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Common health conditions in childhood and adolescence,
school absence, and educational attainment: Mendelian
randomization study
Amanda Hughes 1,2✉, Kaitlin H. Wade1,2, Matt Dickson3, Frances Rice4, Alisha Davies 5, Neil M. Davies1,2,6,7 and Laura D. Howe1,2,7

Good health is positively related to children’s educational outcomes, but relationships may not be causal. Demonstrating a causal
influence would strongly support childhood and adolescent health as important for education policy. We applied genetic causal
inference methods to assess the causal relationship of common health conditions at age 10 (primary/elementary school) and 13
(mid-secondary/mid-high school) with educational attainment at 16 and school absence at 14–16. Participants were 6113 children
from the Avon Longitudinal Study of Parents and Children (ALSPAC). Exposures were symptoms of attention-deficit hyperactivity
disorder (ADHD), autism spectrum disorder (ASD), depression, asthma, migraines and BMI. Genetic liability for these conditions and
BMI was indexed by polygenic scores. In non-genetic, multivariate-adjusted models, all health conditions except asthma and
migraines were associated with poorer attainment and greater school absence. School absence substantially mediated effects of
BMI (39.9% for BMI at 13) and migraines (72.0% at 10), on attainment with more modest mediation for emotional and
neurodevelopmental conditions. In genetic models, a unit increase in standardized BMI at 10 predicted a 0.19 S.D. decrease (95% CI:
0.11, 0.28) in attainment at 16, equivalent to around a 1/3 grade lower in all subjects, and 8.7% more school absence (95%
CI:1.8%,16.1%). Associations were similar at 13. Genetic liability for ADHD predicted lower attainment but not more absence.
Triangulation across multiple approaches supports a causal, negative influence on educational outcomes of BMI and ADHD, but not
of ASD, depression, asthma or migraine. Higher BMI in childhood and adolescence may causally impair educational outcomes.
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INTRODUCTION
Good health in childhood predicts better educational attain-
ment1–3 but associations may not be causal. Less advantaged
children have worse health4, so associations could be confounded
by socioeconomic conditions5 or, especially for mental health,
reflect reverse causation6. But if childhood health does causally
influence attainment, it may play an important role in inter-
generational transmission of socioeconomic (dis)advantage7.
Impact on education of behavioural, emotional and physical

health may differ8. Attention-deficit hyperactivity disorder (ADHD)
predicts lower educational attainment, as measured by test scores
and grade repetition9–11, including where sibling-fixed effects are
used to control for family-level confounding10. Evidence is more
mixed for depressive symptoms6,12–16, which in some studies
show a negative association with years of schooling but in others
do not. For autism spectum disorder (ASD), evidence suggests
substantial heterogeneity in educational outcomes, even after
considering variability in IQ17,18. For BMI, evidence is mixed.
Among longitudinal studies, plausibly less affected by reverse
causation, and other causal inference studies, only some support a
detrimental impact of overweight/obesity in childhood on
educational outcomes19–22. There is also mixed evidence for
asthma23–27 and rarer health conditions23–25,28,29. The impact on
school absence, and any mediating role of school absence in
explaining associations of health with educational attainment, also
likely differs by condition30–32. A link with school absence is clearer

for migraine26,33 and depression34, than for asthma23,27,31,
ADHD24,35, ASD24,36 or obesity37–40.
Approaches have been developed to circumvent confounding

and reverse causation by using genetic variants associated with
health conditions as proxies or instrumental variables. Genetic
variants associated with health conditions are, conditional on
certain assumptions, assigned randomly at conception and cannot
be influenced by later environmental influences or health41.
Methods using genetic variants are therefore unaffected by
classical kinds of bias or reverse causation which affect traditional
observational study designs, and for this reason are often
compared to a randomized controlled trial42. These approaches
support a causal influence on educational attainment of ADHD9,43,
but are inconclusive for body weight44–46. Results for ASD are
null43, or point to existence of high-functioning subgroups47. One
study has examined depression, reporting null results48.
The aim of this study was to assess the causal influence of

common health conditions in childhood and adolescence on
educational attainment, on school absence, and the extent to
which school absence mediates health-attainment associations.
We applied genetic methods to the impact of six aspects of
childhood and adolescent health on educational attainment and
on school absence: ADHD, ASD, depressive symptoms, BMI,
asthma, and migraines, in an English birth cohort49. We
considered health conditions which are prevalent enough to be
of considerable importance in current child and adolescent public
health, and which have known genetic markers, to allow
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application of genetic methods. To avoid the confounding and
reverse causation, which have affected previous investigation, we
use polygenic scores (PGSs) capturing genetic liability for health
conditions. We explore associations of health with educational
attainment, associations with absenteeism, and mediation of
associations with attainment by absenteeism. In all cases we avoid
recall bias by using linked records for school absence and
educational attainment. We consider health at age 10 and 13, to
examine whether influence of health on attainment differs with
age. Finally, we conducted two-sample Mendelian randomization
for influence of the same conditions on educational attainment in
independent adult samples.

RESULTS
Socioeconomic background, GCSEs, and school absence
Reflecting the regional nature of the cohort, the analytic sample
showed differences from national averages, for example in a
slightly higher maternal age (28.3 years, compared to 27.7
nationally in 1991). Participants in the analytic sample had a
higher average GCSE capped score (around 332 points) than the
national average at the time (308 points), consistent with
differences previously described for the cohort as a whole49.
Within the analytic sample, GCSEs and school absence (Table 1)
varied by gender and socioeconomic background (Supplementary
Table 6). GCSE points scores were higher for girls than boys: 345.6
(95% CI: 338.7, 352.5) compared to 319 (95% CI: 311.0, 327.1), as
was school absence: 7.8% (95% CI: 7.2%, 8.4%) compared to 7.2%
(95% CI: 6.6%, 7.7%). Maternal education was associated positively
with attainment, and negatively with school absence. Children
whose mothers had a degree had an average GCSE point score of
392.9 (95% CI: 387.0, 398.9) and school absence of 6.1% (95% CI:
5.0%, 7.3%). For children whose mothers had the least qualifica-
tions, average GCSE points score was 275.7 (95% CI: 266.9, 284.5)
and school absence 9.9% (95% CI: 9.0%, 10.7%). GCSE points
scores were negatively associated with school absence. Adjusting
for gender, an increase in absence corresponding to an extra day/
year was associated with −2.6 (−3.2,−2.1) fewer GCSE points.

Phenotypic models: health, GCSEs and school absence
In phenotypic models (Table 2), all aspects of child and adolescent
health were associated with GCSE points score except migraines
and asthma. All were associated with school absence (Table 2).
Depressive symptoms at 10 showed a considerably stronger
association with GCSEs than depressive symptoms at 13 (GCSE
points scores: −16.4 (95% CI: −19.7, −13.1) compared to −6.8
(95% CI: −9.9, −3.8) per SD MFQ score). Otherwise, associations
did not differ substantially by age. In mediation analyses,
associations between all aspects of health and educational
attainment were mediated by school absence except for asthma
(Table 3). Percent of associations mediated was lowest for ADHD
(7.1% at age 10, 8.4% at 13) and highest for BMI (39.9% at age 10,
32.6% at 13) and migraine (72.0% at age 10). (Table 3). Results
were similar restricting to participants in mainstream state schools.
For other school types, small numbers of participants led to
imprecise estimates (Supplementary Tables 7 and 8).

Genetic models: health, GCSEs and school absence
Predictive power of the PGSs varied considerably. The proportion
of variance explained by the PGS (R2 or pseudo-R2 for binary
exposures) was 7.6% and 7.9% for BMI at 10–11 and 13,
respectively, but <1% for ADHD, migraine and asthma, and
<0.1% for ASD and depressive symptoms (Supplementary Table 9).
Tests for instrument strength (Supplementary Table 9) confirmed
only the BMI PGS could be used as an instrumental variable.

For ADHD and BMI, higher values of the PGS predicted lower
GCSE points (Table 4). Each SD increase in the PGS for ADHD
corresponded to a decrease of 2.70 (95% CI: −4.83, −0.58) GCSE
points. A one SD increase in the BMI PGS corresponded to a
decrease of 5.37 (95% CI: −7.78, −2.96) GCSE points and a 2.72%

Table 1. Descriptive characteristics of analytic sample (N= 6113)a.

Continuous variables Mean SD Range

Maternal age 28.27 4.68 15–44.1

SDQ hyperactivity scoreb at 10
(114 months)

3.14 2.23 0–10

SDQ hyperactivity scoreb at 13
(156 months)

3.23 2.21 0–10

MFQ scorec at 10 (127 months) 4.32 3.60 0–22.07

MFQ scorec at 13 (154 months) 4.24 3.94 0–24

SCDCd scored at 10 (120 months) 2.91 3.79 0–24

SCDCd scored at 13 (156 months) 3.29 3.97 0–24

BMI z-scoree at 10 (127 months) 0.34 1.16 −3.65 to 4.26

BMI z-scoree at 13 (154 months) 0.41 1.20 −3.83 to 4.55

GCSE capped points score 332.34 87.36 0–540

Median IQR Range

Percent of sessions absent,
year 11 (age 15–16)

5.53 7.28 0–98.59

Percent of sessions absent,
year 10 (age 14–15)

4.83 6.71 0–90.39

Percent of sessions absent,
key stage 4 (age 14–16)

5.42 6.34 0–79.29

Categorical variables Category %

Gender Male 49.99

Female 50.01

Maternal educational qualifications CSE or less 16.77

vocational 9.49

O level 35.94

A level 24.33

Degree 13.47

Maternal parity at child’s birth 0 44.9

1 36.15

2 14.00

3+ 4.94

Migraines at 10 No 95.03

Yes 4.97

Asthma at 10 (128 months) No 87.77

Yes 12.23

Asthma at 13 (157 months) No 87.99

Yes 12.01

School typef at key
stage 4 (age 14–16)

Mainstream state 93.13

Independent 5.45

Other 1.42

aAnalysis was restricted to unrelated ALSPAC participants with genetic data
and linked GCSE records. Missing data in covariates, exposures and school
absence was imputed using multiple imputation by chained equations.
bSDQ= Strengths and Difficulties Questionnaire, for ADHD symptoms.
cMFQ=Mood and Feelings Questionnaire, for depressive symptoms.
dSCDC= Social Communication Disorder Checklist, for autistic social traits.
eUsing 1990 UK Growth Reference. Values represent standard deviation
difference from age-specific and gender-specific reference mean.
fMainstream state schools: community, voluntary controlled or aided,
foundation, city technology college, academy. Other schools: community
special, pupil referral unit, further education college.
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(95% CI: 0.57, 4.91) increase in school absence. Using the BMI PGS
as an instrumental variable showed that, for each unit increase in
BMI z-score at age 10, GCSE points scores were 16.79 lower (95%
CI: −24.38, −9.19) and absences were 8.73% greater (95% CI: 1.82,
16.12). For each unit increase in age-standardized and gender-
standardized BMI at age 13, GCSE points scores were 15.90 lower
(95% CI: −23.09, −8.72) and absences were 8.25% greater (95% CI:
1.75, 15.17).
Results were again similar restricting to participants in main-

stream state schools, with estimates for other school types
imprecise (Supplementary Table 10). Tests of instrument validity
applying two-sample methodology in ALSPAC (Supplementary
Table 11) were consistent with main results, and there was no
evidence of bias due to pleiotropy for associations with GCSEs.
Although there was evidence of pleiotropy for effect of BMI on
absenteeism (MR-Egger intercept 0.004, p= 0.02), additional SNP-
specific checks50 could not identify particular SNPs responsible
(Supplementary Table 12). Results did not differ using a BMI PGS
excluding 24 SNPs identified as outliers in two-sample MR
(Supplementary Table 13).
Results of two-sample MR analyses using published GWAS for

educational attainment (years of schooling) were broadly con-
sistent with results from ALSPAC (Table 5). Previous two-sample
MR analysis reported evidence of an effect of ADHD43 but not
ASD43 or depression48. Our analyses supported an influence of
BMI, with a one-unit increase in BMI associated with 0.16
(p < 0.001) and 0.11 (p < 0.001) fewer years of schooling in IVW
and weighted median models, respectively. These models also
support a negative influence of asthma on years of schooling
(−0.02,
p < 0.001 and −0.02, p= 0.01, respectively). There was little
evidence of a causal impact of migraine. For BMI, the MR-Egger
constant (−0.002, p < 0.001) indicated an influence of pleiotropy.
Outliers were therefore identified by comparing SNP-specific
estimates with the overall IVW estimate, and analyses repeated
with these SNPs excluded. This did not change conclusions
(Supplementary Table 14). We checked associations of these SNPs

with other phenotypes but none stood out as clear confounders
(Supplementary Table 15).

DISCUSSION
In phenotypic analysis, all aspects of poorer health at ages 10 and
13 predicted greater school absences at ages 14–16, and all
except asthma and migraines predicted lower educational
attainment at 16. Depressive symptoms at 10 were more strongly
associated with GCSEs than were depressive symptoms at 13. This
supports previous work indicating that emotional health around
the time of transition from primary school to secondary school
may be important for later educational outcomes51. For ADHD,
ASD, and depressive symptoms, we explored the effect of an
incremental increase in symptoms rather than a diagnosis, and
relationships of diagnoses with educational outcomes may differ.
Lack of associations of asthma and migraine with GCSEs may
reflect binary measures unable to capture the full range of
symptoms, or misclassification of exposures as diagnosis can occur
later. Results of mediation analysis are consistent with a recent UK
study52 which reported substantial mediation of by parent-
reported long-term absence and truancy of the impact of long-
term health conditions and of mental health on educational
attainment. Our findings indicate such results do not only reflect
recall bias and add to current knowledge by showing that school
absence additionally mediates the association between BMI and
educational attainment. However, phenotypic associations are
vulnerable to reverse causation and residual confounding by
family-level and individual-level characteristics not captured by
covariates. For this reason, we applied genetic causal inference
approaches to the relationships.
Consistent with previous work in ALSPAC9, genetic liability for

ADHD was associated with worse GCSEs, but it was not associated
with greater school absence. This is consistent with extensive
evidence for the influence of other factors on academic
attainment, including how well a child ‘fits’ with the expectations
of the school environment, teacher views and attitudes,

Table 2. Phenotypic associations of health conditions with educational attainment at 16 and school absence at 14–16 (N= 6113).

GCSE points scorea School absence at age 14–16b

Beta CI % increase CI

Health conditions at age 10

Standardized values of SDQ-HI scorec −25.58 −28.42, −22.73 6.08 3.51, 8.72

Standardized values of MFQ scored −16.39 −19.67, −13.10 6.02 3.24, 8.88

Standardized values of SCDC scoree −20.73 −24.09, −17.37 9.34 6.39, 12.37

Migraines at age 10 −6.58 −19.12, 5.97 15.42 3.25, 29.03

Asthma in past 12 months 2.06 −5.01, 9.14 12.15 4.48, 20.39

BMI z-scoref −2.30 −4.11, −0.49 2.82 0.96, 4.71

Health conditions at age 13

Standardized values of SDQ-HI scorec −28.75 −31.56, −25.95 8.58 5.89, 11.34

Standardized values of MFQ scored −6.83 −9.90, −3.76 7.10 4.66, 9.61

Standardized values of SCDC scoree −25.23 −28.84, −21.62 12.96 9.62, 16.4

Asthma in past 12 months −1.27 −9.18, 6.63 10.60 2.67, 19.14

BMI z-scoref −3.99 −5.88, −2.11 3.99 2.15, 5.86

aCoefficients represent change in GCSE capped points score adjusted for gender, maternal education, maternal housing tenure, maternal age, maternal parity,
whether smoked in pregnancy.
bCoefficients represent proportional change in absenteeism (0%= no change) with presence of the health condition, or per SD increase in continuous
exposures.
cSDQ-HI: Strengths and Difficulties Questionnaire hyperactivity subscale.
dMood and Feelings Questionnaire.
eSocial Communication Disorders Checklist.
fBased on 1990 UK Growth Reference, values represent SD difference from age-specific and gender-specific reference mean.

A. Hughes et al.

3

Published in partnership with The University of Queensland npj Science of Learning (2021)     1 



Table 3. Mediation by absenteeism at age 14–16 of associations of health conditions with educational attainment at 16.

Exposure Age Pathway Betaa LCI UCI p % mediated

SDQ-HI scoreb for ADHD 10 Direct −23.77 −26.13 −21.41 <0.001 7.05

Indirect −1.80 −2.84 −0.77 <0.001

Total −25.58 −28.02 −23.13 <0.001

MFQ scorec for depressive symptoms 10 Direct −14.54 −17.22 −11.87 <0.001 11.26

Indirect −1.84 −3.02 −0.67 0.002

Total −16.39 −19.18 −13.59 <0.001

SCDC scored for autistic social traits 10 Direct −18.01 −20.62 −15.39 <0.001 13.13

Indirect −2.72 −3.93 −1.51 <0.001

Total −20.73 −23.36 −18.10 <0.001

Migraines at 10 10 Direct −1.84 −10.95 7.26 0.69 71.97

Indirect −4.73 −8.28 −1.19 0.01

Total −6.58 −16.11 2.96 0.18

Asthma in past 12 months 10 Direct 5.87 −0.30 12.05 0.06 −184.97

Indirect −3.81 −6.34 −1.28 0.003

Total 2.06 −4.39 8.51 0.53

BMI z-scoref 10 Direct −1.38 −3.44 0.67 0.19 39.87

Indirect −0.92 −1.89 0.05 0.06

Total −2.30 −4.42 −0.18 0.03

SDQ-HI scoreb for ADHD 13 Direct −26.35 −28.71 −23.98 <0.001 8.37

Indirect −2.41 −3.50 −1.31 <0.001

Total −28.75 −31.14 −26.37 <0.001

MFQ scorec for depressive symptoms 13 Direct −4.60 −7.28 −1.92 <0.001 32.63

Indirect −2.23 −3.43 −1.03 <0.001

Total −6.83 −9.61 −4.05 <0.001

SCDC scored for autistic social traits 13 Direct −21.73 −24.50 −18.96 <0.001 13.87

Indirect −3.50 −4.80 −2.20 <0.001

Total −25.23 −28.00 −22.47 <0.001

Asthma in past 12 months 13 Direct 2.07 −4.28 8.41 0.52 262.50

Indirect −3.34 −5.93 −0.75 0.01

Total −1.27 −7.87 5.32 0.71

BMI z-scoref 13 Direct −2.71 −4.78 −0.65 0.01 32.08

Indirect −1.28 −2.24 −0.32 0.01

Total −3.99 −6.12 −1.87 <0.001

aFor binary exposures, coefficients represent change associated with presence vs. absence of the health condition. For continuous exposures, coefficients
represent change associated with a 1 standard-deviation increase from sample mean.
bSDQ-HI: Strengths and Difficulties Questionnaire hyperactivity subscale.
cMFQ: Mood and Feelings Questionnaire.
dSCDC: Social Communication Disorders Checklist.
fBased on 1990 UK Growth Reference, values represent SD difference from age-specific and gender-specific reference mean.

Table 4. Association of polygenic scores with educational attainment at 16 and school absence at age 14–16a.

GCSE points CI Absences: % increase CI

Standardized values of ADHD PGS −2.70 −4.83, −0.58 −0.24 −2.13, 1.69

Standardized values of depression PGS 0.75 −1.75, 3.25 −0.76 −2.80, 1.32

Standardized values of ASD PGS −1.78 −3.84, 0.28 −0.41 −2.43, 1.65

Standardized values of migraine PGS −0.93 −3.04, 1.18 1.38 −0.59, 3.39

Standardized values of asthma PGS −0.66 −2.80, 1.48 1.18 −0.67, 3.07

Standardized values of BMI PGS −5.37 −7.78, −2.96 2.72 0.57, 4.91

aN= 6113. Adjusted for gender and PC1–PC20. GCSE points score: range 0–540, mean 332.3, SD 87.4. Coefficients for absences represent proportional change
in absenteeism (0%= no change) per SD increase in the polygenic score.
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and bullying by peers53. Genetic liability for higher BMI was
associated with both attainment and school absence, and using
the BMI PGS as an instrument supported these findings. MR
analyses using ALSPAC found some evidence of pleiotropy in BMI-
absenteeism associations, although no individually pleiotropic
SNPs were identified. Mechanisms should be explored in samples
large enough to investigate SNP-specific pathways. Two-sample
summary-level Mendelian randomization based on older indivi-
duals also supported a negative influence of higher BMI on
educational attainment. These results indicate that, for BMI,
associations with attainment and school absence do not simply
reflect confounding. Results from previous observational studies
have been mixed, which may reflect heterogeneity in the quality
of studies20. Previous genetic causal inference work in unrelated
adults has suggested that higher BMI reduces likelihood of having
a university degree54. Our results are consistent with those
findings and indicate that any negative impact of BMI on
educational attainment may begin long before university. Recent
work using genetic data on adult sibling pairs has investigated the
influence of family-level factors which could bias results of MR
studies using samples of unrelated individuals, for example the
influence of parental genotype on offspring phenotype via
environmental pathways, or assortative mating46. This study
found that, when these biases are accounted for, the estimated
impact of BMI on educational attainment attenuates. The results in
the current study of BMI with educational outcomes may therefore
partly be due to assortative mating or parental effects. Investigat-
ing these mechanisms requires genetic data on large numbers of
related individuals (e.g. siblings or parent–offspring trios), not
available in the current study.
Causal mechanisms besides absenteeism linking BMI to

attainment are likely complex. Cross-sectional research has

suggested negative neurocognitive correlates of obesity, but has
not established causal influence55 and evidence from longitudinal
studies is less clear19. Socially mediated processes by which
weight could influence educational outcomes involve weight bias
by teachers56 and bullying by peers57. Further work using genetic
and qualitative approaches will be required to unpick these
mechanisms. That IV coefficients were larger than OLS coefficients
for the (negative) influence of BMI on GCSEs may point to an
offsetting mechanism causing suppression of effects in observa-
tional models. In UK children, both thinness and obesity are
associated with deprivation58, so a nonlinear relationship between
BMI and socioeconomic hardship could bias downwards estimates
of the impact of BMI on attainment. IV estimates could also be
inflated due to family-level processes, such as the influence of
parents’ genotype on offspring via environmental pathways59,
which may bias MR estimates based on samples of unrelated
individuals46.
Negative associations of depressive symptoms at age 1260,

ADHD symptoms in preschool61 and obesity at 11 and 16 with
GCSEs22 have been previously shown in ALSPAC. Our results are
consistent with a causal interpretation of the latter two. They are
also consistent with studies into educational impact of ADHD and
depression using within-sibling comparison10,12, which addresses
confounding at the level of the family, but not the individual. Two-
sample MR suggested an additional influence of asthma on
educational attainment. This was observed in a recent study using
UK Biobank, where genetically instrumented asthma corre-
sponded to a 17% lower probability (CI: −25.3% to −8.7%) of
holding a degree62. Since in the two-sample analysis the outcome
was measured in a substantially older population63, the discre-
pancy with ALSPAC could reflect better treatment available to
younger cohorts, or asthma diagnoses made in adulthood.
A key strength of this study is triangulation across several

methodological approaches to investigate if associations are
causal. A limitation concerns the differential strength of the
genetic instruments. For ADHD, ASD and depression, the low
proportion of variance in the phenotype explained by the PGS
limited the degree to which genetic methods could be mean-
ingfully applied. For ASD, a more lenient threshold was required
for SNPs included in the PGS. Thus, genetic results for ASD and
depressive symptoms should not be interpreted as evidence of no
effect. Rather, associations may become clearer as the genetics of
these conditions becomes better understood. Migraine could only
be examined at age 10, not 13, where effects may be greater.
Recent evidence points to bias due to family-level processes in
genetic studies of BMI46. Such effects could have influenced
results, potentially overestimating BMI’s causal influence on
attainment. Work using genetic data on related family members
will be required to investigate this further. ALSPAC is not a
national survey, and over-representation of affluent groups and
young people with comparatively high educational attainment49

may limit generalizability. Analysis was restricted to individuals of
European ancestry, and results may not be generalizable to other
groups. A major strength was use of linked records for educational
attainment and school absence, meaning associations were not
influenced by recall bias. A limitation is that absence data was
restricted to age 14–16, but absence earlier in school may
differently affect attainment.
Our results add to the evidence for the importance of health for

educational outcomes. They indicate that children and adoles-
cents with a high BMI, and those affected by ADHD, are at
particular risk of not fulfilling their educational potential. They may
therefore benefit from extra support. Difficulties experienced by
children with ADHD result from an interaction or a poor ‘fit’ of the
child with a school environment in which neurodiversity is not
able to thrive, for instance, where large class sizes are the norm53,
and teachers are stressed and under pressure64. Given this
complexity, a more nuanced approach at the school level may

Table 5. Results from two-sample summary-level Mendelian
randomizationa.

Exposure and
outcome GWAS

Method N SNPs Betab SE p

Migraine80

Years of
schooling63

Inverse variance
weighted

29 −0.002 0.011 0.824

Weighted median 29 0.016 0.010 0.090

Weighted mode 29 0.018 0.011 0.113

MR Egger 29 −0.014 0.029 0.619

MR Egger—
Intercept

29 0.001 0.002 0.654

Asthma79

Years of
schooling63

Inverse variance
weighted

8 −0.023 0.005 <0.0001

Weighted median 8 −0.018 0.007 0.009

Weighted mode 8 −0.013 0.014 0.396

MR Egger 8 −0.042 0.038 0.313

MR Egger—
Intercept

8 0.003 0.005 0.632

BMI68

Years of
schooling85

Inverse variance
weighted

945 −0.158 0.010 <0.0001

Weighted median 945 −0.109 0.012 <0.0001

Weighted mode 945 −0.032 0.031 0.306

MR Egger 945 −0.042 0.028 0.137

MR Egger—
Intercept

945 −0.002 0.000 0.000

aConducted in MR Base with the TwoSampleMR package. Details of GWAS
used in Supplementary Table 3.
bBetas from Two-Sample MR represent change in the outcome (years of
schooling) per unit increase in BMI, or per unit increase in log-odds of
having asthma or migraine.
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be necessary rather than directly targeting the affected children
themselves. With a number of possible social and biological
mechanisms linking BMI to educational outcomes, including the
psychological effects of weight-based stigma or bullying victimi-
zation57,65, this may also be the case for BMI.
In an English cohort born in the early 1990s, analyses supported

a negative, causal influence of high BMI on educational
attainment and school absence. Mediation analysis supported
mediation by school absence for BMI and for ADHD, but their
influence on attainment was not fully explained. Results therefore
highlight the need for better understanding of social and
biological mechanisms by which BMI and ADHD negatively
influence attainment.

METHODS
One and two-sample Mendelian randomization
Since SNPs are assigned at conception, associations with SNPs cannot be
due to reverse causation or classical confounding41. Multiple SNPs
associated with a health condition can be combined into a PGS
representing genetic liability for a condition. Relative to single SNPs, this
improves statistical power. In one-sample Mendelian randomization, causal
influence of an exposure is estimated using the PGS as an instrumental
variable for the exposure in a two-stage least-squares model. Two-sample
Mendelian randomization requires only summary-level results from
genome-wide association studies (GWAS)66. This compares associations
of individual SNPs with an exposure and with an outcome (here,
educational attainment). If the exposure causally influences the outcome,
the same SNPs should associate with both.

Study participants
Data came from the Avon Longitudinal Study of Parents and Children
(ALSPAC), a birth cohort of children born in south-west England between
April 1991 and December 1992 (Supplementary Fig. 1). The total ALSPAC
sample comprised 15,454 pregnancies, with 14,901 children alive at
12 months. Data was collected from pregnancy onwards49,67. After
excluding related individuals, 7856 ALSPAC participants had genetic data,
of whom 6113 had GCSE records. These participants comprised the
analytic sample. For participants with genetic and GCSE data but missing
data on school absence, imputed values of school absence were used.
Observed characteristics differed between participants with and without
full data (Supplementary Table 1), and multiple imputation with chained
equations (m= 50) was used to impute remaining missing data
(Supplementary Table 2). Power calculations assuming an R2 for instrument
strength of 0.06 (taken from the BMI GWAS68) showed that in our sample
there was 80% power to detect a causal effect on GCSEs of 0.15 SD with an
SD difference in BMI69.
Ethical approval for the study was obtained from the ALSPAC Ethics and

Law Committee and the Local Research Ethics Committees. Consent for
biological samples has been collected in accordance with the Human
Tissue Act (2004). Informed consent for the use of data collected via
questionnaires and clinics was obtained from participants following the
recommendations of the ALSPAC Ethics and Law Committee at the time.
Completion of individual questionnaires was taken as consent for use of
data from that questionnaire, with additional written consent from parents
for use of clinic data. At age 16, young people and their parents gave
written informed consent for use of the young person’s genetic
information. At age 18, study children were sent ‘fair processing’ materials
describing ALSPAC’s intended use of their health and administrative
records and were given clear means to consent or object via a written
form. Education data were not extracted for participants who objected, or
who were not sent fair processing materials70,71.

Measures
ADHD symptoms were based on the Strengths and Difficulties Ques-
tionnaire hyperactivity subscale (SDQ-HI), completed by the child’s main
carer (usually the child’s mother) in questionnaires administered when
children were aged 9 and 13. The SDQ is a validated screening tool for
psychiatric disorders at these ages72. Depressive symptoms were measured
using a validated screening tool, the short-form Mood and Feelings
Questionnaire (MFQ)73, completed by children at 10 and 13. For autism, a

continuous measure of autistic social traits was derived from the Social
Communication Disorder Checklist (SCDC)74, a validated measure com-
pleted by the child’s main carer when the children were aged 10 and 13.
BMI (in kg/m2) was obtained from height and weight measurements at 10
and 13 and standardized to the 1990 UK Growth Reference by gender and
age with STATA’s zanthro package75. Resulting z-scores, representing SD
difference from reference means, were used as continuous variables.
Asthma in the past 12 months (yes/no) was defined using mother’s reports
of diagnoses, medication use and wheezing symptoms, at 10 and 13. At
age 10, but not later, mothers were asked if their children had experienced
migraine (yes/no). The study website contains details of available data
through a searchable data dictionary and variable search tool: http://www.
bristol.ac.uk/alspac/researchers/our-data/.
We consider educational attainment at the end of year 11 (equivalent to

10th grade), when most participants were aged 16, and the end of
compulsory education in the UK at the time. Attainment and school
absence came from linkage to the National Pupil Database (NPD).
Attainment was based on General Certificate of Secondary Education
(GCSE) qualifications, compulsory qualifications usually taken at age 16. We
used the total GSCE and equivalents points score, a continuous measure
(range 0–540), based on a pupil’s best eight subjects, where a one-grade
difference in one GCSE subject equates to 6 points. A small number of
scores above 464 (8A* grades) reflect pupils who took AS levels early. More
information is available from the Department of Education76. Absence data
was available for academic years 2006–7, 2007–8, and 2008–9, correspond-
ing to school years 9, 10 and 11 for different ALSPAC participants, whose
birth dates span almost 2 years. Absence data was available for all sub-
cohorts for year 11, most for year 10, but only a small minority for year 9.
We therefore considered school absence during years 10 and 11, by
imputing each separately and calculating an average post-imputation.
(GCSEs are awarded at the end of year 11, so always following the period
over which absence was considered.) Absences were analysed as the
number of half-day sessions recorded as missed, divided by the number of
sessions on which data was available. For most participants, data was
available each year for between 280 and 320 sessions, not the 390 of a
standard school year, as records cover early September until the end of
May. A small minority had data corresponding to fewer sessions (2.3% in
year 10, 4.8% in year 11).
ALSPAC children were genotyped using the Illumina HumanHap550

platform, and standard quality control procedures applied. Individuals
were excluded for gender mismatches, minimal or excessive heterozyg-
osity, disproportionate individual missingness (>3%) and insufficient
sample replication (IBD < 0.8). During genetic quality controls individuals
with non-European ancestry were removed, which is standard practice in
genetic studies to minimize bias due to ancestral population stratifica-
tion77. SNPs with a minor allele frequency of <1%, call rate of <95% or
evidence of Hardy–Weinberg disequilibrium (p-value < 5 × 10−7) were
removed. Cryptic relatedness was measured as proportion of identity by
descent (IBD > 0.1). Imputation was performed using Impute v2.2.2 to the
1000Genomes reference panel, and SNPs with poor imputation quality
(infoscore < 0.08) removed.
GWAS were used to identify SNPs associated with ADHD, ASD,

depression, asthma, migraine, and BMI. We obtained SNP associations
for ADHD78, depression48, ASD47, asthma79 and migraine80 from GWAS
including child and adult-onset conditions, since GWAS specifically of
child-onset conditions were unavailable. For BMI, we used the largest
GWAS of adult BMI. A GWAS of BMI in children exists81, but ALSPAC
comprised a substantial component of the discovery sample, and such
sample overlap can cause bias82. When choosing SNPs to include in each
PGS, the conventional threshold of genome-wide significance of p < 5 ×
10−8 was applied, except for ASD. As too few SNPs meet that threshold to
permit meaningful analysis, a more liberal threshold of p < 5 × 10−7 was
used. Among SNPs available in ALSPAC which had passed standard quality
control, we removed non-independent SNPs (linkage disequilibrium
clumping threshold r2= 0.01, distance= 10,000 kb). Each PGS was
calculated in PLINK 1.9 by summing trait-increasing alleles. These were
weighted by each allele’s regression coefficient from the relevant GWAS, so
that genetic variants with greater effects contributed more to the scores,
and standardized (details of GWAS and SNPs are provided in Supplemen-
tary Tables 3 and 4).

Statistical analysis
Analyses in ALSPAC were conducted using Stata v15. The proportion of
school sessions missed was considerably skewed, so for analysis was
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log-transformed after adding 0.01. Coefficients for absence therefore
represent percentage change. Linear regression was used to examine
associations of health conditions with the two outcomes, attainment and
logged school absence. All analyses adjusted for gender and family
socioeconomic confounders at birth: maternal age (in years) and parity
(categorized as 0, 1, 2, or 3+), maternal educational qualifications (none,
CSE, vocational qualifications, O-level, A-level, or university degree),
maternal smoking during pregnancy (yes/no), and maternal housing
tenure (owner-occupier/council rented/private or housing association
rented/other). Sensitivity analyses stratified by school type: mainstream
state schools, independent (fee-paying) and other schools (community
special schools, pupil referral units, further education colleges). Mediation
analysis using STATA’s paramed package considered associations of health
with attainment via school absence (the indirect effect) and unexplained
by school absence (the direct effect). Models were run separately within
imputed datasets and estimates combined across imputations. All analyses
clustered standard errors by school. All hypothesis tests were two-sided.
Linear regression was used to examine associations of each PGS with

GCSEs and school absence. Genetic models adjusted for gender and 20
principal ancestry components42. Where there was evidence of an
association and the PGS was a sufficiently strong instrument (first-stage
F-statistics > 10), PGSs were used as instruments for health conditions at
age 10 and 13. A concern in MR studies is pleiotropy, which can bias
exposure-outcome causal estimates. This is when alleles related to the
exposure influence the outcome via other pathways. Validity of
instruments was checked using Stata’s MRRobust package. This applies
two-sample MR methodology to the SNPs in each PGS, producing MR-
median, MR-modal and MR-Egger estimates83.
Using the TwoSampleMR package in R84, summary-level MR analyses

were performed to assess causal influence of asthma, migraine and BMI on
educational attainment in independent adult samples. SNPs associated
with educational attainment came from the most recent GWAS of years of
schooling in European-ancestry individuals63, except for BMI where an
earlier GWAS85 was used to avoid bias due to sample overlap. Details of
GWAS used are given in Supplementary Tables 2 and 3.

DATA AVAILABILITY
The informed consent obtained from ALSPAC participants does not allow the data to
be made freely available through any third party maintained public repository.
However, data used for this submission can be made available on request to the
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regarding data sharing, which is through a system of managed open access. Full
instructions for applying for data access can be found here: http://www.bristol.ac.uk/
alspac/researchers/access/. The GWAS Summary Statistics on which this analysis drew
are available from the EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/. Accession
numbers are: GCST005839 (depression), GCST007543 (ADHD), GCST007556 (ASD),
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