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Abstract10

Motivation and Objective: Obstructive sleep apnea (OSA) is a sleep dis-11

order identified in nearly 10% of middle-aged people, which deteriorates the12

normal functioning of human organs, notably that of the heart. Furthermore,13

untreated OSA is associated with increased hypertension, diabetes, stroke,14

and cardiovascular diseases, thereby increasing the mortality risk. Therefore,15

early identification of sleep apnea is of significant interest.16

Method: In this paper, an automated approach for OSA diagnosis using a17

single-lead electrocardiogram (ECG) has been reported. Three sets of fea-18

tures, namely moments of power spectrum density (PSD), waveform complex-19

ity measures, and higher-order moments, are extracted from the one-minute20

segmented ECG subbands obtained from discrete wavelet transform (DWT).21

Later, correlation-based feature selection with particle swarm optimization22

(PSO) search strategy is employed for getting an optimum feature vector.23

This process retained 18 significant features from initially 32 features com-24

puted. Finally, the acquired feature set is fed to different classifiers including,25

linear discriminant analysis, nearest neighbors, support vector machine, and26

random forest to perform per segment classification.27

Results: Experiments on the publicly available physionet single-lead ECG28

dataset show that the proposed approach using the random forest classi-29

fier effectively discriminates normal and OSA ECG signals. Specifically, our30
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method achieved an accuracy of 89% and 90%, with 50-50 hold-out validation31

and 10-fold cross-validation, respectively. Besides, in both these validation32

scenarios, our method obtained 96% of the area under ROC. Importantly,33

our proposed approach provided better performance results than most of the34

existing methodologies.35

Keywords:36

Sleep apnea, Single lead ECG, Energy and statistical features, PSO,37

Random Forest38

1. Introduction39

A sound sleep is a positive indication of an individual well-being [1].40

Nowadays, global technical advancements are influencing our daily routine41

resulting in an ever-increasing competitive environment, thereby disturbing42

the natural circadian cycle [2]. This disturbance may result in excessive43

daytime sleepiness, irritability, and mood swings. Prolonged disturbances in44

sleep cycles produce chronic sleep disorders, leading to acute conditions such45

as cardiac arrest and hypertension [3]. On the other hand, sleep disorders46

may also occur due to inherent physiological problems and environmental47

changes.48

Obstructive sleep apnea (OSA) is a type of sleep disorder that causes49

abnormal and periodic breath interruptions during sleep due to partial or50

complete collapsing of the upper airway. Here, airflow may be absent for51

a minimum of 10 seconds and may occur so many times overnight with-52

out individual awareness. OSA can be dangerous because it is associated53

with increased hypertension, stroke, and perioperative risk [4, 5]. The of-54

ten symptoms of OSA are excessive daytime sleepiness, tiredness, and loud55

snoring while sleeping. According to [6], globally, 3 -7 % in men and 2-4%56

in women are suffering from OSA. Therefore, to reduce the risks mentioned57

earlier associated with OSA, proper, and timely diagnosis is needed.58

Polysomnography (PSG) is a widely used diagnostic tool to study sleep59

disorders [7]. The test will be conducted in the sleep lab (type I PSG)60

while the patient is made to sleep with many electrodes placed on vari-61

ous body parts to record multiple physiological signals (electrocardiogram62

(ECG), electroencephalogram (EEG), electrooculogram (EOG), blood pres-63

sure, blood oxygen level, and snoring sounds). Generally, the clinicians visu-64

ally monitor this data to understand the patient’s sleep quality with the help65
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of computer-based systems [7]. Sometimes, an additional second-day sleep66

test is also required for an accurate diagnosis. This process may be uncom-67

fortable for the patient due to the prolonged testing time, and the lab set up68

to collect various measurements. Moreover, placing various electrodes on the69

patient’s body disturbs the sleep resulting in undesirable measurements. The70

other discouraging facts include equipment cost and an insufficient number71

of diagnostic sleep labs [8]. Ambulatory PSG (type -II PSG) is an alterna-72

tive sleep analysis technique exhibiting a comparable performance with the73

type-I PSG, where patients need not spend a long time in the sleep-lab [9].74

However, this test yields more errors due to an increase in the complexity75

and the number of sensors. Due to the reasons mentioned above, OSA recog-76

nition with a more straightforward measurement with less cost and without77

any specialized laboratory can be a preferable choice.78

Various alternative methods in this direction have been explored: based79

on study of snoring sounds [10], pulse oximetry [11], and ECG [12]. Sleep-80

related breath disorders have a significant impact on heart rate, cardiovas-81

cular activity, and other ECG characteristics. The ECG data analysis can82

approximately quantify the disrupted breath during the night, which helps83

in calculating the apnea scoring [7, 13]. Therefore, in recent studies, an inex-84

pensive and non-invasive single-lead ECG containing relevant information on85

the cardiovascular activity affected by sleep apnea emerged as a recognizable86

alternative to the PSG [14].87

During an apneic event, a drop in the heart rate is commonly observed,88

followed by a rise near the end of the event [7, 15]. The presence of these89

apneic events will result in the change of frequency content in the ECG signal90

for a certain period. Therefore, the approach of analyzing ECG for detect-91

ing OSA is gaining attention from various research communities. In [12],92

real-time sleep apnea detection using ECG signal and saturation of periph-93

eral oxygen (SpO2) is performed. An online sleep apnea detection method94

is proposed in [16], using heart rate variability (HRV) derived from ECG.95

The approach in [17] uses a single-lead ECG signal to extract three sets of96

features for the analysis using least-squares SVM (LS-SVM) with an RBF97

classifier. A symmetric weighted local binary pattern (SW-LBP) computed98

from ECG signals is proposed for OSA detection in [18]. In [19], normal99

inverse Gaussian (NIG) parameters of ECG subbands obtained from tunable100

Q-wavelet transform (TQWT) are supplied to AdaBoost classifier. In [20],101

a combination of statistical and spectral parameters calculated from ECG102

segments are subjected to the ANOVA statistical test. In [21], segmented103
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ECG signals are processed using Gabor filters and an SVM classifier. In [22],104

Fuzzy and log energy entropies of subbands are fed to LS-SVM.105

In this work, we propose a simple model to differentiate OSA subjects106

from healthy subjects using a single-lead ECG. We attempted to capture107

the underlying information of apnea and normal ECG segments with ap-108

propriate features. The choice of features is based on their discriminating109

capability or adequate representation. Hence, the features that can capture110

the OSA characteristics of ECG signals provide better classification. It is111

noticed that many OSA detection methods are developed based on time-112

frequency characterization approaches such as wavelets [6, 23–25]. Authors113

in [26] performed a pilot study to investigate the significance of features com-114

puted from wavelets for various physiological signals: ECG, EEG, and pho-115

toplethysmographic (PPG). The obtained results support the significance of116

wavelet-based features in capturing appropriate information from the phys-117

iological signals. We have analyzed the ECG signals using a Daubechies118

6 (db6) wavelet and derive informative features from the subbands in this119

work. Various studies indicated that the statistical measures are preferred as120

features for non-stationary ECG signal analysis [20, 27, 28]. Most of these121

works depend on the statistical measures obtained directly from the time122

domain signal.123

Additionally, we considered statistical moments from the power spectrum124

density of the subbands. The estimates of the power spectrum moments125

are utilized in analyzing EEG activity [29–31]. EEG is a non-stationary126

signal, and its morphology is complex when compared with the ECG. The127

power spectrum moments are proved to efficiently capture the frequency128

variations in EEG analysis for better decision making. ECG is a weakly129

non-stationary and nonlinear signal [32]. During OSA, significant variations130

in heart rate (bradycardia and tachycardia) are observed [33], which directly131

influences the frequency components in the ECG signal. Motivated by this,132

we preferred to use the statistical parameters to quantify the ECG spectrum133

changes effectively. We have also computed various signal activity measures134

and then tested using the machine learning methods: linear discriminant135

analysis (LDA) [34], k-nearest neighbor (k-NN) [35], support vector machine136

(SVM) [36], and random forest (RF).137

The rest of the paper organization is as follows: The proposed method’s138

details are explained in Section 2. In Section 3, the experimental setup, the139

simulated results, a discussion on the obtained results, state-of-the-presented.140

The concluding remarks are reported in Section 4.141
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2. Methodology142

In the proposed method, the ECG segments are initially decomposed143

using wavelet transform, following statistical features computed from the144

wavelet subbands. To reduce the feature vector length, we employed a145

correlation-based feature selection algorithm [37]. The final feature vector146

is given to a classifier for OSA detection. The proposed approach is illus-147

trated in Figure 1, and it is detailed in this section.148

Figure 1: Block diagram for the proposed methodology.

2.1. Dataset149

The proposed OSA classification is based on the single-lead ECG, which150

can capture the prolonged heartbeat cycles associated with sleep apnea [38].151

According to Penzel et al. [15], ECG is suitable for the early diagnosis of152

sleep apnea. To validate the proposed sleep apnea detection mechanism, we153

used a publicly available ECG-apnea database [7]. This database contains154

70 sleep ECG records with a 100 Hz sampling rate collected in two phases.155

The first phase is recorded between 1993 and 1995. Subjects with moderate156

and severe sleep apnea have participated in this phase. The apnea-hypopnea157

index (AHI) is varied between 5 and 75 respiratory events per hour for these158

subjects. AHI is the ratio of the number of apnea or hypopnea events to159

the number of sleep hours. The classification of sleep disorders, according to160

AHI [39], is as follows:161

• Normal: AHI< 5162
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• Mild OSA: 5 ≤ AHI < 15163

• Moderate OSA: 15 ≤ AHI < 30164

• Severe OSA: AHI≥ 30165

Twenty-seven recordings from 9 subjects were included in this phase. The166

number of recordings per subject varied between one to four.167

In the second phase, samples from healthy and sleep-apnea subjects are168

collected from 1998 to 1999, where the AHI varies between 14 and 82. Finally,169

43 ECG recordings were collected from 23 subjects, where from each subject170

at most two recordings are collected.171

The single-channel ECG (modified V2) recordings are used for detecting172

sleep-related breathing disorders. These recordings are manually annotated173

by a single expert, with a resolution of one minute. Subjects or patients174

witnessed with sleep apnea during this one-minute are classified as “apnea”;175

otherwise, it is classified as “normal”. Even the segments of hypopnea are176

labeled as apnea.177

According to standard AHI criteria, each recording is grouped into apnea178

(class A), borderline (class B), and normal (class C) subjects. The details of179

these subject groups are provided in Table 1.180

Table 1: The Apnea-ECG database: Details.

Subject Group AHI age Mean AgeNo. of maleNo. of female Total
subjects subjects recordings

Class A > 10029-63 50 15 1 40
Class B 10-96 39-53 46 4 1 10
Class C < 5 27-42 33 6 1 20

The 70 records collected from these two phases are further divided into 35181

annotated (normal, apnea) training data and 35 withheld test data without182

annotation records. Each ECG record is approximately 7 to 8 hours duration.183

Initially, this database was developed for the computers in cardiology184

challenge 2000 [40] and is now made freely available in physionet [40]. The185

first part of the challenge is to discriminate between apnea and normal sub-186

jects using training and withheld data. The second part of the challenge is187

to recognize the apneic event for one- minute ECG segment. The annota-188

tion data for one-minute apneic and normal ECG is available for 35 subjects189
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in the database. In the present work, one-minute ECG segments are clas-190

sified as apnea, or normal from 35 annotation ECG recordings [41]. The191

experimental setup followed in this paper is along the direction of the recent192

works [18, 21, 42–44].193

A total of 10454 normal and 6511 apnea ECG segments of one-minute194

duration are extracted from 35 annotated recordings are used in this work.195

The sample of normal and apneic ECG signals of one-minute duration are196

provided in Figure 2.
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Figure 2: The normal and apnea ECG segments.

197

2.2. Feature Extraction198

Feature extraction has a vital role in computer-aided diagnosis. The199

selection of proper features enhances diagnosis accuracy significantly. Here,200

we present the methods and parameters used for feature extraction with its201

relevancy.202

2.2.1. Wavelet Decomposition203

ECG is a non-stationary signal originating from a nonlinear system.204

Wavelet transform can decipher subtle changes in the morphology of the non-205

stationary signals [45]. Therefore, it is a suitable technique to analyze ECG206

signals. Fourier transform aims to obtain the frequency information from a207

signal at the cost of losing the time localized information. To address this208

short-time Fourier transform with a fixed-length window is preferred. This209

windowing technique partially succeeded in finding both time and frequency210

localization [46]. The signal analysis is improved later with wavelet basis211

function involving translation and scaling; thereby, window length varies212

based on the requirement of frequency and time resolution [47]. Continuous213

wavelet transform (CWT) of a signal x(t) is defined as214

CWT (a, b) =

∫ +∞

−∞
x(t)

1√
|a|
ψ

(
t− b
a

)
dt (1)
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Where ψ is a wavelet function and a, b are translation and dilation parameters215

(scaling factors), respectively.216

Implementing CWT is difficult because of its huge memory requirement217

for storing wavelet coefficients. Therefore, a discrete wavelet transform (DWT)218

is often used as an implementation technique. In 1989, Mallat [48] proposed219

a multiresolution signal decomposition for the fast implementation of DWT,220

using multirate filter bank structures. According to [48], the signal x(n)221

passed through a series of low pass (h(n)) and high pass (g(n)) quadrature222

mirror filters as shown in Figure 3. Here, each stage or level consists of two223

digital filters g(n), h(n), and two downsamplers by 2. In the first level, a high224

pass filter followed by a downsampler provide the detail coefficient D1, and225

a low pass filter followed by a downsampler provides the approximation co-226

efficient A1. Later, A1 is decomposed further to get important information.227

The details of the frequency ranges of subbands are given below:228

• x(n) : 0− fs
2

= 0− 50Hz229

• A1 : 0− fs
8

= 0− 12.5Hz230

• D1 : fs
8
− fs

4
= 12.5− 25Hz231

• A2 : 0− fs
16

= 0− 6.25Hz232

• D2 : fs
16
− fs

32
= 6.25− 12.5Hz233

• A3 : 0− fs
32

= 0− 3.125Hz234

• D3 : fs
32
− fs

16
= 3.125− 6.25Hz235

It is easy to note that the frequency resolution increases with the number236

of levels. The subbands used in this study are D1, D2, D3, and A3. Now,237

we compute different statistical measures from these individual subbands238

that will allow us to deduce which frequency level crucial in detecting the239

OSA ECG segment. The advantage of wavelet analysis is that it can reveal240

the inherent patterns of a signal by decomposing it into different levels and241

scales [49]. Various wavelet functions are available to analyze patterns hid-242

den in different signals. Additional details about wavelets can be explored243

in [26, 47]. In this work, we adopted the db6 wavelet function because it can244

effectively capture the morphology of the ECG signal [50–54].245
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Figure 3: Subband decomposition of ECG signal using DWT.

2.2.2. Parameters246

Some vital parameters are computed from the decomposed subbands to247

serve as features, which help address classification problems. These features248

are derived from the statistical and power spectral characteristics of the sig-249

nal. The features can be grouped into three sets: 1. Moments of the power250

spectrum, 2. Waveform complexity measures, 3. Higher-order moments.251

1. Moments of power spectral density (PSD) function252

Each wavelet decomposed subband occupies a different frequency scale.253

Therefore, the first and second-order moments of PSD values are com-254

puted as features.255

Mean Frequency (MF )256

It measures the signal power spread over various frequencies. It is con-257

sidered as the first-order moment of PSD. Generally, MF exhibits high258

values for muscle contractions and low values for relaxation [55]. Heart259

rate changes (ventricular muscle contraction and relaxation) can of-260

ten be observed during sleep apnea events due to switching over sym-261

pathetic and parasympathetic actions of the central nervous system.262

Therefore, it is noticed that MF captures these muscle variations and263

provides significant information [56, 57].264

For a given signal x(n) of length N , PSD is defined as265

Pxx(k) =
1

N
|X(k)|2 (2)
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where, X(k) is discrete Fourier transform (DFT) of input signal x(n).266

PSD can be normalized to satisfy the required conditions of a prob-267

ability density function (pdf) to compute statistical moments. The268

normalized first-order moment called MF is computed as269

MF =

(
2

Ex

) fs
2∑

l=0

flPxx (fl) (3)

where fs is sampling frequency, Ex is energy of the given signal:270

Ex =
N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
k=0

|X(k)|2 (4)

Variance (V )271

This is considered as second order moment of PSD.272

Variance = V =

(
2

Ex

) fs
2∑

l=0

(fl −MF )2 Pxx (fl) (5)

These moments are derived from PSD and are useful in measuring the273

general patterns of the power distribution of a signal over frequency.274

2. Waveform complexity measures275

The waveform complexity or activity measures helpful in understanding276

the variability of ECG signals. These measures are proved to be effi-277

cient in phonocardiogram (PCG) [58], Electromyography (EMG) [59],278

ECG [60], and EEG [61, 62]. A brief discussion of these measures is279

presented below.280

Root Mean Square (RMS) value281

RMS value of a given signal x(n) is defined as282

RMSx =

√√√√ 1

N

N∑
n=1

|x(n)|2 (6)
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Form Factor (FF )283

It is a useful measure of signal activity proposed by Hjorth [63] for284

the analysis of non-stationary physiological signals. This parameter is285

derived based on the concept of variance, as the signal activity. The286

form factor is computed from two important parameters: activity and287

mobility. Activity is variance of the signal varx, and mobility is defined288

as: Mx =
√

varx′
varx

. Here x′ is first derivative of the signal. FF is defined289

as the ratio of mobility of the first derivative of the signal to mobility290

of the signal.291

FF =
Mx′

Mx

(7)

As ECG related OSA is highly variable and complex, FF would be292

efficiently measuring the changing complexity.293

3. Higher-order moments294

In addition to the above activity parameters, the statistical measures,295

including mean (mx), standard deviation (std), skewness, and kurtosis,296

are computed as features. They are defined as:297

mx =
1

N

N∑
n=1

x(n) (8)

298

std =

(
1

N

N∑
n=1

(x(n)−mx)2
)1/2

(9)

299

skewness =
1
N

∑N
n=1 (x(n)−mx)3(

1
N

∑N
n=1 (x(n)−mx)2

)3/2 (10)

300

kurtosis =
1
N

∑N
n=1 (x(n)−mx)4(

1
N

∑N
n=1 (x(n)−mx)2

)2 (11)

Higher-order moments are useful in dealing with non-Gaussian and non-301

stationary signals, whose variations are neither predictable nor periodic [64,302

65].303
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2.3. Classification304

Classification plays a significant role in computer-aided diagnosis. Based305

on the application demands, various classifiers are developed, among which306

decision trees are simple yet effective in implementation. Decision trees work307

on the principle of grouping features [66]. It is a frequently used weak learner308

since only a few iterations are required for training. The classification effi-309

ciency of these tree structures can be further increased by combining these310

trees. Ensemble learning is a powerful paradigm that combines the predic-311

tions of various simple low-accuracy models instead of searching for a complex312

high-accuracy learning model. Training low-accuracy or weak learners is fast313

and less complicated, thereby reduces the prediction time. Each decision tree314

has its own merits. Efficiently combining different decision trees having their315

merits can enhance the accuracy. For instance, if a given test sample is sug-316

gested as OSA by many weak models. The sample is classified as OSA using317

an ensemble criterion like majority voting. Among the ensemble learning318

algorithms, decision trees and RF [67, 68] has gained considerable attention.319

RF chooses values randomly from the feature vector; otherwise, the train-320

ing models may be closely related and do not serve the purpose. Random321

feature selection ensures the development of low correlation decision trees,322

a critical point in the RF classifier. Therefore, simple low correlation mod-323

els have to be appropriately constructed from the training data and effi-324

ciently combined using different criteria. Bootstrap aggregation (Bagging)325

and boosting are the two standard approaches used in ensemble learning.326

RF utilizes the Bagging approach, where multiple copies of training sam-327

ples, slightly different from one another, are created. Then each of these328

copies will train all the weak models. Therefore, the basic idea is combining329

these individual uncorrelated decision tree models enhances the prediction330

accuracy.331

We create K random copies of training samples, Ck from the original332

training data, with each copy containing S samples (Ck = {sample1, sample2, ....sampleS},333

k = 1, 2, ..., K). Using the training samples Ck we can build weak models fk.334

After training, the class of a new sample X can be predicated from the weak335

model fk as fk(X). An average of all the K model predictions is given by336

y ← f(X) =
1

K

K∑
k=1

fk(X) (12)

The main advantage of implementing ensemble classifiers is to boost the337
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prediction performance and diminish over-fitting by selecting random sam-338

ples from the original data.339

2.4. Feature Selection340

Feature selection is of paramount interest in machine learning, especially341

when the models are build using a large set of features. Increasing the num-342

ber of features may result in redundancy, noise, the curse of dimensionality,343

and model complexity [12, 16]. In the present work, the tree construction344

complexity of RF depends on the number of features, as it increases the depth345

of the tree. In this work, the correlation-based feature selection (CFS) with346

particle swarm optimization (PSO) search [37, 69, 70] is used for simplifying347

the model complexity. The CFS+PSO algorithm identifies a relevant fea-348

ture set with a high degree of correlation to the class value and a low degree349

correlation with the other features. The PSO algorithm helps, appropriately350

searching feature space to identify an optimum feature subset for initiating351

the CFS algorithm.352

2.5. Kruskal-Wallis one-way analysis of variance (KW-ANOVA) test353

The Kruskal-Wallis (KW) one-way analysis of variance (KW-ANOVA) [71]354

is a non-parametric test to estimate the differences between two or more de-355

pendent data groups. Unlike, ANOVA test, the KW test does not assume any356

particular distribution of data. Hence, it is useful for both ordinal and con-357

tinuous data variables [72]. The KW test determines the differences between358

data using the median values. The hypotheses for the KW test are:359

1. Null hypothesis: All the population medians are equal.360

2. Alternative hypothesis: At least one data group is coming from a361

different distribution.362

3. Results and Discussion363

The database discussed in Section 2.1 is used to validate the performance364

of the proposed OSA detection approach. In total, 16,965 ECG segments,365

each 1-minute duration from 35 subjects of annotated records, are used for366

experimentation. In this work, RMS, FF, the two moments of the PSD, and367

the first four order statistical parameters of the wavelet subbands are em-368

ployed as features. It is because the time-frequency based statistical feature369

representation can effectively capture the changes that occurred in the ECG370
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pattern during apneic events. A three-level decomposition is performed on371

the ECG segments resulting in 4 subbands. The essential features are com-372

puted from each subband, producing a final feature vector of length 32(4×8).373

This data is further subjected to an RF learning model for classifying the374

ECG segments. The details of the experiment setup, performance measures375

used, and the simulation results are presented below.376

The process of feature extraction and statistical analysis is performed377

using MATLAB 2016b [73]. WEKA 3.9 version [74] is used to implement378

feature selection and classification tasks. The system specifications in this379

experimental setup are Windows 8, 8 GB RAM, and 64-bit OS.380

381

3.1. Performance Measures382

The performance of the proposed classification scheme is quantified using383

the confusion matrix, and various measures [75], including accuracy, sen-384

sitivity, specificity, precision, F1-score, and area under receiver operating385

characteristics (ROC) curve (AUC) are derived from it. Here, accuracy de-386

scribes the total number of correctly recognized ECG segments from both387

OSA and normal. Sensitivity report the number of correctly identified OSA388

from total OSA ECG segments, and specificity report the correctly identified389

normal from total normal ECG segments. Precision is a measure of positive390

prediction. F1-score is a measure of the harmonic mean of sensitivity and391

precision. It is helpful when there is a conflict between sensitivity and preci-392

sion. AUC measures the level of separability between the classes. The high393

value of all these measures indicates the effectiveness of the proposed model.394

3.2. Experimental Results395

The DWT based statistical features extracted from the one-minute ECG396

segment are fed to RF classifier for classification of normal and apneic episodes.397

Furthermore, these features’ performance is studied using LDA,k-NN, and398

SVM classifiers for comparison purposes. Each of these classifiers follows a399

unique approach in prediction. For instance, LDA and SVM are functional400

type classifiers, k-NN is a lazy classifier, and RF is an ensemble algorithm.401

To make a fair comparison with existing methodologies [18–20, 27], two402

cross-validation methods, namely, hold-out and 10-fold, are explored. Ex-403

periments in hold-out validation are carried out by partitioning the entire404

dataset into independent testing and training sets. Especially in this analy-405

sis, 50% of the dataset is randomly selected for training, and the remaining406
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data is used as testing; further, this process is repeated ten times. The confu-407

sion matrices of selected learning models for a single iteration are presented408

in Table 2. In these matrices, the diagonal entries represent correctly recog-

Table 2: Confusion matrices for various classifiers.

Classifier −− > LDA k-NN
Actual\predicted Apnea Normal Apnea Normal

Apnea 1418 1814 2576 671
Normal 697 4553 714 4521

Classifier−− > SVM-Linear RF
Actual\predicted Apnea Normal Apnea Normal

Apnea 1403 1832 2772 487
Normal 718 4529 389 4834

409

nized ECG segments, and anti-diagonal represents false identification from410

both the classes. From Table 2, it is observed that all the classifiers have411

successfully predicted about 4500 normal class ECG segments out of approx-412

imately 5200 ECG segments. RF and k-NN predicted approximately 2700413

and 2500 OSA beats correctly out of approximately 3200 ECG segments.414

The classifiers other than RF and k-NN failed in predicting normal and OSA415

segments correctly. RF classifier exhibits superiority over k-NN in discrimi-416

nating samples from both classes. It is to be noted that the individual total417

of normal and sleep-apnea values are different for all these confusion matri-418

ces since hold-out is performed for various random shuffles of samples. The419

average performance measures (mean ± standard deviation) of these models420

for ten different runs is given in Table 3. For each run, all the samples are421

randomly shuffled.422

From Table 3, we can observe that k-NN and RF classifiers are provid-423

ing superior performance over other classifiers. Expressly, RF has provided424

better results: sensitivity of 85.07%, a specificity of 92.42% while k-NN sen-425

sitivity 79.91%, and specificity is 86.44%. It is noted that good sensitivity426

values indicate an accurate prediction of OSA. RF is yielding a sensitivity427

value of 5% more than that of the k-NN. The AUC value of 96% specifies the428

potential of the class discriminating capability of the proposed model. Fur-429

thermore, the RF classifier is providing consistent results with less standard430

deviation, indicating less variance and more stability.431

It is noted that the non-parametric methods: k-NN and RF, are providing432

noticeable results because They do not presume anything from data but learn433
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Table 3: Average performance of the proposed approach (values in %) : Hold-out (50-
50)cross-validation.

LDA k-NN
(Performance metric) classifier classifier

Accuracy 69.68± 0.55 83.93± 0.32
Sensitivity 43.54± 1.26 79.91± 1.10
Specificity 85.89± 0.56 86.44± 0.44
Precision 65.83± 0.74 78.44± 0.5
F1-Score 52.4± 0.99 79.15± 0.52

AUC 76.87± 0.458 83.16± 0.45
SVM-Linear RF

(Performance metric) classifier classifier
Accuracy 69.6± 0.58 89.6± 0.14
Sensitivity 44.02± 1.99 85.07± 0.39
Specificity 85.61± 0.83 92.42± 0.22
Precision 65.6± 0.98 87.42± 0.31
F1-Score 52.66± 1.28 86.57± 0.31

AUC 64.81± 0.68 96.04± 0.07

from data.434

Further, to understand the role of feature selection on the detection per-435

formance, additional experiments have been performed. In Table 4, each436

of the features obtained from the subbands is provided with an index num-437

ber. The CFS+PSO algorithm has returned 18 prominent features out of 32:438

{1,2,4,8,10,11,12,14,15,16,17,18,23,24,25,27,30,32}.439

Table 4: Feature number assignment.

Subbands\features MF V RMS FF mean std skewness kurtosis
Subband 1 1 2 3 4 5 6 7 8
Subband 2 9 10 11 12 13 14 15 16
Subband 3 17 18 19 20 21 22 23 24
Subband 4 25 26 27 28 29 30 31 32

It is clear from the results mentioned above that the RF classifier is ex-440

hibiting superior performance over others. Hence, further experiments are441

carried out using the RF classifier alone. The confusion matrix of the RF442

classifier with feature selection is presented in Table 5. This table shows that443

7558 samples are correctly recognized out of 8482 samples with an approxi-444
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mate accuracy of 90%. Table 6 presents the detection performance metrics445

on the selected features averaged over ten independent simulations. From446

Tables 6 and 3, it is observed that the RF classifier performance with and447

without feature selection is almost equal, and interestingly sensitivity value448

after feature selection is improved by 1%. Hence, the results support the449

proposed model’s ability to effectively detect the OSA segments in a minute-450

by-minute analysis.

Table 5: Confusion matrix of RF classifier (one iteration) with feature selection: Hold-out
(50-50) cross-validation.

Apnea Normal
Apnea 2807 437
Normal 487 4751

451

Table 6: Average performance of the proposed OSA approach ( values in %) with RF
classifier: Hold-out (50-50) cross-validation on selected 18 features.

Metric Value
Accuracy 88.9± 0.082
Sensitivity 86± 0.69
Specificity 91.39± 0.35
Precision 85.97± 0.57
F1-Score 85.59± 0.41

AUC 95.69± 0.20

This reduction in the number of features helps in the speedy and effective452

implementation of the proposed method. Besides, the average time elapsed453

to classify ECG segments is computed and presented in Table 7.454

Table 7: Classification time analysis in testing phase.

Number of features Average time elapsed Average time elapsed for
for 8482 test samples (seconds) one test sample (seconds)

32 1.05 12.3× 10−5

18 0.33 38.9× 10−6

From Table 7, it can be observed that the testing time has been reduced455

by almost three times after feature selection.456
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As described in Section 3.2, we have tested the proposed method using457

10-fold cross-validation [76]. The sample confusion matrices of RF classifier458

results using 10-fold cross-validation are presented in Table 8. From this459

table, it is noted that the full feature set correctly classified 15319 samples460

out of 16965 samples. In comparison, the selected 18 subsets of features can461

identify 15238 instances out of 16965 samples. It justifies the effectiveness of462

selected features in classification. Tables 9 and 10 represents the proposed463

scheme’s average performance measures using 10-fold cross-validation with464

and without feature selection. The 10-fold approach also justifies that the465

performance is satisfactory, even after the feature reduction.466

Table 8: Confusion matrices of RF classifier (one iteration)with and without feature se-
lection: 10-fold cross-validation.

Using 32 features Using 18 features
Actual\predicted Apnea Normal Apnea Normal

Apnea 5642 869 5615 896
Normal 777 9677 831 9623

Table 9: Average performance measure values in % of RF classifier without feature selec-
tion: 10-fold cross-validation.

Metric Value
Accuracy 90.3± 0.086
Sensitivity 86.6± 0.15
Specificity 92.59± 0.07
Precision 87.93± 0.11
F1-Score 87.26± 0.12

AUC 96.6± 0.0

3.3. Discussion467

The results demonstrated in Section 3.2 support that the ensemble deci-468

sion tree classifier called RF classifier shows superior performance with DWT469

based statistical features. Further, a feature selection process is employed on470

the feature set to diminish the effect of correlation among the features on the471

overall performance. The CFS+PSO has reduced the length of the feature472

vector from 32 to 18. Among 18 features, six are moments of the PSD, four473
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Table 10: Average performance measures values in % of RF classifier with feature selection:
10-fold cross-validation.

Metric Value
Accuracy 89.84± 0.005
Sensitivity 86.23± 0.15
Specificity 92± 0.118
Precision 87.3± 0.13
F1-Score 86.71± 0.09

AUC 96.3± 0.03

are activity measures, and eight are higher-order moments. It suggests that474

all categories of features equally contribute to better classification.475

It is noted that, among the selected 18 features, four are from subband 1,476

six are from subband 2, four are from subband 3, and the remaining four are477

from subband 4. Each subband provides some unique information required478

for identifying the OSA ECG pattern. The details are given in Table 11.479

Table 11: The selected features from each subband after CFS+PSO.

Subband Number Features
1 MF, V, FF, and kurtosis
2 V, RMS, FF, std, and kurtosis
3 MF, V, skewness, and kurtosis
4 MF, RMS, std, and kurtosis

From Table 11, it can be observed that the power spectrum moments480

and kurtosis are the most discriminating features from all the subbands.481

These features capture the ECG signal patterns from high to low-frequency482

distribution to differentiate OSA and normal ECG signals. Here, the kurtosis483

identifies whether the tails of a given distribution contain extreme values [77],484

which are a result of a change in heart rate. The cardiac muscle variations485

can change the ECG signal power values [56, 57], which can be represented486

by the first and second-order moments of PSD (MF and V).487

3.3.1. Efficacy of the features488

To further ascertain the effectiveness of the features selected, we have489

performed the KW-ANOVA [71] test. The normalized (min-max normaliza-490

tion) features obtained after performing CFS+PSO are used in this test. If491
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this test results in a p value of < 0.01, it implies that the chosen attributes492

(features) are having significant differences in terms of their distribution re-493

lated to the class label [78]. The KW-ANOVA test is carried out on the494

features of both normal and OSA data. The statistical test is reported on495

6500 samples (approximately equal to OSA ECG segments) of normal and496

OSA ECG segments. The analysis is performed individually on each feature497

value from both the classes.

Table 12: p-values of the selected features.

Feature Number p-value
1 0
2 3.3140× 10−92

4 0
8 0
10 1.066× 10−06

11 0
12 0
14 0
15 0
16 0
17 0
18 4.9596× 10−24

23 0
24 0
25 0
27 0
30 0
32 0

498

The p-values for all features are presented in Table 12. The table shows499

that for all the 18 features, p < 0.01, which suggests that the DWT-based500

features are statistically substantial for discriminating the normal and OSA501

classes [65]. Furthermore, the box-whisker plots are shown in Figure 4, to502

support the statement mentioned above. In each of these plots, the red dots503

represent the feature distribution concerning the class, and the black color504

extreme horizontal lines called whiskers represent the spread of the data. The505

red dots outside the whisker are outliers. Inside the box, the middle red line506
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indicated the median of the data, and the other two lines from the median507

are called quartiles. Additional details about box plots maybe found in [79].508

It is observed from these plots; these features exhibit good discrimination509

ability. Therefore, it is inferred that these statistically significant features510

play a crucial role in better classification of OSA and normal ECG segments.511
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Figure 4: Box plots for the features corresponding to normal and OSA classes.

3.3.2. Performance comparison with existing methodologies512

The performance comparison of the proposed approach with the existing513

works that have used the same dataset as our work is presented in Table 13.514

Our method has provided better classification accuracies than the approaches515

in [16, 17, 19, 20, 27, 43, 44] with a few number of features. The advantages516

and limitations of our approach with other competing approaches are listed517

below.518

Advantages519

1. Our approach achieved a good classification accuracy with reduced fea-520

ture vector length, resulting in less classification time. Specifically, it521

exhibited an average accuracy of 90.3% with 32 features and 89.84%522
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with 18 features. The proposed approach has employed significantly523

fewer features than most of the existing methodologies [16–18, 42, 80].524

2. The works in [20], and [43] employed fewer features than our approach,525

i.e., 8 and 12 features, respectively. However, the performance metrics526

support our proposed approach.527

3. Our classification accuracy is similar to the works [42, 80, 81]. However,528

we achieved an average classification accuracy of 89.6% with only 50%529

of training data and 90.3% when 10-fold cross-validation is used. At530

the same time, the approaches in [42, 80, 81], have employed 35-fold531

cross-validation, where approximately 97.1% (34/35) data is employed532

for training. We achieved comparable results with much lesser training533

data. It is also noteworthy that the approach in [42] has achieved534

the classification accuracy of 88.88% with 90 features. We achieved a535

similar performance with only 18 features.536

4. Besides, it is observed that the proposed method has outperformed the537

techniques that have employed 10-fold cross-validation [19, 27, 44].538

Limitations539

Despite the evident advantages and effectiveness, the proposed approach540

has some limitations.541

1. The overall accuracy needs to be improved to above 90%.542

2. The sensitivity of the proposed method is slightly less than some of the543

state-of-the-art.544

3. The proposed approach must be validated on a more extensive and di-545

verse dataset before deploying it for clinical purposes. More specifically,546

it has to be validated on a dataset that contains subjects with other547

sleep disorders, cardiac arrhythmias, and breathing-related problems.548

We plan to consider it as a part of future studies.549

4. Conclusion550

We have proposed an automated computer-aided approach for OSA de-551

tection. More specifically, significant statistical features are computed from552
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ECG subbands. RF classifier has utilized these features for discriminating553

normal and apneic ECG segments. The proposed method attained a clas-554

sification accuracy of 90%, demonstrating that wavelet-based features can555

discriminate apnea and normal ECG signals and provide better classification556

metrics than most of the existing methodologies.557

A simple yet effective approach for OSA detection is presented in this558

paper. However, the proposed method needs to be validated on a larger559

dataset before using it for clinical purposes. We plan to develop a deep560

learning-based approach for OSA detection in future work.561
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