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Abstract

Throughout its existence, humankind invented countless means and practices to
design, construct and equip buildings. The number of ways to use these buildings,
with or without strictly following their initially intended purpose, is even more
significant. The historical and the anticipated future evolution of buildings at a
varying pace further amplifies their diversity. An already complex phenomenon of
building energy use is hence further entangled. Substantial variations also stem
from you, my reader, whose lifestyle and occupancy patterns often cause a lo-
gical nightmare for the energy analysts like myself. These are some of the chal-
lenges in large-scale building energy research. This discipline intends to mediate
the transition to a more sustainable built environment with the associated energy
supply systems. Since the discipline’s inception, the inherent modelling practices
follow either a bottom-up or top-down approach. These two seemingly incompat-
ible paradigms not only address the subject matter in a radically distinct man-
ner but differ substantially in their accuracy, sensitivity, transferability, versatility,
computability and usability. So far, both approaches have been used independ-
ently, concerned with leveraging their advantages and, generally, overlooking the
limitations of one or another. It was, however, expected that the best interests of
practice and policymaking necessitate a synergy or a combination of approaches
rather than their application individually.

Seeking ways to complement bottom-up and top-down approaches laid the
foundation for the thesis you are holding. The analysis of modelling purposes,
targeted system’s complexities, model’s characteristics and the associated uncer-
tainties were expected to provide meaningful answers. It was also understood
that, under the discipline’s quest for accurate prediction, explanatory modelling
had been largely overlooked. Formulating and testing the causal theories can im-
prove the understanding of building energy performance, the means to mediate it
and aid with developing better predictive models. Therefore, examining the inter-
play of explanatory and predictive modelling, bottom-up and top-down, is another
objective of this thesis. It does so through: i) four research papers that attempt to
answer why and to which extent the phenomenon varies beyond its best estimates;
ii) a case study that exemplifies and examines the conformity of the modelling res-
ults obtained with bottom-up and top-down reasoning. These involve a collection
of instruments from detailed building energy performance simulation, known as
white-box methods, and their cousins of somewhat darker shades. The latter, in
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iv R. Zhuravchak: Variability of building energy performance at a scale

this work, consists of the methods of probabilistic programming that involve stat-
istical hypothesis testing, univariate density estimation and Monte-Carlo simula-
tion. The methods of combinatorial analysis and numerical optimisation are ap-
plied when necessary. The modelling principles consider numerous building types,
design characteristics, energy supply solutions, occupancy-related tendencies and
geopolitical contexts. The findings are based on and supported by experimental
data, which is, together with the essential analytical instruments, made available
in Built Stock Explorer (https://buildingstockexplorer.indecol.no/). To a
large extent, this research software enables reproducing/replicating our results,
should you be curious about doing that. The Explorer is written in Python, a lin-
gua franca of today’s scientific computing, and evolves to facilitate an interactive
built stock energy analysis and the relevant (statistical) modelling.

It is shown in this study that numerically similar built stock energy model
results are achievable with either bottom-up or top-down model design. Mutual
verification of the model performance in such a way can elevate the confidence
of the decision making based on them. Furthermore, to prevent misleading urban
developments suggested by poorly performing models. Given the importance of
mediating building energy efficiency at all levels of governance, mutual verific-
ation of built stock energy modes is advocated as the means for more effective
and timely achievement of energy and environmental targets. The complexities,
diversity, scale and dynamics associated with building energy use at the built stock
level motivate model parsimony. Explanatory modelling may inform more rational
and better performing predictive model design. Also, explanatory modelling prac-
tices are expected to find applications in discovering new causal relationships,
empirically validating the existing knowledge and monitoring the evolution of
building energy performance at a scale. Better awareness about the phenomenon
and better performance of the models at predicting it further elevate the demand
for empirical data quantity and quality. This thesis advocates robust study design,
data accessibility, and transparency to address the latter.

Therefore, this academic work contributes to the body of knowledge available
in large-scale building energy research by focusing on and articulating the need for
synthesis between various modelling practices instead of further diverging them.
To the best interest of the discipline and the objectives it pursues.
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Chapter 1

Introduction

1.1 Buildings and building energy use

Recent estimates suggest that the final energy use of the building sector globally exceeds
128 EJ per annum. This number grew by 8.5% within the last decade and is expected
to keep growing in the foreseeable future (International Energy Agency 2020b). Such a
high final energy use is the driver of direct and indirect environmental impacts that, to-
gether with the other life cycle stages of the buildings, account for the estimated 40% of
global greenhouse gases emissions (International Energy Agency 2020a). Hence, decar-
bonisation of the building sector often takes precedence over the other climate change
mitigation plans at various levels of governance (Economidou et al. 2020).

An effective course of action towards improving the energy and emissions perform-
ance requires a high degree of understanding, cooperation and information exchange
across the entire value chain of the buildings, from planning, through construction and
operating stages to the demolition. These actions entail the necessity of engaging with
the manufacturers and distributors of construction materials, architectural/ engineering/
maintenance firms, energy suppliers, real estate developers, investment and banking insti-
tutions, and building owners and occupants. The initiative must be taken at all levels, from
national legislative bodies (Brøgger and Wittchen 2018; Economidou et al. 2020) through
municipal authorities to the occupants. Facilitating this dialogue requires quantifying the
current and the anticipated future state of buildings, their energy use, energy-related
implications of short- and long-term strategic developments, and the associated environ-
mental, economic and societal impacts. In the absence of accurate information describing
either or both the status quo and the future state of buildings, large-scale building energy
modelling is the only way to support these tasks. This subject area contributes primarily
to building design and touches upon the other five (technology design; urban climate;
systems design; policy assessment; land use and transportation) key areas that form a
larger body of knowledge referred to as urban energy system modelling (Keirstead et al.
(2012)).

1.2 Large-scale building energy modelling

Although the exact objectives of built stock energy modelling vary, they are in one or an-
other way concerned with energy use within certain spatiotemporal boundaries. The early
endeavours to model this phenomenon date back to the emergence of the first building
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2 R. Zhuravchak: Variability of building energy performance at a scale

energy performance standards, the plans for the development of energy infrastructure and
the other pragmatic actions. These were addressed using various resources and modelling
techniques. The taxonomy of such models, however, was unavailable until the publication
by Swan and Ugursal (2009). The authors considered several aspects that affect how the
modelling exercise is approached, e.g. purpose, methods and data needs. But a primary
distinction is made by the reasoning from known to unknown geospatial scope. Some-
times the information is available for a few buildings, and the modeller assumes that a
larger number of buildings have similar properties. Sometimes, however, the available in-
formation describes a large scope, and then the modeller attempts to determine the prop-
erties of fewer buildings, often by using exogenous information. These two paradigms are
referred to as bottom-up and top-down approaches accordingly (Fig. 1.1).

Residential
Energy

Consumption

Top-down Bottom-up

Econometric Technological Statistical Engineering

Regression
Conditional

Demand
Analysis

Neural
networks

Population
Distribution

Archetype Sample

Figure 1.1: A hierarchy of built stock energy models by Swan and Ugursal (2009)

With the built stock model classification of Swan and Ugursal (ibid.) in Fig. 1.1 being
the essential reference for over a decade, more recent modelling practices were further
diversified in terms of numerous relevant aspects that were not necessarily accommod-
ated by this hierarchical structure. A revised classification system proposed by Langevin
et al. (2020) was aimed at resolving this challenge, partially through added flexibility and
scalability. The distinction between bottom-up and top-down approaches was supplemen-
ted by the underlying technique (black-box or white-box) behind the model and grouping
of factors addressed by the model into Energy, People, Built stock and Environment (Fig.
1.2). Additional aspects proposed to determine the model’s taxonomic affiliation were sys-
tem boundaries, spatial resolution, temporal dynamics and the procedures for handling
the uncertainties. Such a quadrant-based structure reserved a separate place for distinct
methods and approaches synthesised to handle various modelling aspects into "hybrid
models".

The domain literature advocates bottom-up engineering- (or physics-)based simula-
tion as capable of accounting for numerous architectural, technical and occupant-related
characteristics of the buildings. The question of whether it does so accurately remains
unanswered, primarily because of i) the underlying complexities and ii) the importance,
and often the dominance, of non-physical aspects in determining the phenomenon. The
transfer of heat through walls and fenestration components, for example, is accurately
governed by U-values which can be modelled with most of the energy performance sim-
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Energy
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Environment

Econometric
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Classic stat.

Machine learning

System dynamics

End-use distr.

Physics-simulation

Agent-based

BlBllaclacl ck-ck-cc boxbox

WhWhhithithh te-te-tttt boxbox

Top-downTop-down Bottom-upBottom-up

Hybrid modelsHybrid models

Figure 1.2: Classification of built stock energy models by Langevin et al. (2020)

ulation software and supported by laboratory experiments. However, beyond the labor-
atory or simulation environments, many aspects related to the construction or the use of
buildings significantly affect the actual energy performance, overlooking which leads to
the performance gap. Accounting for these details and their influence, individually and
jointly, is often irrationally demanding for the intended model’s purpose. Alternatively,
bottom-up approaches that rely on black-box methods with the empirical data may ad-
dress some of these complexities by generalising (approximating) the relationships. The
use of statistical and machine learning methods (the boundary between the two being
somewhat fuzzy) is associated with the risks stemming from an indirect account for the
underlying physical mechanisms. Likewise, through empirical data available at a stock
level, top-down approaches may (to some extent) explain the phenomena and predict
future developments. Their use, however, is associated with a common opinion that the
achievable level of technical details and end-uses is not sufficient for some practical ap-
plications (Swan and Ugursal 2009; Kavgic et al. 2010; Österbring et al. 2016; Reinhart
and Davila 2016; Soto and Jentsch 2016; Moghadam et al. 2017; Brøgger and Wittchen
2018; Langevin et al. 2020). The latter is likely to stem from the absence of studies that
suggest the opposite.

In addition to illustrating the diversity of modelling techniques, the available classi-
fication systems are meant to support their choice, given the intended application and
the available resources. This objective is undermined by several problems, a vague un-
derstanding of the predictive capabilities of bottom-up versus top-down modelling being
one of them. The others often involve a limited instrumental and methodological basis
for accommodating the phenomenon’s complexity. Thus, for example, Swan and Ugursal
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(2009) distinguish between bottom-up and top-down approaches based on geospatial
scope propagated by the model from known to unknown. Langevin et al. (2020) used
broader terms "aggregated system" and its "constituent subsystems". It is debatable what
the latter convention could refer to i) energy sectors, e.g. district heating system and the
power grid; ii) building types, e.g. residential, commercial, educational; iii) urban sys-
tem, buildings, transport, infrastructural components; iv) end-uses, e.g. heating, lighting,
appliances; or any other definition of system’s components. Because of the numerous spe-
cificities that these subsystems may be subject to, modelling each of these may require a
distinct approach or a unique collection of techniques. It is often of practical interest to
predict short-term future development of the phenomenon based on the previous observa-
tion of the same phenomenon, which is the problem dealt with in time series forecasting.
This type of modelling does not imply changes in the spatial levels and is therefore in-
compatible with these classification systems.

Semantical challenges are likewise common. Hussain et al. (2016), for example, relies
on the Seasonal Autoregressive Integrated Moving Average (model) (SARIMA) model and
referred by Langevin et al. (2020) as top-down black-box econometric modelling. SAR-
IMA, however, is a time series forecasting model with an origin in applied mathematics
and used in numerous domains, micro-and macro-economics being only some of them.
This model is more naturally classified as statistical. What is referred to as econometric
and technological modelling techniques have their roots in the domain of applied math-
ematics/statistics. A model classification system proposed by Li et al. (2017), also based
on the one of Swan and Ugursal (2009), partially resolves this inconsistency by adding a
"statistical analysis" as a subclass in the top-down branch.

The distinction between black- and white-box modelling, although it may be seen as
rather radical in other disciplines, has substantial semantical and methodological short-
comings in building energy research. To be classified as a white-box model, each element
of the built stock needs to be modelled explicitly and in detail. Despite explicitly mod-
elling some of its components, all the modelling practices that involve approximations,
assumptions, and simplifications are not white-box models anymore. This problem is es-
pecially relevant to those models involving archetype/typical/representative buildings
(Brøgger and Wittchen 2018), expected occupancy schedules, weather profiles and oth-
ers. A reverse statement also holds when a principally black-box model acquires some
components addressed by the established knowledge in physics. Practical gains of com-
bining bottom-up physics-based and bottom-up data-driven models were elaborated by
Kavgic et al. (2010), Zhao and Magoulès (2012) and Wei et al. (2018), who defined such
modelling practices as "hybrid" (Kavgic et al. 2010) and "grey" (Zhao and Magoulès 2012;
Wei et al. 2018) accordingly. Purely white-box modelling of a stochastic system, such as
built stock, is not only irrational but practically impossible.

Modelling practices in building energy research are compromised by such dilem-
mas, and the attempts to classify/diverge them entangle the subject matter even further.
Moreover, the excessive focus on one technique or approach and disregarding the other
elevates the risks of developing irrelevant theory, obtaining unreliable outputs, and mak-
ing questionable or misleading conclusions. In applied mathematics, such a situation is
referred to as "the error of the third kind"1, i.e. arriving at an accurate answer to a poorly
formulated question. Both the original (Fig. 1.1) and the updated (Fig. 1.2) classifica-
tions advance the understanding of various modelling techniques, their capabilities and
shortcomings, data sources and computational resources required. However, it becomes

1Type I (rejecting the true hypothesis) and Type II (accepting the false hypothesis) of errors in
statistical hypothesis testing are discussed further in Chapter 2.
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evident that the phenomenon of such complexity, scale and dynamics cannot be fully ex-
plained and accurately modelled using a single technique. The tendency for comparison
across models further shifts the attention to the mechanics of modelling, away from its
two fundamental purposes. Namely, i) practical benefit of the predictive accuracy and ii)
knowledge gained about the nature of the phenomena in question.

The purposes and the phenomena that the models are focused on are likewise de-
batable. A holistic research concept of Energy Epidemiology proposed by Hamilton et al.
(2013) emphasises which components of the system should be modelled, with the exact
modelling techniques being of secondary importance. The authors propose to consider
energy use at the population level as a composite of i) (physical) energy processes and
systems, ii) energy practices (interactions between socio-cultural aspects and the phys-
ical system) and iii) energy context (external factors affecting the structure of these sys-
tems). In health sciences, these components are addressed through bio-medical, socio-
behavioural, and environmental/exposure models. The article has suggested seeking their
equivalents in building energy research as a promising way ahead. Alternatively, Limpens
et al. (2019) suggests distinguishing the models by their pragmatic purposes, which is
either simulation or optimisation of the urban energy system. Finally, Ahmad et al. (2018)
suggested classifying data-driven built stock energy models purpose-wisely as: bench-
marking, energy mapping, energy forecasting and energy profiling.

Thus, for the models to facilitate overcoming the challenges of sustainable future
urban systems, the definition of i) modelling purpose and ii) system components and
their relationships must take precedence. Then there are several criteria for the models
to cope with. In addition to the accuracy, sensitivity and transferability(reproducibility)
of the models discussed by Soto and Jentsch (2016), three other essential properties
that affect the appropriateness of built stock energy models were identified by Sousa
et al. (2017): versatility, computability, and usability. A rational decision on modelling
approaches/ techniques/ methods/ resources addresses the tradeoffs between these cri-
teria. However, numerous sources of uncertainty associated with modelling undermine
each of them.

1.3 Uncertainties in large-scale building energy model-
ling

The engineering and physics-based foundations of the discipline traditionally focus on
best estimates of the phenomenon. Ideally, the deviation from these estimates are neg-
legeable either in magnitude and/or in frequency of their occurence. Shifting the attention
from individual building to a large, heterogeneous, complex, dynamic, stochastic system
such as built stock, elevates the magnitude of potential errors. The extra complexities
imply simplifications and assumptions in model design, and often affected by the lack of
information about the true behaviour of the phenomena. All of these may lead to the risks
of biased model outputs which may ultimately compromise the effectiveness of the de-
cision making based on such models. Dealing with uncertainties is therefore a recurring
topic in the discipline.

1.3.1 Model uncertainties

By adapting some modelling practices used in medicine (similarly to Hamilton et al.
(2013)), Booth et al. (2012) defined three sources of uncertainties encountered in build-
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ing energy research: i) aleatory uncertainty, ii) heterogeneity, and iii) epistemic uncer-
tainty, all of which are discussed further.

Natural stochasticity (or aleatory uncertainty)

The energy performance of the buildings is often affected by factors that lack either order
or pattern or coherence or a combination of these and are therefore considered random.
As a result, they may cause substantial variabilities in energy performance even across
identical buildings. Two large groups of such factors are occupancy-related and local
climate-related. The individual occupancy schedules, choice of appliances, cooking habits,
indoor environmental quality preferences and building maintenance practices represent
the former—the latter stems from factors related to the outdoor temperature, precipita-
tion, irradiance, wind and others. They vary across occupants, locations and buildings,
but they also fluctuate on a daily, seasonal and annual basis.

Heterogeneity and non-representativeness

Heterogeneity implies that the buildings with a particular attribute in common are dis-
tinctive in terms of the other attributes. The archetype or representative building is defined
based on architectural characteristics, age, use purpose and other factors common for the
group of buildings. However, the properties of the envelope, energy supply technologies
and appliances may vary within the archetype. This uncertainty can be potentially elim-
inated by a more detailed definition of what attributes define the group. Considering the
diversity of attributes and factors, the number of their distinct combinations grows to the
extent that makes it unpractical to account for all of them individually. Distinguishing
between the attributes that do from those that do not affect the phenomenon at a stock
level is therefore essential.

The missing knowledge (or epistemic uncertainty)

Whereas aleatory uncertainty and heterogeneity accommodate the properties of the phe-
nomenon, epistemic uncertainty is concerned with how the model represents this phe-
nomenon. It involves: i) simplifications and assumptions behind the choice of the model
structure and model parameters; ii) simplifications and assumptions about the future de-
velopments, e.g. scenarios; iii) assumptions about the applicability of the model in a dif-
ferent geospatial scope, temporal horizon and other.

1.3.2 Data uncertainties

In addition to the sources of uncertainty mentioned above, modelling practices involving
empirical data need to address several other uncertainties. The studies typically elaborate
on those associated with data collection (sampling bias, noise filtering, intentional or
unintentional misreporting) and the downstream data wrangling (imputation of missing
data, outlier and duplicated records detection/removal).

1.3.3 Quantification of uncertainties

Recent modelling practices tend to account for some of them either as a part of a formal
uncertainty analysis procedure or as an intrinsic component of the model. A compre-
hensive review of methods and approaches used to address the uncertainties in the built
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stock energy research was carried out by Tian et al. (2018) where the authors distinguish
between forward and inverse uncertainty propagation methods. The former, commonly
represented by sampling-based methods, implies systematically altering model inputs or
parameters to obtain a set of likely outputs. The latter is concerned with relating already
observed variability in empirical data to the model parameters and inputs. These two
approaches are considered mutually exclusive and applicable to distinct modelling ap-
proaches. Their synergy toward more accurate modelling is not present in the literature.

1.4 Explanatory modelling

Whereas the general philosophy of science defines two distinct scientific goals (Dubin
1969; Shmueli and Koppius 2009), namely i) prediction and ii) understanding (explain-
ing) the phenomena, the literature on large scale building energy research (and the mod-
els accordingly) is strongly dominated by the former. The latter is excluded from the model
classification systems of both Swan and Ugursal (2009) and Langevin et al. (2020). How-
ever, explanatory modelling is essential for testing the causal theories/hypotheses that
have numerous implications for policy and practice.

1.5 Research outline

1.5.1 Research motivation and research questions

There is a noticeably growing interest in models for addressing various open questions
about the energy performance of the built stock for research and practical applications. In-
stead of using a single method/technique, a more sophisticated model design appears by
combining these to minimise the uncertainties and maintain a rational balance between
accuracy, sensitivity, reproducibility, versatility, computability and usability. Numerous ex-
amples are available in the literature where hybrid bottom-up models were used for pre-
dictive purposes. Nevertheless, the attempts to harmonise bottom-up and top-down mod-
elling are absent in the domain to the best awareness of the authors. Hence, a primary
research objective of this work is to examine the conformity of bottom-up and top-down
model results. The conformity may enable mutually verifying and synthesising the mod-
els, mitigating the uncertainties and better addressing the model appropriateness criteria.
Substantial attention is given to reflect upon the parsimony and interpretability of such
models in light of the "Occam’s razor"2 with their implications on these criteria. These
findings are expected to contribute to the ongoing scientific debate on modelling tech-
niques most applicable for strategic energy planning for cities and communities.

To achieve the main objective, this research examines the capability of the models to
predict under the acute variability of the phenomenon. Quantifying the variability is, as
shown later, enabled by explanatory modelling. As a secondary objective of this work, we
exemplify such modelling and outline the necessity of its use in the discipline to develop
better predictive models and build better theoretical foundations for building energy per-
formance at a scale.

These objectives are addressed by answering a set of research questions:

2In predictive modelling and knowledge discovery, "Occam’s razor" is the term used to emphas-
ise the preference for a simpler model or theory amongst the competing alternatives, which often
undermines the accuracy of the analytical conclusions. See Domingos (1999) for more details.
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1. How can energy modelling assist with addressing the sustainability of the built
stock?

2. How to quantify the variability of building energy performance and how to accom-
modate these variabilities in predictive modelling?

3. How, given these variabilities, to make robust conclusions about what affects the
phenomenon at a stock level and what is not?

4. What is the role of explanatory modelling in i) better understanding the nature of
the phenomena and ii) improving the predictive modelling practices?

5. Do the bottom-up and top-down reasoning lead to conforming model outputs, and
why should we care if they do not?

6. What are the demands from experimental data to enable the above?

1.5.2 Research design and publications

The answers to the research questions are provided by examining and synthesising four
publications that constitute this thesis. Each of these represents either explanatory or pre-
dictive modelling practice, distinct design principles and uncertainty propagation meth-
ods, as illustrated in Fig. 1.3.

Bottom

Top

Bottom Top

Paper I⇔
[Forward]

Paper II⇑
[Forward]

Paper III⇓
[Inverse]

Paper IV⇔

[Inverse]

Information
available

Information
modelled

- Explanatory

- Predictive

Figure 1.3: Relevance of papers by scope, approach and uncertainty propagation

Fig. 1.3 highlights several design aspects of this research. The spatial levels of the
initially available and the modelled information are either bottom (an individual or a few
buildings) or top (a larger geopolitical zone, e.g. urban, regional or national scale). A
list of four symbols [⇔, ⇑, ⇓, ⇔] is used through the thesis to denote the scope of the
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modelling approach that the paper represents: i) Single building; ii) Bottom-up model; iii)
Top-down model and iv) Built stock level accordingly. Bottom-up and top-down reasoning
imply changing the spatial level from bottom to top and from top to bottom accordingly.
Papers II⇑ and III⇓ exemplify these techniques. Papers I⇔ and IV⇔ represent the model-
ling practices not accommodated by the available classification systems. They are used at
distinct spatial levels but do not involve the change.

The modelling objectives are likewise distinct, whereas papers I⇔, II⇑ and III⇓ are
focused on predicting the phenomenon with uni- (I⇑) and multi-variate techniques (II⇑,
III⇓), paper IV⇔ represents the modelling of explanatory kind, i.e. establishes the causal
relationships between the phenomenon and the explanatory variables.

Two distinct uncertainty propagation methods are involved in these models. Forward
propagation is an intrinsic component of the time series forecasting model in paper I⇔,
where the best estimates of the future (and the estimates of uncertainty) are based on the
past observations. In paper II⇑, the uncertain element is the extent to which various tech-
nologies will be deployed in the future, likewise propagates forward. Inverse propagation
is carried out in papers III⇓ and IV⇔, where the dispersion of the univariate distribution,
as a measure of uncertainty, is reduced stepwise by adding the explanatory variables.

The papers quantify the variability of energy performance or building attributes either
at a building level (Paper I⇔) or at a stock-level (papers II⇑, III⇓, IV⇔). The rationale for
doing this however varies for each of these: to obtain best estimates of the phenomenon in
time series forecasting (paper I⇔); to determine the most frequent, and therefore repres-
entative, parameter of the building (paper II⇑) and to infer the effect of building attribute
on the energy performance and to obtain a statistical model for it (papers III⇓ and IV⇔).

These distinct design choices and methodological and instrumental characteristics are
intended to address several modelling purposes discussed below.

Paper I⇔
Ruslan Zhuravchak, Natasa Nord and Helge Brattebø (2019a). ‘Control strategy for

battery - supported photovoltaic systems aimed at peak load reduction’. In: E3S Web Conf.
111, p. 05027. DOI: 10.1051/e3sconf/201911105027

R. Z: Conceptualisation, Methodology, Software, Formal analysis, Writing - Original
Draft, Visualisation N. N: Validation, Writing - Review & Editing, Supervision H. B: Valid-
ation, Writing - Review & Editing, Supervision.

The paper objectifies developing the means for more rational scheduling of electric
battery operation to minimise peak loads and maximise the photovoltaic energy self-
consumption. Such active demand-side management is intended to reduce peak grid load
and peak PV feed-in, thus preventing the otherwise necessary grid reinforcement and in-
frastructure expansion, with the associated costs for energy consumers, distributors and
producers. The advocated instrumental basis for achieving this objective are: i) short-term
(day-ahead) univariate energy use forecasting model, ii) day-ahead PV output forecast-
ing and iii) load matching. The key focus of the paper is on designing/parameterising the
model for predicting and matching the forecasted electric energy use to the forecasted
PV generation. This modelling is carried out at a single building level. The paper also
elaborates on uncertainty in forecasting as the critical aspect affecting the benefits of the
proposed scheduling approach.

Paper II⇑
Ruslan Zhuravchak, Natasa Nord and Helge Brattebø (Oct. 2019b). ‘Influence of emer-

ging technologies deployment in residential built stock on electric energy cost and grid
load’. In: IOP Conference Series: Earth and Environmental Science 352, p. 012038. DOI:
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10.1088/1755-1315/352/1/012038
R. Z: Conceptualisation, Methodology, Software, Formal analysis, Writing - Original

Draft, Visualisation N. N: Conceptualization, Software, Formal analysis, Writing - Original
Draft, Supervision H. B: Validation, Writing - Review & Editing, Supervision.

The paper examines the likely long-term, large-scale penetration of several technolo-
gies related to residential building energy use and the associated changes in energy costs
and grid interaction patterns. The proposed methodological and instrumental means are
intended to: i) inform strategic energy planning of the power infrastructure with its cap-
ital budgeting and ii) mediate the acceptance of such emerging technologies in the best
interest of a sustainable built environment. This modelling purpose requires: i) detailed
(hourly or sub-hourly) power demand and grid feed-in profiles associated with each com-
bination of technologies under consideration; iii) energy cost profile with the same fre-
quency and iii) the means to accommodate the uncertain future developments concerning
the acceptance of new technology in the population. The modelling principles proposed
by the paper synthesise these components and address the problem through bottom-up
reasoning where white-box energy performance simulation results obtained for a single
building are further upscaled to the stock level.

Paper III⇓
Ruslan Zhuravchak, Raquel Alonso Pedrero, Pedro Crespo del Granado, Natasa Nord

and Helge Brattebø (2021). ‘Top-down spatially-explicit probabilistic estimation of build-
ing energy performance at a scale’. In: Energy and Buildings 238, p. 110786. ISSN: 0378-
7788. DOI: 10.1016/j.enbuild.2021.110786

R. Z: Conceptualisation, Methodology, Software, Formal analysis, Writing - Original
Draft, Visualisation R. A. P: Conceptualisation, Software, Formal analysis, Writing - Ori-
ginal Draft, Visualisation P. C. del G: Validation, Writing - Review & Editing N. N: Valida-
tion, Writing - Review & Editing, Supervision H. B: Validation, Writing - Review & Editing,
Supervision.

This study emphasises the need for spatial mapping of the energy use hotspots within
the built environment for more rational planning of the energy system and urban develop-
ments. Such modelling must address the extreme heterogeneity of the built environment
and the modelled phenomenon’s complexity. Under such circumstances, with the need
for an accurate yet parsimonious model, the paper advocates top-down reasoning based
on experimental data available at a higher spacial level. Although the modelling object-
ive is to predict the phenomenon, some elements of explanatory modelling are utilised
to inform the predictive model’s design and elevate its predictive performance. Natural
handling of uncertainties is considered one of the main strengths of such modelling.

Paper IV⇔
Ruslan Zhuravchak, Natasa Nord and Helge Brattebø (2022). ‘The effect of build-

ing attributes on the energy performance at a scale: an inferential analysis’. In: Building
Research & Information 0.0, pp. 1–19. DOI: 10.1080/09613218.2022.2038537. eprint:
https://doi.org/10.1080/09613218.2022.2038537

R. Z: Conceptualization, Methodology, Software, Formal analysis, Writing - Original
Draft, Visualization N. N: Conceptualization, Validation, Writing - Review & Editing, Su-
pervision H. B: Conceptualization, Validation, Writing - Review & Editing, Supervision.

This study elaborates on the need for better understanding of building energy use at
the stock level and its causal relationships, direct and indirect, with the building attributes.
The obvious benefit of such information is the possibility of mediating the phenomenon
through socio-economic and regulatory mechanisms, namely by screening the options
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and identifying the opportunities within the strategic urban development programs. The
paper also advocates the use of explanatory modelling results to arrive at a better pre-
dictive model, hence partially based on methods and instruments discussed in paper III⇓.
The discussion on the latter is more detailed compared to paper III⇓. Such explanatory
modelling is carried out at the stock level and does not involve the change of the spatial
scope. However, a statistical model that approximates the variability and mimics the data
generation process may have, amongst the others, a predictive purpose.

Author’s contribution

Paper I⇔
Lead authorship; case study design; descriptive analysis of time series dataset; designing
and programming a sequence of: i) fitting the SARIMA model, ii) k−fold Cross-Validation,
iii) Grid Search over the parameters space, iv) quantification of the goodness-of-fit, v)
model selection, vi) sending the data requests and processing the response from Solcast
application programming interface (API); computational implementation of the Dicho-
tomous (Binary) Search algorithm for load matching; carrying out the simulation; ana-
lysis of simulation results; presenting the results at the 13th REHVA World Congress CLIMA
2019, Bucharest, 2019-05-26 - 2019-05-29.

Paper II⇑
Lead authorship; case study design; descriptive analysis of the Energy Performance Cer-
tificate (EPC) dataset; design and programming the sequence of: i) a nested Monte Carlo
(simulation) (MC) procedure, ii) load data aggregation and iii) cost data aggregation;
carrying out the simulation; analysis of simulation results; presenting the results at the
1st Nordic Conference on Zero Emission and Plus Energy Buildings 2019, Trondheim,
2019-11-06 - 2019-11-07.

Paper III⇓
Lead authorship; case study design; descriptive analysis of the EPC dataset and the Ca-
dastral System’s dataset; design and programming of the estimation and simulation com-
ponents of the study; carrying out the simulation; analysis of simulation results.

Paper IV⇔
Lead authorship; case study design; descriptive analysis of the EPC dataset; computational
implementation of the Cartesian product between building attributes; programming the
procedures for i) pairwise Kolmogorov-Smirnov (test) (KS) between samples per com-
bination of attributes, ii) density estimation and goodness-of-fit metrics extraction per
sample; carrying out the simulation; analysis of simulation results.





Chapter 2

Methods and materials

This chapter describes the methodological basis of this doctoral work. Section 2.1 elabor-
ates on the overall course of actions taken with their relevance to the research questions
and the factors that substantially affected the academic output. The conceptual basis of
this work, to a large extent, utilises the applicable methods of probability theory dis-
cussed in Section 2.2 and the empirical dataset described in Section 2.3. These methods
and data are the components of the research methodology followed in the four articles
(Section 2.4) and the case study (Section 2.5). The latter is intended to be an illustrative
example that facilitates answering the relevant research questions. Within the research
accessibility, reproducibility and replicability enhancement initiative taken by the author
and the collaborative partners, some of the data (Section 2.3) and the computational
implementation of some of the methods (Section 2.2) are made available in Built Stock
Explorer: https://buildingstockexplorer.indecol.no.

2.1 Research process

This doctoral work and the associated research process spanned from late 2017 to early
2021. The initial steps built the awareness of the need for modelling and understanding
the kinds of models necessary for various applications related to current practices and
policymaking. Modelling customs in the discipline appeared as case-specific, following
diverse design choices and numerous unique combinations of methods and instruments,
in the best interest of their targeted purpose. Although this tendency may be seen as
the consequence of a broad range of modelling objectives they pursue, the underlying
phenomenon is the same and therefore, numerical outputs are expected to: i) adequately
represent the reality, despite the variability, and ii) conform across the diverse modelling
approaches. Arriving at such outputs from modelling exercises with different reasoning,
design and instrumental basis was set as an objective of this research. Further analysis of
these results against the model appropriateness criteria was expected to provide valuable
insights into the research questions set by this thesis.

The first modelling exercise was focused on short-term energy forecasting of the
simplest component of the built stock - an individual building and resulted in paper I⇔.
This study examined the temporal variations of energy use, proposed a predictive model
that reflected upon these variations and assessed the potential for peak load reduction by
utilising photovoltaic energy in an alternative and more rational manner. However, pro-
jecting the analytical conclusions obtained for an individual building to the stock level,

13
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no matter the objective, needs to consider the heterogeneity of the buildings.

Hence, the energy-related technological variability of a building with its implications
on the stock-level modelling results was examined in paper II⇑. This study attempted
to predict some of the implications of the expected future stock-wide adoption of tech-
nologies considered novel today. It is concluded that the idealisation of all variabilities
except those modelled explicitly is a substantial drawback of the bottom-up reasoning
with white-box modelling elements.

To address such challenges, further work consisted in examining the alternative mod-
elling techniques, those having the reasoning from experimental data that reflects all
sources of variability in the phenomenon targeted, i.e. top-down approaches. Despite
substantial advantages, these techniques were underrepresented in the discipline. This
paradigm of top-down modelling is elaborated and advocated in paper III⇓ as capable of
parsimonious and uncertainty-aware modelling. Within and beyond the illustrated object-
ive of building energy mapping. It is, however, emphasised in paper III⇓ that leveraging
the advantage of this approach necessitates a rational choice of the explanatory vari-
ables. These variables, often reflecting specific architectural, technical, geopolitical and
occupancy-related considerations, must have empirical evidence of a causal relationship
with the phenomenon at a stock level.

Finding and validating the causal effects is the subject of explanatory modelling,
which was likewise used seldom in the discipline. Methodological and instrumental means
for doing that are discussed in paper IV⇔, together with the illustrative examples provided
where applicable.

Hence, papers I⇔, II⇑, III⇓ and IV⇔ contribute to answering the research question
1. Question 2 is concerned with the instrumental means discussed in papers I⇔, II⇑ and
III⇓. Quesions 3 and 4 are partially answered in papers III⇓ and IV⇔. The case study
(Section 2.5) adopts some of the instrumental basis of papers II⇑ and III⇓ and elaborates
on the questions 3 and 4. Question 5 is fully addressed through a case study. The answer
to question 6 reflects on the quality of experimental data used in papers I⇔, II⇑, III⇓, IV⇔
and in the case study.

Providing access to the growing amount of data and making relevant methods avail-
able within and beyond this research was a primary motive for developing Built Stock
Explorer. This software is expected to facilitate a better understanding of energy-related
phenomena in the built stock and foster more accurate modelling and more rational de-
cisions.

This research progress and the output of it has been positively affected by the au-
thor’s affiliation to international research and the professional community involved in the
built stock energy modelling: IEA EBC Annex 70: "Building energy epidemiology". The
scientific objectives, problems, and questions raised by this thesis were also examined
within the collaborative workflow. The context of numerous specific problems and, sub-
sequently, their solutions were developed in close collaboration with several industrial
partners. The contextualization of the problems raised in paper I⇔ - by Trondheim Muni-
cipality, Sintef Building Energy Research and FME Zen. The problem addressed in paper
II⇑ contextualized by Haugaland Kraft AS and Balcoo. Papers II⇑ and IV⇔ largely reflect
on the needs for advanced analytics and data-driven decision making towards more sus-
tainable built environment formulated by Enova and the Norwegian Water Resources and
Energy Directorate (NVE). In particular, with relevance to their mission in promoting or
discouraging some energy-related tendencies in the population. Enova also contextualised
and supported several features currently available in the Built Stock Explorer.
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2.2 Methods of probabilistic programming

2.2.1 Random variables

Probabilistic programming represents the phenomenon by means of random variable (r.v.)
X , which is a function that generates real numbers� from either countable or uncountable
sample space S:

X : S→ � (2.1)

If the sample space is uncountable, the r.v. X is said to be a continuous random variable
(c.r.v.). Alternatively, for the countable S, r.v. X is a discrete random variable (d.r.v.). A
single observable realisation (outcome) of either c.r.v. or d.r.v. X is the random variate x .
Establishing the properties of c.r.v. or d.r.v. X given a set of random variates x observed
in the data is the subject of statistical inference. Statistical inference is applied to the
empirical distribution (Section 2.2.2) of x with certain parameters (Section 2.2.3) and
consists of density estimation (Section 2.2.4) and statistical hypothesis testing (Section
2.2.5). The focus of this section is on c.r.v. since this is the type of r.v. that all the papers
I⇔, II⇑, III⇓, IV⇔, as discussed in Section 2.4 and the case study (Section 2.5) deal with.
The majority of metrics and methods discussed, however, are also applicable for the d.r.v..

2.2.2 Density and cumulative density

For the c.r.v. X , a Probability Density Function (PDF) fX (x) defines the relative likelihood
of random variate x to occur through the entire sample space. PDF has two essential
properties:

1) : fX (x)≥ 0 ∀x ∈ �;

2) :

∫ ∞
−∞

fX (x)d x = 1.
(2.2)

The integral of the PDF is the Cumulative Distribution Function (CDF) FX (x):

FX (x) =

∫ x

−∞
fX (t)d t. (2.3)

The properties of the PDF in Eq. 2.2 define the limits of CDF: FX (x) ∈ [0, 1].
Given the available PDF or the CDF, the probability of c.r.v. X producing x in range

x ∈ [a ≤ x ≤ b] can be evaluated as follows:

PX [a ≤ x ≤ b] =

∫ b

a

fX (x)d x = FX (b)− FX (a). (2.4)

Fig. 2.1 illustrates the PDF (top), CDF (bottom) and the meaning of probability that
follows from Eq. 2.4.

2.2.3 Parameters of distribution

The distribution of empirical data is characterised by several parameters (summary stat-
istics) related to central tendency, dispersion and shape. Each communicates important
quantitative information measured on the sample and may further be projected to the
population.
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Figure 2.1: PDF, CDF and the meaning of probability

Central tendency

Central tendency suggests a particular point of the distribution where the random variates
are most likely to occur and indicates the best estimates of the uncertain phenomenon.
For random variates x with n observations, the central tendency is quantified by:

• arithmetic mean: x = 1
n

∑n
i=1 xi

• geometric (normalised) mean: g = n
�∏n

i=1 xi• median - middle-most value in a sorted (parentheses (...) are used to denote sorting
operation) list of values:

�m= �(x)[ n
2 ] i f n is even;

(x)[ n−1
2 ]+(x)[

n+1
2 ]

2 i f n is odd.

• mode - most frequent value (peak of density): �m= argmax
x∈S

fX (x)

Fig. 2.2 illustrates arithmetic and geometric mean, median and mode of the non-
symmetric alpha-distributed random variates x .
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Figure 2.2: Central tendency of the distribution

Dispersion

Dispersion of the empirical distribution is a measure of a distance from some central ref-
erence towards the region with a smaller likelihood of its occurrence. Standard deviation,
variance, percentiles, quartile and range are the parameters of dispersion:

• Standard Deviation (STD): S =
�

1
n

∑n
i=1(xi − x)2;

• variance: S2 = 1
n

∑n
i=1(xi − x)2;

• i th percentile - a value below which i percent of records can be found;
• quartile - [0th (minimum), 25th, 50th (median �m), 75th, 100th (maximum)] per-

centiles denoted as [Q0, Q1, Q2,Q3, Q4] accordingly;
• Interquartile Range (IQR): IQR=Q3−Q1 - the range between 25th and 75th quart-

iles;
• range (peak-to-peak): R = Q4 −Q0 - the difference between maximum and min-

imum values.

Fig. 2.3 illustrates the STD, IQR and a percentile of the non-symetric alpha-distributed
random variates x also shown in Fig. 2.2.

Shape

The shape of the distribution is characterised by location, scale, skewness and kurtosis.
Location and scale measure the deviation from the standard form of distribution with
zero and one for location and scale parameters accordingly. The location represents the
horizontal shift of the distribution, whereas scale controls its width. Fig. 2.4 illustrates
several variations of these parameters of normal distribution, for which the location and
scale parameters correspond to the mean μ and STD σ. Normal distribution with μ = 0
and σ = 1 in Fig. 2.4 is a standard normal distribution.

Given the PDF f (x) of a standard form, the location- (loc) and scale- (scale) adjusted
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Figure 2.3: Dispersion of the distribution

Figure 2.4: Location and scale of the distribution

PDF f is computed as:

f (x , loc, scale) =
1

scale
f (

x − loc
scale

).

A location- and scale-adjusted CDF F is given as:

F(x , loc, scale) = F
(x − loc)

scale
.

Skewnes characterises a non-symmetric tendency in the distribution and may be
quantified through Pearson’s median skewness coefficient:
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gp =
3(x − �m)

S
.

Positive skewness occurs if the peak of density is shifted to the right compared to
symmetric (unskewed) distribution and vice-versa. The analysis of skewness, so as the
comparison between mean x and median (�m), may reveal the presence of the outliers
in the data. Given that the median is less affected by the outliers, skewness is negative
if x < �m. Fig. 2.5 illustrates a standard normal distribution (μ = 0,σ = 1) with various
skewness.

Figure 2.5: Skewness of the distribution

Kurtosis is a measure of sharpness or convexness associated with the peak of density.
Using the Fisher’s definition and method of moments, amongst the other ways, kurtosis
may be computed as:

g =
1
n

∑n
i=1(xi − x)4

( 1
n

∑n
i=1(xi − x)2)2

− 3.

Fig. 2.6 illustrates three standard (loc = 0, scale = 1) distributions with various
kurtosis.

2.2.4 Density estimation

Density estimation is a procedure used to approximate the underlying data generation
process by fitting the PDF to the empirical sample. One of the methods used for this
purpose is Maximum Likelihood Estimation (method) (MLE). In MLE, the overall objective
is set as follows: given the observed sample x : [x1, x2, x3, ..., xn] and the specific type of
distribution with PDF fX (x |θ ), find the vector θ of shape parameters that can generate
such sample. This brings to the task of maximising the log-likelihood function of a form:

LL(θ , x) = ln [ fX (x1|θ ) · fX (x2|θ ) · fX (x3|θ ) · ... · fX (xn|θ )] =
ln[ fX (x1|θ )] + ln[ fX (x2|θ )] + ln[ fX (x3|θ )] + ...+ ln[ fX (xn|θ )] (2.5)
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Figure 2.6: Kurtosis of the distribution

With the Eq. 2.5, the objective function of MLE is defined as:

f (θ , x) = maxθ

�
ln

	
n∏
i

fX (xi |θ )
��
= maxθ

�
n∑
i

ln[ fX (xi |θ )]
�

(2.6)

The solution for this objective function may be found through several non-linear op-
timisation techniques, e.g. Fisher scoring or gradient-based methods. Some of the most
common scientific computing applications rely on downhill simplex (Nelder – Mead)
(Nelder and Mead 1965) method for MLE.

2.2.5 Statistical hypothesis testing

The goal of statistical hypothesis testing, summarised by Downey (2014), is to answer:
"Given a sample and an apparent effect, what is the probability of seeing such effect by
chance?". The testing involves four steps:

1. selecting the test statistic that quantifies the apparent effect;
2. asserting the null- and the alternative hypotheses;
3. computing the p−value;
4. concluding about the statistical significance of the apparent effect given the avail-

able sample.

Test statistic represent the effect of interest that measures the difference between two
groups. Papers III⇓ and IV⇔, for example, make use of the Kolmogorov-Smirnov (test)
(KS) statistic (D−value, illustrated in Fig. 2.7) which is the supremum of the absolute
difference between two empirical CDFs:

D = sup
x
|FX1(x) − FX2(x)| (2.7)

where:
FX1(x) - CDF of sample being tested;
FX2(x) - CDF of the sample against which the test is carried out.
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Figure 2.7: D−statistic

D−statistic highlights the non-conformity between two samples, no matter where
in the range of possible values it occurs. Other test statistics may be used to quantify
e.g.: i) the absolute or the relative difference between means, medians or modes; ii) the
difference related to the dispersion metrics, e.g. STD and IQR; iii) correlation metrics,
e.g. Pearson’s or Spearman’s coefficients; iv) differences in proportions and other.

The formulation of null- and alternative hypotheses asserts statements about the ap-
parent effect at the population level. The null hypothesis typically asserts the absence of
any effect measured by test statistics.

p−value measures the likelihood of obtaining the observed test statistic if the null hy-
pothesis holds true. E.g. if the null hypothesis asserts the absence of the effect, how likely
is it to observe the effect as large as the empirical samples suggest? Fig. 2.8 illustrates
p−value as the probability of obtaining the observed or larger test-statistics x . Estimation
of p−values involve the use of asymptotic distribution ( fX (x), following the example in
Fig. 2.8) of test statistic. In the case of KS statistic D (Fig. 2.7) used in papers III⇓ and
IV⇔, the asymptotic distribution derives from the method proposed by Marsaglia et al.
(2003) implemented in scipy.stats.

The final step compares p−value with the established level of statistical significance α.
If the p−value is small - the observed test statistic is highly unlikely under the asserted null
hypothesis, the null hypothesis is rejected. On the other hand, a large p−value suggests
that obtaining the observed test statistic is very likely, which leads to a failure to reject
the null hypothesis at a level of significance α.

Statistical hypothesis testing deals with two kinds of potential errors and the probab-
ility of making them: Type I error rejects a valid hypothesis (false positive rate), and Type
II error fails to reject a false hypothesis (false-negative rate).

2.3 Empirical data

Modelling techniques discussed in this study to various extents involve analysing experi-
mental data. The Norwegian EPC registry is the data source that facilitated the findings
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Figure 2.8: p−value

discussed further. This data is likewise essential for modelling procedures carried out in
paper II⇑, paper III⇓ and paper IV⇔.

EPC dataset is one of the components of the Norwegian Energy Labelling System for
Houses and Dwellings (Brekke et al. 2018), which facilitates the implementation of some
requirements and recommendations originally set by the Energy Performance of Build-
ings Directive (EPBD) 2002/ 91/ EC - a mechanism for promoting high energy efficiency
implies marketing the EPCs and economic benefit from acquiring them at the moment
of selling, renting or deep renovation of the buildings. The EPC registration procedure
involves reporting the geospatial location, type, age, heated floor area, primary envelope
material, source of energy for space heating, ventilation system type and other building
characteristics. A source-specific and total annual energy use (kWh · y−1) is subject to
reporting either on a voluntarily (for residential units) or mandatory (non-residential)
basis. Only those EPC records that have their annual energy use specified are taken into
account in this study. Fig. 2.9 illustrates the number of EPC records (total of 73577) avail-
able per building type per 50 largest Norwegian municipalities as a colour-encoded pivot
table.

Fig. 2.9 suggests which municipalities and building types are most often (light shades)
certified in the Norwegian EPC registry. Thus, Bergen, Bærum, Oslo, Stavanger and
Trondheim have the largest number of records. RE. apartment and RE. house, detached
are the most commonly certified building types. Residential types significantly exceed
non-residential ones by EPC records count.

The Norwegian EPC dataset enabled to:

• inform the expected age, the size (m2) and the energy use intensity (kWh·y−1·m−2)
of RE. house, semi-detached V located in Bergen to develop and to empirically
validate a seed model discussed in paper II⇑;
• infer/parameterise univariate distributions of energy use intensity for all building

typologies in Trondheim to enable random sampling in a top-down model proposed
by paper III⇓.
• infer the causality between the combinations of attributes and energy use intensity

of RE. apartment in Oslo elaborated in paper IV⇔, infer and parameterise uni-
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Figure 2.9: EPC records per municipality and type
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variate distributions of energy use intensity for further applications in probabilistic
programming;
• develop and operate Built Stock Explorer (Appendix A).

Another source of data used in paper I⇔ is the historical time series on electric en-
ergy use (kWh) measured and reported by an automated metering system on an hourly
basis. The case study is focused on one non-residential building managed by Trondheim
Municipality, which collected and made available more than five years of historical data
for the specified building.

2.4 Methods used in the articles

The methods discussed in Section 2.2 are the essential components of methodological
procedures followed in each of the research papers. This section elaborates on these pro-
cedures per paper.

2.4.1 Paper I⇔
This study examines the theoretical benefits of scheduling the operation of the electric bat-
teries so that the critical grid loads are minimised. Such active demand-side management
is also intended for maximising onsite self-consumption of photovoltaic energy. The ap-
proach involves three major components: i) short-term (day-ahead or week-ahead) fore-
casting of energy use in the building on an hourly basis, ii) forecasting of the photovoltaic
system’s output with the same time horizon and frequency, iii) allocating the expected
photovoltaic energy to the upper part of the expected energy use profile through the day
or the week. The second objective is achieved by automated periodical communication
with the external forecasting service provider - Solcast 2022, and the third - by using a
binary search method. The essential component with relevance to the thesis is the first,
where SARIMA(p, d, q)× (P, D,Q)s model is used for univariate time series forecasting of
the phenomenon (Fig. 2.10).

Parameterising the model is based on the time series of a specific length with the
most recent monitored energy use received from the monitoring system’s application pro-
gramming interface. The choice of the essential parameters, non-seasonal autoregressive
(p) and moving-average (q) component, implies repetitive model fitting followed by per-
formance assessment (a.k.a. cross-validation) for all combinations of reasonable values
of the two parameters (a.k.a. grid search). The metrics used for performance assessment
is the average for five cross-validation steps, root mean squared error (RMSE) between
the model’s prediction and the known values. Such a procedure enables to maximise
the accuracy of model predictions. However, inaccuracies in predictions are inevitable in
any practical application of time series forecasting. A better understanding of these inac-
curacies (referred to in paper I⇔ as residuals) may involve the analysis of their univariate
distribution using the methods discussed in Section 2.2.

2.4.2 Paper II⇑
This study suggests the methodological recipe to estimate, in the long-term, the stock-
wide aggregated cost of energy and the changes in cumulative load profile caused by the
acceptance of some of the emerging technologies. This approach is based on MC method
where each building within the scope of modelling in every given year may accept some
technology with the probability governed by norm(μ,σ) distribution. Once this random
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Figure 2.10: Short-term energy use forecasting (a process flow diagram)

variable draws acceptance, the exact technology is drawn from a uniformly-distributed
list of technologies not yet accepted. This process is illustrated in Fig. 2.11 as a sample
path for one building.

In Fig. 2.11, a sample building happens to accept all four technologies (domestic hot
water tank (DHWT), solar water heating (SWH) system, electric vehicle (EV) and the
photovoltaic (PV) system). With the probability of 0.07 to accept some technology in a
given year, the first acceptance happens in 2022. At that moment, all four technologies
are available and have an equal probability of being accepted (0.25). This happens to
be DHWT. For several consecutive years after, no technologies are accepted until 2027.
Three out of four technologies are available this time since DHWT is already equipped.
The probability of acceptance of each of the three technologies is 0.3333, and the SWH
system is drawn. The process continues until 2045, when the last available technology is
accepted. Therefore, in 2050, the building will be equipped with all four.

Under the varying probability of acceptance (referred to in paper II⇑, as the techno-
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Figure 2.11: Long-term energy use prediction (a sample path)

logical acceptance rate) within each simulation trial, a sample path similar to the one in
Fig. 2.11 is built for each building within the synthetic built stock composed of 1000 units.
The final states of all possible paths given the four technologies correspond to one of 12
white box models of the building with a unique and technically rational combination of
these technologies and the associated power/energy use profile. Thre are two outputs of
each simulation trial:

• a cumululative (for 1000 units) load profile;
• a total (for 1000 units) annual energy cost (NOK) computed using the historical

hourly price data for the year 2018 for each of six pricing methods.

Given many simulation trials, the former yields many likely cumulative load profiles,
the latter - six alternative probability distributions examined further.

Although capable of answering some of the relevant questions, such a modelling ap-
proach has substantial shortcomings. These stem from i) idealizing the phenomenon itself,
since there are substantial variations already at the individual building level and ii) the
assumed homogeneity/ representativeness of the building having a specific list of prop-
erties and technologies. Fig. 2.12 illustrates the assumtption of homogeneity behind size
of the building to model using the white-box principles.

Figure 2.12: Heterogeneity building size and the homogenic abstraction from it

Fig. 2.12 shows a univariate empirical sample distribution of heated floor area (m2)
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for Semi-detached houses divided vertically and located in Bergen, Norway. The values
are shown to vary in a wide range [25, - 350] m2. A narrow range [77.7, 212.4] m2

contains 90 % of records, making it the most representative. Should one be interested
in a single value instead of a range, the parameters of central tendency (Section 2.2.3)
are instrumental. Fig. 2.12, for example, illustrates a median value of 129 m2 used in a
white-box model of a building which is claimed, in the most modest manner, to have a
representative size. Hence, a wide variation of heated floor area exhibited by the buildings
is neglected by the model, which has negative implications on the soundness of modelling
results.

Similarly to the heated floor area, such bottom-up modelling involves assumptions of
homogeneity in virtually any other building attribute and adherence to patterns/stand-
ards. In contrast to the heated floor area, such assumptions are often made without the
experimental data, i.e. lack the empirical basis. These problems further undermine the
modelling accuracy. Additionally, such an approach requires substantial labour and com-
putational resources. The need for methodological means to tackle these challenges in
the discipline led to considering alternative model design principles. And hence, to the
paper III⇓ discussed in Section 2.4.3.

2.4.3 Paper III⇓
Paper III⇓ suggests such an alternative model design. The elaborated top-down principles
handle the heterogeneity of buildings and the aleatory uncertainty in their energy use.
These sources of uncertainty are accommodated in the empirical dataset (Section 2.3),
which is the input of the MC-based probabilistic simulation procedure. The underlying
uncertainties propagate to and are reflected in the simulation results.

The accuracy of such modelling principles is mainly governed by the adequacy of the
statistical model, i.e. parameterised PDF, that represents the phenomenon (energy use
intensity, kWh ·m−2 · y−1) and is used to generate random numbers. Therefore, the study
proposed a procedure for fitting the PDF, validating the fit and selecting the best amongst
the alternatives to suit the purpose (Fig. 2.13).

The procedure illustrated in Fig. 2.13 iterates over the available building types and
fetches an empirical sample with energy use intensity (kWh · m−2 · y−1) of buildings
of that type. For each of these types, each of 97 common theoretical distribution from
scipy.stats are fitted using the MLE (Section 2.2.4) and tested using the KS (Section
2.2.5). Unless the KS yields a statistically significant difference (p−value ≤ 0.05), the
theoretical distribution with the fitted parameters is considered a valid candidate for sim-
ulating the energy use intensity. In the case of multiple valid parameterised theoretical
distributions, the one having the least test statistic (D, Section 2.2.5) is considered the
best fit. The output of this procedure is the list of best-fit parameterised distributions that
represent the data generation process for each of the available building types in the city.

Knowing the exact floor areas of the units of a particular type within certain geospatial
boundaries and that the energy intensity that the units of this type in the city is well-
approximated by the PDF found earlier, the following formula applies:

Ezone tot =
n∑

i=0

m∑
j=0

(ai, j · ri, j) =
n∑

i=0

Ai · RT
i (kWh · y−1) (2.8)

where:
Ezone tot - total (for all units) annual energy use of a geospatial zone;
ai, j - heated floor area (m2) of j th unit of the i th type;
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Figure 2.13: Density estimation procedure (a process flow diagram)

ri, j - energy use intensity (kWh ·m−2 · y−1) of j th unit of the i th type;
Ai =
�
ai,0 ... ai,m

�
- a row matrix containing the values of heated floor area (m2)

of all m units of the i th type;

RT
i =
�
ri,0 ... ri,m

�T
=

⎡
⎣ ri,0

...
ri,m

⎤
⎦ - a column matrix containing the values of energy

use intensity (kWh ·m−2 · y−1) of all m units of i th type, sampled randomly from the re-
spective distribution.

A large number of runs, each of which draws a new matrix RT
i yields a respective

number of values of Ezone tot distributed as Norm(μ,σ). These parameters μ and σ per
geospatial zone are the ultimate outputs of the model.

The study articulates that the rational choice of explanatory variables is the key to
effectively applying the proposed modelling approach. This rationale must reflect only the
variables having a significant effect on the phenomenon at a population level. Therefore,
finding and advocating the methodological means of establishing the causal effect based
on empirical evidence is the objective of paper IV⇔.
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2.4.4 Paper IV⇔

Paper IV⇔ elaborates on the methods of inferential statistics for establishing the causal
relationships between building attributes and the energy performance at a population
level. These practices, referred to as explanatory modelling, are oriented towards a better
understanding of the variability of the phenomenon and its relationship with building-
related characteristics. The methods of density estimation (Section 2.2.4) and statistical
hypothesis testing (Section 2.2.5) are therefore examined in this study.

It is also illustrated in this study that the built stock contains many distinct attrib-
utes, architectural, engineering-, occupancy-related and others. A systematic manner of
examining the direct or indirect effect of these combinations on energy use for various
applications of inferential analysis is necessary. The study suggests a hierarchical tree
structure (Fig. 2.14) to assist such analysis and to elevate the robustness of the analytical
conclusions.

Figure 2.14: Hierarchical structure of building attributes

Fig. 2.14 represents an empirical sample of 11000 apartments located in Oslo, ac-
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cessible in the empirical dataset (Section 2.3). Moving from the central node towards
the peripheral (leaf) node gradually adds the exogenous categorical variables of interest
shown as concentric circles: construction period (CP), building envelope material (brick,
concrete or wood), source of energy for space heating (Electric (El), district heating (DH),
gas, oil, heat pump (HP) or a combination of these) and the ventilation system type (bal-
anced (B), continuous (C), natural (N) or periodical (P)). Every distinct path from the
centre to the peripheral node represents a unique, theoretically possible combination of
building attributes. A number of all possible combinations of building attributes is given
by the cardinality of the n−fold cartesian product of the values of the categorical vari-
ables. The cardinality of the cartesian product is the product of cardinalities of each set
that it forms:

|A× B × C × ...|= |A| · |B| · |C | · ... (2.9)

Thus, two CPs, three different envelope materials, nine unique combinations of space
heating solutions and four ventilation system types result in 2 ·3 ·9 ·4= 216 combinations
illustrated in Fig. 2.14. The figure also reflects upon the sample size that corresponds to
the combination relative to the total (11000) number of records through the diameter of
the node.

2.5 Case study design

The case study is designed to arrive at the estimates of the phenomenon in: i) bottom-
up and ii) top-down manner. The phenomenon of interest is a bulk (for all buildings)
total (across all energy sources) annual energy use (kWh · y−1) for an arbitrary number
of buildings within certain spacial boundaries and having a given typology, similarly to
papers II⇑, III⇓.

2.5.1 Bottom-up engineering-based simulation

Bottom-up modelling makes use of detailed building energy performance simulation car-
ried out with IDA-ICE, where the choices behind designing the seed model (also used in
paper II⇑) are based on the available experimental data, expert judgements and the com-
mon knowledge. Given the availability of empirical data (e.g. Section 2.3), some of these
choices may be aided by the analysis of the central tendency in the univariate distribution,
as elaborated in Section 2.2.3.

The occupancy pattern, as one of the most important and uncertain components in
modelling of this kind, is addressed in this study by means of combinatorial analysis.
Each of 100 identical units within the synthetic built stock is expected to follow one out
of five empirically-defined occupancy schedules illustrated in Fig. 2.15. A number (N) of
all possible distinct combinations of n = 5 schedules that k = 100 buildings may have is
computed as shown in Eq. 2.10. The exact schedules that the buildings within a certain
combination assume may be listed in a lexicographically ordered array (Eq. 2.11).

N =
(n− 1+ k)!
(n− 1)!k!

=
104!

4! · 100!
= 4598126 (2.10)
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Figure 2.15: Daily occupancy patterns

combination :

building :
[1] [2] . . . [98] [99] [100]

[1] 1 1 . . . 1 1 1
[2] 1 1 . . . 1 1 2
[3] 1 1 . . . 1 1 3
[4] 1 1 . . . 1 1 4
[5] 1 1 . . . 1 1 5
[6] 1 1 . . . 1 2 2
[7] 1 1 . . . 1 2 3
...

...
...

...
...

...
...

[4598124] 4 4 . . . 5 5 5
[4598125] 4 5 . . . 5 5 5
[4598126] 5 5 . . . 5 5 5

(2.11)

Combination [1] in Eq. 2.11, for example, implies that all buildings follow Schedule
1. This combination is distinct from [2], where 99 buildings follow Schedule 1 and one
building has Schedule 2... For each combination in Eq. 2.11, bulk total annual energy use
of 100 buildings (EBU) may be computed as:

EBU =
100∑
i=1

ei (kWh · y−1) (2.12)

where:

ei - total annual energy use (kWh · y−1) of the i-th building, having a specific occu-
pancy schedule.
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The values of EBU computed for each combination in Eq. 2.12 form an array of length
4598126 which is the uncertain output of a bottom-up model. This output has a univariate
distribution with some shape and some parameters that are the subjects of analysis in
Chapter 3 using the methods described in Sections 2.2.3 and 2.2.4. The estimates at the
aggregated level are obtained by combining the models of individual system components,
i.e. buildings, hence bottom-up reasoning.

2.5.2 Top-down probabilistic programming

Similarly to Eq. 2.12, the top-down model computes the bulk total energy use by aggreg-
ating the total energy use of individual buildings:

ET D =
100∑
i=1

ei (kWh · y−1) (2.13)

In this case, however, the values of ei are sampled randomly using a Pseudo-Random
Number Generator (PRNG). The underlying distribution used for sampling these numbers
is identified based on the empirical data (Section 2.3) that characterise the phenomenon
within a given geopolitical scope and under specific architectural and technical proper-
ties of the buildings. The phenomenon at the aggregated level is estimated by knowing
the distribution of the phenomenon at an even more aggregated scope, hence the top-
down approach. Identifying/parameterising these distribution, as discussed in paper III⇓,
necessitates density estimation (Section 2.2.4).

The values of ET D in Eq. 2.13, computed within 1000 MC trials, compose an array of
length 1000, which is an uncertain output of the model. A univariate distribution of this
output is likewise examined in Chapter 3, based on several parameters (Section 2.2.3)
and density estimation (Section 2.2.4) method.
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Results

3.1 Results of the individual papers

3.1.1 Paper I⇔
The application of electric batteries has the potential to mitigate peak loads on the power
grids and may have substantial positive economic implications. The advocated battery
scheduling practice implies controlled discharging during the peak demand and con-
trolled charging at the time of high PV output. The procedure discussed in Section 2.4.1
serves such a purpose and is capable of reshaping the grid interaction profile, similar to
the illustration in Fig. 3.1.

Figure 3.1: Reshaped grid interaction profile

Fig. 3.1 exemplifies how electric batteries, through the proposed scheduling proced-
ures, may enable allocating the photovoltaic energy generated through the day to the
time of peak demand on that day, thus reshaping the energy use profile. Hence, the pre-
dicted reshaped profile has daily peaks reduced by the amount of PV energy expected to
be available through the same day.

The predictive accuracy of building energy demand and PV output forecasting meth-
ods govern the rationality of such scheduling approaches. The former, even with the accur-
acy and robustness-oriented model design and parameter selection illustrated in Fig. 2.10,

33
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is debatable. Furthermore, paper I⇔ quantifies and examines predictive (in-)accuracy of
the time series model intended for forecasting building energy use. These inaccuracies
are the manifestation of epistemic and aleatory uncertainties associated with the phe-
nomenon and the model. The former stems from not considering the other potentially
useful explanatory variables. The latter reflects the phenomenon’s potentially important
aspects of a random nature. Fig. 3.2 enables examining the model performance by illus-
trating: i) a subset of the original time series of electric energy use in the building; ii) the
time series of this phenomenon forecasted by SARIMA (0, 1, 4)× (1, 1, 1)24, the paramet-
ers for which are found to yield the most accurate predictions; iii) the series of differences
between model predictions and the original series at a given timestamp, a.k.a residuals.
A univariate distribution of these residuals and the MLE-fitted normal distribution are
illustrated in Fig. 3.2 (bottom).

Figure 3.2: Time series and the univariate distribution of the residuals

Fig. 3.2 suggests the phenomenon, although fairly predictable by the model, exhibits
non-systematic, i.e. without apparent patterns or tendencies, fluctuations. A univariate
distribution illustrates several properties of the relationship between the model and the
phenomenon:

1. Zero mean confirms that systematic tendencies in the residuals are absent, which
is the ultimate goal since modelling by definition implies approximations;

2. Negative skewness suggests that negative residuals occur more frequently than pos-
itive, but the latter appear to have larger values. They are, as for the case study,
mutually compensating (hence zero mean);

3. The measure of dispersion in the distribution conveys the magnitude and the fre-
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quency of the occurring residuals.

These results demonstrate the modelling uncertainties that occur at a building level.
The accuracy of predicting the phenomenon may vary depending on the wealth of factors
associated with the building and the model selected/designed/parameterised to represent
it. In the case of bottom-up modelling, these uncertainties (aleatory and epistemic) are
propagating to the stock level.

3.1.2 Paper II⇑
The scope of modelling carried out in the article is a stock of 1000 untits that are:

• semi-detached houses divided vertically
• located in Bergen
• constructed before 1990
• featuring a technically-feasible combinations of [EV, PV, DHWT, and SWH]

The units with each combination of [EV, PV, DHWT, and SWH] are represented (mod-
estly) by the white-box models developed in IDA-ICE. The expected deployment follows
the sample paths similar to the one in Fig. 2.11 with the probabilities of deployment
drawn from norm(μ= 0.05,σ = 0.0015). The results are:

• 1000 cumululative load duration curves (Fig. 3.3);
• 1000 values of total annual energy cost (NOK) for each of six alternative energy

pricing methods (Fig. 3.4).

Figure 3.3: Aggregated load duration curves

Fig. 3.3 suggests that the noticeable changes, driven by the acceptance of the listed
technologies up until 2050, may occur with the highest/lowest power demand and the
grid feed-in, whereas the rest of the load duration remains unchanged. Hence, a minor,
up to 13%, decrease in the peak demand should be expected, with a duration of fewer
than ≈1000 hours per annum. An already low power demand will be reduced further,
but this change will affect the no more than ≈2000 hours per annum (as shown in range
≈ [6760, 8760] in Fig. 3.3). It is likewise expected that the peak PV feed-in will affect the
duration of ≈760 hours (≈ [8000, 8760]) and will not exceed ≈2000 kW.

Fig. 3.4 shows that, given the acceptance of the listed technologies and the annual
patterns that the energy cost exhibits today, the time-of-use tariff is expected to be the
cheapest in 2050. On the other hand, a maximum power extraction-based model with
variable elements will be the most expensive. All other pricing methods are midway
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Figure 3.4: Aggregated electric energy costs per pricing model

between these two extremes, with less substantial differences and often overlapping dens-
ities.

The model design choices are intended to address its purpose by accommodating the
novel technologies without knowing: i) if, ii) when, and iii) which of these technologies
will be accepted in each building within the modelling scope. However, the assumptions
that i) 1000 buildings have identical characteristics and follow the same patterns (ho-
mogeneity) and ii) the actual energy use or power demand of a single building strictly
adheres to those modelled (Section 3.1.1 demonstrates that they indeed vary), make these
conclusions rationally doubtful.

3.1.3 Paper III⇓
The procedure described in Section 2.4.3 is seen as a parsimonious top-down model suit-
able for numerous applications, energy mapping (Fig. 3.5) being one of them.

The map in Fig. 3.5 shows mean (μ) and STD (σ) of a normal distribution formed
from the simulated bulk total annual energy use per 1×1 km geospatial grid over Trond-
heim. The apparent, in Fig. 3.5, areas of high energy use are the densely populated and
commercially active historical centre and the industrialised southern territory. This con-
clusion stems from the noticeably higher colour intensity, which encodes the mean in the
distribution of the simulated results. Larger estimates of energy use are typically associ-
ated with larger dispersion which is conveyed by the STD and encoded in Fig. 3.5 as the
diameter of the marker.

Such results may facilitate identifying and eventually resolving urban energy hot-
spots in the best interest of the targeted social, environmental and economic objectives.
However, the main objective of this article is to advocate the parsimony, scalability, and
uncertainty-awareness that emerge from such a top-down approach.

A parsimonious, scalable and accurate model design must ignore the variables that
have little or no effect on the phenomenon at the population level. Making robust, evidence-
based conclusions about the causal effect is necessary to achieve these benefits. This rep-
resents a substantial analytical challenge of examining and documenting non-conformities
in the empirical data. Non-conformities in the phenomenon exhibited by distinct groups
often manifest the potential causal effect that is present. Fig. 3.6 demonstrates such a
case.

Fig. 3.6 [A] displays a univariate distribution of energy use intensity (kWh·m2· y−1) of
apartments located in Trondheim with the construction year (CY) in range [1800, 2018].
The empirical sample size (SS) is 1842 units available in the EPC dataset (Section 2.3).
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Figure 3.5: Spatial variation of bulk total annual energy use in Trondheim

Figure 3.6: The effect of the construction period on building energy performance

This distribution has two modes (at 155 and 105 kWh·m2 · y−1). Multi- or bi- (in this case)
modality is a common indicator of obscured patterns. Indeed, Fig. 3.6 [B] demonstrates
that the observable bimodality is explained by the distinct construction periods of these
apartments. Fig. 3.6 [B] shows the same empirical sample separated into two groups,
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for the apartments constructed before and after 1955. The univariate distribution of the
two groups has distinct statistical properties (mode being one of them) and suggests that
newly built apartments are more energy efficient. Although it is tempting to accept this
conclusion, statistical practices require answering: "could the observable effect occur by
chance?" in addition to that. The p−value answers this question. The effect, in the case
of KS test, is measured by the D−statistic (Section 2.2.5). A KS test carried out for the
two groups shown in Fig. 3.6 [B] results in a large D−statistic (0.256, also shown in Fig.
3.7) and a negligibly low p−value (1.212 · 10−23). If there was no effect of construction
period on the energy intensity, observing a test statistic that large given the (also large)
sample sizes is very unlikely (as indicated by a small p−value). The asserted null hypo-
thesis: "populations of apartments in Trondheim, constructed before and after 1955 are
not different in terms of energy intensity", is rejected at a significance level of 0.05. It is
therefore concluded that the energy intensity does differ within the scope of the study.

Figure 3.7: The effect measured by D-statistic

The construction period, although often important, is only one of many attributes/
factors that are believed to affect the energy performance at a population level. Moreover,
this effect tends to vary across cities, typologies and buildings having the other attributes
in common. Is the conclusion about the effect of the construction period made above
applicable to apartments equipped with heat pumps? Or, which apartments perform bet-
ter: the old ones made of concrete or the new ones made of wood? What if they are,
in addition to that, located in distinct districts of the city? Therefore, large-scale energy
research needs a structured approach to establishing and documenting the causal effects.
And hence, one of such approaches (illustrated in Fig. 2.14) suggested by paper IV⇔.

3.1.4 Paper IV⇔

Paper IV⇔ found and documented the causal effect of four attributes of apartments in
Oslo on their total energy performance: i) construction period, ii) primary envelope ma-
terial, iii) space heating solution and iv) ventilation system type. Thus, the apartments
in Oslo constructed after 1990 tend to perform better than those constructed earlier. The
apartments having their envelope made of concrete perform better than those of brick or
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wood. The apartments heated by district heating, heat pump or oil perform better than
those with electric, electric and wood, or electric and gas-based solutions. There is also
an apparently large and significant difference in the energy performance of apartments
ventilated naturally, with periodical, continuous and balanced types.

Understanding the causal effect of individual attributes is essential for promoting or
discouraging some tendencies in the built stock. It is, however, emphasised that the phe-
nomenon is governed by the combinations of attributes rather than the attributes indi-
vidually. Therefore, explanatory modelling for practical applications, such as rationalising
the energy planning and the legislative mechanisms, needs to be carried out per combin-
ation. And hence, the combination-wise analysis may be facilitated by the hierarchical
structure shown in Fig. 2.14.

One of the applications of explanatory modelling is demonstrated in the study and
attempts to determine the combinations of attributes performing best and worse. A KS
test is carried out between i) empirical sample represented by each leaf node (Fig. 2.14)
provided that the sample contains more than the arbitrarily established minimum sample
size of 20 records and ii) the composite sample of apartments in Oslo represented by the
central node having more than 11000 records.

A favourable configuration is associated with a large positive D-statistic between the
two ECDFs. For this difference to be considered significant, the p−value associated with
the test should be below (also arbitrary set) significance threshold α = 0.05. A reverse
procedure, focused on large negative D−statistic only, enables the identification of the
worst-performing building configurations. Fig. 3.8 and Fig. 3.9 illustrate 62 ECDFs for all
configurations and highlights the best- (Fig. 3.8) and worst-performing (Fig. 3.9) relative
to the composite if the difference is found to be significant.

Figure 3.8: ECDFs for combinations of attributes that perform best

Fig. 3.8 suggests that the best-performing combinations of attributes of apartments
in Oslo are heated by district heating alone or with electric radiators, heat pumps or oil.
These combinations feature all ventilation system types, with natural ventilation appear-
ing most frequently. Most of these combinations have concrete as the primary envelope
material, brick is less frequent, and wood is absent. The majority of the best-performing
combinations are constructed before 1990.

Fig. 3.9 illustrates that the poorly performing apartments in Oslo are heated by electric
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Figure 3.9: ECDFs for combinations of attributes that perform poorest

or a combination of electric with wood-based space heating solutions. These combinations
involve all ventilation systems, most frequently constructed with bricks before 1990.

3.2 Case study results

Two models discussed in Section 2.5 are designed to estimate the bulk total annual en-
ergy use of an arbitrary number of buildings within certain geospatial boundaries. The
case study applies these models to estimate bulk total energy use of 100 units of RE.
house, semi-detached V constructed in Bergen, Norway. Sections 3.2.1 and 3.2.2 dis-
cuss the modelling results. Section 3.2.3 quantifies the differences between them. The key
differences in handling uncertainties 3.2.4 and the appropriateness criteria 3.2.5 are ex-
amined further. Section 3.2.6 highlights the role of explanatory modelling in rationalizing
the design of these predictive models.

3.2.1 Bottom-up engineering-based simulation

Bottom-up reasoning necessitates designing a seed model that reflects the targeted weather-
/climate, typology and detailed architectural and engineering specifications. Because the
detailed specifications are not given by the modelling objectives, these need to be de-
termined to the best of the modeller’s awareness and, whenever possible, validated by
the empirical data. The associated labour, data and computational resource intensity of-
ten limit the number of seed models that are rational to design. Furthermore, these models
must be representative, i.e., reflect the characteristics found amongst the buildings mod-
elled, with negligible or infrequent deviations. An IDA-ICE model, mentioned in Section
2.5.1 and paper II⇑, is designed in such a way, has the building characteristics considered
representative and therefore reused in this study. The heated floor area of 122 m2, for
example, matches the central tendency (Section 2.2.3) in the distribution of heated floor
area of RE. house, semi-detached V in Bergen (according to the EPC registry (Section
2.3) which may be validated through Built Stock Explorer). The age category (construc-
tion year < 1990) contains the prevailing 80% of EPC records for a given typology in the
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municipality. Space heating with electric radiators is known to be the most common solu-
tion for detached/semi-detached houses in Norway. Therefore, such choices of building
and occupancy characteristics are targeting the most representative case.

The total annual energy use by the building obtained through the IDA-ICE simu-
lation runs is [19189,18516,18297,18075,17645] kWh · y−1 for occupancy schedules
[1,2,3,4,5] (illustrated in Fig. 2.15) accordingly. The aggregation of these results to the
stock level of 100 units follows the Eq. 2.12 for each possible combinations listed in Eq.
2.11. The model output is 4598126 likely values having a normal distribution character-
ised by mean (μ) and a standard deviation (σ) further discussed in Section 3.2.3.

3.2.2 Top-down probabilistic programming

Top-down reasoning requires an empirical sample of total energy use of the units that
match the targeted geopolitical scope and the building typology. The EPC registry (Sec-
tion 2.3) contains 293 records for RE. house, semi-detached V in Bergen. This data de-
scribes the buildings of varying size, age, architecture- and engineering-related features.

Sample density estimation with MLE (Section 2.2.4) per distribution available in
scipy.stats following the procedure and the goodness-of-fit metrics (D− statistic and
p− value discussed in Section 2.2.5, paper III⇓ and paper IV⇔) led to the choice of lo-
gistic distribution (Eq. 3.1) parameterised by loc = 18713 and scale = 3853. The fit is
characterised by D = 0.026 and has a corresponding p-value of 0.984. The location- and
scale-adjussted logistic PDF is defined as:

f (x , loc, scale) =
e
−(x−loc)

scale

s(1+ e
−(x−loc)

scale )2
(3.1)

The intermediate result of density estimation is illustrated in Fig. 3.10 and may be
reproduced in Built Stock Explorer. The figure suggests that the fitted distribution ap-
proximates the cumulative sample density without noticeable deviations. This distribu-
tion, therefore, may be used for generating synthetic inputs of the model in Eq. 2.13. The
output of this top-down probabilistic programming procedure is 1000 values that the bulk
total annual energy use at a stock level of 100 units may be. This output likewise forms a
normal distribution parameterised by mean μ and STD σ (Fig. 3.11).

3.2.3 The (mis)match of the numerical outputs

The results achieved using i) bottom-up engineering-based simulation supplemented by
combinatorial analysis (Section 3.2.1) and ii) top-down probabilistic programming with
prior parametric univariate density estimation (Section 3.2.2) approaches are illustrated
in Fig. 3.11. Both uncertain outputs are normally distributed, which follows from the
Central Limit Theorem applicable due to the summation operation in Eq. 2.12, and 2.13,
but have somewhat distinct parameters.

Fig. 3.11 suggests that the outputs of bottom-up and top-down models conform. Cent-
ral tendency in the distribution of the outputs characterises the best estimates of bulk
total annual energy use. The central tendency, in normal distribution, is well repres-
ented by mean value which also corresponds to median and mode. The relative differ-
ence between mean values of two distributions is rather small: δ = μ(ET D)−μ(EBU )

μ(ET D)
· 100 =

1871405−1834440
1871405 · 100 = 1.975%. The dispersion of the model output conveys the level of

uncertainty in the results. A measure of dispersion STD of the bottom-up model is substan-
tially smaller, which stems from distinct kinds of uncertainty considered by the models
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Figure 3.10: Density estimation results

Figure 3.11: Uncertain outputs of bottom-up and top-down models

(elaborated in Section 3.2.4). Under the absence of additional information, it is rational
to conclude that the true value of the phenomenon is in the area where the densities of
two distributions overlap. In Fig. 3.11, this region is limited by the PDF of the bottom-up
model output.

3.2.4 Handling of uncertainties

A smaller dispersion associated with the bottom-up model may (erroneously) assert more
certainty in it. It must be emphasised, however, that this metric is a sole characteristic of
the bottom-up model, not the quality of the phenomenon’s representation by this model.
Thus, the bottom-up modelling procedure exemplified in this study reflects only the epi-
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stemic uncertainty behind the choice of occupancy patterns. The applicability of these
schedules, given the diversity and the dynamics exhibited by real buildings, is not ex-
amined here. Addressing a wealth of other uncertainties, epistemic, aleatory and hetero-
geneity (Section 1.3), may substantially enlarge the dispersion of the outputs. Prioritising
the uncertain elements considered by bottom-up modelling procedures may be facilitated
by examining their causal relationship with the phenomenon in question, i.e. building en-
ergy performance. Papers III⇓ and IV⇔ elaborate on the rationale and the instrumental
aspects of establishing such causal relationships.

Alternatively, a top-down model (Section 2.5.2) is not prone to most of such uncer-
tainties since: i) the experimental data already reflects the underlying randomness and
heterogeneity and ii) model parsimony does not allow for most of the errors of the epi-
stemic kind. The sources of uncertainty specific to probabilistic programming applications
stem from the quality of data and density estimation (paper III⇓). To further reduce the
dispersion of the results, empirical data must reflect geopolitical, behavioural, architec-
tural and technical attributes of the building that have a causal effect on building energy
performance (papers III⇓ and IV⇔).

3.2.5 Critical assessment of model appropriateness

These modelling approaches, in light of their appropriateness criteria (Section 1.2), have
the following differences:

1. accuracy: Both approaches require measurements to verify the accuracy of the
model. Top-down modelling relies on the experimental data, which ensures that
the output takes on reasonable values. The advantage of the bottom-up approach is
making predictions without the data or if the data (only) partially explains the phe-
nomenon. This property is particularly useful in modelling rare or extreme events.
However, since stock-wide modelling deals with large numbers of buildings, rare
outliers do not affect the output substantially. More frequent outliers, on the other
hand, are likely to occur in the experimental data and, therefore - accommodated
by the top-down modelling principles;

2. sensitivity: The model must be sufficiently sensitive to the parameter of interest to
examine the implication of these parameters. In bottom-up modelling, sensitivity is
the model’s characteristic and can be examined through repetitive model runs with
the systematic altering of these design parameters. With top-down reasoning, the
causal effect of design parameters on the phenomenon governs the model’s sens-
itivity to it. I.e, if there is no empirical evidence of the design parameter affecting
the phenomenon - implicit examining and modelling this parameter is irrational
(papers II⇑ and IV⇔). Statistical hypothesis testing (Section 2.2.5), may facilitate
the choice of sensitive parameters;

3. versatility: Virtually any number of design parameters can be explicitly accounted
for in the bottom-up model, it is therefore only limited by the creativity/skills/re-
sources of the modeller. However, the presence of the parameter does not neces-
sarily improve the performance of the model. The top-down approach accounts for
all design parameters implicitly and, if necessary, for the (statistically) significant
ones explicitly;

4. parsimony (governs transferability/reproducibility, computability, usability): bottom-
up modelling, as shown by this study, is substantially more labor-, information- and
computationally-intensive. A seed model is often case-specific since it needs many
(often manual) inputs. The demand for computing to carry out physics-based simu-
lation is further amplified by the need for a large number of runs within the uncer-
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tainty and sensitivity analysis procedures. Such complexities undermine the trans-
parency by adding black-box elements to the originally white-box model, leaving
room for misinterpretation of the results. Alternatively, the implementation of the
top-down approach is rather parsimonious since only a few steps are involved: i)
navigating through the stock-level data to find the subset of interest; ii) carrying
out density estimation; iii) running a MC simulation. Such modelling results are
almost identically reproducible given that the same experimental data was used.
The demand for computational resources remains modest, which favours making
the models accessible via, e.g. web (similarly to Built Stock Sxplorer).

3.2.6 The effect of other design parameters

Formulating, testing and validating the causal hypotheses about the relationships between
design parameters and energy performance may, in light of uncertainty (Section 3.2.4)
and appropriateness criteria (Section 3.2.5), assist with: i) prioritising the uncertain factors
necessary to account for in the models and elevating their accuracy; ii) governing the
model’s sensitivity to the design parameter and the rational level of versatility; iii) min-
imising model’s complexity and thus, elevating their reproducibility, computability and
useability.

The construction period, for example, as one of the potentially plausible model design
parameters, is seen distinctly by bottom-up and top-down models. With bottom-up mod-
elling, the construction period is a proxy for architectural and engineering measures made
to comply with the energy performance standards active during the historical period with
their implications on the energy performance. The other socio-economic, technological,
and climate-related variables are assumed fixed. Likewise, unless explicitly modelled, the
state of renovation is not accounted for. Top-down reasoning exemplified in this study
sees the construction period as a mixture of all variables directly or indirectly associated
with it and their relevance to the energy performance. This perspective accounts for the
chance that the building is in the renovated state at the moment of data registration and
for all the less apparent socio-economic tendencies in the built stock. It may, for example,
happen that the older buildings tend to host more occupants or that the occupants of the
older buildings tend to spend more time at home and, therefore, are likely to use more en-
ergy. However, living densely in the old house could be a matter of choice for low-income
occupants, those who want and do save energy because of the associated costs. Could
it also happen that the occupant age category, their professional or cultural background
dominates in some building vintage or in some way determine the energy use? Hence,
explanatory modelling is needed to answer, following this example: “Given all the socio-
cultural, physiological, economic and other features exhibited by the occupants of today,
and all the ways that they may interact with the building, do the new buildings tend to
consume less energy?” The answer applies to the natural status quo of the built stock and
should inform the design of both bottom-up and top-down models.

The null and the alternative hypothesis (Eq. 3.2) are defined to answer if “the popu-
lations of RE. house, semi-detached V constructed in Bergen [1] before and [2] after
1990 have distinct total annual energy use”. The answer is given at the level of statistical
significance α= 0.05.

H0 : E1 − E2 = 0; Ha : E1 − E2 �= 0 (3.2)

where:
E1 - total annual energy use (kWh · y−1) of the population [1];
E2 - total annual energy use (kWh · y−1) of the population [2].
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The empirical data (Section 2.3) contains 293 records for RE. house, semi-detached
V in Bergen representing two distinct construction periods (CP) of the certified units. The
ECDFs for the two samples having the sample size (SS) exhibit a somewhat observable
difference illustrated if Fig. 3.12.

Figure 3.12: ECDFs of the empirical samples by construction period

The KS test (Section 2.2.5) with two empirical samples returns D = 0.145 and p =
0.121. The null hypothesis asserting the conformity between the two populations (Eq.
3.2) measured by D−statistic (Eq. 2.7) cannot be rejected since p > α.

Lack of evidence against the null hypothesis, given the sample size, may have multiple
reasons and their combinations, such as:

• Envelope-related:

◦ In practice, energy standards/policies concerning the new buildings did not
improve their thermal performance significantly
◦ In practice, energy standards/policies concerning the old buildings did im-

prove their thermal performance significantly
◦ A large share of the old buildings were renovated and/or re-engineered
◦ The new buildings may tend to be larger

• Occupant-related

◦ There may be a demand for better comfort and/or more (powerful) appli-
ances in the new buildings
◦ The density and the time of occupancy in the old buildings may exceed those

of the new buildings
◦ The awareness of poor energy performance of the old buildings may trigger

extra efforts in saving the energy and vice versa

This is a list made for illustrative purposes without attempting to make it compre-
hensive. The claims about the effect of any of these items on the phenomenon without
further analysis are avoided in this study.

Because the effect that is apparent in Fig. 3.12 lacks statistical significance, making the
models (Sections 2.5.1 and 2.5.2) sensitive to the construction period is not expected to
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improve their performance. The opposite also holds - the design parameters of strong and
significant effect on building energy use should be of primary concern in model design.

It is concluded above that there is no empirical evidence that the energy use of RE.
house, semi-detached V in Bergen constructed [1] before and [2] after 1990 differ. Does
the same conclusion apply to the other cities? Table 3.1 contains the results of a KS tests
carried out to see if energy use of RE. house, semi-detached V constructed [1] before
and [2] after 1990 differs in the other Norwegian cities. The tests result in D−statistic
and p−values for the two samples representing distinct construction periods (CP) with
the sample sizes (SS) shown in the table. The null and the alternative hypotheses (Eq.
3.2) are tested at a significance level α= 0.05,

City D-statistic p-value CP>1990(SS) CP≤1990(SS)
0 Asker 0.369 0.000 61 102
1 Askøy 0.538 0.036 51 7
2 Bergen 0.145 0.121 93 200
3 Bærum 0.099 0.646 67 238
4 Drammen 0.323 0.006 46 63
5 Horten 0.300 0.395 10 50
6 Kristiansand 0.385 0.001 41 70
7 Lillehammer 0.264 0.137 30 43
8 Lillestrøm 0.202 0.141 64 57
9 Molde 0.185 0.636 22 39
10 Nordre Follo 0.114 0.801 54 63
11 Oslo 0.246 0.000 217 341
12 Sandefjord 0.357 0.089 46 15
13 Sandnes 0.334 0.032 33 35
14 Stavanger 0.238 0.043 45 117
15 Tromsø 0.341 0.001 56 73
16 Trondheim 0.270 0.001 65 232
17 Tønsberg 0.294 0.077 38 32
18 Ålesund 0.155 0.756 70 22
19 Øygarden 0.363 0.469 59 5

Table 3.1: The effect of construction period on energy use of RE. house, semi-
detached V measured by KS for several cities

Table 3.1 suggest that whereas for some cities, the effect of the construction period on
the energy use is found i) strong and significant (Asker, Askøy, Drammen, Kristiansand,
Sandnes, Tromsø), for some of them it is ii) weak but significant (Oslo, Stavanger, Trond-
heim), iii) strong but insignificant (Horten, Sandefjord, Tønsberg, Øygarden) and iv) weak
insignificant (Bergen, Bærum, Lillehammer, Lillestrøm, Molde, Nordre Follo, Ålesund).
Collecting additional data for the groups with insignificant effects, iii) and iv), may elev-
ate the significance. Such variations of the effects between the cities are likely to reflect
socio-cultural, economic and climate-related factors.

Paper IV⇔ found, in a similar manner, a weak but significant effect of the construc-
tion period (before and after 1990) for apartments in Oslo. It also advocates explanatory
modelling that considers multiple design parameters for practical applications.
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Discussion

4.1 Modelling for sustainability

This thesis and its supplementary materials emphasise that accurate, sensitive, versatile
and parsimonious modelling is capable of assessing the potential developments of built
stock and its energy performance. Such modelling may support an effective course of
action to achieve the performance targets envisioned in sustainable future communities
in the most pragmatic and timely manner. Furthermore, to achieve "multiple benefits"
of energy efficiency - a comprehensive system of indicators proposed by Campbell et al.
(2014) and revised by Fawcett and Killip (2019), while overcoming the critical barriers
towards energy efficiency of buildings identified by Vogel et al. (2015) at contextual-,
sector- and project-levels.

These objectives are, likewise with relevance to research question 1, directly or indir-
ectly contributing to several sustainable development goals (SDGs):

• SDG7 (afforable and clean energy)
• SDG11 (cities and human settlementts)
• SDG13 (climate change)

This thesis covered several applications of modelling that may facilitate more sustain-
able practices and policymaking:

• Mitigating peak loads and peak feed-ins while elevating self-consumption and self-
sufficiency of buildings that generate renewable energy, as shown in Section 3.1.1
and (paper I⇔);
• Raising the awareness of the potential changes in the interaction between build-

ings and the power grids under the future deployment of distributed renewable
energy technologies and the growth of the electric vehicles fleet. And facilitating
the development of the rational energy pricing methods that meet the expectations
of the energy consumer and the supplier (Section 3.1.2 and paper II⇑).
• Finding/quantifying the urban energy bottlenecks of high priority and potential

for future energy efficiency and flexibility improvement advocated in Section 3.1.3
and paper III⇓).
• Determining which architectural and technical configurations of buildings perform

well at a population level (Section 3.1.4 and paper IV⇔). And hence: i) quantify-
ing, validating and documenting the effectiveness of energy policies and practices
already in place; ii) developing more rational energy policies/practices that focus

47
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on promoting the favourable configurations while discouraging those proven to
perform poorly; and iii) predicting the future transformations of the built environ-
ment with their implications on the energy performance.

The first and the last items in this list rely on modelling instruments not yet accom-
modated by the established model classification systems into binary bottom-up or top-
down. Time series forecasting concerns the short- or long-term future development of
the phenomenon and does not require distinct levels of the information available and the
information modelled. The predictions, uni- (3.1.1 and paper I⇔) or multivariate, are
based on the past observation of the same variable. Likewise, the applications of infer-
ential analysis (Sections 3.1.3, 3.1.4, 3.2.6, papers III⇓ and IV⇔) study the phenomenon
at the population level without up- or downscaling the geospatial (or any other) scope.
These are the instruments capable of invigorating the large-scale building energy research
and should find their place in the model classifications (Section 1.2).

4.2 Variability in modelling

This section informs research questions 2 by generalising the findings related to variabil-
ity of energy performance given the distinct modelling levels addressed in Sections 3.1.1
through 3.1.4 and the papers I⇔, II⇑, III⇓, IV⇔ accordingly. This complements the ana-
lysis of variabilities in bottom-up and top-down modelling 3.2.4 exemplified by the case
study. Quantification of variability and/or judgements of model uncertainty at each level
is facilitated by parameters of univariate distribution introduced in Section 2.2.3.

4.2.1 Building level modelling

A perfect forecast is achieved if the model’s predictions match the actual energy use at
any given time. However, any practical application of time series forecasting is associated
with the residuals, i.e. the bias between model prediction and actual values. The predictive
success of the model is measured through goodness-of-fit (minimum residuals) on the test
set. The sole application of the model, therefore, is associated with uncertainties. These
residuals (Fig. 3.2) are the manifestation of variability in the phenomenon and epistemic
uncertainty in representing it in the model. The modelling objective is to obtain symmetric
normal residual distribution with minor STD and the absence of critical outliers. Large
dispersion suggests that the model does not accommodate a large portion of variability.
A non-zero central tendency - that the model systematically under- or overestimates the
phenomenon, thus the parameterisation problem. Paper I⇔ also emphasises that high
performance on the test set does not guarantee that the model will be suitable in the
long term. Degradation of model performance is therefore natural and requires systematic
recalibration.

Parametrising the model is prone to error because a particular set of parameters may
be valid only over a particular subset of the time series. This is the reason for k−fold
cross-validation, which implies model fitting and testing over k subsets of the historical
data. To ensure the choice of model parameters amongst the other, testing each reason-
able combination of them at each of the k cross-validation steps is carried out through
the grid search. Considering more complex models with a larger number of controllable
parameters will increase (linearly) the dimensionality of the grid and (exponentially) the
number of combinations given by the Cartesian product of these parameters.

The residual analysis, therefore, builds the awareness of the natural variation of the
phenomena and epistemic uncertainty behind the ignorance of exogenous factors of in-
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fluence not considered by the model. The latter may be addressed by using models ap-
propriate for multivariate time series forecasting, e.g. SARIMAX, or in combination with
white-box models. However, these decisions need to be justified considering parsimony
versus the expected gain of the residual variance reduction.

4.2.2 Bottom-up modelling

Bottom-up modelling, represented by Section 3.2.1 and paper II⇑, is prone to all three
sources of uncertainty.

A model built with IDA-ICE is a white-box model meant to represent the energy use
of the building. This phenomenon, however, is a combination of white-box and black
boxes. Because the latter is poorly accounted for (idealised by asserting specific patterns,
e.g. presence/behaviour of the occupants in Fig. 2.15), variations of the phenomenon are
expected (aleatory uncertainty).

The building selected for the seed model is meant to represent the archetype in terms
of size, age and other attributes. A considerable heterogeneity behind the assumption
of representativeness is present even though the choice of the archetype is targeting the
central tendency in the empirical sample distribution (e.g. Fig. 2.12). Likewise, a strong
assumption is made about the adherence to one of the schedules illustrated in Fig. 2.15.
This challenge may be partially resolved by defining (more) alternative schedules, al-
though it adds model complexity and computational load.

Additionally, the uncertainty arises with not knowing if and which technology will be
accepted in the future, i.e. epistemic type. Section 2.5.1 and paper II⇑ propose a solu-
tion to account for the uncertain future states through twofold probabilistic simulation: i)
simulating if any of the listed technologies will be accepted in a certain year (by random
sampling a technological acceptance rate from binomial distribution) and ii) simulating
the exact technology that is accepted by random sampling from a uniform discrete binom-
inal distribution of the available technologies. This procedure, illustrated in Fig. 2.11, has
limitations that stem from: i) the list of available technologies, their technical variations,
and installation options is never exhaustive; ii) in reality, the choice between the tech-
nologies is non-uniform since it reflects socio-economic patterns and the preferences of
the decision-makers; iii) the acceptance rate may have more dynamic tendency due to
societal developments.

The outputs of such discrete event simulation procedure form a distribution, e.g. Fig.
3.4 and 3.11, that is subject to the parameter and density estimation (Sections 2.2.3,
2.2.4).

4.2.3 Top-down modelling

Top-down approaches, represented by paper III⇓ and Sections 2.4.3, 2.5.2, 3.1.3 and
3.2.2, have an advantage of naturally handling variabilities and aleatory uncertainty in
the status quo of the built stock. Fig. 3.6 and 3.7 illustrate such variabilities. For studies of
this kind, epistemic uncertainties are behind density estimation (Fig. 2.13) results, which
is affected by the availability and quality of empirical data and the goodness of fit. The
available data also has implications on determining building attributes and factors iden-
tified as of strong or weak significant effect (Fig. 3.6 and 3.7). The choice of statistical
significance threshold (Section 2.2.5) is also recognised as highly subjective. Long-term
forecasting would entail additional sources of epistemic uncertainty similar to those as-
sociated with bottom-up modelling. The output of such top-down model is a univariate
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distribution (e.g. Fig. 3.11), subject to parameter and density estimation (Sections 2.2.3,
2.2.4).

4.2.4 Built stock level modelling

Similar to the above. The variability observable in stock-level empirical data is the mani-
festation of inherent randomness and heterogeneity (Section 3.2.6, paper IV⇔). Fig. 3.8,
and Fig. 3.9 illustrate, for example, the extent to which the energy performance varies
given the combinations of building attributes (individual ECDFs) and for the typology
(composite ECDF). These variabilities are quantified and documented by the theoretical
distribution fitted through density estimation (Section 2.2.4) procedure. Theoretical dis-
tributions then serve as the means to inform bottom-up or top-down models. The estab-
lished effect of the model design parameter on the energy performance (through statist-
ical hypothesis testing, Section 2.2.5) is likewise important to design the most rational
predictive, bottom-up or top-down model. The epistemic uncertainties in analytical con-
clusions made at a stock level stem from data availability and quality, potential estimation
bias, and the (mis)interpretation of the results.

4.3 The rationale for explanatory modelling

Papers III⇓ and IV⇔ advocate formulating and testing the causal theories about the effects
of building design parameters on the energy performance, which is the answer to research
question 3. Applying such practices, following the research question 4, facilitates i) a
better understanding of the nature of the phenomena and ii) improving the predictive
models.

Knowing if, and to which extent, building energy performance at a population level
is affected by certain attribute may assist with (re)designing and rationalising the energy
policies and the means for their implementation. This thesis contains several relevant
examples of such knowledge discovery. Section 3.1.3 and paper III⇓ suggest that the con-
struction period (before and after 1955) has a strong (D = 0.256) effect on the energy
use intensity of apartments in Trondheim, as illustrated in Fig. 3.6 and 3.7. Section 3.1.4
and paper IV⇔ document the strength of the effect of several building attributes and their
combinations (Fig. 2.14) on the energy use intensity of apartments in Oslo (Fig. 3.8 and
3.9). The construction period (before and after 1990) is shown in paper IV⇔ to have a
weak significant effect on the phenomenon for this typology. The case study results (Sec-
tion 3.2.6) identified a weak insignificant effect of the construction period (before and
after 1990) on the energy use of RE. house, semi-detached V in Bergen. This effect,
however, varies amongst RE. house, semi-detached V for the ofther cities (Table 3.1).

Hence, the factors of strong significant effect should be prioritised in order to achieve
the energy-related objectives. The factors of apparent strong effect but so far without stat-
istical significance should be examined further. The factors of weak significant effect are
likewise of interest, although secondary. Care must also be taken to systematically exam-
ine the factors earlier claimed as insignificant since the rapid transformation exhibited by
the built environment may soon elevate their significance.

The validated causal effects may likewise improve the predictive modelling practices.
It is rational to make the models sensitive to the attributes having a strong effect. Doing
so makes the models i) less prone to overfitting and/or ii) more parsimonious, with the
positive implications on data-, computing- and labour intensity behind the modelling.
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4.4 Conformity of bottom-up and top-down modelling

The potential (non-)conformity of bottom-up and top-down predictive model results is
raised by research question 5. With the ultimate practical goal of political support, the
value of a predictive model is in certainty about its prediction. Similar results achieved
with two fundamentally distinct modelling approaches are expected to assert such cer-
tainty. Therefore, mutual verification of the models and the approaches is advocated in
this study to build confidence about the expected consequences of the decisions. The op-
posite also holds. A failure to mutually verify the results of built stock energy models
may warn about potential inaccuracies and thus, prevent misleading and/or ineffective
decision-making. Such practices of verifying the modelling results reinforce the linkage
between the theory of domain-specific modelling and the practical application of the res-
ulting knowledge.

The case study demonstrates that, numerically, bottom-up and top-down modelling
leads to fairly similar results. This is a concise example of interoperability between distinct
modelling paradigms to stimulate their mutual invigoration in the built stock energy re-
search, policy and practice. However, making such concise examples necessitates omitting
numerous details that the models and the purposes they address may be subject to. There-
fore, the scope of modelling and the model coverage is one of the limitations identified
for this study. The results are not universally applicable to all modelling objectives and
urban system components. The case study develops bottom-up engineering-based and
top-down probabilistic programming-based models for predicting the bulk total energy
use at a stock level given specific exogenous information. Under the other modelling ob-
jectives and resource availability, developing two distinct approaches could be irrational
or impossible. Or, this could require additional considerations, e.g. multiple continuous
explanatory variables, density estimation involving the discrete random variables, and
the use of bayesian as an alternative to frequentist-based statistical inference. The com-
plexities that the discipline intends to address require more inclusive yet parsimonious
modelling techniques, possibly amongst those already used in the other disciplines. And,
most likely, those having the grey shades.

It follows that both bottom-up and top-down reasoning may enable accurate, sens-
itive and versatile modelling practices. Top-down approaches naturally handle the key
uncertainties and have multiple benefits associated with addressing the problems more
parsimoniously. On the other hand, bottom-up engineering-based methods address the
physical modelling components at the expences of model parsimony and may neglect non-
physical aspects, which are often of primary importance. Therefore, the choice between
such bottom-up and top-down modelling necessitates answering "should the model in-
clude a detailed analysis of the physical aspects?" and, more importantly, "does the phys-
ical aspect indeed affect the phenomenon at a population level?". Explanatory modelling,
as discussed in Section 4.3, answers these questions likewise.

4.5 The quality of experimental data

The quality of data and the ways of handling it with machine learning and classical statist-
ics remains essential for maximising its value in the built stock energy research and well
beyond. The precise meaning of data with its numerous subquestions is the fundamental
question of predictive analytics. It is known that the weaknesses in study design or data
quality occur more often than poorly performed analysis (Breiman 2001; Miller 2014).
And that experimental design has crucial implications for correctly projecting the sample-
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based analytical conclusions on the population, which is of strong emphasis in classical in-
ferential statistics but is commonly missing in the machine learning community. The other
questions are: is the data potentially biased by data collection/measurement procedures,
data management tasks and the interpretation of findings? Distortion of measurements,
errors in readings, and reporting and registering of the data affect the reliability of con-
clusions further based on it. So do the strategies for recovering the missing or incomplete
data, detecting and dealing with outliers.

Many of such problems are relevant to this work, hence research question 6. Ideally,
statistical inference and predictive analytics require a random sample resulting from a
robust study design. Substituting a study design with the already available EPC dataset
(Section 2.3) for this purpose involves:

• sampling bias;
• measurement/reporting error.

Sampling bias occurs when statistical properties of the collected sample, for some
reason, do not replicate those of the population. The available sample, containing certified
units only, may differ from the population having both certified and non-certified units in
numerous ways. Thus, for example, certification of the new buildings is mandatory while
the old buildings are certified at the moment of renovation, rent or sale only. Therefore,
the proportion of new to all units differs between the EPC dataset and the population.
Likewise, there may be the tendency that the occupants of the certified (or the new)
buildings are wealthier/poorer, older/younger, more(less) frequently absent, more(less)
demanding for comfort, more(less) equipped with appliances, more(less) environment-
ally conscious... Certification could also occur more frequently in some regions of the
urban territory (having distinct climate-related and socioeconomic tendencies) amongst
the buildings of specific sizes or any other attributes.

The measurement/reporting error applies when the data is intentionally or uninten-
tionally misreported. For example, a good certificate elevates the property’s market value,
and hence the owners may be tempted to report better energy performance. Could it also
happen that some of the readings/energy bills were unavailable, partially because the
owner and the occupant are not necessarily the same person?

The EPC registry also contained numerous flaws that stem from poor data registration
and management practices. These resulted in common outliers, duplicates, and missing
values that are dealt with in this study.

Although the applicable analytical toolbox may enable mitigating such problems to
some extent, their prevention is a more promising strategy. Designing, managing, and
developing the systems that involve experimental data collection, such as EPC is likely
to benefit from the involvement of energy analysts. This may leverage the capabilities of
predictive analytics to assist with answering the important questions about energy sus-
tainability.

Poor quality of empirical data is an essential aspect of this research, making the res-
ults, under the strongest criticism, applicable to the certified buildings rather than the built
stock. However, the most important results of this work are the illustrated instrumental,
methodological and philosophical means to achieve the synthesis of various modelling
techniques.

This study agrees with Brøgger and Wittchen (2018) and Sousa et al. (2017) on data
quality and the transparency of models that use it as crucial for their applications in polit-
ical support. Research reproducibility/replicability are likewise emphasised as of high im-
portance. Following, exemplifying and encouraging these practices is one of the objectives
set for the development of Build Stock Explorer. The future development of this software
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will make a more comprehensive set of analytical instruments available. Along with the
growing volumes of the available data, these instruments facilitate interactive explanatory
and predictive modelling to achieve the objectives of large-scale building energy research
(Appendix A).





Chapter 5

Conclusions

A wealth of essential questions about the energy sustainability of the built environment
are yet to be answered, which demands a better understanding of the phenomenon and
better accuracy in predicting it. While the need for the latter is well-recognised and repres-
ented through either a bottom-up or top-down approach, no sufficient attention is given
in the discipline to the former. Because of the radical differences in the bottom-up and
top-down reasoning, their use for mutual verification of modelling results has not been
sufficiently attempted. However, a rational synthesis of the available resources and mod-
elling techniques is necessary to address the possible modelling bias and prevent false
conclusions. Separating the discipline by the boundaries of familiar, convenient and/or
easily interpretable approaches, methods, tools and data sources elevates the risks of the
reverse. Given the importance of mediating built stock energy use through political, eco-
nomic and cultural mechanisms at all levels, this study emphasises the need to focus on
the incisive analysis of the subject matter by all means.

The models are shown to be helpful in stabilising building-to-grid interaction, el-
evating self-consumption of the renewables and self-sufficiency of the buildings in the
short term; predicting the future evolution of the built stock, and the associated changes
in power duration/energy costs; mapping the urban energy hotspots to prioritise for
improvement; promoting and/or discouraging specific configurations of architecture-/
engineering-related characteristics.

The choice between the bottom-up and top-down approach is made by considering
modelling objectives, the phenomenon in question and several model appropriateness
criteria. Establishing the causal effects that govern the phenomenon is crucial to each
of these aspects. Explanatory modelling, as shown earlier, has the potential to infer the
causality between independent and dependent variables. The implication of such a re-
lationship empirically quantified is: i) validating the theoretical knowledge, ii) ensuring
the effectiveness of energy efficiency policies and practices and iii) informing a better
predictive model’s design. Statistical hypothesis testing and density estimation proced-
ures effectively aid these tasks.

A case study demonstrates that bottom-up and top-down approaches lead to fairly
similar numerical results, which is a plausible conclusion given a rational model design.
We, therefore, advocate mutual verification of such models, whenever possible, as a meas-
ure to i) build confidence in the model’s adequacy or otherwise ii) warn about their po-
tential inaccuracies. These aspects are essential in safeguarding the soundness of political
and practical decisions based on predictive analytics. Our findings are expected to mo-
tivate numerous creative endeavours to elevate the confidence in the decisions based on
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models. And to ultimately ensure the progress towards a more sustainable and inclus-
ive built environment. It is shown that the established model classification into binary
bottom-up and top-down does not accommodate some essential modelling practices and
thus, needs revision.

The steps that are taken to translate a pragmatic policy- or practice-related question
into a formal modelling exercise are seen as of critical importance and rely on the mod-
eller’s beliefs. Radical transparency across all modelling steps to facilitate replicability/
reproducibility/ transferability of the results is therefore emphasised. In addition to model
design, this study articulates the importance of a rational design of the experiment and
the downstream data transformations to ensure the consistency between the question,
the model and the data. These qualities are of particular importance in further research,
where the scope of modelling is expected to accommodate more technical/ architectur-
al/ occupancy-related details, larger scales, a broader spectrum of relationships and a
multitude of alternative future developments.
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Meeting strategic energy and environmental targets for 
nations and communities requires significant performance 
improvements in building sector. Net Zero Energy 
Buildings (nZEB) would play a crucial role in achieving 
these targets through low operational energy use and 
production of renewable energy at a quantity that meets 
building’s delivered energy over the service lifetime [1]. 
Photovoltaic (PV) energy is considered as the key source 
that enables nZEB under various climate conditions and 
related political circumstances. Although grid-connected 
nZEBs do not require a match between instantaneous PV 
generation and instantaneous load, it is often preferred to 
increase the share of PV energy directly consumed on-site 
(self-consumption rate). One of the reasons for that is 
profitability as a result of the difference between self-
produced and retail electricity prices, grid feed-in tariffs 
and numerous incentives [2]. Another reason is the need 
for more consistent grid interaction, i.e. the solutions for 
frequency regulations and future power grid 
reinforcement to handle high PV feed-in and high loads 
are required otherwise [3]. Maximising the building self-
consumption while avoiding peak grid loads, therefore, is 
one of the key challenges that is focused by the research 
initiatives in the discipline. Two distinct but not mutually 

exclusive approaches can be used to tackle these 
challenges: demand side management (DSM) and the use 
of battery energy storage systems (BESS). The former is 
concerned with shifting the deferable loads to the time 
when PV system has high output. It often includes 
rescheduling of heating, ventilation, air conditioning and 
some other types of household equipment. The other 
approach enables energy flexibility by using PV energy 
stored in batteries at the time when load occurs. BESS is 
recognized as having a larger potential to increase self-
consumption rates [4]. Currently, best practices in the 
field of energy flexibility involve a combination DSM and 
BESS [2, 5]. 

For the effective use of both these approaches, a 
reasonably accurate forecast of energy demand and PV 
generation in the (nearest) future is required [2]. 
Instantaneous load and on-site PV power, however, are 
the sources of variabilities and uncertainties. In addition 
to thermal properties of the building envelope, climate, 
energy supply systems, building purpose, occupant 
behaviour and maintenance practices determine the 
unique shape of load profile that changes on day-to-day 
basis. Solar power profile is a function of daily and 
seasonal variations of both direct and diffuse radiation, 
outdoor temperature and other factors. For a short-term 
load forecasting in real-time, building energy 
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performance simulation techniques are rarely used. 
Detailed simulation is constrained by computational 
capabilities and the need for exhaustive building-related
information. Data-driven approaches, on the contrary, 
may resolve some of these limitations [6]. Their use for 
electric energy demand prediction has been mainly done
by regression analysis, machine learning techniques, and 
time series forecasting. With regression analysis, one 
aims at identifying a set of influential variables and the 
underlying (often non-linear) model structure. Machine 
learning techniques offer the benefits of automated 
pattern discovery instead. Amongst the limitations of both 
these approaches is the need for several explanatory 
variables. With time series modelling, however, the 
prediction of target variables can be made based only on 
the past observations of itself, i.e. applicable for 
univariate problems. Therefore, such adaptive, 
parsimonious time series forecasting is expected to play 
an important role in facilitating energy flexibility and 
more consistent grid interaction for nZEBs.

Likewise, real-time PV power forecasting under 
uncertain weather conditions is one of the fundamental 
challenges to enable energy flexibility. Practical solutions 
are offered by persistence models, physical and statistical 
approaches [7] that utilise sky models or data streams 
from either satellite imagery or reference PV systems.
Recent advancements in the field succeeded at combining 
these into hybrid approaches which allows to achieve high 
forecast accuracy [8].

Given that two components, the forecasted PV output 
and load profiles are available, battery charge/discharge 
operations can be scheduled with one or more objectives, 
most often these are maximising self-consumption or 
battery service lifetime, minimising energy cost, ���

intensity or peak grid loads. A comprehensive overview 
of operational strategies for PV-coupled battery systems, 
their objectives and methods are available in studies [4, 9, 
10].

In this study, some of the best practices related to 
forecast-based control were implemented and elaborated 
further. Analysis and modelling tasks were carried out 
with Python programming language using NumPy, SciPy
and Sk-learn libraries for numerical computing, 
Statsmodels for model training/testing, Pandas for data 
wrangling, Matplotlib and Seaborn for data visualisation.

������������


�����
	��	���


A case study was one non-residential building located in 
Trondheim, Norway. It is used for health-related and 
recreational purposes and has the total heated floor area 
of more than 3000 ��. Both electric and district heating 
energy use for the building were reported on hourly basis 
and accessible as datetime-indexed arrays through an 
energy monitoring platform.

Historical data over the entire building’s monitoring 
period of more than five years is illustrated in Fig. 1.
Because district heating was utilised in cold periods, 
electric energy use exhibits weak seasonality through the 
year. Also, no monthly/weekly seasonality was observed.
Since such seasonality in electric energy use is negligible 
here, further data analysis and algorithm exemplifications 
are made using the most recent observation (Fig. 2) on the 
span of 90 days (Jul. ���	, 2018 through Oct. 
�	, 2018, 
accounting for 2160 observations total).

Fig. 1. H��������	
����
�
���	�
�������������
��
�	������
���
��������

������ ������
���
���
������
�����������
�������

Fig. 2. Electric energy use (hourly measurements) in most recent observations.

It can also be observed from Fig. 2 that the series has 
a strong daily pattern. The lowest electric energy use for 

the building occurs at around 6:00. It increases in linear 
or exponential manner through the day, achieves its peak 
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between 15:00 and 23:00 followed by decrease through 
the night.

The building is assumed to have a PV system of 
��� �
 total installed capacity in place with south-
oriented, ��� tilted modules.

���� ����
��	�������
	����

For univariate time series forecasting, the Box-Jenkins 
Autoregressive Integrated Moving Average (ARIMA) 
model is one of the most commonly used [11, 12]. For 
applications with seasonal effects, ARIMA��� �� �� has 
been modified to the multiplicative seasonal 
SARIMA��� �� �� � ��� �� ���. Studies [13, 14]
exemplify its application for energy forecasting purposes.
Model’s parameters are following:
�� � – non-seasonal and seasonal autoregressive (AR) 

components;

�� � – non-seasonal and seasonal order of 
differencing;
��Q – non-seasonal and seasonal moving average 

(MA) components;
� – periodicity of the season.
Detailed formulation for both ARIMA and SARIMA

is provided in literature [15]. In this study, an open-source 
statistical computing package Statsmodels [16] has been 
used for SARIMA training/testing. Package 
documentation contains the details on SARIMA 
implementation in Python.

Model’s application requires the series to have 
constant mean, variance and autocorrelation, i.e. 
stationary process. This is not the case for original series, 
as can be seen in Fig. 2. A sequence of steps for process 
stationarization here involves seasonal and non-seasonal 
differencing. The corresponding autocorrelation and 
partial autocorrelation functions (ACF and PACF) are 
illustrated in Fig. 3.

Fig. 3. ACF and PACF correlograms. a) Original data; b) Non-seasonal differencing; c) Seasonal differencing.

To induce stationarity, the first non-seasonal 
differencing was taken on the original series:
��� � ��  ��!" � ��  #��� (1)

where:
� – original series;
# – backshift operator, such that:

#$�� � ��!$ (2)
The ACF of the resulting series shown in Fig. 3b.1 still 

indicates the presence of statistically significant lags. 
Therefore, an additional seasonal differencing step was
applied:

���� � ��  #�%���� (3)
Referring to the original series, the additional seasonal 

differencing was obtained as:
�&&� � ��  #  #�% ' #�(��� �

��  ��!"  ��!�% ' ��!�( (4)
The newly acquired time series had the mean value 

close to zero (�)��*
� and a reasonably small number of 
significant autocorrelations as shown in Fig. 3c.1, at lag 
1, 2, near- or at the first seasonal lag that did not repeat 
afterwards. This series was considered stationary, which 

is also confirmed by the Dickey-Fuller [17] test. The 
partial autocorrelation function (PACF) plot shown in Fig.
3c.2 exhibits slow decrease at the non-seasonal level and 
a spike at the seasonal lag. Although further differencing 
may result in even more consistent series, this step could 
induce the negative effect of overcomplication and 
overfitting the model. Moreover, as reported by others
[18], these seasonal lags could merely reflect large 
correlation of non-seasonal ones.

The PACF correlogram in Fig 3c.2 indicates that the 
first 4 lags are significantly different from zero, thus 
suggesting the feasible non-seasonal component to be 
within the range AR + ,��-.. Similarly, from the ACF plot 
in (Fig. 3c.1) non-seasonal MA + ,��-.. Because PACF 
and ACF in final series indicate significant near-seasonal 
lag, the seasonal AR and MA chosen here are 1 and 1. 

Since non-seasonal components AR (�) and MA (�) 
are essential for the model performance, their 
identification in this study is facilitated by grid search 
method. Grid search over the parameters’ space implies 
training and evaluating the models with all feasible
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combinations of parameters �� �. The root mean squared 
error (RMSE) can serve as a reference metrics for the 
model performance evaluation used here, defined as:

/012 � 3"4 5 ��6  �78��449" (5)

where:
: – number of samples;
�6 – actual observation;
�78 – model prediction.
The preferred model parameters (�� �), therefore, 

correspond to the lowest RMSE obtained on the test set.

As an additional measure used to ensure that the selection 
of � and � is not affected by coincidental patterns in the 
series, a �-fold cross-validation (CV) procedure is
applied. CV for time series models implies splitting the 
dataset into � subsets where a training set is immediately 
followed by a test set. Thus, 90 most recent days of 
monitored data are split into � � � subsets as illustrated 
in Fig. 4. Grid search is conducted for each CV step. 
Further, the parameters (�� �) are selected based on 
average RMSE for all CV steps, as illustrated in Fig. 4 
with color-coded heatmap.

Fig. 4. Parameters tuning and validation. CV intervals split (top) and grid search results (bottom).

For a given case, the most favourable model 
parameters p and q are � and - accordingly, since the 
average over all CV steps RMSE is the least for this set of 

parameters. The performance of SARIMA�����-� �
��������% is illustrated in Fig. 5.

Fig. 5. Model performance. Top: original, forecasted and residuals series. Bottom: distribution of residuals.

Forecasted series overlays closely with the test series. 
Both, in- and out-of-sample residuals do not exceed 10 
�
;. In-sample residuals follow normal distribution. 
Out-of-sample residuals density, however, is skewed to 
the left compared to the shape of equivalent normal 
distribution which indicates the loss of accuracy in long-

term forecasting. Although such systematic error can be 
neglected in some applications, we restrict this control 
strategy to day-ahead horizon, where the accuracy is the 
highest.
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As was mentioned before, the proposed control strategy 
involved communication with external service Solcast 
API [19] to obtain high-quality PV output forecast. Data 
request included geospatial (latitude and longitude) and 
technical information about the PV system (installed 
capacity, azimuth and tilt angle). The API’s response is a 
datetime-indexed array of the forecasted PV power with 
30 minutes temporal resolution over a span of 7 days. 
Further data wrangling involves two steps. Since the 
response dataset is UCT-indexed, a conversion to local 
time is needed. Also, original data is converted from 
power to energy units and from 30 minutes to hourly 
intervals. An example of postprocessed API’s response 
based on PV system’s parameters mentioned in Section 
2.1 is illustrated in Fig. 6.

Fig. 6. PV generation (reversed), historical and forecasted.

��%�&�
���
������

Given that the energy use and PV generation profiles were 
known, the task of load matching was to allocate the 
aggregated daily PV energy to the time when energy use
is the highest on that day. This implies finding threshold 
value (�) that separates grid from battery energy use. The 
task could be formulated as follows:

5 �<=�%" � 5 >5 ��  ��?@?A B C D449" (6)

for all ��  �� E � and if 5 �<=�%" E �.
Here:
�<= – hourly PV energy, �
;;
�– hourly energy use in the building, �
;
� + ,�� �FGH. – threshold value for the day, �
;;
I"� I� + ,��*-. – the beginning and the end of interval 

: when battery should be used;
: – number of time intervals, used to account for the 

possibility of battery use during more than one period 
through the same day;
D – absolute error tolerance, �
;.
Solving this problem analytically would require 

approximating the load and PV curves and their 
subsequent integration. To avoid the associated loss of 

accuracy, a numerical search technique has been 
implemented instead. Namely a dichotomous search 
algorithm was used to find the threshold value �. Fig. 7 
illustrates the search for � on Oct. J�	, 2018. By gradually 
eliminating half of the continuous search space that was 
known at previous iteration, the condition (eq. 6) is 
achieved in a recursive manner after 8 iterations with � �
�� �
;, which yields:

5 �<=�%" � 5 ��  ��?@?A � �*)
 C �)� �
;.
Finding the time intervals I"� I� further, is based on the 
condition where � E �  �.

Fig. 7. Search progress.

!�'�	���	�
�����	��		���
Given the techniques discussed above, this study 
proposed the algorithm for day-ahead battery operation 
scheduling that follows a block diagram in Fig. 8.

The first step was to send two data requests: one for 
historical energy use data (of a desired length, e.g. K �
J� days) and one for PV output forecast (installed 
capacity, latitude, longitude, the azimuth and the tilt of the 
PV modules). The response from Solcast API was then 
converted to local time, from power to estimated energy 
units and from 30 minutes to hourly time resolution. Since 
the day-ahead forecast was used, the series is cut at *-�	
element. The response from the energy monitoring 
system’s API is a datetime-indexed array of length L �
*-K. 5 grid search and cross-validation steps were taken 
after which the SARIMA model parameters (�� �) were 
selected such that the corresponding average RMSE is the
smallest. With these parameters, SARIMA��� �� �� �
��������% was trained using the entire L-length training 
set. The trained model was further used for predicting 
energy use for the following day. Both arrays, the 
forecasted energy use and PV output enter the load 
matching unit and follow the procedure described in 
Section 2.4. After the load matching task was completed, 
the delay of 24 hours is initiated. The output of load 
matching unit was the reshaped grid load profile and the 
recommended battery charge/discharge dynamics (as 
exemplified in Fig. 9) to achieve such peak shaving effect.
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Fig. 8. Process flow diagram.

Fig. 9. Algorithm’s output. Reshaped load profile (top); Charge-discharge dynamics (bottom).

Technical and climate conditions under the test case 
did not entail the need for controlling grid feed-in,
because daily aggregated PV energy is always smaller 
than aggregated energy use. In case if daily PV generation 
was higher, a search algorithm would separate PV profile 

into two parts, one for self-consumption and one for grid 
export:

5 ��%" � 5 >5 ��<=  �<=�?@?A B C D449" (7)

for all ��<=  �<=� E � and if 5 ��%" E �. Here �<= +,�� �<=MNO. – threshold value specific for daily PV profile, 
�
;. Under such circumstances, PV energy in range 
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,�� �<=. was excessive and could be exported 
instantaneously. 

Thus, an algorithm suggests a reshaped profile, where 
the peak energy use and/or PV feed-in are avoided. 
Significantly more consistent energy use profile can be 
achieved for the days with high PV output, e.g. Oct. 
�	 
and Oct. ���	. Over the entire period between Oct. 
�	 
and Oct. �-�	, -P�Q�
; of available PV energy offer �R 
to ��R reduction of daily peak energy use from the grid. 

This approach for day-ahead scheduling of battery 
operational time and intensity remains relatively simple 
and requires little historical data. It may also be used to 
reshape load profiles in response to dynamic energy price 
or ��� intensity. 

The selection of some parameters for SARIMA was 
justified and automated. However, a different case study 
might reveal the need to conduct grid search over a larger 
set of parameters, e.g. seasonal components (�� �) or to 
make more steps to achieve stationary series (�� �). 
Additional strong seasonality in building operation, e.g. 
weekly/holiday-based, monthly or annually, may require 
added complexity of SARIMA, resampling the 
underlying data or considering another time series model. 
The needed length of historical data must be satisfied 
accordingly. Further automation of these procedures, 
therefore, is needed to achieve more robust battery control 
that would suit the buildings of various types and more 
complex load profiles. For on-site algorithm deployment, 
as opposed to forecasting carried out in data centres, 
optimization of computational time and resources usage 
may be necessary. 

Forecasting and control principles used in this study 
exclude the adaptation to sudden, unforeseen changes that 
may occur on the short term. Also, no attention is given to 
the potential technical limitations associated with 
charge/discharge intensity, critical depletion and system’s 
losses. The authors anticipate the best application of the 
algorithm in combination with model predictive control 
or similar. 

Expanding the forecasting horizon and considering a 
more long-term control strategy may offer even more 
consistent load profile. This option, however, is limited 
by accuracy (as can be seen in Fig. 5) and data needs in 
forecasting techniques currently used. Potential 
improvements of energy use forecasting can be achieved 
through including exogenous variables in time series 
modelling, e.g. thermal properties of building envelope, 
HVAC equipment specifications/setpoints and detailed 
data of occupant behaviour. The improvement of 
forecasting accuracy is also expected through 
supplementing time series models with other techniques, 
as discussed elsewhere [6]. 

Longer-term control strategies are likely to require 
more battery storage capacity. Techno-economic 
feasibility studies of such measures would have to address 
the trade-off between self-consumption rate, smoothness 
of grid interaction, battery capacity and utilization rate. 
This should be in line with the measures to prolong battery 
service lifetime as discussed in study [20]. As outlined in 
another study [4], the acceptance of such control 

strategies in buildings and communities highly depends 
on economic, technological and policy-related factors. 

%�������	���	�
In order to meet energy efficiency and environmental 
targets without compromising grid stability, an increased 
self-consumption while smoothing grid interaction has to 
be promoted in nZEBs. This challenge requires not only 
capacity gains for PV systems and energy storage units, 
but more intelligent approaches for their utilization. The 
latter relies strongly on accurate energy and PV output 
forecasting. 

With this article, an autonomous, parsimonious 
forecast-based control strategy was proposed. High 
performance of building energy use forecasting was 
achieved with time series model SARIMA supplemented 
by grid search for parameter identification and 5-fold 
cross validation. The proposed algorithm benefits from 
high quality satellite-derived PV power forecasting 
services. It is shown that for peak shaving purposes, the 
battery operation time and intensity can be scheduled on 
a day-ahead basis. 

Such control strategies are likely to contribute to 
achieving the energy and environmental targets under the 
growing demand for efficient built environment. An 
increasing accessibility of PV systems and energy storage 
solutions are expected to positively influence their 
adoption. 
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Abstract. High penetration rates of novel building energy technologies has prompted
a growing concern about their microeconomic effect and grid influence. Deployment of
photovoltaic (PV), solar water heating (SWH) systems and energy storage solutions, in addition
to the growth of electric vehicles (EV) fleet, are reshaping the structure of built stock and lead
to the changes in its electric energy demand profile. Long-term forecasting of such structural
changes is necessary to guide the decision-making process that would satisfy the needs of
both, energy consumers and the suppliers. Whereas electric energy price model is one of the
key influencing factors of technologies acceptance for households, peak loads and grid feed-in
determine the needed capacity of power grids. The objective of this study was to assess both,
the aggregated cost of energy and the changes in cumulative load profiles that are excepted
by 2050 for one of residential building typologies in Norway. Methodologically, it was achieved
with descriptive statistics, stochastic forecasting and detailed energy performance simulation.
Annual electric energy cost for consumers were evaluated under six pricing models. The results
suggested that time-of-use and variable maximum power extraction models represent the lowest
and the highest extremes in energy cost. At the aggregated level, peak load will decrease in
range 1% to 13% compared to current level. Peak PV feed-in will reach up to 40% of peak load
by 2050.

1. Introduction
Renewable energy technologies and energy conservation measures together with the emerging
electric mobility solutions are penetrating the residential built stock rapidly. The motives and the
consequences of such shift have to be studied in a systemic manner [1] to ensure the compliance
to long-term strategic development plans for communities.

The benefits for consumers typically involve achieving the economic [2] and possibly
environmental objectives [3] that may result from the reduced energy use and from power feed-
in on the long term. More detailed analysis, however, suggests that these technologies may
cause even further inconsistency in grid interaction [4]. Hence, their deployment at a large scale
may require added power generation capacity and grid reinforcement. For the Norwegian power
system this issue becomes even more challenging given that electricity is the major source of
energy for space heating. Thus, Norwegian power grid development and maintenance for the
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period 2016 - 2025 will be supported by NOK 1401 billion of investments [5].
Under such investment strategies, the expected increase in electric energy nominal price for

households is 30% by 2025. In addition, a number of changes in electric energy pricing model will
be introduced [5] by the Norwegian Water Resources and Energy Directorate (NVE). This brings
to the necessity to evaluate the future costs of electric energy under various pricing methods.

Forecasting the future state of built stock is crucial for developing further power grid
investment plans and energy pricing methods. Realistic long-term, large-scale energy forecasting
models need to account for: 1) Detailed information on how certain technologies affect the energy
performance at a single building level; 2) Typological complexity, variability, and dynamic nature
of built stock; and 3)Uncertainty in consumers’ decision to accept a certain novel technology.

“White-box” energy performance simulation is considered as an effective tool used to evaluate
the results of technological interventions applied at a building level. Large-scale energy planning,
however, is hindered by additional challenges, associated with the heterogeneous structure of
building stock. Figure 1 illustrates the variability of energy use for residential buildings in
Norway. A number of factors lead to significant variance, even within the same building type
[6]. It can be attributed to the properties of envelope, energy supply system, appliances and
occupant behaviour. Appropriate statistical methods that quantify this variability should be
used at the model development and validation steps to minimise the error [7].

Figure 1. Energy use in the Norwegian residential built stock - univariate distribution

The deployment of novel technologies in buildings has a large number of underlying sources
of variability that cannot be accommodated by deterministic modelling principles. Social
and economic environment, amongst the other factors that affect the decision-makers, can be
considered as random variables. Studying the dynamic evolution of such random phenomenas
has to involve stochastic forecasting with the appropriate tools from probability theory [8]. This
enables to account for a full spectrum of likely future outcomes, to quantify the uncertainties and
thus, serves as a basis for well-informed strategic planning. Consequently, stock-wide influence
of novel technologies on future electric energy prices and on power grid needs to be estimated in
a quantitative, probabilistic terms. Developing the feasible methodological approach to achieve
such objective is the key reasoning behind this study. It is exemplified with one residential
building typology - semi-detached house divided vertically. The approach involves typological
sampling, detailed building energy performance simulation, and stochastic forecasting. For the
exemplification purposes, four technologies were considered: EV, PV, domestic hot water tank
(DHWT) and SWH system.

1 As of May 2019, 1 NOK = 0.1018 EUR.
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2. Methodology
The suggested methodology consisted of five steps:

• Descriptive statistics - estimating central tendency, dispersion and distribution of variables
within the typology to establish key properties of the representative building;

• Detailed energy performance simulation of the representative building without and with the
technologies under the study and all possible combinations of those;

• Statistical simulation of stock-wide acceptance of technologies;

• Aggregation of the resulting cumulative energy costs under the available pricing methods;

• Aggregation of grid load and grid feed-in.

For detailed energy performance simulation, IDA-ICE software was used. Analytical tasks
were carried out in Python programming language using the following libraries: 1) NumPy,
SciPy, Statsmodels, and Networkx for numerical computing and simulation; 2) Pandas for data
wrangling; 3) Matplotlib and Seaborn for data visualisation.

2.1. Descriptive statistics
The analysis of Norwegian Energy Performance Certificates (EPC) was carried out at this step.
The background related to the dataset, as a component of EPBD [9] implementation in Norway,
are available in source [10]. Amongst 18100 records for all the residential building categories
listed in Figure 1 except apartments, semi-detached house divided vertically reached 9.7% by
records count, 9.0% by heated floor area and 9.3% by energy use. The distribution of samples
based on heated floor area (m2) is illustrated in Figure 2.

Figure 2. Heated floor area - univariate distribution (data-specific and theoretical best fit)

It was found that Alpha Probability Density Function (PDF), compared to other theoretical
PDFs, describes this variable in the dataset best. For this type of PDF with its specific
parameters, 10th and 90th percentiles, or confidence interval (CI) is [77.7, 212.4]. Subsequent
steps in the methodology focused on this range only.

Further analysis of the EPC dataset revealed that 60% of buildings within this typology
were constructed before 1990, as concluded earlier in source [11]. An additional step was aimed
at describing the energy intensity within the building typology. Figure 3 illustrates the linear
relationship between the age of buildings and the energy intensity. The figure indicates that
the energy performance of buildings constructed before 1990 remains relatively poor. They
contribute significantly to the stock-level energy use and their refurbishment should be of priority.
The overall linear trend was further used for model validation, as elaborated in section 2.2.
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Figure 3. The relationship between building’s age and energy intensity

2.2. Energy performance simulation
Based on the information from previous section, a selected representative building was two-
storey, three-bedroom, single-family house built under the standards available before 1990.
Heated floor area of the building modelled (122.2 m2) close to the medium value for this typology
(129.0 m2 as specified in Figure 2). The unit was located at the end of a terraced building to
represent the worst-case scenario. It was assumed that electricity is the only source of energy for
space heating and domestic hot water (DHW) supply. A multi-zone model of the building was
developed in IDA-ICE [12] with climate data for Bergen, Norway. Based on NS3031 [13], the
heating system was designed for a desired temperature of 21/19 ◦C in occupied/non-occupied
hours during the coldest period of the year. The internal gains, electrical appliances, and DHW
use were modelled in detail to take into consideration occupant behaviour as shown in [14].

The outputs of energy performance simulation for this (seed) model are load and energy use
profiles on hourly basis over one year of operation. Simulated annual specific energy use was
compared against standards (178 kWh/m2 [15]), other source [16] and the EPC dataset (Figure
3) as a model calibration step.

A calibrated seed model was further extended with all unique combinations of four
technologies: EV, PV, DHWS and SWH (Table 1).

Electric load profiles for EV defined based on the data for the most common commercial
solutions [17]. Model inputs related to technical specifications for PV systems derived from
manufacturers and distributors [18, 19]. A list of unique combinations of technologies in Table 1
accounted for the technical relationship between SWH system and the DHW tank - DHWT with
the demand management mechanism is an independent component whereas SWH does requires
DHWT for its operation.

The annual load and building energy use profiles were simulated for all the combinations of
technologies listed in Table 1. Load profiles over the three coldest days are illustrated in Figure
4 for the simplest (seed) and the most complex models. As a convention, a reversed PV power
profile displayed here. This subset of the load profiles, when the demand for space heating is
highest, demonstrates the key differences between the models:

• PV power, if self-consumed, enables to decrease grid load substantially. The mismatch
between PV generation and peak load, however, makes such benefit insignificant for grid
stability;

• SWH system in combination with DHW tank are instrumental in reducing the total load
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Table 1. Unique combinations of technologies

Index EV PV DHWT SWH Comment

1 Seed model (none of the technologies accepted).

2 Battery capacity 22 kWh. 50% charging daily.

3 PV area 16 m2. 4000 kWp installed capacity.

4 Volume 200 l. Heater capacity 2 kW .

5 Collector area 16 m2. 200 l storage tank.

6

7

8

9

10

11

12 All technologies accepted.

during the peak periods. Their performance varies strongly in response weather conditions;

• EV may contribute substantially to the afternoon peak if no advanced charging
control/scheduling used.

Figure 4. Load/feed-in profiles for model [1] (top) and [12] (bottom)

2.3. Stochastic model
This section is concerned with developing a stochastic model used to predict a stock-wide
penetration level of novel technologies. The key concept is stochastic process of building’s
evolution. It defines the sequence and the time steps with which the technologies can be accepted
in one building. The acceptance of any technology in a building is denoted by a discrete (binary)
random variable X:
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X =

{
0, if technology is not accepted

1, if technology is accepted
(1)

VariableX is characterised by the synthetic parameter - technological acceptance rate (TAR).
TAR reflects the probability P with which any of the available technologies will be accepted
(X = 1) at the time step t, such that:

P{X = 0}+ P{X = 1} = 1 (2)

Under the absence of perfect knowledge, TAR is meant to encapsulate all kinds of judgments
and influencing factors that drive the decision to accept any technology. Through social
advertisement, economic incentives and other energy-related programs at the municipal or
national scale, this parameter can be influenced.

Given that at some time step t, variable X yields an acceptance, the exact technology is
drawn from a random, uniformly distributed variable denoted as U which is one realization of
an exhaustive list of the available technologies u = {EV, PV,DHWT, SWH}. Thus, when the
first acceptance occurs:

P{U = EV } = P{U = PV } = P{U = DHWT} = P{U = SWH} =
1

4
(3)

A general form of Equation 3 for the acceptance n is:

∀n ∈ [1, 4], ∀U ∈ u P{U = u} =
1

5− n
(4)

The overall process resembles a random walk over the discrete filed with inconsistent time
step. Figure 5 illustrates one sample path with TAR = 0.07 as a network graph. Current
state of the building always corresponds to the seed model. The final state, however, depends
on if/how many acceptances occurred and which technologies were drawn, but always has a
reference model in Table 1.

Figure 5. Sample path - acceptance of technologies in the building

Such simulations were carried out for each out of 1000 individual buildings within the
synthetic built stock. Its final state can be presented as a bar chart in Figure 6, illustrating a
number of times when each unique combination of technologies can be observed in 2050 under
TAR = 0.07. The results in Figure 6 represent one possible outcome (trial) of the built stock
evolution. To address the objectives of the study, 1000 trials were simulated, where TAR takes
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a random value from continuous normal (Gaussian) PDF with mean value μ = 0.05 and the
standard deviation σ = 0.015.

Figure 6. Number of buildings per combination of technologies accepted

Given that simulated final states of built stock are available, the corresponding data on grid
interaction from the reference models and the energy price can be aggregated to the stock level.

2.4. Energy price calculation methods
Currently in Norway, the electricity bill for residential building owners consists of two elements:
energy and electricity grid fee. Further, the electricity grid fee consists of energy part and a
constant part. This constant part should reflect the power demand of a user, but in the current
grid fee model it is not considered. Finally, this means that the electricity grid fee is not reflecting
the real electricity grid cost caused by the power demand of residential buildings.

In this study, the energy cost was based on the Nord Pool hourly data for 2017. The energy
cost was calculated by using hourly electricity demand and the hourly electricity cost from the
Nord Pool market. The grid fee part may be defined in different ways depending on the model.
In this study, the six models were analysed: 1) the current spot price model, 2) the current
period model, 3) the maximum measured power model with the constant coefficients over the
year, 4) the maximum measured power model with the variable coefficients over the year, 5)
the subscribed power model with 4 kW subscribed power, and 6) the time of use model. The
specific values for each of these models were provided from Haugaland Kraft. In the case of the
electricity export, the feed-in tariff, when the building installed PV, a possible income for the
building was calculated. This income was calculated in the same way as the grid fee cost for
each model, except that each element was weighted 80% and 25% was taken for the taxation.
An incentive to motivate building owners to install PVs would be to decrease the taxation, but
this was not analysed in this study. For each of the scenarios in Table 1, monthly and annual
electricity cost for each of the six pricing models were calculated. Due to effectiveness of the
paper, the pricing models are not introduced in detail mathematically. Currently, in Norway
there are some suggestions for the feed-in tariff, but it is not yet widely used. The values used
in this paper were discussed with the company Haugaland Kraft.

3. Results
Given the simulation procedures and assessment methods discussed above, the results represent
the likely levels of penetration of technologies under the study. The associated grid interaction
and the prices for energy are elaborated here.
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3.1. Aggregated grid interaction
In Figure 7 illustrates 1000 load duration curves aggregated to the synthetic stock level. Each
curve reflects an evolved unique stock, composed of buildings with various combination of
technologies (Table 1) in 2050. For comparative purposes, aggregated duration curve from
seed model is displayed also.

Figure 7. Aggregated load duration curves

It can be observed that the middle part of the curves remains unchanged. Substantial changes,
however, are expected in peak loads and at grid feed in. Peak load observed on the annual basis
is expected to decrease between 1% and 13%. The running time with low loads will change,
which can be attributed to higher levels of self-sufficiency. The figure indicates that under this
case study, extra peak power generation will not be necessary since additional load caused by
the the EVs will be compensated by PV and SWH systems. Penetration of PV systems would
yield significant levels of peak grid feed-in which can reach up to 40% of peak load.

3.2. Cumulative electricity cost
Cumulative annual cost for electricity, according to six pricing methods discussed in Section 2.4
and under various TAR, are illustrated in Figure 8.

Figure 8. Aggregated electric energy costs per pricing model

It is evident from the Figure 8, that time-of-use tariff and variable maximum power extraction
models refer to the lowest and the highest electric energy price under any acceptance of novel
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technologies. Overlapping variance makes it more challenging to establish preferences between
the other four models. Thus, under high TAR (left part of each histogram), cost for energy with
the spot price model will be lower compared to subscribed power (or contract maximum power)
model with low acceptance of novel technologies.

4. Discussion
A methodological procedure, proposed in this study, accounts detailed information at the
building level and random causality behind the acceptance of novel technologies. Modelling
principles (and the results) are not idealised by deterministic scenario modelling, but benefit
from probabilistic approaches instead. The likely developments of grid interaction and energy
price are evaluated, providing the necessary background for informed energy planning.

As elaborated in Section 2.1, a dynamic stochastic process relies strongly on synthetic TAR.
More detailed analysis of consumers’ willingness to deploy [20] each particular technology, their
economic, environmental and social motives, is needed to produce more accurate results.

The dataset and the pricing methods used to assess the stock-wide cost for energy are
limited by those currently available. The results are sensitive to any future changes in e.g.
taxation mechanisms, incentives for energy efficiency measures and/or low energy use. With
methodological and instrumental toolset used in this study, the feasibility of such strategic
initiatives can be assessed.

5. Conclusions
Meeting future strategic energy- and environment-related plans for cities and communities
requires a consideration of structural changes in the built environment. These changes are, to
the large extent, shaped by the penetration of novel technologies, particularly in the residential
buildings. This study evaluated two key aspects of such changes in the future grid stability
and cost for energy. The scope covered EV, PV, DHWT, and SWH systems deployment.
These objectives were achieved through a comprehensive methodological approach that involves
descriptive statistical analysis, building energy performance simulation with model calibration
step and stochastic forecasting of built stock evolution. It is exemplified with one residential
building typology in Norway. The results suggested that for the given case study, additional
power demand is not likely to occur, regardless of increased use of EVs. PV feed-in, however,
would reach substantial levels (up to 40% of peak load), depending on the penetration rates for
the PV systems. Considering different pricing methods, those based on the pricing of power
extraction would cover better electricity grid cost, while they would result in highest electricity
cost for the building users. The limitations of the study are associated with narrow scope and
data scarcity. However, it was shown that the methodology is applicable for the analysis of
future developments of built stock and answering the given research questions. Large scale
energy planning and policy making, therefore, may benefit from the approaches and methods
provided in study.
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a b s t r a c t

Achieving the energy-related and environmental targets for nations and municipalities is largely depen-
dent on the existing built stock. It plays a pivotal role in the accomplishment of these targets through the
implementation of energy efficiency and flexibility programs, involving the deployment of distributed
energy resource management technologies, refurbishment of building envelopes and upgrading of indoor
environmental control equipment. Spatial awareness about urban energy use enables to prioritise the
areas where these solutions will be most effective and balanced with the plans for new constructions.
Large-scale building energy mapping, however, must cope with heterogeneity of buildings within the
built stock, absence of detailed information and multiple sources of uncertainty that stem from the com-
plex and dynamic properties of the phenomenon at a building level. One of the key challenges in the dis-
cipline is to account for these uncertainties while maintaining the rational model complexities and data
needs. This study, therefore, suggests a parsimonious top-down probabilistic modelling recipe to enable
geospatial energy mapping and analysis. Under such modelling principles, an inverse propagation of
uncertainties is carried out from the status quo of the built stock. The proposed framework is based on
probabilistic sampling with prior parametric univariate density estimation and statistical hypothesis
testing. Consolidation with the exogenous influencing factors is facilitated through the measure of statis-
tically significant difference. This approach is exemplified with the data from two sources: the cadastral
system and the energy performance certificates registry. A case study developed for Trondheim (Norway)
quantified the central tendency and dispersion in the distributions of the simulated bulk total annual
energy use by buildings per 1� 1 km grid cell over the urban territory. The results suggest that best esti-
mates of these values vary between 11 MWh � y�1 and 141 GWh � y�1 depending on the grid cell. A mea-
sure of dispersion in the simulated results is highly correlated with these estimates. Robust handling of
uncertainties and the possibility to accommodate a variety of modelling objectives make this approach
practical for energy mapping with a flexible spatial resolution that may facilitate numerous applications
in energy planning. A collection of methods for univariate density estimation discussed in this study
together with the empirical data are accessible through Built Stock Explorer:https://builtstockexplorer.
indecol.ntnu.no. This open web application for knowledge discovery in building energy data enables to
reproduce some of the results presented in the article.

� 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Built stock is perceived as holding a large potential for mitigat-
ing the environmental impacts directly or indirectly associated
with its final energy use [1], which reached 128 EJ globally in
2019 [2]. Improving the energy performance of buildings, there-
fore, is being supported through regulatory mechanisms at various
levels of governance. These mechanisms, usually initiated at a

national or municipality levels, are targeting the solutions at dis-
tricts or neighbourhoods [3] and focused primarily on well-
reasoned infrastructural transformations [4], retrofitting and
upgrading programs [5] and more sustainable energy management
technologies [6].

An effective strategic energy planning of these and the related
solutions relies on geospatial information in several ways. Spatial
awareness enables to priortise the areas of high energy use, where
the technical, economic, and environmental feasibility of relevant
measures may be justified. Such solutions could lead to multiple
benefits, e.g. decrease the total energy use and reduce the costs
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of energy by avoiding transmission losses, support the integration
of non-dispatchable renewables, enhance the reliability and resili-
ence of power grid through peak load smoothing and frequency
control. Given the anticipated growth of the electric vehicles fleet,
a more favourable deployment of charging stations can also be
accommodated by spatially-informed energy planning [7]. Another
important reason for mapping the energy bottlenecks is studying
the contribution of buildings to the atmospheric heating – a phe-
nomenon known as urban heat island [8,9].

The need for spatial analysis of urban energy use prompted
numerous attempts to complement built stock energy information
with geospatial data [10,11]. The availability of multiple studies
indicates a widespread interest in developing the means to enable
such analysis. Building level [12,13], block area [14], square grid
cell [8,15,9] and local authority [16] are the most common choices
of spatial or administrative resolution that such analysis is focused
on.

Energy performance of buildings, however, is characterised as
highly complex, complicated and dynamic phenomena, which is
attributed to numerous factors of physical and occupancy-related
origins [17]. At a larger scale, the associated uncertainties are
amplified by the diversity of buildings, variations in their exposure
to the outdoor conditions, ageing processes, use/maintenance
practices and other. Determining the energy performance of build-
ings at the large scale given these explanatory factors is the subject
of built stock energy modelling [18]. It is, amongst other important
applications, an essential component of geospatial energy map-
ping. Following both, the original classification system proposed
by Swan and Ugursal [19] and its recent revision [20], the prevail-
ing practices for spatially-explicit built stock energy modelling cor-
respond to the bottom-up approach. Bottom-up reasoning enables
to infer energy use at the aggregated level based on the informa-
tion available at a lower spatial level. Several studies suggested
engineering-based (‘‘white-box”) models as the means for building
energy mapping [15,9,12,21]. Other authors make use of ‘‘black-
box” methods [22] instead [14,23,13]. As opposed to bottom-up
methods, top-down approach implies spatial downscaling proce-
dures from a broader aggregated scope to the city- district- or
building-level. Studies [8,9,24–26] suggested top-down methods
as suitable for examining spatial variations of energy use for
numerous purposes.

Regardless of which, bottom-up or top-down, approach is used,
the attempts are made to model the phenomenon that lacks either
detailed and complete knowledge or order or pattern or coherence
or a combination of these. Booth et al. [27], systematized the
uncertainties behind bottom-up engineering-based built stock
models by their origins: a) variability of energy use due to chance
within the identical buildings (aleatory uncertainties); b) hetero-
geneity of buildings within groups or typologies; and c) epistemic
uncertainties which accommodate lack of knowledge about the
phenomenon, the choice of inadequate model parameters and/or
the risk of obtaining a biased model. These are also applicable to
‘‘black-box” methods that seek to approximate the uncertainties
and assume a likewise deterministic relationship between the
variables.

Probabilistic modelling enables to account for uncertainties and
to address the limitations of approximating them in a determinis-
tic alternative [27]. At a building level, the available studies quan-
tify the uncertainties probabilistically in either forward or inverse
manner [28]. Forward uncertainty propagation is dominated by
sampling methods, where the inputs of the model are intentionally
varied to obtain the likely variations of model outputs. Amongst
the built stock energy studies, forward propagation principles were
used to account for the epistemic uncertainties [27,29,30]. Inverse
uncertainty propagation methods aim to relate the observed
empirical data to both known and unknown model parameters
and/or built stock properties. Given the underlying statistical infer-
ence approach, Tian et al. [28] categorised the inverse uncertainty
analysis practices in the discipline as either frequentist or Baye-
sian. Whereas the former consists of methods for operating solely
on empirical data, the latter also accommodates the prior knowl-
edge and beliefs to aid the inferential statistics. In the context of
built stock energy modelling, inverse Bayesian-based inference is
advocated in studies [16,31,32]. Built stock energy studies with fre-
quentist inference were not found in the domain-specific
literature.

If combined with the inverse uncertainty propagation princi-
ples, top-down modelling reveals numerous useful properties.
Both, aleatory uncertainties and heterogeneity of buildings are
reflected in the built stock energy data at the aggregated spatial
level. A step-wise disaggregation of this data with exogenous fac-
tors naturally conveys the associated uncertainties in an inverse
manner. An empirically inferred probability density function
(PDF) is a proxy for central tendency and variability due to yet
unexplained uncertainty at each of these steps. Consequently,
every subsequent disaggregation may lead to better estimates of
uncertainties and thus, higher modelling accuracy. If the rational
disaggregation steps are reflected in the structure of the model,
numerous advantages directly or indirectly stem from the
following:

� Uncertainties can be quantified at each level of the step-wise
disaggregation, which enables a modeller to make judgements
about the quality of the model and to control the trade-off
between the expected accuracy gains versus additional data
feed;

� The levels of sensitivity to adding the exogenous factors can be
quantified through statistical hypothesis testing. This can pre-
vent from using the redundant or insignificant model inputs
and thus, to address the overfitting;

� Data requirements to achieve the necessary level of modelling
details can be calculated beforehand. This enables to set up
and efficiently manage the data collection process.

Despite these substantial advantages, top-down probabilistic
modelling remains poorly explored within the discipline. This arti-
cle, therefore, is motivated by the need to elaborate on the work-
flow, methods, and procedures that such modelling may involve.
It is shown that this modelling approach may facilitate spatially-
explicit energy mapping with a flexible spatial resolution and the

Nomenclature

CDF Cumulative distribution function, page 12
i.i.d. Independent identically distributed (sample), page 24
KS Kolmogorov–Smirnov (test), page 14
MC Monte-Carlo (simulation), page 7
MLE Maximum likelihood estimation, page 13
PDF Probability density function, page 5

r.v. Random variable, page 7
SD Standard deviation, page 9
SS Sample size, page 14
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varying levels of details. Exemplification is made through the case
study developed for Trondheim, Norway. Section 2 Method
explains the non-parametric probabilistic model, data resources
that the model relies on and a collection of methods which are
illustrated using the available data. All these components are fur-
ther synthesised into a coherent computational procedure used
to obtain the estimates of bulk total annual energy use over
1� 1 km geospatial grid. Section 3 Results provides both, interme-
diate and final outputs obtained through this procedure. Section 4
Discussion evaluates the strengths, weaknesses and potential fur-
ther developments for such modelling. Extra care is taken to elab-
orate on the capabilities of top-down models to account for an
increasingly detailed architectural and technical information
needed for built stock energy research. And to discuss the role of
statistical inference in further shaping the available domain knowl-
edge. The Conclusions (Section 5) summarise the findings made in
this study, reflect upon potential opportunities and barriers for fur-
ther developments.

2. Method

The proposed procedural framework facilitates estimation of
bulk (for all buildings) total (for all energy sources) annual energy
use in geospatial zones. This can be achieved with a non-
parametric model described in Section 2.1. Two data sources,
namely the National Cadastral System (Section 2.2.1) and the
Energy Performance Certificates (EPC) dataset (Section 2.2.2) pro-
vide the inputs into the model. Whereas accurate information on
geospatial positioning, size and type of buildings and dwellings is
available, the data on real energy performance are relatively scarce
and available only at a city level. Therefore, the computational pro-
cedure involves Monte-Carlo (MC) simulation and considers the
energy use intensity of buildings as a continuous random variable
(r.v.). Inferring the properties of this r.v. from the available sample
is the subject to density estimation procedure described in Sec-
tion 2.3. Section 2.4 provides the description of a comprehensive
computational procedure used to achieve the desired results –
the estimates of central tendency and dispersion of bulk total
annual energy use by buildings per geospatial zone.

The smallest element of built stock accounted for in the model
(Section 2.1) is a building unit,1 which enables to harmonise the
data and to preserve the consistency across all steps of the study.
Also, this allows to explicitly account for the energy performance
of buildings that have a mixed use purpose, e.g. offices and apart-
ments across multiple floors of the same building.

2.1. Probabilistic model

The simplest non-parametric model for estimating the bulk
total annual energy use Ezone tot of a geospatial zone consisting of
j 2 ½0;m� units can be defined as:

Ezone tot ¼
Xm
j¼0

ðaj � rjÞ ðkWh � y�1Þ ð1Þ

where:

aj – heated floor area (m2) of jth unit;

rj – energy use intensity (kWh �m�2 � y�1) of jth unit.

The need to account for exogenous variables (disaggregation),
in order to reflect the properties specific to the group of units,
entails modifying the Eq. (1). A generalised form of the top-down
model in Eq. (1) accepts t categorical variables, each of which has
kt 2 ½0; lt � categories:

Ezone tot ¼
Xl1
k1¼0

Xl2
k2¼0

. . .
Xlt
kt¼0

Xm
j¼0

ðak1 ;k2 ;::;kt ;j � rk1 ;k2 ;::;kt ;jÞ ðkWh � y�1Þ

ð2Þ

For this study, the generalised model in Eq. (2) is adapted to accom-
modate the typology-specific information. Thus, a model for esti-
mating bulk total annual energy use Ezone tot of a geospatial zone
consisting of n building types with m units is defined as:

Ezone tot ¼
Xn
i¼0

Xm
j¼0

ðai;j � ri;jÞ ¼
Xn
i¼0

Ai � RT
i ðkWh � y�1Þ ð3Þ

where:

ai;j – heated floor area (m2) of jth unit of the ith type;

ri;j – energy use intensity (kWh �m�2 � y�1) of jth unit of the ith

type;
Ai ¼ ai;0 . . . ai;m½ � – a rowmatrix containing the known values of

heated floor area (m2) of all m units of the ith type;

RT
i ¼ ri;0 . . . ri;m½ �T ¼

ri;0
. . .
ri;m

2
4

3
5 – a column matrix containing the

unknown values of energy use intensity (kWh �m�2 � y�1) of all

m units of ith type.

Obtaining Ezone tot without knowing the exact values of RT
i repre-

sents an inverse probability estimation problem: ‘‘given the known
univariate distribution of the uncertain model input, estimate the
distribution of uncertain model output by repetitive random sam-
pling of these inputs”. This procedure is referred to as Monte Carlo
simulation. With top-down reasoning, the distribution of RT

i is
inferred from higher spatial level, i.e. from the data available for
the city.

Since the model in Eq. (3) applies in-sample summation, the
simulated output tends towards normal distribution (Fig. 1) as
the number of simulations gets larger, according to the Central
Limit Theorem. Therefore, the output across simulation trials is
well described by two parameters: a measure of central tendency
given by the mean value l and the dispersion properties quantified
by standard deviation (SD) r.

1 The smallest element registered (in the cadastral system) or certified (in the EPC
system): dwelling if residential use purpose; the section or the whole building
otherwise.

Fig. 1. Mean and standard deviation in the univariate distribution of simulated
results.
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2.2. Data sources

2.2.1. The size and structure of built stock
The known inputs of the Eq. (3) are the values of heated floor

area and building type for each unit within the geospatial zone.
This information is being collected, updated and made available
through the Norwegian Cadastral system which is managed by
the Norwegian Mapping Authority. The Norwegian Cadastral sys-
tem was established in 2010 following the guidelines and the
requirements of the Land Act 2005, offering a reliable, transparent
and updated registry of all land users [33]. Currently, the registry
contains almost 5 millions of registered properties nationwide,
classified according to the Standard for building types [34].

Concerning the Trondheim municipality, the cadastral system’s

registry contains more than 92000 units covering 12 km2 of total
constructed floor area, 83% of which is residential. A spatial join
of the attributes of these units enables the analysis and simulation
per geospatial zones with a flexible spatial resolution, ranging from
the individual building to the city level. A square grid of 1� 1 km is
an arbitrary choice of spatial resolution made to exemplify the
computational procedures proposed in this study. Fig. 2 illustrates
this geospatial grid over the urban territory and some attributes of
the built stock per grid cell analysed: total constructed floor area
(colour intensity) and the share of residential in the constructed
floor area (marker size). The figure suggests that high construction
density is present in the historical centre of the city and in the
more industrialised southern part. These areas are often associated
with a higher rate of non-residential units. The majority of the
urban territory, however, is represented by sparse construction
density and is dominated by residential buildings.

2.2.2. Energy performance of built stock
Inferring the statistical properties of the r.v. energy use inten-

sity (kWh �m�2 � y�1) per building type in Trondheim is based on
the Norwegian EPC dataset. EPC dataset is the component of the

Norwegian Energy Labelling System for Houses and Dwellings – a
mechanism established to support the progress towards low
energy use in communities and nationwide. The Norwegian EPC
Scheme follows the implementation of the Energy Performance
of Buildings Directive (EPBD), similarly to the other EU’s Member
States [35,36].

Hence, the Norwegian EPC scheme has been in place since 2010
intended to ensure Norway’s compliance with the EPBD 2002/91/
EC, to improve building energy awareness and to promote high
energy performance. By 2016, more than 670 000 certificates were
issued. The background for certification, legislative and practical
framework in the Norwegian context was discussed in source [37].

The total annual energy use (kWh � y�1) per certified unit is vol-
untarily specified and registered in approx. 10% of all certificates.
These values, normalised per unit of heated floor area (m2), consti-
tute an empirical sample of 4660 records representing dwelling/
building units registered in Trondheim. Fig. 3 illustrates the uni-
variate distribution of energy use intensity in this sample for both,
non-residential (NR) and residential (RE) units. The figure demon-
strates that the statistical properties of energy use intensity,
accommodated by the shape of the density histogram, vary signif-
icantly per building type. This applies to such parameters as dis-
persion (range of values and variance), central tendency (mean,
median, and mode), skewness and kurtosis. Accounting for these
distinct properties is expected to positively contribute to the accu-
racy of best estimates and the margins of error provided by the
built stock model.

2.3. Density estimation

To simulate RT
i for the arbitrary number of units, one must know

the relative likelihood of its values to occur. This information is
communicated with two properties of a parameterised theoretical
r.v: PDF and cumulative distribution function (CDF). Deciding
which distribution type and parameters characterise the theoreti-

Fig. 2. Spatial variabilities of total constructed floor area and the share of residential buildings per geospatial zone in Trondheim.
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cal continuous r.v. can be carried out within the density estimation
procedure consisting of:

1. Fitting (parameterising) each available distribution type indi-
vidually based on the empirical sample;

2. Quantifying the goodness-of-fit;
3. Finding the theoretical parameterised distribution that charac-

terises the sample best.

Maximum likelihood estimation (MLE) [38,39] is one way to fit
the parameters of the theoretical distribution to the sample. In
MLE, the objective is set as: given the observed sample
x : ½x1; x2; x3; . . . ; xn� and the theoretical continuous PDF pXðxjhÞ, find
the vector h of parameters that are most likely to generate such
sample. This is achieved through maximising the log-likelihood
function:

f ðh; xÞ ¼ maxh ln
Yn
i

pXðxijhÞ
" #( )

¼ maxh
Xn
i

ln½pXðxijhÞ�
( )

ð4Þ

Finding the objective function in Eq. (4), represents a multivariate
unconstrained optimisation problem with potentially noisy (non-
smooth) functions. An effective search method for the problems of
this kind is downhill simplex (Nelder–Mead) method [40–42]
which is also known as a generalisation of dichotomic search to
higher dimensions. Depending on the distribution type, vector h
may have between two and five parameters, meaning that the sim-
plex takes a form of a triangle, tetrahedron, pentachoron or 5-
simplex accordingly. Convergence to the optima is carried out
through stepwise improvement of the initial guess without com-

puting the gradients. The exit condition is either achieving the
desired error tolerance or lack of progress in objective function
compared to previous iterations.

Fig. 4 illustrates the results of the MLE-based fitting of some
theoretical distributions to the empirical sample (also shown in
Fig. 3) of detached houses in Trondheim. It is shown that the PDFs
(Fig. 4 [A]) and CDFs (Fig. 4 [B]) follow the shape of sample distri-
bution with various precision. This entails deciding which distribu-
tion describes the sample best and requires quantitative metrics to
facilitate the decision.

The goodness-of-fit between the continuous theoretical distri-
bution and the empirical sample may be studied with a non-
parametric Kolmogorov–Smirnov (KS) test [43,44]. The KS test
quantifies the difference between the empirical CDF represented
by the step-function and the CDF of the theoretical distribution
(as shown in Fig. 4 [B]). The test returns two values of interest:
the Dn statistic (Eq. 5) and the measure of statistical significance
(p-value).

Dn for the sample with sample size (SS) n is the supremum (the
maximum or the bound) of the absolute difference between the
CDF of a theoretical distribution P0ðxÞ and the empirical CDF

P̂nðxÞ [45]:

Dn ¼ sup
x
jP0ðxÞ � P̂nðxÞj ð5Þ

The p-value corresponds to the survival function (1� CDF) in the
asymptotic distribution of Dn at

ffiffiffi
n

p � Dn. In statistical hypothesis
testing, p-value serves as the basis for accepting or rejecting the
hypotheses about the conformity between distributions. Low p-
value suggests statistically significant evidence against the asserted

Fig. 3. Univariate distribution of energy use intensity per building type in Trondheim.
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null hypothesis: ‘‘sample x is generated by the r.v. X with the PDF
pXðxjhÞ”. The threshold value a for statistical significance has to be
chosen prior to the experiment. The null hypothesis, therefore, is
rejected under the condition p < a and is failed to be rejected
otherwise.

2.4. Computational framework

The components of the probabilistic model (Section 2.1)
together with methods and procedures discussed in Section 2.3
are organised in a computational framework (Fig. 5).

Density estimation component is designed to find the parame-
terised theoretical distributions that describe the energy use inten-
sity of distinct building types. The process starts with obtaining a
subset of the sample with energy use intensity corresponding to
particular building type in the city. For each of the available theo-
retical distributions, their parameters are fitted with MLE using the
downhill simplex method. MLE is terminated either if the objective
function is found with the absolute error tolerance � 6 1 � 10�10 or
if the maximum number of iterations N � 200 (N – the number of
simplex’s dimensions) is achieved. The KS test is then carried out
with the CDFs of an empirical sample and of a fitted distribution.
The null hypothesis is rejected under the condition p < 0:05. At
the end of the loop, the most suitable distribution amongst those
passing the test is selected. This choice is based on comparing
the associated D statistic and selecting the smallest. The procedure
is then repeated for all building types in Trondheim.

Within the simulation component, the primary loop carries out
iterations over the grid cells. In each cell, a secondary loop iterates
over the building types that are present which is followed by
retrieving a row matrix Ai. A series of 10000 Monte-Carlo trials
are then carried out using the Mersenne Twister [46,47] pseudo-
random number generator. At each trial, a columnmatrix RT

i is sim-
ulated as a r.v. using the previously found parameterised distribu-
tion that characterises this building type. The dot product Ai � RT

i is
computed per trial and stored as one likely value of total energy
use by the typology in the cell. When the iterations over the build-
ing types are complete, the total energy use across simulation trials
per typology are aggregated to the grid cell level. This output forms
a normal distribution, the mean value l and the standard deviation
r for which are computed.

3. Results

The output of Density Estimation component, as discussed in
Sections 2.3 and 2.4, are the parameterised distributions that are
found to represent the data generation processes for individual
building types in Trondheim. This information is summarised,
together with the metrics for goodness-of-fit and sample statistic
(minimum/maximum values and the sample size) in Table 1.

Vector h of distribution’s parameters in Table 1 is structured as
h : ½h1; . . . ; hk�1; hk�. Two last elements in the list hk�1 and hk are loca-
tion (l) and scale (s) parameters accordingly. Any additional shape
parameters, if applicable, are at the beginning of this list.

An example of interpreting the information provided in Table 1
is the following: energy use intensity of ‘‘RE. house, terraced” in
Trondheim conforms to Johnson SU distribution parameterised
by vector ½�0:392; 1:309; 108:848; 40:094�. The difference
between the empirical CDF of a sample with the size 407 and the
CDF of this theoretical distribution is found to be 0.02. This differ-
ence is insignificant (p > a : 0:96 > 0:05), thus implying a failure
to reject the asserted null-hypothesis ‘‘the empirical sample is gen-
erated by Johnson SU r.v. with these parameters”. The empirically
evident range of values taken by the r.v. is
½25; 623� kWh �m�2 � y�1. Energy use intensity of ‘‘RE. house, ter-
raced” in Trondheim within this range, therefore, can be simulated
as the Johnson SU r.v. that has the PDF of a form:

f ðx; a; b; l; sÞ ¼ b

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�l

s Þ
2 þ 1

q / aþ b log
x� l
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� l
s

� �2

þ 1

s0
@

1
A

0
@

1
A

ð6Þ

where:

x – energy use intensity (kWh �m�2 � y�1);
/ – normal PDF;
a; b; l; s – a list of parameters identified with MLE:

½a; b� ¼ ½�0:392; 1:309� – distribution-specific shape
parameters;
½l; s� ¼ ½108:848; 40:094� – location and scale parameters
accordingly.

The outputs of a probabilistic model (Eq. (3) in Section 2.1), pro-
duced within the Simulation component (Section 2.4) using the
parameterised distributions listed in Table 1 are the estimates of
the mean (l) and the SD (r) of the bulk total annual energy use

Fig. 4. Sample density [A] and the empirical CDF [B] with fitted PDFs and CDFs accordingly for some theoretical distributions.
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Fig. 5. The flowchart of computational procedures (Column or row matrices are denoted by asterisk �. Otherwise, a single categorical or numerical value is returned.).

Table 1
Sample information and parameterised distributions identified per building type in Trondheim.

Building type Distribution Parameters D p-value Min Max SS

NR. facility, educational Mielke Beta-Kappa [6.444, 5.037, �0.446, 172.923] 0.06 0.85 55 602 117
NR. facility, industrial Folded Cauchy [2.612, 47.979, 57.731] 0.06 0.87 48 698 80
NR. facility, medical Log-laplace [3.662, �0.615, 264.554] 0.06 1.00 90 573 31
NR. facility, warehouse Alpha [3.785, �68.437, 771.015] 0.11 0.98 65 353 17
NR. hotel Inverse Gaussian [0.365, 136.117, 324.874] 0.12 0.93 167 390 17
NR. office, advanced Logistic [210.129, 51.094] 0.03 1.00 15 535 128
NR. office, simple Tukey-Lambda [�0.087, 205.013, 38.051] 0.04 0.99 51 524 129
NR. shop, advanced Maxwell [20.864, 219.505] 0.08 0.99 115 703 28
NR. shop, simple Exponentially modified normal [1.036, 154.399, 88.784] 0.06 0.93 33 680 80

RE. apartment Mielke Beta-Kappa [2.641, 5.967, �0.348, 163.23] 0.01 0.91 12 467 1844
RE. house, chained Vonmises (non-circular) [3.808, 131.935, 69.196] 0.07 0.67 66 349 103
RE. house, detached Exponentially modified normal [1.374, 82.776, 26.539] 0.01 1.00 12 422 881
RE. house, other Tukey-Lambda [�0.156, 157.477, 27.537] 0.04 0.98 17 516 136
RE. house, quad Johnson SU [�0.726, 1.561, 121.128, 67.087] 0.04 0.83 22 438 243
RE. house, semi-detached H Rice [1.477, 44.969, 53.336] 0.04 0.99 51 276 124
RE. house, semi-detached V Exponentially modified normal [0.645, 111.087, 34.003] 0.03 0.98 16 292 295
RE. house, terraced Johnson SU [�0.392, 1.309, 108.848, 40.094] 0.02 0.96 25 623 407
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per grid cell. These attributes are displayed in Fig. 6. Colour inten-
sities in the figure illustrate spatial variations of l, whereas the
diameter of markers is proportional to r.

Fig. 6 facilitates the analysis of the city’s energy hotspots (areas
with high l) and where the additional information may be needed
(high r). Examining these results against the data on the built
stock in Fig. 2 demonstrates that the mean of the simulated bulk
total annual energy use in Fig. 6 is correlated with the built area
density and the share of energy-intensive non-residential build-
ings. The energy hotspots are located in the centre of the city
and the industrial southern suburbs. Remote, mostly residential
areas, which are known to have low unit density, are associated
with relatively low energy use. Standard deviation correlates with
mean of simulated bulk total annual energy use in the geospatial
zones. Further analysis suggests a roughly linear relationship
(Fig. 7) between l and r.

The scatter plot in Fig. 7 presents the results separated into two
groups based on the arbitrary condition c P 0:1 and c < 0:1 where
c is the coefficient of variation (c ¼ r=l). More detailed analysis
suggested that c exceeds 0.1 for those grid cells where constructed
units density is sparse or, alternatively, dense but with a high share
of non-residential build area (above 60%). For most of the areas
where energy use is high, c remains below 0.1. According to the
empirical interpretation of normal distribution, c < 0:1 suggests
at least 67% of confidence that the true value of bulk total annual
energy use in the spatial zone is within the range l� 10%. Simi-
larly, l� 20% is the 95% confidence range.

4. Discussion

Through the case study developed for Trondheim, this article
demonstrates a top-down modelling approach with the inverse
uncertainty propagation for urban energy mapping purposes.
Methodically, it implies spatial downscaling of the energy use
intensity values from the city-level to the finer resolution. As a

result, the probabilistic estimates of bulk total annual energy use
per geospatial zone may be obtained. Random sampling used to
compute these estimates enables to address aleatory uncertainties
and heterogeneity discussed by Booth et al. [27]. The model in Eq.
(3) does not contain any parameters and does not assume any rig-
orous knowledge about the factors that drive the phenomenon,
thus eliminating the associated epistemic uncertainties.

Typology-specific density estimation of energy use intensity
carried out at the city-level enabled to downscale the analysis to
1� 1 km square grid. This choice of spatial resolution was arbi-
trary and can be substituted in the model with any other spatial
or administrative boundaries. The parsimonious model design
options enable the upper and lower boundaries to be anywhere
between national and the building levels accordingly.

Within the modelling framework, disaggregation by exogenous
influencing factors is supported and may lead to more accurate
estimates. The simplest top-down model (Eq. (1)), for example,
would contain a single parameterised r.v. that simulates energy
intensity of all units with no regards to any other exogenous fac-

Fig. 6. Spatial variation of the mean and the standard deviation in simulated bulk total annual energy use per grid cell in Trondheim.

Fig. 7. The relationship between mean and standard deviation of simulated bulk
total annual energy use per geospatial zone.
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tors in the computational framework (Section 2.4). In this study,
disaggregation by building types is beneficial because typology-
specific r.v. evidently conveys a more detailed empirical informa-
tion about the unique data generation process, i.e. relative likeli-
hood of energy use intensity values to occur. Such disaggregation
in a top-down manner may be done further to reach the necessary
levels of technical details. Fig. 8 illustrates one of the plausible next
steps in the disaggregation procedure to reflect distinct energy per-
formance in ‘‘NR. apartment” given the Construction Year (CY).

Fig. 8 illustrates that the originally bimodal distribution at a
higher (Fig. 8 [A]) level may be successfully disaggregated into at
least two unimodal groups (Fig. 8 [B]). The basis for disaggregation
in this case is arbitrary set to the year 1955, which is the first
threshold between construction year classes defined for the Nor-
wegian built stock within the TABULA [48] system. The empirical
evidence supports such archetypes definition, since the two sam-
ples are characterised by substantially distinct statistical proper-
ties. Stricter energy efficiency standards for buildings, together
with the other contributing factors, directly or indirectly led to
the observable shift of central tendency between the two distribu-
tions. Dispersion is also affected by regulatory, technological, and
socio-economic transformations.

A measure of dispersion quantifies yet unexplained uncertain-
ties. By examining this parameter, a modeller may decide whether
the remaining level of uncertainty is acceptable to address the pur-
pose of the modelling or if further disaggregation is needed. If the
latter, additional exogenous factors may be tested. Two distribu-
tions in Fig. 8 [B] are associated with the dispersion smaller than
the composite (Fig. 8 [A]), meaning that the construction period
explains a portion of the original uncertainties.

Statistical significance of the difference between the disaggre-
gated distributions suggests the level of sensitivity to disaggrega-
tion by the exogenous factors. Since the resulting distributions in
Fig. 8 [B] are distinct, it is plausible to disaggregate by construction
period. The reverse statement also holds true – mutually conform-
ing distributions exhibited by disaggregated groups suggest a little
or no benefit from disaggregation. The previously mentioned KS
test may be used to quantify the difference between the two
empirical samples. A null hypothesis for testing is formulated as:
‘‘two samples are drawn from the same continuous distribution”,
and high p-value (p > a) implies a failure to reject this null hypoth-
esis. An example of such pairwise testing of samples with the sig-
nificance threshold a ¼ 0:05 is presented in Table 2.

Test 1 in Table 2 resulted in a large D-statistic. If the null
hypothesis is true, obtaining such a large value of D by chance is
unlikely given the samples sizes. This likelihood is reflected by
the negligibly low p-value which suggests to reject the asserted
null-hypothesis. This indicates high sensitivity to the construction
period. The null hypothesis cannot be rejected in Test 2 and there-
fore, these two samples are found to conform even though they

represent distinct archetypes in TABULA. Higher likelihood of
apartments from Period 1 to be in their renovated state may
explain the absence of statistically significant difference between
energy use intensities of samples in Test 2.

The disaggregation procedure discussed above reveals the
source of both, advantages and limitations of the proposed
approach: if exogenous factors of influence on energy use intensity
are not represented in the model, they are assumed consistent
between the upper and the lower spatial levels. Practically, it sug-
gests that the model needs to reflect only those factors that are
known to lead to spatial variations of energy use. Otherwise, the
unexplained uncertainty of energy use intensity entails larger dis-
persion in the simulated results. Although the most essential oper-
ations for density estimation and probabilistic simulation can be
automated, the choices behind disaggregation procedures remain
manual. This entails that the choice of the acceptable unexplained
uncertainty level and the number of categories for disaggregation
must involve domain knowledge even if these judgements are sup-
ported by quantitative metrics.

The available sample size is an important aspect that represents
a source of epistemic uncertainty associated with the proposed
modelling approach. Density estimation with insufficient sample
size may suggest the type of distribution or the parameters that
poorly describes the data generation process and should be
avoided whenever possible. A frequentist-based density estimation
discussed in this article may inform empirically the choice of prior
distribution in Bayesian inference, which may lead to the need for
fewer samples and higher reliability of the latter. Therefore, com-
plementing the two approaches may be beneficial for future stud-
ies. A rational threshold a of statistical significance for the p-value
needs to be established in the discipline to support the coherence
between the studies alike. Moreover, a rigorous recommendation
on the domain-specific smallest sample size for density estimation
is not yet available. Therefore, this study agrees with Booth et al.
[27] on the need for adapting the existing practices from other
domains, e.g. physics, medicine, and economy to assist overcoming
these challenges in built stock energy modelling. The implications
of data quality can be regarded as an additional source of epistemic
uncertainty in modelling. High accuracy and soundness of conclu-
sions made through statistical inference, similarly to other tech-
niques that rely on data, require independent and identically
distributed (i.i.d.) random samples. A practical way to obtain such
data is through stratified (e.g. block) design of the experiment.
Substituting such sample with potentially biased data may entail
inaccuracies. It is, for example, debatable if any of the EPC system’s
designs is capable of providing randomised i.i.d. samples, because
the sole phenomenon of certification is under the strong influence
of numerous socio-techno-economic tendencies that may cause
the bias.

Given the availability and high quality of empirical data, how-
ever, virtually any level of technical details and end-uses may be
reached through such modelling. No obstacles are anticipated in
evaluating the implications of altering building envelope, energy
supply systems and/or indoor environmental quality at a large
scale. Similar approaches can also accommodate energy use for
source-specific space heating, hot water supply, plug loads and
other through multivariate distributions, e.g. copulas. Currently,
these capabilities of top-down modelling are underestimated and
poorly explored in the domain. It is, however, shown through this
study that handling aleatory uncertainties and heterogeneity of
buildings yields numerous benefits, mitigating the ‘‘performance
gap” being one of them. It is also evident that data-enabled knowl-
edge discovery and modelling, facilitated by statistical inference
and probabilistic programming, may complement already estab-
lished architectural and engineering-based foundations of built
stock energy research. Synthesising the methods from these

Fig. 8. Univariate distribution of energy use intensity of apartments in Trondheim:
[A] composite; [B] disaggregated by construction period.
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domains is also the key objective set for the future developments
of Built Stock Explorerhttps://builtstockexplorer.indecol.ntnu.no.

5. Conclusions

This study draws attention to the topic of urban energy map-
ping, where the uncertainties must be eliminated to the best pos-
sible extent while keeping data collection efforts rational. A
proposed probabilistic top-down modelling approach is shown to
have a high potential for addressing this trade-off. Probabilistic ori-
gins naturally account for aleatory uncertainties behind the phe-
nomena and for the heterogeneity of buildings through
parameterising the random variables. Disaggregation by exoge-
nous factors conveys these uncertainties without the loss of infor-
mation. Non-parametric model structure enables to address the
epistemic uncertainties, associated with approximations and sim-
plifications that are necessary otherwise. A suggested modelling
approach offers adaptiveness to the purpose of the modelling and
the associated level of details. The key benefits of the approach
emerge from the ability to quantify and control the uncertainties
while adding the explanatory (exogenous) factors to the model.

The results suggest that the typology-specific energy use inten-
sity can be represented by parameterised random variables. With
these random variables and the information on geospatial coordi-
nates, size and type of buildings, bulk total annual energy use
can be estimated at a spatially downscaled area, e.g. 1� 1 km grid
cell.

The coefficient of variation for most of Trondheim’s energy hot-
spots remains below 0.1, which makes the results already suitable
for many practical applications. Urban areas of high energy use, for
example, can be prioritised for developing refurbishment strate-
gies and/or deploying more efficient energy supply solutions. By
resolving the energy-related bottlenecks first, higher energy and
environmental performance of built stock may be achieved within
a shorter time horizon. These results may also aid the planning of
new construction and the energy-intensive units with a minimum
intervention into the existing infrastructure for energy generation
and distribution purposes.

Considering the additional factors of influence on building
energy performance may further improve the accuracy of the mod-
elling. The feasibility of using these factors can be guided by statis-
tical hypothesis testing. Currently, a substantial barrier for such
modelling is the absence of both, established practices for defining
the levels of statistical significance and the recommendations on
sample size for such tasks. These and the related challenges entail
a yet unresolved epistemic uncertainty associated with the pro-
posed modelling approach.

The instruments and the techniques discussed in this article
may produce reliable insights into the spatial variabilities of the
building energy use. They lay the foundations for the work ahead
which will synthesise the probabilistic status quo with the proba-
bilistic forecasting of future developments in the built stock. And
hence, will assist with establishing the pathways towards higher
efficiency of the built environment.
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ABSTRACT
The commitments to mitigate the negative impacts associated with final energy use stipulate the
increase of energy efficiency of the built environment. This is the focus of urban energy policies
and of built stock energy models that aid them. The complexities behind the phenomenon,
however, hinder the development of the means for controlling and unbiased modelling. Such
tasks necessitate the empirical evidence of causal relationships between architectural and
technical attributes and building energy performance at the population level. This study,
therefore, elaborates on the methods of inferential statistics for establishing such causal effects.
The focus is on the methods of frequentist inference, active use of which may advance the
understanding of the phenomenon and foster more accurate modelling practices. The case
study examines the energy performance exhibited by distinct configurations of construction
periods, envelope materials, sources of energy for space heating and the ventilation system
types. The empirical sample consists of more than 11,000 records registered in the Norwegian
energy performance certification system. The results document the effects and their
significance. These methods are applicable in any urban context and may provide the empirical
basis for promoting/discouraging certain technological and architectural tendencies, and
simulating the phenomena through probabilistic programming.
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Introduction

Energy use in buildings is seen as one of the key bottle-
necks in the transition towards more sustainable cities,
communities and nations. Improving the energy
efficiency and energy flexibility of the built stock, there-
fore, is amongst the central components of urban devel-
opment strategies which are being initiated, supported
and/or supervised through a variety of political mechan-
isms (Kennedy et al., 2014; Tozer, 2020). Developing,
implementing and reviewing such mechanisms rely on
long-term urban energy planning that seeks to accurately
predict and rationally match future energy use to the gen-
eration capacities. Building energy use at the urban level,
however, is a complex phenomenon governed by mul-
tiple factors of socioeconomic, architectural, technical,
environmental and other kinds. Such complexities,
amplified by the heterogeneity and the continuous evol-
ution of the built environment, entail uncertainties that
undermine the plausibility of energy planning. Develop-
ing the means for analysing and predicting the phenom-
enon while overcoming these challenges is the subject of

built stock energy modelling and has important impli-
cations for achieving sustainability targets.

The significance of stock-wide energy modelling for
practical and policy-related applications is one of the
reasons for elevated attention to such models in build-
ing energy research (Johari et al., 2020; Moghadam
et al., 2017; Reinhart & Davila, 2016). Given a variety
of objectives that build stock energy modelling may pur-
sue, their design, methodological foundations and
resource needs may differ substantially. These charac-
teristics are the basis for the hierarchical model classifi-
cation proposed by Swan and Ugursal (2009). A more
recent study by Langevin et al. (2020) suggested an
extended classification of models by design and several
additional criteria to determine their taxonomic affilia-
tion, namely the degree of transparency, system bound-
aries, spatial resolution, temporal dynamics and the
approach to handle the uncertainties.

The prevailing modelling practices, although indis-
putably instrumental at addressing their objectives, do
not rest on empirically validated causal relationships
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between building attributes and the energy performance
at a population level. Even if such relationships may
have been established for individual buildings, project-
ing them to the urban scale implies the risks of biased
results. The bias is caused by a virtually infinite number
of aspects that, directly and indirectly, statically and
dynamically, individually and jointly, affect the real
energy use at a population level. Addressing such com-
plexities represents a significant challenge. To maintain
the data, labour and computational resources rational,
modelling procedures often involve the assumptions
and approximations in relationships. These are, ulti-
mately, some of the key drivers of the performance
gap (van den Brom et al., 2018; Menezes et al., 2012)
and elevate the risks of developing irrelevant theories,
making misleading conclusions and pursuing implausi-
ble or ineffective energy strategies.

Establishing the causal relationships with explicit
account for variabilities in final energy use at the popu-
lation level is advocated by energy epidemiology - a fra-
mework for incisive analysis and modelling proposed by
Hamilton et al. (2013). Methodologically, it implies
synthesizing the analytical instruments used in health
sciences with already established architecture- and
engineering-based foundations of building energy
research. Epidemiological approaches articulate the
need for robust conclusions about the direct and indir-
ect, individual and joint causal effect of a certain factor
on the phenomenon of interest. It is, for example,
expected that within the built stock renovation pro-
gram, insulation of building envelope leads to energy
savings (direct positive effect) (Jones et al., 2013). The
occupant may, however, prefer elevated indoor temp-
erature setpoints once the renovation is done which
leads to higher energy use (indirect negative effect),
a.k.a. rebound effect (Guerra Santin, 2013; Hamilton,
2016). Furthermore, the joint influence of multiple fac-
tors is likely to result in ‘effect modification’, e.g. the
energy savings that follow envelope insulation together
with the deployment of renewable energy technologies
is not equal to the sum of savings from these measures
if implemented separately.

Documented evidence-based causal relationships,
considering the inherent variabilities handled through
the epidemiological approach, may enable to (i) acquire
a better theoretical understanding of the phenomenon;
(ii) improve the accuracy of modelling practices; (iii)
rationalize the energy planning and the associated legis-
lative mechanisms. Although these needs are under-
stood, building energy research lacks the means to
address them. The causalities are commonly documen-
ted by comparing the parameters of central tendency
(mean, median, mode), dispersion (variance, standard

deviation, interquartile range, support) and shape
(skewness, kurtosis) of the empirical univariate sample
distribution, as shown in van den Brom et al. (2019);
Gangolells et al. (2016); Hjortling et al. (2017). Individu-
ally, neither of these parameters characterize the
phenomenon through the entire range of possible
values. More comprehensive metrics must be used to
facilitate the conclusions about the causal relationships.
Probability density function (PDF) and probability mass
function (PMF) are therefore used as parsimonious rep-
resentations of continuous and discrete phenomena
accordingly. PDF or PMF accommodate the central ten-
dency, dispersion and shape of the distribution, rep-
resent a statistical model capable of generating
synthetic data and hence, used for carrying out simu-
lations facilitated by the methods of probabilistic pro-
gramming (Zhuravchak et al., 2021). The procedure of
identifying the underlying PDF or PMF given the
empirical sample is referred to as density estimation.

Documenting the properties of the population based
on the available subset (empirical sample) is the objec-
tive of statistical inference, density estimation being
one of its components. The focus on population
makes statistical inference distinct from the descriptive
analysis which is focused on the empirical sample only.
The practices of statistical inference follow either of the
two established paradigms: frequentist and Bayesian
inference. The debates on theoretical correctness, prac-
tical benefits and the possible synthesis of frequentist
and Bayesian approaches last for a century (Bayarri &
Berger, 2004; Cox, 2006; Raue et al., 2013). In numerous
applications dealing with knowledge discovery and
modelling, the choice between these approaches is dri-
ven primarily by the objectives, considerations on the
accessibility and quality of data, availability of prior
information and computational resources. In the built
stock energy research, density estimation is often
approached using Bayesian inference, as a part of either
forward or inverse uncertainty analysis procedures
(Tian et al., 2018). The distributions of parameters
related to architectural and operational characteristics
of the buildings, for example, are documented in several
studies (Booth et al., 2012; Heo et al., 2015; Tian &
Choudhary, 2012; Zhao et al., 2016). The variability of
typology-specific actual building energy performance
is quantified by Choudhary (2012), Choudhary and
Tian (2014), Braulio-Gonzalo et al. (2016). Frequentist
methods are scarcely represented in the domain litera-
ture, with one example of density estimation by Fonseca
and Panão (2017).

Unless the data for the entire population is collected,
any conclusions about the population based on a ran-
domly collected sample are prone to errors. That is,
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there is the risk that the causal relationships apparent in
the sample do not apply to the population. In such a
case, projecting the sample-based analysis on the popu-
lation leads to biased results. Most of the time, however,
collecting the data for the whole population is irrational
or impossible to carry out. To address the problems of
this kind, both frequentist and Bayesian inference pro-
vide the methods of hypothesis testing (Silva, 2018)
that yield a measure of confidence in any claims related
to causal relationships. Statistical hypothesis testing,
despite its appreciation in epidemiological studies
(Rigby, 1998) and scientific practices in general (Miz-
rahi, 2020), is not being used systematically in building
energy research. One of the likely causes is that hypothe-
tical reasoning is amongst the most challenging statisti-
cal concepts to explain and to comprehend (Park, 2019).

This study, therefore, is motivated by the need to
elaborate on some methods for determining the causal
relationships in the context of energy epidemiology,
with the focus on frequentist approaches (Section Meth-
odology). Statistical hypothesis testing, in this study, is
represented by Kolmogorov–Smirnov (KS) test. Density
estimation - by maximum likelihood estimation (MLE)
and several metrics for judging the goodness-of-fit. The
case study is based on the empirical dataset, as described
in Methodology section, and exemplifies (in Results sec-
tion): (i) hypothesis testing procedures to find if the age,
envelope material, source of energy for space heating
and the type of ventilation system have direct or indirect
implications on the actual energy performance of the
population of apartments in Oslo, Norway; (ii) density
estimation to document the variability of energy per-
formance between apartments having distinct combi-
nations of these attributes. This enabled identifying
the combinations of attributes that exhibit relatively
high and low energy performance within the scope of
the case study. Discussion section points towards several
practical applications of the methods discussed, evalu-
ates the possibilities for upscaling and diversifying the
scope and outlines several alternative methods of inter-
est. A summary of findings is provided in Conclusion
section. These findings are partially based on and can
be reproduced/replicated through Built Stock Explorer
(https://buildingstockexplorer.indecol.no) – an open
access research software for knowledge discovery and
modelling of the Norwegian built stock.

Methodology

Empirical data

Following the Energy Performance of Buildings Direc-
tive (EPBD) 2002/ 91/ EC, the Norwegian strategy for

advancing towards low energy use in buildings is
assisted by the Energy Labelling System for Houses
and Dwellings (Brekke et al., 2018). One of the outputs
of this system is the energy performance certificate
(EPC) registry. EPCs contain the reported total annual
energy use (kWh · y−1) per certified unit and its
source-specific annual energy use if more than one
source is used. The values are averaged over 3 years of
the building’s operation to account for the varying
weather conditions, occupancy- and maintenance-
related factors. The reported total annual energy use
normalized per unit of heated floor area is a continuous
random variable that reflects the actual energy perform-
ance - a reported total energy use intensity (EUI) in
kWh ·m−2 · y−1.

The residential built stock in Oslo consists of apart-
ment blocks and several typologies of houses, namely
detached, semi-detached, chained, terraced and quad
house. In the EPC registry, the apartment is the most
frequent typology, reaching 74% by records count,
54% by heated floor area and 52% by total annual energy
use amongst all the residential units. Certified apart-
ments have four attributes relevant to this study,
namely:

(1) Construction period (CP) > 1990: binary [True,
False];

(2) Primary envelope material (EM) used: either of
[Concrete, Brick, Wood];

(3) Source of energy for space heating (SH): either or a
combination of [Electricity (El), District heating
(DH), Wood, Gas, Oil, Heat pump (HP)];

(4) Ventilation system (VS) type: either of [Natural
(N), Periodical (P) extraction, Continuous (C)
extraction, Balanced (B)].

The construction period is seen as a proxy to archi-
tectural and envelope-related measures made to comply
with the energy performance standards active during a
certain period. Historically, in Norway, substantial
improvements in the energy performance requirements
occurred in 1990 (Sandberg et al., 2016; Sartori et al.,
2009). The year 1990, therefore, is used in this study
as the basis for separating the empirical sample into
two groups. The other attributes reflect structural, tech-
nological and indoor environmental comfort consider-
ations which are likewise expected to affect the actual
energy performance. In addition to the direct effects
triggered by the building attributes, they could be the
cause and/or the result of more indirect tendencies of
socio-cultural, physiological, economic and other
kinds exhibited by the occupants. The inferential analy-
sis presented in this study, therefore, examines both
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direct and indirect effects associated with building
attributes.

The subset of the EPC registry, limited to apartments
in Oslo, with the reported total EUI and the four attri-
butes specified, constitutes a sample of 11,163 records.
These units have distinct combinations of attributes,
each of which is defined explicitly in this study. The
number of all possible combinations of two CPs, three
EMs, nine unique combinations of energy sources for
SH and four VS types is given by the cardinality (216)
of the Cartesian product of these attributes. All possible
combinations of these attributes are illustrated as a cir-
cular tree structure in Figure 1. A central (root) node in
Figure 1 represents the entire sample (11,163 records) of
apartments in Oslo. This node has two child nodes
representing the subsets of apartments in Oslo con-
structed (i) before and (ii) after 1990. Similarly, each
of these nodes has the child nodes that represent the
subsets of distinct EMs, sources of energy for SH and
VS types. This tree structure has 216 leaf nodes that
form the outermost circle. Every distinct path from
the root to the leaf node defines a unique combination
of four attributes that characterize the apartments in
Oslo. The diameter of the node is proportional to the
size of the sample represented by this node.

Statistical hypothesis testing

Identifying the direct or indirect effects of building attri-
butes on the energy performance involves comparing
the samples of the energy performance of buildings
with and without this attribute. However, since the
available empirical sample is only a subset of the popu-
lation, the effect observed in the data may occur by
chance. Statistical hypothesis testing, therefore, answers
the question: ‘If the attribute does not affect the energy
performance in the population, how likely is it to
observe this effect in the empirical sample that rep-
resents this population?’

A formal hypothesis testing requires (i) the choice of
test statistic -- the metrics that quantify the effect of
interest, e.g. differences in population means, popu-
lation proportions, etc.; (ii) the formulation of the null
hypothesis, which is an initial assumption about the
absence of direct or indirect effect measured by the
test statistic; (iii) computing the p-value (Figure 2),
which is the likelihood of observing a certain effect pro-
vided that the null hypothesis is true; (iv) judging the
statistical significance of the results: small p-value
suggests that the observed effect is not likely to occur
by chance (implies rejecting the null hypothesis), a
large p-value implies a failure to reject the null hypoth-
esis. This decision is typically based on comparing

p-value to the threshold α of statistical significance
established prior to the experiment.

In Figure 2, the shaded area illustrates p-value as the
likelihood of observing the values of the test statistic as
large as x or more extreme. The illustration applies to
two-sided tests since p-value accounts for extreme
values on both sides of the distribution. Alternatively,
one-sided tests can be used (outside the scope of this
study).

This study tests the null hypothesis formulated as
‘distinct combinations of building attributes do not
affect the energy performance’. Rejecting this hypothesis
is made at a significance level a = 0.05. The test statistic
and the calculation of p-value are based on the KS test
(Bhattacharya et al., 2016; Feldman & Valdez-Flores,
2010). In the (two-sided) KS test, a measureD of confor-
mity between two empirical samples is the supremum of
the difference between their cumulative distribution
functions (CDF) (Marsaglia et al., 2003):

D = sup
x

|F1(x)− F2(x)| (1)

where: x, random variable; F1(x), CDF of sample being
tested; F2(x), CDF of the sample against which the test is
carried out.

Figure 3 illustrates the empirical CDFs of two arbi-
trary samples and the associated D-statistic. Because
the CDF fully characterizes the central tendency and
the dispersion of the empirical sample, the KS test is
recognized as a comprehensive and convenient method
for hypothesis testing. This is a non-parametric test,
applicable to any empirical and theoretical distributions.
The p-value associated with the test can be found from
the asymptotic distribution of the KS test statistic.

Density estimation

Density estimation seeks to fit (and to evaluate the
goodness-of-fit) a set of parameters θ that characterize
the PDF fX(x | u) of the theoretical random variable X
to the empirical sample x:[x1, x2, x3, . . . , xn]. MLE
(Robert & Casella, 2013; Thomopoulos, 2017) is a
method for finding the parameters θ by solving a multi-
variate unconstrained optimization problem of maxi-
mizing the log-likelihood function that has a form:

L(u, x) = max
u

ln
∏n
i

fX(xi | u)
[ ]{ }

= max
u

∑n
i

ln [fX(xi | u)]
{ }

. (2)
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The objective of MLE may be achieved with numer-
ous optimization techniques, such as the downhill sim-
plex (Nelder–Mead) method (Gao & Han, 2012; Härdle
et al., 2017; Nelder & Mead, 1965), where the objective
function converges by adjusting the arbitrary-selected
initial parameters step-wisely. The objective is met
either if the error tolerance satisfies a certain criterion
or if the objective function exhibits no changes for sev-
eral past iterations.

Goodness-of-fit between the theoretical parameter-
ized distribution and the empirical data must be quan-
tified further. A KS test, discussed above, may be
adapted for this purpose, with D-statistic and the associ-
ated p-value used as reference metrics. High p-value
suggests that the null hypothesis ‘the observed sample
is the outcome of the fitted PDF’ cannot be rejected.
The conformity between the sample density and the
theoretical parameterized PDF can be also quantified

Figure 1. Building attributes structured as a circular tree.
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with the sum of squared errors (SSE, Equation (3)),
where a small SSE indicates a better fit. Another instru-
mental metric is the coefficient of determination R2

(squared coefficient of correlation R) of the linear
least-squares fit between the quantiles of the theoretical
distribution and the ordered values of the sample. R2

quantifies the total variation in the sample described
by the variation in the theoretical quantiles. High R2

suggests a good fit and vice versa.

SSE =
∑n
i=0

(yi(x)− fi(x))
2 (3)

where yi(x), sample density at the ith interval; fi(x),

density of a fitted PDF at the ith interval; n, number
of intervals considered.

Figure 4 exemplifies the metrics for goodness-of-fit
associated with fitting the exponentially modified
Normal (Exponnorm) distribution to the empirical
sample. The figure suggests overall conformity
between the empirical sample and the parameterized
distribution. The theoretical PDF (Figure 4a) approxi-
mates the density histogram, with occasional underes-
timated spikes compensated by overestimating the
neighbouring density. This fit is associated with a
small SSE. A theoretical continuous CFD (Figure 4b)
follows the step function of the empirical CDF, with
rare minor deviations. The corresponding D-statistic

Figure 2. p-value under the distribution f (x) of test statistic x.

Figure 3. Empirical CDFs of two arbitrary samples and the D-statistic.
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is small, and the p-value is high. A strong positive
correlation between theoretical quantiles and the
empirical values can be observed (Figure 4 c), with
negligible deviations from the linear fit and, therefore,
high R2. The example demonstrates the key goal of
density estimation - obtaining an approximate para-
metric description of the data generating process. It
is not possible and not attempted to assure that the
observed empirical sample is generated by one distri-
bution and not another. The p-value solely suggests
that the observed D-statistic is not too rare to reject
the choice of the distribution. SSE and the R2 provide
the quantitative metrics to support the choice of the
distributions amongst the alternatives and to better
understand the performance of the probabilistic
model based on this fit.

Results

The method of statistical hypothesis testing introduced
above assists with concluding if buildings characterized
by distinct attributes have distinct energy performance.
The difference and the statistical significance of such
difference are quantified and documented for individual
attributes. A significance level for hypothesis testing
through this study is set to a = 0.05. The KS test stat-
istic enabled identifying which building configurations
amongst those analysed are most- and least favourable
for better energy efficiency of the built stock within
the scope of the study. This section also elaborates
and documents the results of density estimation per
individual building configuration. The reference is

made to Figure 1 whenever applicable to explain
which sample(s) are considered.

Attribute-wise analysis of conformity

The first question of interest is formulated as: ‘do the
populations of apartments in Oslo, constructed [1]
before and [2] after 1990 have a significant difference
in their energy performance?’. The null- and the alterna-
tive hypothesis are set as follows:

H0 : E1 − E2 = 0; Ha : E1 − E2 = 0; (4)

where E1, energy use intensity (kWh ·m−2 · y−1) of the
population [1]; E2, energy use intensity
(kWh ·m−2 · y−1) of the population [2].

The empirical samples used for testing correspond to
all the EPC records for apartments in Oslo where [1] CP
. 1990: False and [2] CP . 1990: True. These samples
are accommodated by all the nodes in [1] upper and [2]
lower semicircles accordingly in Figure 1. The results of
the test are illustrated in Figure 5.

Empirical cumulative distribution functions (ECDF)
in Figure 5(a) suggest that the phenomenon exhibits
distinct properties in the two groups, particularly in
the range [100 . . . 200] kWh ·m−2 · y−1. The energy
performance of recently built apartments is evidently
better. The non-diagonal elements in the colour-
encoded matrix (Figure 5b) illustrate the largest absol-
ute difference (D-statistic) found within pairwise KS
testing. Obtaining this D-statistic is associated with
rather small p-values illustrated as the non-diagonal
elements (Figure 5c). Because the p-values obtained

Figure 4. Goodness-of-fit between the arbitrary sample and the MLE-parameterized exponentially-modified Normal distribution: (a)
sample density histogram over 100 bins with the PDF of a fitted distribution; (b) an empirical CDF with the CDF of a fitted distribution;
(c) probability plot, i.e. quantiles in the PDF of a fitted distribution against the ordered values of the empirical sample with the linear
fit.

BUILDING RESEARCH & INFORMATION 7



Figure 5. Energy performance of apartments in Oslo, by construction periods: (a) ECDFs of the samples; (b) D-statistic found with KS
test; (c) p-values associated with the test.

Figure 6. Energy performance of apartments in Oslo, by envelope material: (a) ECDFs of the samples; (b) D-statistic found with KS test;
(c) p-values associated with the test.
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through the test are substantially smaller than the estab-
lished significance level a = 0.05, the null hypothesis is
rejected. With the available empirical samples, energy
use intensity in the populations of apartments in Oslo
constructed [1] before and [2] after 1990 is found to
differ significantly.

Pairwise KS testing enables examining the impli-
cations of the other attributes on building energy per-
formance. Figure 6 illustrates the results of KS testing
to answer the next question: ‘is there a significant differ-
ence in the energy use intensities between populations
of apartments in Oslo that have [1] concrete, [2] bricks
or [3] wood as a primary construction material in their
envelope?’. All nodes matching a specific envelope
material in either of construction periods (upper or
lower semicircle in Figure 1) constitute the empirical
samples.

Figure 6(a) suggests that apartments constructed
with [1] concrete exhibit better energy performance
compared to the alternatives. Energy use intensity in
this population is significantly different from apart-
ments built with bricks [2] or wood [3], which is con-
veyed by small p-values associated with the tests [1] –
[2] and [1] – [3] accordingly in Figure 6(c). The null
hypothesis adapted from Equation (4) which asserts
the conformity between populations, in this case, can
be rejected. The p-value returned by the test [2] and
[3], however, exceeds the significance level α, meaning
that the significant evidence against the null hypothesis
is absent which implies a failure to reject it. It may be
concluded that, given the empirical samples, the popu-
lations of apartments in Oslo constructed from [2]
bricks and [3] wood do not have a significantly different
energy use intensity.

Similarly to the previous attributes, Figure 7 implies
rejecting or failing to reject the asserted null hypothesis
for populations of apartments given the distinct sources
of energy for space heating. All nodes matching a
specific energy supply solution in any of construction
periods and any of envelope materials (Figure 1) form
the samples.

Figure 7(a) suggests mutual conformity in the distri-
bution of total energy use intensity amongst the apart-
ments heated by [3,4] district heating, [5,6] oil and [9]
heat pump. The differences (Figure 7(b)) between their
ECDFs are insignificant (Figure 7c). Energy perform-
ance of apartments with space heating solutions
based on [1] electricity only and the combinations of
electricity with [2] wood, [7] heat pump and [8] natu-
ral gas is significantly different from any other alterna-
tives considered (Figure 7a–c). Electric combined with
wood [1], on the one hand, and a group of solutions
[3,4,5,6,9] on the other are the two extremes in the

energy performance (Figure 7a). Whereas for the lat-
ter, 80% of records use less than 100 kWh ·m−2 · y−1,
the share of such efficient units representing the former
is only 20%.

Figure 8 enables concluding that energy use intensity
amongst the populations of apartments in Oslo featur-
ing various types of ventilation systems differs signifi-
cantly. The empirical samples include all the nodes
matching [1] natural, [2] periodical extraction, [3] con-
tinuous extraction or [4] balanced ventilation systems in
Figure 1. Figure 8(a) suggests that the units equipped
with the balanced [4] system perform better compared
to the alternatives. With the empirical interpretation
of Figure 8(a), 50% of such units use less than 100
kWh ·m−2 · y−1 which is followed by continuous
extraction [3] (40%). The units having natural [1] and
periodical [2] types appear as the least efficient, and
often mutually conforming (Figure 8a). The difference
between these two types, however, is found to be signifi-
cant given the choice of the test statistic and the signifi-
cance threshold.

The most and the least favourable configurations

The section above provides the empirical evidence that
there are differences in the energy performance of popu-
lations of apartments in Oslo given the energy sources
for space heating, envelope materials, vintage and venti-
lation systems used. These differences, provided that
they are significant, tend to vary across the distinct attri-
butes, e.g. the energy sources for space heating are
associated with a larger D-statistic compared to the con-
struction period. Such variability hinders the under-
standing of which combination of attributes that
constitute building configurations perform relatively
better or worse. Additionally, actual building energy
performance is likely to be governed by the attributes
jointly rather than individually. This section, therefore,
is concerned with finding which building configurations
exhibit significantly better and significantly worse
energy performance relative to the entire stock of apart-
ments in Oslo. The task requires analysing all the mem-
bers in the Cartesian product of four attributes provided
that the sample of minimum size is available. In this
study, the minimum required sample size is set arbitrary
to 20 records. 62 out of 216 possible building configur-
ations (Figure 1) met this requirement.

Identification of the best performing configurations
amongst those available involves pairwise KS testing
of the corresponding sample (leaf nodes in Figure 1)
versus the composite sample (root node in Figure 1)
of all the apartments. A favourable configuration is
associated with a large positive D-statistic between the
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Figure 7. Energy performance of apartments in Oslo, by the source of energy for space heating: (a) ECDFs of the samples; (b) D-stat-
istic found with KS test; (c) p-values associated with the test.

Figure 8. Energy performance of apartments in Oslo, by type of ventilation system: (a) ECDFs of the samples; (b) D-statistic found with
KS test; (c) p-values associated with the test.
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two ECDFs. For this difference to be considered signifi-
cant, the p-value associated with the test should be
below a = 0.05. A reverse objective focused on large
negative D-statistic enables the identification of the
worst-performing building configurations. Figure 9
illustrates 62 ECDFs for all building configurations
and highlights the best- (Figure 9a) and worst-perform-
ing (Figure 9b) compared to the composite if the differ-
ence is significant.

Figure 9 enables drawing several conclusions about
the implications of building configurations on the actual
energy performance. Building configurations already
present in the built stock are associated with a wide
spectrum of high and poor energy performance. Poorly
performing apartments are typically more common
(correspond to larger sample size), which governs a gen-
erally poor performance of the entire stock of apart-
ments, as shown by the composite ECDF. To the
largest extent, the distinction between the best- and
poorest-performing configurations follows the distinct
energy source for space heating, which, as shown earlier,
reflect the largest significant differences in total energy
use intensity. The least favourable configurations are
featuring purely electric or electric with wood-based
space heating solutions (Figure 9b). Amongst the most
favourable ones, the demand for space heating is
fulfilled through district heating alone or in combi-
nation with electric heaters, through heat pumps or oil
(Figure 9a). The concrete- or brick-based building
envelope is the most common amongst the apartments
with low energy intensity (Figure 9a). The walls made of
bricks, however, also appear frequently amongst the
least-favourable configurations (Figure 9b). Despite
having a high energy performance standard, new apart-
ments are not common amongst those with the best
energy performance (Figure 9a). Some configurations
involving new apartments appear amongst the worst-
performing ones (Figure 9b). Various types of the ven-
tilation system are equally frequent amongst the least
and most favourable configurations (Figure 9a,b).

Density estimation for building configurations

Varying shapes and locations of the ECDFs in Figure 9
indicate that the populations of apartments with distinct
building configurations exhibit distinct statistical prop-
erties, which can be effectively characterized by the
PDFs. Accounting for these properties is crucial for
probabilistic simulation of the populations. This objec-
tive necessitates selecting, parameterizing and evaluat-
ing the goodness-of-fit of the PDF for each building
configuration.

Parameterized distributions that are found to charac-
terize the empirical data per individual building
configuration are documented in Appendix. The distri-
bution and the parameters represent the MLE-based
best fit (the smallest D statistic) amongst the 97 distri-
butions available in scipy.stats if p-value exceeds
0.05. The ranges (Min–Max) of values that the random
variables are known to take are specified. The metrics
used to evaluate the goodness-of-fit (D-statistic, p-
value, SSE and R2) is present in the table together with
the sample size (SS) that the fit is based on.

Discussion

The development of large-scale energy efficiency strat-
egies necessitates building energy research to establish
better theoretical foundations and more accurate mod-
elling practices. It becomes apparent that these needs
cannot be addressed through architectural and engin-
eering knowledge alone, because of the underlying com-
plexity, magnitude, dynamics and genuinely stochastic
aspects that govern the phenomenon. The instruments
of inferential statistics, intended for making robust con-
clusions under the acute variability, uncertainty and
data scarcity, are often used in population health
sciences and may tackle similar challenges in building
energy research. This study, therefore, agrees with
(Hamilton et al., 2013) on energy epidemiology as
capable to address the performance gap at the popu-
lation level.

From the epidemiological point of view, three
mutually related questions about the population-level
energy use are essential: (i) given all possible direct or
indirect effects that the technical or architectural
measures may have, is there evidence of causal relation-
ships between these measures and the phenomenon? (ii)
under such complex relationships, which combinations
of building attributes exhibit the most- and the least-
favourable energy performance? (iii) how can this
knowledge inform more accurate modelling practices?
This study exemplifies the achievable answers and elab-
orates on some of the applicable instruments.

The results suggest that individually, the construc-
tion period, some primary envelope materials, some of
the energy sources for space heating and all ventilation
system types considered in this study entail a causal
effect on the energy performance of apartments in
Oslo. These are inferred at the significance level
a = 0.05 using the KS test. The energy policies that
are targeting the building attributes that have a causal
effect on the phenomenon can be used to mediate this
phenomenon. The picture is less clear once more build-
ing attributes are under consideration since multiple
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effects are involved. Empirical evidence of a particular
combination of attributes to perform better or worse
compared to the alternatives is essential for energy pol-
icies that may promote or discourage certain architec-
tural and technological tendencies in the built
environment. A KS test statistic, therefore, is advocated
in this study as the means for detecting the most and the
least favourable combinations. An approach for struc-
tured sample analysis based on the hierarchical tree
can be adapted to increasingly diversified combinations.
Modelling of transformational processes in the built

stock requires accommodating the underlying variabil-
ity which is effectively addressed through the probabil-
istic framework. The inferred PDF for each combination
of attributes is a parsimonious parametric approximate
of the variability. The phenomenon can further be mod-
elled as a random variable that follows its distribution.
Figure 10, for example, illustrates the parameterized dis-
tributions for the most- (Figure 10a) and the least-
favourable (Figure 10b) building configurations ident-
ified in the Results section. Energy policies that support
the substitution of units from the least with the ones

Figure 9. ECDFs for 62 building configurations within the scope of the study. Ten configurations that are found to perform consider-
ably better (a) or worse (b) compared to the composite are highlighted.

12 R. ZHURAVCHAK ET AL.



from the most favourable groups is a rational step to
increase the energy performance of the built stock
within the shortest time. These conclusions, however,
need to be justified and possibly corrected considering
the expected targets, the size of populations targeted,
the anticipated socioeconomic and technical
constraints.

In this study, a list of 216 possible building configur-
ations (Figure 1) is not examined exhaustively due to the
absence of the sample or the limited available sample
size for some of them. Because of scarce presence in
the EPC registry, the anticipated size of their popu-
lations is small and therefore, of little significance to
the current total energy use at the municipal level.
Given the continuous transformation of the built
stock, future analysis is likely to reveal other promising
combinations of attributes in addition to or instead of
those found in this study. Revising these analytical
results systematically is also necessary for maintaining
the knowledge about the actual state and the develop-
ment of the built stock.

A hierarchical structure enables further up- or down-
scaling of the scope of the analysis carried out in this

study. The level of architectural and technological detail
may be extended by numerous attributes of interest.
Upscaling the scope may further improve the under-
standing of the phenomenon across building types, geo-
graphical and national contexts. The presented case
study, for example, is focused on apartments which is
the largest residential building type in Oslo. A more
comprehensive and complete inference for the munici-
pality must involve other typologies, energy perform-
ance of which is known to exhibit distinct statistical
properties (Figure 11).

Figure 11 suggests the presence of two distinct
groups of building types within the built stock. ECDFs
of residential types are evidently shifted towards zero
and steeper compared to the non-residential, which
implies generally higher efficiency and smaller dis-
persion of the former. The variation among individual
building types within both residential and non-residen-
tial groups is likewise evident. Comprehensive energy
policies must consider the attributes that significantly
affect the energy performance of all these typologies.
A similar conclusion applies to the nation-wide energy
efficiency programs.

Figure 10. Theoretical distributions of the energy performance of apartments in Oslo featuring distinct building configurations: (a)
with low and (b) high energy intensity, as described in Results.
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The methods and procedures applied in this study
are exemplary of a broader toolset offered by probability
theory to tackle the problems alike. The analysis of
skewness versus kurtosis proposed by Cullen and Frey
(1999), for example, may support the choice of a theor-
etical continuous distribution. Probability–Probability
(P–P) and Quantile–Quantile (Q–Q) plots may inform
about the goodness-of-fit likewise. Alternatively to the
KS test, Cramer–von Mises and Anderson–Darling
methods (D’Agostino & Stephens, 1986) may be instru-
mental for evaluating the goodness-of-fit between the
empirical sample and the theoretical continuous distri-
bution. Examining the criteria related to penalties in the
log-likelihood functions, such as Akaike and Bayesian
information criteria is also a common practice to con-
sider for this task. The present study applies MLE for
parameter estimation which has alternatives, e.g. several
variations of minimum distance estimation, moment
matching estimation and quantile matching estimation.
In some cases, a downhill simplex method for finding
the maximum of the log-likelihood function is substi-
tuted by e.g. Broyden–Fletcher–Goldfarb–Shanno or
conjugate gradient algorithms.

Aided by the inferential analysis, meaningful con-
clusions about the population based on the sample
necessitate rather strict demands from experimental
design and data quality (Breiman, 2001; Miller, 2014).
Distortion of measurements, errors in readings, report-
ing and registering the data affect the reliability of con-
clusions further based on it. Preventing and/or
mitigating the bias occurring within data collection/
measurement procedures must be supplemented by

responsible data management practices and the objec-
tive interpretation of findings. Concerning this study,
the potential source of bias is in identifying, measuring
and reporting the characteristics and the energy use in
the buildings certified. Unless there is a systematic
source of large error, the conclusions are expected to
be valid. Minor and seldom inaccuracies in simulating
the phenomenon are tolerated by the probabilistic
programming.

Conclusion

High energy efficiency and flexibility are amongst the
pivotal characteristics envisioned for sustainable cities
and neighbourhoods. Modelling of such complex sys-
tems necessitates systematic identification and docu-
menting of the causal relationships between building
attributes and the phenomenon at the population
level. This study suggests the means to obtain the
empirical evidence of such relationships, if any,
under an acute variability of the phenomenon. It elab-
orates on (i) statistical hypothesis testing to aid with
concluding whether the buildings featuring certain
attributes have a causal effect on the energy perform-
ance and (ii) methods for density estimation to obtain
a parsimonious probabilistic representation of variabil-
ity. The former is discussed and exemplified with the
Kolmogorov–Smirnov test whereas the latter, in this
study, is focused on maximum likelihood estimation
and several metrics for goodness-of-fit. The proposed
hierarchical structure enables hypothesis testing and
density estimation for virtually any number of

Figure 11. ECDFs for 21 building types in Oslo, illustrating the variability of energy performance in both residential (RE) and non-
residential (NR) buildings.
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attributes individually and in combinations. The same
structure allows a more comprehensive inference with
an extended list of attributes and an account for various
building types, climate and administrative boundaries.

As exemplified through the case study, the combi-
nations of building attributes already present in the
built stock represent a wide spectrum, from high to
poor energy performance. This leaves room for the pol-
icies to mediate them towards the achievement of
energy-related and environmental targets. Practically,
quantifying the variabilities given the architectural and
technological configurations may provide the necessary
support with setting realistic goals, identifying the bot-
tlenecks/opportunities and screening the solutions for
energy efficiency improvements.

Hence, several configurations are identified as
capable of effectively improving the energy performance
of the stock of apartments in Oslo. The case study like-
wise reveals the configurations that perform poorly and
thus, considered to be the major barrier towards redu-
cing the total energy use by apartments in the munici-
pality. The former are typically featuring space heating
solutions involving either district heating with and with-
out electricity or oil or heat pumps and either concrete-
or brick-based envelope. The latter rely on electricity
alone or combined with wood to meet the demand for
space heating and have either brick or concrete or
wood as the main envelope material. The majority of
apartments having distinctly high or low energy per-
formance were constructed before 1990. Each configur-
ation has unique statistical properties accommodated by
the parameterized probability density function.

It is shown in this study that inferential statistics offers
the essential means to improve the understanding of
energy performance of the built stock, to advance the
modelling approaches and thus, to safeguard the effective-
ness of energy-related strategies based on these models.
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Appendix. Sample density estimation results

Sample information (Min/Max values and sample size (SS))
per building configuration (construction period (CP), pri-
mary envelope material (EM), space heating (SH) solution
and ventilation system (VS) type), best-fit distribution with
its parameters and the goodness-of-fit metrics (D-statistic,
p-value, sum of squared errors (SSE) and R2).
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CP. 1990 EM SH VS Min Max SS Distribution Parameters D p-value SSE R2

1 False Concrete El Natural 13.196 396.667 709 Generalized logistic [7.09, 16.69, 42.862] 0.016 0.993 0.000075 0.998
2 False Concrete El Periodical extraction 13.649 381.733 461 Power normal [0.016, 28.979, 9.901] 0.024 0.942 0.000123 0.994
3 False Concrete El Continuous extraction 10.276 453.396 819 Mielke Beta-Kappa [2.827, 5.671, −0.618, 133.578] 0.016 0.977 0.000064 0.997
4 False Concrete El Balanced 21.951 464.646 110 Von Mises (non-circular) [1.342, 109.521, 38.188] 0.053 0.899 0.000611 0.821
5 False Concrete El+wood Natural 10.314 772.000 478 Johnson SU [−0.55, 1.261, 115.888, 48.979] 0.020 0.987 0.000034 0.922
6 False Concrete El+wood Periodical extraction 24.417 638.489 247 Johnson SU [−1.09, 1.5, 83.738, 63.089] 0.027 0.993 0.000063 0.967
7 False Concrete El+wood Continuous extraction 21.739 768.116 120 Log-Laplace [2.573, −0.344, 126.966] 0.045 0.961 0.000100 0.982
8 False Concrete DH Natural 14.667 267.463 187 Alpha [3.149, −29.211, 261.422] 0.034 0.978 0.000621 0.904
9 False Concrete DH Periodical extraction 18.319 282.169 56 Burr (Type XII) [4.163, 0.587, −0.333, 46.343] 0.065 0.961 0.002146 0.935
10 False Concrete DH Continuous extraction 19.315 178.056 72 Generalized gamma [7.79, 0.429, 17.017, 0.325] 0.057 0.961 0.005247 0.971
11 False Concrete DH Balanced 20.505 154.833 22 Exponentially modified Normal [2.848, 33.594, 12.517] 0.099 0.967 0.024961 0.974
12 False Concrete El+DH Natural 10.497 236.294 101 Fisk [3.587, −4.152, 63.456] 0.045 0.980 0.001602 0.995
13 False Concrete El+DH Periodical extraction 27.000 198.630 47 Exponentially modified Normal [6.099, 31.173, 5.896] 0.056 0.997 0.007868 0.975
14 False Concrete El+DH Continuous extraction 18.304 441.778 62 Johnson SU [−1.153, 1.217, 35.521, 23.058] 0.040 1.000 0.000598 0.811
15 False Concrete El+oil Natural 14.020 212.101 64 Alpha [3.56, −54.072, 398.62] 0.050 0.995 0.003993 0.963
16 False Concrete El+oil Periodical extraction 16.250 159.746 23 Johnson SB [1.604, 1.342, 3.66, 254.167] 0.091 0.982 0.021860 0.983
17 False Concrete Oil Natural 18.519 345.041 49 Log-laplace [2.337, −0.16, 61.442] 0.053 0.998 0.001350 0.985
18 False Concrete El+HP Continuous extraction 30.469 186.339 28 Exponential power [0.839, 30.469, 113.378] 0.095 0.943 11.111212 0.958
19 False Brick El Natural 11.080 424.174 691 Exponentially modified Normal [1.059, 105.06, 41.627] 0.019 0.964 0.000111 0.997
20 False Brick El Periodical extraction 13.275 612.959 594 Mielke Beta-Kappa [3.251, 6.387, −0.753, 171.718] 0.018 0.987 0.000039 0.984
21 False Brick El Continuous extraction 11.174 550.523 349 Exponentially modified Normal [1.362, 95.813, 38.307] 0.022 0.996 0.000085 0.982
22 False Brick El Balanced 14.925 288.089 81 Johnson SU [−0.615, 1.51, 99.518, 68.032] 0.059 0.927 0.002206 0.963
23 False Brick El+wood Natural 13.322 944.698 1326 Mielke Beta-Kappa [4.407, 5.067, −0.64, 153.924] 0.025 0.393 0.000009 0.892
24 False Brick El+wood Periodical extraction 10.795 902.246 911 Burr (Type III) [6.388, 0.824, −38.001, 189.015] 0.024 0.674 0.000012 0.880
25 False Brick El+wood Continuous extraction 30.887 588.111 189 Johnson SU [−1.065, 1.19, 96.667, 42.581] 0.034 0.977 0.000197 0.984
26 False Brick El+wood Balanced 69.907 700.461 38 Folded Cauchy [2.093, 69.907, 35.699] 0.064 0.995 0.000452 0.813
27 False Brick DH Natural 10.320 258.693 136 Burr (Type XII) [3.872, 0.606, −0.336, 50.827] 0.044 0.947 0.001036 0.872
28 False Brick DH Periodical extraction 25.352 183.103 46 Pearson type III [2.011, 70.922, 45.827] 0.063 0.988 0.006619 0.983
29 False Brick DH Continuous extraction 22.785 170.886 27 Johnson SU [−0.258, 1.27, 58.496, 26.287] 0.093 0.955 0.016185 0.928
30 False Brick El+DH Natural 14.647 483.946 108 Folded Cauchy [2.119, 14.647, 20.844] 0.059 0.823 0.000366 0.717
31 False Brick El+DH Periodical extraction 25.571 368.613 27 Alpha [2.539, −12.58, 178.077] 0.088 0.972 0.002373 0.925
32 False Brick El+DH Continuous extraction 16.746 215.385 26 Folded Cauchy [2.471, 16.746, 21.791] 0.075 0.996 0.010785 0.761
33 False Brick El+oil Natural 18.271 200.000 38 Exponentially modified Normal [5.144, 27.44, 7.419] 0.052 1.000 0.006414 0.990
34 False Brick El+oil Periodical extraction 27.529 996.513 23 Johnson SU [−0.584, 0.542, 53.14, 5.768] 0.072 0.999 0.000570 0.832
35 False Brick Oil Natural 23.583 297.562 56 Exponentiated Weibull [73.823, 0.335, 15.053, 0.387] 0.061 0.979 0.002784 0.969
36 False Brick HP Natural 29.885 109.311 24 Exponentially modified Normal [4.544, 35.848, 5.196] 0.079 0.995 0.056493 0.972
37 False Wood El Natural 15.152 317.857 53 Right-skewed Gumbel [108.094, 53.304] 0.073 0.919 0.001995 0.972
38 False Wood El Periodical extraction 55.825 265.080 63 Exponentially modified Normal [1.23, 100.668, 29.206] 0.046 0.998 0.002800 0.992
39 False Wood El Continuous extraction 40.349 881.172 30 Cauchy [144.382, 35.279] 0.111 0.817 0.000250 0.647
40 False Wood El+wood Natural 61.652 251.801 56 Triangular [0.584, 44.787, 219.684] 0.064 0.964 0.004923 0.995
41 False Wood El+wood Periodical extraction 42.913 494.388 72 Burr (Type III) [3.974, 1.063, −0.41, 132.314] 0.059 0.952 0.000774 0.968
42 True Concrete El Natural 11.111 244.605 87 Generalized logistic [0.859, 128.423, 23.045] 0.048 0.981 0.002116 0.994
43 True Concrete El Periodical extraction 46.796 345.558 291 Mielke Beta-Kappa [3.958, 6.61, −0.406, 139.505] 0.025 0.989 0.000261 0.995
44 True Concrete El Continuous extraction 10.198 325.896 521 Generalized gamma [31.658, 1.789, −302.169, 61.842] 0.022 0.959 0.000229 0.984
45 True Concrete El Balanced 10.255 342.037 179 Von Mises (non-circular) [3.589, 111.255, 73.46] 0.033 0.986 0.000513 0.966
46 True Concrete El+wood Periodical extraction 54.217 320.251 26 Alpha [5.460, −107.623, 1278.951] 0.093 0.964 0.005331 0.941
47 True Concrete El+wood Continuous extraction 52.909 400.000 26 Hyperbolic secant [128.552, 31.785] 0.094 0.958 0.002606 0.722
48 True Concrete DH Periodical extraction 20.667 188.679 34 Exponentially modified Normal [7.555, 29.519, 7.11] 0.069 0.993 0.008710 0.945
49 True Concrete DH Continuous extraction 28.302 239.958 83 Weibull minimum [1.04, 28.269, 55.724] 0.046 0.992 0.002223 0.989
50 True Concrete DH Balanced 10.526 701.518 213 Exponentially modified Normal [3.897, 32.868, 13.146] 0.038 0.899 0.000133 0.839
51 True Concrete El+DH Periodical extraction 23.616 185.185 33 Kappa (3 parameters) [5.649, 23.616, 63.862] 0.077 0.981 0.013423 0.954
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52 True Concrete El+DH Continuous extraction 12.308 208.979 69 Johnson SU [−1.535, 0.97, 34.314, 10.698] 0.073 0.826 0.002763 0.921
53 True Concrete El+DH Balanced 16.724 245.614 107 Power log-normal [0.058, 0.101, −55.969, 82.579] 0.039 0.996 0.001665 0.997
54 True Concrete El+gas Balanced 11.774 295.484 32 Generalized normal [0.69, 99.873, 18.118] 0.091 0.931 0.004564 0.913
55 True Brick El Natural 69.561 309.462 31 Exponentially modified Normal [3.042, 93.153, 16.074] 0.052 1.000 0.004743 0.989
56 True Brick El Periodical extraction 56.310 277.778 69 Rice [1.18, 46.749, 55.728] 0.059 0.956 0.003439 0.988
57 True Brick El Continuous extraction 16.947 244.903 66 Alpha [16.943, −606.3, 12439.065] 0.052 0.989 0.002600 0.985
58 True Brick El Balanced 45.000 282.923 37 Beta prime [15.106, 19.677, −0.303, 168.949] 0.083 0.944 0.004783 0.975
59 True Brick El+wood Periodical extraction 85.940 255.528 23 Alpha [4.366, −39.66, 780.872] 0.086 0.990 0.013691 0.967
60 True Brick DH Balanced 14.524 152.174 25 Inverted gamma [44.633, −117.146, 8007.042] 0.083 0.989 0.023475 0.954
61 True Wood El Periodical extraction 71.930 222.796 33 Folded normal [1.004, 71.93, 49.677] 0.062 0.999 0.013860 0.993
62 True Wood El Continuous extraction 12.802 275.000 28 Johnson SU [−0.587, 0.899, 107.293, 21.818] 0.065 0.999 0.003854 0.953
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Built Stock Explorer 4X, Release 0.1

This documentation page provides the information relevant to the ongoing development of Built Stock Explorer
(https://buildingstockexplorer.indecol.no) - a web application for interactive analysis and modelling of urban building
energy use. Distinct sections explain the rationale behind the development, application’s functional capabilities, data
characteristics, methods and instruments used. The information about software licenses, developers and contributors
is provided likewise.
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2 Contents



CHAPTER 1

About

1.1 Summary

Built Stock Explorer (https://buildingstockexplorer.indecol.no) is a research software developed for interactive anal-
ysis and modelling of large-scale building energy use. Through an intuitive web interface, it makes accessible i) a
comprehensive dataset* on the energy performance of buildings and ii) several components/instruments for the sta-
tistical information retrieval and data-enabled modelling, both explanatory and predictive. The software is designed
to support a rather heuristic (hence the Explorer) learning about the energy-related properties of the built stock and
about the methods of predicting it. The functional capabilities, therefore, are featuring an immediate illustration of
any analytical operation.

* NB: The scope of application, so as the underlying dataset, are limited to the Norwegian cities and municipalities.

1.2 Motivation

Examining and predicting building energy performance at a stock level is motivated by the need for mediating the built
environment towards more sustainable. This may be done through political and practical mechanisms at all levels, from
local to state-wide. The awareness about the energy performance of buildings currently, in the nearest and/or in the
distant future is necessary to develop, implement and ensure the effectiveness of these mechanisms. Because of the
associated complexities, scale and pace with which built stock energy use evolves, documenting its status quo and
predicting the future state is a rather challenging task. The examples of relevant questions are:

1. How much energy do buildings actually use?

2. What is the relationship between building characteristics (e.g. type, age, size) and their energy use?

3. Does the energy use of the buildings differ given the local climate, architectural and socio-political variations
across the communities they belong to?

4. And finally, can we accurately predict energy use in buildings, by means of either or both, classical statistical
modelling or more novel machine learning techniques?

Built Stock Explorer accommodates a set of instruments to answer some of these and the related questions.

3
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1.3 Users

The application’s design choices allow anyone to use it. This could be a curious user interested in the discipline or an
experienced analyst involved in research or policy development. Although the illustrated results are meant for intuitive
interpretation, the understanding of basic statistical concepts and terminology is beneficial.

4 Chapter 1. About



CHAPTER 2

Data and metadata

2.1 Source

Background data (the Norwegian Energy Performance Certificates (EPC) dataset) is a component of the Norwegian
Energy Labelling System for Houses and Dwellings. Certification carried out by Enova and managed by the Norwe-
gian Water Resources and Energy Directorate.

Currently, the available dataset contains ≈ 79000 EPC records that meet the following criteria:

1. The EPC has been issued before September 2020;

2. The EPC specifies the total (across all energy sources) annual measured/reported energy use of the certified unit;

3. The certified unit belongs to one of 74 municipalities with the total EPC records count ≥ 100;

4. Energy use/intensity is in range of sensible values for the units of given type/age/size/administrative affiliation.
This means that the dataset has been subject to standard outlier removal procedures. These procedures are
intended to mitigate the implications of errors made during certification on the analytical conclusions.

2.2 Metadata

The dataset contains variables/features of categorical and numerical types:

• Categorical

1. City;

2. Building type.

• Numerical:

1. Construction year [CY];

2. Heated floor area [HFA] (m2);

3. Total annual energy use [EU] (kWh · y−1);

5
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4. Energy intensity [EI] (kWh · y−1 ·m−2).

2.3 Data slicing

Built Stock Explorer supports examining a comprehensive dataset in smaller subsets of interest by controlling the
variables. The control of categorical variables is made available through the dropdown menus where the selection
of multiple values is supported. Numerical variables are controlled using the range sliders that define the upper
and the lower limits per variable. These sliders and menus are nested under the “Dataset” tab (Fig. 1). Dropdown
menus support searching while typing with Latin or Norwegian alphanumeric characters. “City” menu contains a
list of 74 municipalities sorted by the number of EPC records they are associated with. “Type” menu contains a
list of building types that are available given the constraints specified by the “City” menu and all three sliders. A
prefix “NR.”/”RE.” is used as a convention to denote Non-Residential and Residential building types. Range sliders
have either linear (Construction year) or logarithmic (“Heated floor area (sq.m.)” and “Total energy use (kWh/year)”)
scales. The “Subset totals” section displays the summary of the dataset that is active given the user-defined constraints:
total number of records, the sum of heated floor area and the sum of total energy use for these records.

Fig. 1: Fig. 1: The components of the “Dataset” tab in Built Stock Explorer

Fig. 1 illustrates the selection of all certified terraced houses and advanced offices located in Bergen and Tromsø,
constructed after 1950, having heated floor area within [100. . . 10 000] sq.m., and using no more than 100 MWh per
annum. In this example, 623 units with the total 8.87× 104 m2 and 1.11× 107 kWh · y−1 match the criteria.

6 Chapter 2. Data and metadata



CHAPTER 3

Graphical components

Currently, Built Stock Explorer has two graphical components that are nested under the “Plot” tab: “Datacube” and
“Distplot”. They contain a collection of instruments for multi- and univariate analysis accordingly.

3.1 Datacube

Datacube (Fig. 2) is a 3-dimensional plot used to study the relationship between the six available variables. By default,
three numerical variables are used as the dimensions of the cube. Adding one or two categorical variable(s) will project
the data on the hyperplane: 2-dimensional (plane) or 1-dimensional (line) respectively. The same numerical variable
selected for both X- and Y-axis, creates a 2-dimensional plane, passing diagonally through the X-Y space. The choice
of the variable for Z-dimension is limited to either “Energy use” or “Energy intensity”. Log scale, if active, applies to
all numerical variables except “Construction year”. Datacube has the instruments for clustering and regression model
building as explained below.

3.1.1 Clustering

Datacube displays cluster centroids obtained using k-means clustering on the selected data subset. This unsupervised
machine learning method seeks an optimal division of the subset into k clusters, with each building assumed to belong
to the closest one. Cluster centroids, therefore, generalise the properties of larger groups of buildings. In Built Stock
Explorer, k-means clustering is carried out per city per building type based on three numerical variables (construction
year, heated floor area and energy use) for the number of clusters 1 ≤ k ≤ 25. Standard feature scaling (to zero-mean
and unit-variance) is applied automatically prior to clustering, and the resulting centroids are automatically reverse-
scaled. The size of the cluster centroid is proportional to the number of certified units assigned to the cluster. A
hover-box shows the values of the selected variables for the cluster centroid and the number of units that are assigned
to it (as illustrated in Fig. 2).

Fig. 2 illustrates cluster centroids found for four distinct building types (highlighted with distinct colours) in
Bergen. The advanced offices are clustered around four visible centroids (illustrated in red) that generalise/represent
the size, age and energy use of the units belonging to these clusters. The coordinates of the centroids define
archetype/representative units and may be used to model advanced offices in Bergen. The cluster that the cursor
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Fig. 1: Fig. 2: Cluster centroids shown in the “Datacube” component of Built Stock Explorer

points to has 31 units assigned to it, with the mean construction year: 1982, mean heated floor area of 5763 m2 and
mean energy intensity of 233 kWh · y−1 ·m−2.

NB:

The centroids of the clusters that have 3 or fewer units are not shown (a data confidentiality measure).
A new set of clusters is computed every time the user updates the subset or the number of clusters.

3.1.2 Regression modelling

Datacube can fit and display multiple linear regression models per city per building type within the selected subset.
These models have a form: [Z] = a0 + a1 · [CY ] + a2 · [HFA] where Z is the selected variable for the Z-axis, either
total annual energy use (EU, kWh ·y−1) or energy intensity (EI, kWh ·y−1 ·m−2). CY and HFA are the construction
year and heated floor area (m2) accordingly. The intercept a0 and slope coefficients a1, a2 are found through the
ordinary least squares method. For each point within the input space of construction year and heated floor area, the
output can be predicted using this model. A set of these outputs forms a surface that is displayed (Fig. 3). A hover-box
shows the values of the selected independent variables, the model and the model’s prediction through the entire input
space.

Fig. 3 illustrates three regression models that may be used to predict energy intensity given the construction year and
the heated floor area (m2) for three distinct building types in Trondheim. The surface that the cursor is pointing to is
associated with detached houses, for which energy intensity is governed by the model:

[EI] = 8.485× 102 − 3.418× 10−1[CY ]− 2.515× 10−1[HFA]

Slope coefficient a1 = −3.418×10−1 has a negative value, thus suggesting that the energy intensity inversely depends
on construction year, i.e. the newer the building - the smaller the energy intensity. One of the reasons for observing
this tendency is the improvement of energy efficiency standards during recent years. Also, larger houses typically
utilise energy more efficiently compared to smaller ones. This explains why the heated floor area also has a negative
slope coefficient (a2 = −2.515 × 10−1). Using this model, a detached house of 430 m2 HFA constructed in 1892 in
Trondheim is expected to have an energy intensity of 93.72 kWh · y−1 ·m−2 (as shown in the hover-box in Fig. 3).

8 Chapter 3. Graphical components
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Fig. 2: Fig. 3: Linear models displayed as surfaces in the “Datacube” component of Built Stock Explorer

The fitted model can be used in the computational environment of choice to obtain the prediction given any pair
(construction year : heated floor area). With python, for example, the energy intensity of a detached house constructed
in 1975 in Trondheim having 200 m2 can be predicted as follows:

>>> 848.5 - 0.3418*1975 - 0.2515*200
123.145
>>>

Or, through a python function:

>>> def predict_ei(cy,hfa):

# Predict EI based on CY and HFA of a detaches house in Trondheim

return 848.5 - 0.3418*cy - 0.2515*hfa

# Call a function with CY and HFA as arguments
>>> predict_ei(1975, 200)
123.145
# Or use numpy arrays as CY and HFA arguments to do the same for many units at once
>>> import numpy as np
>>> predict_ei(np.array([1975,2002]), np.array([200, 401]))
array([123.145, 63.421])
>>>

NB:

On the linear scale, a linear model always yields a rectangular plane. This plane, however, becomes curved if
some variables are on a log scale (e.g. Fig. 3).

3.1. Datacube 9
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3.2 Distplot

Distplot is a histogram used to examine the selected variable in detail and consists in finding/documenting how likely
are certain values to occur through the entire range of possible values. This is done based on the available subset and
may be further projected on the buildings for which there is no information available. Built Stock Explorer supports
these tasks through several features elaborated below.

3.2.1 Density and cumulative density histograms

In Distplot, the distribution of values taken by the variable can be visualised as a histogram of either density (Fig. 4) or
cumulative density (Fig. 5). A density histogram displays the relative likelihood of a certain range of values to occur,
whereas the cumulative density histogram indicates the probability of obtaining a value below a certain threshold. The
number (1 ≤ n ≤ 100) of bins evenly spaced through the entire range of values is controlled through a slider. For the
histogram to be shown - a “Histogram” checkbox must be active. The histograms are shown per city per building type.
A hover-box shows the value that the variable has in the selected bin, the density (or cumulative density) and the total
number of records in the selected subset.

Fig. 3: Fig. 4: Density histogram in the “Distplot” component of Built Stock Explorer

Fig. 4 illustrates a density histogram of energy intensity (kWh · y−1 ·m−2) of advanced offices in Oslo. The subset
consists of 776 records in the range [0. . . 1300] kWh ·y−1 ·m−2. A peak of density is at 202 kWh · y−1 ·m−2, which
is the most common value. Values above 600 kWh · y−1 ·m−2 have low density, thus suggesting that the advanced
offices with such high energy intensity are rather uncommon in Oslo.

Fig. 5 illustrates a cumulative density histogram for the subset shown in Fig. 4. A hover-box suggests that there is
0.381 (or 38.1%) chance that the randomly picked advanced office in Oslo will have energy intensity of 175 kWh ·
y−1 ·m−2 or less.

NB:

Five or more records are needed for the histogram to be shown.
The number of bins must be smaller than the number of records in the subset.

3.2.2 Sample statistics

Several sample statstics (Fig. 6) can be computed and shown on top of either density or cumulative density histogram.
These are:
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Fig. 4: Fig. 5: Cumulative density histogram in the “Distplot” component of Built Stock Explorer

- mean (average) of values;
- mode (peak of density);
- 1st, 2nd (median) and 3rd quartiles.

Fig. 5: Fig. 6: Sample statistics in the “Distplot” component of Built Stock Explorer

Fig. 6 shows the sample statistics computed for the energy intensity (kWh · y−1 · m−2) for apartments constructed
in Tromsø between 1976 and 2020. This subset is associated with a rather symmetric distribution where the mean,
mode and median are close to 150 kWh · y−1 ·m−2. 50% of records are being observed within a rather narrow range
between the 1st and the 3rd quartile (112 and 177 kWh · y−1 ·m−2 accordingly).

3.2.3 Univariate density estimation

The objective of parametric univariate density estimation is to find which type and parameters of the theoretical
distribution describe the data. This is necessary to simulate a larger number of buildings distributed similarly to
what is seen in the available data. Built Stock Explorer enables to fit, evaluate the goodness-of-fit and display the
theoretical distributions for any subset (e.g. Fig. 7). A list of 95 theoretical distributions is available:

3.2. Distplot 11
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['alpha', 'anglit', 'arcsine', 'argus', 'beta', 'betaprime', 'bradford', 'burr',
↪→'burr12', 'cauchy', 'chi', 'chi2', 'cosine', 'crystalball', 'dgamma', 'dweibull',
↪→'erlang', 'expon', 'exponnorm', 'exponweib', 'exponpow', 'f', 'fatiguelife', 'fisk',
↪→ 'foldcauchy', 'foldnorm', 'genlogistic', 'gennorm', 'genpareto', 'genexpon',
↪→'genextreme', 'gausshyper', 'gamma', 'gengamma', 'genhalflogistic', 'gilbrat',
↪→'gompertz', 'gumbel_r', 'gumbel_l', 'halfcauchy', 'halflogistic', 'halfnorm',
↪→'halfgennorm', 'hypsecant', 'invgamma', 'invgauss', 'invweibull', 'johnsonsb',
↪→'johnsonsu', 'kappa4', 'kappa3', 'ksone', 'kstwobign', 'laplace', 'levy', 'levy_l',
↪→'logistic', 'loggamma', 'loglaplace', 'lognorm', 'lomax', 'maxwell', 'mielke',
↪→'moyal', 'nakagami', 'ncx2', 'ncf', 'nct', 'norm', 'norminvgauss', 'pareto',
↪→'pearson3', 'powerlaw', 'powerlognorm', 'powernorm', 'rdist', 'reciprocal',
↪→'rayleigh', 'rice', 'recipinvgauss', 'semicircular', 'skewnorm', 't', 'trapz',
↪→'triang', 'truncexpon', 'truncnorm', 'tukeylambda', 'uniform', 'vonmises',
↪→'vonmises_line', 'wald', 'weibull_min', 'weibull_max', 'wrapcauchy']

This list of distributions and their naming conventions is consistent with and relies upon scipy.stats. Fitting is carried
out using the maximum likelihood estimation (MLE) method. Goodness-of-fit of the theoretical distribution may
be judged by examining how close its probability density function (PDF) or the cumulative distribution function
(CDF) follows the density or cumulative density histograms accordingly of the subset. Also, a quantitative metric for
goodness-of-fit based on the (two-sided) Kolmogorov–Smirnov test is implemented in Built Stock Explorer. The test
computes D− statistic and p− value. D− statistic is the largest absolute difference between the CDF of the fitted
theoretical distribution and the empirical cumulative distribution function of the subset. Smaller D− statistic suggests
a better fit. The p− value is a measure of how likely is it to observe D− statistic that large if the data does in fact
follow the fitted distribution. Practically, a p− value larger than 0.05 suggests a good fit. The “Function” checkbox
must be active for the distribution(s) to be shown on the histogram. A hover-box shows the value of the variable,
the corresponding density, name and parameters of the theoretical distribution, D− statistic and p− value associated
with the fit. Parameters of the distribution are listed in the format [p1, p2, ...pn, loc, scale], where [p1, p2, ...pn] are the
shape parameters, if any. Location and scale parameters are always placed in the two last positions.

Fig. 6: Fig. 7: Fitted theoretical distributions in the “Distplot” component of Built Stock Explorer

Fig. 7 illustrates the density histogram and the PDFs of several distributions fitted to the subset of apartments in
Stavanger. It is shown that beta and normal distributions are associated with a better fit compared to triangular and
uniform distributions. The hover-box suggest that beta distribution with parameters [7, 40, -31, 967] has a small D−
statistic and a large p− value. The energy intensity of a larger number of apartments in Stavanger can be simulated as
a random variable that follows beta [7, 40, -31, 967] distribution. With python and scipy, this may be done as follows:

# Simulate 10000 apartments given the parameterised theoretical distribution

(continues on next page)
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(continued from previous page)

>>> from scipy.stats import beta
>>> r = beta.rvs(7, 40, -31, 967, size=10000)
>>> r
array([ 84.3377058, 93.90328628, 153.86908053, ..., 45.10635533, 88.0250997, 194.
↪→9165163 ])
# Illustrate the simulated results using a density histogram in matplotlib
>>> import matplotlib.pyplot as plt
>>> plt.figure()
>>> plt.hist(r, bins=50, density=True)
>>> plt.show()

which the generates the histogram shown in Fig. 8.

Fig. 7: Fig. 8: Density histogram of energy intensities sampled randomly from beta [7, 40, -31, 967] distribution for
10000 apartments in Stavanger

As expected, the histogram in Fig. 8 looks similar to the one that the inference is done upon (Fig. 7). Accurately
replicating the distribution of the data through pseudo-random numbers is the basis of modelling/simulating built
stock by means of probabilistic programming.

3.2. Distplot 13
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CHAPTER 4

Technical information

A comprehensive list of technologies, libraries and tools enabled Built Stock Explorer to be brought to the users.

It is being developed primarily in Python with some pieces of HTML and CSS scripts and the extensive use of TeX
and Markdown.

The components at the interface level are produced with Dash, Plotly and Matplotlib.

Functional capabilities of the application rely on a number of Python libraries:

• Numpy for numerous algebraic operations;

• Pandas for data manipulations;

• Scipy for density estimation and computing sample statistics in Distplot;

• Sklearn for the implementation of clustering and regression modelling in Datacube.

Additionally:

• IPython and Jupyter are used as the environments for interactive development and testing of solutions;

• GitLab infrastructure made the collaborative workflow and version control possible;

• Docker facilitated many procedures related to the development and deployment;

• Sphinx and Readthedocs enabled to build and host this documentation page.

Many thanks to all the talented teams who contributed to make them available. And enabled to develop Built Stock
Explorer.
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CHAPTER 5

General information

5.1 Credits

Built Stock Explorer is being developed and maintained by Ruslan Zhuravchak within his doctoral work at NTNU,
The Department of Energy and Process Engineering. The development is overseen by Helge Brattebø and Natasa
Nord.

5.2 Contributors

Web infrastructure by Industrial Ecology Digital Lab.
Data access and contextualization by Enova.

5.3 Contacts

Contact the developer at rus.zhuravchak@gmail.com

5.4 License

Built Stock Explorer is under the BSD 3-Clause license:

Copyright 2021, Ruslan Zhuravchak

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
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2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/
or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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