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ABSTRACT

A one-step approach for Bayesian prediction and uncertainty quantification of lithology/fluid

classes, petrophysical properties and elastic attributes conditional on prestack 3D seismic

amplitude-versus-offset data is presented. A 3D Markov random field prior model is as-

sumed for the lithology/fluid classes to ensure spatially coupled lithology/fluid class predic-

tions in both the lateral and vertical directions. Conditional on the lithology/fluid classes,

we consider Gauss-linear petrophysical and rock physics models including depth trends.

Then, the marginal prior models for the petrophysical properties and elastic attributes are

multivariate Gaussian mixture models. The likelihood model is assumed to be Gauss-linear

to allow for analytic computation. A recursive algorithm that translates the Gibbs formu-

lation of the Markov random field into a set of vertical Markov chains is proposed. This

algorithm provides a proposal density in a Markov chain Monte Carlo algorithm such that

efficient simulation from the posterior model of interest in three dimensions is feasible. The

model is demonstrated on real data from a Norwegian Sea gas reservoir. We evaluate the

model at the location of a blind well, and we compare results from the proposed model with

results from a set of 1D models where each vertical trace is inverted independently. At the

blind well location, we obtain at most a 60 % reduction in the root mean square error for

the proposed 3D model compared to the model without lateral spatial coupling.
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INTRODUCTION

Quantitative interpretation (Avseth et al., 2005) of prestack seismic data is an essential part

of the workflow both during prospect de-risking (exploration) and reservoir characterization

(production) in the oil and gas industry to predict the proportion of hydrocarbon and to

determine the well design for production. The objective is to reduce the technological and

economic risk during the development phase. In reservoir characterization, there are three

inverse problems (Tarantola, 2005): prediction of elastic attributes, such as P-impedance

(elastic seismic inversion); prediction of rock and fluid properties, such as porosity and water

saturation (petrophysical seismic inversion); and prediction of the lithology/fluid classes or

facies (lithology/fluid classification). We refer to Grana et al. (2017) and references therein

for a discussion of these inverse problems. Assessment of such geophysical inverse problems

is a challenging task due to the uncertainty in the measurements and nonuniqueness of the

solution. There are several sources of uncertainty in the workflow, including observation

errors, limited bandwidth of seismic data and rock physics modeling errors. We refer to

Bosch et al. (2010) for an overview of elastic seismic inversion.

Various deterministic (Aster et al., 2005; Sen and Stoffa, 2013) and probabilistic (Doyen,

1988; Lia et al., 1997; Tarantola, 2005) approaches exist to solve the abovementioned inverse

problems. These approaches were first applied to elastic seismic inversion but have lately

been extended to also cover petrophysical seismic inversion (Doyen, 2007). Deterministic

techniques are often based on optimization of a misfit function including a penalty term for
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regularization of the solution. In a Bayesian setting, a prior probability model is assigned

to the reservoir variables of interest in order to include prior knowledge and experience.

Probabilistic approaches have been applied successfully for reservoir characterization; see,

e.g., Doyen (1988); Lia et al. (1997); Mukerji et al. (2001); Buland and Omre (2003);

Gunning and Glinsky (2007); Rimstad and Omre (2010); Grana and Della Rossa (2010);

Rimstad et al. (2012); Jullum and Kolbjørnsen (2016) and Connolly and Hughes (2016).

We consider a Bayesian framework where the solution is not only a point prediction but

rather the full posterior model for the variables of interest, which allows for uncertainty

and risk quantification. The posterior model is computed by combining the likelihood

for the observed data given the reservoir variables and the prior model for the latter. In

general, the class of models that can be solved analytically is limited, and sampling-based

methods such as Markov chain Monte Carlo (Gamerman and Lopes, 2006) have to be

applied. In sampling-based methods, an ensemble of realizations represent the posterior

model, on which summary statistics and predictions are based. However, construction of

a satisfactory proposal density in the simulation algorithm that ensures sufficiently fast

convergence is challenging in high-dimensional problems.

Traditionally, Bayesian inversion techniques are based on a stepwise procedure, where

one first inverts for the elastic attributes (Doyen, 2007), then for the petrophysical prop-

erties and finally for the lithology/fluid classes. These methodologies are often applied

at the pointwise level, where lateral spatial continuity in the predictions is inferred only
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from the spatial continuity of the seismic data. During the last decade, simultaneous (or

joint/integrated/one-step) inversion techniques have been developed (Rimstad and Omre,

2010), and they capture the joint model and tend to represent the uncertainty more realis-

tically. We consider the latter approach, where we jointly assess the posterior model of the

variables of interest.

For a linear seismic model with an additive Gaussian error term and a Gaussian prior

model for the elastic attributes, the posterior model for the elastic attributes is also Gaus-

sian, with analytic expressions for the mean vector and covariance matrix (Buland and

Omre, 2003). Pointwise classification of the lithology/fluid classes based on classification

techniques, such as discriminant analysis (Hastie et al., 2009) or other machine learn-

ing techniques, may then be applied to obtain a lithology/fluid classification. The prior

model has recently been extended to also cover Gaussian mixture prior models (Grana and

Della Rossa, 2010; Grana et al., 2017) to model multimodal and skewed marginal charac-

teristics, and we consider the latter class of models.

Spatial histograms of well logs for the petrophysical properties, such as porosity and

water saturation, often appear as multimodal and/or skewed due to varying lithology classes

and fluid fillings of the subsurface. We therefore include a lithology/fluid class variable to

model these variations, as they have an important impact on the petrophysical properties.

To honor vertical sorting and ordering of the lithology/fluid classes, Markov chain prior

models are frequently used. The usage of Markov chains to model a vertical profile dates
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back to Krumbein and Dacey (1969). These models are either used only for one-dimensional

problems (Eidsvik et al., 2004; Connolly and Hughes, 2016; Fjeldstad and Omre, 2020) or

used in coupling of vertical Markov chains in a 2D and 3D random field context (Rimstad

and Omre, 2010; Ulvmoen and Omre, 2010; Fjeldstad and Grana, 2018; de Figueiredo et al.,

2019). We extend this work by replacing the one-dimensional Markov chain prior model

for the lithology/fluid classes with a three-dimensional Markov random random field prior

model, which allows for consistent three-dimensional modeling. We refer to Kemper and

Gunning (2014) and Gunning and Sams (2018) for more information regarding the use

of Markov random fields in reservoir characterization. The main advantage of phrasing a

full 3D model is that each posterior realization in a vertical trace borrows predictive power

from its neighboring traces. Hence, posterior realizations are expected to have larger lateral

spatial continuity. If the ultimate objective is to forecast reservoir productions, reproducing

lateral connectivity is of the utmost importance. We refer to Tjelmeland et al. (2019) for

a discussion of the impact of lateral continuity in lithology/fluid class prediction related to

fluid flow.

Rock physics models relate the rock and fluid properties to the elastic attributes, and

these relations are generally known for conventional reservoirs (Avseth et al., 2005; Mavko

et al., 2009). Houck (2002) contains a discussion regarding the importance of considering

both seismic and rock physics uncertainties, and in Bachrach (2006), stochastic rock physics

models for joint prediction of porosity and saturation are presented. We consider the
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class of Gauss-linear models conditional on the lithology/fluid classes and the petrophysical

properties and elastic attributes, where the forward model is assumed to be linear in the

reservoir variable together with an additive zero-mean Gaussian error term.

The ultimate objective is to assess the reservoir variables of interest given seismic

amplitude-versus-offset (AVO) data. We use a Markov chain Monte Carlo Metropolis-

Hastings algorithm to generate realizations from the correct posterior model of interest.

Each iteration in the Metropolis-Hastings algorithm consists of two main steps: proposal

of a new realization and accepting or rejecting the proposed sample. In high-dimensional

problems, such as in reservoir characterization, the major challenge is to construct a rea-

sonable proposal density in order to obtain satisfactory acceptance and convergence rates.

Our focus is on construction of the proposal density in three dimensions, extending Rimstad

and Omre (2013) and Fjeldstad and Omre (2020), and hence improving the convergence

rate of the algorithm.

The main contribution of this paper is an algorithm that rephrases the complete Markov

random field model in three dimensions into the set of corresponding conditional one-

dimensional vertical Markov chain models. We present an efficient block-Gibbs algorithm

in three dimensions based on analytic evaluations that may be used for sequential simula-

tion. First, we define the probabilistic model in a Bayesian inversion setting and discuss

assessment of the posterior model. Second, we demonstrate the methodology on a real

Norwegian Sea case study. We consider seismic AVO data and refer to Avseth et al. (2016)
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for details of the reservoir. The results are validated at the location of a blind well and

compared to an alternative model based on a collection of 1D models, where each vertical

profile is assumed to be independent of the other profiles.

MODEL DESCRIPTION

In the following section, we define the variables of interest and the probabilistic model,

extending Fjeldstad and Grana (2018).

Notation

Denote by p(·) an arbitrary probability density/mass function (pdf). Vectors are given

in lowercase bold font and matrices in uppercase bold font. Let N (x;µ,Σ) denote the

(multivariate) Gaussian pdf for a random vector x having mean vector µ and covariance

matrix Σ. We refer to a likelihood model as Gauss-linear if the modeling variable is linear in

the conditioning variable together with an additive Gaussian error term. Let R[a,b] denote

the set of real numbers on the interval [a, b], where a < b are real numbers.

Consider a discretized grid of the subsurface, L ={
(x, y, t) : x = 1, . . . , nx; y = 1, . . . , ny; t = 1, . . . , nt}, where x and y are the coordi-

nates in the horizontal direction and t is the vertical position (e.g., time) indexed

top-down, and let n = nxnynt denote the total number of grid cells in the cube. Let

v = xyt ∈ L denote an arbitrary cell and −v denote all cells except v. Moreover, denote
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by Lxy· = {(x, y, t) : x, y, t = 1, . . . , nt} ⊂ L the set of vertical nodes at horizontal

position xy and let L−xy· = L \ Lxy·, where \ denotes the set difference. Finally, let

u = (xy1, . . . , xynt) ⊂ L denote the indices of a full vertical profile at horizontal position

xy.

The variables of interest on the grid L are the lithology/fluid classes κ = (κ1, . . . , κn),

the petrophysical properties r = (r1, . . . , rn) and the logarithm of the elastic attributes

m = (m1, . . . ,mn). Moreover, let rv ∈ Ωr = R[0,1] and mv ∈ Ωm = R[0,∞) denote the petro-

physical property, taking on values on [0, 1], and the elastic attribute, which takes positive

values, respectively. Since rock properties such as the porosity, water saturation, perme-

ability and net-to-gross are bounded on Rn[0,1], we use an elementwise logit-transformation

to ensure support on Rn. The logit-transform is one-to-one, which ensures that we can

transform back to the original domain.

To ease notation, we specify in the following the probabilistic model only for one petro-

physical property variable (porosity) and one elastic attribute variable (logarithm of P-

impedance) at each grid cell v ∈ L. The proposed methodology is valid for additional

petrophysical properties and elastic attributes such as water saturation and/or the loga-

rithm of the Poisson ratio at the expense of a more complex notation. Each node v ∈ L

is assigned three stochastic variables κv, rv and mv. Let κv ∈ Ωκ = {1, . . . , L}; hence, κv

takes one out of L categorial values in each grid cell. These categorical values represent the

lithology/fluid classes of the subsurface, for example, gas sandstone or shale. We consider
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prestack seismic amplitude-versus-offset (AVO) data d = (d1, . . . , dn) and consider only one

incidence angle in the following to ease notation. We refer to Buland and Omre (2003) for

an extension to multiple incident angles. A short description of the variables to be defined

is given Table 1.

Bayesian inversion

Recall that the variables of interest are the lithology/fluid classes κ, the petrophysical

properties r and the logarithm of the elastic attributes m of the subsurface. The objective

is to characterize these variables given seismic AVO data in a joint spatial Bayesian inverse

setting. A one-step joint methodology allows for a consistent treatment of the uncertainties,

as these uncertainties are often underestimated in a stepwise procedure.

We operate in a Bayesian inversion framework, where the ultimate objective is to assess

the joint posterior pdf of the variables of interest; that is,

p
(
κ, r,m | d

)
∝ p
(
d | κ, r,m

)
p(κ, r,m)

= p
(
d |m

)
p
(
m | κ, r

)
p
(
r | κ

)
p(κ)

(1)

since m is a canonical variable for d. We refer to the likelihood model p
(
d |m

)
as the seismic

model. The joint prior model p(κ, r,m) is sequentially decomposed, and we refer to p(κ)as

the lithology/fluid class model, p
(
r | κ

)
as the petrophysical model and p

(
m | κ, r

)
as the

rock physics model. The latter two models are defined conditional on the lithology/fluid

classes κ. Obtaining the normalizing constant of equation (1) may not be computationally
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feasible since it requires a summation over κ ∈ Ωn
κ and evaluation of the high-dimensional

integral over r and m to obtain the normalizing constant p(d).

We assume the petrophysical model, rock physics model and likelihood model to have

the factorial form

p
(
κ, r,m | d

)
∝

nxny∏
u=1

[
p
(
du |mu

)
p
(
mu | κu, ru

)
p
(
ru | κu

)]
× p(κ), (2)

Hence, the observations du for each vertical trace are conditionally independent of the

observations for every other vertical trace given κ. Note that the sequential decomposition

of the prior model above does not imply that the joint prior density p(κ, r,m)can be factored

into a set of vertical independent prior densities. That is, even if the conditional density

p
(
r,m | κ

)
is laterally independent, the unconditional density p(r,m)=

∑
κ p
(
r,m | κ

)
p(κ)

is laterally correlated. Next, we define the petrophysical model, rock physics model and

likelihood model for each vertical profile u.

Likelihood model

The observed seismic signal dv at grid cell v = xyt ∈ L can be represented as a convolution

of the reflection coefficients along the vertical profile Lxy· and a wavelet due to the reflection

and transmission of the seismic waves in the subsurface.
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Seismic model

We consider a linearized approximation of the nonlinear Zoeppritz equations based on the

Aki-Richards formulation for weak contrasts (Aki and Richards, 1980) following Buland

and Omre (2003). We assume a Gauss-linear likelihood model

p
(
du |mu

)
= N

(
du; Gmu,Σdu

)
; (3)

that is, the model is linear in the conditioning variable m with additive Gaussian error

terms. The linear operator G is a (nt × nt)-matrix assumed to be the product of three

matrices G = WAD (Buland and Omre, 2003), where W is the (nt × nt) convolution

matrix, A is a (nt × nt)-matrix containing the angle dependent Aki-Richards reflection

coefficients and D is a (nt × nt)-matrix approximating derivative. We assume that the

(nt × nt)-covariance matrix Σdu includes vertically colored noise.

Prior model

The prior model in equation (2) is specified sequentially, as in Fjeldstad and Grana (2018),

and we discuss the lithology/fluid class, petrophysical property and elastic attributes models

separately.
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Lithology/fluid class model

To model the spatial connectivity and continuity of the lithology/fluid classes κ, we consider

a Markov random field model (Besag, 1974), which requires some additional notation. We

consider the set of cliques c ⊂ L, which consists of the pairs of closest neighbors. Let C

denote the clique system that is the set of all cliques. Let nv ∈ L be the set of neighbors

of each v ∈ L. Given the clique system of the closest pairwise cliques, it follows that nv

consists of the six closest neighbors, not including v itself, for each v ∈ L. A stencil of

the neighborhood system is given in Figure 1. The methodology presented is also valid

for a more complex clique set, at the expense of a more complex notation. We phrase the

lithology/fluid prior model in Gibbs form (Kemper and Gunning, 2014; Gunning and Sams,

2018):

p(κ)= const−1
1 × exp

−∑
c∈C

gc(κc)

 , (4)

where each gc(·) is a real-valued function. The normalizing constant in equation (4),

const1 =
∑

κ′∈Ωnκ
exp

(
−
∑

c∈C gc(κ
′
c)
)
, is in general not analytically tractable, as it re-

quires summation over κ ∈ Ωn
κ, which has Ln elements.

The locationwise (conditional) Markov formulation is given as

p
(
κv | κ−v

)
∝ exp

−∑
w∈nv

gc (κv,κw)


= const−1

2 × exp
(
−hv(κv | κw;w ∈ nv)

) (5)

where hv(·) is a real-valued function defined by the Gibbs formulation and neighborhood
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system nv to account for heterogeneities. The normalizing constant is given by const2 =∑
κ′v∈Ωκ

exp
(
−hv(κ′v | κw;w ∈ nv)

)
, which is feasible to compute since it only requires a

sum over κv ∈ Ωκ. The restriction v ∈ c in equation (5) implies that we need only

consider the set of cliques associated with neighborhood nv. Hence, the pdf including the

normalizing constant is computationally tractable. Simulation from the prior p(κ) defined

in equation (4) is often performed by Markov chain Monte Carlo simulation using the set

of full-conditional pdfs p
(
κv | κ−v

)
in equation (5) for each v ∈ L.

We consider a block-update Gibbs scheme where a subset of nodes is updated at each

iteration. A joint update scheme for each vertical trace u is proposed. We rephrase the

conditional pdf for each trace in sequential form as a vertical Markov chain:

p
(
κxy· | κ−xy·

)
=

nt∏
t=1

p
(
κxyt | κxy,1:(t−1),κ−xy·

)
=

nt∏
t=1

p
(
κxyt | κxy,(t−1),κ−xy·

) , (6)

where p
(
κxy1 | κxy0,κ−xy·

)
= p
(
κxy1 | κ−xy·

)
to ease notation. The latter equality of equa-

tion (6) follows from the simpler first order neighborhood nv. We propose a recursive

algorithm to obtain the set of conditional pdfs p
(
κxyt | κxy,(t−1),κ−xy·

)
.

We observe that p
(
κxy,nt | κxy,(nt−1),κ−xy·

)
is available directly from the locationwise

Markov formulation in equation (5). The locationwise Markov formulation for t = nt −

1, . . . , 2 is given as

p
(
κxyt | κ−xyt

)
∝ p
(
κxyt | κxy,1:(t−1),κ−xy·

)nt−1∏
t′=t

p
(
κxy,(t′+1) | κxy,1:t′ ,κ−xy·

)
∝ p
(
κxyt | κxy,(t−1),κ−xy·

)
p
(
κxy,(t+1) | κxyt,κ−xy·

) . (7)

13



By rephrasing equation (7), we obtain

p
(
κxyt | κxy,(t−1),κ−xy·

)
∝

p
(
κxyt | κ−xyt

)
p
(
κxy,(t+1) | κxyt,κ−xy·

). (8)

The normalizing constant is tractable since it is a sum over κ ∈ Ωκ, which is feasible to

compute. Since each pdf p
(
κxyt | κxy,(t−1),κ−xy·

)
depends only on p

(
κxyt | κ−xyt

)
and the

previous iteration p
(
κxy,(t+1) | κxyt,κ−xy·

)
, one may use a recursive algorithm to obtain the

transition probabilities in equation (6) by iterating downwards t = nt − 1, . . . , 2. Finally,

for t = 1, we obtain

p
(
κxy1 | κ−xy·

)
∝

p
(
κxy1 | κ−xy1

)
p
(
κxy2 | κxy1,κ−xy·

). (9)

The resulting recursive algorithm is given in Algorithm 1.

Petrophysical model

Recall that we operate in the logit-domain for the petrophysical properties; however, to ease

notation we will refer to logit(r) as r. We assume the petrophysical model (in logit-domain)

to be Gaussian,

p
(
ru | κu

)
= N

(
ru;µru|κu

,Σru|κu

)
, (10)

with conditional nt-mean-vector µru|κu
=
(
µrxy1|κxy1 , . . . , µrxynt |κxynt

)
and (nt × nt)-

covariance matrix Σru|κu
. The pointwise expected value µrxyt|κxyt takes on one of L distinct

values dependent on the value of κv ∈ Ωκ and might depend on v to model fixed lateral
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Algorithm 1: Reverse algorithm for transition probabilities.

Result: Transition probabilities
{
p
(
κxyt | κxy,(t−1),κ−xy·

)}
1 p
(
κxynt | κxy,(nt−1),κ−xy·

)
= p
(
κxynt | κ−xynt

)
2 for t = nt − 1 to 2 do

3 p
(
κxyt | κxy,(t−1),κ−xy·

)
= const× p(κxyt|κ−xyt)

p(κxy,(t+1)|κxyt,κ−xy·)

4 const−1 =
∑

κ′xyt∈Ωκ
p
(
κ′xyt | κxy,(t−1),κ−xy·

)
5 end

6 p
(
κxy1 | κ−xy·

)
= const× p(κxy1|κ−xy1)

p(κxy2|κxy1,κ−xy·)

7 const−1 =
∑

κ′xy1
p
(
κ′xy1 | κ−xy·

)
8 return

{
p
(
κxyt | κxy,(t−1),κ−xy·

)}
.

and vertical trends such as compaction.

It can be demonstrated that the marginal multivariate pdf for the petrophysical prop-

erties is a spatially coupled Gaussian mixture pdf (see Fjeldstad and Omre (2020) and

references therein):

p(r)=
∑
κ∈Ωnκ

p
(
r | κ

)
p(κ). (11)

That is, each univariate marginal pdf p(rv) is a Gaussian mixture pdf that can be used

to model skewness and multimodality a priori to represent various lithology effects. Since

κ is assigned a Markov random field prior model with both lateral and vertical spatial

dependency, p(r) includes both spatial and vertical correlation.
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Rock physics model

Rock physics models are in general nonlinear but can be locally linearized (Landrø, 2001;

Grana, 2016) or empirically fitted. We consider a probabilistic Gaussian lithology/fluid

class-dependent rock physics model to represent various lithology/fluid and petrophysical

effects:

p
(
mu | κu, ru

)
= N

(
mu;µmu|κu

+ Bκuru,Σmu|κu

)
, (12)

where µmu|κu
=
(
µmxy1|κxy1 , . . . , µmxynt |κxynt

)
is the nt-vector of pointwise expected values

for the elastic attributes similar as µru|κu
, Bκu is a (nt × nt)-block-diagonal matrix with

lithology/fluid class dependent coefficients, and Σmu|κu
is an (nt × nt)-covariance matrix

with colored noise. As for the petrophysical model, it is possible to include fixed depth-

trends in the rock physics model for each lithology/fluid class which makes the full rock-

physics model nonlinear.

The multivariate marginal pdf for the elastic attributes is a Gaussian mixture pdf:

p(m)=
∑
κ∈Ωnκ

∫
p
(
m | κ, r

)
p
(
r | κ

)
dr× p(κ)=

∑
κ∈Ωnκ

p
(
m | κ

)
× p(κ). (13)

We interpret the marginal rock physics model as a nonlinear model, where the model itself

assigns the rock physics model marginally depending on the corresponding lithology/fluid

class. Note that a Gauss-linear lithology/fluid class dependent rock physics model based

on the logit-transform implies that the lithology/fluid class dependent rock physics model

in the original domain is nonlinear. Since the mixing weights p(κ) includes both vertical
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and horizontal lateral dependency, p(m) includes both vertical and horizontal coupling.

Posterior model

We present a block-Gibbs simulation algorithm to assess the joint posterior p
(
κ, r,m | d

)
with a block update of the full vertical trace at horizontal position xy in each iteration.

In general, the Markov chain Monte Carlo Metropolis-Hastings algorithm consists of two

steps. First, there is a proposal step where a trace of updated variables is proposed, and

then, there is an accept-or-reject step where this trace is accepted with a certain probability.

We discuss both parts in detail. Finally, we relate the proposed simulation algorithm to

strategies proposed earlier.

First, initialize κ, r and m with p
(
κ, r,m | d

)
> 0, denote by superscript i the current

value of κ, r and m, and consider a random vertical trace u. The proposed workflow consist

of the following steps:

Proposal step: In each iteration, we consider the following block-dependent proposal den-

sity:

q
(
κu, ru,mu | κi−u, ri−u,mi

−u,d
)
∝ q

(
κu | κi−u,du

)
× p
(
ru | κu,κ

i
−u, r

i
−u

)
× p
(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u

)
. (14)

To simulate from the block proposal density, we perform the following steps. First,
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we construct the Markov chain p
(
κu | κi−u

)
using the recursion defined in Al-

gorithm 1. Because of the convolution, exact assessment of p
(
κu | κ−u,du

)
∝

p
(
du | κu

)
p
(
κu | κ−u

)
is unfeasible since it is a high-order Markov chain. We con-

sider a k-th order Markov chain approximation q
(
κu | κ−u,du

)
as in Fjeldstad and

Omre (2020) based on a set of Gaussian approximations. The approximate pdf

q
(
κu | κ−u,du

)
∝ p̃

(
du | κu

)
p
(
κu | κi−u

)
is then exactly assessed by the recur-

sive forward-backward algorithm (Reeves and Pettitt, 2004). Here, p̃
(
du | κu

)
is

an approximation to the exact likelihood model p
(
du | κu

)
. Note that the algorithm

presented in Algorithm 1 can be used directly to assess q
(
κu | κ−u,du

)
by including

a term dependent on d, p̃
(
du | κu

)
, in equation (4). Because of the convolution, the

simpler first-order neighborhood system is extended to a higher-order neighborhood

system, and the algorithm has to be modified accordingly. Finally, we propose κu ∼

q
(
κu | κi−u,du

)
, ru ∼ p

(
ru | κu,κ

i
−u, r

i
−u
)
and mu ∼ p

(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u
)
.

Here, laterally smooth realizations of ru are constructed by assuming a joint multi-

variate Gaussian pdf for ru and its four neighboring traces in ri−u together with

a spatial correlation coefficient %r, which acts as a spatial smoother or regularizer

in the horizontal direction. Note that the marginal expectations and variances are

specified from the petrophysical model; this implies that an analytic expression for

p
(
ru | κu,κ

i
−u, r

i
−u
)
is available. We construct p

(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u
)
simi-

larly by correlating the vertical profile mu with its four nearest neighboring traces

in mi
−u by assuming a spatial correlation coefficient %m between neighboring vertical
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traces to construct a joint pdf.

Accept/reject step: The proposed values of κu, ru and mu are accepted with probability

α = min

{
1,
p
(
du |mu

)
p
(
mu | κu, ru

)
p
(
ru | κu

)
p
(
κu | κi

−u

)
p
(
du |mi

u

)
p
(
mi

u | κi
u, r

i
u

)
p
(
riu | κi

u

)
p
(
κi
u | κi

−u

)
×
p̃
(
du | κi

u

)
p
(
κi
u | κi

−u

)
p
(
riu | κi

u,κ
i
−u, r

i
−u

)
p
(
mi

u | κi
u, r

i
u,κ

i
−u, r

i
−u,m

i
−u

)
p̃
(
du | κu

)
p
(
κu | κi

−u

)
p
(
ru | κu,κi

−u, r
i
−u

)
p
(
mu | κu, ru,κi

−u, r
i
−u,m

i
−u

)}.
(15)

These steps are performed until convergence, and the result is an ensemble of realizations

from the posterior p
(
κ, r,m | d

)
. After convergence, the realizations are combined to con-

struct marginal summary statistics such as marginal probabilities for the lithology/fluid

classes and marginal maximum a-posteriori (MMAP) predictors for the continuous-valued

properties.

Alternative sampling strategies

The accept-or-reject step increases the computational complexity because it re-

quires evaluation of a high-dimensional Gaussian pdf p
(
du | κu

)
. To reduce the

computational complexity, one alternative is to omit the accept-or-reject step and

only consider an approximate posterior solution p̃
(
κ, r,m | d

)
. An alternative

is to consider an importance sampling algorithm (Gamerman and Lopes, 2006),

where each proposed realization is assigned a corresponding importance weight

p
(
κu, ru,mu | κi−u, ri−u,mi

−u,d
)
/q
(
κu, ru,mu | κi−u, ri−u,mi

−u,d
)
. If we propose ru ∼

p
(
ru | κu

)
and mu ∼ p

(
mu | κu, ru

)
, the acceptance rate defined in equation (15) can be
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further simplified to reduce the computational complexity (Rimstad and Omre, 2010). An-

other alternative is to also condition on du when proposing to update ru and mu, that

is, to simulate ru ∼ p
(
ru | κu,κ

i
−u, r

i
−u,du

)
and mu ∼ p

(
mu | κu, ru,κ

i
−u, r

i
−u,m

i
−u,du

)
,

which also increases the computational demand. In our experience, the mode indicator

κu appears to be far more important for the mixing and convergence rates in the Markov

chain Monte Carlo algorithm. There are other sampling strategies such as a moving-window

update (see de Figueiredo et al. (2017)) or considering a model where each vertical profile

is treated independently of all other traces (Connolly and Hughes, 2016). Finally, an ex-

tension of Fjeldstad and Omre (2020) is to first generate an ensemble of realizations from

p
(
κ | d

)
by iteratively sampling κu ∼ q

(
κu | κi−u,du

)
and accepting each realization with

probability min

{
1,

p(du|κu)
p(du|κiu)

× p̃(du|κiu)
p̃(du|κu)

}
based on the current value κiu. Afterwards, exact

realizations from p
(
r | d

)
and p

(
m | d

)
are obtained since the Gaussian mixture prior pdfs

defined in equations (11) and (13) are conjugate priors for a Gauss-linear likelihood model

(Grana et al., 2017).

RESULTS FROM A NORWEGIAN SEA CASE STUDY

We demonstrate the proposed methodology on a Norwegian Sea gas discovery; see Avseth

et al. (2016) for details. The 3D seismic data consist of broadband prestack time-migrated

and normal-moveout-corrected gathers from a survey covering the target area. We condition

on near- and far-angle prestack AVO data and invert for the three distinct lithology/fluid
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classes: brine sandstone, gas sandstone and shale. Moreover, we include the porosity φ, the

water saturation sw, the clay volume/proportion c, and the elastic attributes log ρVP (log P-

impedance) and log VP /VS (log Poisson ratio). The data cover a domain discretized onto a

grid with 98×75×100 = 735, 000 cells. The observations are regularly sampled in the depth

domain every 4 ms and cover a lateral domain of approximately 4900 m × 3750 m. Note

that the dimension of the variable space, being the number of spatially coupled univariate

posterior pdfs to assess, is 6 × 735, 000 = 4, 410, 000, and the dimension of the data space

is 2 × 735, 000 = 1, 470, 000. The domain contains one well, which we use for blind well

validation.

Figure 2 displays the near- and far-angle prestack seismic AVO data for a 2D section

containing the blind well. We observe the seismic AVO measurements to have a fairly long

ranged horizontal spatial dependency. In Figure ??, we display the variables of interest

observed in the blind well together with the observed seismic signal and the set of synthetic

seismic signals. We display spatial histograms of the continuous variables of interest and

observe the variables to appear as either unimodal, multimodal or skewed due to varying

lithology effects. The well-tie between the observed seismic and synthetic seismic signal,

based on the likelihood parameters specified below, is reasonable. The corresponding cor-

relations are 0.70 and 0.89 for the near and far angles, respectively. In Figure 4, we display

the near- and far-angle wavelets. The signal-to-noise ratio is set to 2.5 for the near stack

and 1.5 for the far stack, where most of the colored noise depends on the convolutional
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model.

The prior model parameters defined earlier are empirically calibrated based on a well

outside the target area. Figure 4 displays a subset of the empirically calibrated rock physics

model: log ρVP against porosity and lithology/fluid class for a fixed value of water saturation

and clay volume in logit(r) and r domain. The rock physics model is assumed to be a

Gauss-linear model dependent on both the petrophysical properties and the lithology/fluid

class in the logit(r)-domain. Note that this implies a nonlinearity in r-domain for each

lithology/fluid class. We assume vertical squared exponential spatial correlation functions

for the petrophysical properties and elastic properties, both having a range parameter equal

to two. The marginal prior pdfs defined in equation (11) and equation (13) will be discussed

later. The correlation of log ρVP and log VP /VS is set to 0.8, to −0.5 for porosity and water

saturation, to −0.65 for porosity and clay volume, and to 0.65 for water saturation and clay

volume. The prior Markov random field is specified such that the marginal probabilities are

(0.5, 0.15, 0.35) for shale, gas and brine, respectively, together with an anisotropic spatial

interaction in the depth and horizontal directions. Finally, we set %r = %m = 0.5 in the

simulation algorithm.

We compare the results based on the proposed methodology to the results based on a

set of trace-independent models, with each vertical profile being independent of every other

vertical profile. The lithology/fluid class prior model in this trace-independent model is
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assumed to follow a vertical Markov chain downwards with transition matrix

P =


0.7 0.1 0.2

0.2 0.7 0.1

0.3 0 0.7


, (16)

which has marginal distribution (0.47, 0.16, 0.37)ᵀ. This marginal distribution is compara-

ble to the one of the Markov random field prior in the proposed model. All other model

parametes are fixed to the same values as in the laterally connected Markov random field

model case. We refer to the two models as the 3D model for the proposed spatially-coupled

model and the 1D model for the trace-independent model. We initiated the Markov chain

Monte Carlo algorithm by simulating one realization from the prior Markov chain which

we used as the initial sample in every vertical profile. We generated 10, 000 approximately

independent posterior realizations after thinning by selecting every tenth from a set of

100, 000 realizations for both models after a burn-period of 10, 000. Since our simulation

algorithm is a block-Gibbs Markov chain Monte Carlo algorithm, where successive real-

izations are highly correlated, thinning is required to provide approximately independent

posterior realizations. In Figure 5 we display convergence of the negative log-likelihood(
− log p

(
d |m

))
and the lithology/fluid class proportions based on the two models. We

observe convergence within a few thousand iterations for the 3D model and a few hundred

iterations for the 1D model. In Table 2 a summary of the average lithology/fluid class

proportions are given. The 3D model is observed to predict a 5.9 percentage points higher

gas proportion than the 1D model. For the 3D model, we obtain an average acceptance
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rate of 27.8 % across all vertical traces (min. 6.3 % and max. 64.5 %); correspondingly, we

obtain 14.2 % (min. 2.0 % and max. 69.5 %) for the 1D model. The trace-wise acceptance

rate is dependent on the similarity of the proposal density in the simulation algorithm and

the correct posterior model (Fjeldstad and Omre, 2020). On a 12-core shared university

workstation from mid-2016, the computational requirement for the 3D model is 24 hours,

and it is seven hours for the 1D model.

To validate and compare the two models, we display the resulting posterior pdfs for the

variables of interest at the blind well location. Figure 6 contains the reference lithology/fluid

classification together with a set of posterior realizations, the marginal posterior pdf for the

lithology/fluid classes and the MMAP predictor for the lithology/fluid classes. Overall, the

two models have similar marginal posterior characteristics; however, the 1D model fails

to identify the thin top gas reservoir in the MMAP predictor. Additionally, the MMAP

predictor based on the 3D model predicts the bottom gas zone to be thicker than that

for the 1D model. Indeed, the thin shale-layers around depth 2450 ms are not identified

in the MMAP predictors, which may not be surprising since predictions are known to be

more homogeneous than in reality. Note that these shale layers appear in the posterior

realizations. In summary, introducing a lateral spatial dependence into the probabilistic

model appears to help to identify thin layers.

Figure 7 displays the posterior pdfs for the porosity, water saturation and clay volume

for the two models at the blind well location. For each property, we display the log-prior pdf
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together with the log-posterior models based on the 3D model and the 1D model to ease

interpretation. The prior models for the petrophysical properties and elastic attributes

need not be identical in the two models because of the different lateral coupling in the

lithology/fluid class model, but we expect them to be very similar. For simplicity, we

display the prior based on the 1D model. The marginal prior at each depth point for

porosity is close to unimodal but skewed, while the marginal prior at each depth point is

bimodal, with two modes close to zero and one for water saturation. In general, the MMAP

predictors based on the 3D model and the 1D model are similar; however, the latter fails

to capture the high-porosity zone and low-water-saturation zone around depth 2315 ms,

where the top gas reservoir is located. The MMAP predictors are generally observed to

be more homogeneous than the true profile. In general, we observe the posterior models

based on the 3D model to have greater variability than those based on the 1D model, i.e.,

they have a larger pointwise uncertainty. Both models are able to satisfactorily capture

the rapid transition from low to high water saturation at approximately 2360 ms, which

corresponds to the boundary of the lower gas reservoir.

Figure 8 displays in a similar format as Figure 7 the posterior pdfs for log ρVP and

log VP /VS . We have included a depth trend in the prior for the elastic attributes with a

higher expected response for log ρVP at the bottom of the target zone than on top. Again,

we observe the 3D model to have a more realistic level of uncertainty compared to the

observed well measurements. In Figure 9 we plot the synthetic seismic signals based on the
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MMAP predictor for the 3D and 1D models together with the observed seismic signal and

observe a reasonable match.

The marginal posterior pdfs need not be unimodal but rather may be both multimodal

and skewed; see Figure 10. The pdfs in the figure are chosen at time depths to represent a

variety of the posterior models, which are observed to be unimodal, skewed and multimodal.

Note the large discrepancy between the posterior models at locations 2300 ms and 2324

ms, which corresponds to the top reservoir and the upper part of the lowermost reservoir

at the blind well location. Note that the marginal modes for the posterior pdfs for the

petrophysical properties and elastic attributes are strongly dependent on the corresponding

marginal posterior pdf for the lithology/fluid classes, which acts as the weights in the

Gaussian mixture model. We interpret the smaller marginal variances for the 1D model

to be the result of a bias-variance trade-off, where we have obtained a smaller marginal

variance at the cost of a biased predictor.

In Table 3, we present the mean absolute error (MAE) and root mean square error

(RMSE) for the two models at the blind well location. Except for the clay volume, we

obtain an improvement of up to 59 % for the MAE and 62 % for the RMSE for the

variables of interest.

In Figure 11 through Figure 13, we display posterior results for the 2D section corre-

sponding to the seismic data presented in Figure 2. In Figure 11, the marginal probabilities

for the three lithology/fluid classes and the corresponding MMAP predictor for the two
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models are presented. In general, the marginal posterior characteristics are observed to

be similar; however, the lateral connectivity is larger for the 3D model. Since the MMAP

predictor is a marginal property, the lateral connectivity does not need to be preserved in

the predictor. Figures 12 and 13 display the MMAP predictor for the petrophysical prop-

erties and elastic attributes, respectively. For the 3D model, we observe the gas zones to

be thicker and the predictions to be more homogeneous.

The MMAP predictor for the lithology/fluid classes based on the 3D model appears too

blocky around a depth of 2350 ms in Figure 11, which is not necessarily in correspondence

with the observed seismic in Figure 2. In Figure 14 we display near angle synthetic seismic

based on the MMAP predictor for the elastic attributes for both models, and compare them

with the observed seismic. We observe the synthetic seismic sections to share the main

characteristics of the observed seismic data, but the synthetic seismic sections appears as

more spatially smooth. The latter is as expected since the synthetic seismic sections are

generated based on the MMAP predictions. Similar results are observed for the far angle

seismic, but the results are not included here. Note that the abovementioned thin shale

layer appears to be present in most of the posterior realizations, not displayed here, but its

shape and depth location varies due to the uncertainty. Therefore the thin shale layer does

not appear in the MMAP predictor since the predictor is an aggregate over the posterior

realizations.

Next, we present the results for the variables of interest in a three-dimensional view
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based on the two models. In Figure 15, we present the MMAP predictor for the lithol-

ogy/fluid classes based on the two different models. In general, we observe the MMAP

predictor based on the 3D model to have a larger spatial connectivity in the lateral di-

rections, as expected. The main characteristics of the sand bodies are observed in both

models, but the MMAP predictor based on the 1D model appears to be less smooth and

include abrupt invalid geophysical transitions. One advantage of the more complex 3D

model is that each posterior realization appears with stronger spatial connectivity, which

resembles more geologically plausible scenarios such as elongated sand bodies and channels

that allow fluid flow (Figure 16). In Figure 17, we display the ISO-50 cube for gas (more

than 50 % probability of gas) based on the two models. The 3D model is observed to have

a far greater lateral extent of the gas reservoir, while the 1D model is observed to have

less connectivity. A similar conclusion is drawn from Figure 18, where we display a set of

horizontal slices for the marginal probability of gas for three consecutive horizontal layers.

The main characteristics are shared across the two different models; however, the marginal

probabilities based on the 3D model appear smoother, as expected. Note that the marginal

probabilities are smooth across the time slices.

In Figure 19 and Figure 20, we display the MMAP predictor for the petrophysical

properties and elastic attributes in a 3D perspective based on the two models. They share

the main characteristics, but the predictors based on the 3D model appear more laterally

connected and smoother than those based on the 1D model.
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DISCUSSION

We have evaluated the proposed model using a real 3D case study and compared it with

a model consisting of a set of 1D models without spatial lateral dependency. We have

proposed a spatially coupled Bayesian model to promote spatial continuity in the three-

dimensional posterior realizations of the lithology/fluid classes, petrophysical properties

and elastic attributes. This spatial continuity need not be present if each three-dimensional

posterior realization is based on the set of vertical trace-independent inversions. The MMAP

predictors will usually appear as smoother for both the 1D and 3D model since the seismic

data is laterally smoothed during the pre-processing. The marginal posterior densities for

the continuous-valued properties capture multimodality and skewness, a property observed

in the well logs of the blind well. The mean square error predictions in the blind well are

reduced by at most 60 % by using the proposed 3D model compared to a set of 1D models.

The reason for including lateral dependency in the Bayesian model is to provide three-

dimensional posterior realizations that are laterally continuous and to better identify thin

horizontal layers. Since seismic images are processed images of the subsurface, where the

vertical traces are migrated to match its neighboring traces by some criterion, seismic data

are laterally continuous. Therefore, the 1D model will also provide posterior predictions

that are laterally smooth. However, while the three-dimensional posterior predictions are

smooth, the three-dimensional posterior realizations do not need to be laterally continuous

for the 1D model. If each three-dimensional posterior realization is used as input in a fluid
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flow simulator, lack of lateral continuity may be a problem: both large scale heterogeneity

and small scale continuity of the reservoir properties must be representative to obtain

unbiased flow predictions. The 3D model also increases the predictive power based on the

neighboring traces, hence thin lateral layers will be more easily identified than in the 1D

model. Therefore, we have proposed a model including lateral smoothness in the prior

model.

In our experience, it is challenging to specify the model parameters in the Gibbs for-

mulation in such a way that it does not become too dominant relative to the likelihood.

Finally, the 3D model is less prone to misaligned vertical traces and/or misspecification of

the likelihood model because it acts as a spatial smoother.

However, the computational demand for the 3D model is severe compared to that of the

1D model since each Markov chain Monte Carlo iteration requires a rerun of the reverse

algorithm conditional on the current value of the neighboring traces. Higher memory usage

is also required because larger parts of the 3D cube need to be stored in memory in each

iteration. We note that the 1D model is easily computed in parallel, while the 3D model

requires a larger computational overhead to be parallelized. In our experience, the 1D

model is feasible on a regular laptop, while the 3D model requires a workstation or cluster

to be feasible.
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CONCLUSIONS

We propose a one-step block-Gibbs update scheme for joint probabilistic prediction of lithol-

ogy/fluid classes, petrophysical properties and elastic attributes in three dimensions. The

proposed methodology is demonstrated on seismic AVO data from a Norwegian Sea discov-

ery and is validated at a blind well position. Realistic lateral spatial connectivity, repre-

sentative of shallow marine reservoir sands, is obtained in both realizations and predictions

for the variables of interest for the 3D model.Compared to a 1D model based on inverting

the set of vertical profiles independently, we obtain an increased average acceptance rate in

the simulation algorithm and a significant reduction in the mean absolute error and root

mean square error at the blind well location.

Future research should include joint statistical inference of the model parameters in the

Gibbs formulation together with the variable prediction to avoid oversmoothing.
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LIST OF FIGURES

1 Stencil of neighborhood system. Current node v = xyt marked in red and
neighborhood system nv in gray.

2 2D vertical cross-section AVO observations: (a) near-angle AVO observations, and
(b) far-angle AVO observations. Red indicates a positive amplitude (hard event) and blue
indicates a negative amplitude (soft event). The location of the blind well is indicated by
the solid vertical line.

3 1D blind well observations together with observed and synthetic seismic observa-
tions: (a) reference lithology/fluid classification, (b) observed porosity, (c) observed water
saturation, (d) observed clay volume, (e) observed log ρVP , (f) observed log VP /VS , (f)
near- and far-angle observed AVO (black) and near- and far-angle synthetic AVO (red),
(h) marginal density porosity, (i) marginal density water saturation, (j) marginal density
clay volume, (k) marginal density log ρVP , and (l) marginal density log VP /VS .

4 1D wavelet and rock physics model: (a) near-angle (solid) and far-angle (dashed)
wavelets, (b) log ρVP against logit-porosity and lithology/fluid class (shale in black, gas in
red and brine in blue), and (c) log ρVP against porosity and lithology/fluid class (shale in
black, gas in red and brine in blue).

5 Convergence of negative log-likelihood and lithology/fluid class proportions:
(a)-(c) convergence of the negative log-likelihood (− log p(d|m) for the first 2,500 realiza-
tions (a), 110,000 realizations (b) and 110,000 realizations in log10-scale (c), and (d)-(f)
convergence of class proportions for the first 2,500 (d), 110,000 realizations (e) and 110,000
realizations in log10-scale (f). Results based on the 3D model are displayed as lines in
darker colors (black, dark red, dark blue) and results based on the 1D model are displayed
in lighter colours (gray, light red, light blue).

6 1D posterior results lithology/fluid classes at the blind well location: (a) reference
lithology/fluid class classification based on the blind well, (b) ten consecutive posterior
realizations from the 3D model, (c) posterior marginal probabilities based on the 3D
model, (d) MMAP predictor based on the 3D model, (e) reference classification based on
the blind well, (f) ten consecutive posterior realizations from the 1D model, (g) posterior
marginal probabilities based on the 1D model, (h) MMAP predictor based on the 1D
model. Shale is displayed in black, gas in red and brine in blue.

7 1D posterior results petrophysical properties at the blind well location: (a)
log-prior density for porosity, (b) log-posterior density for porosity based on the 3D model,
(c) log-posterior density for porosity based on the 1D model, (d) log-prior density for
water saturation, (e) log-posterior density for water saturation based on the 3D model,
(f) log-posterior density for water saturation based on the 1D model, (g) log-prior density
for clay volume, (h) log-posterior density for clay volume based on the 3D model, and (i)
log-posterior density for clay volume based on the 1D model. The well logs are given in
solid black and the marginal mode of the log-densities are given in dotted red.

8 1D posterior results petrophysical properties at the blind well location: (a)
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log-prior density for log ρVP , (b) log-posterior density for log ρVP based on the 3D model,
(c) log-posterior density for log ρVP based on the 1D model, (d) log-prior density for
log VP /VS , (e) log-posterior density for log VP /VS based on the 3D model, (f) log-posterior
density for log VP /VS based on the 1D model. The well logs are given in solid black and
the marginal mode of the log-densities are given in dotted red.

9 1D comparison of synthetic seismic observations and observed seismic for near and
far angle: (a) observed near-angle AVO (solid black), synthetic near-angle AVO based on
3D model (dashed red), synthetic near-angle AVO based on 1D model (dot-dashed blue)
and synthetic near-angle AVO based on well log (dotted green), and (b) observed far-angle
AVO (solid black), synthetic far-angle AVO based on 3D model (dashed red), synthetic
far-angle AVO based on 1D model (dot-dashed blue) and synthetic far-angle AVO based
on well log (dotted green).

10 1D posterior marginal densities at the blind well location: (a) porosity at 2300
ms, (b) log ρVP at 2300 ms, (c) porosity at 2324 ms, (d) log ρVP at 2324 ms, (e) porosity
at 2420 ms, (f) log ρVP at 2420 ms, (g) porosity at 2500 ms, and (h) log ρVP at 2500 ms.
Prior density given in black, observed well measurement in dotted green, posterior density
based on the 3D model in dashed red and posterior density based on the 1D model in
dot-dashed blue.

11 2D posterior marginal probabilities for the lithology/fluid classes: (a) shale (3D
model), (b) shale (1D model), (c) gas (3D model), (d) gas (1D model), (e) brine (3D
model), (f) brine (1D model), (g) MMAP predictor (3D model), and (h) MMAP predictor
(1D model).

12 2D posterior MMAP predictors for the petrophysical properties: (a) porosity (3D
model), (b) porosity (1D model), (c) water saturation (3D model), (d) water saturation
(1D model), (e) clay volume (3D model), and (f) clay volume (1D model).

13 2D posterior MMAP predictors for the elastic attributes: (a) log ρVP (3D model),
(b) log ρVP (1D model), (c) log VP /VS (3D model), (d) log VP /VS (1D model).

14 2D near-angle observed seismic versus 2D near-angle synthetic seismic generated
from MMAP predictor: (a) observed near-angle AVO, (b) synthetic near-angle AVO gen-
erated from MMAP predictor (3D model), (c) difference between observed and predicted
AVO (3D model), (d) observed near-angle AVO, (e) synthetic near-angle AVO generated
from MMAP predictor (1D model), (f) difference between observed and predicted AVO
(1D model).

15 3D MMAP predictor for the lithology/fluid classes: (a) 3D model, and (b) 1D
model.

16 3D independent posterior lithology/fluid class realizations for the lithology/fluid
classes from: (a) 3D model, (b) 1D model, (c) 3D model, (d) 1D model, (e) 3D model, and
(f) 1D model.

17 3D ISO-50 probability for gas: (a) 3D model, and (b) 1D model.
18 3D posterior marginal probability of gas based on: (a) 3D model at 2312 ms, (b)

1D model at 2312 ms, (c) 3D model at 2316 ms, (d) 1D model at 2316 ms, (e) 3D model
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at 2320 ms, and (f) 1D model at 2320 ms.
19 3D posterior MMAP predictors for the petrophysical properties: (a) porosity (3D

model), (b) porosity (1D model), (c) water saturation (3D model), (d) water saturation
(1D model), (e) clay volume (3D model), and (f) clay volume (1D model).

20 2D posterior MMAP predictors for the elastic attributes: (a) log ρVP (3D model),
(b) log ρVP (1D model), (c) log VP /VS (3D model), (d) log VP /VS (1D model).
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Figure 1: Stencil of neighborhood system. Current node v = xyt marked in red and
neighborhood system nv in gray.
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Figure 2: 2D vertical cross-section AVO observations: (a) near-angle AVO observations,
and (b) far-angle AVO observations. Red indicates a positive amplitude (hard event) and
blue indicates a negative amplitude (soft event). The location of the blind well is indicated
by the solid vertical line.
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Figure 3: 1D blind well observations together with observed and synthetic seismic observa-
tions: (a) reference lithology/fluid classification, (b) observed porosity, (c) observed water
saturation, (d) observed clay volume, (e) observed log ρVP , (f) observed log VP /VS , (f)
near- and far-angle observed AVO (black) and near- and far-angle synthetic AVO (red), (h)
marginal density porosity, (i) marginal density water saturation, (j) marginal density clay
volume, (k) marginal density log ρVP , and (l) marginal density log VP /VS .
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Figure 4: 1D wavelet and rock physics model: (a) near-angle (solid) and far-angle (dashed)
wavelets, (b) log ρVP against logit-porosity and lithology/fluid class (shale in black, gas in
red and brine in blue), and (c) log ρVP against porosity and lithology/fluid class (shale in
black, gas in red and brine in blue).
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Figure 5: Convergence of negative log-likelihood and lithology/fluid class proportions: (a)-
(c) convergence of the negative log-likelihood (− log p(d|m) for the first 2,500 realizations
(a), 110,000 realizations (b) and 110,000 realizations in log10-scale (c), and (d)-(f) con-
vergence of class proportions for the first 2,500 (d), 110,000 realizations (e) and 110,000
realizations in log10-scale (f). Results based on the 3D model are displayed as lines in
darker colors (black, dark red, dark blue) and results based on the 1D model are displayed
in lighter colours (gray, light red, light blue).
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Figure 6: 1D posterior results lithology/fluid classes at the blind well location: (a) reference
lithology/fluid class classification based on the blind well, (b) ten consecutive posterior
realizations from the 3D model, (c) posterior marginal probabilities based on the 3D model,
(d) MMAP predictor based on the 3D model, (e) reference classification based on the blind
well, (f) ten consecutive posterior realizations from the 1D model, (g) posterior marginal
probabilities based on the 1D model, (h) MMAP predictor based on the 1D model. Shale
is displayed in black, gas in red and brine in blue.
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Figure 7: 1D posterior results petrophysical properties at the blind well location: (a) log-
prior density for porosity, (b) log-posterior density for porosity based on the 3D model, (c)
log-posterior density for porosity based on the 1D model, (d) log-prior density for water
saturation, (e) log-posterior density for water saturation based on the 3D model, (f) log-
posterior density for water saturation based on the 1D model, (g) log-prior density for
clay volume, (h) log-posterior density for clay volume based on the 3D model, and (i) log-
posterior density for clay volume based on the 1D model. The well logs are given in solid
black and the marginal mode of the log-densities are given in dotted red.
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Figure 8: 1D posterior results petrophysical properties at the blind well location: (a) log-
prior density for log ρVP , (b) log-posterior density for log ρVP based on the 3D model, (c)
log-posterior density for log ρVP based on the 1D model, (d) log-prior density for log VP /VS ,
(e) log-posterior density for log VP /VS based on the 3D model, (f) log-posterior density for
log VP /VS based on the 1D model. The well logs are given in solid black and the marginal
mode of the log-densities are given in dotted red.
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Figure 9: 1D comparison of synthetic seismic observations and observed seismic for near
and far angle: (a) observed near-angle AVO (solid black), synthetic near-angle AVO based
on 3D model (dashed red), synthetic near-angle AVO based on 1D model (dot-dashed blue)
and synthetic near-angle AVO based on well log (dotted green), and (b) observed far-angle
AVO (solid black), synthetic far-angle AVO based on 3D model (dashed red), synthetic
far-angle AVO based on 1D model (dot-dashed blue) and synthetic far-angle AVO based
on well log (dotted green).
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Figure 10: 1D posterior marginal densities at the blind well location: (a) porosity at 2300
ms, (b) log ρVP at 2300 ms, (c) porosity at 2324 ms, (d) log ρVP at 2324 ms, (e) porosity at
2420 ms, (f) log ρVP at 2420 ms, (g) porosity at 2500 ms, and (h) log ρVP at 2500 ms. Prior
density given in black, observed well measurement in dotted green, posterior density based
on the 3D model in dashed red and posterior density based on the 1D model in dot-dashed
blue.
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Figure 11: 2D posterior marginal probabilities for the lithology/fluid classes: (a) shale
(3D model), (b) shale (1D model), (c) gas (3D model), (d) gas (1D model), (e) brine (3D
model), (f) brine (1D model), (g) MMAP predictor (3D model), and (h) MMAP predictor
(1D model). 50



(a)

1250 2500
Distance (m)

2200

2300

2400

2500

T
im

e
 (

m
s
)

0.1

0.15

0.2

0.25

0.3

0.35

P
o

ro
s
it
y

(b)

1250 2500
Distance (m)

2200

2300

2400

2500

T
im

e
 (

m
s
)

0.1

0.15

0.2

0.25

0.3

0.35

P
o

ro
s
it
y

(c)

1250 2500 
Distance (m)

2200

2300

2400

2500

T
im

e
 (

m
s
)

0

0.2

0.4

0.6

0.8

1
W

a
te

r 
s
a

tu
ra

ti
o

n
(d)

1250 2500
Distance (m)

2200

2300

2400

2500

T
im

e
 (

m
s
)

0

0.2

0.4

0.6

0.8

1

W
a

te
r 

s
a

tu
ra

ti
o

n

(e)

1250 2500
Distance (m)

2200

2300

2400

2500

T
im

e
 (

m
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

y
 v

o
lu

m
e

(f)

1250 2500
Distance (m)

2200

2300

2400

2500

T
im

e
 (

m
s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
la

y
 v

o
lu

m
e

Figure 12: 2D posterior MMAP predictors for the petrophysical properties: (a) porosity
(3D model), (b) porosity (1D model), (c) water saturation (3D model), (d) water saturation
(1D model), (e) clay volume (3D model), and (f) clay volume (1D model).
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Figure 13: 2D posterior MMAP predictors for the elastic attributes: (a) log ρVP (3D model),
(b) log ρVP (1D model), (c) log VP /VS (3D model), (d) log VP /VS (1D model).
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Figure 14: 2D near-angle observed seismic versus 2D near-angle synthetic seismic generated
from MMAP predictor: (a) observed near-angle AVO, (b) synthetic near-angle AVO gen-
erated from MMAP predictor (3D model), (c) difference between observed and predicted
AVO (3D model), (d) observed near-angle AVO, (e) synthetic near-angle AVO generated
from MMAP predictor (1D model), (f) difference between observed and predicted AVO (1D
model).
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Figure 15: 3D MMAP predictor for the lithology/fluid classes: (a) 3D model, and (b) 1D
model.
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Figure 16: 3D independent posterior lithology/fluid class realizations for the lithology/fluid
classes from: (a) 3D model, (b) 1D model, (c) 3D model, (d) 1D model, (e) 3D model, and
(f) 1D model.
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Figure 17: 3D ISO-50 probability for gas: (a) 3D model, and (b) 1D model.
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Figure 18: 3D posterior marginal probability of gas based on: (a) 3D model at 2312 ms, (b)
1D model at 2312 ms, (c) 3D model at 2316 ms, (d) 1D model at 2316 ms, (e) 3D model
at 2320 ms, and (f) 1D model at 2320 ms.
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Figure 19: 3D posterior MMAP predictors for the petrophysical properties: (a) porosity
(3D model), (b) porosity (1D model), (c) water saturation (3D model), (d) water saturation
(1D model), (e) clay volume (3D model), and (f) clay volume (1D model).
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Figure 20: 2D posterior MMAP predictors for the elastic attributes: (a) log ρVP (3D model),
(b) log ρVP (1D model), (c) log VP /VS (3D model), (d) log VP /VS (1D model).
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Table 1: Overview of the variables to be defined.

Geophysical notation Grid-related variables
φ Porosity nx, ny Number of vertical traces (horizontal)
sw Water saturation nt Number of depth samples (vertical)
c Clay volume/proportion v Grid cell (v = (xyt))
ρVP Acoustic impedance u Vector including indices of avertical trace

({(xyt) : t = 1, . . . , nt})
VP /VS Poisson ratio C Clique system (set of all cliques)

nv Neighborhood of a node v corresponding
to C

Variable Name Associated
parameter

Description

κ Lithology/fluid classes P Transition matrix
gc(·) Potential function wrt. cliques
hv(·) Potential function wrt. neighborhood sys-

tem

r Petrophysical properties µru|κu
Lithology/fluid dependent petrophysical
properties trend

Σru|κu
Lithology/fluid dependent petrophysical
properties covariance matrix

m Elastic attributes µmu|κu
Lithology/fluid dependent elastic at-
tributes trend

Bκu Matrix including lithology/fluid depen-
dent rock physics model coefficients

Σmu Lithology/fluid dependent elastic at-
tributes covariance matrix

d Observations G Linearized forward operator
Σdu Likelihood covariance matrix

Statistical notation Simulation algorithm
p(x) Probability density function

of a random variable x
q(·) Proposal density

p
(
x | y

)
Conditional probability den-
sity function of a random vari-
able x given y

%r, %m Lateral coupling parameters for r and m

N (·) Gaussian probability density
function

p̃(·) Approximation based on Fjeldstad and
Omre (2020)
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Table 2: Average class proportion (%) for each of the three classes after convergence based
on the two models. Initial proportion in parentheses.

Average class proportion (%) 3D 1D
Shale 43.5 (70.0) 45.3 (70.0)
Gas 19.1 (5.0) 13.2 (5.0)
Brine 37.4 (25.0) 41.5 (25.0)
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Table 3: Mean absolute error and root mean square error for the petrophysical properties
and elastic attributes for the two models at the blind well location.

MAE RMSE
3D 1D 3D 1D

Porosity 0.0326 0.0376 0.0402 0.0484
Water saturation 0.0667 0.1629 0.1124 0.2986
Clay volume 0.1014 0.0819 0.1353 0.1130
Log ρVP 0.0498 0.0822 0.0636 0.0822
Log VP /VS 0.0244 0.0325 0.0351 0.0438
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