and
text mining methods.

Keywords: Software maintenance, Bug Tracking System, Long-lived Bugs,
Machine learning, Text mining.

1. Introduction

A Bug Tracking System (BTS) is an application that keeps track of reported
software bugs in software projects [1] and plays a key role in Free/Libre Open
Source Software (FLOSS) and Closed Source Software (CSS) as they are a useful
communication and collaboration tool. In both environments, the activities of
software evolution planning and maintenance rely primarily on the information
of opened bug reports. This is particularly true in FLOSS, which is well-known
for the existence of thousands of users and developers with distinct levels of
expertise spread out around the world, which might create or be responsible for
dealing with several bug reports [2].

Frequently, users communicate with a BTS using bug reports, which enables
them to communicate with those in charge of maintaining the software sys-
tem [3]. To do that, users should inform a short description, a long description,
and an associated severity level (e.g., blocker, critical, major, minor, or trivial)
by filling out a bug report form. After which, a software team member will re-
view the bug report and either approve or reject it (rejections can be due to bug
report duplication). If the bug report is approved, the team member will then
provide more information; for example, indicating its priority and assigning a
person responsible for fixing it.

The number of bug reports in large- and medium-sized software FLOSS
projects is frequently high [4]. For instance, the Eclipse project had 84,245
bug reports opened from 2013 to 2015, whereas the Android project had over
107,456, and the JBoss project had over 81,920 in the same period. Therefore,
manual handling of bug reports (such as attributing a severity level) may be
entirely subjective, tiresome, and error-prone, where a wrong decision within the
bug report lifecycle may strongly affect the planning of maintenance activities.

Another critical activity from maintenance planning is allocating resources to
handle bugs associated with each opened bug report, which could be significant
[5]. Estimating the “bug fix time” is essential for many stakeholders [6, 7]. For
software managers, it is one of the main factors that helps them to perform
such allocation more effectively [8, 9, 10]. In large system projects with tight
schedules and limited resources, it may not be possible to close all known bugs
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before the upcoming release. Many bugs can be reported over a long period,
incurring in costs, such as wasted time in release planning and defect analysis,
and inspection [11, 12]. Thus, software managers have to decide which bugs
to fix in the current release and which to defer to upcoming versions. This
may accumulate an ever-expanding backlog of unfixed defects [12]. For these
reasons, timely identification of bugs with long fixing time, right after opening
the related report, may help managers to prioritize and allocate resources more
effectively when faced with a large number of bug reports [9, 13].

Estimating or predicting a bug as long-lived is not only very important for
software managers in their daily activities, but also it is equally essential for
the quality assurance team. Software bugs, mainly those with long fixing time,
may have continuous adverse effects on software quality, including user incon-
venience, inappropriate functionality, and security issues [13]. For instance, in
complex software systems, if bugs are not quickly fixed, structural problems
could emerge, compromising even the reproduction of a given bug [14]. Approx-
imately 90% of long-lived bugs adversely affect users’ experience [15], which may
disturb end-users for a long time, even when in small number. In such scenar-
ios, users may switch software and favor the competition [16]. In summary, the
proper classification of long-lived bugs may be essential to increase customer
satisfaction.

These facts suggest that many long-lived bugs could be fixed more quickly
through careful selection and prioritization if developers could predict a long-
lived bug. Machine Learning (ML) algorithms have been successfully applied
in solving many real-world prediction problems, including those related to au-
tomating bug report handling, such as bug severity prediction [17].1 In addition,
since bug reports typically come with textual descriptions, text mining tech-
niques are likely candidates in providing appropriate input for these algorithms.

In this context, the general purpose of our research is to compare the ac-
curacy of traditional ML algorithms in predicting long-lived bugs in FLOSS
projects. Based on this purpose our specific goals are:

G1. Confirm whether the population of long-lived bugs in popular FLOSS
projects is significant, as well as investigate their main characteristics.

G2. Conduct a comparative study considering the evaluation of five well-known
machine learning algorithms to predict long-lived bugs.

G2.1. Evaluate how the number of terms from unstructured text fields in
bug reports affect long-lived bug prediction;

G2.2. Evaluate and identify the best bug fixing time threshold in order to
classify a bug as long-lived.

1In our previous work [17], we provided a comprehensive review of recent research efforts on
automating bug report severity prediction, where we showed that many strategies to predict
bug severity were based on machine learning methods. In this study, however, we focus on the
long-lived/short-lived classification problem, comparing different classifiers and bug-related
characteristics.
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G3. Understand the characteristics of long-lived bugs predicted with high and
low accuracy in the testing phase.

To meet these goals, this study addresses the following research questions:

RQ1. Is there a common understanding of what long-lived bugs are in the lit-
erature? This research question aims to investigate if there is a shared
understanding of what a long-lived bug is in the bug-related literature.
Such understanding is essential to determine a bug fixing time threshold
that could be used to label a bug as long-lived and thus address the other
proposed research questions.

RQ2. How frequent are long-lived bugs in FLOSS projects? Assessing the pro-
portion of long-lived bugs in FLOSS projects could indicate if investing in
long-lived bug prediction models is beneficial.

RQ3. What are the main characteristics of long-lived bugs compared to short-
lived bugs in FLOSS projects? Based on information provided in bug re-
ports, we aim to determine the characteristics of long-lived bugs compared
to short-lived bugs in FLOSS projects and thus allow developers to clearly
distinguish long-lived from short-lived bugs.

RQ4. What is the comparative accuracy of machine learning algorithms when
predicting long-lived bugs? We aim to compare the accuracy of long-lived
bug prediction made by different ML algorithms, where the algorithm with
the best prediction capability is best fit in terms of balanced accuracy.
This understanding is essential to select models that could be used to
automate the prediction of long-lived bugs with high accuracy.

RQ5. What are the main characteristics of bugs correctly predicted as long-lived
and incorrectly predicted as short-lived? Even if our long-lived prediction
models do not correctly predict many long-lived bugs, investigating the
characteristics of those with high accuracy and the characteristics of those
with low accuracy could be very useful to improve the prediction models.

In summary, the contributions of our research are:

• Characterization of long-lived bugs in relevant FLOSS projects;

• An evaluation of the performance of different models in predicting long-
lived bugs;

• Characterization of how the number of terms will affect the prediction of
long-lived bugs;

• Identification of suitable values for the bug fixing time threshold and num-
ber of terms in the feature vector used to predict long-lived bugs.
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The article is organized as follows. Section 2 provides the background ter-
minology and concepts about bug tracking systems, text mining, and machine
learning techniques. Section 3 presents related work. Section 4 describes the
methodology used. Section 5 reports our results. Section 6 describes the sig-
nificance of our findings and how they can be interpreted. Section 7 describes
the main threats to the validity of our research. Finally, Section 8 states our
conclusions and highlights future research addressing this topic.

2. Terminology and Concepts

This section provides an overview of basic concepts related to bug tracking
systems, text mining, machine learning, and evaluation metrics needed to better
understand our paper.

2.1. Bug Tracking Systems

Bug Tracking System (BTS) [1] is a software application that records and
tracks information regarding change requests, bug fixes, and technical support
that could occur during the life cycle of any given software.

2.1.1. Bug Report

Usually, while reporting a bug in a BTS, a user is asked to fill out a form
with the information required to reproduce and fix a bug. Normally, this form is
called bug report. Figure 1 shows an example of a bug report form as supplied
by Bugzilla containing data attributes that describe a bug (e.g., summary and
description). Although there is no agreement on the terminology or on the
amount of information that users and maintenance teams must provide to fill a
bug report, they often describe their needs in popular BTS (e.g., Bugzilla, Jira,
and Redmine) [18], providing at least information about the attributes shown
in Table 1.

Figure 1: A bug report example.
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Table 1: Common attributes of a bug report.

Bug Reporter Account of the user who created the bug report.

Summary Short description of the report in one line.

Description Long and detailed description of report in many lines
of text. It could include source code snippets and
stack tracing reports.

Component Each product is divided into different components
(e.g., Core, Editor, and UI).

Severity Report severity level (e.g., blocker, critical, major,
minor, and trivial).

Type Type of report (e.g., bug, improvement, and new fea-
ture)

Assignee Account of the user in charge of fixing the bug.

After the user has reported a bug, the development team is in charge of its
assessment, which consists of approving or rejecting the bug. In case of approval,
the team may provide complementary information, for example, assigning a
person responsible for the request or defining the severity level for the bug.
Typically, the steps a bug report goes through are modeled as a state machine
(Figure 2). At first, the bug report is said to be Unconfirmed. The developer
team can change the status to Resolved if the bug is not confirmed or, otherwise,
to New. When someone becomes in charge of fixing the bug, the bug report state
is changed to Assigned by the developer team. Therefore, in the standard flow,
the bug report status is assigned to Resolved (bug fixed), then Verified (bug
checked), and finally Closed.

As shown in Figure 2, other state transitions may occur throughout the bug
report life cycle. All changes that occurred in a bug report are often stored in a
repository, keeping valuable historical information about a particular software.

2.2. Machine Learning (Classification) Algorithms

Machine Learning (ML) [20] is an application of Artificial Intelligence (AI)
that provides systems the ability to learn and improve from experience without
being explicitly programmed. There are two types of ML algorithms: predictive
(or supervised) and descriptive (or unsupervised). Long-lived bug prediction is
considered a supervised problem.

A predictive algorithm builds a model based on historical training data and
uses this model to predict, from the values of input attributes, an output label
(class attribute) for a new sample. A predictive task is called classification when
the label value is discrete, or regression when the label value is continuous.
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Figure 2: The bug report life cycle according to Zhang et al. [19].

2.2.1. Classifiers

An ML algorithm works over a dataset, which contains many samples or
instances xi, where i = {1..n}. Each instance is composed of {xi1, xi2, ..., xid}
input attributes or independent variables, where d = {1..m}, and one output
attribute or dependent variable, xi(m+1). Input attributes are commonly named
features, or feature vector, and output attribute are commonly named class or
category. Traditional ML classification algorithms are k-Nearest Neighbors,
Näıve Bayes, Neural Networks, Random Forests, and Support Vector Machines.
In practice, they can be applied for both classification and regression tasks.
However, this paper regards them only in the classification scenario. A brief
description of each algorithm is presented below [21]:

• k-Nearest Neighbors (KNN) classifies a new instance based on its
similarity measure to the k-nearest labeled neighbors. Usually, the KNN
classifier uses the Euclidean distance to quantify the proximity between
neighbors. Each instance in a dataset should be represented as a point of
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an n-dimensional space (feature vector) in order to calculate this distance.

• Näıve Bayes (NB) decides to which class an instance belongs based
on the Bayesian Theorem of conditional probability. The probabilities of
an instance belonging to each of the Ck classes given the instance x is
P (Ck|x). Näıve Bayes classifiers assume that, given the class variable,
the value of a particular feature is independent of the value of any other
feature.

• Neural Network (NN) is a learning algorithm that is inspired by the
structure and functional aspects of biological neural networks [22]. It is
structured as a network of units called neurons, with weighted, directed
connections. Neural network models have been demonstrated to be capa-
ble of achieving remarkable performance in document classification [23].

• Random Forest (RF) [24] relies on two core principles: (i) the creation
of hundreds of decision trees and their combination into a single model;
and (ii) the final decision based on the majority of the considered trees.

• Support Vector Machine (SVM) is a learning algorithm in which each
feature vector of each instance is a point in an n-dimensional space. In
this space, SVM learns an optimal way to separate the training instances
according to their class labels. In the case of linear separability, the output
of this algorithm is a hyperplane, which maximizes the separation among
feature vectors of different classes. Given a new instance, SVM assigns a
label based on which subspace its feature vector belongs to [25].

2.2.2. Evaluation Metrics

The specific metrics we used to assess prediction performance are listed below
[21, 26, 27]:

• Accuracy is the percentage of correctly classified observations among all
observations:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP is the number of true positives, TN is the number of true neg-
atives, FP is the number of false positives, and FN is the number of false
negatives.

• Balanced Accuracy is calculated as the average of the proportion of the
accuracy of positive class and the accuracy of negative class.. The formula
of Balanced Accuracy is:

BalancedAccuracy =
TP

TP+FN + TN
FP+TN

2
(2)

• Sensitivity corresponds to the hit ratio in the positive class (true positive
rate). The formula of Sensitivity is:

Sensitivity =
TP

TP + FN
(3)
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• Specificity corresponds to the hit ratio in the negative class (true negative
rate). The formula of Specificity is:

Specificity =
TN

TN + FP
(4)

• Area Under ROC Curve (AUC), which ranges between 0 and 1, is
used to assess the performance of ML algorithms. An algorithm outper-
forms another if its AUC value is closer to 1.

• Kappa takes into account the accuracy that would be generated by chance
in order to determine the agreement among categorical variables. The
formula of Kappa is:

Kappa =
O − E

1− E
(5)

where O is the observed accuracy and E is the expected accuracy based
on the marginal totals of the confusion matrix.

2.2.3. Hyper-parameters Tuning

Adjusting the hyper-parameters is key in machine learning as each algorithm
has its own set of parameters and these values can significantly impact algorithm
performance. The role of this activity is to select the values which will lead to
the best algorithm performance in a specific context. In some cases, the values
selected can change the resulting model’s accuracy from 1 to 95% [28].

Such adjustment is considered an iterative activity that occurs during the
training phase of an ML building process. In a typical protocol, researchers
will manually pick one or more ML algorithms, after which they will set values
for the hyper-parameters of each algorithm (e.g., the value of k in the KNN
algorithm).

Researchers commonly use three procedures to set these hyper-parameters [29]:
(i) default values specified in software packages, (ii) manual configuration based
on the literature, experience, or trial-and-error procedures, or (iii) configuring
them for optimal predictive performance by using tuning strategies (e.g., grid
search or random search). In summary, researchers train the ML model with
the hyper-parameters to get the optimal model accuracy.

After adjusting the hyper-parameters or choosing other ML algorithms, re-
searchers should train the model again until the predicting model achieves a sat-
isfactory prediction accuracy. When this goal is reached, the predictive modeling
process can be considered complete. Table 2 describes the hyper-parameters for
each ML algorithm used in our study.

2.3. Text Mining

The common ML algorithms cannot directly process unstructured text (e.g.,
summary and description fields from the bug report form). Therefore, during
the preprocessing stage, these unstructured text fields are converted into more
manageable representations. Typically, the content of these fields is represented

9



Table 2: Description of the hyper-parameters for each ML algorithm investigated.

ML Algorithm Hyper-parameters

KNN k: Number of neighbors

Näıve Bayes fL: Laplace correction or smoother
usekernel: Allow to use a kernel density esti-
mate for continuous variable versus Gaussian den-
sity estimate
ajust: Bandwidth of kernel density adjustment

Neural Network size: Hidden units
decay: Weight decay

Random Forest mtry: Randomly Selected Predictors

SVM (Radial Ker-
nel)

C: Cost
sigma: The width for Gaussian distribution

by feature vectors, points of an n-dimensional space. Text mining is the process
of converting unstructured text into a structure suited for analysis [30]. It is
composed of three primary activities [31]:

• Tokenization is the action to parsing a character stream into a sequence
of tokens by splitting the stream at delimiters. A token is a block of text or
a string of characters (without delimiters such as spaces and punctuation),
which is a useful portion of the unstructured data.

• Stop words removal eliminates commonly used words that do not pro-
vide relevant information to a particular context, including prepositions,
conjunctions, articles, verbs, nouns, pronouns, adverbs, and adjectives.

• Stemming is the process of reducing or normalizing inflected (or some-
times derived) words into their word stem or base form (e.g., “working”
and “worked” into “work”).

Two of the most traditional ways of representing a document relies on the
use of a bag of words (unigrams) or a bag of bigrams (when two terms appear
consecutively, one after the other) [30]. In this approach, all terms represent
features, and thus the dimension of the feature space is equal to the number of
different terms in all documents (in our context, bug reports).

Methods for assigning weights to features may vary. The simplest one is to
assign binary values representing the presence or absence of the term in each
text. Term Frequency (TF), another type of encoding scheme, considers the
number of times in which the term appears in each document. Term Frequency-
Inverse Document Frequency (TD-IDF) is a more complex weighting scheme
that takes into account the frequency of the term in each document and in the
whole collection. The importance of a term in this scheme is proportional to its
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frequency in the document and inversely proportional to the frequency of the
term in the collection [32].

We highlight that all encoding methods mentioned above often produce
sparse matrices in which most of the values are zero [30]. One can quantify
the sparsity of a matrix by dividing the number of zeroes in the matrix by the
total number of elements in the matrix.

3. Related Work

Giger et al. [33] conducted experimental studies on bug reports from six
FLOSS projects hosted by Eclipse, Mozilla, and Gnome, and proposed a clas-
sifier based on decision tree algorithm to classify bugs into “fast” or “slow.”
Furthermore, they showed that the addition of post-submission bug report data
of up to one month in the feature vector might improve the model performance.

Lamkanfi et al. [34] observed that, for both Eclipse and Mozilla, a fraction of
the bug reports indicated conspicuous fix-times, where the bugs are often fixed
within few minutes. They proposed to filter out these conspicuous bug reports
when using data mining techniques to predict the fix-times of reported bugs.

Zhang et al. [5] performed an empirical study on bug fixing-times in three
projects of CA Technologies company. They proposed a model based on a
Markov chain to predict the number of bugs that could be fixed in the future.
Also, they employed a Monte Carlo simulation to predict the total fixing-time
for a given amount of bugs. Moreover, they classified bugs as “fast” and “slow”
regarding different threshold times.

Saha et al. [15] extracted the bug repositories from seven well-known FLOSS
projects and analyzed long-lived bugs from five different perspectives: propor-
tion, severity, assignment, reasons, and the nature of fixes. Their study showed
that there is a fair number of long-lived bugs in FLOSS projects (although less
frequent than short-lived bugs), and more than 90% of them negatively affected
user experience. The reasons for these long-lived bugs are many, including, for
example, longer assignment time and the lack of understanding of their priority.
However, many bugs resulted in long-lived bugs without a specific reason.

Rocha et al. [35] characterized the workflow followed by Mozilla Firefox de-
velopers when resolving bugs. They proposed the concept of bug flow graphs
(BFG) to help understand the workflow. They concluded that (a) when a bug
is not formally assigned to a developer, it takes ten more days to be resolved;
(b) approximately 94% of duplicate bugs are resolved within two days or less
after they appear in the tracking system; (c) incomplete bugs, which are never
assigned to developers, usually take 70 days to be closed; (d) more skilled de-
velopers resolve bugs faster in comparison to less skilled ones; (e) for less skilled
developers, assigning a person responsible for the bug usually takes more time
in comparison to the time taken to actually fix the bug.

Habayeb et al. [36] proposed a novel approach using Hidden Markov mod-
els and temporal sequences to predict when a bug report will be closed. The
approach is empirically demonstrated using eight years of bug reports collected
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from the Firefox project. The results indicate around 10% higher accuracy than
the frequency based classification approaches.

Akbarinasaji et al. [13] replicated the study performed by Zhang et al. [5]
using an open source software project and confirmed their results.

Although the aforementioned studies present relevant results for researchers
in this area, we can observe two major shortcomings: First, only two of the
existing papers ( [33] and [5]) specifically focused on “long-lived bug prediction.”
However, both investigated just one ML algorithm each: Decision Tree [33] and
Markov Chain [5]. In our paper, we have compared the accuracy of five well-
known ML algorithms in long-lived bug prediction. Furthermore, we extend this
investigation by detailing the cases of success associated with the best predictor.

Second, studies investigating bug related life cycle issues considered few
FLOSS projects. In our paper, we have considered six relevant FLOSS projects,
from projects funded and maintained by big organizations, such as Eclipse and
Mozilla, to voluntary projects, such as WineHQ. In addition, we have charac-
terized long-lived bugs taking into account six different dimensions using bug
reports extracted from these projects, which is much more than those observed
in related studies.

4. Methodology

This section describes the methodology used to address the research ques-
tions. As in traditional methodologies used in ML experiments, it comprises
the following steps: data collection, data preprocessing, data description, and
training and testing procedures.

4.1. Data Collection

This step includes selecting FLOSS datasets, studying and interpreting their
data structure, and finally extracting relevant data from their repositories (fea-
ture extraction). In our research, we used the following FLOSS projects: Eclipse,
Freedesktop, GCC, Gnome, Mozilla, and WineHQ. All projects are open source,
well-established, have a considerable number of registered bug reports, use stan-
dard repositories, and were being studied by other researchers [1, 34, 37, 18, 38].
These projects are described as follows:

• Eclipse2: Eclipse is an integrated development environment used in com-
puter programming and is the most widely used Java IDE.

• Freedesktop3: Freedesktop hosts the development of free and open source
software focused on interoperability and shared technology for open source
graphical and desktop systems.

2www.eclipse.org (As of Nov 2020).
3www.freedesktop.org (As of Nov. 2020).
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• GCC4: GCC is a compiler system developed by GNU Project supporting
C, C++, Objective-C, Objective-C++, Fortran, ADA, Java, Go, among
other programming languages.

• Gnome5: Gnome is a free and open source desktop environment for Unix-
like operating systems.

• Mozilla6: Mozilla encompasses several open source projects, such as Fire-
fox, Thunderbird, and Bugzilla.

• WineHQ7: WineHQ is a compatibility layer capable of running Win-
dows applications on several POSIX-compliant operating systems, such as
Linux, macOS, and BSD.

First, we extracted the datasets from bug reports in XML format of the
previous projects hosted in the Bugzilla site. The sample consisted of randomly
selected bugs that occurred in the time interval considered. We then stored
bug reports in a CSV file format for each project. Table 3 shows additional
information on the six datasets considered in our study.

Table 3: FLOSS projects used in our research.

Project Number of Bugs
Observation Period

From To

Eclipse 9724 2001-10-10 2018-01-30
Freedesktop 7644 2003-02-05 2019-08-15
GCC 9946 1999-02-26 2018-01-31
Gnome 7772 1999-01-02 2018-01-24
Mozilla 9945 1998-04-15 2014-04-22
WineHQ 6037 2000-09-27 2018-04-17

4.2. Data Preprocessing

Raw data previously collected from the Eclipse, Freedesktop, GCC, Gnome,
Mozilla, and WineHQ bug report repositories were not correctly structured to
serve as input to ML algorithms [39]. The traditional way to address this
problem is to run procedures to extract, organize, and structure relevant features
out of the raw data. Specific Java applications and R scripts were written to
perform feature extraction. The following preprocessing tasks were executed:

4https://gcc.gnu.org/ (As of Nov. 2020).
5https://www.gnome.org (As of Nov. 2020).
6https://www.mozilla.org (As of Nov. 2020).
7https://www.winehq.org (As of Nov. 2020).
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• Extraction of relevant features: bug id, opened date, component name,
summary, description, reporter name, assignee name, resolution status,
resolution date, severity level, and status of bug report;

• Selection of bug reports with a Closed or Resolved status and a Fixed
resolution status. This type of bug report was effectively implemented
by the development team and can no longer have their resolution date
altered.

• Use of resolution date in bug reports as the ground truth to compute the
bug fix time in days (resolution date – open date).

Finally, we stored the preprocessed datasets in CSV format files.8

4.3. Training and Testing
We chose five traditional ML algorithms: KNN, Näıve Bayes, Neural Net-

work, Random Forest, and SVM which were implemented using the Caret9 R
library to build the model for long-lived bug prediction. We performed a grid
search procedure to select the best hyper-parameter for each algorithm in train-
ing among the hyper-parameters available (Table 4). The Caret library was
set up to evaluate each model automatically using the Accuracy metric, and to
report the resulting values. Furthermore, we applied the above ML algorithms
in an unbalanced and in a balanced dataset. The balanced dataset was created
employing the SMOTE [40] method. To yield more stable models in our exper-
iments, we trained and tested each model using the repeated 10× 5 fold cross-
validation technique [41].10 Finally, we performed the Wilcoxon signed-rank
statistical test [42] (with a significance level of 95%) to evaluate the statistical
significance among the ML algorithm performances.

In the testing phase, each long-lived prediction model was validated with 25%
of each bug report dataset to measure its accuracy in an unknown dataset.

5. Results

This section reports our results regarding six FLOSS projects and addresses
the research questions proposed in our study. The section is organized according
to the research question as follows. First, we investigated if there is a common
understanding on what is a long-lived bug. We then evaluated the proportion
of long-lived bugs in the FLOSS projects studied; in addition, we characterized
the population of long-lived bugs based on the bug report attributes. Next, we
build different ML models to predict long-lived bugs based on the description
field of bug report forms. Finally, we analyzed the properties of true positives
and false negatives yielded by our prediction models.

8The created dataset will be made publicly available subjected to the acceptance of the
paper.

9https://caret.r-forge.r-project.org (As of Sep 2020).
10Repeated Cross-Validation n × k: divides a dataset into k folds in n iterations. In each

iteration, it saves a different fold for testing and uses all the others for training [27].
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Table 4: Candidate hyperparameters values for ML algorithms.

ML Algorithm Hyperparameters

k-NN k = {5, 11, 15, 21, 25, 33}
Näıve Bayes fL = {0..5}, usekernel={TRUE,

FALSE}, ajust = {0..5}
Neural Network size= {10, 20, 30, 40, 50}, de-

cay=0.5
Random Forest mtry = {25, 50, 75, 100} e ntree =

200.
SVM C=2−5, 20, 25, 210 e sigma= 2−15,

2−10, 2−5, 20, 25.

5.1. RQ1: Is there a common understanding of what long-lived bugs are in the
literature?

Definitions for long-lived bugs found in the literature retrieved from the
ACM Digital Library,11 the IEEE Xplore,12 ScienceDirect,13 and Springer.14

are shown in Table 5.
To build such a table, we constructed a search string using six main terms:

“software maintenance,” “bug report,” “bug fixing,” “bug resolution,” and “long-
lived.” The syntax of the string was adapted according to the source (e.g., wild-
cards, connectors, apostrophes, and quotation marks) and was then applied
on the abstract of the manuscripts being searched. We searched databases for
manuscripts published between 2010 to 2020. This procedure led to a total
of 41 manuscripts. After applying the inclusion and exclusion criteria (Does
the paper categorize bugs according to fixing bug time?) over the full text, we
reached a set of ten publications (summarized in Table 5).

Different terms were employed by authors to convey the idea of long-lived
bugs (e.g., slowly-fixed bugs and languishing bugs; Table 5). In addition, two
different approaches were used to separate software bugs with short and long life
cycles. The first approach consisted of transforming the bug-fixing times into a
discrete value based on quartiles using 25%(Q1), 50% (Q2 or median), or 75%
(Q3) [33, 6, 8, 9, 10]. However, these authors used different names to refer to
each quartile (e.g., slowly-fixed bugs or not very fast refers to Q1). The second
approach consisted of employing a single threshold over a bug-fixing time to
label a bug as a short- or a long-lived bug [43, 44, 12, 45, 15].

11https://dl.acm.org/ (As of Nov. 2020).
12https://ieeexplore.ieee.org/ (As of Nov. 2020)
13https://www.sciencedirect.com/ (As of Nov. 2020).
14https://www.springer.com/(As of Nov. 2020)
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Table 5: Definitions of long-lived bugs in the literature.

Reference Year Definition

Giger et al. [33] 2010 The authors defined slowly-fixed bugs as bugs that
have a bug-fixing time (time between it was first
opened and the date the bug status changed to fixed)
higher than the median.

Canfora et
al. [43]

2011 The authors distinguished a short-lived from a long-
lived bug based on a survival function (S(t) =
Pr(T > t)), which determines the probability that a
bug survives longer than some specified time t.

Marks et al. [44] 2011 The authors classified bug-fixing times in one of three
high-level classes: bugs fixed within 3 months, bugs
fixed within one year, and bugs fixed within 3 years.

Abdelmoez et
al. [6]

2012 The authors used the first quartile Q1 to classify bug-
fixing times into very fast and not very fast, and
the third quartile Q3 to classify bug-fixing times into
very slow and not very slow.

Saha et al. [45,
15]

2014,
2015

The authors defined long-lived bugs as those that are
not fixed within one year after they are reported.

Francis and
Williams [12]

2013 The authors used the term languishing bug, which
refers to defects that remain unfixed for a long pe-
riod. This period, or bug age, might be an arbitrary
number or it might be determined based on the his-
torical likelihood of a bug being closed after that age;
the authors used one, two, and three years. In addi-
tion to bug age, the authors also used release cycle
and user interest to classify a languishing bug.

Ardimento [8] 2016 The authors classified bug reports as fast and slow
based on the third quartile, or 75% of the empirical
distribution of bug resolution times.

Ardimento and
Dinapoli [9]

2017 The authors classified bug reports as fast and slow
baed on the third quartile or 75% of the empirical
distribution of bug resolution times.

Sepahvand et
al. [10]

2020 The authors classified each bug report as having
short fixing times, for bugs with fixing time less than
the threshold, or long fixing time for all other times.
The threshold used was the median of all bug fixing
times.
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5.2. RQ2: How frequent are long-lived bugs in FLOSS projects?

Answering the second research question is essential since there are few rea-
sons to investigate if long-lived bug populations are small. To measure the
population of long-lived bugs in the FLOSS projects, we defined a long-lived
bug as one that is not fixed within one year (365 days), as proposed by Saha et
al. [45, 15].

Although the threshold used could be considered subjective, it is relevant
to measure populations. First, a one-year threshold is conservative and covers
at least one cycle of most projects [45, 15]. Hence, we can safely classify a bug
as long-lived if it survived for more than one year (threshold value). Second,
such threshold (one year) enables us to compare the population of long-lived
bugs independently and uniformly considering different projects. However, in
our paper, we have also investigated quartile based thresholds in predicting
long-lived bugs - research question RQ4.3.

The percentage value of long-lived bugs in FLOSS projects used in our study
ranged from 7.2% (in Eclipse) to 40.7% (in WineHQ) (Figure 3).

0%20%40%60%80%100%
Long-lived bugs
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Gnome
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Figure 3: Proportion of long- and short-lived bugs in each FLOSS project studied considering
the bug-fixing threshold of 365 days. The values in the secondary y-axis correspond to the
total number of bug reports in each dataset.

Distribution of bug-fixing times retrieved from the datasets investigated is
shown in Figure 4. The first quartile (25%) Q1 ranged from 1 day in Eclipse to
22 days in WineHQ. The second quartile Q2 (50%), or median, ranged from 8
days in Eclipse to 220 days in WineHQ, and the third quartile Q3 (75%) ranged
from 63 days in Eclipse to 709 days in WineHQ. The percentage of outliers
was ≈ 15.2% in Eclipse, ≈ 12.2% in Freedesktop, ≈ 13.3% in Gnome, ≈ 15.5%
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in Mozilla, ≈ 6.1% in Gcc and WineHQ. Table 6 illustrates a few bug report
outliers. The bug report can be viewed by clicking on the associated bug id.

0 1000 2000 3000 4000 5000 6000 7000 8000
Bug-Fixing Time (days)

eclipse

freedesktop

gnome

mozilla

gcc

winehq

Figure 4: Distribution of bug-fixing times retrieved from the studied datasets.

Table 6: Samples of outliers found in the investigated projects.

Project Bug
Id

Created at Closed at Bug-fixing time
(in years)

Eclipse 34970 2003-03-13 2016-10-11 13.59
Freedesktop 3952 2005-08-02 2018-12-28 13.41
Gcc 7721 2002-07-06 2017-02-28 14.66
Gnome 241477 2003-04-16 2018-07-23 15.28
Mozilla 791 1998-09-11 2018-08-31 19.98
WineHQ 1719 2003-09-17 2019-02-21 15.44

5.3. RQ3: What are the main characteristics of long-lived bugs compared to
short-lived bugs in FLOSS projects?

After investigating the definition of long-lived bugs and its prevalence in
FLOSS projects, we determined the bug characteristics that distinguish long-
from short-lived bugs by examining the following bug report fields: bug re-
porters, assignees, components, severity levels, summaries, and descriptions.

5.3.1. Bug Reporter

The Pareto Chart in Figure 5a shows that the percentage of bug reports
created by the top 20% bug reporters in the FLOSS projects investigated varied
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from 58.9% (in Freedesktop) to 72.9% (in Mozilla), indicating that bugs are
not reported evenly by people.

(a) Bug Reporter
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Figure 5: Percentage of bugs by (a) bug reporters, (b) assignees or (c) component names.

Figure 6 shows that the percentage of long-lived bugs for many individual
bug reporters is high. For example, ed in Eclipse (≈ 15.4%), freedesktop in
Freedesktop (≈ 23.5%), dawn in Gnome (≈ 22.6%), timeless in Mozilla (≈
23.9%), burnus in GCC (≈ 24.2%), and fgouget in WineHQ (≈ 49.0%). In
addition, 7 out of the 10 top bug reporters in WineHQ opened a substantial
number of long-lived bugs, exceeding 30% of them.
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Figure 6: Percentage of long-lived bugs reported by the top 10 bug reporters considering a
threshold of 365 days.

5.3.2. Assignee

Figure 5b shows that the percentage of bugs opened by the top 20% of
assignees in the FLOSS projects investigated varied from 68.1% (in Eclipse) to
97.5% (in WineHQ), indicating that few actors are responsible for most of the
bug reports.
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As observed for bug reporters, many of top-10 assignees were responsible for
fixing a high percentage of long-lived bugs (Figure 7): mdt-papyrus-inbox in
Eclipse (≈ 31.8%), nobody in Mozilla (≈ 28.1%), nautilus-maint in Gnome
(≈ 37.9%), xorg-team in Freedesktop (≈ 32.6%), tromey in GCC (≈ 56.0%),
and dpaun in WineHQ (≈ 63.6%). Additionally, most assignees (8 out of 10) in
WineHQ fixed more than 30% of long-lived bugs in relation to the total number
bugs assigned to them. However, although some bug reports are considered
to be closed, the assignee field is not updated correctly. We identified these
situations differently in our datasets (Figure 7): labels ending with “inbox” in
Eclipse, labels ending with “bugs” in Freedesktop, in Gnome and in WineHQ,
and unassigned labels in GGC.
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Figure 7: Percentage of long-lived bugs reported by the top-10 assignees considering a thresh-
old of 365 days.

5.3.3. Component

Figure 5c shows that the percentage of bugs opened by the top 20% of com-
ponents in the investigated FLOSS varied from 79.3% (in Mozilla) to 85.0%
(in WineHQ), which also can be considered significant proportions.

In addition, considering all bugs reported, the percentage of long-lived bugs
in projects with many components was high: Xtext in Eclipse (≈ 15.3%),
Contacts in Gnome (≈ 26.1%), Server/General in Freedesktop (≈ 29.0%),
English US in Mozilla (≈ 62.3%), java in GCC (≈ 61.0%), and -unknown in
WineHQ (≈ 48.4%) (Figure 8). As noted for bug reporters and assignees, for
WineHQ, over 30% of components (7 out of 10) had long-lived bugs.

Furthermore, we observed two important properties: (i) no long-lived bugs
were reported in Eclipse, Hyades15 and (ii) the high proportion of long-lived

15Hyades is an open-source platform for Automated Software Quality (ASQ) tools and
a range of open-source reference implementations of ASQ tools for testing, tracking,
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Figure 8: Percentage of long-lived bugs reported by the top-10 components considering a
threshold of 365 days.

bugs in unknown modules of WineHQ (Figure 8).

5.3.4. Severity Level

For most projects, the minor severity level had the highest proportion of
long-lived bugs, varying from ≈ 12% to ≈ 44%, except in GCC where the
critical severity level had the highest proportion of long-lived bugs (≈ 35% ),
followed by the minor severity level with ≈ 33% (Figure 9).

5.3.5. Summary

Word clouds generated considering the summary field for all projects investi-
gated indicate there is a group of words (such as error, fail, file, and regression)
that repeatedly appear in the summary field of both short and long-lived bugs
(Figure 10).

5.3.6. Description

Word clouds generated considering the description field for all projects in-
vestigated indicate there is a group of words (such as eclipse, java, lib, and usr)
that repeatedly appear in the description field of both short or long-lived bugs
(Figure 11). Additionally, reserved words (such as const, char, and v float) and
constant labels (e.g., 0x000000000000000) probably originated from code snip-
pets written in a programming language (e.g., C/C++ or Java) or stack traces
yielded by the reported bug, which was included in the description field of the
bug report.

and monitoring software systems. Online: https://www.eclipse.org/org/press-release/

apr152003uml2pr.html (As of Jan. 2020).
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Figure 9: Percentage of long-lived and short-lived bugs by severity levels.

Summary: Short-Lived Bugs Summary: Long-Lived Bugs

Figure 10: Word clouds based on the summary field of bug reports for all projects investigated

Description: Short-Lived Bugs Description: Long-Lived Bugs

Figure 11: World clouds based on the description field of bug reports for all investigated
projects.
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5.4. RQ4: What is the comparative accuracy of machine learning algorithms
when predicting long-lived bugs?

This question focused on comparing the performance accuracy of traditional
ML algorithms when predicting long-lived bugs, namely KNN, Näıve Bayes,
Neural Networks, Random Forest, and SVM. We conducted four experiments,
changing specific parameters before executing each one.

5.4.1. RQ4.1. Evaluating the performance of ML algorithms when predicting
long-lived bugs

In the first experiment, we evaluated the performance of selected ML al-
gorithms when predicting long-lived bugs using the Eclipse dataset and the
parameters shown in Table 7. For each combination of these parameters, every
algorithm builds a prediction model based on features extracted from summaries
or descriptions of bug reports. Moreover, to select the best model throughout
the repeated cross-validation process, each algorithm computed metrics based
on Accuracy.

Table 7: Parameters for RQ4.1 experiment.

Parameter Value

Dataset Eclipse
Bug report fields Summary and Description
Number of observations 9724
Predictive algorithms KNN, NB, NN, SVM, and RF
Number of terms 100
Metrics to select model Accuracy, Kappa and AUC
Balancing methods Unbalanced and SMOTE
Sampling method Repeated CV 5× 10
Bug fixing time threshold 365 days

The best balanced accuracy scores of ML algorithms used to predict long-
lived bugs for the Eclipse project dataset are shown in Table 8. The evaluated
methods were sorted in descending order according to their balanced accuracy.
The SVM algorithm yielded the best performance accuracy (≈ 98% of balanced
accuracy). This model used the description field to generate the text feature
vector, the SMOTE method to balance the dataset, and the accuracy metric
to select the best model (Table 8).

Considering the bug fixing time threshold of 365 days, the Eclipse dataset
is notably unbalanced (Figure 3). Therefore, we ran each algorithm over the
same unbalanced dataset or over a balanced dataset built applying the SMOTE
method onto the original dataset. The frequency of long-lived bugs increased
from 7.85% (601/8252) to 48.89% (8352/17081) (Table 8). Furthermore, we
can clearly observe that the balancing of datasets yielded better predictions of
long-lived bugs.
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Table 8: The best balanced accuracy scores of ML algorithms used to predict long-lived bugs
for the Eclipse project dataset.

Algorithm Feature Balancing
Method

Sensitivity Specificity Balanced
Accuracy

Total
Bugs

Short-
lived
Bugs

Long-
lived
Bugs

svm description smote 0.997 0.966 0.981 17081 8729 8352

rf description smote 0.955 0.948 0.951 17081 8729 8352

rf summary smote 0.910 0.904 0.907 14863 7651 7212

svm summary smote 0.941 0.834 0.888 14863 7651 7212

nn summary smote 0.907 0.767 0.837 14863 7651 7212

knn summary smote 0.853 0.751 0.802 14863 7651 7212

knn description smote 0.999 0.564 0.782 17081 8729 8352

nn description smote 0.814 0.675 0.744 17081 8729 8352

nb description smote 0.832 0.234 0.533 17081 8729 8352

nb summary smote 0.814 0.234 0.524 14863 7651 7212

rf summary unbalanced 0.011 0.994 0.503 8252 7651 601

rf description unbalanced 0.004 0.998 0.501 9425 8729 696

nn summary unbalanced 0.002 0.999 0.501 8252 7651 601

knn description unbalanced 0.000 1.000 0.500 9425 8729 696

svm description unbalanced 0.000 1.000 0.500 9425 8729 696

knn summary unbalanced 0.000 1.000 0.500 8252 7651 601

svm summary unbalanced 0.000 1.000 0.500 8252 7651 601

nn description unbalanced 0.000 1.000 0.500 9425 8729 696

nb description unbalanced 0.326 0.628 0.477 9425 8729 696

nb summary unbalanced 0.273 0.665 0.469 8252 7651 601

We used a Wilcoxon signed-rank test to check if the classifiers trained with
the Eclipse dataset were significantly different (Table 9). Each cell shows the
results of a single classifier paired with the other. Left (‘←’) and up (‘↑’) arrows
indicate the most accurate, while an empty cell refers to “no statistical difference
between the pairs of classifiers” in that row and column.

Table 9: Statistical test for the balanced accuracy of classifiers.

classifier knn nb nn rf svm

knn − ← − ↑ ↑
nb ↑ − ↑ ↑ ↑
nn − ← − ↑ ↑
rf ← ← ← − ↑
svm ← ← ← ← −

5.4.2. RQ4.2. Evaluating the impact of the number of terms used in the feature
vector on ML algorithm performance

To answer this question, we used the same parameters as before, but changed
the number of terms (we used 100, 150, 200, 250, and 300; Table 10).
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Table 10: Parameters for the RQ4.2 experiment.

Parameter Value

Dataset Eclipse
Bug report field Description
Number of observations 9724
Predictive algorithm SVM
Number of terms 100, 150, 200, 250, 300
Metric to select model Accuracy
Balancing method SMOTE
Sampling method Repeated CV 5× 10
Bug fixing time threshold 365 days

The sensitivity, specificity, and balanced accuracy scores for the SVM with
different numbers of terms in the text feature vector varied slightly (Figure 12).

The SVM algorithm yielded the best-balanced accuracy (≈ 98.9%) when
the text mining process extracted 150 highest TD-IDF scored terms of
the description field to build the text feature vector. Furthermore, considering
that we need a model that predicts the positives better (long-lived bugs), we
might want to take into account the vector with 150 features, given its better
sensitivity, as shown in Figure 12.

100 150 200 250 300
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Sensitivity
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Figure 12: Sensitivity, specificity, and balanced accuracy scores using the SVM to predict
long-lived bugs with the Eclipse dataset in relation to the number of terms used in the feature
vector.
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5.4.3. RQ4.3. Evaluating the impact of bug-fixing time threshold on ML algo-
rithm performance

Determining the bug-fixing time threshold, which separates a short-lived
from a long-lived bug, is necessary to evaluate the performance of SVM in
predicting long-lived bugs. Thus, we changed the bug fixing time thresholds to
8, 63, 108, and 365 days, which refer to the median (as suggested by Giger et
al. [33]), the third quartile, the mean bug-fixing time from the Eclipse dataset,
and the threshold value (as suggested by Saha et al. [15], respectively; Table 11).

Table 11: Parameters for RQ4.3 experiment.

Parameter Value

Dataset Eclipse
Bug report fields Description
Number of observations 9724
Predictive algorithms SVM
Number of terms 150
Metric to select model Accuracy
Balancing method SMOTE
Resampling method Repeated CV 5× 10
Bug fix time threshold 8, 63, 108, and 365 days

The balanced accuracy, sensitivity, and specificity varied sharply for SVM
with different bug-fixing time thresholds (Figure 13), suggesting that the SVM
algorithm yielded the best balanced accuracy (≈ 98.9%) when the bug-fixing
time threshold is 365 days.

5.4.4. RQ4.4. Evaluating the performance of ML algorithms using other FLOSS
datasets

We partitioned the preprocessed datasets into two disjoint subsets: a sub-
set for training, with 75% of the bug reports, and a subset for testing, with
the remaining 25% of the bug reports. We did so in order to investigate the
characteristics of bugs with high and low accuracy. For such, we evaluated the
balanced accuracy performance of all algorithms studied, with the experimental
parameters in Table 12, over Eclipse, Freedesktop, GCC, Gnome, Mozilla, and
WineHQ datasets.

Figure 14 shows the balanced accuracy performance of ML algorithms over
all projects considering its balanced datasets with SMOTE. We can observe that
the Neural Network (NN) was the best in three datasets: 55.4% in Freedesk-
top, 70.7% in GCC, and 61.8% in Mozilla. Also, we can see that the Neural
Network was slightly worse than KNN in Eclipse (54.2% versus 54.9%) and
Gnome (59.4% versus 59.9%), and than Random Forest (RF) (56.4% versus
57.4) in WineHQ.
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Figure 13: Sensitivity, specificity, and balanced accuracy scores from SVM predicting long-
lived bugs using the Eclipse dataset for different bug-fixing time thresholds.

Table 12: Parameters for RQ4.4 experiment.

Parameter Value

datasets Eclipse, Freedesktop, GCC, Gnome, Mozilla, and WineHQ
Bug report fields Description
Number of observations 9724
Predictive algorithms KNN, NB, NN, RF, SVM
Number of terms 100
Metric to select model Accuracy
Balancing methods Smote
Resampling method Repeated CV 5 × 10
Bug fix time threshold 365

In addition, Figure 15 presents the evolution of balanced accuracy according
to percentage of long-lived bugs in each dataset. There seems to be a linear
relationship between these two variables in all datasets, except for the WineHQ
dataset. WineHQ shows unique characteristics that might affect the perfor-
mance of ML algorithms, such as it has the lowest number of assignees, the
highest median bug-fixing time, the highest Q1 and Q3 interquartile distance
(Figure 4), and the lowest quantity of bug reports.

5.5. RQ5: What are the main characteristics of bugs correctly predicted as long-
lived and incorrectly predicted as short-lived?

Even if our classifier did not identify many long-lived bugs, investigating the
characteristics of algorithms with high and low accuracy could be very useful
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Figure 14: Balanced accuracy performance for all classifiers over all datasets projects.
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Figure 15: Balanced Accuracy versus Percentage of Long-Lived Bugs.

for developing teams. Thus, we investigated the characteristics of true positives
and false negatives from some perspectives: bug reporter, assignee, software
component, and description attributes. We limited our investigation to the
Eclipse and GCC dataset because the Eclipse dataset yielded the worst accuracy
and the GCC dataset yielded the best accuracy.
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5.5.1. Bug Reporter

Our results showed that for 3 out of 20 bug reporters in Eclipse and 1
out of 20 in GCC, the prediction yielded in 100% true positives, which was
the case for wayne.beaton in Eclipse and schimd in GGC. On the other hand,
for a fair amount of bug reporters (9 out of 20 in Eclipse, and 5 out of 20 in
GCC), the prediction resulted in 100% false negative - the case of shaun.smith
in Eclipse and Joost.VandeVondele in GCC (Figure 16).
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Figure 16: True positives/false negatives in (a) Eclipse and (b) GCC datasets for different
bug reporters.

5.5.2. Assignee

Our results showed that for 6 out of 20 assignees in Eclipse and 7 out of
20 in GCC, the long-lived prediction yielded in 100% true positives for all bugs
(snorthov in Eclipse and bkoz in GGC). Similarly, for 6 out of 20 assigneees in
Eclipse and 1 out of 20 in GCC, the prediction yielded in 100% false negatives
for all bugs (akurtakov in Eclipse and pault in GCC). In addition, we found a
significant number of unassigned bugs - 27 out of 57 (≈ 47%) in Eclipse and
503 out of 648 in GCC (≈ 77%) (Figure 17).

5.5.3. Component

Our results showed that for 3 out of 20 components in the Eclipse dataset
and 1 out of 20 in the GCC dataset, the long-lived prediction yielded in
100% true positives — for example, Diagram in Eclipse and pending in GGC.
Similarly, for 3 out of 20 in Eclipse and 2 out of 20 in GCC, the prediction
yielded in 100% false negatives — for example, cdt-core in Eclipse and testsuite
in GCC. Furthermore, we found that true positives and false negatives were
balanced for most components in both datasets (Figure 18).
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Figure 17: True positives/false negatives in the (a) Eclipse and (b) GCC dataset for different
assignees.
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Figure 18: True positives/false negatives in the (a) Eclipse and (b) GCC dataset for different
components.

5.5.4. Severity Level

Our results showed that the long-lived predictor yielded 100% true positives
only for the critical severity level in Eclipse. Conversely, in both datasets,
our predictor yielded 100% false negatives for the blocker, major, and trivial
severity levels. Furthermore, we can notice a high number of bugs classified
with a normal severity level, 156 out of 187 (≈ 83%) in Eclipse and 629 out
of 724 in the GCC (≈ 86%) datasets (Figure 19).
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Figure 19: True positives/false negatives in the (a) Eclipse and (b) GCC dataset for different
severity levels.

5.5.5. Description

The words used to create the feature vector according to the description field
is shown in Figure 20. The words in panels (a) and (c) yielded true positives
and in panels b and d, false positives for both the Eclipse and GCC datasets.
Similar word colors indicate similar values of TF-IDF, while word size indicates
the amplitude of the TD-IDF value (for instance, larger word size indicates
higher values of TD-IDF).

Figure 21 refers to the lollipop chart for the feature vector created according
to the description field of bug reports. The words in panels (a) and (c) yielded
true positives and in b and d yielded false negatives using the Neural Network
algorithm to predict long-lived bugs in the Eclipse and GCC datasets. The
y-axis refers to TF-IDF, while the x-axis refers to the words in the feature
vectors.TF-IDF values of a few terms varied greatly for words that yielded false
negatives (only three terms for the Eclipse dataset and one for the GCC dataset),
while the variation seemed smaller for terms that yielded true positives.

In both datasets, the sparsity ratio of the feature vector matrices, which
was based on the 100 most TD-IDF weighted terms, is very high for both true
positive bugs and false negative bugs (Figure 22). Nevertheless, the sparsity
ratio for true positives and false negatives in the GCC dataset is slightly smaller
in relation to the Eclipse dataset.

6. Discussions

This section discusses the significance of our findings and it is divided by
research question as the results section.
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(a) Eclipse: True Positives (b) Eclipse: False Negatives

(c) GCC: True Positives (d) GCC: False Negatives

Figure 20: Word clouds used to create the feature vectors used in prediction testing according
to the description field of bugs reports that yielded (a) true positives in Eclipse, (b) false
negatives in Eclipse, (c) true positives in GCC, and (d) false negatives in GCC.

6.1. RQ1: Is there a common understanding of what long-lived bugs are in the
literature?

Table 5 indicates two distinct points of view about long-lived bugs. While
some authors [43, 44, 45, 15] consider absolute values as thresholds (based on
the release cycle), others [6, 33, 12, 8, 9, 10] consider threshold values based on
the statistical distribution of bug-fixing times for each FLOSS project. These
different visions suggest there is no shared understanding of what long-lived
bugs represent. Furthermore, we believe the definition of the long-live threshold
is related to particular characteristics of each project (e.g., number of people
in the team) and, therefore, each development team should choose the more
suitable threshold for their project.

6.2. RQ2: How frequent are long-lived bugs in FLOSS projects?

Saha et al. [15] found that long-lived bugs accounted for 5% to 9% bugs in
Java Projects (Eclipse) and for 14% to 37% in C projects (GCC and WineHQ).
We investigated three other FLOSS projects (Freedesktop, Gnome, and Mozilla)
and our results corroborate the findings obtained by these authors (Figure 3).

The percentage of long-lived bugs is higher in projects with fewer assignees
(e.g., WineHQ). This can be observed by examining the bug-fixing time quartile
(Figure 4) and the assignee demographic (Figure 5b). Our results also showed
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Figure 21: Lollipop chart for the feature vectors created based on the description field of bug
reports: (a) true positives in Eclipse, (b) false negatives in Eclipse, (c) true positives in GCC,
and (d) false negatives in GCC.
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Figure 22: Sparsity of true positive and false negative bugs for feature vectors based on the
description field in the Eclipse and GCC datasets.

a high number of outliers in most projects (Eclipse, Freedesktop, Gnome, and
Mozilla), which may indicate either a significant number of bugs with very long
bug-fixing time or a delay in updating the status resolution of bugs.
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6.3. RQ3: What are the main characteristics of long-lived bugs compared to
short-lived bugs in FLOSS projects?

6.3.1. Bug reporters

The top 20% bug reporters opened more than half of the bugs reports in
the projects we investigated (Figure 5a) and, in some cases, they opened more
than 70% of bug reports. We expected that more experienced reporters would
have provided more accurate information in their bug reports, which would
have enabled the development team to better evaluate and schedule these bugs.
However, Figure 6 shows otherwise, as a significant percentage of long-lived bugs
was associated with the top-10 bug reporters.

6.3.2. Assignees

Similarly, the top 20% assignees were in charge of fixing most of the re-
ported bugs (68% – 97%), which may be related to the availability of human
resources. Indeed, the Eclipse project, which is well-known and supported by
big companies, had the lowest rate of bugs assigned to the top 20% assignees,
while WineHQ, a voluntary project, had the highest rate. Thus, the lack of hu-
man resources seems to affect the number of long-lived bugs in certain projects
(Figure 7).

6.3.3. Components

We expected that large projects with more components would have a smaller
concentration of bug reports than small projects with fewer components. How-
ever, most bugs were reported for specific components (top 20% of the total
number of components) regardless of the project size (nearly 80% in Mozilla
– a large project – and 85% in WineHQ – relatively smaller), indicating that
bugs were not evenly distributed but rather concentrated in certain components
(Figure 5c). This suggests the existence of a set of complex components that
holds a considerable number of long-lived bugs (Figure 8).

6.3.4. Severity Level

Bug reports labeled as having minor severity levels prevailed in long-lived
bugs in all projects, except for the GCC project (see Figure 9). This suggests
that the development team considered the severity level when deciding which
bug would be fixed first, and bugs labeled as more severe were given priority.
However, the percentage of long-lived bugs with trivial severity level (considered
less severe than minor severity level) was smaller than long-lived bugs with minor
severity level, contrasting with our initial analysis. Furthermore, the percentage
of long-lived bugs that had been labeled with critical and major severity levels
was relatively high, suggesting that information on bug severity level was not
used by the development team to distinguish a short-lived bug from a long-lived.

6.3.5. Summary

All bug report attributes previously analyzed were structured, while the
summary attribute is textual. Figure 10(a)-(b) presents a preliminary analysis
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of this attribute using word clouds with 100 terms (one for short-lived and
other for long-lived bugs), each generated from the bug report summary of all
projects. From the word clouds we created for short- and long-lived bugs, we
were able to determine words in common for both of them, indicating the feature
vectors would be very similar. Thus, building a model that accurately predicts
long-lived bugs based on this attribute would be quite challenging.

6.3.6. Description

As the summary attribute mentioned above, the description attribute is
also textual. Figure 11(a)-(b) presents a preliminary analysis of the description
attribute using word clouds with 100 terms (one for short-lived and other for
long-lived bugs), each generated from all projects. Similarly to the summary
attribute, the word cloud for the description attribute also shows many words
in common for both short- and long-lived bugs. We can observe in word clouds
for the description attribute many reserved words of programming languages
like int, extern, using, and lib. Thus, being able to handle these words properly
is also essential to build models that can accurately predict long-lived bugs.

6.4. RQ4: What is the comparative accuracy of machine learning algorithms
when predicting long-lived bugs?

6.4.1. RQ4.1: Evaluating the performance of ML algorithms when predicting
long-lived bugs.

When comparing the traditional ML algorithms in predicting long-lived bugs
using a textual feature vector, we observe that the performance of algorithms is
very similar, but the SVM algorithm is slightly better (see Table 8).

6.4.2. RQ4.2: Evaluating the impact of the number of terms used in the feature
vector on ML algorithm performance.

Figure 12 indicates that increasing the number of terms used in the feature
vector did not significantly affect the balanced accuracy of the SVM algorithm
when predicting a long-lived bug. The best-balanced accuracy (using terms with
the 150 highest weight values) and the worst-balanced accuracy (using terms
with 150 highest weight values) differed only by 0.8%. Therefore, the terms that
obtained the best accuracy could be considered the most relevant terms needed
to distinguish a short- from a long-live bug in our current scenario. Nonetheless,
we recommend the feature vector to contain the lowest number of terms with
the best performance (in our case 150 terms), given the accuracy is not affected
by other factors, such as time processing and memory footprint.

6.4.3. RQ4.3: Evaluating the impact of bug-fixing time threshold on ML algo-
rithm performance.

The median bug-fixing time equally binned bug reports into short- and long-
lived, i.e., bugs with a bug-fixing time less than or equal to the median were
considered short-lived bugs, all others were considered long-lived bugs. We
expected that the median would be the most suitable threshold value because

35



the binning process produces a balanced dataset. However, Figure 13 shows
the threshold based on the median yielded the worst balanced accuracy and
sensibility. On the other hand, the highest balanced accuracy was obtained
using the bug-fixing time threshold of 365 days, which was suggested by Saha
et el. [15] based on the release cycle of the Eclipse, GCC, and WineHQ projects.
Thus, we believe there are patterns among the features vectors (boosted by the
SMOTE method) that better enabled the predictor to distinguish a long- from
a short-lived bug.

6.4.4. RQ4.4: Evaluating the performance of ML algorithms using other FLOSS
datasets

Figure 14 clearly shows that the predictive model performed better compared
to a random prediction (50% probability of predicting a long-lived bug) [33]. The
figure shows that the predictive model yielded greater balanced accuracy for the
GCC dataset using Neural Network in comparison to other algorithms in other
datasets.

Curiously, Figure 15 shows that the balanced accuracy performance in-
creased as the number of long-lived bugs increased, except for WineHQ. These
results suggest a relationship between the number of long-lived bugs and the
performance of ML algorithms. Such correlation may indicate that there is a
specific proportion of long-lived bugs needed to train a predictive model with
good performance. The performance of our automated model is even more sur-
prising when considering that our prediction efforts rely only on two attributes:
summary and description.

6.5. RQ5: What are the main characteristics of bugs correctly predicted as long-
lived and incorrectly predicted as short-lived?

6.5.1. Bug Reporter

Our long-lived bug predictor based on the Neural Network algorithm had
a high rate of true positives and false negatives for specific bug reporters. Al-
though the feature vector did not include the description field, our results sug-
gest that certain bug reporters provided descriptions with characteristic patterns
that enabled a more accurate classification of long-lived bugs. However, for other
bug reporters, the descriptions given did not seem to affect the classification of
long-lived bugs, leading to a high rate of false negatives.

6.5.2. Assignee

Similarly, for certain assignees, the long-lived bug predictor yielded a high
rate of true positives or false negatives. On one hand, this suggests that assignees
correctly evaluated the terms in the description field (high rate of true positives);
on the other hand, it also suggests that the terms in the description field might
not be related to the time an assignee takes to fix a bug. Another possible reason
for the number of false negatives could be the delay in allocating assignees for
any given bug or even not assigning a person at all, as occurred in the Eclipse
and GCC projects.
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6.5.3. Component

The test results using the Eclipse and GCC datasets yielded 100% true pos-
itives for certain components. These components may be those that often take
a long time to improve or correct for unknown reason. However, the description
given in bug reports (with specific patterns of terms) could be used in alert-
ing the maintenance team about possible long-lived cycles. In addition, our
results also showed components with 100% false negatives, indicating that the
description given in these bug reports failed to characterize long-lived bugs.

6.5.4. Severity Level

The description of bugs with the blocker severity level should contain terms
that allow them to be classified as long-lived bugs. As the highest level of
severity, the development team most likely wishes to quickly identify blocker
long-lived bugs. However, bug reporters failed to provide patterns of terms that
characterize blocker long-lived bugs for both the Eclipse and GCC projects.

6.5.5. Description

The word clouds extracted from long-lived bug descriptions that yielded
true positives and false negatives exhibited a great number of words in common,
many of which are words of programming languages, suggesting the presence
of many pieces of code into bug report descriptions. However, the TF-IDF
weight distributions of words in each cloud (true positives and false negatives)
are somewhat different: while the distribution of TF-IDF values for the true
positive feature vectors was balanced, the distribution for the false negatives
feature vectors was unbalanced, which could be related to the sparsity of the
feature vector matrix.

7. Threats to Validity

The main threats to validity in this study are summarized below:

• We have assumed that bug fix times extracted from repositories are correct
and that there is a close relationship between the time to fix a bug and the
short and long descriptions typically found in bug reports (this correlation
was investigated elsewhere [5]);

• We have considered six repositories, which lead to a collection composed
of 51,770 bug reports. Although we cannot generalize the results to other
datasets, the characteristics presented by Eclipse, Freedesktop, GCC, Gnome,
Mozilla, and WineHQ repositories, particularly regarding the balance of
the data, are similar to those shown in other studied repositories [33, 34,
15];

• Another limitation refers to the lack of investigation regarding the impact
of different text mining techniques on the balanced accuracy of the ML
algorithms studied here.
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8. Conclusion

We did not find evidence that there is a shared understanding of what a long-
lived bug is (RQ1). Using a conservative bug fixing time threshold (of 365 days),
we confirmed that a significant percentage of bugs in the FLOSS projects studied
here were long-lived bugs (RQ2). An analysis of bug report fields, namely
bug reporter, assignee, component, severity level, summary, and description,
showed that there were some differences between the population of long-lived
and short-lived bugs. For example, when the assignee field was analyzed, we
found an apparent shortage of resources in projects with the greatest number
of long-lived bugs (RQ3). We also compared the performance of popular ML
algorithms to predict long-lived bugs and found that Support Vector Machines
were better than the others in accurately predicting long-lived bugs for the
Eclipse dataset (RQ4.1).

Furthermore, our results have shown that the number of terms in the fea-
ture vector had no significant impact in the accuracy of classifiers when pre-
dicting long-lived bugs (RQ4.2). We confirmed that 365 days is a bug fixing
time threshold that enables the classifier algorithms to yield a good balanced
accuracy. This threshold is longer than the bug fix time for most bugs with a
short lifecycle (RQ4.3).

Finally, we showed that the differences between long-lived bugs correctly
predicted as long-lived bugs (true positives) and long-lived bugs incorrectly pre-
dicted as short-lived bugs (false negative) are related to the terms used in the
feature vectors and to the sparsity of the feature vector matrix (RQ5).

Given the neural network yielded good results (RQ4.4), we believe that in-
vestigating other learning algorithms (such as deep learning) could be useful
in predicting long-lived bugs [46]. In addition, analyzing different bug report
fields (e.g., bug reporter, assignee, and component) – RQ4.4 – and including
other data based on software engineering metrics (for example, the complex-
ity of feature vectors and the temporal evolution of attributes in the feature
matrix [3]) would also improve our understanding of the topic. Moreover, we
also intend to investigate other repositories and other BTS and thus develop an
approach that represents BTS data generally and uniformly as this would facil-
itate the development of a general-purpose ML-based long-lived bug prediction
assistant.
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